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Abstract

The structure and other characteristics of natural language can be illuminated by an inves-
tigation into the real world conditions within which language functions. Language is taken as
a medium in which messages are produced, and we investigate how it is best adapted to effi-
cient coding. We examine naturally occurring phenomena and suggest how their exploitation
would confer an evolutionary advantage.

The main focus of this paper is approached by first examining a related phenomenon: the
expected distribution of some linguistic entities. It is shown how this is relevant to a language
representation that can facilitate the efficient transfer of information.

This leads to an investigation into how naturally occurring events, such as pauses in
speech, can be utilized to improve the transmission of information. Using arguments based
on comparative entropy measures we show that there seems a certain inevitability to the
development of structured language. This is a novel application of well known tools from
Information Theory, and demonstrates how a relationship between prosodic information and
the organization of language might be expected to develop.

1 Introduction

The aim of this paper is to show that an examination of the statistical nature of spoken and
written communication will help explain why language is likely to evolve with a structure. We
examine naturally occurring phenomena, suggest how their exploitation would confer an evolu-
tionary advantage, and explain how this supports the development of structured language. This
is based on a novel application of well known tools in Information Theory, which can illuminate
many characteristics of natural language.

The transfer of information is taken as the principal role that language fulfills, and any
consideration of other “speech acts” are left aside. Language is taken as a variable medium in
which messages are produced, and we investigate how it is best adapted so that an acoustic
speech signal can be efficiently coded.

In this paper some characterisitics of human speech that distinguish it from non-speech sounds
are briefly reviewed (Section 2). Then we look at two aspects of natural language where efficient
coding is supported. We first revisit a subject examined in the past by Mandelbrot [1] (Section
3). He proposed that a general statistical structure, independent of meaning, underlies human
languages, and that language is “intentionally if not consciously produced in order to be decoded
word-by-word in the easiest possible fashion”. He supported his hypothesis by investigating the
distribution of English words, and it is then shown how this is relevant to a language represen-
tation that can facilitate the efficient transfer of information.




This leads into the main topic. We report on an investigation into how naturally occurring
events, such as pauses in speech, can be utilized to improve the transmission of information
(Section 4). Using arguments based on comparative entropy measures we show that there seems
a certain inevitability in the development of structured language.

This work developed out of investigations into data representation for automated natural
language parsing [2, 15].

2 Selection for efficient and robust communication

There is a high biological cost in developing the physiology capable of producing speech. Humans
can produce a much wider range of sounds than other species can, but in order to do this the
human anatomy has evolved in a way that has incurred significant physiological disadvantages
(Lieberman [3]). In spite of this, the human speech faculty has developed: presumably the ability
to communicate by speech greatly outweighs the concomitant disadvantages.

It is instructive to examine the characteristics of human speech that distinguish it from non-
speech sounds. First, Lieberman notes the high transmission rates that characterize speech: 15
to 25 phonetic segments per second, which map very roughly onto letters, can be produced or
recognized. The identification of non-speech sounds is much slower: a maximum of 7 to 9 items
per second. Secondly, he notes the larger range of sounds that only humans have the anatomy to
produce. These include vowels like [i] and [u] which are less susceptible to perceptual confusion
than some other phonetic segments, and more easily combined with other sounds.

Observing these characteristics of human speech, we see selection for speed, reliability and
wider scope as language has evolved. Now, if speech has evolved to meet these requirements for
efficient communication at some biological cost, we expect that other empirical factors will be
exploited too. This paper examines the statistical environment in which speech operates, and
shows why structured language is likely to evolve.

2.1 Representing speech as discrete words

The primary form of language is speech, an analog signal. The perceptual analysis of speech,
and an understanding of how an utterance is segmented into words, is an active area of research
[4]. However, for this paper we take as a starting point the assumption that a mapping from a
speech signal onto discrete symbols can be done.

3 The distribution of words and efficient coding

This section introduces the principle that efficient coding is likely to be a factor in the organi-
zation of language. Before addressing the main subject of language structure in the following
section we investigate how the distribution of different words can facilitate the efficient transfer
of information.

As speed of production is a characteristic of human speech sounds, we expect faster methods of
communication to be favoured rather than slower ones. Therefore, we expect that more common
words will typically be shorter than less common ones.




3.1 The distribution of English words

The LOB corpus is a collection of English texts from different fields, totalling about 1 million
words [5]. In it the most common words, are, in rank order (see page 19): !

the of and to a in that is was

it for he as with be on 1 his

The first 50 are typically short, closed class function words, as opposed to content words.

We find a characteristic distribution of words in English and other languages to which Shannon
drew attention in his classic paper [6]. Informally stated, it models the fact that a small number
of words are very common, but a significant number are used infrequently. For example, words
that have a frequency of less than 1 in 50,000 make up about 20-30% of typical English language
news-wire reports [7]. In the Brown corpus of about 1 million words 40% of word forms are hapaz
legomena: occurring only once [8].

A common way of displaying this distribution is to rank words into frequency order, and
then show rank against actual frequency. If word forms are ranked in order of frequency, and r
denotes rank, then there is an empirical relationship between the probability of the word at rank
r occurring, p(r), and r itself, known as Zipf’s Law:

p(r) * r = constant

With the constant taken as about 0.1 this gives a surprisingly good approximation to word
probabilities in English and other languages, and indicates the extent to which a significant
number of words occur infrequently [6].

Relevance to automated speech and language processing

This typical distribution of words has a significant effect on speech and natural language pro-
cessing systems. Constructing a vocabulary that will cover ordinary topics, or speech in limited
domains, is no trivial task. Even with very large training sets, new words will occur later in
unseen test sets. ’

3.2 Theoretical distribution of ‘words’

Before we look further at the actual frequency distribution of words, let us examine a more
general case. Consider a sequence of discrete elements, of which one special element serves to
divide the sequence into sections.

This is analogous to a sequence of spoken words. Individual sounds of speech correspond
roughly to letters which make up words, and strings of spoken words can be mapped onto written
sequences of letters, separated by spaces.

Suppose there are n different elements in an alphabet A and that the special element that
divides up the sequence is the space symbol z,. Let the probability of the space symbol occurring
be p;.

Assume initially that (i) the other letters all have equal probability of occurring p,, and (ii)
that all letter combinations are legal.

Whenever z; occurs a letter sequence, or ‘word’ is completed.

!Compare for interest gender differences in frequency and case: ‘he’, nominative, rank 12, ‘his’, genitive, rank
18, contrasts with ‘her’, accusative and genitive, at rank 29, ‘she’, nominative, at rank 30, ‘him’, accusative, at
rank 49,
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Now, consider the probability of ‘words’ of various lengths occurring. Suppose a ‘word’ is
about to start.

Probability of ‘word’ length zero = p;
Probability of any ‘word’ length 1 = p, * p;
Probability of any ‘word’ length \ = (pq)>‘ * D

The probability of longer ‘words’ occurring is less than that of shorter ‘words’.

Now consider how many ‘words’ there are within each probability band. There are more pos-
sible ‘words’, or letter combinations, as A increases: for ‘words’ of length X there are n* different
‘words’. Therefore,

Probability of particular ‘word’ length A

. (pq)A * Ps
=5
As ) increases there is both (i) less likelihood of any ‘word’ of that length occurring and

(ii) many more ‘words’ of that length to choose from. Hence we have the initial pattern of
distribution, where a few short strings occur frequently, while many longer ones occur rarely.

3.3 Exploiting a statistical phenomen

When Zipf described the distribution that bears his name he explained it by postulating a “Prin-
ciple of Least Effort”, where the shortest words are typically the most frequently used [9]. Bell,
Cleary and Witten [10] point out that there is no need to invoke such a principle, since the Zipfian
distribution will emerge without it, as described above. They support their view with a report on
experiments with 100 specially trained monkeys (computer simulated ones), which typed random
characters, constrained by observed frequencies.

However, the two positions complement each other: we see that a naturally occurring phe-
nomenon can be exploited to confer an evolutionary advantage. By representing frequent words
with shorter codes we approach a more efficient coding system. Compact codes will facilitate
fast communication, which is one of the notable features of human speech. If a zipfian type
distribution of words is likely to occur, we might expect that this would be used to advantage.

Mandelbrot’s work

Mandelbrot drew attention to this phenomenon, and investigated the way in which the statistical
structure of language is best adapted to word coding. [1]. However, he did not endear himself
to the traditional Linguistic community by claiming ill-advised analogies with thermodynamics.
His basic theory was misunderstood and his work quietly left aside.

4 Sequence structure and efficient coding

The first subject examined in this paper looked at the way that speech sounds were likely to be
combined into words. We analyzed sequences of a limited number of elements: the characters of
the alphabet.




Now we consider sequences with a much larger number of elements: an indefinite number of
words that can be created out of these phonetic elements. We investigate how words are grouped
together, and why statistical realities make certain modes of segmentation likely to evolve.

In this section we first describe the metrics that are used, and then illustrate their application
in a related, but simpler, field.

4.1 Entropy and perplexity

This analysis is based on comparative measures of the entropy of sequential data. 2

Entropy is a measure, in a certain sense, of the degree of uncertainty. If the entropy can be
reduced, the predictability of the next element in an incomplete sequence is increased. A sequence
represented in a way that lowers the entropy without reducing its representational power is a more
efficient message carrier. Therefore, we would expect language to evolve so that it enabled lower
entropy coding of a sequence of words.

This approach to the evaluation of language models has been used in automated speech
recognition (ASR) for many years [13]. Typically, entropy is reduced by taking more of the
context into account. If we know preceding words there is reduced uncertainty about the next
word. In ASR applications language models generally use bigrams or trigrams instead of single
words.

The new contribution we make is to show that the entropy can also be reduced by imposing
a structure on a sequence of words. If the segmentation of speech is modelled along with the
words, then the entropy declines. We conclude that it is likely that this phenomenon will have
been exploited as language has evolved.

Definitions

Let A be an alphabet, and X be a discrete random variable. The probability mass function is
then p(z), such that
p(z) = probability(X = z),z € A

If we consider letter sequences the z’s could be the 26 letters of the standa,rd alphabet
The entropy H(X) is defined as

— > p(z) *log p(z)

€A

Very informally, this combines information on how difficult it is to predict a letter together
with its probability of occurring. If logs to base 2 are used, the entropy measures the minimum
number of bits needed on average to represent X: the more limited the choice the less bits will
be needed to describe it.

We talk loosely of the entropy of a sequence, but more precisely consider a sequence of symbols
X; which are outputs of a stochastic process. We estimate the entropy of the distribution of which
the observed outcome is typical.

Often the related metric of perplezity is employed. If P represents perplexity and H entropy,
then

p =2

and P can be seen as a measure of the branching factor, or number of choices.

®For reference see Cover [11, chapter 2], or, for an introduction, Charniak [12, chapter 2].




4.2 Tllustrations from letter sequences
Shannon’s work on English texts

Though we are investigating groups of words, the subject is introduced by recalling Shannon’s
well known work on the entropy of letter sequences.

Shannon showed that the entropy H of written English, can be reduced in two ways. First, it
declines as more of the statistics of the language are taken into account. H,, the n-gram entropy,
measures the amount of entropy with information extending over n adjacent letters of text, and
o, <=H,_1.

Secondly, the entropy can be reduced if an extra character representing a space between words
is introduced. The introduction of the space captures some of the structure of the letter sequence.

Shannon produced a series of approximations to the entropy H of written English, which
successively take more of the statistics of the language into account. Hy represents the average
number of bits required to determine a letter with no statistical information. Thus, for an
alphabet of 16 symbols Hy = 4.0.

Hj is calculated with information on single letter probabilities. If we knew, for example, that
letter e had probability of 20% of occurring while & had 1%, then the letter e could have a shorter
code than k. Messages using this alphabet could be coded with fewer bits than could be done
without this information. Hy would be lower than Hy.

Hj uses information on the probability of 2 letters occurring together; Hy,, called the n-gram
entropy, measures the amount of entropy with information extending over n adjacent letters of
text 3 and H,, < H, (n—1). As n increases the n-gram entropy declines: the degree of predictability
is increased as information from more adjacent letters is taken into account. This fact is exploited
in games where the contestants have to guess letters in words, such as the “Shannon game” or
“Hangman” [13].

The formula for calculating entropy is given in Appendix 1.

Entropy and structure

The entropy can also be reduced if some of the structure of the letter strings is captured. As
Shannon says “a word is a cohesive group of letters with strong internal statistical influences” so
the introduction of the space character to separate words will lower the entropy Hs and Hj.

With an extra symbol in the alphabet Hy will rise: there will be more choice, less predictabil-
ity. Hy may go down because the space will be much more frequent than any other symbol, and
this can outweigh the effect of the larger number of symbols. However, as there will be more
potential pairs and triples, Hy and Hs could rise. But in practice the space symbol will prevent
“irregular” letter sequences between words, and thus reduce the unpredictability. Hy and Hs do
in fact decline. For instance, for the words

COOKINGCHOCOLATE
If a space is inserted the trigrams “N-G-C” and “G-C-H” will be replaced by “N-G-space”,
“G-space-C” and “space-C-H”..
The significance of boundary marking for ASCII data

For other representations too, the insertion of boundary markers that capture the structure of a
sequence will reduce the entropy. Gull and Skilling [14] report on an experiment with a string

3This notation is derived from that used by Shannon. It differs from that used by Bell, Cleary and Witten [10].
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Hy Hy Hy H;
26 letter 4.70 4.14 3.56 3.3
27 letter 4.76 4.03 3.32 3.1

Table 1: From Shannon’s work on letter sequences: a comparison of entropy for different n-grams,
with and without representing the space between words

of 32,768 zeroes and ones that are known to be ASCII data organised in patterns of 8 as bytes,
but with the byte boundary marker missing. By comparing the entropy of the sequence with the
marker in different positions the boundary of the data is “determined to a quite astronomical
significance level”.

4.3 The entropy of strings of words

Now, a similar analysis can be employed to see how words are organised into structured con-
stituents. In [15] Lyon and Brown showed how the entropy of text mapped onto part-of-speech
tags could be reduced if clauses and phrases were explicitly marked. Syntactic markers can be
considered analogous to spaces between words, or to virtual punctuation marks.

Consider, for example, how subordinate clauses are discerned. There may be an explicit
opening marker, such as a ‘wh’ word, but often there is no mark to show the end of the clause.
If markers are inserted and treated as virtual punctuation some of the structure is captured and
the entropy declines. A sentence without opening or closing clause boundary markers, like

The shirt he wants is in the wash.
can be represented as
The shirt { he wants } is in the wash.

If this sentence is given part-of-speech tags the symbols ‘{’ and ‘}’ will represent two classes
in the tagset. We call them virtual-tagl and virtual-tag2. The entropy Hy will be higher for the
second representation because there are more tags from which to choose. The change in Hy will
depend on the frequency with which the new tags occur. However, Hy and H3z will decline if
some of the structure is captured. ‘

The part-of-speech tags have probabilistic relationships with the virtual tags in the same way
that they do with each other. The pairs and triples generated by this second string exclude “un-
likely” tags sequences such as (noun, pronoun), (noun, pronoun, verb) but include, for instance,
(noun, virtual-tagl), (noun, virtual-tagl, pronoun) The entropy, Hy and Hj, with virtual tags
explicitly marking some constituents is lower than that without the virtual tags.

4.4 Analysis of MARSEC (Machine Readable Spoken English Corpus)

In a similar way the words from a speech signal can be segmented into groups, with periodic
discontinuities. It has been shown that there is a relationship between prosody and syntactic
structure, and that the placement of pauses and other discontinuities provide clues to syntactic
structure [16, 17, 18, 19].

An example given by Ostendorf is

Mary was amazed Ann Dewey was angry.




which was produced as
Mary was amazed || Ann Dewey was angry.

where || represents a pause.

We have investigated how the entropy of sequences of words varies when discontinuities are
represented. This research was carried out using the MARSEC corpus, which is annotated with
prosodic markers.

The corpus has been mainly collected from the BBC, and is available free on the web. We
have used part of the corpus, just over 26,000 words, comprising the 4 categories of news com-
mentary (A), news broadcasts (B), lectures aimed at a general audience (C) and lectures aimed
at a restricted audience (D).

The prosodic markers in MARSEC which we retain are the major and minor tone unit bound-
aries. The term “discontinuity” is taken to cover both these features. The major tone unit
boundary can also be labelled as a pause.

The prosodic markup was done by two trained annotators. Some sections of the corpus have
been marked up by both, and we see that there is a large measure of agreement, but not a total
consensus. Prosodic perception is an inexact science. However, there are general standards that
are widely accepted, and agreement between several annotators is one way of establishing norms
for evaluation. In Table 2 we show some sample data as we used it, in which only the major and
minor tone unit boundaries are retained. When passages were marked up twice, we chose one in
an arbitrary way, so that each annotator was chosen about equally.

Key:
|| is a pause, | is a minor discontinuity
annotator 1 annotator 2
we we
heard heard
automatic automatic
fire fire
l |
a a
few few
yards yards
away away
| I
we we
drove drove
on on
I |
a a
jet jet
appeared appeared

Table 2: Example of MARSEC corpus with minimal prosodic annotations

Taking the discontinuities as virtual words, we find that the minor discontinuities have a
probability of approximately 0.15, pauses 0.04, jointly 0.19.




T T T T I
14 -
12 Words + markers ¢ -
° Words only +
=
g
2 10 | s
<
Q
(0]
[0
[oX
¢ 8 I - -
5 "
T
©
D- L
8 6 I -
2
<
K
=
g af 1
2r _
0 1 | 1 ]

0] 5000 10000 15000 20000 25000 30000
Corpus size in words

Figure 1: Comparison of trigram part-of-speech perplexity for sections of the MARSEC corpus,
(i) with both major and minor discontinuities marked (i) without either. The tagset size is
28 with the discontinuities represented, 26 without them.. The data is taken from Table 3 and
converted to perplexity from entropy. The entropy is calculated with trigrams spanning a major
discontinuity (pause) omitted, as in Table 3 column Hj (2). '

4.5 Investigation of entropy measures

We can measure the entropy Hy, Hy, Hy and Hj for the corpus with and without prosodic markers
for major and minor discontinuities. However, rather than use words themselves we map them
onto part-of-speech tags. This reduces an indefinite number of words to a limited number of tags,
and makes the investigation computationally feasible. The tagset used in this work is given in
Appendix 2. We expect

e M will be higher with markers, since the alphabet size increases.
e I could be lower or higher depending on the frequency of the new symbols.
e Hjy and Hj3 will be inclined to fall if the marker captures some of the language structure.

To conduct this investigation the MARSEC corpus was taken off the web, and pre-processed
to leave the words plus major and minor tone unit boundaries. Then it was automatically
tagged, using a version of the Claws taggert. These tags were mapped onto a smaller tagset

“Clawsd4, supplied by the University of Lancaster, described by [20]
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Speech Number of Number of Hy | HA | Hy | H3 | H3
representation | minor discontinuities | major discontinuities 1) | (2
Words only 0 0 4.70 | 411 | 3.29 | 2.94 | 2.94
Words + minor 3454 0 4.75 | 4.09 | 3.18 | 2.84 | 2.84
Words + major 0 1029 4.75 | 4.19 | 3.32 | 2.94 | 2.84
Words + both 3454 1029 4.81 | 417 | 3.16 | 2.82 | 2.70

Table 3: Entropy measures for 18655 words of the MARSEC corpus, (sections A, B, C concate-
nated) with and without major and minor discontinuities. Hz (2) measures entropy without
triples spanning a major pause (see text).

Speech Number of Number of Hy | Hi | Hy | H3
representation minor discontinuities | major discontinuities
Words + discontinuities 3109 1209 4.81 | 419 | 3.63 | 3.05
in arbitrary positions

Table 4: Entropy measures for same part of MARSEC corpus with discontinuities in arbitrary
positions : major discontinuity every 19 words, minor discontinuity every 7 words (except for
clashes with major)

with 26 classes, 28 including the major and minor discontinuities. Random inspection indicated
about 96% words correctly tagged. Then the entropy of part of the corpus was calculated (i)
for words only (ii) with minor discontinuities represented (iii) with major discontinuities, pauses,
represented and (iv) with major and minor discontinuities represented. Results are shown in
Table 3, and in Figure 1. Hj3 is calculated in two different ways. First, the sequence of tags
is taken as an uninterrupted string (column Hj (1) in Table 3). Secondly, we take the major
discontinuities, pauses, as points of segmentation, and omit any triple that spans 2 segments
(column Hj (2)).

An alternative method of representation would be to have one symbol for a discontinuity, and
mark a major discontinuity by a double occurrence. This would avoid the triple spanning a pause.
However, it would exaggerate a decline in entropy for pairs and triples, since the discontinuity
marker would often be followed by itself. The introduction of a frequently occurring pair would
affect the entropy measure.

The formula used to calculate entropy is given in Appendix 1.

This experiment shows that the entropy declines when information on discontinuities is ex-
plicitly represented. Though there is not a transparent mapping from prosody to structure, there
is a relationship between them which can be exploited. These experiments indicate that English
language can be coded more efficiently when structural markers are represented.

Note that we are interested in comparative entropies. The entropy converges slowly to its
asymptotic value as the size of the corpora increases, and this is an upper bound on entropy
values for smaller corpora. Ignoring this may give misleading results [21]. The reason why
entropy may be underestimated for small corpora comes from the fact that we approximate
probabilities by frequency counts, and for small corpora these may be poor approximations.

Comparison with arbitrary segmentation

Compare these results to those of another experiment where the corpora of words only were taken
and discontinuities inserted in an arbitrary manner. Major discontinuities were inserted every 19
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words, minor ones every 7 words, except where there is a clash with a major one. The numbers
of major and minor discontinuities are comparable to those in the real data. Results are shown in
Table 4. Hy and Hj are higher than the comparable entropy levels for speech with discontinuities
inserted as they were actually spoken.

Moreover, the entropy levels are higher than for speech without any discontinuities: the
arbitrary insertion has disrupted the underlying structure, and raised the unpredictability of the
sequence.

5 Conclusion

In this paper we have examined two mechanisms by which language is encoded in such a way
that it can be decoded as easily as possible. We first saw how a zipfian distribution of word
frequencies was compatible with this, and was therefore likely to evolve (Section 3).

Secondly, we examined different representations of English speech and saw that it can be
more efficiently coded when discontinuities such as pauses are represented (Section 4. They act
as structural markers. Unstructured strings of words are associated with higher levels of entropy,
which makes decoding harder. So as language has evolved, we would expect selection pressure to
encourage the development of structured modes of representation. Once an embryonic language
structure began to emerge this may have been reinforced by the real world conditions of speech
transmission.

It is hard to resist the temptation to conjecture about how initial moves towards structured
language may have begun. Consider, for instance, a hunting scenario in the distant past. Suppose
the leader of one tribe can say things like “Hide in the tree where I waited with your father while
I chase the deer past you down the gully”. Compare this to the utterance of the leader of another
tribe that can only string words together in an unstructured way: “Hide tree wait father chase
deer gully”. If the aim of speech is to transfer information, then an advantage is conferred by
the ability to use structured language rather than unstructured strings of words.

Research into the acquisiton of syntactic knowledge by children investigates the mapping from
prosody to language structure [4]. There is a strong case that there are prosodic cues to syntactic
structure, that infants are sensitive to these cues and can exploit them in speech processing.
Whether this provides a base on which a grammar is constructed or a means by which innate
grammar is discovered is a subject of ongoing research.

The emergence of structured language and statistical realities

One way of analysing the structure of language is to see it as a tertiary form. First, there are
relationships between adjacent words, a structure that can be modelled by Markov processes.
Then words can be grouped together into constituents and these constituents are organized in a
secondary structure. Thirdly, there are relationships between elements of constituents, such as
the agreement between the head of a subject and the main verb. These three levels are compatible
with levels in the Chomsky hierarchy.

In this paper we consider the development of secondary structure, the organization of groups
of words into constituents. Speech is of necessity a signal interspersed with periodic pauses
for breath, and these pauses can be utilised to impose structure on a stream of speech. Other
discontinuities, minor tone unit boundaries, also occur. By comparing the entropy of the sequence
of spoken words with and without discontinuities represented we find that the entropy is reduced
by including them. The representation of discontinuities aids the efficient decoding of speech.
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Thus, it seems, that by developing structured modes of language representation, advantages
of efficient transmission are conferred.
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Appendix 1

Formula for calculating the entropy of discrete, sequential data

The following formula is based on Shannon’s work [6], on the entropy of letter sequences. He
produced a series of approximations to the entropy H of written English, which successively take
more of the statistics of the language into account

Hy represents the average number of bits required to determine a letter with no statistical
information. H; is calculated with information on single letter frequencies; Hy uses information
on the probability of 2 letters occurring together; H,, called the n-gram entropy, measures the
amount of entropy with information extending over n adjacent letters of text. As n increases
from 0 to 3, the n-gram entropy declines: the degree of predictability is increased as information
from more adjacent letters is taken into account. If n—1 letters are known, H,, is the conditional
entropy of the next letter, and is defined as follows.

b; is a block of n — 1 letters, j is an arbitrary letter following b;
p(b;, j) is the probability of the n-gram b;, 5
py; (§) is the conditional probability of letter j after block b;, that is p(b;, ) < p(b;)

H, = - Zp(bw]) * lngpbi(j)
1]
= = p(bi,j) *logap(bs, 5) + > p(bi, §) * logap(bs)
1,5 0,3
= =Y p(bi,]) *logap(bi,5) +Y_ p(bs) * logap(bi)
1,5 i

since 37; ; p(bi, 5) = 32 p(bs)
An account of this process can also be found in [11].

%This notation is derived from that used by Shannon. It differs from that used by Bell, Cleary and Witten [10].
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Appendix 2

Description of the Tagset

The tagset used in these experiments is derived from CLAWS4, mapped onto a smaller set of
classes. They are as follows

e article or determiner - singular
e article or determiner - plural

e predeterminer e.g. “all”

e pronomial determiner e.g. “some”
e pronomial determiner - singular
e proper noun

e noun - singular

e noun - plural

e pronoun - singular

e pronoun - plural

e relative pronoun

e possessive pronoun

e verb - singular

e verb - plural

e auxiliary verb - singular

e auxiliary verb - plural

e existential “here” or “there”

e present participle

e past participle

e infinitive “to”

e preposition

e conjunction

e adjective

o singular number “one”

e adverb

e exceptions

The tagging process includes the identification of common phrases or idioms, which are then
treated as single lexical items. For instance, “of course” is tagged as an adverb.
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