DIVISION OF COMPUTER SCIENCE

Dynamic Competitive Learning Applied to the Clone Detection
Problem

P. Barson

N. Davey

R. Frank

D. S. W. Tansley

Technical Report No 220

February 1995

. .
. N T
: , 7 . i Van o
.) [i
M 3 : L 3
! A
, Vot Iy o i
kK 4 i N { i ¢ [4
. Y k P . v i
ke Lo - B - . i .
Sh N
o ' . [u . i %
. . ¢ . A K
B e [E [
ER H 4 L
AYAY N A i L
" . T ' . i :
! VR o Y [s
N it o [U T Vst
. ot
Lo
Gl T Y SUI TR AR T ST O] [T RTINS I D R SR TULV S VR YO} 7
e PR P s . ' el
SR AT A E A N S P SO . P Lo e
O PR P PR S T R S I PR SURIES S L BT S EE
. . B : ' . . E :
s T O LV L £ B L L PR B P Y S
Wiy ! gt e e L EREN p
ity I IR -~ 1 it t i ' 0
. 1 ! N
i Yo i vob . ' . oo beob e .
n “ . i
N) ’ i s VAN AT
v it NAR R EEY
‘ L iy
Faeavoa ot “h
A
A &

T O TR T U E Nl P A N LR S R T I T 20 B SR BV TR
Few il g vy

vl hon g
L '
ot \(1 e Sl

TR S
.

Zei A0 e
oty mospnar e e baes

Wi

vy L e g ol

e g hpe

Vgt i Lo
Yo i nemnin

R PR

Vi
il

il

pinnesrey s e Y

el _/!"”.’[E'(, ot ntaye PR,

cod
!

ot a1 o Pl et doitve e e ol i e

IS IT

ni ik pioe hapoby e ot i o

T,

SETFERE

R TR

iy

S0 i Db ol riatdve gueai 2l et Hobns 2o Yo st s o suoedy e

Dynamic Competitive Learning
Applied to the
Clone Detection Problem

P. Barsonf, N. Davey*, R. Frank*, D.S.W. Tansleyt

1BNR Europe Limited
London Road, Harlow, Essex, UK, CM17 9NA
paulb@bnr.co.uk, dswt@bnr.co.uk
* University of Hertfordshire
College Lane, Hatfield, Herts, UK, AL10 9AB
comgrnd@herts.ac.uk, comgrjf@herts.ac.uk

Abstract

A novel neural network architecture, ‘Dynamic Competitive Learning’,
has been applied to the software clone detection problem in
telecommunications systems. A software clone is a copy (subsequently
modified), of a piece of existing code; it is common practice in large
systems to obtain similar code via reuse of fully tested code. This paper
discusses a hierarchical network with dramatically reduced training time
compared to a Self Organising Map, but with at least as good a
classification performance.

Background

Clones

Many large software systems have evolved over a long period of time and have
made use of relatively unsophisticated software engineering techniques, such as
‘cloning’. Here a unit of existing code is adapted for a new purpose, usually by
copying and minor modification. Whilst this represents re-use of resources it
can also result in software which is difficult to enhance and maintain. One of
the major problems with cloned software in a large system is simply that of
locating clones of a unit of code and it is this issue which is addressed in the

v 1body of work reported here andin our earlier paper {2]. 1This task must be
- accomplished from:thesource coderalone as historical documentation may not be
! suffrcrently detalled in all cases to enable an hrstoncal audrt ‘to be accomphshed
G IR i St ey] BETT DY
1 2 OveereW FEEPTE G e o L i
Gii T P P oy Cn Sibe
/A solution to'this problem: is; fxrstly, to 'represent: software units by some
humerical ‘feature- vector and then to use an unsupervised neural net to identify
clusters in these feature vectors. The neural net should also organise the clusters
¢ - so that it is possible’to locate'lessilikely clonesttham thOse round in the
1mmed1ate cluster ofithe unit being examined.- 2 P
g ~:In view-of this;latter requirementia. natural network archrtecture to use is
Do Kohonen s self organising map-(SOM) [4], in which the clusters found are
" organised in a two-dimensional topographlc map. This was the approach that
‘was taken in. out: first systemy as reported in:[2]::Whilst the \SOM “approach
i performed feasonably well; in a search for improved performande, a novel neural
network archxtectﬁle, Dynarmc Competltlve Learmng [5] has been investigated.

i ‘l!-){{“'

Sy P R VR PP DI T R TR

'2' ‘Representatlon A

LETEN i o S T O \'J:'i . HTERNTS B

Lo [N
[ARV RN N T

. The requlrement here is that a block of source ‘code,’ wntten ina standard block
,’ structured high level language, should be represented by a numetic vector in such
" ”way that srrmlar blocks of code have srmllar l‘epresentatlonal vectors. It is
’important to note here that the notion ‘of ‘similar’ is dlfferent in either case for
“'the soutce code srtmlanty relates to the probability of the dode ‘bemg cloned ‘and
for the correspondlng vectors that they are close to in Euélidean sphce. More
spec1ﬁcally we requlre that 1f software umt A is represented by vector v, and B

it In-fact the set of source code-units can be, thought of as a set, of indexed
taxononqc trees, ,where the raot qf each, tree. corresponds to the first, occurrence
when a ,umt was cloned, and b;;a,nchmg points, fyrther down th,e treg.correspond to
further JInstanges of cloning —- the. whole, strugture, is analogous,to, a set of
phylogenetrc trees. The index qf each tree denotes the degree of divergence, of the
.,,clone from its parent. Due tot the equrvalence of, 1ndexecl hierarchical trees, and
ultrametrrc [6J spaces it can be seen, that the, task of detecting clones becomes
. onefof 1ndqc ng,an apprpprl ite. qltrametrtc in, the _spaceof representatronal
yect_ LS. lustenng the, source, code vectors, w1th a, SOM growdes, a similarity
’metnc whereas our newer quel produces the des,lred ultrametrl(c ﬂtl=.1e yegtors are
organised into a tree structure.

2.1 Representation Vector Definition

To represent all the information in a source code unit would not be feasible due

to the resulting size of the vector and the need to represent a varlable length
"l“”ll:lé/' Klnl“u ’)1‘ [TP S Y,f{? 40

structure. ir & fixéd length format. «Some degree bfrabstraction is therefore
-required: Qurifirst simplification. was thatthe userichosen tokens: (e.g. identifiers
or operators),should be largely ignoted;: this gives ‘4:big reduction to thd size of
the problem. We were therefore left with the problem of capturing the
information in the parse tree of the software unit. We do: this‘in thre& .ways:
firstly the frequency of keywords in the unit are accumulated, secondly the
.. indentation pattern; is rapresented and lastly: the length of each line is recorded.
.+, The method is .applicable to any. source code language (it'has even-been
ssuggested that compiled code may be usefully examined).-
ai iAs all thecode,is prmted inia standard.format (or can be easily flltered toa
standard format), which is generated by the programiming environment; the
.indentation,pattern.is isomorphic. to, the strueture of thei parse tree.. Thel problem
- with representing: it is that the number;of lines: in a unit. of software, and
_therefore the;number of indentations, is.yariable...To map this to a fixed length
veotor we first took the; raw!indéntation, values and-viewed them as.ordinates:on a
graph;.we then;sampled one hundred.points. from this graph; using.linear
extrapolation where necessary. ; This coding methad is relatively.stable. against
minor modifications to the source code, such as the addition or removal of a line.
The line length gives some indication of the user defined tokens; it was
coded in a similar way to the indentation pattern again bemg mapped to one
hundred pomts Aacross the software unlt .
, Flnally‘ each fleld m the vector was) normahsed so hat each’ fleld had
roughly the same 1mportance Eac key,word frequency was c}1v1ded by the
cy maxlmum frequency] for' that keyword averaged over a large set of source code
~units, Each lndpntatlon angl line- length value was d1v1ded by a mean ylalue
N calcufatedasbefore, SRNERD

11. by vy ,‘m! AT ISR PRIt TR OY

3 Results Usmg the SOM archltectqre

i
i

oo

;

The results produt:ed in'[2] used 1775 1nput Vectors taken from 5 million lines of
“source code. A SOM was' ‘trained’ using these VECtors: It At the ‘end of training
100 test procedures ‘were randomly chosen 4nd theclone databdse' was used to

. 'access’the hearést procédure to”it" subject to a‘tloniness ‘threshold. - The two
a procedures weére Viewed' side by side’ by : 4 software engintéet faitiliar with

: ”'PROTEL1 'source’code who ‘then decidéd whether the nexghbour’mg‘ procedure was
“/voF was hot'a cil'oﬁe “of thé test procedure. ‘A totaI nurtierical 'value of ficcess' was
" ‘then Calchlated by’ addmg the clchiniess valilg'if the: procedute'W a clone and
i ‘sublttacting it'if'it werd not The final resalt was then scaled to lie | in thé range 0

—'PB0.“The Hest tésiités bein 687 tidér this fheas\nre s

BPI PR A S W P O A L A

7

aodindtedd raunh niialosan e fLl

e g e Fo U abou astuee s ot mit il fosesta o'

el o s o) Dosn sdl Lis aolasy ot o oxie wn han sl o

I'BNR’s proprletary programmmg language.

it
BE

4.1 Background

4 Dynamic Competitlve Learning -

e . R "

The DCL model [5] differs in two respects from the standard, competitive
 learning -paradigm. - Firstly, the number of nodes. in, the network is assigned
"dynamically without any preimposed upper or lower bound and secondly the
nodes in the net are organised in a tree structure. The dynamic creation of nodes
has been proposed several times in the context of competrtrve learnmg and is
' best known from the AR’I type networks [3], the arrangement of. nodes in a tree
" like structure has ‘also been suggested more than once, see [1], for a detalled
discussion of this type of method. In this work we make use of the DCL model
w1th a number of refrnements identified in the next sectlon ‘ ‘

S Vo 0 IR TR AN i T

42 Network Specrflcatlon B i

The DCL metwork . o vt gy Wit oo
e o AT
The nodes:in: the DCL/ network: are’ arranged in a tree structure with a.dummy
node as root. When.an inputis presented to the network it is: passed to the first
nlayer of the tree, where the standard competitior takes place Between nodes at
- this level. If'the winner-is not sufficiently close to the!input; thatis the distance
.. is greater than a quality value, a.new node is created at this level to-classify. the
input. This process is analogous to the:use of a‘vigilance parameter in ART.
 The:quality value deterrnines the radius-of the hypersphere, that is the
. classification volume of a node; .this value-must -therefore decrease as the:tree
-grows. deeper,:so: that lower 1eve1s plovrde a finer classification than hrgher
leve]gr"w TR oy, sttt RTINS L R
- If a new node.is not: requ1red then the winner moves towards the 1nput
medrated by a learning rate, as in standard competitive learnmg The learning
process is then recursively applied to the children of the wrnner, unt11 a leaf node
of the tree is reached. I
At any stage of the learning process a winning node w1thout chrldren may
- . procreate, :Thisioccursiif the relative-frequency of wins of the node iagainst its
:parent exceeds a threshold yalue. In,order to prevent: :unbounded growth in the
tree the threshold value, is increased for lower levels,in the treg.. - 1.+ 110

More formally the algorithm is: R U R L T SR RIS T I

.+ Anitialise learning rate, 1, threshold, t., quality,q and Tree to, be the rogt npde -
.+ Repeat until convergence crrtenonmpp e 1 ons b ar 1 el
O tSeti to.the next input vector,)‘,, et el
Select the child of Tree that is closest to X, W say ..

Iflw-xi<qthen
move w towards x, according (0o W' = w + (X - w)

J NS

Increment the win count: ofw .. » :

If w has children then sef Tree to W, mcrement t, decrement q
and recurse .

else if the win count of w / win count of Tree > t
generate for wa child w1th welght vector =

St
1

AR (R
SR S Create ariew child of Tree th’at ‘has' welght Vecfor 1dent1¢al to X

KNG

“‘End‘Repeat Pt b L N

.
VRO N I VL] VLS I

N
i

The shapé of the resultlng tree is.detetmined by the ,nput éctors and the choice
_ *of learmng pqrameters The isollowmg factors mus; be spec1f1ed actual values
*tised are in hr icKets: g
"o The quahty Value of the top level nodes Wi‘ ' e ,
* The rate at which the quahty factor decreases for successwe layers as a
proportion of the previous value R T \
* The threshold value of the top level nodes
o The rate at which the threshold value increase for-successive layers,as a
proportion of the previous value
i.-* The sohedule for the:learning rate —~ which:should dec¢rease ‘after.each epoch to
.| - promote stability as apropottion:of the prewous value ¢ ;
. The Quality Factor was arrived at with the aim of producing areasonably large
-+ initial cluster;; With, this setting: the.initial .clustericontains 20 nodes with 4
. developing a sub classification. So:the initial space is divided upunto .16 outlier
- clusters.and 4 larger-clusters. which are'sub-divided. - ¢; « wic o 2l .y
" The Quality Redﬂctxdn rate wias.chosen so that the network;dev.elopéd the
.appropriate amount 6f decompositiow and-clustering!« Fhe very low initial value
. of the threshold allows the tree t0irapidly deepen, but:with an increment rate of
1.15, the threshold quickly becomes large: at ten ply the threshold is:0:12, so
.. that. a unit; must: account) for 12%.0f. its parents wins: beforeuit ’cén galn a
L SUCCSSOL. nfii, ol it O e g U e e e m
S ‘lJnh SPETHICR R IS f‘:"(i:,, 'u’l, oo V":ffo; St et e
4 3 Trammg R ET I PRI
b el b widnevw oy e RASFIEART A DLV
Wuth rthese pararneters “the network conVei'gedf rapldly, with' 10,257 296-ary
u..; vectors only-two ot three-epochs wére required for reasonable convergence: The
training time was lesd' than: forty: minutes on:antHP 712/80, .+« 1i vdi -

l.“,z ;'45!:
i

4.4 The Resulting Network - - acoiae cdo i gluadords

The network preduéed consisted. of between 7000 and- 10,000 uits, Which éven
allowing for the redundancy in a tree rep&‘e‘ﬁehtat'lon i @bviously excessive. In
fact the majority of these nodes were cdhrpletely te&ui{dar{t ‘they féll into one of
the following two ¢lassésy: ' 1% ol el s ;-,-h it ! i ;\:

.\\:).]?/ /'1‘|\‘"

O e ot ool dviswor s

~* Units that did not win during the test phase These units had been génerated
durmg training; but due to rmgratlon of n6dés in the tree were now redundant
o Rundway branches Here a branch of the trée Would con31st of a sequence of
DS only childfen, so thai passage'down the branch did not provide any additional
, class1flcat10n ‘
When these redundant node were removed the tree consxsted of around 1500 acuve
nodes. The shape of the final tree can be characterised as follows: B

Neofnbdés LT T 1500)

"7 MadmumPly | 19 . i
Average Branching Factor 2.84).}
Widest point L .‘ 298 nodes, at depth 5.

-1 Results and; Evaluatlon o o f et

S. 1 Comparlson of ClaSSIflcatlon mf' rSOMf and Dynamlc
network

The dynamic net was tested alongside the equivalent SOM network on the
10,257 vectors.

[
1

o T PATH: <_{putfbbart sy b/ Clorsa_Tock>

AT
R/

Figure 1. Frequency cti

Vo e s T e 1
ivation of the nodés contained in'the network.

" “Thé SOM: nétwork used 3025 ’nodes 551% ‘55) ‘with' wrap “dfotind, an ‘initial
neighbourhood of-24 reducirig to 11 ThelSOM produced 4 areds inthe ouatput
space (see Fig 1).

;:Similar results-were pbtained from both. petworks, Bpth ngtworks, allow the
user to navigate their way, through the 1cgl\lsters formed; .in thg;SOM by. looking
.. at increasing nelghbourhoggs and in. the tree. by looking, at relations at
Vprogresswely greater dlstance that is 1ncrea,smg the ul;ra,metnc nelghbourhood

5.2 Evaluatlon of the Dynamlc Network as a defector of

L RISV S § R

B R V1Y IR O

In order to test-how well-the network found clones, procedures from-the test set
“were modified in ways that a sqftware engmeer mrght do 1ffy s{/he was clomng the
lcode.- The changes made were: - o -
i o Adding commentlines 7 " e ‘
- .Changing the. indentation by increasing the left hand 1 thargin *
* Adding a operator, such as 'bind'
« Addirig'an additional singleline statements - 7 o
* Adding an additional block structures such as 'IF... THEN...ENDIF’
With all of these changes, except the ddition of «a. blocked statement, the
classification in the net remained unchanged. The addition of the blocked
statement caused a inajormpvemert of the classification. i¢ -

3861 0.95

Layer 10 9746 1.00

y e . { i
N e i

‘:.\'Layéifguu“:'-m(* cry Lot i
Layer 12
127 0.76

29058
- 67 0.85

[\ayer 13“‘1 A

,Y‘JLayer 14 ’

% 3858 0.74
Lajer 15° 363 045 !

T

| Layer 16 9747 0.25 s

; o ; Sy

Layer 17 '; ‘ <

1‘ & v'""‘

Layer 18 . -

| 1919 ooz

N
o
)

Flgure 2 Clas51f1cat10n performed by the DCLynet. . .

Cgedring, e Y ST

test mput For ghe test mput 223 procedure ?;éyi‘sythelclosast.» R I.He‘w

A eyt

5.3 Conclusions

Generally the DCL model performs as accurately as the SOM on this
classification problem and has some significant advantages:
» Training/Recall time: the DCL takes roughly half the time to train and
recall is ten times faster
* Size: The trained DCL is about 4Mb and the SOM 20Mb
* Quality of classification: where a tree like structure is anticipated from the
classification, i.e. an ultrametrics is expected, it is an obvious benefit for
this type of structure to be produced, rather the flat metrics topology of a
SOM.
* Incremental training is more resilient; as additional areas of the tree are
generated, rather than occupying previously assigned areas as in the SOM.
Using a DCL can be difficult however. The network is very sensitive to the
selection of parameters, and obtaining the optimal setting can be problematic. It
is important to remove redundant nodes as these constitute a significant part of a
resulting net.

Acknowledgements

We gratefully acknowledge the financial assistance of the Department of Trade
and Industry of the UK Government, partly funding the placement of Paul
Barson on a Teaching Company Scheme at BNR Europe Limited, through the
Teaching Company Directorate organisation, under grant no. TCS-1326..

References

[1]1 K. Butchart, “A Comparative Study of two Self Organising and Structurally
Adaptive Neural Tree Networks,” University of Hertfordshire Technical
Reportt ,1994.

[2] S. Carter, R.J. Frank, & D. S. W. Tansley, “Clone Detection in
Telecommunication Software Systems: A Neural Network Approach,”
Proceedings International Workshop on Applications of Neural Networks to
Telecommunications , pp273-280,1993.

[3] G. Carpenter, & S. Grossberg, “The Art of Adaptive Pattern Recognition by
a Self-Organising Neural Network”, IEEE Computer , Vol 21(3), pp77-88.
1988.

[4] T. Kohonen, “The Self-Organising Map”, Proceedings of the IEEE, Vol. 78,
No 9, 1990. o ‘ ‘ ‘

[5] J. Racz, & T. Klotz, “The Dynamic Competitive Learning Method”,
Computers in Industry, 17, pp155-158, 1991

[6] R. Rannal, G. Toulouse, & M. A. Virasoro, “Ultrametricity for
Physicists”, rev. mod. phy., 58, pp765-788, 1986. .

