TECHNICAL REPORT

COMPUTER SCIENCE

A FIRST PROGRAMMING LANGUAGE FOR INFORMATION
SYSTEMS STUDENTS

A.L.J JEFFERIES, C.E. BRITTON

REPORT NO: 312

May 1998




A First Programming Language for Information
Systems students.

A.L.J.Jefferies, C.E.Britton
University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9 AB, England

email:- A.L.Jefferies@herts.ac.uk
fax:-01707 284303

ABSTRACT: Following the decision to move to a modular structure for degree courses at
the University of Hertfordshire for September 1997, an Information Systems award was
added to the Computer Science scheme. On considering the content of proposed courses, it
was decided to undertake a review of the Programming languages taught at first year level.
A set of criteria was developed by the authors for comparing the different candidate
languages. The reasons for reaching their conclusion , both academic and pragmatic, are
discussed along with the particular needs of Information Systems students when compared
with the traditional programming courses offered to undergraduate computer scientists.

KEY WORDS: information systems, programming language, criteria,

1. Introduction

At a time when the national trend has been to divide up the teaching of Computer Science
into composite areas and review the traditional components of Computing, there has been a
growing interest in providing courses in Information Systems as described by Britton and
Derrick (1995).

In common with many other universities in recent years, the University of Hertfordshire
decided to introduce a new modular structure to its many schemes of study from September
1997. Following a consultation process, the Department of Computer Science took this as
an opportunity to review its traditional teaching areas for undergraduates and post-
graduates, in order to offer more choice in areas of study to prospective students. One of
the most significant changes was the introduction of a new Information Systems degree
scheme to run alongside the Computer Science scheme.

Because of financial constraints, a number of the proposed courses for the new schemes
were developed using material currently being taught on the existing Computer Science
scheme; it was felt, however, that a review was needed of the Programming languages and
environments currently taught to all students, both undergraduate and post-graduate. The
overall aim was to have a suite of courses which was more suitable to the educational
needs of students graduating in the year 2,000 than it was felt that they are currently,
(Bornat 96). The status quo, which had existed in the Computer Science degree for some
years, was to introduce a small amount of a functional language, such as Miranda, and then
teach Ada as the main first year programming language. This was felt to be somewhat
outdated, as these languages are difficult for the students to grasp and moreover currently
little used in industry. However some of the pragmatic reasons why they had been retained
were because of the large amount of staff effort and the cost of funding a replacement




necessitated by a change of language. With a new group of students having different
requirements from a programming environment, there was now a greater incentive to
change for everyone’s benefit.

2. Information Systems students

As a first step towards defining the needs of information systems students an ethos was
developed by the authors for the team reviewing the degree courses. It was felt that
programming was not the cornerstone of an information systems student's knowledge,
rather that as graduates they should be able to go out into organisations, assess their
information needs at a variety of levels, propose and design systems to meet these needs
and be aware of the effects that such systems will have on the organisation as a whole and
the individuals that are part of it, (Hinton et al. 1997). Although this ethos was later
refined, the main tenet remained that information systems students are unlikely to be doing
much serious low level programming during the course of their careers: the focus of their
interest typically lies in higher level issues such as the development and management of
total systems, rather than in the detailed low level programming of part of a solution.
However it was felt strongly by the team considering the new degree streams that
prospective information systems graduates need to be able to understand and appreciate the
generic principles of programming and they should have some experience of programming
as a discipline.

An analogy can be drawn here with the difference between an architect and a builder, the
architect needs to know the principles of building and engineering to ensure the building
does not collapse but she is not normally involved with the physical tasks of digging the
foundations and laying the bricks. Similarly the information systems specialist will
understand how the building blocks of a system are put together and should have some
practice at doing this but he does not spend much of his time at the programming level.

3. Criteria for a first programming language

Before the department of Computer Science began considering a subset of languages as
candidates for teaching programming in the coming year to replace Ada and Miranda, the
authors developed a set of criteria which would help them to identify why some languages
would be more suitable for teaching ab initio to students from a range of backgrounds.
These were:-

. to enable a straightforward introduction to the principles of programming in a first
semester course

. to facilitate exposure to a variety of programming environments to be encountered
throughout their degree courses

° to choose a tried and tested language and not be swayed unduly by the current

commercial opportunities for jobs.

We wanted to avoid the situation where information systems students were only able to use
commercial applications and where their only programming capability was in writing and
developing databases. At the same time it was becoming clear that in order to pool
resources and save money, the department was going to require the information systems
students to be taught with the other first year computer science students for many of their
courses. Could we therefore find a commonality of aim and teach the same material to
students of a traditional Computer Science stream alongside the information systems
students for part at least of their first year? This led to a review of our first set of criteria
and further consultation with colleagues who would be doing the teaching and raised the
series of questions given below.




. Do we want to use an integrated development environment (IDE), which may
weaken understanding and be vendor specific?

. Do we want to be tied to a single supplier when we shall be teaching large
numbers of students for some years ahead?

. Are we looking for a popular solution, which will attract students or will this
turn out to be the latest programming gizmo which may or may not last in the
long term?

° Is the proposed language simple to teach and simple enough for students to achieve
something worthwhile in a short time?

. Can students afford their own copies to use at home and is it available on
multiple platforms?

It became clear in the ensuing discussion that as far as the information systems students
were concerned there was no single language that would fulfil their requirements and
prepare them for their second year practical course in the development of an information
system. They would need to have an introduction to the principles of programming in the
first semester, which could be combined with the computer science students, and then take
a separate course for their second semester module which would be more practically
oriented. It had already been suggested that Microsoft Access™ would be a suitable vehicle
for the second semester, so now the problem shifted back to the best possible environment
for the wide variety of students taking the first semester course.

It was decided by members of the department that a course to introduce students to sound
principles of programming should include the following elements: data abstraction,
information hiding, modularity, component reusability. An object-oriented language was
suggested as being the best vehicle for putting these principles across and as more in line
with the future direction of programming languages (Heliotis 1996).

Inevitably there was a great deal of discussion before a final shortlist of programming
languages was drawn up; this concentrated both on the reasons for change and the
different directions in which colleagues felt that programming was moving commercially
and academically. The three languages shortlisted for the final choice were Eiffel (Meyer,
1992), Java and Delphi - a surprisingly disparate set. The authors consequently drew up
some of the immediate advantages and disadvantages from their point of view for using
these as the first programming language for information systems students as well as for the
computer science students. The summary below highlights the main points but is certain to
lead to further discussion.

. From the academic point of view, Eiffel was the most popular choice. Since Eiffel
is a 'pure’ object-oriented language, it was regarded as an excellent vehicle for
teaching sound principles of programming. In addition, Eiffel was currently being
taught to non-specialist students on the M.Sc. Computer Science conversion
course. This had the advantage that there was teaching expertise at the right level
(i.e. for beginners) and some new support material had already been developed
internally. There were copies of Eiffel in the university as well as the fact that it was
both cheap and freely available for students to have their own copy. The main
disadvantages were felt to be that there was little commercial use of Eiffel and it
might not appeal to undergraduates.

. Delphi had already been agreed as the first programming language for the HND
course, and thus also gave colleagues the opportunity to share expertise and
teaching materials. It offered a Graphical User Interface environment which was
seen as attractive to potential students and ideal for job opportunities. However this




was also a disadvantage in that it would limit the first year experience of
information systems students to purely GUI development, when they need to
know rather more about programming commercially than this.

. Java, is definitely ‘hot’ but apart from the current hype of it being the ‘Next Big
Thing’, can be used for writing straightforward, conventional programs with both
text and GUI input and output. Students are reported as being enthusiastic users
where it is taught, but as it is still so new, there was at the time of the decision
in December 1996 very little current teaching expertise or reliable materials.

The final choice from these three was Eiffel, as the most effective language from an
educational point of view, and for the pragmatic reasons that the department already had
good experience of teaching it to beginners and the necessary back up materials, therefore
the outlay required initially for staff training, new software and books would be small. Java
came a close second, but an atmosphere of caution prevented it being chosen for the first
year. It is hoped to teach Java on some of the optional second year courses, where it is
perceived as being less risky than as an introduction to programming per se.

4. Conclusion

It would be easy to postulate about what the department would have chosen if we were
living and teaching in the ‘best of possible worlds’. The truth is that we are constrained by
particular sets of circumstances. In the worst of situations there would have been either no
choice between languages or no possibility of changing the existing language which was
chosen several years ago under a different set of criteria. The languages for the new
information systems students in their first year introduction to Programming (one semester
of Eiffel followed by one semester of Access™) will not appeal to everyone. It will
however open up the debate as to whether the department has played too safe and taken an
option which is too academic and not useful enough commercially or whether, as the
authors hope, the balance will prove to be about right.

References

Britton, C. and Derrick, A. Introducing Information Systems into Computer Science
3rd All Ireland Conference on the Teaching of Computing, Dublin City University,
September 1995.

Bornat, R. Is there a future for Computer Science Education?

4th Annual Conference on the Teaching of Computing, Dublin City University
August 1996.

Hinton, P. Jefferies, A.L.J. and Bennett J. Teaching Information Systems at
Undergraduate Level in “Key Issues in Information Systems”, Proceedings of the 2nd
UKAIS Conference, McGraw Hill, April 1997

Heliotis, J. Eiffel in Computer Science Education JOOP Vol. 9 No.2 May 1996

Meyer, B. Eiffel The Language Prentice Hall, Englewood Cliffs, N.J. 1992




