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Abstract

Units of software are represented as points in a multidimensional space, by
calculating 12 measures of software complexity for each unit. Two large sets of
commercial software are thereby represented as 2236 and 4456 12-ary vectors
respectively. These two sets of vectors are then clustered by a variety of
competitive neural networks. It is found that the software does not fall into any
simple set of clusters, but that a complex pattern of clustering emerges. These
clusters give a view of the structural similarity of units of code in the data sets.

1. Introduction

In this paper we examine whether units of software fall into natural clusters when represented by a set of
complexity measures. The work! extends an analysis [1] in which C source code was mapped onto
vectors in a 12 dimensional space, and then clustered using a simple competitive neural net. They found
that the vectors were represented by 3 code vectors, which they then labelled as identifying standard,
marginal and non-standard code. If legitimate such a classification has obvious value as a tool for
software maintenance and system engineering.

Our work extends this analysis in two ways:

o The source code used is two large sets of commercial software, giving the opportunity to evaluate
the stability of the results with respect to the selection of software.

e The clustering methods used make use of several different types of self organising neural network,
to give results less dependant on the limitations of one particular algorithm.

Incidentally we are also able to make a limited comparative evaluation of four different self
organising neural networks.

1 Details of this work were originally presented at the International Workshop on Applications of Neural Networks
to Telecommunications (IWANNT), Stockhomlm, Sweden, May 22-24 1995.




1.1 The Data

The first data set is a set of 2,236 procedures drawn from a single software product written in the
proprietary BNR language PROTEL2, a block structured language designed for the control of
telecommunication systems. The second set is of 4,456 PROTEL procedures drawn form a variety of
software products.

1.2 Networks Used

We use four self organising networks with a variety of parameter settings. These are: a simple
competitive net (SCN); a competitive net with a conscience mechanism — Frequency Sensitive
Competitive Net (FSCN); a self organising map (SOM); and Fuzzy ART. The motivation for this
choice is:

e SCN: To attempt to replicate the original results of [1].

* FSCN: To examine if the small number of nodes used in the SCN classification and concomitant
dead units could be overcome.

e SOM: To investigate if a global order was present in the representation space.

¢ Fuzzy ART: To avoid prescribing the number of categorising units to be used.

1.3 Organisation of the Paper

Section 2 of the paper deals with the motivation for finding clusters in the complexity space, overviews
the original work of [1], discusses the complexity measures used, their extraction from the source code
and the mapping to the final 12-ary vectors used as inputs to the classifiers. Section 3 describes the
networks used and the parameter settings investigated. Section 4 discusses the results obtained from the
experimental work and section 5 concludes.

2. Background

2.1 Why use software metrics?

Improving software product quality and performance and development team productivity has become a
primary priority for almost every organisation that relies on computers [2]. As the size and complexity
of software systems grows, then the management of these systems becomes ever more vital. For
instance, the US NASA Space Shuttle software system required 25.6 million lines of code, 22,096 staff—
years of effort, and cost $1.2 billion [3]. Some typical software system details are given in Table 1
below. With the large capital investment necessary to develop such systems, it is clear how important it
is to have control over the whole development process. Software measurement is a valuable technique
that can be used to understand, guide, control and improve software development [4], and many metrics
have been proposed, including those based on complexity used here.

2 Asin [1], the method and metrics used are language independent.




Table 1: Typical Software Application Size and Investment [2]

Product Application Size Cost
(million lines of code) |  ($millions)

Operating System, 2-5 150 - 350
Large Communication System
Mid-sized Communication 1-2 50 - 100
System
Data Base System, 04-1 9-22
Compiler
Transaction Monitor 02-04 5-10
Monitoring System (Medical) 02 -04 4-8

2.2 Metrics Used

Twelve metrics were used in [1], and thus the same twelve were used for this work. The measures include
McCabe’s Cyclomatic Complexity (Vg) [5], Halstead’s Software Science measures [6,7], and a number of
others including a simple count of lines of code, and a measure called the Control Density of the code.

Halstead’s measures were developed as an approach to analysing software as independently of the
programming language as possible, and thus the results should not differ between the ‘C’ code used in [1]
and the PROTEL used for this study.

The twelve measures of complexity calculated for each procedure are shown in Table 2.

Table 2: Complexity measures used

LOC number of lines of code
Vo McCabe's cylomatic complexity measure
D Vg:LOC
n{ number of unique operators
ny number of unique operands
N1 total number of operators
Ny total number of operands
n n; + 1y, the vocabulary of the procedure
N N; + N, the length of the procedure
\i N(log n), the volume of the procedure
L 2 X2 program level
By 2
E ZA effort
L

Lines of code (LOC) is the simplest of the measures, and provides information on the size of the
program. It includes both the executable and the comment lines. This measure is not a particularly good
one as it will obviously vary according to the programmer’s style, but it is a reasonable indicator of
complexity.

McCabe’s Cyclomatic Complexity (V) is based on the control-flow graph of a program/procedure. A
simpler version of Vg, which is calculated by counting the decision points in a function (e.g. IF, FOR,




WHILE, CASE) and adding 1, was used in [1] and is therefore used for this work. Vg is not a sufficient
measure of software complexity on its own as, for instance, it ignores the effects of nesting, however a set
of possible standards have been supplied [8] to use when analysing code with Vg.

Control Density (D) is a measure that combines both LOC and Vg, It’s interpretation in [1] proved to
be somewhat uncertain. A high density should indicate a high complexity, however according to their
results the opposite was true. Their SCN deemed it to be the significant feature when classifying Standard
code — a high value of D was found in all the procedures that they classified as Standard.

The next nine measures are all Halstead’s Software Science measures. They include the following:
various measures which count operators and operands; a measure of the volume (size) of the function, based
on an estimate of the number of bits required to store the function in memory; the program level of the
function, intended to give an indication of how difficult it is to understand the function; and the effort of the
function, based on both the volume and the program level, which gives an indication of the effort required
to write the function.

Notice that the last five measures are defined from the numbers of operand/operators in the code. We
would not, however, expect a self organising neural network to find the same clusters without this
information as with it, since all such networks use a first order measure of similarity [9].

2.3 Sheppard and Simpson's work

A simple competitive net was used. Competitive learning was developed to identify features in the input
space without the need to explicitly train the network to recognise these features. During training nodes
within the network compete amongst themselves to respond to the input vector, and the node that
subsequently wins this competition then has a feature associated with it. This continues until the
network has developed a set of feature detectors which account for all of the input space. During recall
the net will receive an input vector containing a learned feature, the activity of the network will then lead
to a node becoming active, thereby identifying which of the features is present in that input vector.

Over 4,000 functions written in C were analysed, and these were taken from approximately 20
different programs, written by different programming teams. The net consisted of twelve input nodes and
twelve output units. Nine of the output nodes were found not to be involved in the classification
process. This may have been indicative of three natural clusters in the input space, but could have been
caused by the frailty of the particular algorithm used. A second network was then constructed with twelve
input nodes and three output nodes, and the results were the same.

The three categories identified were Standard (95.1% of code analysed), Marginal (4.75%), and Non—
Standard (0.15%). Standard code was based on the value of D, and in fact classified code with a high
control density which was contrary to what was expected. Marginal code was based on the values of n{
and n, meaning that the vocabulary was excessive. Non—Standard code had a high value for lines of code
and Vg.

2.4 Pre-processing the data

This task accounted for over 50% of the effort expended on this work. Because PROTEL procedures can
be of a user—defined type it was necessary to develop a parser to correctly identify all the procedures in
order to then record the information.

The following data was recorded for each procedure: a count of the lines of code; a measure of
McCabe’s Cyclomatic Complexity; a simple count of the unique operands and operators; and a
cumulative total of operands and operators. This data was then further processed to produce the full
twelve measures needed. See below for details of how the final vectors were produced.




2.5 The vectors produced

Each procedure is therefore represented by a 12—ary vector. Within a data set the vectors of raw measures
are not used since they widely differ in magnitude; rather each feature is represented as a proportion of the
largest value for that feature. Specifically for the raw set of vectors: V,,, = {vi} the actual vectors used

A2
are: V=1 —F
mjax(vij )

3. Networks Used

3.1 Self Organising Neural Networks

There is now a whole range of neural network architectures that are self-organising. In these nets the
output units, or more precisely the weight vectors of these units, move in the input space so as to
minimise a cost function. The input vectors are then classified into clusters according to which output
unit is closest. Problems arise when using such networks to find clusters in two respects:

° The number of output units may influence the number of clusters that will be found in the input.

* The network may converge on a poor classification of the input, with some of the output units not
participating in the final classification. Such units are said to be dead.

A variety of methods have been proposed to overcome these problems, including: feature mapping
[10]; a conscience mechanism [11]; and Adaptive Resonance Theorem (ART) [12].

We make use of four different networks to cluster the input. These are:

* Simple Competitive Net
— the network uses Euclidean distance to find the winning unit and the winning unit moves
towards the input. '

* Frequency Sensitive Competitive Net: a simple competitive net with a conscience mechanism
— the measure of success of a unit in the competition to classify an input is scaled by a factor
inversely proportional to its historical success.

e Self Organising Map [10]
— the units are arranged in a two dimensional grid, with a winning unit pulling its neighbours
with it as it moves.

e Fuzzy ART [13]
— a version of ART for continuous valued inputs using the fuzzy set theoretic measure of
intersection.

These four networks are described in more detail below.




3.2 Simple Competitive Net

Initially the net consists of a set of nodes with small random initial weights. When an input is presented
the winning node is selected as that with greatest similarity to the input. The winner is then modified to
become more similar to the input. We use Euclidean distance as the measure of similarity and therefore
simply move the weight vector of the winner towards the input in Euclidean space. The size of the
update is determined by a learning rate.

For input x and weight vectors: {wi}i the winner, w;. is defined by: Vie|w. — xl < lwi - x|

The change in the weight vectors is then given by:
ifi = i* then ow; = p(x - wi) where p is the learning rate
else ow; =0

This type of network is prone to poor classifications, due partly to the problem of dead units — units
that accidentally never win in the competition and thus never move towards the inputs

3.3 Frequency Sensitive Competitive Net

In order to overcome the above problem one mechanism, originally suggested by [11], is to make it
harder for frequently winning units to win again. This is done by subtracting a bias term from each unit,
that is proportional to the number of times the unit has one. Stabilisation can be problem with this
method and we follow the scheme suggested by [14]. Here the bias is defined by:

1
B=v F——
1 /},( 1 N)

Where yis a problem specific parameter, N is the total number of units and F; is the win count of unit i

A potential problem with this type of network is that the biasing mechanism, whilst producing
reasonable code vectors for the data set, may obscure natural clustering in the data.

3.4 Self Organising Map

In a SOM [10] the output units are arranged in a fixed topology, usually a two dimensional grid. We use
a grid, wrapped around at the boundaries. Winning units pull their neighbours in the grid with them,
towards the input. The neighbourhood of a unit should initially be set a large fraction of the output space
and decrease over time. A useful heuristic for setting the neighbourhood is that it should start at roughly
half the output space and decrease to unity, to ensure global order. We use a ten by ten SOM and
therefore initialise the neighbourhood to five. We also include a conscience mechanism as in 3.3. A
successfully trained SOM provides more information than the other networks used here. The SOM not
only captures clustering in the input space but also the relative position of these clusters, which can be
located from their position in the output space.

3.5 Fuzzy ART

Fuzzy ART [13] is an extension of the basic ART algorithm to allow for continuous, rather than binary,
data. In the original ART1 network, proximity is measured by the dot product, or equivalently by
mapping the Boolean AND over both vectors and by taking Norm 1 of the result. In Fuzzy ART the
fuzzy logic AND connective, min, is used to extend the method to real values.




The algorithm then is:

1. Begin with a set of units, all of which are disabled.
2. For each epoch and each input vector
2.1  Select from the enabled units the unit that is closest to the input. Check if this unit
satisfies the vigilance test. If not, select the next closest enabled unit and recheck.
2.1.1 If no enabled unit satisfies the vigilance test, commit one of the disabled units
and set it equal to the input. If no disabled units exists continue from 2.
2.2 If a winner is found move it towards the input.

Three details must be specified:
* Proximity: the closeness, d(x,w) of the input x to the unit w is defined by:

[ A wll

d(x,w)=
o= v,

where [|x], = 2 x , x Aw=(min(x;,w;)),and £ is a small value to break ties.
i

 Vigilance: the unit w, satisfies the vigilance test for input x, if:

I A wll
Il

where 6 is the vigilance parameter

<6

° Movement: the winner, w, moves towards the input x, according to:
w=xAw

The behaviour of the net is determined by the value of the vigilance parameter and the number of
nodes in the initial disabled set. In our experiments we used a pool of nodes greater than required, and a
variety of vigilance parameters.

Fuzzy ART is appealing as the clusters are formed dynamically but the algorithm has some specific
problems. As noted by [9] the weight vectors drift towards the origin. This is due to the update rule:
components of weight vectors are monotonically decreasing. As described by [12] some of the difficulties
of this can be overcome by complementary coding; but this has the unfortunate side effect of doubling the
length of the input vectors.

4. Results and Discussion

The results obtained from the simple competitive net were radically different from the other three nets.
The SCN found a simple pattern of 4 clusters whilst a more complex pattern emerged with the other
networks — all found numerous clusters in the data. As demonstrated by the more sophisticated
clusterers, this was the result of an inherent tendency of the SCN to not utilise some of its units; all the
other networks have mechanisms for dealing with dead units. The FSCN and the SOM produced very
similar clusters. Fuzzy ART produced many more clusters than any of the other nets, and clustered the
data in a different way from the FSCN/SOM. The results are now given in more detail. ‘




Sheppard & Simpson Results
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Figure 1: The number of clusters by three SCNs
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4.1 SCN

This experiment was an attempt to replicate the results obtained in [1] and so the net was initialised for
both data seta with 12 units. In both cases only four of the twelve units were used. The clusters were
identified as follows: Node 1 clustered “average” procedures, i.e. those with no particularly special
features; Node 2 clustered procedures with a large language content compared to their size; Node 3
clustered very small procedures — those with less than 10 lines; and Node 4 clustered very large
procedures — those with large values for all the measures. '

4.2 FSCN

For both data sets the net was initialised with 100 units, all of which were used after training. For the
smaller data set the resulting clusters ranged in size from 43 vectors to 8, with a uniform spread.

4.3 SOM

Again 100 units were used, this time arranged in a ten by ten grid. The initial neighbourhood was set to
five and decreased over the training time to one. After training two units of both nets did not participate
in the classification. The classification produced was quite similar to the FSCN. However with the
SOM additional proximity information could be inferred from the position of the classifying nodes in the
SOM grid. For example two vectors grouped by Fuzzy ART were found to be classified by adjacent
nodes in the SOM.




4.4 Fuzzy Art

The net was trained over both data sets with two settings of the vigilance parameter: 0.4 and 0.6, and a
pool of 2000 uncommitted nodes. As expected the net produced more clusters with the higher vigilance
than lower. Table 3 below details the results from the two data sets.

Table 3: Nodes used by Fuzzy ART

Data set 2236 vectors 4456 vectors
Vigilance 0.4 0.6 0.4 0.6
Total Number of nodes 155 227 619 930
Number of Dead Units 17 17 70 252

It is noticeable that the number of clusters found is not linear in the size of the data set; the net may
be identifying increased variation in the larger data set, due to its multi-product source.

A problem with the Fuzzy ART network becomes apparent when the weight vectors of the classifying
units are examined — they are generally very small. The mean weight vector for the smaller data set and
vigilance 0.4 is:

(0.026, 0.003, 0.120, 0.062, 0.031, 0.036, 0.079, 0.040, 0.024, 0.031, 0.031, 0.001) with length 0.178.

This compares with the mean vector for the raw data set:
(0.076, 0.034, 0.245, 0.101, 0.075, 0.071, 0.126, 0.079, 0.057, 0.150, 0.140, 0.013) with length 0.394.

Another major difference between the earlier nets and Fuzzy ART is that the former are sensitive to
frequency densities in the input space: if an area of the input space is heavily populated then many units
will move there. This is not the case with Fuzzy Art, since a single unit will classify an area if all the
vectors within it are sufficiently close and satisfy the vigilance test.

5. Conclusions

This work highlights the care with which unsupervised clustering must be undertaken. It is clear that
resultant clusters are highly dependant on the architecture and parameter settings used. In particular SCNs
may give unrepresentative results due to the problems of dead units.

Some of the limitations of using the ART type architecture are described above and it is difficult to
make a direct comparison due to the different distance metric used. The FSCN and the SOM gave similar
results, with the SOM providing additional information: the topological map.

These methods do not provide a simple way of partitioning software units on their complexity,
however the pattern of similarity could be potentially useful in locating procedures of related complexity.
A similar application of neural nets to the location of software clones is described in [15].

Finally, it should be noted that the major activity of work such as this is the pre—processing of data.
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