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1 Introduction

This paper introduces an objective metric for assessing the effectiveness of a parsing scheme. Information
theoretic indicators can be used to show whether a given scheme captures some of the structure of natural
language text. We then use this method to support a proposal to decompose the parsing task into
computationally more tractable subtasks.

The principle on which the grammar evaluator is based is derived from Shannon’s original work with letter
sequences [1]. We show how his ideas can be extended to other linguistic entities. We describe a method
of representation that enables the entropy of sentences to be measured under different parsing schemes.
The entropy is a measure, in a certain sense, of the degree of unpredictability. If the grammar captures
some of the structure of language, then the relative entropy of the text should decline after parsing. We
can thus objectively assess whether parsers that accord with some linguistic intuition do indeed capture
some regularity in natural language.

Natural language can be seen as having a tertiary structure. First, there are the relationships between
adjacent words, a structure that can be modelled by Markov processes. Then words can be grouped
together into constituents and these constituents are organized in a secondary structure. Thirdly, there
are relationships between elements of constituents, such as the agreement between the head of a subject
and the main verb. These 3 levels are compatible with levels in the Chomsky hierarchy.

We need to integrate natural language processing at these different levels. The work described in this paper
uses a method of representation that enables primary and secondary structure to be modelled jointly. It
concludes by suggesting how this approach could facilitate processing at levels 2 and 3.

The paper is organized in the following way. First, we recall Shannon’s original work with letter sequences.
Then we describe a method of adapting his approach to word sequences. Next, we show how this is not
an adequate model for natural language sentences, but can be extended. Using the new representation we
can model syntactic constituents, and parsing a sentence is taken to be finding their location. Then we
show how the entropy of parsed and unparsed sentences is measured. If the entropy declines after parsing,
this indicates that some of the structure has been captuered.

Finally, we apply this entropy evaluator to show that one particular parsing method effectively decomposes
declarative sentences into 3 sections. These sections can be partially parsed separately, in parallel, thus
reducing the complexity of the parsing task.




2 Shannon’s work with letter sequences

Shannon’s well known work on characteristics of the English language examined the entropy of letter
sequences. He produced a series of approximations to the entropy H of written English, which successively
take more of the statistics of the language into account

Hj represents the average number of bits required to determine a letter with no statistical information.
H, is calculated with information on single letter frequencies; Hs uses information on the probability
of 2 letters occurring together; H,, called the n-gram entropy, measures the amount of entropy with
information extending over n adjacent letters of text. As n increases from 0 to 3, the n-gram entropy
declines: the degree of predictability is increased as information from more adjacent letters is taken into
account. If n — 1 letters are known, H,, is the conditional entropy of the next letter, and is defined as
follows.

b; is a block of n — 1 letters, j is an arbitrary letter following b;
p(bi, §) is the probability of the n-gram b;, j
ps; (j) is the conditional probability of letter j after block b;, that is p(bs, §) + p(b;)

H, = - Zp(bu]) * log2pb1’ (-7)
0
= = p(bi, ) * logap(bs, 5) + Y p(bi, 5) * logap(b)
i i

= = p(bi,j) *logap(bi, §) + D _ p(bi) * logap(b:)

) %

since Zi,j p(bi, 5) = 32 p(bs)
An account of this process can also be found in [2].

The entropy can be reduced if an extra character representing a space between words is introduced. Let
H' represent the entropy measures of the 27 letter alphabet. Then, if n > 0, H!, < H,. By introducing an
extra element, the number of choices has increased, so H} > Hy. The space will be more common than
other characters , so H{ < H;. Where n > 1 the statistical relationships of neighbouring elements are
taken into account. Shannon says “a word is a cohesive group of letters with strong internal statistical
influences” so the introduction of the space has captured some of the structure of the letter sequence.

Hy H;y H, Hj
26 letter 4.70 4.14 3.56 3.3
27 letter 4.76 4.03 3.32 3.1

Table 1: Comparison of entropy for different n-grams, with and without representing the space between
words




3 Representing parsed and unparsed text

This type of analysis can be applied to strings of words instead of strings of letters. In order to make
this approach computationally feasible we need to partition an indefinitely large vocabulary into a limited
number of part-of-speech classes. By taking this step we loose much information: the process is not
reversible. However, we aim to retain the information that is needed for one stage of processing, and
return to the actual words at a later stage.

Sometimes, the allocation of part-of-speech tags has been considered a step in parsing. However, we are
looking for syntactic structure and call the strings of tags the unparsed text.

Now, at the primary level text can be modelled as a sequence of tags, and Shannon’s type of analysis can
be extended to word sequences. Punctuation marks can also be mapped onto tags. An experiment with
the LOB corpus showed that for sequences of parts-of-speech tags Hy and Hj are usually slightly lower if
punctuation is included in an enlarged tagset.

However, there is more structural information to be extracted. Our linguistic intuition suggests that there
are constituents, cohesive groups of words with internal statistical influences. The entropy indicator will
show objectively whether this intuition is well founded.

Furthermore, the statistical patterns of tag sequences can be disrupted at the boundaries of constituents.
Consider the probability of part-of-speech tags following each other: some combinations are “unlikely”,
such as noun - pronoun and verb - auziliary verb but they may occur at clause and phrase boundaries in
sentences like “The shirt he wants is in the wash.”.

An important step extends the representation to handle this. The embedded clause is delimited by inserting
boundary markers, or hypertags, like virtual punctuation marks. We represent the sentence as

The shirt { he wants } is in the wash.

The pairs generated by this string would exclude noun - promoun, but include, for instance, noun -
hypertagl. The part-of-speech tags have probabilistic relationships with the hypertags in the same way
that they do with each other. We can measure the entropy of the sequence with the opening and closing
hypertags included. If their insertion has captured some of the structure the bipos and tripos entropy
should be reduced.

Each class of syntactic elements has a distinct pair of hypertags. Applying automated parsers, one type of
syntactic element is found at a time. In this particular case of locating an embedded clause, the insertion
of hypertags can be seen as representing “push” and “pop” commands. One level of embedding has been
replaced.

This approach can be contrasted with the process of text compression. In well compressed text the
structure should be extracted so that the output appears random or “whitened”[3, chapter 10]. In the
process described here the insertion of virtual hypertags converts segments of a sequence that may appear
random into segments where the elements are subject to probabilistic relationships.

4 Entropy measures

We apply the theory outlined above to a corpus of text, taken from engine maintenance manuals. We
propose different structural markers, and measure the resulting entropy. Note that the absolute entropy
levels depend on a number of variable factors. We are interested in comparative levels, and thus use the
term entropy indicators.




There is a relationship between tagset size, distribution of tags, number of samples and entropy. For
instance, as tagset size is decreased entropy declines, but at the same time grammatical information may
be lost. We have to balance the requirement for a small tagset against the need to represent separately each
part-of-speech with distinct syntactic behaviour. Another approach to entropy reduction, which would not
be helpful, is to expand one element into several that always, or usually, occur together. For instance, we
could reduce the entropy by mapping every instance of determiner onto hypertagl determiner hypertag2.

We use linguistic intuition to propose constituents, substrings of tags with certain characteristics that
suggest they should be grouped together. Then we investigate the entropy levels of tagged text for the
following cases

1. No hypertags (suffix p: plain)
Hypertags before and after determiners (suffix d)
Arbitrarily placed hypertags: in each sentence before tag position 2, after tag position 5 (suffix a)
Hypertags delimiting noun groups (suffix n)

Hypertags delimiting subject (suffix s)

S & W

Hypertags delimiting subject and noun groups (suffix sn)

A noun group is taken to be a noun immediately preceded by an optional number of modifiers, such as
“mechanical stop lever” or just “lever”.

Results

The data consisted of 351 declarative sentences from manuals from Perkins Engines Ltd. Average sentence
length is 18 words, counting punctuation marks as words. The tagset had 32 members, including 4
hypertags. Ho is 5. Using automated parsers previously developed, the data was prepared automatically,
but then manually checked. A summary of results obtained is given in Table 2.

text Hl H2 H3

text-p  3.962 2.659 2.132
text-d  4.086 2.123 1.722
text-a  4.135 2.689 2.077
text-n  3.981 2.038 1.682
text-s 4.135 2472 1.997
text-sn  4.142 1.943 1.612
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Table 2: Entropy measures for text with different structural markers

For interest, some text from Shannon’s article was also processed in the same way, and produced results
in line with these.

Recall that we are interested in the movement of the entropy measure, and do not claim to attach signi-
ficance to the absolute values. We ask a question with a “yes” or “no” answer: does the entropy decline
when the parsing scheme is applied. However, note the results of 6, which combines schemes 4 and 5, that
is marking both the noun groups and the subject. We see that the decline in entropy Hs and Hs is greater
than for either scheme separately.




5 Applying these results to decompose the parsing task

Consider the parser number 5 that locates the subject of a sentence. In the corpus used the length of the
subject varied from 1 to 12 words, the length of the pre-subject from 0 to 15 words.

As an example of subject location consider these sentences from Shannon’s paper which would be repres-
ented as

In a previous paper { the entropy and redundancy of a language } have been defined.

If the language is translated into binary digits in the most efficient way , { the entropy } is the
average number of binary digits required per letter of the original language .

Comparing lines 1 and 5 of Table 2, we see H, and Hj decline for parsed text, so we have captured some
of the structure.

Now, locating the subject effectively decomposes a declarative sentence into 3 sections:
pre-subject - subject - predicate.

Of course the first section can be empty. Imperative sentences can also be processed in this way, the lack
of an explicit subject being represented by an empty subject section. An automated parser that finds
the subject, and thus decomposes the sentence, has already been developed. A prototype is available via
telnet for users to try with their own text, and is described in [4, 5].

On examining these concatenated sections we note that other constituents are contained within them and
do not cross the boundaries between them. An element or constituent in one section can have dependent
links to elements in other sections, such as agreement between the head of the subject and the main
verb. However, the constituents themselves - clauses, phrases, noun groups - are contained within one
section. Therefore, once the 3 sections have been located, they can then be partially processed separately,
in parallel. The complexity of the parsing task can be reduced by decomposing a declarative sentence as
a preliminary move. :

6 Conclusion

We have shown that entropy indicators can be used to support parsing schemes based on linguistic intuition.

In particular, the entropy indicator supports the decompostion of a sentence into 3 concatenated segments
that can be partially processed separately. Since many automatic parsers have difficulty processing longer
sentences, we suggest that this decomposition could facilitate the operation of other systems.
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