DEPARTMENT OF COMPUTER SCIENCE

Which properties make a modelling notation easy for
untrained users to understand?

Carol Britton
Sara Jones

Technical Report No. 284

May 1997

Which properties make a modelling notation easy for
untrained users to understand?

Carol Britton and Sara Jones
Department of Computer Science
University of Hertfordshire
College Lane, Hatfield, Herts. UK
AL10 9AB
Tel: 01707 284354./ 284370
Email: C.Britton, S.Jones@herts.ac.uk

Abstract

One of.the essential components of interactive system development is a model or
representation that can be understood by all parties. Although in some development
projects this requirement is fulfilled by an early prototype, there are many situations in
which paper-based models have to be used. Clients and users are often unfamiliar with
notations for modelling software systems and therefore find it difficult to understand
models produced using such notations well enough to contribute effectively to the
development process. In this paper we identify and discuss properties of modelling
notations that contribute to the production of models that untrained users can readily
understand.

1 Introduction

Although the relationship between notations, models and the quality of the system
development process is not fully understood, the impact of the choice of notation on
successful performance of many system development activities has long been
recognised (Green 89 and 91a, McCluskey et al 95, Modugno et al 94). In the case of
interactive systems, there is general agreement that an essential component of
successful development is a model or representation that can be understood by all
parties, including clients and users who may be untrained in the use of notations for
modelling software. This is because successful development of interactive systems
demands active user participation, and this can only be achieved through a shared
understanding of representations of the system.

In many interactive system development projects, the need for user understanding 1s
addressed by building up a skeleton prototype to offer options which can then be :
refined in line with the user’s requirements. However, in certain cases, the prototyping
approach may be neither feasible nor adequate. For example, early design ideas may
need to be discussed with clients and users before even a first prototype is built. For

safety critical systems, development based on a prototype would be unlikely to gain the

client’s confidence, and for large complex systems of any kind the development of
complete system prototypes is unlikely to be cost-effective.

Where prototypes cannot be used, the main alternative is to use paper-based models
constructed from notations designed for modelling software. The problem for the
developer is how to select a notation which is easy for users to understand. The
problem of which modelling notation to choose is exacerbated for the developer of
interactive systems by the fact that many notations designed to model this type of
system are relatively immature, their theoretical underpinnings are often weakly
documented and some are still undergoing evolution stimulated by practical experience.
In this situation it is difficult to assess whether a particular notation will encourage

models that are readily understandable by untrained users, yet this is an essential
property of a modelling notation for interactive systems.

With notations that are not easy to understand, novice clients and users are forced to put
effort into deciphering the notations, rather than concentrating on the content of the
model, a state of affairs described most eloquently in (Green 89): "When a train of
thought is broken again and again by the need to find something out the hard way, it is
difficult to piece thoughts together into inspirations; it is difficult enough even to finish
a simple train of thought without making a mistake, simply because of having to get the
information in some tedious and error-prone way:"

2 Criteria for choosing effective notations

The topic of criteria for effective modelling notations, has been addressed by authors
from both the academic and industrial communities. Farbey (93) covers criteria relating
directly to notations, such as readability, modifiability and lack of ambiguity, and
criteria relating to the notation in use, such as the production of a well-presented
specification, the cost in time to produce the model, and the amount of support
available. Green (89) suggests that a notation should be able to support what he terms
'opportunistic planning', where high-and low-level decisions may be mingled, work
may frequently be re-evaluated and modified and commuitment to different decisions
may be strong or weak. Although Green is writing about notations for programming,
his point is equally relevant to the study of notations which are used earlier in the:
development process. In an article on hypermedia design, Garzotto (95) evaluates
notations in terms of what can be described: a useful notation should be able to model
information content and presentation, system structure, and interaction with the user.
Davis (93) suggests a list of criteria pertaining to the effectiveness of models and the
choice of notations. Davis’ list includes criteria relating directly to modelling notations,
such as that the notation should permit annotation and traceability, facilitate
modification, and some that are expressed in terms of the software requirements
specification. These include the criterion that "proper use of the technique should result
in an SRS that is understandable by customers and users who are not computer
scientists". ‘

Among publications from authors in industry, criteria for modelling notations in the
STARTS guide (87) incorporate qualities such as rigour, suitability for agreement with the
end-user and assistance with structuring the requirements. Rigour comprises four
separate features: how precisely the syntax of the notation is defined, the extent to which it
is underpinned by maths and logic, whether the meaning of individual symbols is defined,
and the extent to which the notation supports consistency checking of the requirements
themselves. Suitability for end-user agreement refers to ease of understanding of the
notation by an untrained user, and assistance with structuring the requirements assesses
the extent to which the notation supports hierarchical decomposition and separation of
concerns in the model. The STARTS guide also regards the range of requirements covered
by the notation as important, including functional, performance, interface, system

development and process requirements. Admiral Training's (95) guide to interactive

multimedia development is similar to the STARTS guide in placing emphasis on ease of
understanding and on what the notation should be able to model. Effective notations,
according to Admiral, should be able to describe the current situation, the target audience,
the actual and required level of user performance, the overall aim of the system, the
environment, possible constraints and details of specific functions.

Authors who have explored the topic of criteria for modelling notations differ in their
approach and in the weightings that they give to different properties; in general, and as
might be expected, publications from industry focus on practical criteria aimed at
producing an effective model, whereas criteria chosen by academics tend to be more
theoretically based. There are, however, certain criteria that are generally agreed by most

authors to be important for effective modelling notations; one of these is the criterion that a
notation should be as easy as possible for untrained users to understand.

3 Ease of understanding

In order to build a model that is to be the basis for discussion and communication, a
notation must be used that is readily understandable by all parties concerned. This is -
particularly relevant in the development of interactive systems, where involvement of all
user groups is essential and where it is unlikely that all clients and users will be familiar
with software modelling notations. It is difficult to generalise about what makes one
notation easier for an untrained user to understand than another. Inevitably, users who
are shown a model will have personal preferences, different backgrounds and
experiences and different attitudes to the model and to the unfamiliar notation. One user
may be instinctively attracted to diagrams, while another may feel more at home with a
text-based notation. Without detailed knowledge of a particular user, it is not possible
to predict whether he or she will find a specific notation easy to understand. However,
in trying to evaluate notations in terms of ease of understanding, it is useful to identify
properties of notations that make models built using them readily understandable by
untrained users. Building on the work of authors such as Green (80, 89,91aand b,
96), Petre (95) and Sampson (85) we have identified the following properties that
contribute to ease of understanding of a notation:

The number of different symbols in the notation

» The discriminability of the symbols

« The degree of motivation of the symbols

« The extent to which the notation is perceptual or symbolic
o The potential for ‘redundant recoding' in the notation

« The amount or structure inherent in the notation

Each of these properties is discussed below.
3.1 The number of different symbols in the notation

Green (80) makes the point that programming languages with a large number of
symbols and features are more difficult to learn and understand than languages with
fewer features. If we apply this to modelling notations, we can see that a notation such
as storyboard with 2 symbols, is obviously going to be easier for novices to understand
than notations such as the Z specification language, which has 77 symbols (Myers et al
96). It is not surprising that storyboards are widely used in the development of
interactive multimedia systems, where not only the users, but also members of the
development team, are likely to be unfamiliar with software modelling notations
(Britton et al 96).

The number of symbols in a notation is a fairly crude measure, consideration should
also be given to the amount of information carried by each symbol; for example the
function arrows in Z carry considerably more information than the arrows in a data
flow diagram. Z and other mathematical notations are difficult for untrained users to
understand not only because they have large numbers of different symbols, but also
because many of the symbols represent complex operations and concepts. Developers
of systems also need to be aware of the trade-offs between a small and large number of
different symbols in a notation. A small number of symbols will be easier for novices
to grasp initially, but the restricted vocabulary of the notation may hamper their
understanding in the long term.

3.2 The discriminability of the symbols

Discriminability refers to the ease with which different symbols in a notation can be
distinguished from each other; this depends largely on how physically distinct each
symbol is from others in the notation. Discriminability has been identified by both
Green (80) and Sampson (85) as an indicator of how easy an unknown notation will be
for novices to understand. As an example, we can consider the Z symbols shown
below: '
-+ >
partial function - maplet

To someone who is not familiar with the Z notation the two symbols look very similar,
yet they have completely different meanings. They are not easy to distinguish from each
other and so are a potential cause of confusion for novices trying to understand a
specification written in Z. Discriminability of symbols is a problem with many
mathematical languages. In contrast, diagrammatic notations, such as entity-relationship
and data flow diagrams, generally have symbols, such as lines, arrows and boxes, that
are clearly distinguishable from each other. However, confusion may arise when
someone who is unfamiliar with the notations has to look at more than one type of
diagram. An untrained user may weil find that the symbol for a process in a data flow
diagram is not easy to distinguish from the symbol for a data store or the symbol for an
entity in the E-R diagram (see Figure 1 below). ' \

Process in a DFD Entity in an E-R diagram

Data store in a DFD

Figure 1: Symbols for process, data store and entity.

Different variations of standard notations, such as Yourdon and SSADM for data flow
diagrams, may also bewilder novice users.

The level of discriminability in a specific model can be increased by use of techniques
such as different sizes, fonts and use of colour, although these are typographic devices,
rather than an intrinsic part of the notation itself. Figure 2, below, illustrates how even
simple shading can help to distinguish data stores from processes in a data flow
diagram; use of colour for shading or outline would be even more effective (Tufte 83) .

1.1 !
¢ Order -
—_— Agree :
. customer - W .
——— orders g . L2
"Product_ < /M/?O ORMAFIGH
‘: Derails Valid ‘

4
|
o
i
i:

Figure 2: Use of shading to distinguish symbols in a data flow diagram

3.3 The degree of motivation of the symbols

The concept of motivated and arbitrary notations has been described by Sampson (85).
A notation may be considered to be motivated if there exists a natural relationship
between the elements of the notation and objects or ideas that they represent. Many of
the characters in Chinese script are motivated, for example:

*
%#\’ and ab?r ﬁ

meaning tree meaning forest

Not only does the form of the symbols suggest trees, but the symbols also preserve the
“idea that a forest is made up of many trees.

In an arbitrary notation there is no natural relationship between the object and the

representation; the symbol +, for example, bears no obvious relation to the notion of
conjunction.

Disciplines where the artefact being modelled exists in physical form , such as a bridge
or a building in civil engineering, are more likely to have notations with motivated
symbols, such as the drawings of an architect or structural engineer. The problem in
software systems development is that the effects and interface of the artefact are
perceived rather than the thing itself; this makes it difficult to provide motivated

symbols for use in models: a shape can represent a room and a curve a bridge, but what
realistically represents a process or an interaction?

Modelling notations for software systems tend to be arbitrary, although some
diagrammatic notations do include motivated symbols, such as a line representing a link
in entity-relationship diagrams, and an arrow signifying direction in data flow
diagrams. Inclusive (such as Venn) diagrams and connected (such as state transition)
diagrams may each be considered as motivated in certain situations. For example, a
diagrammatic-inclusive notation can represent the positions of different elements on a
screen, and a diagrammatic-connected notation may be effective for specifying possible
routes through a system.

3.4 The extent to which the notation is perccpiual or symbolic

Perceptual representations are those in which we perceive meaning directly without
having to reason about them, for example the use of colour in electricity cables, or
diagrams in various contexts, such as road signs. Most modelling notations contain
both perceptual and symbolic elements. Graphs are perceptual in that they are
diagrammatic, although they often contain labels (symbols) for the various nodes.
Notations which are mainly symbolic rather then perceptual are frequently laid out to
show certain aspects perceptually: Z’s use of schemas, formatting of pseudocode and
introduction of ‘white space’ to aid comprehension are examples of this. Text-based
notations, which are symbolic, generally use perceptual devices to aid comprehension;
these may include section headings, paragraphs, variations in size and font, bullets,
emphasis and white space.

Perceptual and symbolic notations each have advantages and disadvantages in
modelling. Models in symbolic notations, such as mathematical specification
languages, are able to hold much more information than perceptual models, but are
frequently beyond the understanding of untrained users. Models in diagrammatic
notation often embody perceptual concepts, such as connectedness (as used in state
transition diagrams) and inclusiveness (as used in Venn diagrams), which most people
understand. However, without elaborate ‘extras’ the amount of information they can
contain is restricted. A further problem with perceptual notations is identified by Green
et al. (91b). Perceptual cues can be provided in a diagram by placing functionally-
related items close together in order to emphasise the relationship; however, this can
lead to diagrams which are cluttered and difficult to understand. There is also the risk
with untrained users that any adjacent items in a diagram will be seen as related, even
when this is not the case.

3.5 The potential for 'redundant recoding’ in the notation

A concept that is closely related to that of perceptual properties of notations is what has
been called ‘redundant recoding' (Green 91a and Modugno et al 94). This involves
presenting the same information in more than one way in the same model. Examples of
redundant recoding in text-based models include headings, font size, and use of upper
and lower case. In notations such as structured English and decision trees redundant
recoding is provided by indentation and layout. Figure 3 below shows two versions of
the same process description using structured English and a decision tree. The decisions
to be taken are conveyed by both the content and the layout of the models.

if not local Customer (*lives outside 20 miles radius*)

charge P&P .
else (*local customer*) Local g:;::)mcr Distance - f:;::omcr ACTION
il TotalCost (* of Order*) < £30 then value record

set DeliveryCharge
else if TotalCost (* of Order*) > =£30 then No
if Distance < = 5mi FREE i
C) S miles then DELIVERY <£30 Delivery
no DeliveryCharge POLICY e charge
§lsc (*Distance > 5 miles*) then Yes

if CustomerTradeRecord > = | year then =§———— e
no DeliveryCharge \

>=£3

= £30 1 vez Delivery
else (*CustomerTradeRecord < 1 vear®) < Sl chargcc:r)
set DetiveryCharge ">>

>= | year

P&P

Free

Figure 3: Process description using structured English and a decision tree

3.6 The amount-or structure inherent in the notation

Sengler (83) has identified finding, decomposing and abstracting information as three
of the most important activities in reading a model. Finding information involves
searching the model; this process will be easier for untrained users to carry out if the
notation used encourages a clear structure in the model. Decomposition and abstraction
are important because a reader can only cope with a small amount of information at a
given time. An effective notation should encourage decomposition of the model into
sections or ‘chunks’, each of which is intellectually manageable by the reader. If the
structure of decomposition is not clear, then the reader will be forced to devise his or
her own decomposition of the model, which may well be different from that which the
developer had in mind.

Among software modelling notations, the context diagram and imposed hierarchical
decomposition of data flow diagrams mean that it is relatively straightforward for
untrained users to find information at different levels and to concentrate on only a small
part of the model at any given time. Mathematical notations, such as Z, often provide
structure at low levels - for example, separation of the specification into schemas can
help to identify normal and error cases of an operation - but no mechanism is provided .
to give an overview of the system as a whole. This adds to the difficulties of novice
users of Z who wish to get a feel for the system as a whole before examining the details
of the model.

Although diagrammatic notations are often thought to encourage more explicitly
structured models then text-based notations, this is not always the case. In an
experiment comparing textual and visual programming languages, Green and Blackwell
(96) found that readers' understanding of programs depended more on the structure of
the information in the program than on whether the program was written in a visual or
text-based language.

4 Conclusion ‘ /

In order to make an informed choice of modelling notation, a developer needs first to
identify the criteria for effective notations which are relevant in the particular situation.
The second stage of the developer's choice consists of assessing available notations in
the light of the criteria which are considered important. In the development of
interactive systems common understanding of models of the system by all parties is
paramount. The aim of this paper has been to identify properties of notations that help
to make models produced using them easier to understand for untrained users.

We have already said in this paper that whether or not users find particular notations
readily understandable depends partly on their distinctive backgrounds, preferences and
experiences. However, for developers faced with a raft of modelling notations to
choose from, many of which have been largely untried on 'real’ problems, it is helpful
to have some idea of whether a particular notation is likely to produce a model which
untrained users can readily understand. Each of the properties identified above is, on its
own, a fairly crude indicator of the overall ease of understanding of a notation, but
taken together they do give some idea of how quickly and well a novice reader will be
able to understand a model developed in a particular notation.

References

Admiral Training Ltd (1995) Multimedia Design - A Newcomer's Guide
Department of Employment, Sheffield.

Britton, C., Jones,S., Myers,M. and Sharif,M.(1997) "A Survey of Current Practice in
Multimedia System Development", to appear in Information and Software Technology

Davis, A.M. (1993) Software Requirements. Objects, Functions and States Prentice
Hall International.

Department for Trade and Industry and National Computing Centre (1987) The
STARTS Guide, second edition, volume 1, NCC Publications

Farbey, B. (1993) "Software quality metrics: considerations about requirements and
requirement specifications” in_Software Engineering: A European Perspective R. Thayer
and A. McGetterick (Eds.), IEEE C.S.Press

Fitter, M.J. and Green,T.R.G. (1981) "When do diagrams make good computer
languages?" in Alty,J. and Coombs,M. (Eds.) Computing Skills and the User
Interface Academic Press.

Garzotto,F., Mainetti,L. Paolini,P. (1995) “"Hypermedia Design, Analysis and
Evaluation Issues" Communications of the ACM Vol 38, No.8

Green,T.R.G. (1980) "Programming as a Cognitive Activity * in Smith, H.T.
and Green, T.R.G. (Eds.) Human Interaction with Computers Academic Press.

Green, T.R.G. (1989) "Cognitive Dimensions of Notations" in People and Computers
(HCI 89) Sutcliffe and McCauley (Eds.) CUP.

Green, T.R.G. (1991a) “Describing Information Artifacts with Cognitive Dimensions
and Structure Maps” in People and Computers VI, Proceedings of the HCI'91
Conference, Diaper, D. and Hammond, N. (Eds.), August 1991

Green,T.R.G., Petre,M. and Bellamy,R. (1991b) "Comprehensibility of visual and
textual programs: A Test of Superlativism against the “Match Mismatch" Conjecture"
in Koenemann- Belliveau,J., Moher,T. and Robertson,S. (Eds.) Empirical Studies of
Programmers Fourth Workshop, Norwood NJ, Ablex ppl21-146

Green, T.R.G. and Blackwell, A.F. (1996) "Thinking about Visual Programs " in
Thinking with Diagrams IEE Colloquium Digest No: 96/010

McCluskey, T.L., Porteous, J.M., Naik, Y, Taylor, C.N. and Jones, S. (1995)
A Requirements Capture Method and its use in an.Air traffic Control Application.
Software practice and Experience, Vol 25 (1)

Modugno, F., Green T.R.G. and Myers B.A. (1994) "Visual programming in a Visual
Domain: A Case Study of Cognitive Dimensions" in People and Computers IX,
Proceedings of HCI'94, Glasgow, August 1994

Myers, M., Britton,C.,, Jones,S.and Sharif M. (1996) "An investigation into the
measurement of modelling notations" Technical Report No. 257, Faculty of
Information Sciences, University of Hertfordshire, to be presented at The Eighth
European Software Control and Metrics Conference, Berlin, May 1997

Petre, M.(1995) "Why Looking Isn’t Always Seeing, Readership Skills and Graphical
Programming” Communications of the ACM, June 1995, Vol 38, No.6

Sampson,G. (1985)Writing Systems. Hutchinson, 1985

Sengler, H.E.(1983) "A Model of Program Undersanding" in Green, T.R.G., Payne,
S T. and van der Veer, G.C.The Psychology of Computer Use Academic Press, 1983

Tufte, Edward (1983) The Visual Display of Quantitative Information Graphics
Press, Cheshire, Connecticut.

