
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A General Traffic Flow Prediction
Approach Based on Spatial-Temporal
Graph Attention
CONG TANG1, (Student Member, IEEE), JINGRU SUN1, (Member, IEEE), YICHUANG SUN2,
(Member, IEEE), MU PENG1, AND NIANFEI GAN3
1The College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2The School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
3The College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

Corresponding author: Jingru Sun (e-mail: jt sunjr@hnu.edu.cn).

This work was supposed by Science and Technology Project of Hunan Provincial Communications Department, China (Grant
No.2018037), and the National Nature Science Foundation of China (Grant No. 61674054).

ABSTRACT Accurate and reliable traffic flow prediction is critical to the safe and stable deployment of
intelligent transportation systems. However, it is very challenging since the complex spatial and temporal
dependence of traffic flows. Most existing works require the information of the traffic network structure and
human intervention to model the spatial-temporal association of traffic data, resulting in low generality of the
model and unsatisfactory prediction performance. In this paper, we propose a general spatial-temporal graph
attention based dynamic graph convolutional network (GAGCN) model to predict traffic flow. GAGCN uses
the graph attention networks to extract the spatial associations among nodes hidden in the traffic feature
data automatically which can be dynamically adjusted over time. And then the graph convolution network
is adjusted based on the spatial associations to extract the spatial features of the road network. Notably, the
information of rode network structure and human intervention are not required in GAGCN. The forecasting
accuracy and the generality are evaluated with two real-world traffic datasets. Results indicate that our
GAGCN surpasses the state-of-the-art baselines.

INDEX TERMS Traffic Flow Forecasting; Graph Attention Networks; Graph Convolutional Network;
Dynamic Spatial-Temporal.

I. INTRODUCTION

THE speedy growth of vehicles has brought tremendous
pressure on urban traffic, which has seriously affected

people’s daily lives. Therefore, it is necessary to find an
effective technical means to improve traffic management
efficiency and ease traffic problems. As a critical part of
Intelligent Transportation System (ITS) [1], short-term traffic
flow prediction can predict the next 5-30 minutes’ traffic
conditions of the road section, and provides great help in
many areas, such as signal control, traffic guidance, path
planning.

In the real world, traffic flow data is affected by many
factors, with the properties of being highly complex and non-
linear, thus accuarte traffic prediction is very challenging.
After decades of research, traffic flow prediction methods
were mainly classified into two approaches, model-driven
and data-driven. Model-driven methods are also called para-

metric methods, such as time-series models, which have well-
established theoretical background. However, such methods
require plenty of parameters and assumptions to apply to the
entire network, which makes their prediction performance
unsatisfactory. Recently, with the improvement of transporta-
tion infrastructure, different data collection technologies such
as monitoring points, detectors, have provide a mass of avail-
able data for traffic flow prediction. Data-driven approaches
can be separated into two subclasses: machine learning and
deep learning. Common machine learning methods are in-
adequate when processing high-dimensional data and also
rely on detailed feature engineering. Therefore, this type of
methods has fragile generality. Deep learning models, for in-
stance convolutional neural networks, long short-term mem-
ory neural (LSTM) networks and their combination, have
achieved great success in traffic prediction [2]. Their success
is mainly due to the good performance when dealing with
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: detector

FIGURE 1. Topology graph of traffic network. The detector nodes deployed
in the road network can be regarded as vertices on the topology graph.
We contact the nodes at each location so that the road network can be
abstracted into a topology graph. Then, we predict the vehicle speed of
each detector in the road network of the next period of time.

highly nonlinear, dynamic arbitrary precision, and multidi-
mensional problems. In traffic networks, the detector nodes
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FIGURE 2. The spatial-temporal association graph of traffic nodes. There are
spatial associations among nodes, and this associations change over time.

are delpoyed on the traffic roads, which form a topological
graph with a non-Euclidean structure, as shown in Fig. 1.
Observations obtained at nearby locations influence each
other, resulting in spatial local association. But traditional
deep learning methods are not suitable for processing non-
Euclidean data. An ideal way to process non-Euclidean struc-
tured data is to use graph convolutional network (GCN) [3],
whose essential purpose is to collect the spatial features of the
topological graph. Graph convolution includes vertex domain
and spectral domain, but when using vertex domain to extract
features, bacause the neighbors extracted from each vertex
are different, the calculation process must be performed
for each vertex. The spectral domain is the focus of GCN
research, which regards the features of each node as signals
on the graph, and studies the features of the graph through

spectral analysis to realize the topological graph convolution
operation. However, existing traffic flow prediction models
based on graph convolutional network use fixed distance
information between nodes, when constructing the Laplacian
matrix of the graph, and ignore the dynamic changes in
the association/weights among nodes. Even though some
models considered that the association among nodes will
change in time, the method of dynamically adjusting the
spatial association/weights among nodes is not aimmed at
topology graphs. Moreover, they all rely on the road network
configuration, such as the position of the detectors deployed
on the road, and the distance among the detectors. These
methods can not reflect the true spatial-temporal properities
of the tracific roads, and lack of generality.

The limitations of existing traffic prediction models based
on graph convolutional network encourages us to design a
novel framework for traffic flow prediction. We have two
observations regarding this problem. First, except distance,
many other factors should also be considered when it comes
to spatial associations/weights among nodes, and we should
research the dynamic spatio-temporal associations of traffic
flow data with Non-Euclidean structure from the perspec-
tive of topological graph, as shown in Fig. 2. Second, we
should reduce the subjective participation of human and try
to predict the traffic prevalence of the road network without
knowing the road network structure in advance, if we want
to make the model adapt to different road network structures
and improve the generality of the prediction model.

In this paper, we propose a spatial-temporal graph atten-
tion based dynamic graph convolutional network (GAGCN),
which is employed to predict the road network traffic flow
based on spatial-temporal feature and has better generality
and prediction accuracy than previous approaches. The main
contributions of ours can be summarized:

• We develop a graph attention mechanism to dynam-
ically adjust the spatial associations/weights among
nodes over time. We identify the associations/weights
among nodes hidden in the traffic data through the graph
attention network, and the Laplacian matrix of the road
network topology graph is dynamically adjusted in line
with the spatio-temporal features of the traffic data.

• The structure information of the road network, such
as the position of the detector, is not required and we
only need traffic flow features data in our model. The
proposed method can reduce the error of people’s prior
knowledge in previous models and also improve the
generality of the model.

• Large-scale experiments are performed on two universal
traffic datasets. The experimental results confirm the
prediction accuracy and generality of our model on
different datasets.

The remainder of this paper include: Section II introduces
the research and development on traffic flow prediction.
Section III introduces the spatial-temporal graph attention
based dynamic graph convolutional network. Section IV ex-
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hibitions our experimental and results analysis and conclude
our work in Section V.

II. BACKGROUND
A. TRAFFIC FLOW PREDICTION
In recent years, many excellent-performing prediction mod-
els have been proposed to assist signal control, traffic guid-
ance, and path planning. Traffic data has the characteristic
of flowing and is a typical time series, given traffic data
T to predict the traffic parameters (such as speed, traffic
flow or occupancy) Y of the next H time points with the
traffic data of the past P time points of all the nodes in
the road network, Y = (y1, y2, ..., yN )T ∈ RN×H , and
yi = (yiP+1, y

i
P+2, ..., y

i
P+H) ∈ RH denotes the future

parameters of node i from P + 1.
The time-series analysis model uses mathematical formu-

las to model past behavior, and then uses the obtained model
to predict future results. ARIMA [4] is a classic statistical
model in time-series analysis, which is widely used in traffic
prediction [5]. References [6] and [7] ,extended the spatial
domain to the ARIMA time series model to obtain the
spatio-temporal autoregressive integrated moving average
(STARIMA) models. And STARIMA achieved good results
in the field of traffic flow prediction [8]. However, the time-
series analysis model is a purely inductive method, which
requires some ideal prior assumptions. And it is difficult
to satisfy these assumptions in the real world because of
the inherent complexity of traffic data. Therefore, the above
methods often perform poorly in practical applications.

Machine learning methods, for instance support vector
regression (SVR) [9], [10], k-nearest neighbor algorithm
(KNN) [11], K-means [12] hava solid mathematical foun-
dation and can help us handle more complex traffic data.
To achieve the theoretical advantage of these methods, the
premises are to choose the appropriate parameters and con-
duct detailed feature engineering.

Recently, deep learning models with good learning capa-
bilities and deep network structures have developed rapidly.
Based on its good performance, deep learning models have
also made great progress in traffic flow prediction. Such as
stacked autoencoder (SAEs) [13] and Deep belief network
(DBN) [14], [15] are all based on deep learning models.

However, the fully connected networks are not sufficient
to extract the spatial-temporal features of traffic flows, they
only process one region every time, and the configuration of
their neurons cannot meet this demand. Convolution neural
networks (CNNs) [16] as a typical deep neural network, has
made many breakthroughs in image processing. Recently,
some researchers have used CNNs to capture spatial features
in traffic prediction tasks [17]. Gated recurrent unit networks
(GRUs) [18], [19] and long short-term memory neural net-
works (LSTM) [20] are both good at processing time-serie
[21] and have also been used in traffic flow prediction. And
then, researchers combined CNN and LSTM networks to
propose a functional level fusion architecture CLTFP [22] for
short-term traffic prediction by combining CNN with LSTM

networks. Later, a convolutional LSTM was proposed by
[23], which embedded an extended fully connected LSTM
into convolutional layer LSTM (FC-LSTM) [24]. Compared
with the above methods, CLTFP and FCLSTM can ob-
tain better prediction performance. Convolutional neural net-
works can effectively capture the spatial features of grid
data. However, convolutional neural networks cannot extract
the spatial features of the road network, when we consider
the traffic road network and the detectors deployed on the
road network as a topology graph. Because the number of
neighbors of each vertex in the topology graph is different,
so the convolution operation cannot be performed with the
same size convolution kernel.

However, it is hoped that the spatial features can be ef-
fectively extracted on the data structure such as the topology
graph, so GCN has become the research focus. Existing graph
convolutional network can be fall into two types according
to the convolutional operator: vertex domain and spectral
domain. Vertex domain finds the neighbors adjacent for each
vertex to extract the spatial features on the topology graph
[25], however the neighborhood of each vertex is different,
each vertex needs to be processed alone. Spectral domain
uses the theory of the spectral graph to convolve topological
graph. Bruna et al. [26] propose a general graph convolution
framework, and then Defferrard, Bresson, and Vandergheynst
[3] approximates it with Chebyshev polynomial to decrease
the computational complexity of the model.

Recently, many researchers use GCN to predict traffic flow.
Spatial-Temporal Graph Convolutional Networks (STGCN)
[27] was proposed, which constructs a fixed Laplacian ma-
trix based on the spatial distance among the detector nodes
and human experience. Further, Attention Based Spatial-
Temporal Graph Convolutional Networks (ASTGCN) [28]
use an attention mechanism [29] to capture the dynamic as-
sociations among nodes. However, the construct of Laplacian
matrix required by the GCN of the above methods are all
dependent on the spatial distance among the detector nodes
in the road network and the human experience, which make
the model have great limitations.

B. ATTENTION MECHANISM
Attention mechanism, as a new technology, has developed
rapidly in recent years, and is widely used in fields such as
natural language processing, speech recognition and others.
Attention mechanisms allow neural networks to focus on
input data and provide helpful information for the current
task. Then, an alignment model is proposed to evaluate the
match between input and output [30]. After that, a neural
network architecture consisting of two memory networks is
proposed, which can model the semantic association and re-
lationship between each word and two entities [29]. Based on
the above research, Graph Attention Networks (GATs) [31]
is proposed. GATs does not need to know the structure of the
graph in advance and only focuses on the feature data of the
nodes and uses the self-attention layer to specify the weights
among the nodes. It has achieved the best level in the industry
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in three difficult benchmarks. In traffic flow prediction, to
extract spatial features, Liu et al. perform 2D convolution
on each feature map to obtain the corresponding attention
matrix, perform maximum average pooling on each feature
map, and use the result as the input of the feed-forward
neural network to obtain the channel attention [32]. Recently,
Zheng et al. use scaling point product attention mechanism to
obtain spatial-temporal attention, and transformer attention
from encoder to decoder [33].

To improve the generality of prediction model and de-
crease errors caused by human experience, we propose a
spatial-temporal graph attention based dynamic graph convo-
lutional network. Our framework employs the graph attention
networks to find spatial dependencies hidden in traffic data
and adjust the Laplacian matrix in time.

III. METHODOLOGY
In this part, before we present our model in detail, we will
introduce some background and explain the definitions that
appear in our article.

A. PROBLEM DEFINITION
For traffic data T on all nodes, suppose p represents a
certain time point in the mth time slice, p ∈ (1, 2, ..., P )
and m ∈ (1, 2, ...,M). We use xi,cp ∈ RC to denote
the values of all the features of node i at time p in mth

time slice, and x
i,cj
p ∈ R represents the value of the jth

feature of node i at time p in mth time slice. So Tp =(
x1,cp , x2,cp , ..., xN,cp

)T ∈ RN×C (the traffic data of all nodes
at p time), Tm = (T1, T2, ..., TP )

T ∈ RP×N×C denotes the
values of all the features of all the nodes at time slice m.
T = (T1, T2, ..., TM )

T ∈ RM×P×N×C (the traffic data of
all the nodes over M time slices). We use vip ∈ R to denote
the value of the velocity of node i at time p, and vip = T i,C3

p .

B. GCN
Compare traffic network to a graph G = (V, e, A), where V ,
e, A represent a set of vertices (detector positions), a set of
edges, the adjacency matrix of G respectively. The vehicle
speed V observed by the detector can be regarded as a graph
signal that is defined on the graph, where vi is the signal value
at the ith node. The theoretical core of the graph convolution
is the feature decomposition of the Laplacian matrix of the
graph. Graph Laplacian L = D − A, where D is the degree
matrix of the vertices. Further, the Laplacian matrix can be
normalized as: L = In − D−

1
2AD−

1
2 (In is an identity

matrix). Eigenvalue decomposition of the Laplacian matrix
can obtain its eigenvector matrix U and eigenvalue matrix A.
And the Laplacian matrix can be expressed as: L = UΛUT ,
where Λ ∈ RN×N is a diagonal matrix, U ∈ RN×N

is Fourier basis. Graph convolution filter gθ = diag(θ)
parameterized by θ = RN . Hence, the graph convolution of
x defined in the Fourier domain is:

gθ∗Gx = UgθU
Tx, (1)

Concat/avg
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FIGURE 3. The framework of GAGCN.

where ∗G denotes a graph convolution operation and UTx is
the graph Fourier transform of x.

However, it is expensive to use (1) to calculate the eigen-
vector matrix of L, when the structure of the graph is very
complicated. To solve this problem, we use the Cheby-
shev polynomial approximation to reduce computationalKth

complexity [34], and (1) can be further defined as:

gθ′∗Gx ≈
K∑
k=0

θ′kTk(L̃)x, (2)

where θ′ ∈ RK is a vector of Chebyshev coefficients.
L̃ = 2L

λmax − In, λmax is the maximum eigenvalue of the
L. Tk(x) = 2xTk−1(x) − T k−2(x), where T0(x) = 1,
T1(x) = x.

C. DYNAMIC SPATIAL-TEMPORAL GRAPH ATTENTION
GRAPH CONVOLUTIONAL NETWORKS
The core of GCN is based on the spectral decomposition
of Laplacian matrix. Building an accurate Laplacian matrix
is very helpful in improving prediction accuracy. First we
propose a method of constructing dynamic Laplacian matrix
with traffic data of nodes, and then introduce a novel dynamic
spatial-temporal GCN for traffic speed prediction.

As shown in Fig. 3, Our framework is compose of three
modules: a Laplacian matrix module constructed from graph
attention networks, two spatial-temporal convolution blocks
and an output layer. Taking the mth time series as an exam-
ple, we use the constructed traffic data T ∈ RP×N×C as
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the input of graph attention networks to obtain the weighted
adjacency matrix A of the graph. Then we use L = D − A
to obtain the Laplacian matrix L, and spectrally decompose
L to obtain the graph convolution kernel required for graph
convolution. V ∈ RP×N×C3 is the only input data of the
"ST-Conv block". There are two temporal convolution blocks
and one spatial convolution block in "ST-Conv block". And
the spatial convolution block is located in the middle of the
two temporal convolution blocks. The output layer includes
a temporal convolutional and a fully connected layer. Finally,
the output layer integrates all features to get the final predic-
tion result. Ṽ .

1) Obtaining Laplacian Matrix by Graph Attention Networks
In the previously proposed method of predicting traffic flow
by using GCN, in order to obtain a weighted adjacency
matrix, they need specific road network information (such
as detectors position information), which reduces the gen-
erality of the model. And they also need to use their prior
knowledge (such as selecting a specific mathematical model
to control the sparsity of the adjacency matrix) to construct
the weighted adjacency matrix A.

In this paper, we implicitly assign different weights to
nodes in the neighborhood by graph attention networks and
do not rely on understanding the road network structure in ad-
vance (such as the spatial position information of the detector
nodes). Fig. 4 shows the details of obtaining the Laplacian
matrix through the graph attention networks. Taking into
account the impact of changes of time and traffic conditions
on the relationship among nodes, we construct the data into
M time slice and batch input to the graph attention network.
Take the mth time slice as an example, data at the pth time
point Tp = {~T1, ~T2, ~T3, ..., ~TN}, ( ~Ti ∈ RC , N denotes the
number of the detectors, C represents the feature number of
traffic data) and the mth time slice contains P time points.
Each time point of data will get a association matrix by the

graph attention network. Finally, we average the P relational
matrices to obtain the association/weights matrix (weighted
adjacency matrix) of the mth time slice.

For data Tp, a linear transformation parameterized by a
weight matrix W ∈ RC

′×C is employed to transform the
input features into higher level features on each node in
the initial step, T ′p = {~T ′1, ~T ′2, ~T ′3,..., ~T ′N}, ~T ′p ∈ RN×C

′
.

Then use a shared attention mechanism ~a to calculate the
attention coefficient for all nodes on the graph. The attention
coefficient can be expressed as:

eij = ~a(W ~T ′i ,W ~T ′j), (3)

this indicates the degree of influence of the traffic condition
of node j on node i. And this process is applied to each
node on the graph. By implementing masked attention, the
structural information of the graph is incorporated into the
mechanism, and only compute eij for nodes j ∈ Ni where
Ni is some neighborhood of node i in the graph. In order
to compare the attention coefficients eij between different
nodes, we normalize them with a nonlinear function:

αij = softmax(eij) =
exp(eij)∑
k∈Ni

eik
. (4)

Then applying the LeakyReLU nonlinearity, the coefficients
computed by the attention mechanism can be expressed as:

αij =
exp(LeakyReLU(~aT [W ~T ′i ⊕W ~T ′j ]))∑

k∈Ni
exp(LeakyReLU(~aT [W ~T ′i ⊕W ~T ′j ]))

, (5)

where ⊕ represents the concatenation operation.
Once the normalized attention coefficient αij obtained (ie.

the weight relationship between node i and node j), then we
can get each element of the weighted adjacency matrix:

Wij =

 αij , i 6= j

1 , otherwise
, (6)

We have only used one attention factor calculation mode
as described above, (as shown in Fig. 5). but in order to
stabilize the self-attention learning process, it is beneficial to
use multi-head attention, as shown in Fig. 6. We eventually
get the K attention coefficient average:

Wij =


σ( 1

K

K∑
k=1

αkij) , i 6= j

1 , otherwise

, (7)

where K denotes the number of attention computations, σ
is a nonlinear transformation. αkij is the attention coefficient
computed by the kth attention mechanism ~ak. Finally, we get
all theWij and construct the final weighted adjacency matrix
A.
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A =


1 W12 · · · W1n

W21 1 · · · W2n

...
...

. . .
...

Wn1 Wn2 · · · 1

 (8)

Then we get the Laplacian matrix L according to L = D−A.

2) Joint Extraction of Spatial Features by Graph Attention
Networks And GCN
Our purpose is to predict the vehicle speed Y of the next H
time slices with the traffic data of the past P time points of
all the nodes in the road network (Y = (y1, y2, ..., yN )T ∈
RN×H , and yi = (yiP+1, y

i
P+2, ..., y

i
P+H) ∈ RH denotes

the future velocity of node i from P + 1). All the features
are selected as the input of the graph attention networks, and
only the velocity is selected as the input of the GCN. The

2-D Conv

Temporal Conv 
Block

GLU

FIGURE 7. Temporal Convolution Block. The temporal convolutional block
contains a 2-D causal convolution followed by gated linear units (GLU).

input of the graph convolutional layer can be expressed as
x ∈ RN×P×Cin , where N , P , Cin represent the number of
the node, time point and channel, respectively.

We create the Laplacian matrix L of the graph with
weighted adjacency matrix A, and perform feature decom-
position on L. We set K = 1, and use a layer-wise linear
formulation to stack multiple localized graph convolutional
layers. With the first-order approximation of graph Laplacian
and in this linear formulation of a GCN we can further
approximate λmax ≈ 2 [35]. Under these approximations (2)
simplifies to:

gθ′∗Gx ≈ θ′( 2L
λmax − In)x

≈ θ′0x− θ′1(D−
1
2AD−

1
2 )x,

(9)

where θ′0, θ′1 are two shared parameters, θ′0 and θ′1 can be
replaced by a single parameter θ′ by letting θ′ = θ′0 = −θ′1.
To avoid repeated application of this operator, which may
lead to numerical instability and explosion/disappearance
gradients [35], A and D are renormalized by Ã = A + In
and D̃ii =

∑
j

Ãij separately. Then (9) can be alternatively

expressed as:

gθ′∗Gx ≈ θ′(D̃−
1
2 ÃD̃−

1
2 )x. (10)

Finally, the graph convolution in (10) can be rewritten as:

yi =

Cin∑
i=1

θ′ij(D̃
− 1

2 ÃD̃−
1
2 )xi, j = 1, 2, 3, ..., Cout, (11)

where yi ∈ RN×cout , Cin, Cout represent the size of input
feature map and output feature map, respectively (in this
case, Cin = 1).

3) Gated CNNs for Extracting Temporal Features
As shown in Fig. 7, the traditional 2-D convolution operation
of CNN is used to obtain short-term features of traffic flow.
We use Υ ∈ RN×P×Cin as the input to the temporal
convolution layer (N , P represent the size of the spatial and
temporal dimensions, respectively). The convolutional kernel
Γ ∈ RK×Cin×2Cout will map the input to an output element
[A,B] ∈ RN×(P−k+1)×(2Cout) (A, B have the same size
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of channels, which is half of the total size of channels). The
temporal convolution can be defined as:

Γ∗T Υ = A� σ(B), (12)

where A, B are input of gates in GLU, respectively, �
is Hadamard product. The sigmoid gate σ (B) is a gating
mechanism that controls which information in A can be
passed to the next layer.

4) Spatial-Temporal Convolutional Block
In order to improve the prediction accuracy, we fuse the spa-
tial convolution block with the temporal convolution block,
and jointly process the time series of the graph structure by
using the space-time convolution block.

IV. EXPERIMENTS
A. DATASET DESCRIPTION
We validate our model on the real-world traffic dataset PeMS
(collected by the California Department of Transportation).
The dataset contains key attributes such as overall flow for
each detector node, average lane occupancy, and average
vehicle speed. It also contains the geometric information of
the detector and the corresponding timestamp, as detailed
below:
• PeMSD4: It refers to the traffic data in San Francisco

Bay Area, containing 3848 detectors on 29 roads. We
randomly select 50/100 detectors and select data for
major traffic routes during the workdays from May 1,
2012 to June 30, 2012. The traffic data are aggregated
and output by each detector every 5 minutes.

• PeMSD7: Its traffic data for the Los Angeles area
includes 39,000 detectors. We randomly select 100/206
detectors and select data for major traffic routes during
the workdays from May 1, 2012 to June 30, 2012. The
traffic data are aggregated and output by each detector
every 5 minutes.

We select three traffic features: traffic volume, average lane
occupancy, and speed, and the time interval of the data is 5
minutes. Therefore, each node contains 288 data points per
day. The missing values are filled by the linear interpolation.
In addition, z-score normalization is performed on three
different traffic attribute data, respectively.

B. EXPERIMENTAL SETTINGS
All experiments are performed and tested on the Window’s
operating system (CPU: Intel Core i7-8700 @ 3.20GHz,
GPU: NVIDIA GeForce GTX 1070Ti). In order to get the
best parameters on validation, grid search strategy is selected.
In this paper, the historical time window of all experiments
is 60 minutes, i.e. 12 observation data points (P = 12) for
predicting the average of the next 15 and 30 minutes (H = 3;
6).

During the training phase, the RMSprop is used to opti-
mize the mean square error. All baselines are also trained for
50 epochs with batch size as 30. The initial learning rate is

10−4 with a decay rate of 0.7 after every 5 epochs. We use
the 1st-order approximation, both the spatial and the temporal
convolution kernel size are set to 1.

Finally, in order to verify that GAGCN not only increases
the generality of the model, but also improves the pre-
diction accuracy, we also designed a version of GAGCN
that contains road information, named Non-universal spatial-
temporal graph attention based dynamic graph convolutional
network (NGAGCN). NGAGCN and GAGCN have the same
settings, except that NGAGCN incorporates location infor-
mation.

1) Evaluation indicators and baselines
a: Evaluation indicators
We use Mean Absolute Error (MAE), Mean Absolute Error
Percentage (MAPE) and Root Mean Square Error (RMSE)
to evaluate the performance of different models. They are
defined as:

MAE =
1

n

n∑
t=1

|vt − ṽt| (13)

MAPE =
1

n

n∑
t=1

∣∣∣∣vt − ṽtvt

∣∣∣∣× 100 (14)

RMSE =

[
1

n

n∑
t=1

(vt − ṽt)2
] 1

2

(15)

where vt is the detected vehicle speed, and ṽt is the predicted
vehicle speed.

b: Baselines
We compare our GAGCN with the following seven baselines:
• HA: Historical Average method. Here, we use the aver-

age value of the last one hour to predict the next value.
• VAR [36]: Vector Auto-Regression is a time series

model, which easy to analyze multiple time series.
• CNN-LSTM [37]: 2-D CNN with LSTM is a traditional

spatial-temporal model.
• STGCN [27]: A spatial-temporal graph convolutional

model, which base on fixed Laplacian matrix.
• MSTGCN [28]: Multi-Component spatial-temporal

graph convolution model, which gets rid of the spatial-
temporal attention.

• GeoMAN [38]: A multi-level attentionbased recurrent
neural network model proposed for the geo-sensory
time series prediction problem.

• ASTGCN [28]: Attention Based Spatial-Temporal
Graph Convolutional Networks, which can learn the
dynamic spatial-temporal associations of traffic data.

C. COMPARISON AND ANALYSIS OF RESULTS
1) Forecasting accuracy
We validate our model and seven baselines on the datasets
PeMSD4 and PeMSD7. Table 1 and 2 show the results of
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FIGURE 8. Speed prediction in PeMSD7-100.

traffic speed predictions for PeMSD7, Table 3 and 4 show
the results of traffic speed predictions for PeMSD4. As can
be seen from the results of the four tables, GAGCN got
the best performance in three evaluation indicators. We can
observe that the prediction results of the traditional time
series analysis methods (HA, VAR) are usually not ideal,
demonstrating those methods’ limited abilities of modeling
nonlinear and complex traffic data. The comparison results
show that traditional deep learning models like CNN-LSTM
have better prediction performance than traditional time se-
ries analysis methods. The prediction results of graph con-
volutional network models such as STGCN and MSTGCN
without injecting the attention mechanism in the model are
better than traditional spatial-temporal deep learning models
such as CNN-LSTM. When the road network structure is
complicated and the positions of the detectors are relatively
random, the prediction accuracy of ASTGCN and GeoMAN
are lower than traditional spatio-temporal models without
attention mechanism, such as STGCN. The prediction re-
sults of STGCN, ASTGCN, and GAGCN on a certain day
are shown in Fig. 8. And they are all based on the graph
convolution network method.we can easy to observe that
GAGCN is closest to the ground truth, compared with other
two methods. Among all predictive contrast models based on
graph convolutional networks, we are the only model that
does not include detector position information in the input
data, which confirms that our model guarantees the accuracy

TABLE 1. Forecasting error given on PeMSD7-100

Model MAE MAPE (%) RMSE

HA 4.24 10.44 7.87
VAR 3.90 7.20 6.03

CNN-LSTM 3.65 6.74 5.49
STGCN 2.30 5.14 4.27
MSTGCN 3.24 5.27 4.82
GeoMAN 3.07 5.18 4.70
ASTGCN 2.74 5.02 4.62

NGAGCN(ours) 2.24 5.01 4.12
GAGCN(ours) 2.21 4.92 4.06

TABLE 2. Forecasting error given on PeMSD7-206

Model MAE MAPE (%) RMSE

HA 4.47 11.95 8.42
VAR 3.87 6.29 7.69

CNN-LSTM 2.62 5.88 5.96
STGCN 2.35 5.34 4.38
MSTGCN 2.60 5.53 4.95
GeoMAN 2.51 5.92 5.04
ASTGCN 2.39 5.33 4.37

NGAGCN(ours) 2.30 5.29 4.29
GAGCN(ours) 2.25 5.15 4.21

TABLE 3. Forecasting error given on PeMSD4-50

Model MAE MAPE (%) RMSE

HA 2.78 6.28 5.38
VAR 2.57 5.31 4.58

CNN-LSTM 2.51 4.35 3.83
STGCN 1.58 3.19 3.10
MSTGCN 2.11 3.82 4.03
GeoMAN 1.87 3.24 3.24
ASTGCN 1.73 3.15 3.06

NGAGCN(ours) 1.47 2.95 2.97
GAGCN(ours) 1.44 2.90 2.86

of the prediction and also increases the generality of the
model. Fig. 9 shows the change of the prediction performance
of each method with the increase of the training epoch. In
general, as the training cycle increases, the prediction error
also gradually decreases and eventually stabilizes.

In this paragraph, we further compare and analyze three
models: GAGCN, NGAGCN, STGCN. The main difference
between the three models is the way in which the asso-
ciations/weights among road network nodes is extracted.
Among them, STGCN only uses the structural information of
the road network (the distance between the detection points),
NGAGCN combines the graph attention mechanism and the
road network structure information, and GAGCN only uses
the graph attention mechanism to extract and hide in the
traffic feature data not contain any road network structure

TABLE 4. Forecasting error given on PeMSD4-100

Model MAE MAPE (%) RMSE

HA 2.84 6.11 5.45
VAR 2.74 4.42 4.73

CNN-LSTM 2.66 4.39 4.52
STGCN 1.53 3.00 3.01
MSTGCN 2.31 4.27 3.54
GeoMAN 2.34 4.28 3.76
ASTGCN 1.69 3.89 3.42

NGAGCN(ours) 1.48 2.88 2.95
GAGCN(ours) 1.46 2.86 2.86
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FIGURE 9. Performance changes of different methods as the training epochs
increases.

information. It can be seen from Table 1 to 4 that the pre-
diction accuracy of STGCN which only using road network
structure information is the worst, and there is no generality
match with other road networks. NGAGCN, which combines
graph attention mechanism and road network structure in-
formation, reduces the generality of the model, but achieves
better prediction results than STGCN. This proves that it is
effective to inject a graph attention mechanism into the model
to extract the spatial features of traffic flow. Finally, removing
the GAGCN of the road network structure information not
only improves the versatility of the model but also further
reduces the prediction error and improves the accuracy of the
model.

2) Spatial weight matrix
Based on the change of traffic conditions caused by time
changes, our model can pay attention to and adjust to the
association/weights among nodes in the road network accord-
ing to the changing traffic conditions at the nodes. The right
of Fig. 10 shows a part of the spatial association/weights
matrix among nodes obtained by our graph attention net-
works. The ith row represents the association between each
detector and the ith detector. Taking 0th and 1th detectors
as an example, we can find from the right of Fig. 10 that
the intensity of the influence of 1th on 0th is greater than
0th on 1th detector. This result is consistent with the real
situation, because the traffic condition of detector 1 in the
traffic network is affected by detectors 0, 2, 3, and 4, while
detector 0 is only affected by detectors 1 and 5, as shown on
the left of Fig. 10. Therefore, our model not only obtains the
best prediction performance and the highest generality, but
also shows an interpretability advantage.

3) Benefits of GATs building Laplacian matrix
Obtaining the weighted adjacency matrix is the key to con-
structing the graph Laplacian matrix. The existing model is
mainly based on the positional distance among the detectors
in the road network, and then uses its own prior-knowledge
explicitly to assign a weight relationship to each detector
node, which may cause a lot of error, and lower the pre-
diction accuracy. We pay attention to the traffic data of each
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FIGURE 10. The attention matrix obtained by graph attention network.

detector, and let the graph attention networks to find out the
hidden relationship among each detector, that is, implicitly
specify the weight relationship among nodes, and construct
a real weighted adjacency matrix. Our method (GAGCN)
reduces the error caused by human experience and does
not require the spatial position information of the detector.
The results in Tables 1 – 4 indicate that the error of our
model is the smallest under the same conditions. This shows
that our model captures the influence relationship among
detectors more accurately than STGCN, in other words,
it better captures the spatial features of the road network.
Although ASTGCN dynamically adjusted the association
among nodes, the attention mechanism they adopted was not
aimed at the topological graph, so the prediction results were
not satisfying. The results of all tables reflect that the other
benefits of our model is that it has high generality.

V. CONCLUSION
In this paper, we propose a novel traffic flow prediction model
called GAGCN. GAGCN employs graph attention networks
to dynamically obtain weighted adjacency matrix of road
network graph. Its “spatial-temporal convolution” uses graph
convolutional network to extract the spatial features of the
road network, and employs gated temporal convolution to
excavate temporal features. The information of rode net-
work structure and human intervention are not required in
GAGCN, and it can flexibly face various complex road
networks. A lot of experiments were performed on two actual
datasets, and the results show that our model has better
accuracy and generality than the traditional method of using
the distance among nodes and human experience.

In real life, there are many factors that can affect the traffic
conditions of the road network. These include natural and
unnatural factors, such as weather, social events, air quality,
and many other factors. In the future, we will consider some
external influence factors to further improve the prediction
accuracy.
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