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Abstract Service-oriented computing is the paradigm that utilises services as funda-
mental elements for developing applications. Service composition, where data con-
sistency becomes especially important, is still a key challenge for service-oriented
computing.

We maintain that there is one aspect of Web service communication on the data
conformance side that has so far escaped the researchers attention. Aggregation of
networked services gives rise to long pipelines, or quasi-pipeline structures, where
there is a profitable form of inheritance called flow inheritance. In its presence, in-
terface reconciliation ceases to be a local procedure, and hence it requires distributed
constraint satisfaction of a special kind.

We propose a constraint language for this, and present a solver which imple-
ments it. In addition, our approach provides a binding between the language and C++,
whereby the assignment to the variables found by the solver is automatically trans-
lated into a transformation of C++ code. This makes the C++ Web service context
compliant without any further communication. Besides, it uniquely permits a very
high degree of flexibility of a C++ coded Web service without making public any part
of its source code.
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1 Introduction

Service-oriented computing is an effective technology that facilitates development of
large-scale distributed systems. On the one hand, it enables enterprises to expose their
internal business processes as services available to clients on the Internet, and on the
other hand, the clients can combine services and reuse them for developing their own
applications or constructing more complex services. Service composition reduces the
cost and risks of new software development, because the software elements that are
represented as Web services can be used repeatedly [42], but it is still a key challenge
for service-oriented computing.

Web services are typically developed in a decentralised manner: an organisation
which develops a single service is unaware of other services and the context where
their service will be used. As a result, services ultimately become rather generic: they
may contain numerous algorithms that are compatible with various contexts. When
several Web services are harnessed behind a single interface in a service network,
and when the services belong to different administrative domains, the problem of
data consistency becomes especially important. Even more, the contributing services
may not be mutually trustful while being able to self-configure and meet the demands
of the eventual user.

We are interested in the situation where a Web service has only partial information
about the message it receives, namely the part containing its own input data. The
service communicating with its consumers has no knowledge of their requirements
because it itself has no knowledge of the opaque part of its input message. All it can
do in interactions with its consumers is to communicate its own input and output
constraints. We focus on the static guarantee of communication formats when the
message-format constraints are generally non-local.

The network of Web services can be large and generally cyclic, and, therefore,
a nontrivial constraint satisfaction problem has to be solved. It should be noted that
service constraints can have a very complex nature. Generally speaking, a Web ser-
vice has a state, and it is, therefore, a transition system. In different states it may be
able to accept messages of different kinds, and the output message types may gener-
ally depend on the state and the input message type as well. The combination of these
factors makes it impossible to satisfy constraints by a single forward or backward cal-
culation from network inputs to network outputs or vice versa. Instead, a nontrivial
constraint satisfaction technique is necessary.

We do not concern ourselves with the communication protocol. From our point
of view what is important is whether a message of a given type can be received or
sent in any state. Our solution is exact for stateless services where state constraints
do not arise at all, and is a conservative approximation for stateful services.

Our contribution is a novel constraint satisfaction technique introduced in the
form of a constraint language called Message Definition Language (MDL). In this
language unknown format information is present in the form of term variables for
which the satisfying assignment is found by our constraint solver. Web services par-
ticipating in the service network simply send their MDL declarations to the con-
straint solver without exposing their internal code. The solver sends back a satisfy-
ing assignment that then informs the services about what specific formats to use in
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the messages, so that the piggybacked information is preserved and flow-inheritance
paths are not disrupted. This has an important security implication: services can be
co-configured in context without exposing their source code.

The reminder of the paper is organised as follows. In Section 2 we discuss differ-
ent methods to solve the service configuration problem and potential applicability of
the current techniques utilising satisfiability modulo theories. Section 3 explains the
motivation for this research by providing an example of simplified service choreog-
raphy. In Section 4 we present a term algebra called Message Definition Language
(MDL), and the related Constraint Satisfaction Problem for MDL (CSP-MDL) is
found in Section 5. Section 6 focuses at first instance on the algorithm for solving a
CSP-MDL without Boolean variables and consecutively for the whole language. In
Section 7 we propose a formal description of a service network topology in the form
of a language of combinators. We illustrate our approach with two use case scenari-
ons in Section 8. Section 9 discusses the configuration protocol and implementation,
and Section 10 contains concluding remarks.

This work is elaboration of the results presented in [48] extended in particular,
by providing a definition of service network topology, a proof of correctness of our
approach, details of the implementation and an image classification use case.

2 Related Work and Discussion

In this section we discuss, on the one hand, different approaches for solving the prob-
lem of service composion and their limitations, and, on the other hand, potential
applicability of the satisfiability module theories.

Basic technologies such as XML, SOAP, WSDL provide means to describe, and
invoke services as one entity in its own right. Two main approaches here are ser-
vice orchestration and service choreography. Service orchestration represents a single
business process that coordinates the interaction among different services, and where
the orchestrator is responsible for invoking and combining the services [20]. Service
choreography is a global description of the participating services, which is defined
by exchange of messages, rules of interaction and agreements between two or more
endpoints [37,47].

Laneve and Padovani formalised a subcontract preorder relation in [31] and de-
veloped a subcontracting formalism which is based on two observations: 1) it is safe
to replace a service that exposes a contract with a “more deterministic” one; 2) it is
safe to replace a service that exposes a contract with another one that offers greater
capabilities. This research helped to develop language-independent mechanism for
assisting service developers to check service behaviour compatibility [2].

Yet another attempt to solve the behavioural consistency problem for Web ser-
vices is based on session types [25]. Thus, Castagna, Gesbert and Padovani provide
a foundation for behaviour subtyping in Web services [14] which facilitates software
reuse. Moreover, Carbone, Honda and Yoshid in [11] and Honda, Yoshida and Car-
bone in [25] present work on multiparty session types. With this methodology, one
can check whether the code is functionally correct and does not lead to communica-
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tion errors. Although multiparty session types is a non-local mechanism for service
composition, it does not support flow inheritance.

The above approaches have a serious limitation though: a behaviour protocol
description for a service cannot be derived automatically from the service code. A
service developer must formalise the behaviour and explicitly provide a protocol de-
scription in addition to the code. In this regard, two issues arise that compromise
correctness of the behaviour: 1) a protocol description must correspond precisely to
the provided code; 2) the protocol may require modification if the service implemen-
tation has changed. Both issues lead to a potential mismatch between a protocol and
actual behaviour.

Conversely, the problem of service compatibility can be addressed from the per-
spective of the interfaces. A service interface provides the specification of a data
format and the service functionality. The interfaces are less generic than behaviour
protocols, and, therefore, matching the service interface to the service implementa-
tion is easier than matching protocols to the code.

In order to overcome the limitations of the above methods, we propose a con-
straint language defined in Section 4. To solve the related constraint satisfaction prob-
lem, we considered applicability of the solvers supporting the following (satisfiability
module) theories.

Propositional logic. Various tools used for solving configuration problems rely on
propositional logic. Clearly, due to presence of Boolean variables in our language,
propositional logic presents a promising formalism. However, our constraint lan-
guage also includes term variables with an infinite domain, and it limits the usage
of propositional logic as it would require developing costly transformations.

Equality logic with uninterpreted functions. Uninterpreted functions and constants can
be used to represent atomic terms, such as symbols or integers, and tuples. How-
ever, uninterpreted functions fail to encode terms that support flow inheritance
based on a set-inclusion (records and choices). Furthermore, equality logic is not
suitable for specifying the seniority relation on terms.

Bit vectors. Bit vectors cannot encode all the properties of records and choices. Thus,
hierarchical structuring of bit vectors is not supported, and therefore, support for
records and choices that may contain each other as subterms is impossible.

To sum up, theories commonly supported by the satisfiability module solvers fail
to encode the terms of our language. Moreover, extending SMT-LIB [4]1 would re-
quire significant efforts dictated by the non-trivial definition of well-formedness and,
in particular, by the definition the seniority relation for records, choices and switches.
On the other hand, approaches taking advantage of the structure of a problem can
potentially benefit from it and, as a result, be more efficient.

3 Motivation Example: A Service-based Application

Service functionality is exposed in the interface by specifying the operations it can
perform, supported data formats, etc. The interacting services are required to have

1 A language used for formal specification of constraints in SMT solvers (such as Z3, for instance [17]).
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Bicycle Shop

Customer

Components Accessories

bike:

{ price: int,

frame: int }

bike:

{ price: int,

frame: int }

comp:

{ price: int,

frame: int }

comp:

{ price: int,

frame: int }

acc:

{ price: int,

light: int }

(a) Interfaces specified in one of the existing IDLs

Bicycle Shop

Customer

Components Accessories

bike(x):

{ price: int | $p}
acc(y):

{ price: int | $q}

bike:

{ price: int,

frame: int }

comp:

{ price: int,

frame: int }

comp(x):

{ price: int | $p}
acc(y):

{ price: int | $q}

(b) Flexible interfaces specified in the IDL augmented with two sorts of variables

Fig. 1: A service-based application that illustrates advantages of introducing variables
to the existing IDLs

compatible interfaces in order to prevent protocol errors. The existing composition
technologies only provide mechanisms for a pairwise service connection without tak-
ing the rest of the topology into account. Neither can services automatically adapt to
changes in other services.

Those issues that arise in Web service composition are best illustrated with an
example. Thus, the service-based network in Fig. 1 illustrates a purchasing system
scenario in which an online bicycle shop sells bicycles and accessories. The suppliers
provide the shop with available configurations. After computing the final price, the
shop sends a quotation to the customer. That is, Fig. 1a depicts a simplified service
choreography with interfaces that can be specified in WSDL or any other of the ex-
isting Interface Description Languages (IDLs), such as Google Protocol Buffers [21]
or Apache Thrift [43,3].
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The interfaces in a pair of communicating services are identical: a message that
the consumer expects should have precisely the same format as the one declared by
the producer [1]. Assume that the programmer of the service Components decides
to add more information to the output about a bicycle. It forces programmers for the
Bicycle Shop and the Customer services to change the interfaces too, even though
the Customer service does not directly interact with the Components service.

In our approach reusability of services is improved by introducing term variables.
Such variables provide support for parametric polymorphism. If a term variable is
used as part of the interface, then the service declares that any format is acceptable in
place of it. A variable can also be present in a record as a “tail”. This is a form of row
polymorphism that implements flow inheritance essential for pipelined data process-
ing. Thus, the variable $p in the example is present in the input and output interfaces
of the Bicycle Shop service. When Bicycle Shop does not require this element, it still
can be forwarded directly to the Customer service using flow inheritance.

Web services are typically tightly coupled, which contradicts to the concept of
service-oriented architecture. This behaviour is caused by an impedance mismatch
problem between objects and tree structures in XML and JSON [30]. Due to differ-
ences in the data models and the type systems between the object-oriented paradigm
and structural one, it is difficult to preserve object properties after serialisation and
deserialisation. Our example shows that nevertheless subtyping would be useful for
Web service interoperability [12,32,35]. The existing Web service models, such as
SOAP and REST, fail to preserve the subtyping property while respecting the loose
coupling principle [1].

Another problem may arise in the verification of communication safety. Assume
that the Accessories service is unavailable. At first glance it may seem to be the case
that both networks in Fig. 1 are inconsistent, because the Bicycle Shop service cannot
provide accessories to the customer if the latter wishes to buy them. However, in Fig.
1b the interfaces keep track of operation dependencies using the Boolean variables x
and y. Since the interface for the service Customer declares that the client buys only
bicycles and not accessories, the variable x will be set to true, which automatically
requires the presence of the operation comp in the input interface of the Bicycle Shop
service. The variable y is automatically required to be set to false. The analysis of the
network in Fig. 1b can infer which operations are not used in the context, while such
analysis cannot be applied to the network in Fig. 1a.

Interface variables provide facilities similar to C++ templates. Services can spec-
ify a generic behaviour that is compatible with multiple contexts and input/output
data formats. Given the context, the compiler configures the interfaces based on the
requirements and capabilities of other services.

4 Message Definition Language

The common way to discuss the properties of constraint types is the mathematical
theory of relations and their associated algebras [39]. A term algebra called Message
Definition Language (MDL) is defined below as well as seniority relation on well-
formed terms.



Non-Local Configuration of Component Interfaces by Constraint Satisfaction 7

4.1 Overview

The purpose of the MDL is to describe flexible service interfaces. WSDL is an XML-
based de facto standard for specifying the interfaces. On the other hand, in order to be
able to keep the MDL interfaces short and concise, we decided not to use the XML for
specification. Instead, we use an algebraic notation which is short and conventional.
Although we use a syntax for MDL terms that is different from the appearance of
standard WSDL-based interfaces, it can easily be rewritten as a WSDL extension.

Furthermore, the MDL is part of the type language for a language of combina-
tors introduced in Section 7. We define a service network as a set of services that
are connected by communication channels. The interconnection is specified in the
language of combinators (a combinator declares a serial, parallel, or a wrap-around
connection) with a type associated with each combinator. The type consists of a set
of constraints on the MDL terms associated with the given combinator. The intention
of the term is to represent

– a standard atomic type such as int, string, etc.; or
– an inextensible data collection such as a tuple; or
– an extensible data record, where additional named fields can be introduced with-

out breaking the match between the producer and the consumer;
– a data-record variant, where generally more variants can be accepted by the con-

sumer than the producer is aware of, and where such additional variants can be
inherited from the output back to the input of the producer.

Term variables are used for supporting polymorphism and flow inheritance [22,
23]. Term variables facilitate the reusability of services by enabling generic inter-
faces. Furthermore, we introduce Boolean variables as part of a term. They are used
to specify dependencies between elements of the interfaces. Finally, we define a se-
niority relation on terms that corresponds to the relation between the data producer
and the data consumer.

4.2 Terms

Each term is either atomic or a collection in its own right. Atomic terms are symbols
that are identifiers used to represent standard types such as int, string, etc. To
account for subtyping2 we include three categories of collections:

– tuples that have to be of the same size and thus admit only depth structural sub-
typing;

– records that are subtyped covariantly (a larger record is a subtype); and
– choices that are subtyped contravariantly using set inclusion (a smaller choice is

a subtype).

2 We use “subtyping” to refer to a relation on algebraic terms, where covariance is a feature which
allows to substitute a subtype with supertype, and contravariance is a feature which allows to substitute a
supertype with subtype. More details on covariance and contravariance can be found, for example, in [13].
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Informally, a tuple is an ordered collection of terms and a record is an extensible,
unordered collection of guarded labelled terms, where labels are arbitrary symbols
that are unique within a single record. A choice is a collection of alternative terms. We
use choices to represent polymorphic messages and service interfaces at the top level.
The syntax of a choice is the same as that of a record except for the delimiters, and
the difference is in width subtyping [7]. Briefly, the subtyping on records is defined
so that a record with more elements is a subtype of a record with less elements.
Similarly, a choice with less elements is a subtype of a choice with more elements.

We introduce Boolean variables (called b-variables later) as part of the term inter-
faces. They provide functionality similar to intersection types [38] and increase the
expressiveness of function signatures. More specifically, this kind of variables serve
the following purposes:

– b-variables allow to define configurable interface, and
– b-variables are used to specify dependencies between input and output data for-

mats.

A Boolean expression g is a guard. It is defined by the following grammar, where
selection of the Boolean operators is justified by the practical needs:

〈guard〉 ::= true | false | (〈guard〉 ∧ 〈guard〉) | ¬〈guard〉 | (〈guard〉 ∨ 〈guard〉) |
〈guard〉 → 〈guard〉 | b-variable

For coercion of interfaces we distinguish between two term categories: down-
coerced and up-coerced terms. The former ones include symbols, tuples and records,
and the letter ones only choices. Informally, for two down-coerced terms, a term
associated with a structure with “more data” is a subtype of the one associated with a
structure that contains less; and vice versa for up-coerced terms.

In order to support parametric polymorphism and inheritance in interfaces, we in-
troduce term variables, called later t-variables that are similar to type variables. Simi-
lar to terms, we distinguish between two variable categories: down-coerced variables
that can be instantiated with symbols, tuples and records, and up-coerced variables
that can only be instantiated with choices (up-coerced terms). We use v↓ and v↑ for
down-coerced and up-coerced variables respectively, and v if the coercion sort is not
important.

MDL terms are built recursively using the constructors: tuple, record, choice and
switch, according to the following grammar:

〈term〉 ::= 〈symbol〉 | 〈tuple〉 | 〈record〉 | 〈choice〉 | t-variable

〈tuple〉 ::= (〈term〉 [〈term〉]∗)
〈record〉 ::= {[〈element〉[,〈element〉]∗[|down-coerced t-variable]]}
〈choice〉 ::= (:[〈element〉[,〈element〉]∗[|up-coerced t-variable]]:)

〈element〉 ::= 〈label〉(〈guard〉):〈term〉
〈label〉 ::= 〈symbol〉

The empty record { } has the meaning of unit type and represents a message with
no data. Similarly, the empty choice can be used for specifying service interfaces that
cannot send or receive any messages. Note that in the following we use
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1. nil to denote the empty record { }; and
2. none to denote the empty choice (: :).

Now nil is the maximum element for down-coerced terms, and none is the mini-
mal element for up-coerced terms.

Records and choices are defined in the so-called tail form, where the tail is de-
noted by a t-variable that represents a term of the same kind as the construct in which
it occurs. For example, in the term

{l1(true): t1, . . . , ld(true): td |v↓}

the variable v↓ represents the tail of the record, that is its members with the labels li
such that li 6= l1, . . . , li 6= ld .

A switch is an auxiliary construct used for building conditional terms and speci-
fied as a set of unlabelled guarded alternatives. It allows to define an arbitrary inter-
face as a function of Boolean values. Formally, it is defined as

〈switch〉 ::= <〈guard〉:〈term〉[, 〈guard〉:〈term〉]∗>

If the guard of an element is equal to false, then the element can be omitted. For
example,

{a(x∧ y): string,b(false): int,c(x): int}= {a(x∧ y): string,c(x): int}.

If the guard of an element is equal to true, then the guard can be syntactically
omitted. For example,

{a(x∧ y): string,b(true): int,c(x): int}= {a(x∧ y): string,b: int,c(x): int}.

4.3 Seniority Relation

The central notion in the study of constraints and constraint satisfaction problems is
the notion of a relation [39]. In this section for the purpose of structural subtyping we
introduce a seniority relation on terms denoted by Rv (or for simplicity just v). In
practice it means the following: If a term t describes the input interface of a service,
then the service can process any message described by a term t ′, such that t ′ v t.

Given a term t and a guard g, let Vb(t) and Vb(g) denote the sets of the b-variables
in t and g respectively, and V↑(t) and V↓(t) denote the sets of the up-coerced and
down-coerced t-variables in t.

Definition 1 (Semi-ground and ground terms) A term t is called semi-ground if
V↑(t)∪V↓(t) = /0. A term t is called ground if it is semi-ground and Vb(t) = /0.

For example, the record {a: int,b: string} is a ground term, and the record
{a: int,b(x): string} is a semi-ground term. Finally, the record {a: int,b(x): v} is
neither ground nor semi-ground term.

In the following we use T ↓ to denote the set of all down-coerced ground terms,
and T ↑ to denote the set of all up-coerced ground terms. Now T = T ↓∪T ↑ is the
set of all ground terms.
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Similarly, T ↓
m , m≥ 0, denotes the set of all vectors of down-coerced ground terms

of length m and T ↑
n , n≥ 0, denotes the set of all vectors of up-coerced ground terms

of length n.

Definition 2 (Well-formed terms) A term t is well-formed if it is ground and exactly
one of the following holds:

1. t is a symbol;
2. t is a tuple {t1 . . . td}, d > 0, where ti, 1≤ i≤ d, is well-formed;
3. t is a record {l1(g1): t1, . . . , ld(gd): td} or a choice {l1(g1): t1, . . . , ld(gd): td},

d ≥ 0, where for 1≤ i 6= j≤ d, gi∧g j =⇒ li 6= l j; and ti is well-formed provided
that gi is true;

4. t is a switch 〈(g1): t1, . . . ,(gd): td〉, d > 0, where there is an i, 1≤ i≤ d, such that
gi = true and ti is well-formed and g j = false for any j 6= i.

We define the canonical form of a well-formed collection as a representation that
does not include false guards, and we omit the true guards anyway. The canonical
form of a switch is its (only) term with a true guard, hence any term in canonical
form is switch-free.

Definition 3 (Seniority relation) The seniority relation RS
v (or Rv for simplicity) on

a set of well-formed terms in canonical form S is defined recursively as follows:

1. (none, t) ∈ RS
v if t is a choice;

2. (t,nil) ∈ RS
v if t is a symbol, a tuple or a record;

3. (t, t) ∈ RS
v;

4. (t1, t2) ∈ RS
v, if for some d,e > 0 one of the following holds:

(a) t1 = {t1
1 , . . . , t

d
1 }, t2 = {t1

2 , . . . , t
d
2 } and (t i

1, t
i
2) ∈ RS

v for each 1≤ i≤ d;
(b) t1 = {l11: t1

1 , . . . , l
d
1: td

1 } and t2 = {l12: t1
2 , . . . , l

e
2: te

2}, where d ≥ e and for each
j ≤ e there is i≤ d such that li

1 = l j
2 and (t i

1, t
j
2) ∈ RS

v;
(c) t1 = {l11: t1

1 , . . . , l
d
1: td

1 } and t2 = {l12: t1
2 , . . . , l

e
2: te

2}, where d ≤ e and for each
i≤ d there is j ≤ e such that li

1 = l j
2 and (t i

1, t
j
2) ∈ RS

v.

In the following we will typically use t v t ′ for simplicity to denote that (t, t ′) ∈
Rv. Moreover, if t1 and t2 are vectors of terms (t1

1 , . . . , t
1
d ) and (t2

1 , . . . , t
2
d ) of size d,

then t1 v t2 denotes that t1
i v t2

i for any 1≤ i≤ d.

Proposition 1 Let S be some set of well-formed terms in canonical form. Then the
seniority relation RS

v is a partial order on S.

Proposition 2 (T ↓
m ,v) and (T ↑

n ,v) is a pair of meet and join semilattices, that is

∀t1, t2 ∈T ↓
m : t1 v t2 if and onl if t1u t2 = t1,

∀t1, t2 ∈T ↑
n : t1 v t2 if and only if t1t t2 = t2.

Although the seniority relation is straightforwardly defined for ground terms,
terms that are present in the interfaces of services can contain t-variables and b-
variables. Finding ground term values for the t-variables and Boolean values for the
b-variables satisfying seniority relation represents the constraint satisfaction problem
for the MDL language, which is formally introduced in the next section.
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nil

tuple record

. . .

symbol choice

. . .

none
subtype

down-coerced terms

up-coerced terms

Fig. 2: The semilattices (T ↓,v) and (T ↑,v) represent the seniority relation for
terms of different categories

5 Constraint Satisfaction Problem for Message Definition Language

The notion of constraint satisfaction problem (or CSP) was introduced by Montanari
in 1974 [36] and has been extensively studied ever since. While finite-domain CSPs
are a major focus of graph theory, artificial intelligence, and finite model theory [29,
44], a later generalisation to infinite domains enhanced significantly the range of
computational problems that can be modelled as a CSP [5].

A CSP represents a problem as a homogeneous collection of constraints formally
defined by

1. variables x1, . . . ,xn with n≥ 1, where each variable xi has a nonempty domain Di
of possible values; and

2. constraints C1, . . . ,Cm with m ≥ 1, where each constraint C j involves a subset
of the variables and constrains the allowable values that can be simultaneously
assigned to the variables.

Then the CSP seeks to find an assignment of values v1, . . . ,vn to the variables
x1, . . . ,xn such that it does not violate any constraint.

In general, numerous problems can be expressed as a CSP with the help of a
constraint language, including the standard propositional satisfiability problem [16].
The MDL constraint language is defined by a set of terms, where the unknown format
information is captured by term variables and the seniority relation on the set of
well-formed terms. The domains of the variables are the sets of well-formed terms
of the relevant category. The set of constraints is given as a set of pairs of terms
{(t1

1 , t
1
2 ), . . .(t

m
1 , t

m
2 )}. The problem we consider is to find an assignment of variables

(provided that one exists) satisfying the seniority relation for each pair of terms.
In the sequel we will use the notation t v t ′ which will mean one of the follow-

ing: (a) a seniority relation on well-formed terms t and t ′, namely (t, t ′) ∈ Rv; (b)
a constraint on two terms t and t ′. Also, by substitution we will mean a syntactic
transformation on terms and guards, where a vector of b-variables is replaced by a
vector of Boolean values or a vector of t-variables is replaced by a vector of ground
or semi-ground terms. That is, for any a, which is either a term or a guard, we use
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a[f/v] to denote the result of the substitution, where fi is replaced by vi for some
f = ( f1, . . . , fk) and v = (v1, . . . ,vk). Furthermore, we use a[f1/v1, . . . , fm/vm] as a
shortcut for a[f1/v1] . . . [fm/vm].

Now we are in a position to formally define a CSP for the MDL language abbre-
viated as CSP-MDL.

Definition 4 (CSP-MDL) Let C be a set of constraints of the form t1 v t2, where t1
and t2 are terms, defined on the vectors of b-variables f = ( f1, . . . , fl), down-coerced
variables v↓ = (v↓1, . . . ,v

↓
m) and up-coerced variables v↑ = (v↑1, . . . ,v

↑
n).

Then a CSP for MDL, abbreviated as CSP-MDL, asks to find a vector of Boolean
values b = (b1, . . . ,bl), and vectors of well-formed terms t↓ = (t↓1 , . . . , t

↓
m) and t↑ =

(t↑1 , . . . , t
↑
n ), if ones exist, such that for a constraint t1 v t2 ∈ C , the following holds

t1[f/b,v↓/t↓,v↑/t↑]v t2[f/b,v↓/t↓,v↑/t↑].

The tuple (b, t↓, t↑) is called a solution of CSP-MDL for C . If C has no solution,
then we say that it as an unsatisfiable set of constraints.

A solution to the CSP-MDL is not necessarily unique, and in the context of Web
services, multiple solutions correspond to multiple interface configurations. Deciding
whether or not a given CSP instance has a solution is in general NP-complete [33].
We note that due to the presence of arbitrary Boolean constraints on b-variables, the
CSP-MDL is NP-complete.

A CSP on a finite domain can typically be solved by constraint satisfaction meth-
ods using a form of search, where knowledge about easy problems could possibly
serve as a heuristic in the solution of difficult problems [18]. The tools for analysis
of a CSP on an infinite domain are based on approaches rooted in various fields of
mathematics, including universal algebra, logic, graph theory, and Ramsey theory.

In the next section we discuss our approach to solving the CSP-MDL, including
its complexity.

6 Solving CSP-MDL

In this section we present at first instance an algorithm for solving the CSP-MDL
without Boolean variables and consecutively for the whole language.

The problem we solve is similar to type inference problem; however, it has large
combinatorial complexity, which arises from the presence of Boolean variables in
general form. Another problem is potential cyclic dependencies in the network, which
prevent the application of a simple forward algorithm.

6.1 General Idea

As a first step, we consider the CSP-MDL when all b-variables are instantiated. This
allows us to focus on the resolution of t-variables.
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Our algorithm for solving CSP-MDL is a modification of the fixed-point algo-
rithm by Kildall introduced in [28] to globally analyse the program structure in order
to perform compile time optimization of object code generated for expressions. The
algorithm requires terms to be structured in a lattice or a bounded semilattice. There-
fore, we extend the pair (T ↓

m ,v) and (T ↑
n ,v) of the meet and join semilattices, to

the lattices (T̃ ↓
m ,v) and (T̃ ↑

n ,v) by introducing the top and bottom elements3 ⊥ and
>. That is,

T̃ ↓
m = T ↓

m ∪{⊥} and T̃ ↑
n = T ↑

n ∪{>}.

Similar to the empty clause in Propositional Logic, both elements ⊥ and > rep-
resent absence of a solution and are used later to encode an unsatisfiable set of con-
straints. That is, if the set of constraints is unsatisfiable, the algorithm returns a pair of
the lattices’ elements (⊥,>), which are formally defined as satisfying the following
conditions:

⊥v a↓ for any a↓ ∈ T̃ ↓
m and a↑ v> for any a↑ ∈ T̃ ↑

n .

Our algorithm operates on the extended semilattices and performs the following
steps:

1. Select the initial approximation (the iteration i = 0) as

(a↓0,a
↑
0) = ((nil, . . . ,nil),(none, . . . ,none)),

where (nil, . . . ,nil) is the top element of the join semilattice (T ↓
m ,v), and (none,

. . . , none) is the bottom element of the meet semilattice (T ↑
n ,v)4.

2. Using the iterated function introduced in Section 6.2, compute the next approxi-
mation (a↓i+1,a

↑
i+1) such that

(a) a↓i+1 v a↓i and a↑i v a↑i+1, and
(b) for every constraint t1 v t2 ∈ C ,

t1[v↓/a↓i+1,v
↑/a↑i ]v t2[v↓/a↓i ,v

↑/a↑i+1].

As we show later, these conditions are sufficient to show monotonicity of the
approximations.

3. The solution is found if (a↓i+1,a
↑
i+1) = (a↓i ,a

↑
i ).

Note that the algorithm computes a series of approximations, which either leads
to a solution or to the pair (⊥,>) corresponding to unsatisfiability.

3 Such elements are often used in data-flow algorithms. One of the examples is the algorithm for con-
straint propagation, which is presented in [10].

4 Recall that nil denotes the empty record { }; and none denotes the empty choice (: :) as it was
defined in Section 4.2. That is, nil is the maximum element for down-coerced terms, and none is the
minimal element for up-coerced terms.
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6.2 Iterated Function

In order to formally define computing the next approximation, we introduce the iter-
ated function

IF : C × T̃ ↓
m × T̃ ↑

n → T̃ ↓
m × T̃ ↑

n

which maps a single constraint and the current approximation to the next tighter ap-
proximation. According to Kildall ([28]), the iterated function is homomorphic if for
any constraint t1 v t2, from

IF(t1 v t2,a↓1,a
↑
1) = (a′↓1 ,a

′↑
1 ) and IF(t1 v t2,a↓2,a

↑
2) = (a′↓2 ,a

′↑
2 )

we can conclude that

IF(t1 v t2,a↓1ua↓2,a
↑
1ta↑2) = (a′↓1 ua′↓2 ,a

′↑
1 ta′↑2 ).

In order to show the homomorphism property it is sufficient to demonstrate that
IF is monotonic (Lemma 1) and returns the tightest possible approximation (Lemma
2). The former is important for showing termination of Algorithm 1, and the latter is
important for proving its correctness.

Now wee define the function IF for all the categories of terms, but choices as
they are symmetrical to records, and switches which are reduced to other term cate-
gories. Moreover, we take into account that the following constraints are satisfiable
by Definition 3:

– nonev t, where t is a choice;
– t v nil, where t is a symbol, a tuple or a record; and
– t v t, where t is an arbitrary term.

Furthermore, if both terms t1 and t2 belong to different categories (for example, t1 is
a record, and t2 is a tuple), then any constraint of the form t1 v t2 is unsatisfiable.

Let (a↓,a↑) denote the current approximation, where a↓ = (a1, . . . ,am) and a↑ =
(a1, . . . ,an), and let v↓ = (v1, . . . ,vm), and v↑ = (v1, . . . ,vn) be vectors of the down-
coerced and up-coerced variables respectively. Now we define the iterated function
for the following types of constraints:

1. For constraints on atomic terms and variables we consider the following cases:
(a) If t is a down-coerced term and vl is a down-coerced variable, then

IF(t v vl ,a↓,a↑) = IF(t v vl [v↓/a↓],a↓,a↑).

(b) If t is an up-coerced term and v↑l is an up-coerced variable, then

IF(t v v↑l ,a
↓,a↑) = (a↓,(a1, . . . ,al t t[v↓/a↓,v↑/a↑], . . . ,an)).

(c) If vl is an up-coerced variable and t is an up-coerced term, then

IF(vl v t,a↓,a↑) = IF(vl [v↑/a↑]v t,a↓,a↑).
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(d) If vl is a down-coerced variable and t is a down-coerced term, then vl should
not be higher than the ground term t[v↓/a↓,v↑/a↑] in the meet semilattice:

IF(vl v t,a↓,a↑) = ((a1, . . . ,al u t[v↓/a↓,v↑/a↑], . . . ,am),a↑).

2. For a constraint t1 v t2, where t1 = (t1
1 . . . t

1
k ) and t2 = (t2

1 . . . t
2
k ) are tuples we have

to ensure that the following holds:

IF((t1
1 . . . t

1
k )v (t2

1 . . . t
2
k ),a

↓,a↑) = (
l

1≤i≤k

ai
↓,

⊔
1≤i≤k

ai
↑).

3. For a constraint t1 v t2, where t1 = {l11: t1
1 , . . . , l

1
p: t1

p} and t2 = {l21: t2
1 , . . . , l

2
q: t2

q}
are records, we consider two following cases:
(a) If for all i, 1≤ i≤ q, there exists j such that l1

j = l2
i , then the constraint t1

j v t2
i

has to be satisfied, that is :

IF({l11: t1
1 , . . . , l

1
p: t1

p} v {l21: t2
1 , . . . , l

2
q: t2

q},a↓,a↑) = (
l

1≤i≤q

ai
↓,

⊔
1≤i≤q

ai
↑).

(b) Otherwise, the set of labels in t2 is not a subset of the labels in t1 and, there-
fore, t1 v t2 is unsatisfiable:

IF({l11: t1
1 , . . . , l

1
p: t1

p} v {l21: t2
1 , . . . , l

2
q: t2

q},a↓,a↑) = (⊥,>).

4. The seniority relation for choices is symmetric to the seniority relation for records,
and, therefore, the iterated function for choices is defined similarly to records.

Example 1 A constraint for down-coerced terms, where the right part is a variable, is
reduced by substitution to the constraint with the right part as a ground term:

IF(intv v1,(int),()) = IF(intv int,(int),()) = ((int),()).

Example 2 Assume a constraint for records v1 v {a: int} and the approximation
a↓ = ({a: nil,b: int}) are given, where v↓ = (v1). The new approximation for v1
is computed as the greatest lower bound of the current approximation and the term
{a: int}:

IF(v1 v {a: int},({a: nil,b: int}),()) =
(({a: nil,b: int}u{a: int}),()) =

(({a: int,b: int}),()).

Example 3 Consider the constraint for choices (:a: int:)v v1 and the approximation
a↑= ((:a: nil,b: int:)) for a vector v↑= (v1) are given. The new approximation for v1
is computed as the least upper bound of the current approximation and the grounded
term:

IF((:a: int:)v v1,(),((:a: nil,b: int:))) =
(((:a: nil,b: int:)t (:a: int:)),()) =

(((:a: int,b: int:)),()).
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6.2.1 Fixed-point Algorithm

Algorithm 1 below takes as an input a set of constraints C without b-variables (that
is, for the case when Vb(C ) = /0) and returns a solution, provided that one exists;
otherwise it returns (⊥,>). It uses the function IF to compute a series of approxima-
tions. For simplicity we define the function IFC as a composition of IF functions that
are sequentially applied to all constraints in C . The order in which IF is applied to
the constraints is not important due to the distributivity of the seniority relation. Note
that the sequential composition preserves monotonicity for IFC .

Algorithm 1 CSP-MDL(C ), where Vb(C ) = /0
1: i← 0
2: (a↓0,a

↑
0)← ((nil, . . . ,nil),(none, . . . ,none))

3: repeat
4: i← i+1
5: (a↓i ,a

↑
i )← IFC (a↓i−1,a

↑
i−1)

6: until (a↓i ,a
↑
i ) = (a↓i−1,a

↑
i−1)

7: if (a↓i ,a
↑
i ) = (⊥,>) then

8: return Unsat
9: else

10: return (a↓i ,a
↑
i )

11: end if

We observe that the function IF is monotonic. Lemma 1 below formally states
that substitution of down-coerced variables is a decreasing function (indeed, the ap-
proximations for down-coerced variables can only coerce down in the lattice T̃ ↓

m ).
Similarly, we can prove that substitution of up-coerced variables is an increasing
function.

Lemma 1 (Substitution monotonicity) Let t be a term such that |Vb(t)| = /0, v↓ =
(v1, . . . ,vk) be a vector of down-coerced variables in t, and s1

↓ = (s1
1, . . . ,s

1
k) and

s2
↓ = (s2

1, . . . ,s
2
k) be vectors of down-coerced ground terms such that s1

↓ v s2
↓. Then

t[v↓/s1
↓]v t[v↓/s2

↓].

Proof Substitution monotonicity follows from the structure of the seniority relation.
Any term is covariant with respect to its subterms (see Definition 3). ut

Lemma 2 states that the function IF produces at each step the tightest possible
approximation.

Lemma 2 Assume a constraint t1 v t2 such that IF(t1 v t2,a↓1,a
↑
1) = (a↓2,a

↑
2) for some

(a↓1,a
↑
1) and (a↓2,a

↑
2). If

t1[v↓/a↓2,v
↑/a↑1]v t2[v↓/a↓1,v

↑/a↑2],

then no approximation (a↓3,a
↑
3) exists such that (a↓3,a

↑
3) 6= (a↓2,a

↑
2), a↓2 v a↓3, a↑3 v a↑2

and
t1[v↓/a↓3,v

↑/a↑1]v t2[v↓/a↓1,v
↑/a↑3]. (1)
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(nil, . . . ,nil)

⊥

s↓1 = s↓

s↓2

(a) the lattice (T̃ ↓
m ,v)

>

(none, . . . ,none)

s↑2 s↑1
s↑

(b) the lattice (T̃ ↑
n ,v)

Fig. 3: Lemma 3 states that the chain of approximations (the dashed path) converges
to the greatest fixed point s↓ in (T̃ ↓

m ,v) and the least fixed point s↑ in (T̃ ↑
n ,v).

(nil, . . . ,nil)

⊥

s↓

s̃↓ a↓i−1

Fig. 4: Illustration of the reachability proof in Lemma 3.

Proof By definition, the function IF makes a coercion of the approximation (a↓1,a
↑
1)

only if (a↓1,a
↑
1) is not a solution and the coercion is required for satisfaction of t1 v t2.

As a result, the function produces a coerced (a↓2,a
↑
2). The approximation (a↓3,a

↑
3),

such that (1) holds, would exist only if IF performed excessive coercions, which is
avoided by definition. ut

Lemma 3 Assume a set of constraints C , Vb(C ) = /0. Let for k > 0

(a↓0,a
↑
0), . . . ,(a

↓
k ,a
↑
k)

be a series of approximations such that (a↓i ,a
↑
i ) = IFC (a

↓
i−1,a

↑
i−1) for any 0 < i ≤ k,

and a↓0 = (nil, . . . ,nil) and a↑0 = (none, . . . ,none). Then for any fixed-point (s̃↓, s̃↑)

s̃↓ v a↓k and a↑k v s̃↑.

Proof The proof consists of two parts. First, we prove that a fixed-point (s↓,s↑) exists,
such that for any fixed point (s̃↓, s̃↑), s̃↓ v s↓ and s↑ v s̃↑ (existence). Then we show
that (a↓k ,a

↑
k) = (s↓,s↑) (reachability).
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Existence. By Knaster-Tarski theorem [45], the sets of fixed points of IF in (T̃ ↓
m ,v)

and (T̃ ↑
n ,v) are lattices. Therefore, there exists the fixed-point (s↓,s↑) such that

for any fixed-point (s̃↓, s̃↑), s̃↓ v s↓ and s↑ v s̃↑ (see Fig. 3).
Reachability. Proof by contradiction (see Fig. 4). Assume that IF does not converge

to (s↓,s↑), that is (a↓k ,a
↑
k) = (s̃↓, s̃↑), where (s̃↓, s̃↑) 6= (s↓,s↑), and s̃↓ v s↓ or s↑ v

s̃↑. Assume that s̃↓ v s↓ (the case s↑ v s̃↑ is similar).
Let (a↓i−1,a

↑
i−1) be the approximation that precedes (s̃↓, s̃↑) in the chain of approx-

imations: IF(a↓i−1,a
↑
i−1) = (s̃↓, s̃↑). Then for every constraint t1 v t2 ∈ C

t1[v↓/s̃↓,v↑/ã↑i−1]v t2[v↓/a↓i−1,v
↑/s̃↑].

Since s↓ is a fixed point, then

t1[v↓/s↓,v↑/a↑i−1]v t2[v↓/a↓i−1,v
↑/s↑].

On the other hand, s̃↓ v s↓. Due to the substitution monotonicity (Lemma 1),

t1[v↓/s̃↓,v↑/a↑i−1]v t1[v↓/s↓,v↑/a↑i−1]. (2)

Lemma 2 states that IF produces the “tightest” approximation of s̃↓. On the other
hand, it follows from (2) that s↓ is “tighter” than s̃↓. It leads to a contradiction.

ut

Termination of the algorithm is based on the monotonicity of the iterated function,
and the fact that each term category may expand (that is approximations of the down-
coerced terms “go up” and approximations of the up-coerced terms “go down”) only
a finite number of times.

Theorem 1 (Termination) For any set of constraints C with the empty set of b-
variables (Vb(C ) = /0), Algorithm 1 terminates after a finite number of steps.

Proof The algorithm computes the iterated function until the fixed-point is reached.
It follows from Lemma 1 that IF is a monotonic function. Therefore, the algorithm
terminates after a finite number of steps if both lattices have a finite height. We prove
it by induction on the depth of a term.

We observe that by definition (T̃ ↓
m ,v) and (T̃ ↑

n ,v) have a finite height if the
semilattices (T ↓

m ,v) and (T ↑
n ,v) have a finite height. That is, it is sufficient to show

the later.
We consider the semilattice (T ↓

m ,v) (the proof for (T ↑
n ,v) is similar) for each of

term categories (that is when an element of the semilattice is either a symbol, a tuple
or a record on the top-level). We rely on the property that follows from the seniority
relation (see Definition 3 and Fig. 2): the term category is constant and cannot be
changed unless the term is nil.

Symbol. The semilattice (T ↓
m ,v) for a symbol consists of two elements (nil and the

symbol itself). The symbol does not contain nested terms and, therefore, the semi-
lattice for the symbol has a finite height.
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Tuple. The “width” (the number of elements) of a tuple is constant. Therefore, the
tuple cannot expand (by expansion we mean adding new elements to the tuple).
The height of the semilattice for the tuple is finite providing that the semilattices
for its nested terms is finite.

Record. For any given C the size of a record can only expand by adding elements
with labels that are not yet present in the record. The set of labels in C is finite
and the algorithm does not generate new labels. Therefore, the record can expand
only a finite number of times. The height of the semilattice for the record is finite
providing that the semilattices for its nested terms are finite.

Choice. The case for a choice term is considered similarly to the one for a record.

As a result, the semilattices (T ↓
m ,v) and (T ↑

n ,v) have a finite height. Therefore,
the lattices (T̃ ↓

m ,v) and (T̃ ↑
n ,v) have a finite height too. ut

Theorem 2 (Correctness of Algorithm 1) For any set of constraints C with the
empty set of b-variables (that is, Vb(C ) = /0), CSP-MDL for C is unsatisfiable if
and only if Algorithm 1 returns Unsat.

Proof We give a proof by contradiction.
(⇒) Let C be an unsatisfiable set of constraints and Algorithm 1 returns (s↓,s↑)

such that (s↓,s↑) 6= (⊥,>). Then by Lemma 3, (s↓,s↑) is the fixed point that contains
values satisfying C . This contradicts the initial hypothesis. Therefore, Algorithm 1
returns Unsat if C is unsatisfiable.

(⇐) Let Algorithm 1 return Unsat and C has a solution. In this case the algorithm
computes the chain of approximations. This is the fixed point, and by Lemma 3 no
other fixed point (s↓,s↑) exists such that ⊥ v s↓ or s↑ v >. It means that no fixed
points apart from (⊥,>) exists. This contradicts the initial hypothesis. Therefore, C
is unsatisfiable if Algorithm 1 returns Unsat. ut

Note that our approach computes the tightest possible solution (as defined by the
conditions of Lemma 2), provided that the set of constraints has at least one solution.

Example 4 The set of constraints {x v {a : 1},x v {b : 1}} has multiple solutions.
For example, x1 = {a : 1,b : 1,c : 1} is a solution, and x2 = {a : 1,b : 1,d : 1} is also
a solution. And the tightest solution is xtight = {a : 1,b : 1}.

6.3 CSP-MDL Algorithm

In this section we extend the algorithm to support constraints that contain b-variables.
By instantiating b-variables in all possible ways, in the worst case we obtain 2l sub-
problems of the initial problem, where l is the number of b-variables.

A straightforward approach would be to call Algorithm 1 for each of the 2l sub-
problems independently. In order to improve efficiency, we propose a heuristic imple-
mented on the top of Algorithm 1. We construct a set of Boolean constraints, which
specifies Boolean instantiations potentially leading to finding a solution by ensuring
well-formedness of terms, and satisfaction of the seniority relation.
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1. WFC(t) = /0 if t is a symbol;
2. WFC(t) =

⋃
1≤i≤n WFC(ti) if t is a tuple (t1 . . . tn);

3. WFC(t) = {¬(gi ∧g j) | 1≤ i 6= j ≤ n and li = l j}∪
⋃

1≤i≤n{gi→ g | g ∈WFC(ti)}
if t is a record {l1(g1): t1, . . . , ln(gn): tn} or a choice (:l1(g1): t1, . . . , ln(gn): tn:);

4. WFC(t) = {¬(gi ∧g j) | 1≤ i 6= j ≤ n}∪{
∨

1≤i≤n gi}∪
⋃

1≤i≤n{gi→ g | g ∈WFC(ti)}
if t is a switch 〈(g1): t1, . . . ,(gn): tn〉.

Fig. 5: The set of Boolean constraints that ensures well-formedness of a term t

We use B to denote this set. If the set is a contradiction, then all instantiations are
unsatisfiable. The algorithm returns Unsat accordingly. By SAT(B) we mean the set
of Boolean vectors satisfying B.

6.3.1 Well-formedness Constraints

The first set of Boolean constraints is called well-formedness constraints. They follow
directly from the definition of a well-formed term.

A symbol is a well-formed term and, therefore, no Boolean constraint is required.
A tuple is a well-formed term if its nested terms are well-formed terms, too. There-
fore, well-formedness constraints for a tuple is a union of well-formedness constraints
for a tuple’s nested terms.

If a term t is a record or a choice, then all labels of the collection must be distinct.
Therefore, for any elements i and j with the same label the constraint ¬(gi ∧ g j),
where gi and g j are guards of element i and j, respectively, should be produced. In
addition, well-formedness constraints for nested terms have to be taken into account,
which is guaranteed by a constraint gi→ g, where gi is a guard for the element i and
g ∈WFC(ti) is a well-formedness constraint for a nested term ti.

If t is a switch, the well-formedness constraints ensure that only one element of
a switch has a guard instantiated to true. Furthermore, gi → g, where gi is a guard
for the element i, ensure the constraints g ∈ WFC(ti), which are well-formedness
constraints for a nested term ti.

6.3.2 Seniority Constraints

The other set of Boolean constraints is called seniority constraints. They naturally
follow from the definition of the seniority relation.

Seniority constraints are denoted as SC(t1 v t2) for a constraint t1 v t2. They
specify a set of constraints that ensures the seniority relation t1 v t2, where t1 and t2
are well-formed terms. In other words, SAT(WFC(t1)∪WFC(t2)∪SC(t1 v t2)) 6= /0
guarantees that the seniority relation t1 v t2 holds.

If t1 and t2 are equal symbols, then the seniority relation holds and no further
Boolean constraints are required. If t1 and t2 are tuples of the same size, then the
Boolean seniority constraints have to include Boolean seniority constraints for nested
terms.
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1. SC(t1 v t2) = /0, if t1 and t2 are equal symbols.
2. SC(t1 v t2) =

⋃
1≤i≤d SC(t

1
i v t2

i ), if t1 is a tuple (t1
1 . . . t

1
d ) and t2 is a tuple (t2

1 . . . t
2
d );

3. SC(t1 v t2) =
⋃

1≤ j≤d SC j(t2
j ), if t1 is a record {l11(g1

1): t1
1 , . . . , l

1
d(g

1
d): t1

d}, t2 is a record
{l12(g2

1): t2
1 , . . . , l

2
e(g

2
e): t2

e } and SC j(t2
j ) is one of the following:

(a) SC j(t2
j ) = {(g1

i ∧g2
j)→ g | g ∈ SC(t1

i v t2
j )}, if ∃i : 1≤ i≤ d and l1i = l2j ;

(b) SC j(t2
j ) = {¬g2

j}, otherwise;
4. SC(t1 v t2) =

⋃
1≤i≤e SCi(t1

i ), if t1 is a choice (:l11(g
1
1): t1

1 , . . . , l
1
d(g

1
d): t1

d :), t2 is a choice
(:l21(g

2
1): t2

1 , . . . , l
2
e(g

2
e): t2

e :) and SCi(t1
i ) is one of the following:

(a) SCi(t1
i ) = {(g1

i ∧g2
j)→ g | g ∈ SC(t1

i v t2
j )}, if ∃ j : 1≤ i≤ e and l1i = l2j ;

(b) SCi(t1
i ) = {¬g1

i }, otherwise;
5. SC(t1 v t2) = {g1

i → g | 1≤ i≤ d and g ∈ SC(t1
i v t2

i )}, if t1 is a switch 〈(g1
1): t1

1 , . . .(g
1
d): t1

d 〉 and
t2 is an arbitrary term.

6. SC(t1 v t2) = {g2
i → g | 1≤ i≤ d and g ∈ SC(t1 v t2

i )}, if t1 is an arbitrary term and t2 is a switch
〈(g2

1): t2
1 , . . .(g

2
d): t2

d 〉.
7. SC(t1 v t2) = {false}, otherwise.

Fig. 6: The set of Boolean constraints that ensures the seniority relation t1 v t2

If t1 and t2 are records (constraints for choices are generated in a similar way),
then for every element l2j (g

2
j): t2

j in t2 the following set of Boolean constraints is
produced:

1. if there exists an element l1i (g
1
i ): t1

i in t1 such that l1
i is the same as l2

j , then the
Boolean seniority constraints have to include the seniority constraints for nested
subterms providing that g1

i ∧g2
j ;

2. otherwise, an element l2j (g
2
j): t2

j has to be excluded from the collection: the con-
straint ¬g2

j is generated.

The Boolean seniority constraints for switches (t1 or t2 is a switch) ensure only
the Boolean seniority constraints for nested terms. Finally, if t1 v t2 does not match
any of the above cases, then the constraint is unsatisfiable and false is generated.

6.3.3 Algorithm

Let B0 ⊆ B1 ⊆ ·· · ⊆ Bs be sets of Boolean constraints, and a↓ and a↑ be vectors of
semiground terms such that |a↓|= |V↓(C )| and |a↑|= |V↑(C )|. Algorithm 2 seeks a
solution of CSP-MDL(C ) as the fixed point of a chain of approximations in the form

(B0,a↓0,a
↑
0), . . . ,(Bs−1,a↓s−1,a

↑
s−1),(Bs,a↓s ,a

↑
s ),

where for every i, 1≤ i≤ s, and a vector of Boolean values b ∈ SAT(Bi),

a↓i [f/b]v a↓i−1[f/b] and a↑i−1[f/b]v a↑i [f/b].

The starting initialisation is B0 = /0, a↓0 = (nil, . . . ,nil), a↑0 = (none, . . . ,none) and
the chain of approximations terminates as soon as it finds b ∈ SAT(Bi) such that

(a↓i [f/b],a↑i [f/b]) = (a↓i−1[f/b],a↑i−1[f/b]).
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Algorithm 2 CSP-MDL(C )

1: c← |C |
2: i← 0
3: B0← /0
4: a↓0← (nil, . . . ,nil)

5: a↑0← (none, . . . ,none)
6: repeat
7: i← i+1
8: (a↓i ,a

↑
i )← IFC (a↓i−1,a

↑
i−1)

9: Bi← Bi−1 ∪
⋃

t1vt2∈C
(WFC(t1[v/ai])∪WFC(t2[v/ai])∪SC(t1[v/ai]v t2[v/ai]))

10: until ∃b ∈ SAT(Bi) : (a↓i [f/b],a↑i [f/b]) = (a↓i−1[f/b],a↑i−1[f/b])
11: if Bi is unsatisfiable then
12: return Unsat
13: else
14: return (b,a↓i [f/b],a↑i [f/b]), where b ∈ SAT(Bi)
15: end if

The adjunct set of Boolean constraints potentially expands at every iteration of
the algorithm by inclusion of further logic formulas produced by the set of Boolean
constraints that ensure well-formedness of the terms and satisfaction of the seniority
relation. Moreover, if the original CSP-MDL is satisfiable, then so is SAT(Bs) by
construction. That is if the tuple of vectors (bs,a↓s [f/bs],a↑s [f/bs]) is a solution to the
former, then bs is a solution to SAT(Bs). Note that Algorithm 2 runs Algorithm 1
as a subroutine and adds adjunct Boolean constraints that ensure well-formedness of
terms and satisfaction of the seniority relation. That is, the main aim of constructing
the set B is to limit the search space.

Theorem 3 (Correctness of Algorithm 2) For any set of constraints C , CSP-MDL
for C is unsatisfiable if and only if Algorithm 2 returns Unsat.

Proof The sets of Boolean constraints provided in Fig. 5 and Fig. 6 guarantee that
the terms are wellformed and the seniority relation is satisfied. Now we give a proof
by contradiction.

(⇒) Let C be an unsatisfiable set of constraints and Algorithm 2 return

(b,a↓i [f/b],a↑i [f/b]),

where b ∈ SAT(Bi). Then (a↓i [f/b],a↑i [f/b]) 6= (⊥,>), where (a↓i [f/b],a↑i [f/b]) is the
fixed point that contains values satisfying C . This contradicts the initial hypothesis.
Therefore, Algorithm 2 returns Unsat if C is unsatisfiable.

(⇐) Let Algorithm 2 return Unsat and C have a solution. In this case the algo-
rithm computes a chain of approximations. This is a fixed point and by Lemma 3
no other fixed point (b,a↓i [f/b],a↑i [f/b]), where b ∈ SAT(Bi), exists such that ⊥ v
a↓i [f/b] or a↑i [f/b] v >, which means that no fixed points apart from (⊥,>) exists.
This contradicts the initial hypothesis. Therefore, C is unsatisfiable if Algorithm 2
returns Unsat. ut
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In general, the set SAT(Bs) can have more than one solution, and we select one
of them. Heuristics that would make it possible to select a better solution for a given
application require further research.

6.4 Complexity

Deciding whether or not a given CSP instance has a solution is in general NP- com-
plete [33]. Therefore, one of the most fundamental challenges in constraint solving is
to understand the computational complexity of problems involving constraints, and,
in particular, to characterise exactly which types of constraints give rise to constraint
problems which can be solved in polynomial time [8,9,15].

A CSP can be easier to solve than in the general case when the types of con-
straints are limited. So far the most successful method of studying the complexity
of CSPs on finite domains has been the algebraic approach introduced by Jeavons,
Cohen and Gyssens in [26]. It shows that if the constraints are preserved by a semi-
lattice operation then the CSP can be solved in polynomial time. This result has been
further extended by Bodinsky, Macpherson and Thapper to certain classes of CSPs
for infinite domains [6].

Jeavons et al. define in [26] an ACI operation as an idempotent operation, which
is also associative and commutative. Consequently they use well-known results from
elementary algebra5 to show that any set of relations over a finite domain D is solvable
in polynomial time if this set is closed under some ACI operation.

Definition 5 (ACI operation) Let Op : D2→ D be an idempotent binary operation
on the set D such that for all d1,d2,d3 ∈ D,

– (Associativity) Op(Op(d1,d2),d3) = Op(d1,Op(d2,d3)); and
– (Commutativity) Op(d1,d2) = Op(d2,d1).

Then Op is said to be an ACI operation.

Theorem 4 (Jeavons et al., 1997) For any set of relations Γ over a finite domain D,
if Γ is closed under some ACI operation, then CSP(Γ ) is solvable in polynomial time.

Clearly, the meet u and join t are dual to one another with respect to order inver-
sion. Moreover, any (finite) nonempty set which is u-closed (alternatively t-closed)
contains the least upper bound (alternatively the greatest lower bound) with respect
to the respective partial order [26].

Lemma 4 For any set of constraints C with the empty set of b-variables (Vb(C ) =
/0), Algorithm 1 requires time polynomial in |C |.

Proof By Theorem 4 We note that we extended the pair (T ↓
m ,v) and (T ↑

n ,v) of the
meet and join semilattices, to the lattices (T̃ ↓

m ,v) and (T̃ ↑
n ,v) by introducing the

top and bottom elements ⊥ and >. As both lattices (T̃ ↓
m ,v) and (T̃ ↑

n ,v) are now
trivially u- and t-closed, the lemma holds by Theorem 4. ut

5 See, for example, [34].
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In general, an instance of the CSP-MDL problem can contain arbitrary Boolean
constraints on b-variables. That is the problem is NP-complete as stated in Section 5,
and, therefore, Algorithm 2 requires exponential time in the worst case.

7 Service Network Topology

Definition of service composition using the “algebraic” style facilitates formal rea-
soning about the services [19,40]. Following this approach, we propose a formal
description of a service network in the form of a language of combinators. Then,
we define a type system on top of the language that aggregates communication con-
straints throughout the network.

We regard a service-based application as a network N, and C (N) (or just C for
simplicity) is the set of constraints that have to be satisfied by N. Given C (N), we use
Vb(C ) to denote the set of b-variables, V↓(C ) to denote the vector of down-coerced
t-variables and V↑(C ) to denote the vector of up-coerced t-variables.

We associate with each service s the pair τ(s) = (Is,Os), where Is and Os are
the sets of its input and output ports respectively. That is τ(s) represents the service
properties related to its interface. They can either be provided explicitly or be auto-
matically derived from the service.

Each port is formally a pair (lp, tp), where lp is the name of the port and tp ∈ T
is the MDL term specifying the service interface associated with the port.

7.1 Wiring

Wiring is the act of connecting services with communication channels. Each service is
identified by the label, which denotes its functionality. An application is represented
by a streaming network defined by the following grammar:

〈network〉 ::= 〈label〉
| 〈network〉 . . 〈network〉
| 〈network〉 || 〈network〉
| 〈network〉 \
| ( 〈network〉 )

with wiring patterns . . , || , and \, where

– . . denotes a serial connection of two networks. Informally, it wires the output
ports of one service to the input ports of another one with communication chan-
nels.

– || denotes the parallel connection of two networks. It places two networks side
by side without introducing additional channels. That is the parallel connection
builds a composite network by taking the union of the input and output ports.

– \ denotes the wrap-around connection for a network. It creates a cycling connec-
tion by wiring output ports to input ports in the network.
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Furthermore, parens are introduced for grouping subnetworks together. For ex-
ample, (A . . B) || C and A . . (B || C) specify different networks due to different
subnetwork grouping.

7.2 Types

With each network N we associate a type that encodes the ports and a set of the
seniority constraints. The type of N is a tuple

(IN ,ON ,CN),

where IN and ON are sets of the input and output ports in the network respectively,
and CN is a set of the seniority constraints, which guarantee communication safety.
Sets IL and OL can be specified in a separate service configuration file or can auto-
matically be derived from the service. Each constraint is a relation

tp v tp′ : T ×T

on the wired ports p and p′, where T is the set of ground terms. The seniority relation
specifies conditions on the service interface wired with the communication channel.

We propose typing rules which specify a mechanism for aggregating the wiring
constraints from the network.

The typing rule for a single service also referred as a singleton network, where L
is a service label, is below:

L(SING)
L: (IL,OL, /0)

The type associated with the serial connection is constructed as follows:

N1 : (IN1 ,ON1 ,CN1) N2 : (IN2 ,ON2 ,CN2)( . . )
N1 . . N2 : (I ′,O ′,C ′)

where

I ′ = IN1 ∪{(lp, tp) ∈IN2 | ∀(l
′
p, t
′
p) ∈ ON1 : lp 6= l′p},

O ′ = ON2 ∪{(lp, tp) ∈ ON1 | ∀(lp′ , tp′) ∈IN2 : lp 6= lp′},
C ′ = CN1 ∪CN2 ∪{tp v tp′ | ∃(lp, tp) ∈ ON1 ,(lp′ , tp′) ∈IN2 : lp = lp′}.

That is, the serial connection wires the output ports of of N1 with identically
named input ports of N2, and the set of constraints is the union of the constraints
on the networks N1 and N2 and constraints that represent data relations on newly
constructed channels.

We call lp = lp′ the identity condition: the channels always wire the identically
named ports. Consequently, the wiring of the services in the network depends on
service port names.

The wiring relation is completely generic, that is it can lead to one-to-one, one-
to-many, many-to-one or many-to-many connections.The problem of excessive or
deficient wiring can be prevented by renaming the ports. Note that a channel may
wire a single output port to more than one input port and a single input port to more
than one output port:
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– The semantics of the former is copying: each message output on the port will be
received by each of the input port that the output port is wired to.

– The semantics of the latter is merging: when more than one output port is wired
to a single input port, the messages from the output port are transferred to a single
input port in no particular order, that is nondeterministically. It is also possible for
a port to merge several inputs and copy the stream to several outputs.

The type associated with the parallel connection is constructed as follows:

N1 : (IN1 ,ON1 ,CN1) N2 : (IN2 ,ON2 ,CN2)( || )
N1 || N2 : (IN1 ∪IN2 ,ON1 ∪ON2 ,CN1 ∪CN2)

The parallel connection does not wire services by producing new channels. In-
stead, it “joins” services by combining their input/output ports as well as sets of the
seniority constraints into a single set. Moreover, IN1 and IN2 , as well as ON1 and ON2
may contain ports with the same name without having compatibility issues. Consider
the following example.

Finally, consider the typing rule for the wrap-around connection. The type asso-
ciated with the wrap-around connection is constructed as follows:

N : (IN ,ON ,CN)(\)
N\ : (I ′N ,O

′
N ,CN ∪C ′N)

where

I ′N = {(lp, tp) | ∃(lp, tp) ∈IN ∀(lp′ , tp′) ∈ ON : lp 6= lp′},
O ′N = {(lp′ , tp′) | ∃(lp′ , tp′) ∈ ON ∀(lp, tp) ∈IN : lp 6= lp′},
C ′N = {tp′ v tp | ∃(lp′ , tp′) ∈ ON ∃(lp, tp) ∈IN ∧ lp = lp′}.

The wrap-around connection wires output ports of a service with identically named
input ports and generates constraints on the port interfaces. Furthermore, the ports
connected by a channel must be excluded from the sets of input/output ports IN and
ON .

The type of the top-level network contains a set of communication constraints,
which serve as an input to the constraint satisfaction problem for Web services. The
network topology is safe for communication if the constraints can be satisfied and
unsafe otherwise.

7.3 Subtyping

Next we introduce subtyping on types (I ,O,C ). It defines the hierarchy of networks
and hierarchy of partial solutions to the constraints C (see the example in Fig. 7).
Subtyping can be formally defined as follows:

∀(l2
p, t

2
p) ∈IN2∃(l1

p, t
1
p) ∈IN1 : l1

p = l2
p∧ t1

p v t2
p

∀(l2
p, t

2
p) ∈ ON2∃(l1

p, t
1
p) ∈ ON1 : l1

p = l2
p∧ t2

p v t1
p

CN1 6=⊥ V (CN1)⊃V (CN2)∨CN1 → CN2 CN1 |= CN2(S-SUB)
(IN1 ,ON2 ,CN1)≤ (IN1 ,ON2 ,CN2)
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t1
in N1 t1

out tbta

(N1 : {(a : t1
in)},{(b : t1

out)},C )

ba

(a) The port a of the network N1 is connected to a service that provides the term ta; the port b is connected
to a service that expects the term tb. The constraints ta v t1

in and t1
out v tb are produced

t2
in N2 t2

out tbta

(N2 : {(a : t2
in)},{(b : t2

out)},C )

ba

(b) The port a of the network N2 is connected to a service that provides the term ta; the port b is connected
to a service that expects the term tb. The constraints ta v t2

in and t2
out v tb are produced

Fig. 7: An example illustrating subtyping: N1 is a subtype of N2 if t1
in v t2

in and t2
out v

t1
out. As a result, ta v t1

in implies ta v t2
in and t1

out v tb implies t2
out v tb

where

– V (C ) denotes the set of all variables C ;
– CN1→CN2 declares that CN2 is a satisfiable set of constraints if CN1 is a satisfiable

set of constraints too;
– |= is a logical entailment, which defines the following relation: if CN1 → CN2 ,

then the solution to CN1 is also a solution to CN2 .

Intuitively, a network N2 : (IN2 ,ON2 ,CN2) is a supertype of N1 : (IN1 ,ON1 ,CN1)
if N1 is less generic. Specifically, the sets IN1 and ON1 may contain more ports than
the sets IN2 and ON2 , and the number of solutions to CN1 is less than the number of
solutions to CN2 .

Furthermore, for input ports with the same labels (lp, t1
p) and (lp, t2

p) in IN1 and
IN2 respectively, t1

p must be a subtype of t2
p. Similarly, for output ports with the same

labels (l̃p, t̃1
p) and (l̃p, t̃2

p) in ON1 and ON2 respectively, t̃2
p must be a subtype of t̃1

p.
The subtyping relation is reflexive, transitive and antisymmetric. There exists a

unique type
(Itop,Otop,Ctop) = ( /0, /0, /0)

such that (I ,O,C )≤ (Itop,Otop,Ctop) for any (I ,O,C ), where C = /0 denotes the
set of tautological constraints. It leads us to the fact that the subtyping relation is a
semilattice with Ctop as the top element.

The subtyping relation defines a solution hierarchy for the CSP on C . Indeed,
any solution to CN1 in a network N1 : (IN1 ,ON1 ,CN1) is also a solution to CN2 in
a network N2 : (IN2 ,ON2 ,CN2) providing that (IN1 ,ON1 ,CN1) ≤ (IN2 ,ON2 ,CN2).
However, other solutions to CN2 may exist too.
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Assume that we are looking for a solution to CN2 . The tightest solution is a vector
of values to variables V (CN2) such that the constraints CN2 are satisfied and the vector
is not a solution to CN1 , where N1 is any subtype of N2 and CN1 6= CN2 .

Example 5 Consider the service-based application in Fig. 1. Assuming that the Ac-
cessories service is available, the program specifying the application in the language
of combinators is the following:

(Components || Accessories) .. Bicycle Shop .. Customer

The basic types associated with each service are the following:

Components : ({},{a : taout}, /0)
Accessories : ({},{b : tbout}, /0)
Bicycle Shop : ({a : tain ,b : tbin},{c : tcout}, /0)

Customer : ({c : tcin},{}, /0)

a, b and c are names of the ports. The ports of connected services are explicitly called
the same if they need to be connected by a communication channel. tain , taout , tbin , tbout ,
tcin , tcout are terms that are defined in the MDL:

taout = (:comp: {price: int, frame: int}:)
tain = (:comp(x): {price: int |p↓}:)

tbout = (::)

tbin = (:acc(y): {price: int |q↓}:)
tcout = (:bike(x): {price: int |p↓}, acc(y): {price: int |q↓}:)
tcin = (:bike: {price: int, frame: int}:)

The terms represent service interfaces, that is the data format that the service can
receive and produce.

The type derivation tree for the service program is the following (C, A, S and Cs

are used as shorthands for Components, Accessories, Bicycle Shop and Customer
services, respectively):

C

C : ({},{a : taout}, /0)
A

A : ({},{b : tbout}, /0)

C || A : ({},{a : taout ,b : tbout}, /0)
S

S : ({a : tain ,b : tbin},{c : tcout}, /0)

(C || A) . . S : ({},{c : tcout},{taout v tain , tbout v tbin})
Cs

Cs : ({c : tcin},{}, /0)

((C || A) . . S) . . Cs : ({},{},{taout v tain , tbout v tbin , tcout v tcin})

As a result, the following set of constraints for the service network is derived from
the program:

C = {taout v tain , tbout v tbin , tcout v tcin}.

8 Use Cases

We illustrate our approach with two scenarios: Three Buyer Use Case and Image
Classification Use Case.
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Alice Seller Bob Carol
ASout ASin

SAoutSAin

SBout SBin

BSoutBSin

BCout BCin

CBoutCBin

Fig. 8: Service composition in Three Buyer Use Case

8.1 Three Buyer Use Case

A simple but non-trivial example, known as the three-buyer use case, is often called
upon to demonstrate the capabilities of session types such as communication safety,
progress and protocol conformance [25]. Consider a system involving buyers called
Alice, Bob and Carol that cooperate in order to buy a book from a Seller: (a) Each
buyer is specified as an independent service that is connected with other services
via a channel-based communication; (b) There is an interface associated with every
input and output port of a service, which specifies the service’s functionality and data
formats that the service is compatible with.

Fig. 8 depicts the situation where Alice is connected to Seller only and can inter-
act with Bob and Carol indirectly. AS, SB, BC, CB, BS, and AS denote interfaces as-
sociated with service input/output ports. ASout declares the output interface of Alice,
which declares functionality and the format of messages sent to Seller. The service
has the following functionality:

– Alice can request a book’s price from Seller by providing a title of an arbitrary
type (which is specified by a term variable tv↓) that Seller is compatible with. On
the other hand, Seller declares that only a title of type string is acceptable, which
means that tv↓ has be instantiated to string.

– Alice can provide a payment for a book. In addition to the title and the required
amount of money, Alice provides her id in the message. Although Seller does not
require the id, the interconnection is still valid (a description in standard WSDL
interfaces would cause an error though) due to the subtyping supported in the
MDL.

– Furthermore, Alice can offer to share a purchase between other customers. Al-
though Alice is not connected to Bob or Carol and may even not be aware of their
presence, our mechanism detects that Alice can send a message with “share” label
to Bob by bypassing it implicitly through Seller.

– The mechanism sets a tail variable ct1↑ to (:share: {title: string,money: int}:) in
order to enable flow inheritance in Seller’s service. If Bob were unable to accept a
message with “share” label, the mechanism would instantiate x with false, which
automatically removes the corresponding functionality from the service.

– Finally, Alice can suggest a book to other buyers. However, examination of other
service interfaces shows that there is no service that can receive a message with
the label “suggest”. Therefore, a communication error occurs if Alice decides to
send the message. To avoid this, the configuration mechanism excludes “suggest”
functionality from Alice’s service by setting y variable to false.

The collection elements contain guards x, y and z. as the self-configuration mech-
anism: Boolean variables control the dependencies between any elements of interface



30 O. Tveretina, P. Zaichenkov, A. Shafarenko

collections (this can be seen as a generalized version of intersection types). The vari-
ables exclude elements from the collection if the dependencies between correspond-
ing elements in the interfaces cannot be satisfied.

Parametric polymorphism is supported using interface variables such as tv↓, ct1↑

and ct2↑. Moreover, the presence of ct1↑ and ct2↑ in both input and output interfaces
enables flow inheritance mechanism that provides delegation of the data and service
functionality across available services.

Furthermore, the Boolean variable z behaves as an intersection type: Bob has
“purchase sharing” functionality declared as an element share(z): {. . .} in its input
interface SBin (used by Seller). The element is related to the element share(z): {. . .}
in its output interface BCout (used by Carol). The relation declares that Bob provides
Carol with “sharing” functionality only if Bob was provided with the same function-
ality from Seller.

For brevity, we only provide AS,SB and BC (the rest of the interfaces are defined
in the same manner) specified in the MDL:

ASout = (:request: {title: tv↓},payment: {title: tv↓,money: int, id: int},

share(x): {title: tv↓,money: int},suggest(y): {title: tv↓}:)

ASin = (:request: {title: string},payment: {title: string,money: int}| ct1↑:)

SBout = (:response : {title: string,money: int}| ct1↑:)

SBin = (:share(z) : {quote: string,money: int}, response : {title: string,money: int}| ct2↑:)

BCout = (:share(z): {quote: string,money: int} | ct2↑:)

BCin = (:share : {quote: string,money: int}:)

8.2 Image Classification Use Case

A deep neural network (DNN) is a neural network, which consists of several (two
or more) hidden layers, each modifying the input data and sending the output to the
next layer in the pipeline. DNNs used in production may contain more than 150 layers
[24]. Deep learning frameworks provide a modular approach to designing DNNs as
a composition of custom layers.

The Caffe framework [27] provides a layer catalogue, which a developer can use
for DNN construction. Furthermore, the framework provides a mechanism for de-
signing custom layers. In particular, the layer interface is defined in a Google Proto-
col Buffer (PB) format, which provides efficient data serialisation, a human-readable
format and efficient implementation in multiple languages.

Despite its advantages, the PB interface format is non-flexible, that is the inter-
faces of adjacent layers should match, otherwise it will cause an error. As a result, in
order to compose a DNN with high number of layers, developers have to modify the
layer interfaces to make sure that they are compatible.
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data

ip

x

g(x)label ∂ fW
∂g

∂ fW
∂Wip

h(g(x))→ ∂ fW (x)

Fig. 9: Forward (from top to bottom) and backward (from bottom to top) passes
through layers in neural network for image classification

In this example we demonstrate how the problem of interface compatibility can
be overcome by using the MDL instead of PB as the specification language for layer
interfaces.

Using the MDL as an interface definition language allows to avoid interconnec-
tions, due to flow inheritance support. Generic MDL interfaces declare only func-
tionality, which they support and the data, which the layers can process. Then, using
constraint satisfaction, they are contextualised to enable flow inheritance.

Fig. 9 depicts a simple logistic regression classifier6, which is a neural network for
classifying objects in images. The network consists of two passes: the forward pass
computes the classification function fW (x) from a sequence of labelled input images.
The image data is passed through an inner product layer g(x) and then through a loss
function h(g(x)) to compute fW (x). The backward pass takes the loss as the input and
computes gradients layer-by-layer.

Fig. 10 shows composition of the neural network, where IP?, PI?, PL? and LP?
specify layer interfaces as follows: IPout, IPin, PLout and PLin implement the forward
pass, and LPout, LPin, PIout and PIin implement the back pass. In particular, IPout
declares that input layer exports an image in the form of a matrix and an expected
classification label. The input interface IPin of inner product layer is more generic,
that is using polymorphism, it declares that the layer processes an image of a generic
format and inherits the rest of the data in the variable tv↓:

– tv↓ is also present in the output interface PLout, which implements flow inheri-
tance for messages on the interface level.

– tv↓ contains label, which is inherited from input and is declared in PLin.

6 This example is used in Caffe tutorial: http://caffe.berkeleyvision.org/tutorial/

forward_backward.html.

http://caffe.berkeleyvision.org/tutorial/forward_backward.html
http://caffe.berkeleyvision.org/tutorial/forward_backward.html
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input inner product loss
IPout IPin

PIoutPIin

PLout PLin

LPoutLPin

Fig. 10: Service composition for the Image Classification use case

Similarly to message inheritance, the MDL provides support for inheriting func-
tionality across layers. We specify the interfaces in the MDL as follows:

IPout = (:ip: {data: matrix, label: bool}:)

IPin = (:ip: {data: t↓ |tv1↓}:)

PLout = (:loss: {transformed: t↓ |tv↓}:)

PLin = (:loss: {transformed: t↓, label: bool}:)
LPout = (:tune ip: {delta: vector},tune input: {delta: vector}:)

LPin = (:tune ip: {delta: vector} | ct↑:)

PIout = (: | ct↑:)

PIin = (:tune input: {delta: vector}:)

LPout declares elements tune ip and tune input, which can be processed by
inner product and input, respectively. tune ip is matched with the corresponding
element in the input interface LPin. tune input is matched by the variable ct↑ in LPin,
and, as a result, tune input is automatically propagated to to the interface PIout using
flow inheritance. input expects tune input in the interface PIin, and, therefore, the
layer interfaces are compatible.

This example demonstrates that a mechanism for configuration of flexible inter-
faces can be applied not only to Web services, but also to other domains with modular
composition of long computational pipelines.

9 Interface Configuration Mechanism for Service-based Applications

In this section we present an interface configuration protocol, which supports flow
inheritance in services coded in C++.

9.1 Configuration Protocol

Service loose coupling is the key principle of Web services, because a service-based
application is designed in dispersed teams with diverse requirements. Each service is
treated in the form of a black box, which exposes only its interface. That is interfaces
have to be generic and should be adaptable to many contexts.

We define a fixed format for service interfaces, and represent an interface as a
choice term at the top level. Flow inheritance can be supported then using tail vari-
ables in the choice. If choices in input and output interfaces contain the same tail
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s1 s2

{a}→ {x}

s3

{b}→ {y}
{a,b} {a,b} {x,b} {x,b} {x,y} {x,y}

(a) A pipeline without support for flow inheritance

s1 s2

{a}→ {x}

s3

{b}→ {y}
{a,b} {a|$p} {x|$p} {b|$q}

{b} {x}

{y|$q} {x,y}

(b) A pipeline with support for flow inheritance

Fig. 11: A pipeline of services. {. . .} denotes a record as a message type

variable, then we guarantee that data that is matched by the tail variable is automati-
cally propagated to the output as it is depicted Fig. 11.

The basic configuration mechanism is the following. Initially we assume that each
service provider has a code of their C++ service. The protocol specifies a sequence
of steps that need to be performed for service configuration (all steps are automatised
in our toolchains).

1. First, a code preprocessing is performed for each service. In particular, the code
is annotated with C++ macros. The macros are a placeholder for configuration
parameters, which are generated from the CSP-MDL solution.

2. Then we derive the interfaces as MDL terms from the annotated services. This
step is performed by analysing the service code.

3. Given the MDL terms, we construct a set of the seniority constraints by taking an
application topology into account. This is a trivial step: for each pair of interacting
services, we construct a seniority constraint from the MDL terms. This step must
be performed in a centralised manner by a coordinator, because the interfaces
from all services must be collected.

4. Then we solve the CSP-MDL.
5. If a solution to the CSP-MDL exists, we construct a header file that encodes

the solution in the form of the C++ macro definitions. In other words, the solu-
tion contains configuration parameters for all services. The header file with its
configuration is provided to all services.

6. By including the provided header files, each service provider compiles a service
library that is configured specifically for the given context. Note that the providers
do not need to expose the code. They only provide binaries to a runtime environ-
ment.

In Fig. 12, .cpp represents the service source files, where .cpp*∗ are source files
augmented with preprocessor’s directives, .int are files with the derived interfaces,
topology is a file specifying the application communication graph, .hpp are header
files for the augmented source files generated from the CSP-MDL solution, and .lib
are generated libraries for the services.



34 O. Tveretina, P. Zaichenkov, A. Shafarenko

AliceSeller Bob Carol

A.cppS.cppSource code B.cpp C.cpp

A.cpp∗S.cpp∗Augmentation with macros B.cpp∗ C.cpp∗

A.intS.intInterface derivation B.int C.int topology

seniority constraintsConstraint generation

CSP-MDLCSP solution

B.hppA.hppS.hppHeader file generation C.hpp

A.libS.libLibrary compilation B.lib C.lib

Fig. 12: An interface reconciliation workflow performed by the toolchain

9.2 Example Illustrating Configuration Protocol

Example provided in Fig. 13 represents implementation of the Seller service, where
request 1 and payment 1 are the processing functions triggered when an input
message arrives.

salvo response_1(string title, int money);

salvo invoice_1(int id);

salvo error_2(string msg);

service request_1(string title) {

try {

int price = ...

response_1(title, price);

} catch (exception e) {

error_2(e.what());

}

}

service payment_1(string title, int money) {

try {

int invoice_id = ...

invoice_1(invoice_id);

} catch (exception e) {

error_2(e.what());

}

}

Fig. 13: The code of the Seller service

The processing functions are distinguished from the other functions by special re-
turn type service. Output messages are produced by calling special functions called
salvos. Salvos are declared by service developers and must have salvo as return
type. If a processing function calls a salvo function, the salvo arguments are sent to
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IN #1: (:request(x): {title: string |a↓},payment(y): {title: string,money: int |b↓} | c↑:)

OUT #1: (:response(x): {title: string,money: int |d↓}, invoice(y): {id: int |e↓} | c↑:)

OUT #2: (:error(x∨ y): {msg: string | f ↓}:)

Fig. 14: One input and two output interfaces derived from the Seller service’s code.
Additional constraints a↓ v d↓, a↓ v f ↓, b↓ v e↓, b↓ v f ↓ must be generated

the output as a message. Using this mechanism, each service produces zero or more
output messages as a response to a single input message.

The names of processing functions and salvos may have suffixes, such as 1

or 2. The suffixes denote names of service input and output ports. The suffix in a
function name specifies the name of the input port where input messages are received
from; the suffix in a salvo name specifies the name of the output port where output
messages are sent to.

Typically, port routing is specific to an application in which the service is used.
Therefore, for service reusability we provide a mechanism, which allows to redefine
a mapping between function/salvo names and ports.

The protocol provides a facility for renaming ports and message routing. This is
performed from a service component called a shell. The shell is described in Sec-
tion 9.4. In general, the shell is a service wrapper that provides facilities for port
rerouting and function name renaming. Our configuration mechanism is flexible:
the application designer can decide whether to accept and process error messages
or not. If not, our configuration detects that the port is unwired and the salvo function
error 2 is not generated in the binary.

Fig. 14 illustrates MDL interfaces derived by our configuration toolchain. At the
top level, an interface associated with a port is a choice-of-records term. Labels in the
choice term of the input interface are equal to processing function names. A message
is structured as a labelled data record, where the label specifies the function that
processes the message. Compatibility of two communicating services is defined by
the seniority relation. The interfaces can automatically be derived using the tool that
we developed.

Boolean variables maintain relation between choice variants in input and output
interfaces. Using Boolean variables, we can specify that salvos are present in the
interface only if the functions producing the salvos can potentially receive some input.

Relation between variables in the input and output interfaces is maintained using
auxiliary constraints

a↓ v d↓,a↓ v f ↓,b↓ v e↓ and b↓ v f ↓.

Essentially, they specify that a↓ must provide data that is required by both d↓ and
f ↓, b↓ must provide data that is required by both e↓ and f ↓ (note that f ↓ contains
elements that are present in both a↓ and b↓). No other auxiliary constraints, such as
a↓ v e↓ or b↓ v d↓ are needed. We know that the service cannot produce the response
salvo as a response to the payment input message, and the invoice salvo as a response
to the payment input message.
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#if defined(BV_x)

salvo response_1(string title, int money TV_d_decl);

#endif

#if defined(BV_y)

salvo invoice_1(int id TV_e_decl);

#endif

#if defined(BV_x) || defined(BV_y)

salvo error_2(string msg TV_f_decl);

#endif

#ifdef BV_x

service request_1(string title TV_a) {

try {

int price = ...

response_1(title, price TV_d_use);

} catch (exception e) {

error_2(e.what() TV_f_use);

}

}

#endif

#ifdef BV_y

service payment_1(string title, int money TV_b) {

try {

int invoice_id = ...

invoice_1(invoice_id TV_e_use);

} catch (exception e) {

error_2(e.what() TV_f_use);

}

}

#endif

Fig. 15: The code for the Seller service augmented with preprocessor’s directives.
BV . . . and TV . . . are macro names

Now we illustrate back-propagation of the CSP-MDL solution to services. It is
the final step of the interface configuration mechanism. To simplify this task, we
preliminary augment the code of each service with macro definitions as illustrated in
Fig. 15, where BV x, BV y, TV a, TV b, TV d decl, TV e decl, TV f decl,
TV d use, TV e use and TV f use are macros that are basically placeholders
for the data that needs to be inherited.

Assume that d↓= {id: int}, f ↓= {rank: float}, and a↓= {id: int, rank: float}
(recall that a↓ v d↓ and a↓ v f ↓ must hold). Based on the solution, the header file that
contains the following macro definitions will be generated:7

#define COMMA ,

#define TV_a COMMA int id

#define TV_d_decl COMMA int id

#define TV_d_use COMMA id

#define TV_f_decl COMMA float rank

#define TV_f_use COMMA rank

7 In this example, “,” is replaced by the COMMA macro due to limitations of the C preprocessor
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salvo r esult ( int  c) ;

ser vice sum( int  a, int  b)  {

 r esult  (a + b) ;

}

ser vice mult ( int  a, int  b)  {

 r esult (a *  b) ;

}

core

shell

r esult  -> factor ial

r esult  -> squar e

Fig. 16: The core and the shell of the service

Providing that the header file is included in the augmented source files, the above
definitions replace their corresponding macro names as it is depicted in Fig. 15.

As a result, the data, which needs to be inherited will be included in processing
functions and salvo functions before compilation. The configured service is compiled
specifically to the given context and cannot be reused due to inherited context-specific
data.

9.3 The Core

We now discuss the structure of individual services, in particular, the core and the
shell. The core is the code of the service structured in the predefined format as shown
in Fig. 16. The core is context-independent and can be seen as a reusable basic mod-
ule. It is observed as a black box and its code is accessible only to the designer of
the service. As a result, our mechanism supports proprietary services, which cannot
publicly expose their source code.

The core is structured as a set of processing functions, each receiving one input
message and producing a set of output messages at a time. After finishing input mes-
sage processing, the internal state of the service is destroyed. Such design is useful
for distributed processing, where services can be replicated to increase the through-
put or migrated from one core to another without being afraid that the state is lost or
unrecoverable.

The processing function is identified by the name, format of its input message
and format of the output messages. The name denotes the purpose of the processing
function and is equal to the function name by default. Furthermore, an MDL record,
which represents a message, is mapped to C++ function arguments. It causes a prob-
lem, because elements of the record are ordered by inclusion, although C++ function
arguments are identified by a position. The application layer, which triggers process-
ing functions, reorders the record elements in a way they are specified in a processing
function. On the other hand, the problem disappears in the languages with support
for labelled arguments, such as Python or OCaml.
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result -> 1, 2

1[result/factorial]

2[result/square]

Fig. 17: Illustration of the shell file. The salvo result is sent to two output ports.
In the first port, the salvo name is renamed to factorial and in the second port the
salvo name is renamed to square

In order to call the processing function, another service must provide a message
with the same tag and compatible data format. Services developed by different enter-
prises rarely share tags and exact data formats. Our reconciliation mechanism solves
this problem by checking compatibility of the formats.

The MDL supports depth and width subtyping, and, therefore, input messages can
contain more data than the processing function requires. Assume that a consumer ser-
vice requires {a: int} as the input format of a processing function f and a producer
service provides it with {a: int,b: float}. Consequently, the signature of function
f is service f(int a);. The configuration mechanism must remove an element
b: float from the input message since it is required for safe execution.8

Furthermore, the MDL interfaces support polymorphism, which allows to inte-
grate the configuration mechanism with C++ templates.9 Assume that a processing
function contains an argument of type vector<T>, where T is an unitialised template
argument. The type can be represented as (vector t↓), where t↓ is a free t-variable.
After solving the CSP-MDL, t↓ is instantiated with a specific value, which can be
propagated back to the service as specialisation of T.

Finally, the service can not only accept “more” data that required, but also prop-
agate excessive data (the one that is provided, but not required by the consumer) to
other services. A solution to CSP-MDL provides information about inherited record
elements by analysing the application topology. Although the inherited data is spe-
cific to the context, the core of the service is reused in all contexts with different
macro values (see Fig. 12, which illustrates configuration process in the context).

9.4 The Shell

Support of subtyping, polymorphism and flow inheritance provided in the MDL fa-
cilitates service reusability. On the other hand, fixed names of the processing func-
tions breaks flexibility. Indeed, independent programming teams have different nam-
ing conventions. It is unlikely that the names of processing functions in a producer
and a consumer would match. Furthermore, the services must be reusable: we want
to avoid renaming names of processing functions in the code. For this purpose, we
introduce the shell.

8 Generation of such preprocessing function has not been done as part of this work though.
9 The existing implementation of the configuration mechanism lacks such integration.



Non-Local Configuration of Component Interfaces by Constraint Satisfaction 39

The shell is a layer that is used as an additional configuration mechanism that
adapts services to the application topology. The shell is context-specific and is devel-
oped by an application designer. Transformation of processing function names can
be specified in the shell as illustrated in Fig. 17.

Furthermore, the services are designed to have multiple input/output logical ports
serving different purposes. For example, it is often natural to split the output into
three ports: the first produces the result of computations, the second produces debug
logs, and the third one produces errors. The environment may “connect” to one or
another port or simply ignore it depending on the context.

There are two ways to specify port routing. First, the routing can be “hard-coded”
in services as illustrated in Fig. 13. The names of processing functions and salvos
contain suffixes, for example 1 and 2. The suffixes specify port mapping that is
used without the shell.

Developers can also specify port routing from the shell. The shell is a text file,
which is associated with a service, that contains 1) processing function/salvo name
transformation and 2) processing function/salvo routing to ports. Fig. 17 is the shell
file that corresponds to name transformation and salvo routing from Fig. 16.

10 Conclusions

We proposed a constraint language called MDL for description of data formats in
non-local Web-service communication. The language supports subtyping and flow
inheritance. The language further supports Boolean configuration parameters, which
help define the variety of modes a service can be used in.

Our constraint solving algorithms, has been shown correct, finds a solution to the
global set of constraints defined by the MDL specifications received by the solver
from a service network. The CSP-MDL is an NP-complete problem due to the pres-
ence of SAT; that is, the algorithm we presented would require exponential time in
the worst case. On the other hand, the complexity of our algorithm that solves the
problem without Boolean variables is polynomial as it has been shown.

Furthermore, the paper contains the description of a method for using the term
assignment for configuring Web services for joint operation. and the language binding
between the MDL and C++ has been sketched.

Our plans include developing a public domain implementation of our constraint
solver and setting up a free higher-order Web service that reconciles the interfaces of
individual Web services across a service network. We intend to collect use statistics to
be able to draw conclusions about the average size and structure of terms and Boolean
variables as well as any other quantitative or structural information of relevance. On
this basis we hope to be able to answer the open questions raised in this paper in a
practical way. As a result only relevant theoretical challenges will be set forward, and
so any further advancements will be adequately supported with experimental base.

The existing configuration mechanism currently lacks error reporting that would
be useful for application debugging. If the constraints cannot be satisfied, then the
solver should provide feedback which will point an application designer towards the
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interface for the particular service that is causing the problem. It would also be use-
ful to add support for other data formats, such as generic collections, subtyped ar-
rays [41], and functions with support for behavioural subtyping (that is subtyping on
object methods), in the MDL.

The next major milestone will be the integration of the interface configuration
mechanism with a full fledged service management systems such as, for example,
Google Borg [46]. These systems can provide an execution environment for manag-
ing data and computations, but they lack a mechanism for checking compatibility of
components. Our mechanism can be provided as an “out of the box” solution, because
it does not rely on a computational model or on data management in the system.
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