Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations

Yao, Wei, Wang, Chunhua, Sun, Yichuang, Zhou, Chao and Lin, Hairong (2020) Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations. Applied Mathematics and Computation, 386: 125483. ISSN 0096-3003
Copy

Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations. It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under parameter perturbations. It is found that there exist at least (w+2) l (or (w+1) l) exponentially stable equilibrium points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify the correctness and effectiveness of the obtained results.


picture_as_pdf
AMC_Exponential_multistability_of_MCGNNs_.pdf
subject
Submitted Version
Available under Creative Commons: BY-NC-ND 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads