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ABSTRACT As the evolution of traditional electroencephalogram (EEG) monitoring unit for epilepsy
diagnosis, wearable ambulatory EEG (WAEEG) system transmits EEG data wirelessly, and can be made
miniaturized, discrete and social acceptable. To prolong the battery lifetime, analog wavelet filter is used
for epileptic event detection in WAEEG system to achieve on-line data reduction. For mapping continuous
wavelet transform to analog filter implementation with low-power consumption and high approximation
accuracy, this paper proposes a novel approximation method to construct the wavelet base in analog domain,
in which the approximation process in frequency domain is considered as an optimization problem by
building a mathematical model with only one term in the numerator. The hybrid genetic algorithm consisting
of genetic algorithm and quasi-Newton method is employed to find the globally optimum solution, taking
required stability into account. Experiment results show that the proposed method can give a stable analog
wavelet base with simple structure and higher approximation accuracy compared with existing method,
leading to a better spike detection accuracy. The fourth-order Marr wavelet filter is designed as an example
using Gm-C filter structure based on LC ladder simulation, whose power consumption is only 33.4 pW at
2.1Hz. Simulation results show that the design method can be used to facilitate low power and small volume
implementation of on-line epileptic event detector.

INDEX TERMS Wavelet transform, wireless ambulatory electroencephalogram, epileptic event detection,
rational approximation, hybrid genetic algorithm, analog filter.

I. INTRODUCTION
Epilepsy is a group of neurological disorders characterized
by unprovoked and recurrent seizures, which affects approx-
imately 50 million people worldwide. Electroencephalo-
graph (EEG) is the key tool for clinical epilepsy diagnosis by
means of detecting the epileptic events, e.g. interictal spikes
and spike-and-waves [1]. Traditionally, EEG monitoring is
performed by a short-duration test in hospital with a low
diagnostic yield. Alternatively, ambulatory EEG (AEEG) is
widely used for long-term monitoring which allows to be
performed in patients’ home environment. Nonetheless, cur-
rent AEEG systems require long cables, and hence, have
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difficulty in reducing the size, weight and the amount of
EEG data needed to be analyzed by neurologists [2]–[4].
To alleviate above difficulties, wearable AEEG (WAEEG)
has been proposed to transmit EEG data wirelessly [5], [6].
However, long-term monitoring can generate huge amounts
of EEG data, and make wireless transmission very power-
hungry, that is unsuitable for the battery powered WAEEG
which has stringent power budget. As a solution to the afore-
mentioned problem, online data reduction for WAEEG sys-
tem has been presented, in which epileptic event detection
algorithm (EEDA) is used to reduce the amount of wirelessly
transmitted EEG data, and thus the power dissipation [7], [8].
Fig. 1 illustrates the signal processing blocks for WAEEG
system. As a precondition for saving power by data reduction
strategy, EEDA should be implemented at a very low power
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FIGURE 1. Wearable ambulatory EEG system with on-line epileptic event detection.

level. To achieve above goal, [9] has presented an approach
to realize EEDA by continuous wavelet transform (CWT).

Continuous wavelet transform can perform multiscale
analysis that is well suited for detecting the nonstationary
epileptic events [10], [11]. Meanwhile, CWT can be imple-
mented by analog bandpass filter (i.e. wavelet filter) which
can achieve the better performance in real-time and ultra-low
power operation comparedwith digital counterpart [12]–[19].
A 60 pW analog wavelet filter for epileptic event detection
in WAEEG system has been reported in [16]. To be syn-
thesized by analog filter, wavelet base should be approxi-
mated by rational fraction (i.e. analog wavelet base). As a
first step, the construction of analog wavelet base plays an
important role in designing qualifiedwavelet filter tomeet the
requirement of WAEEG, since high approximation precision
can generate low-order analog wavelet filter with high spike
detection accuracy which will facilitate future low power
implementation. The Maclaurin series approximation (MSA)
presented in [13] is proven to be well suited to the design
of wavelet filter for on-line epileptic event detection [9].
Compared with other approximation methods, MSA can
generate a simple analog wavelet base with only one term
in the numerator, which will greatly benefit the following
high-performance filter synthesis while keeping low power
dissipation. However, MSA method has low approximation
precision, which will generate inaccurate wavelet coefficients
and thus low spike detection accuracy. Furthermore, MSA
cannot guarantee the obtained analog wavelet base stable
for arbitrary filter order and time delay. To overcome the
problemswithMSA, the approximationmethod using genetic
algorithm has been proposed in [20]. Although successful in
generating stable wavelet filter, this approach still has trouble
in enhancing approximation accuracy.

This paper proposes a novel approximation method suit-
able for implementation of high-quality on-line epileptic
event detector. Instead of direct Maclaurin series expansion,
the proposed method builds a mathematical approximation
model, and converts the construction of analog wavelet base
to an optimization problem. Then, the hybrid genetic algo-
rithm (GA) is employed to find the optimum approxima-
tion, that is, genetic algorithm and quasi-Newton method

are combined together to obtain the near-globally-optimal
solution and globally optimal solution, respectively. Also,
to guarantee the stability of constructed analog wavelet base,
penalty function is introduced in the fitness function of opti-
mization model to avoid selecting unstable solutions. Finally,
the optimized analog wavelet base is synthesized by Gm-C
filter structure derived from LC ladder simulation. As an
example, the construction procedure of analog Marr wavelet
base is illustrated. In addition, the comparison of epileptic
event detection obtained by proposed method and MSA is
carried out. Experiment results show that the performance
of proposed method is better than that of MSA. Particularly,
the constructed fourth-order wavelet base achieves a better
detection result compared with the seventh-order wavelet
base generated by MSA, which is significant for further
reduction of power consumption and chip size. Based on
SMIC 1V 0.18 µm CMOS technology, the wavelet filter is
designed to cover the frequency range of EEG. Simulation
results show that the power dissipation of designed wavelet
filter at scale a = 0.1 (i.e. 2.1 Hz) is only 33.4 pW with a
46 dB dynamic range.

II. APPROXIMATION OF WAVELET
BASE IN ANALOG DOMAIN
Wavelet transform decomposes a signal f (t) into components
at different scales, which can be expressed as [10]

WTf (a, b) =
1
√
a

∫
∞

−∞

f (t)ψ∗(
t − b
a

)dt (1)

where ψ(t) is wavelet base, a and b are the scale and the
time-shift parameter, respectively.

Based on the definition of convolution, (1) can also be
written as

WTf (a, b) = f (b)⊗
1
√
a
ψ∗(
−b
a

) (2)

Apparently, the CWT at scale a can be realized by analog
filter whose impulse response is 1

√
aψ(

−t
a ) [13]. Fig. 2 illus-

trates the CWT circuit realized by analog wavelet filter bank.
For bioelectrical signal processing, Gaussian-family

wavelet bases are extensively used and normally considered
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FIGURE 2. Realization of CWT at different scales in analog domain.

as the best choices. For example, the Marr wavelet transform
has been applied in on-line epileptic event detection for
WAEEG system [9], [16].

Generally, the Marr wavelet base at scale a in time-domain
can be expressed as [13]

ψa(t)=
1
√
a
ψ(

t
a
)=

1
√
a

2

π1/4
√
3
[1−(

t
a
)2] exp(−

t2

2a2
) (3)

Applying Fourier transform to (3) and denoting s = jω,
the Marr wavelet base at scale a in frequency-domain can be
given as

9a(s) = −π
1
4

√
8
3
a5s2 exp(a2s2/2) (4)

Obviously, the Marr wavelet is noncausal and cannot be
synthesized by analog filter directly. Therefore, a time delay
t0 should be introduced to make wavelet causal. It should be
noted that the time-shift only delays the filter output, without
change in amplitude. Thus, the delayed Marr wavelet base in
frequency-domain at scale a can be given as [13]

H (s) =
−π

1
4

√
8
3a

5s2

est0−a2s2/2
(5)

According to filter theory, only rational fraction with
strictly Hurwitz polynomial in denominator can be synthe-
sized by analog filter. Thereby, the denominator of (5) should
be approximated by a polynomial in terms of s, i.e.

Ha(s) =
−π

1
4

√
8
3a

5s2

Bnsn + Bn−1sn−1 + · · · + B1s+ 1
(6)

where coefficient Bi is positive real number, and all of the
poles locate at the left hand plane.

To construct the analog Marr wavelet base with rational
form as (6), MSA method is proposed in [13] to approximate
the exponential term by Maclaurin series expansion, i.e.

HMSA(s) =
−π

1
4

√
8
3a

5s2

1+ st0 + (
t20
2 −

a2
2 )s

2 + (
t30
6 −

t0a2
2 )s3 + · · ·

(7)

Different from other approximation methods producing
complex numerator [12], [17], [18], the simple rational form
with only one term in the numerator can yield a circuit with
low complexity, the feature that is desired in ultra-low power
implementation of epileptic event detection for WAEEG sys-
tem [16]. More importantly, the characteristic of purely even
function of s in the numerator is desired in high-quality
wavelet filter design. For example, LC ladder filter structure
is well suited for synthesizing analog wavelet base due to the
low sensitivity to component variation, which is beneficial
to future fabrication in the IC process. However, LC ladder
structure can only realize the transfer function whose numer-
ator must be a purely even or odd function of s, which means
analog wavelet base with complex or arbitrary numerator
cannot be synthesized directly [21].

Another merit for MSA is the automatic satisfaction with
the important property of wavelets, i.e.admissibility criteria,
without which the bias in computing wavelet coefficients will
be introduced. Observed from (6), the analog wavelet base
Ha(s) equals zero at s = 0, corresponding to the admissibility
property expressed in time domain as

∞∫
0

ha(t)dt = 0 (8)

where ha(t) is the impulse response of Ha (s).
Although successful in many aspects, MSA method has

shortcomings as below:

1) Theoretically, MSA method cannot realize high accu-
rate approximation since excellent polynomial fitting
of the denominator does not always bring out the excel-
lent approximation of rational fraction. For instance,
the seventh order analogwavelet base used forWAEEG
system in [13] does not give a good approximation
in high frequency region within the concerned range
0-50 dB, which will generate inaccurate CWT coef-
ficients and may result in false spike detection and
high data transmission rate. Meanwhile, the third and
fifth order analog wavelet base derived fromMSA both
have noticeable deviation from ideal Marr wavelet, and
cannot be employed in epileptic event detection [16].
And that means it is unachievable for MSA method to
further reduce filter order for the purpose ofminimizing
power dissipation and chip size required by wearable
device.

2) Practically, MSA method cannot guarantee analog
wavelet base stable. The coefficients Bi (i =

1, 2, . . . , n) in (6) are determined values calculated
by Maclaurin series expansion shown as (7). And so,
the stability of approximated transfer function depends
strongly upon the inter-relationship between wavelet
scale, time delay and filter order. In other words,
stable analog wavelet base may not exist at several
time-delay values and filter orders selected according
to application requirement. For example, the third order
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approximation at scale a = 0.1 cannot generate stable
poles at some time-shift values 13].

As an improvement of MSA, [20] presented a method con-
verting rational approximation to an optimization problem,
which can remove the possibility of instability. However,
since the optimization objective is defined by polynomial
fitting of the denominator in (6), the proposed method is
still struggling in realizing an accurate approximation. More-
over, like MSA and other existing approximation methods,
the time delay t0 in [20] should be selected manually. Small
t0 will result in large truncation error and thus low similarity
between ideal and approximated wavelet base, while large
t0 will increase the difficulty in approximation due to extra
range remaining close to zero and thus require high-order
wavelet filter with large chip size and high power consump-
tion [18]. A delicate balance should be made.

To overcome above limitations, this paper proposes a novel
method based on (6) to find the high accurate and stable
approximation ofMarr wavelet base at arbitrary wavelet scale
and filter order, while generating time delay automatically.

III. PROPOSED METHOD FOR CONSTRUCTING
ANALOG WAVELET BASE
A. MATHEMATICAL APPROXIMATION MODEL
Generally, the approximation of wavelet base can be con-
ducted in time or frequency domain. A majority of exist-
ing methods concentrate on approximation in time domain,
however, having the limitation of manually selecting time
delay t0 first to make wavelet casual. Instead, the proposed
approximation method is conducted in frequency domain.

Theoretically, the optimal approximation of magnitude-
frequency and phase-frequency responses between analog
and ideal wavelet base should be made. Since (4) has lin-
ear phase, the performance in approximating magnitude-
frequency response and phase-frequency response reflects
the waveform similarity and time shift between ideal and
analog wavelet base in time domain, respectively. Hence, the
proposed method only focuses on the optimal fitting of the
magnitude alongwith frequency variation between (4) and (6)
without taking phase-frequency characteristic into account.
The bias in approximating phase-frequency response will
lead to time shift in time domain, which can be considered
as the time-delay t0 clarified in Section 2.
Equation (6) is used as the general form of constructed

analog Marr wavelet base, in which parameters Bi (i =
1, 2, . . . , n) need to be determined. To evaluate the perfor-
mance of approximation method, L2-norm is used to quantify
the fitting error between ideal Marr wavelet and constructed
analog wavelet base. Noted that, as an improvement, the fit-
ting error in this paper is measured by the magnitude of
overall transfer function in frequency domain, not the denom-
inator as used in MSA and [20]. Thus, the rational approxi-
mation of wavelet base can be regarded as an optimization
problem that minimizes the L2-norm of the error function, i.e.

E(x) = ‖abs(9a(s))− abs(Ha(s))‖2 (9)

in which the operator abs means absolute value or complex
modulus, x represents the parameters Bi (i = 1, 2, . . ., n)
in (6) that need to be optimized.

Herein, the L2-norm error of (9) is calculated by numerical
approach with discretization, in which the discretized reso-
lution is setting as frequency interval 1ω = 0.01rad/s, and
the number of frequency points N is selected to cover the
dominant range in frequency response.

Meanwhile, the denominator coefficient Bi in (6) should
be positive for filter design and the poles of Ha(s) should be
located at the left half of s-plane to ensure the stability of
wavelet filter.

Taking all the considerations into account, the rational
approximation of Marr wavelet base is converted to be a
constrained optimization problem with coefficient Bi in (6)
to be optimized, and can be expressed asmin E(x)=

√
N−1∑
m=0

[abs(9a(jm1ω))−abs(Ha(jm1ω))]2

s.t. Bi > 0, real(pi) < 0 , i = 1, 2, . . . n
(10)

where n is the order of wavelet filter, and pi represents the
pole of Ha(s).
As an extra bonus, the proposed method gives a new strat-

egy to construct analog wavelet base with time delay t0 being
selected automatically. Different from existing methods, the
optimum t0 is generated adaptively in proposed method, the
reason for which can be explained as:

First, the causality of constructed analog wavelet base is
guaranteed by introducing constraint during optimization,
that is say, the impulse response of obtainedwavelet base only
appears at t > 0.
Second, accurate approximation of magnitude-frequency

response will lead to high similarity of impulse response
between ideal and analog wavelet base.

Therefore, the causal impulse response of constructed ana-
log wavelet base can be regarded as the time-delayed ideal
wavelet base. And optimum approximation of magnitude-
frequency response will generate the optimum time delay.

B. HYBRID GENETIC ALGORITHM
To resolve the optimization problem shown as (10), the hybrid
genetic algorithm consisting of genetic algorithm and quasi-
Newton method is employed in this paper.

Genetic algorithm is a stochastic optimization technique
which mimics the process of natural evolution. As a global
searchmethod, GA can rapidly locate the region where global
optimum exists, but has poor capability in locating the exact
local optimum within possible region. Local search method
(e.g. quasi-Newton method) can locate the local optimal solu-
tion with high speed, but strongly depends on the selection
of initial solution. Thereby, the combination of GA and local
search method can enhance the possibility of locating the
exact global optimal solution.
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1) GENETIC ALGORITHM
Based on the genetic process of biological organisms,
GA searches the potential global optimum by means of
bio-inspired operators, mainly including [22], [23]:

a: FITNESS FUNCTION
Fitness function is used to calculate the fitness score of each
individual, which plays a critical role during optimization.
The individuals with high fitness score have the chance to
produce new individuals as the offspring. As for this case,
the approximation result of obtained analog wavelet base is
measured by the error between approximated rational fraction
and ideal wavelet base. Therefore, the fitness function for
constructing analog Marr wavelet base is defined by the
fitting error as illustrated by (9).

b: SELECTION
Genetic algorithm selects individual genomes for later breed-
ing according to fitness score. The individuals with high
fitness score have greater probability to be selected to the next
iteration, i.e. the principle of ‘‘survival of the fittest’’. There
have been several selection methods, such as tournament,
roulette, rank and etc.

c: CROSSOVER
A pair of parents are selected from the candidate individuals,
whose chromosomes are recombined to produce new off-
springs. Normally, only part of the selected individuals are
performed crossover according to the preset crossover proba-
bility. By using crossover operation, the off-spring can share
the characteristic of its parents, and produce high-quality
chromosomes. The commonly used crossover operators are
uniform, arithmetic, and etc.

d: MUTATION
Tomaintain genetic diversity from one generation to the next,
mutation operator is usually used to introduce small changes
in the chromosome, which can prevent premature and avoid
local minima during the process of optimization. The popular
mutation operators are bit flip, uniform, adaptive and etc.

2) QUASI-NEWTON METHOD
Quasi-Newton method is an alternative to Newton’s method,
which has been applied widely in optimization. Traditionally,
Newton’s method is frequently used in optimization prob-
lems, whose iterative formula can be given as

xk+1 = xk − H
−1
k gk (11)

where gradient gk = ∇f (x), Hessian matrix Hk = ∇2f (x).
Unfortunately, Newton’s method is time-consuming

in computing inverse Hessian matrix at every iteration.
To reduce the computation complexity encountered by New-
ton’s method, quasi-Newton method is proposed which con-
structs the approximation matrix of original Hessian matrix
and its inverse matrix instead of calculating second-order

partial derivative directly. Till now, several update formulas
have been presented for realizing quasi-Newton method,
among which Broyden-Fletcher-Goldforb-Shanno (BFGS)
algorithm is the popular one [24]. In BFGS algorithm,
the inverse Hessian matrix H−1 is approximated by

Dk+1 = (1−
skyTk
sTk yk

)Dk (1−
yksTk
sTk yk

)+
sksTk
sTk yk

(12)

where D is the approximate inverse Hessian matrix, sk =
xk+1 − xk , and yk = gk+1 − gk .

3) CONSTRAINT CONDITION
To guarantee constructed analog wavelet base having sta-
ble poles when searching for the optimal solution of (10),
a penalty term is introduced to the fitness function of the
individuals who break the constraint condition. By reducing
fitness score, the candidate solutions with unstable poles are
penalized and have lower probability of being selected to next
generation in the iteration process. The fitness function with
penalty term can be generally expressed as{

E(x) x ∈ X
E(x)+ rP(x) x /∈ X

(13)

where X defines the feasible range of optimal solution, i.e.
real(pi) < 0 in (10); r is the penalty coefficient; P(x) is the
penalty function.

To optimize with random initial solution including infea-
sible population as required by GA, the exterior penalty
function is used in this paper, which realizes r andP(x) in (13)
by {

r = (gen/2)2

P(x) = max(real(pi))
(14)

where gen is an increasing positive real number and equals to
the number of generation in each iteration.

Simultaneously, the constraint for Bi in (10) can be realized
by setting the lower bound on the design variables.

Then, the mathematical approximation model with penalty
term can be derived from (10) and (14), i.e.

min E(x)

=

√√√√N−1∑
k=0

[abs(9a(jk1ω))− abs(Ha(jk1ω))]2

+ (gen/2)2 ·max(real(pi), 0), i = 1, 2, . . . n (15)

4) TERMINATION AND JUMP CONDITION
The proposed hybrid GA method can improve optimiza-
tion precision and speed by integrating the advantages
of genetic algorithm and quasi-Newton method. To meet
above target, the optimization process should be terminated
when GA converges to the vicinity of global optimum
(i.e. premature convergence), and then changes to perform
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quasi-Newton searching method. The jump condition from
GA to quasi-Newton search is defined as

m∑
q=1

∣∣Ei(x∗)− Ei-q(x∗)∣∣ < c (16)

where c is the preset tolerance, x∗ represents the best indi-
vidual in every generation, Ei(x∗) means the highest fitness
score in the ith generation, and m is a predefined number of
generations to calculate the cumulative change in best fitness
score.

To find the optimal approximation of Marr wavelet base
modeled by (15), this paper employs GA as a pre-processor to
conduct the initial search and locate the near-globally-optimal
solution. When convergence is reached, the optimization pro-
cess will jump out of GA and perform quasi-Newton search-
ing based on BFGS algorithm to find the globally optimal
solution.

The implementation step of proposed hybrid GA method
is outlined as below.

Step 1: randomly generate the initial population;
Step 2: perform selection, crossover and mutation opera-

tion to find the individual with higher fitness score;
Step 3: if (16) is satisfied or the predefined maximum

number of iterations is exceeded, select the best individuals
in current generation as the initial solution x0, and jump to
Step 4, otherwise jump to Step 2;

Step 4: initialize the matrix D0 (normally unit matrix I )
and the allowed maximum error ε;

Step 5: if ‖gk‖ ≤ ε, then stop and select xk as the optimal
solution, otherwise jump to Step 6;

Step 6: compute the direction dk by dk = −Dkgk ;
Step 7: conduct line search in the direction of dk ,

find a stepsize αk , and compute the next solution by
xk+1 = xk + αkdk ;
Step 8: compute the approximated inverse Hessian matrix

Dk+1 by (12);
Step 9: let k = k + 1, and jump to Step 5.

C. PERFORMANCE COMPARISON OF HYBRID GENETIC
ALGORITHM BY TEST FUNCTIONS
The proposed hybrid GA method can greatly increase the
possibility of finding optimal solution. Herein, three widely
used testing functions are employed to evaluate the perfor-
mance of GA, quasi-Newton method and hybrid GA. Heuris-
tic algorithms have the characteristic of randomness. Thus,
to give a fair comparison, the average performance is used
for evaluation which is measured by 60 independent runs
performed for each test function. The population size and
maximum iterations are set to be 100 and 200, respectively.

1) SPHERE FUNCTION
Sphere function is a continuous and unimodal function, which
has no local minimum but a global one. Fig. 3 plots its
two-dimensional form, whose formula, search domain and

FIGURE 3. Two-dimensional Sphere function.

TABLE 1. Optimization results of Sphere function.

FIGURE 4. Two-dimensional Rosenbrock function.

theoretical minimum point are defined in (17).

Formula : f (x, y) = x2 + y2

Searchdomain : −100 ≤ x, y ≤ 100

Globalmin imum : f (0, 0) = 0 (17)

Table 1 shows the optimization results after 60 test runs
for each algorithm. Obviously, quasi-Newton method can
find the global minimum correctly in each test run. This can
be predictable since Sphere function is convex, and local
search methods are good at convex optimization. The same
as quasi-Newton method, hybrid GA also gives an excellent
performance. In contrast, GA cannot locate the global opti-
mum, but mostly converges to the vicinity of minimum.

2) ROSENBROCK FUNCTION
Rosenbrock function is a unimodal and nonconvex function,
whose global minimum is inside a long, narrow parabolic
shaped flat valley. It is easy to find the valley, but difficult to
locate the global minimum. Fig. 4 plots its two-dimensional
form, whose formula, search domain and theoretical mini-
mum point are defined in (18).

Formula : f (x, y) = 100(x − y2)2 + (y− 1)2

Search domain : −100 ≤ x, y ≤ 100

Global minimum : f (1, 1) = 0 (18)

Table 2 shows the optimization results of Rosenbrock func-
tion using three algorithms. Normally, gradient-basedmethod
is inefficient for Rosenbrock function with long narrow val-
ley. Quasi-Newton method can follow the shape of the valley
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TABLE 2. Optimization results of Rosenbrock function.

FIGURE 5. Two-dimensional Ackley function.

TABLE 3. Optimization results of Ackley function.

and find the global minimum using finite difference gradi-
ents. As seen from Table 2, quasi-Newton method can locate
the global minimum correctly in each test run. Hybrid GA
also gives an excellent performance. In contrast, GA cannot
locate the global optimum, but converges to the vicinity of
minimum.

3) ACKLEY FUNCTION
Ackley function is a multimodal function, which has large
amount of local minima and only one global minimum.
Fig. 5 plots its two-dimensional form, whose formula, search
domain and theoretical minimum point are defined in (19).

Formula : f (x, y) = −20e−0.2
√

0.5(x2+y2)

− e0.5 cos(2πx)+0.5 cos(2πy) + e+ 20

Search domain : −30 ≤ x, y ≤ 30

Global minimum : f (0, 0) = 0 (19)

As the gradient-based search method, quasi-Newton
method may get trapped in local minima easily when dealing
with the optimization containing many local minima such
as Ackley function. Observed from Table 3, quasi-Newton
method converges to local minima 59 times out of 60 inde-
pendent runs when initial solutions are generated randomly.
Meanwhile, GA can locate the vicinity of global minimum,
but fails to converge to the accurate location, which can be
seen from the best and average of optimal value in Table 3.
Experiment result shows that Hybrid GA can find the global
minimum correctly in each independent test run.

Apparently, hybrid GA can combine the merits of GA and
quasi-Newton method, and thus enhance the performance of
optimization effectively.

IV. DESIGN EXAMPLE OF ANALOG MARR
WAVELET BASE USING HYBRID GA
The proposed approximation method can be used to construct
analog Marr wavelet base at arbitrary filter order. To give a
detailed comparison with MSA and [20], the mathematical
approximation model for constructing seventh-order Marr
wavelet filter at a = 1 is taken as the example. Also, the num-
ber of sampled frequency points N is set to be 701 with
dominant frequency range 0-7 rad/s covered.

Then, the mathematical approximation model can be
expressed by setting the parameters in (15) accordingly, i.e.

min E(x)=

√
700∑
k=0

[abs(9a(jk1ω))−abs(Ha(jk1ω))]2

+(gen/2)2 ·max(real(pi), 0)

9a=1(jω) =
−2.1741s2

e−s2/2

Ha(jω) =
−2.1741s2

B7s7 + B6s6 + · · · + B1s+ 1

(20)

Genetic algorithm is employed to locate the near-
globally-optimal solution of (20), in whichBi (i = 1, 2, . . ., 7)
are searched within the bounds of (0,10), initial population
size is 100, selection operator is tournament, crossover and
mutation operators are arithmetic with probability of 0.8 and
adaptive method, respectively.

After 100 iterations, the near-globally-optimal solution
obtained by GA is

B1 = 4.34, B2 = 6.00, B3 = 8.17, B4 = 4.33,

B5 = 3.13, B6 = 0.65, B7 = 0.29 (21)

The L2-norm approximation error by GA is 1.5508.
Then, quasi-Newton search using BFGS algorithm is per-

formed with (21) as the initial solution. The globally optimal
solution of (20) can be obtained as

B1 = 3.64, B2 = 5.68, B3 = 5.86, B4 = 3.58,

B5 = 1.77, B6 = 0.45, B7 = 0.11 (22)

Calculation shows that the L2-norm approximation error
by hybrid GA is decreased to 0.2695.

Substituting the parameters in (22) into (6), the seventh-
order analog Marr wavelet base can be written as (23) shown
at the bottom of next page.

Fig. 6 shows the approximation result of proposed method
compared with MSA and [20] at n = 7. It can be seen that
the approximation method based on hybrid GA can improve
the performance of GA greatly, and has much higher approx-
imation accuracy in frequency domain than MSA and [20].
Table 4 shows the comparison of L2-norm approximation
error between the methods using hybrid GA and MSA at
different filter orders. Obviously, the approximation error
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FIGURE 6. Approximation of Marr wavelet base in frequency domain at
n = 7.

TABLE 4. Comparison of L2-norm approximation error in frequency
domain.

FIGURE 7. Approximation of Marr wavelet base in time domain at n = 7
(a) proposed method (b) MSA and [20].

of proposed method gets lower along with the increase of
wavelet filter order, while MSA does not have this charac-
teristic. Hence, the proposed method achieves much better
performance than MSA at each filter order.

As clarified above, only focusing on the approximation
in magnitude-frequency response can generate an optimum
time-delay t0 in time domain automatically. As an illustration,
Fig. 7(a) gives the impulse response of constructed wavelet
filter expressed by (23), as shown at the bottom of this page,
compared with ideal Marr wavelet delayed by 3.3s. Fig. 7(b)

FIGURE 8. Poles map for seventh-order Marr wavelet base by
(a) proposed method (b) MSA.

shows the impulse response of constructedMarr wavelet filter
by MSA and [20] compared with ideal Marr wavelet delayed
by 4s. Apparently, the proposed method has much higher
approximation accuracy in time domain, and yields a better
fit in the domain of support, while vanishing faster with lower
oscillation outside of the support interval, the feature that well
suited for the characteristic of wavelet. In addition, the gener-
ated time-delay in proposed method is smaller than that used
in MSA and [20] (i.e. t0 = 4s), which gives an extra benefit
for lowering the complexity of delay circuit used in WAEEG.

Simultaneously, the proposed method can guarantee con-
structed wavelet base stable thanks to the introduction of
penalty function during optimization. Fig. 8 illustrates the
poles location of seventh-order Marr wavelet base con-
structed by proposed method and MSA at different time-
delays. Obviously, all of the poles derived from proposed
method are stable (i.e. located at the left half of s-plane).
However, the stability of generated poles byMSA is sensitive
to the selection of time-delay.

In Table 4, it’s worth noting that the approximation accu-
racy of proposed method at n = 4 outperforms that of
MSA at n = 7. Equation (24) gives the transfer function
of fourth-order wavelet base obtained by proposed method,
generating 2.4s time delay in time domain. Fig. 9 shows
frequency response and impulse response compared with
seventh-order wavelet base by MSA. Particularly, Fig. 9(b)
gives a straight comparison by aligning the impulse responses
with ideal wavelet delayed by 4s. It can be seen that the
fourth-order wavelet base by proposed method has better

Hsev(s) =
−2.1741s2

0.11s7 + 0.45s6 + 1.77s5 + 3.58s4 + 5.86s3 + 5.68s2 + 3.64s+ 1
(23)
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FIGURE 9. Approximation of Marr wavelet base by proposed method at
n = 4 (a) frequency response (b) impulse response by 1.6s compensation.

approximation than seventh-order wavelet base by MSA
both in frequency and time domain, which indicates that
the chip volume and power consumption can be reduced
significantly further while getting a better result in epileptic
event detection.

Hfou(s) =
−2.1741s2

s4 + 1.57s3 + 3.67s2 + 2.25s+ 1
(24)

V. PERFORMANCE ANALYSIS FOR
EPILEPTIC EVENT DETECTION
A. EPILEPTIC EVENT DETECTION ALGORITHM
To evaluate the performance of constructed analog wavelet
base in epileptic event detection, the algorithm illustrated
in Fig. 10 is employed. Pa is the normalized wavelet
power (NWP) at scale a denoted as (25), which is used to nor-
malize the amplitude changes of input EEG signal recorded
from different patients.

Pa =
W 2
a

σ 2 (25)

where Wa represents the wavelet coefficient at scale a, and
σ 2 is the variance of the signal in specific time interval.
The operation procedure of detection algorithm mainly

includes four stages.
1) Two Marr wavelet filters at a = 0.1 and a =

0.025 should be constructed to calculate the NWPs of
input EEG signal. Herein, to facilitate low-power and

FIGURE 10. Flowchart of epileptic event detection algorithm based on
CWT [9].

low-volume implementation, the fourth-order wavelet
filter defined by (24) is employed. Then, the abovemen-
tioned two wavelet filters can be designed by denor-
malizing (24) to desired center frequency, i.e. (26) and
(27) as shown at the bottom of this page. where two
time-delays will be generated automatically, i.e. t0 =
0.24 for a = 0.1 and t0 = 0.06 for a = 0.025,
respectively.

2) Time delay blocks for τ1 = 0.06s and τ2 = 0.18s
should be used to compensate for different time-delay
values caused by two wavelet filters so as to calculate
and compare the NWPs at different scales at the correct
time. Compared with 0.1s and 0.3s time delay blocks
used in [9], the proposed method can greatly reduce the
required delay time and thus the complexity of delay
circuits.

3) Candidate spikes are detected by performing the
comparison

P0.025 > β (28)

where P0.025 represents the NWP at scale a = 0.025,
and β is a user-set detection threshold.

4) The artefacts and incorrect detections are rejected from
candidate spikes when satisfying

|P0.025| < |P0.1| (29)

where P0.1 represents the NWP at scale a = 0.1.

H0.1(s) =
−0.0069s2

1.0053× 10−4s4 + 0.0016s3 + 0.0367s2 + 0.2252s+ 1
(26)

H0.025(s) =
−2.1485× 10−4s2

3.9269× 10−7s4 + 2.4535× 10−5s3 + 0.0023s2 + 0.0563s+ 1
(27)
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TABLE 5. The information about testing EEG data.

FIGURE 11. Spike detection using generated NWPs by different wavelet
bases at scale a = 0.025. (a) Raw EEG data (b) NWP by this work (c) NWP
by MSA.

B. EXPERIMENT RESULTS
The epileptic EEG dataset used in detection experiment
is from the Temple University Hospital (TUH) EEG Cor-
pus, which is one of the world’s largest publicly available
databases of clinical EEG data [25]. Table 5 gives the sum-
mary of the information about testing EEG data, including
more than 6 hours of interictal EEG data recorded from 20
patients and 60 interictal events marked by experts. The raw
EEG data are sampled at a minimum of 250 Hz using a 16-bit
A/D converter. The recordings have multichannel that vary
between 20 and 128 channels.

Wavelet analysis has been proven to be an effective
tool for epileptic event detection according to three stages
clarified above [9]. However, imperfect approximation to
ideal wavelet base may deteriorate the detection results.
Fig. 11 gives an example to illustrate this possibility.

One example of epileptic EEG data with 15s duration is
shown in Fig. 11(a), and the events are marked by epileptol-
ogist. Fig. 11(b) and Fig. 11(c) depict the NWP responses
at scale a = 0.025 calculated by proposed fourth-order
wavelet base and the seventh-order wavelet base from MSA,
respectively. The NWPs are highlighted by red arrows for real
spikes from event region and black arrow for a false spike
from normal EEG.

Theoretically, the spikes are supposed to have higher NWP
than normal EEG at scale a = 0.025. Thus, according to
rule (28), setting threshold β between the values of spikes’
and normal EEG’s NWP can differentiate spikes from nor-
mal background. Observed from Fig. 11(b), the NWPs of
real spikes marked by red arrow are 0.068 (left) and 0.061
(right) respectively, which are higher than the false spike
marked by black arrow (0.057). Therefore, based on rule (28),
setting threshold β between 0.057 and 0.061 can reject the
false spike and collect two real spikes successfully. However,
due to the low approximation accuracy by MSA, NWPs
of the real spikes and the false spike in Fig. 11(c) almost
have the same value 0.07 that means false detection will be
inevitable in stage 2. For example, lower threshold β will
collect real spikes and also false spike as candidate spikes.
Meanwhile, calculation shows that condition (29) is not satis-
fied at the highlighted locations with red arrow in Fig. 11(b)
and the location with black arrow in Fig. 11(c). Therefore,
the false spike will finally be detected by MSA incorrectly,
while the proposed method can detect real spike without false
detection.

The spike detection experiment is carried out by Matlab,
and the Marr wavelet filters are simulated by the transfer
functions. For on-line data reduction, the sensitivity and the
percentage of data transmitted are employed to evaluate the
performance of proposed method in epileptic event detection.

Sensitivity is defined as the percentage of the events which
are marked by expert and detected correctly. Herein, to give
a fair evaluation of the average performance, the total sensi-
tivity for all tests at each user set threshold is used, i.e.

total sensitivity=

M∑
i=1

Di∑M
i=1 Ni

× 100% (30)

where M is the number of records, Ni and Di are the number
of events marked by expert and the number of events detected
correctly in the ith record, respectively. High sensitivity is
required to increase the amount of useful information so as
to enhance the diagnostic yield.

The percentage of data transmitted shows the performance
in data reduction, which can be expressed by

percent of data transmitted

=
duration of data transmitted
total duration of EEG data

× 100% (31)

Low percentage is required to increase the amount of dis-
carded useless information.
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FIGURE 12. Performance of detection algorithm. (a) MSA (seventh-order)
(b) This work (fourth-order).

TABLE 6. Performance of the algorithm with 2.5s recording window.

TABLE 7. AUC of the average performance of the algorithm.

Normally, the total sensitivity and the percentage of data
transmitted are affected by user set threshold. A small thresh-
old will increase the number of correctly detected events and
thus the sensitivity, but also the number of false detected
events and thus the percentage of data transmitted. Mean-
while, a big threshold will give the opposite result. Therefore,
a trade-off should be made by tuning threshold. In this paper,
the threshold is set to be within the range of 0–2 in 0.05 steps.

Fig. 12 shows the receiver operating characteristic (ROC)
curves to evaluate the performance in epileptic event detec-
tion, in which x-axis and y-axis represent the percentage of
data transmitted and total sensitivity, respectively. As illus-
trated in Table 6, the proposed method can correctly detect
88% of the expert-marked events while only sending 50%
of the entire EEG data with 2.5s recording window, giving
a 6.6% improvement compared with MSA. Table 7 gives
the values of area under curve (AUC) of Fig. 12 at different
recording windows. Obviously, the proposed method using
fourth-order wavelet filters has the better average perfor-
mance than MSA using seventh-order wavelet filters at each

FIGURE 13. Filter structure for synthesizing constructed fourth-order
wavelet base (a) doubly terminated LC ladder prototype (b) Gm–C
structure based on LC ladder simulation.

recording window, which is beneficial for future low-power
and miniature implementation of WAEEG.

VI. DESIGN OF GM-C WAVELET FILTER
BASED ON LC LADDER SIMULATION
To give a fair comparison with MSA, the Gm–C filter struc-
ture based on LC ladder simulation used in [16] is employed
to synthesize the constructed fourth-order Marr wavelet base.

The transfer functions (26) and (27) have the purely even
numerator and can be synthesized by LC ladder structure,
which is considered as one of the most popular topologies for
low power and low voltage application due to the character-
istic of minimal sensitivity to inexact component value [21].
Fig. 13(a) shows the doubly terminated LC ladder prototype
for the synthesis of constructed fourth-order wavelet filter.

Gm–Cfilter is well suited for epileptic EEG signal process-
ing since very low characteristic frequency can be realized by
Gm cell with very low transconductance. Fig. 13(b) gives the
Gm–C filter structure derived from Fig. 13(a) by simulating
inductors and resistor usingGm cells, whose transfer function
can be expressed as (32) [21].

H (s) =
cs2

ds4 + es3 + fs2 + gs+ 1
(32)

where

d = C1C2CL1CL2/(gm1gm2gm4gm5)
e = C1CL1CL2gm3/(gm1gm2gm4gm5)

f =
(C1CL2gm2gm3+C1CL1gm4gm5+CL2C2gm1gm2)

(gm1gm2gm4gm5)
g = gm3CL2/(gm4gm5)

(33)

In this paper, the wavelet filter at a = 0.1 defined by (26)
is selected as an example to elaborate the design procedure.
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FIGURE 14. Circuit structure of Gm cell.

By using coefficient matching between (26) and (32), one can
deduce the relationship as below:

1.0053× 10−4 = C1C2CL1CL2/(gm1gm2gm4gm5)
0.0016 = C1CL1CL2gm3/(gm1gm2gm4gm5)
0.0367

=
(C1CL2gm2gm3+C1CL1gm4gm5+CL2C2gm1gm2)

(gm1gm2gm4gm5)
0.2252 = gm3CL2/(gm4gm5)

(34)

Numerator coefficient c in (32) can be regarded as the
filter gain. The mismatch of c only introduces changes in
absolute amplitude, not the relative amplitude of wavelet
transform coefficient which plays an important role in
threshold-dependent EEDA. Therefore, the numerator coef-
ficient matching is not considered in (34).

The transconductance of Gm cells in Fig. 13 is selected to
be identical value 100 pS to improve transconductors match-
ing and keep the capacitance realistic for chip fabrication in
low frequency application (e.g. 2.1Hz for a = 0.1). Then, the
capacitances in Fig. 13 can be calculated by (33), i.e.

C1=6.8pF, CL1=10.4pF, CL2=22.52pF, C2=6.3pF

(35)

Fig. 14 shows the Gm circuit realized by simple differ-
ential pair containing a cascaded load to maintain suitable
bandwidth and dc operating points [26]. In a single wavelet
filter, all the Gm cells share the same bias current realized by
sharing transistor M8.
To operate in low voltage and low power application,

the Gm circuit is designed in deep weak inversion, and thus
the relationship between Iout and Vin can be deduced as [20]

Iout = Ibias tanh(
Vin
2nUt

) (36)

Then, by using Maclaurin expansion, the transconductance
can be given as [16]

gm =
Ibias
2nUt

(37)

For the used CMOS process model, n and Ut are 1.28 and
26mV, respectively. Therefore, to realize the transconduc-
tance of 100pS, Ibias is calculated to be 6.66 pA.

FIGURE 15. Simulated response of designed Marr wavelet filter at a = 0.1
(a) impulse response (b) frequency response.

VII. SIMULATION RESULTS
The fourth-order Marr wavelet filter is designed using stan-
dard SMIC 0.18µm,MIM-cap, 1 poly 6metal CMOS process
with 1V power supply. Fig. 15 shows the impulse and fre-
quency responses of designed Marr wavelet filter at a = 0.1,
respectively. Obviously, the designed wavelet filter has the
satisfied responses compared with (26). The wavelet scale
is realized by setting Ibias = 6.67 pA to achieve the centre
frequency of 2.1 Hz, corresponding to the ultra-low power
consumption of 33.4 pW.

The simulated filter performance is summarized in Table 8,
in which the dynamic range (DR) and the signal-to-noise
ratio (SNR) are defined by

DR = 20 log
( Vim
Vfloor

)

10 (38)

SNR = 10log
(
V2irms
V2noise

)

10 (39)

where Vim is the maximum input signal voltage, Vfloor is
the noise floor, Virms and Vnoise represent the input root-
mean-square and the input-referred noise voltage, respec-
tively. Simulation results have shown that the dynamic range
and SNR are 46 dB and 43dB respectively, which meet the
requirements by EEG analysis [13].

The figure of merit (FOM) is also calculated by

FOM =
P · Vdd

p · fc · DR
(40)

where P is the filter power consumption, Vdd is the power
supply, p and fc represent the number of poles and the centre
frequency, respectively. As seen from Table 8, an ultra-low
FOM of 0.86×10−13 has been achieved.

The scale of wavelet filter can be adjusted by changing
the transconductance value of Gm cells. Fig. 16 illustrates
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TABLE 8. Summary of simulated response for designed wavelet filter.

FIGURE 16. Simulated response of designed Marr wavelet filter at
different scales (a) impulse response (b) frequency response.

the impulse and frequency responses of designed wavelet
filter at dyadic scales covering EEG bandwidth, i.e. 1-64 Hz.
Apparently, the proposed design method can realize wavelet
transform coefficients at different scales conveniently with
higher accuracy.

VIII. CONCLUSION
Stable analog wavelet base with high approximation accu-
racy is required in low-power implementation of CWT used
for on-line epileptic event detection in WAEEG system.
To achieve above goal, this paper has proposed a novel
method for designing stable wavelet base in analog domain.
Taking the Marr wavelet as an example, the mathematical
approximation model in frequency domain is constructed as
an optimization problem with penalty function for stability
introduced, and the hybrid genetic algorithm is employed to
find the optimal approximation. Simulation results show that
the proposed approximation method can yield better perfor-
mance both in time and frequency domain, while generating

optimum time delay automatically which is an advantage
over existing approaches. The epileptic event detection exper-
iment is conducted by using constructed fourth-order Marr
wavelet base, and the result shows that an 88.0% sensitivity
with 50% data reduction is achieved which is better than
the seventh-order wavelet base used in existing WAEEG
technique.

Besides, the fourth-order Marr wavelet filter at a = 0.1
is designed by LC ladder structure using 0.18µm CMOS
process. A 2.1 Hz center frequency can be realized with 46dB
dynamic range and 33.4 pW power consumption. By adjust-
ing the transconductance of Gm cells, thewavelet filter covers
the range of 1-64 Hz EEG bandwidth. Theoretical analysis
and experiment results prove that the presented method can
be used to reduce the complexity of existing on-line epileptic
event detector used in WAEEG while keeping an acceptable
detection result and data reduction rate. Leading from this
paper, the future work will focus on the low power hardware
implementation of other blocks in EEDA, such as delay
circuit, rectifier and comparator.
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