Time course of the initial [Ca2+]i response to extracellular ATP in smooth muscle depends on [Ca2+]e and ATP concentration

Mahoney, M.G., Slakey, L. L., Benham, C.D. and Gross, D. J. (1998) Time course of the initial [Ca2+]i response to extracellular ATP in smooth muscle depends on [Ca2+]e and ATP concentration. Biophysical Journal, 75 (4). pp. 2050-2058. ISSN 0006-3495
Copy

In response to extracellular application of 50 mM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca21]i to peak [Ca21]i within 5 s. The time from stimulus to the peak of the [Ca21]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 mM and below, the time to the [Ca21]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca21, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 mM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl2 ion efflux with a time course similar to the [Ca21]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca21 release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca21 response are dominated by upstream signal cascade components.

picture_as_pdf

picture_as_pdf
900072.pdf

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads