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1 Introduction

Supersymmetric string backgrounds play a central role in our understanding of string phe-
nomenology and the AdS/CFT correspondence. Without flux, low-energy supersymmetry
implies the internal manifold has special holonomy. For example M-theory compactified
on a G2 holonomy manifold leads to an N = 1 effective theory in four dimensions [1, 2].
Studying the geometric properties of G2 manifolds allows one to probe various properties
of the compactified theory, such as the moduli spaces of massless fields, particle spectra
and couplings [3–6, 6–14]. Despite several recent developments such as new constructions
of large families of examples on twisted connected sums [15], G2 manifolds remain far less
well understood than, for example, their Calabi-Yau counterparts [16].

String theory admits a much larger class of generic N = 1, D = 4 backgrounds
once one allows non-trivial flux. In M-theory, this moves one away from G2 holonomy and
greatly complicates conventional geometrical descriptions [17–20]. In type II theories, truly
N = 1 backgrounds necessarily have non-zero flux, and are generically not of Calabi-Yau
type (for a review see [21]). This raises several natural questions: how does one extract
the properties of the low-energy theory from the geometry of this much larger class? Do
they have an “nice” geometrical description in analogy to that of special holonomy spaces?
What tools do we have to find the number of massless moduli or construct examples? Does
incorporating them in a larger class shed any light on the nature of G2 manifolds?

In this paper we will address these questions using the formalism of E7(7) ×R+ gener-
alised geometry [22–25]. It was shown in [26–28] that such backgrounds define a generalised
G-structure, where the relevant group is G = SU(7) ⊂ E7(7)×R+. Furthermore, supersym-
metry for the ten- or eleven-dimensional solution was shown to be equivalent to the gen-
eralised SU(7) structure being torsion-free. This analysis provides a description of generic
N = 1, D = 4 backgrounds via an invariant spinor and a generalised connection, simi-
lar to giving an SU(3)-invariant spinor and the Levi-Civita connection for a conventional
Calabi-Yau background. Conventional G-structures can also be described by giving a set of
nowhere-vanishing, G-invariant tensors together with differential conditions that constrain
the intrinsic torsion of the structure, for example in the G2 case the three-form ϕ satisfying
dϕ = d ? ϕ = 0. The same is true for generalised structures and this is the analysis we will
present in this paper. This viewpoint gives an elegant geometric reinterpretation of the
supersymmetry conditions for generic flux backgrounds, providing a general formalism for
understanding moduli, and giving general expressions for the perturbative superpotential
and Kähler potential of the four-dimensional effective theories. The geometric structures
present for generic N = 2 compactifications have been discussed elsewhere [29–33] — this
paper can be seen as the N = 1 companion to those works.

In M-theory, the SU(7) generalised structures can generically be viewed as a sort of
complexification of a conventional G2 structure combining the three-form ϕ with the M-
theory gauge potential A. This is analogous to the way the symplectic structure and
NSNS two-form B combine to give a complexified Kähler form in the A-model topological
string. Because of this complexification, the space of SU(7) structures Z admits a Kähler
metric. Furthermore, as we will see, the Kähler potential K on Z is a generalisation of
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Hitchin’s G2 functional [34]. The supersymmetry conditions on the SU(7) structure are
of two types. First there is a involutivity condition: in direct analogy to a conventional
complex structure, the SU(7) structure defines a subbundle of the complexified generalised
tangent space that must be involutive under the generalised Lie derivative. We call this an
“exceptional complex structure”. In the special case of G2 structures, it imposes dϕ = 0.
The second supersymmetry condition is the vanishing of a moment map, defined for the
action of generalised diffeomorphisms (that is, conventional diffeomorphisms plus form-field
gauge transformations) and in the G2 case imposes the condition d ? ϕ = 0.

Interestingly, this reformulation puts the analysis of generic supersymmetric back-
grounds, and G2 structures in particular, in the same setting as many classic problems
in differential geometry: we have a complex condition (the involutivity of the subbundle)
together with an infinite-dimensional moment map. This set up appears for example in
Atiyah and Bott’s work on flat connections on Riemann surfaces [35], in the supersymmet-
ric hermitian Yang-Mills equations of Donaldson-Uhlenbeck-Yau [36–38] and the equations
of Kähler-Einstein geometry [39–43]. In each case, the existence of solutions to the mo-
ment map equations can be reformulated in terms of an algebraic notion of stability, using
the ideas of Geometrical Invariant Theory (GIT). As we will discuss, at least formally,
something similar happens here. The generalised Hitchin functional K plays the role of the
norm functional of GIT, and in addition, the square of the moment map (the Yau func-
tional in the case of Kähler-Einstein metrics) is equal to the generalised Ricci scalar. In the
context of G2 structures, this complexified picture suggests a possible notion of stability
on the space of closed G2 structures, the stable orbits being the ones that extremise the
generalised extension of Hitchin’s G2 functional and satisfy d ? ϕ = 0.

In the type II context, the original O(d, d) version of generalised geometry of Hitchin
and Gualtieri [44, 45] “geometrises” the NSNS sector of the supergravity fluxes, giving a
unified description of the metric and B field. The connection to supergravity has already
been used to characterise D = 4, N = 1 backgrounds in the seminal work of Graña et
al. (GMPT) [46, 47]. The RR fluxes can be included but are not geometrised in the same
way as the NSNS sector and so the conditions do not have a simple interpretation in
terms of integrability. This has made it difficult to analyse the general properties of these
backgrounds, such as their moduli spaces. Despite this, these methods have been very
useful in finding new solutions [48–53] and investigating the AdS/CFT correspondence [54–
56]. By going to E7(7) × R+ generalised geometry, all the fluxes become geometrical and
as we have mentioned the N = 1 conditions are equivalent to a torsion-free generalised
structure [27]. Crucially, as we show, this allows us to treat the moduli of flux backgrounds
in a unified manner, as well as giving simple expressions for the corresponding low-energy
Kähler potential and superpotential. We can then re-derive known results in the G2 case
as well as in a more general class we denote “type-0”. Furthermore, we can extend previous
results for GMPT backgrounds, in particular the work of Tomasiello [57], to find, for the
first time, the exact moduli of GMPT backgrounds.

Throughout our analysis we restrict ourselves to warped flux backgrounds with a four-
dimensional Minkowski factor. An important caveat is that all our backgrounds are hence
subject to the “no-go” theorems that preclude fluxes precisely when the internal space is
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compact [58–64]. Thus the spaces we discuss should be understood either as non-compact
or, if one is interested in model building, as spaces with boundaries where the sources
(branes and orientifolds) have been removed. At various points in the derivations we
make use of integrations by parts that will be valid provided we adopt suitable boundary
conditions at infinity and/or at the sources. It would be interesting to include the effects
of localised sources in the analysis, in particular to see how they might modify the naive
moduli space calculations.

The layout of the paper is as follows. In section 2 we review the notion of G-structures
and the role of involutivity and moment maps in defining conventional complex structures
and generalised complex structures in six dimensions. These give simple models for the
general analysis of SU(7) structures we then give in section 3. Section 4 shows explicitly
how G2 manifolds and the solutions of GMPT fit into the general analysis. Section 5 first
shows how the involutivity and moment map conditions can be viewed as F - and D-term
supersymmetry conditions in a rewriting of the supergravity as an effective D = 4, N = 1
theory. It then connects our analysis to the Geometrical Invariant Theory picture and the
G2 functional of Hitchin. In particular, we see that Hitchin’s extremisation is equivalent
to finding the stationary points of the norm functional, and we go on to outline the naive
connection to stability. Section 6 addresses the general moduli problem, and calculates the
moduli of generic “type-0” structures (including G2) and the full set of moduli of GMPT
solutions. We conclude with some discussion.

2 Review of integrability, involutivity and moment maps for G-structures

We begin with a review of two examples of familiar geometric structures that appear when
describing supersymmetric backgrounds: conventional complex structures in six dimensions
and their generalised geometry extensions first introduced by Hitchin and Gualtieri [44, 45].
In each case, involutivity of an appropriate vector bundle under a bracket is equivalent to
the integrability of the structure.1 We will then also discuss how the extra differential
conditions that promote these structures to integrable SL(3,C) and generalised Calabi-
Yau structures come from a moment map for the action of diffeomorphisms and, in the
latter case, gauge symmetries. These two examples will provide the model for how we
analyse generic four-dimensional N = 1 flux backgrounds.

2.1 Complex structures

LetM be a six-dimensional manifold with tangent bundle T . Recall that an almost complex
structure on M is a conventional G-structure with G = GL(3,C). It is defined by a
nowhere-vanishing tensor I ∈ Γ(EndT ), with I2 = −1, that allows one to decompose the
complexified tangent bundle into subbundles

T ⊗ C := TC = L1 ⊕ L−1, (2.1)
1Note that we use “integrable” and “torsion-free” interchangeably. For a conventional G-structure, inte-

grable is a stronger condition: torsion-free implies the G-structure is flat to first-order, while integrable im-
plies the G-structure is locally equivalent to the flat model. See [65] for some remarks on this nomenclature.
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where sections of L1 have charge +i under the action of I, and L̄1 ' L−1. Typically,
L1 is written T 1,0 but we will use this notation to highlight the similarities to the work
in the later sections. Consider two vectors V,W ∈ Γ(L1). A standard way to define an
integrable structure is to require that the Lie bracket of two (1, 0)-vector fields gives another
(1, 0)-vector field. In other words, L1 is involutive under the Lie bracket

[V,W ] ∈ Γ(L1) ∀ V,W ∈ Γ(L1). (2.2)

Using I to project onto L1 it is then straightforward to show that involutivity of the bracket
is equivalent to the vanishing of the Nijenhuis tensor, or equivalently, in the language of
G-structures, the vanishing of the intrinsic torsion.

Every almost complex structure I defines a unique “canonical” line bundle UI ⊂ ∧3T ∗C
satisfying

ıV Ω = 0 ∀ V ∈ Γ(L−1), Ω ∧ Ω̄ 6= 0, (2.3)

where Ω is a local section of UI . If this bundle is trivial, one can introduce a refinement of
the almost complex structure by considering G = SL(3,C) structures. Each such structure
is defined by a nowhere-vanishing section Ω ∈ Γ(UI) so that any two such structures defining
the same complex structure differ by nowhere-vanishing complex function f

Ω′ = fΩ. (2.4)

Note that, as SL(3,C) ⊂ GL(3,C), given a suitable complex three-form Ω (one stabilised by
SL(3,C)) one can construct an almost complex structure I, as described by Hitchin [66]. It
is natural then to ask the question, if we have a torsion-free GL(3,C) structure (a complex
structure), what extra condition do we need to impose to have a torsion-free SL(3,C)
structure? From the intrinsic torsion in each case, it is straightforward to see that the
GL(3,C) structure is torsion-free if

dΩ = A ∧ Ω, (2.5)

for some (0, 1)-form A, while for a torsion-free SL(3,C) structure we should have

dΩ = 0. (2.6)

Thus A encodes the extra intrinsic torsion components of the SL(3,C) structure.
This additional integrability condition can be viewed as the vanishing of a moment

map. One first notes that the space of SL(3,C) structures admits a natural pseudo-Kähler
metric [66]. At a point p ∈M , a choice of Ω is equivalent to picking a point in the coset

Ω|p ∈ QSL(3,C) = GL(6,R)
SL(3,C) . (2.7)

The choice of SL(3,C) structure on M thus corresponds to a section of the fibre bundle

QSL(3,C) → QSL(3,C) →M, (2.8)
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that is, we can identify

space of SL(3,C) structures, Z ' Γ(QSL(3,C)). (2.9)

This infinite-dimensional space then inherits a pseudo-Kähler structure from the pseudo-
Kähler structure2 on the coset space QSL(3,C), with a Kähler potential given by

K = i
∫
M

Ω ∧ Ω̄, (2.10)

where Ω can be viewed as a complex coordinate on the space of structures (or more precisely
as a holomorphic embedding Ω: Z ↪→ Γ(∧3T ∗C)). One can also restrict to the subspace of
structures that define an (integrable) complex structure, so that L1 is involutive,

Ẑ = {Ω ∈ Z | I is integrable}. (2.11)

Given that the integrability condition (2.5) is holomorphic — it is independent of Ω̄ — this
space inherits a pseudo-Kähler metric from Z with the same Kähler potential.

Diffeomorphisms act on Ẑ since the integrability conditions on I are diffeomorphism
invariant. Infinitesimally they define a vector field ρV ∈ Γ(T Ẑ) such that

ıρV δΩ = LV Ω, (2.12)

where δ is the exterior (functional) derivative on Ẑ and V ∈ Γ(T ) generates the diffeomor-
phism. Clearly the Kähler potential (2.10) is diffeomorphism invariant. Furthermore, since
LV Ω is independent of Ω̄, we see that diffeomorphisms also preserve the complex structure
on Ẑ. Together this implies they preserve the Kähler form.3 Explicitly this is given by

$ = i ∂′∂̄′K, (2.13)

where we have decomposed δ = ∂′ + ∂̄′ into holomorphic and antiholomorphic derivatives.
For an arbitrary vector α ∈ Γ(T Ẑ) we then have

ıρV ıα$ = −
∫
M

(
ıαδΩ ∧ LV Ω̄− LV Ω ∧ ıαδΩ̄

)
=
∫
M

(
LV ıαδΩ ∧ Ω̄ + LV Ω ∧ ıαδΩ̄

)
=
∫
M
ıα
(
LV δΩ ∧ Ω̄ + LV Ω ∧ δΩ̄

)
= ıαδµ(v),

(2.14)

where
µ(V ) =

∫
M
LV Ω ∧ Ω̄. (2.15)

defines a moment map µ : Ẑ → diff∗, where diff is the Lie algebra of diffeomorphisms. It is
straightforward to check that µ is equivariant.

2This metric has signature (18, 2) [66].
3Note that there may be further subtleties if the integrability condition defines a null subspace within Z

or if the group action defining the moment map is null. We comment on this for the case of SU(7) structures
in section 5.3.
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Given the integrability condition (2.5), we can integrate by parts, to write

µ(V ) =
∫
M

(
−ıV Ω ∧ Ā ∧ Ω̄ + ıV (A ∧ Ω) ∧ Ω̄

)
=
∫
M

(ıVA− ıV Ā) Ω ∧ Ω̄,
(2.16)

where we have used A ∧ Ω̄ = Ā ∧ Ω = 0. The moment map vanishes for all V ∈ Γ(T ) if
and only if

A = Ā = 0. (2.17)

In other words, we see that the vanishing of the moment map imposes the final condi-
tion (2.6) that promotes a complex structure to a torsion-free SL(3,C) structure.

Since two SL(3,C) structures that are related by a diffeomorphism are equivalent, the
moduli space of SL(3,C) structures is naturally a quotient, defined as

MΩ = {Ω ∈ Ẑ | µ = 0}/Diff. (2.18)

As we have seen, the Kähler geometry on the space of structures Ẑ is preserved by the action
of the diffeomorphism group, thus we can view the moduli space either as a symplectic
quotient by Diff or as a quotient by the complexified group

MΩ = Ẑ//Diff ' Ẑ/DiffC. (2.19)

Note that the complexification of the diffeomorphism group DiffC is not really well de-
fined. What is really meant is the complexification of the orbits, that is, if the vector
field ρV ∈ Γ(T Ẑ) generates the action of diffeomorphisms on the spaces of structures, we
can complexify this to also include the orbits generated by IρV , where I is the complex
structure on Ẑ. Since Ω is a holomorphic function on Ẑ we have

ıIρV δΩ = −ıρV (IδΩ) = i ıρV δΩ = iLV Ω = LIV Ω + 2i(ıVA)Ω, (2.20)

where in the last expression we have used (2.5) and the fact that ıIV Ω = i ıV Ω and ıIVA =
−i ıVA. Thus in (2.19), up to diffeomorphisms, for each fixed complex structure, the action
of DiffC simply rescales Ω until (2.6) is satisfied and the moment map vanishes.

2.2 Generalised complex structures

Let us now review the analogous story for the generalised complex structures (GCS) of
Hitchin and Gualtieri [44, 45]. We will see again that involutivity and a moment map
characterise the integrable structures and lead to a local description of the moduli space
as a Kähler quotient.

Consider a six-dimensional manifold M with a generalised tangent bundle E = T ⊕T ∗.
This admits a natural O(6, 6) structure given by the inner product

〈x+ ξ, y + η〉 = η(x) + ξ(y). (2.21)

As was noted in [67], the relevant structure group for supergravity is actually O(6, 6)×R+

to account for the dilaton. We take all generalised vectors to be weight zero under the R+
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action. Given a generalised vector V = x + ξ ∈ Γ(E), there is a natural generalised Lie
derivative LV such that, acting on a generalised vector W = y + η,

Lx+ξ(y + η) = [x, y] + Lxη − ıydξ. (2.22)

This generates conventional diffeomorphisms and one-form gauge transformations,
parametrised by x and ξ respectively. Its antisymmetrisation JV,W K := 1

2(LVW − LWV )
is the Courant bracket. E generates a Clifford algebra Cliff(6, 6) via the inner product
above, which has a natural representation on sections Ψ of the spinor bundle S := ∧•T ∗
via

��VΨ = ıxΨ + ξ ∧Ψ. (2.23)

The slash notation signifies the Clifford action and can be viewed as contraction with the
O(6, 6) gamma matrices ΓM . There is an invariant antisymmetric pairing (Ψ,Σ) on spinors
given by the Mukai pairing (A.1), with the property that

(Ψ,��V Σ) = (−��VΨ,Σ). (2.24)

As a representation of Spin(6, 6)×R+ the spinor bundle is reducible as one can define the
analogue of Majorana-Weyl spinors4

S+ = ∧evenT ∗, S− = ∧oddT ∗. (2.25)

The exterior derivative gives a map d: S± → S∓ such that the action of the generalised
Lie derivative can be written as

LV Ψ = d(��VΨ) +��V dΨ, (2.26)

for any Ψ ∈ Γ(S).
In analogy to a conventional almost complex structure, a generalised almost complex

structure J is a endomorphism J : Γ(E)→ Γ(E) such that

J 2 = −1, 〈J V,J V 〉 = 〈V, V 〉 ∀ V ∈ Γ(E). (2.27)

As a generalised tensor, J is nowhere vanishing so defines reduction of the structure group
of E from O(6, 6) × R+ to U(3, 3) × R+. It gives a decomposition of the complexified
generalised tangent bundle

EC = L1 ⊕ L−1, (2.28)

where L±1 has charge ±i under J . Note that L1 is maximally isotropic: 〈L1, L1〉 = 0.
This defines an isomorphism L∗1 ' L̄1 = L−1. A generalised almost complex structure is
integrable if L1 is involutive with respect to the generalised Lie derivative

LVW ∈ Γ(L1) ∀ V,W ∈ Γ(L1), (2.29)
4It was important that we take the structure group to be O(6, 6)×R+, or its double cover Spin(6, 6)×R+,

here since polyforms do not form a representation of Spin(6, 6) alone. It also implies the antisymmetric
pairing gives a top-form rather than a scalar. Without the R+ factor, one would have to take S ' ∧•T ∗ ⊗
(detT )1/2.
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which also implies LVW = JV,W K. Using the notion of generalised intrinsic torsion intro-
duced in [27], one can show that this involution condition is equivalent to the vanishing of
the generalised intrinsic torsion of the U(3, 3)× R+ structure defined by J .

Each generalised almost complex structure defines a unique pure spinor line bundle
UJ ⊂ S satisfying

��V Φ = 0 ∀ V ∈ Γ(L1), (Φ, Φ̄) 6= 0, (2.30)

where Φ is a local section of UJ and (·, ·) is the Mukai pairing defined in (A.1). If the
pure spinor line bundle is trivial, one can choose a global nowhere-vanishing section. This
defines an SU(3, 3) or generalised Calabi-Yau (GCY) structure [44].5 Two such structures
defining the same GCY structure differ by nowhere vanishing complex function f

Φ′ = fΦ. (2.31)

From the generalised intrinsic torsion it is straightforward to see that the corresponding
generalised complex structure is integrable if

dΦ = ��AΦ, (2.32)

where A ∈ Γ(L−1) acts on Φ via the Clifford action. The generalised Calabi-Yau structure
is integrable if

dΦ = 0, (2.33)

and hence A encodes the extra components of the intrinsic torsion of the SU(3, 3) structure.
As in the previous example of a complex structure, one can view the additional inte-

grability condition as the vanishing of a moment map. One first notes that the space of
SU(3, 3) structures on M admits a natural pseudo-Kähler metric [34, 44] — the construc-
tion follows that of the almost complex structure case. At a point p ∈M , a choice of Φ is
equivalent to picking a point in the coset

Φ|p ∈ QSU(3,3) = O(6, 6)× R+

SU(3, 3) , (2.34)

so that an SU(3, 3) structure on M corresponds to a section of the fibre bundle

QSU(3,3) → QSU(3,3) →M. (2.35)

We can then identify

space of SU(3, 3) structures, Z ' Γ(QSU(3,3)). (2.36)

This infinite-dimensional space inherits a pseudo-Kähler structure from the pseudo-Kähler
structure6 on the coset space QSU(3,3), with a Kähler potential given by

K = i
∫
M

(Φ, Φ̄). (2.37)

5Given a GCY structure, one can recover the generalised almost complex structure by identifying L1 as
the null space of Φ.

6This metric has signature (30, 2) [29, 44].
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Again Φ can be viewed as a complex coordinate on the space of structures (or more precisely
as a holomorphic embedding Φ: Z ↪→ Γ(SC)) and one can also restrict to the subspace of
structures that define an (integrable) generalised complex structure, so that L1 is involutive,

Ẑ = {Φ ∈ Z | J is integrable}. (2.38)

The condition (2.32) is holomorphic and so Ẑ inherits a pseudo-Kähler metric from Z,
with the same Kähler potential.

The group of generalised diffeomorphisms GDiff, that is diffeomorphisms and gauge
transformations, acts on Ẑ and preserves the Kähler structure. The action is generated by
vector fields ρV ∈ Γ(T Ẑ) defined via the generalised Lie derivative

ıρV δΦ = LV Φ. (2.39)

Given the Kähler form as defined in (2.13) and an arbitrary vector α ∈ Γ(T Ẑ), one finds

ıρV ıα$ = −
∫
M

(ıαδΦ, LV Φ̄)− (LV Φ, ıαδΦ̄) =
∫
M

(LV ıαδΦ, Φ̄) + (LV Φ, ıαδΦ̄)

= ıαδ

∫
M

(LV Φ, Φ̄) = ıαδµ(V )
(2.40)

where
µ(V ) =

∫
M

(LV Φ, Φ̄), (2.41)

defines a moment map µ : Ẑ → gdiff∗. Here gdiff is the Lie algebra of generalised diffeo-
morphisms generated by the generalised Lie derivative.

From (2.26), the integrability condition (2.32) and (2.24) we have

µ(V ) =
∫
M

(
��V dΦ +��V Φ, dΦ̄

)
=
∫
M

(��V��AΦ,Φ) + (��V Φ,��̄AΦ̄)

=
∫
M

(��V (��A−��̄A)Φ, Φ̄) + ((��A−��̄A)��V Φ, Φ̄) = 2
∫
M
〈V,A− Ā〉(Φ, Φ̄),

(2.42)

where in going to the second line we have used ��AΦ̄ = ��̄AΦ = 0. Thus we see the moment
map vanishes for all V if and only if A = Ā = 0, that is, if the SU(3, 3) structure is
integrable.

Again, we consider two SU(3, 3) structures that are related by a generalised diffeo-
morphism as equivalent and so the moduli space of SU(3, 3) structures is a symplectic
quotient.7 Since the group action preserves the Kähler structure, we can view also view
the moduli space as a quotient by the complexified group GDiffC

MΦ = Ẑ//GDiff ' Ẑ/GDiffC. (2.43)

As before, if I is the complex structure on Ẑ, we have

ıIρV δΦ = −ıρV (IδΦ) = i(ıρV δΦ) = iLV Φ = −LJ V Φ + 2i〈V,A〉Φ, (2.44)

where in the last expression we have used (2.32) and the fact that J V ◦ Φ = −i ıV Φ and
〈J V,A〉 = i〈V,A〉. Thus, up to generalised diffeomorphisms, for each fixed complex struc-
ture, the action of GDiffC simply rescales Φ until dΦ = 0 and the moment map vanishes.

7As with the previous SL(3,C) structures, this can be more nuanced. We refer the reader to section 5.3
for a discussion of this for SU(7) structures.
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3 Generalised N = 1 structures

Our goal is to analyse generic Minkowski N = 1, D = 4 flux compactifications of M-theory
and type II supergravity. In this section, we will show that they define two closely related
generalised G-structures, analogous to the GL(3,C) and SL(3,C) structures in conven-
tional geometry we have just discussed. Remarkably, we will find that the supersymmetry
conditions can be rephrased similarly as an involution condition and the vanishing of a
moment map. Conventional G2 structures are of course a special case, corresponding to
a compactification of M-theory with vanishing flux, as are the general type II solutions of
GMTP [21] and both will provide useful examples of generalised N = 1 structures in the
following sections.

Generic N = 1, D = 4 Minkowski flux compactifications of M-theory have been
analysed using conventional geometrical techniques several years ago [17–20]. The metric
takes a warped form

ds2 = e2∆ds2(R3,1) + ds2(M), (3.1)

where M is the compactification manifold, the internal four-form flux is non-trivial and
the eleven-dimensional Killing spinors take the form

ε = η+ ⊗ e∆/2ζc + η− ⊗ e∆/2ζ, (3.2)

where η± are chiral spinors of Spin(3, 1) and ζ is a complex Spin(7) spinor. Supersymmetry
implies ζ̄ζ is constant and there is vanishing four-form flux on the non-compact Minkowski
space. In the G2 case ζ is real. The analogous type II backgrounds were analysed by
GMPT [21]. In this case the two type II Killing spinors take the form

ε1 = η+ ⊗ ζ+
1 + η− ⊗ ζ−1 ,

ε2 = η+ ⊗ ζ∓2 + η− ⊗ ζ±2 ,
(3.3)

where ζ±i are chiral Spin(6) spinors, and the upper and lower choices of sign refer to type IIA
and IIB respectively. One can again construct a constant-norm, eight-component spinor

ζ = e∆/2e−ϕ̂/6
(
ζ+

1
ζ−2

)
, (3.4)

where ϕ̂ is the dilaton. Note that in both the M-theory and type II compactifications,
although ζ is nowhere vanishing, the individual Spin(7) components (the real and imag-
inary parts of ζ) or Spin(6) components (the ζ±i ) may vanish, and hence do not define
conventional (global) G-structures.

However, these backgrounds do make sense globally as generalised G-structures [23, 27].
To specify the background one needs the bosonic fields on M together with the Killing
spinor ζ. In exceptional generalised geometry the bosonic fields define a generalised metric
G. For example in M-theory G is equivalent to the set {∆, g, A, Ã} where g is the seven-
dimensional metric, A is the three-form potential on M and Ã is the six-form potential
encoding the dual of the four-form field strength on the Minkowski space. Geometrically
G defines an SU(8)/Z2 ⊂ E7(7) × R+ generalised structure. The spinor ζ then transforms
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as the 8 representation of the double cover, SU(8). The stabiliser of such a nowhere-
vanishing constant-norm element is SU(7).8 In this way, we see that a supersymmetric
N = 1 background defines a generalised SU(7) structure. The differential conditions on
the Killing spinor are then equivalent to the vanishing of the generalised intrinsic torsion
of the SU(7) structure [27].

3.1 SU(7) and R+ ×U(7) structures

Rather than defining the SU(7) structure using the pair (G, ζ) one can also define it directly
in terms of generalised tensors. In fact there will be two kinds of structure in E7(7) × R+

that will interest us [23]:

J : stabilised by G = C∗ × SU(7) = R+ ×U(7),
ψ : stabilised by G = SU(7).

(3.5)

We will refer to J as an exceptional complex structure and ψ as a generalised SU(7) struc-
ture. They are stabilised by the same SU(7), but J is also invariant under an extra C∗

action. This is directly analogous to the relation between an almost complex structure I
in six dimensions (a GL(3,C) structure) and a complex three-form Ω (an SL(3,C) struc-
ture), or an almost generalised complex structure J and an almost generalised Calabi-Yau
structure Φ.

To see how these structures are defined, for definiteness consider the M-theory case.
Recall that the generalised tangent space is given by

E ' T ⊕ ∧2T ∗ ⊕ ∧5T ∗ ⊕ (T ∗ ⊗ ∧7T ∗),

V = v + ω + σ + τ,
(3.6)

where V ∈ Γ(E) and E transforms in the 561 of E7(7) × R+. Here the bold subscript
denotes the R+ weight, normalised so that the determinant bundle detT ∗ has weight 2.
We will occasionally denote the components of a generalised vector explicitly as VM , where
M = 1, . . . 56. One can then define [32] two E7(7)-invariant maps

s : ∧2E → detT ∗, q : S4E → (detT ∗)2, (3.7)

namely the symplectic invariant s and symmetric quartic invariant q. We will also need
the adjoint bundle

ad F̃ ' R⊕ (T ⊗ T ∗)⊕ ∧3T ⊕ ∧3T ∗ ⊕ ∧6T ⊕ ∧6T ∗, (3.8)

transforming in Lie algebra representation 1330 ⊕ 10, as well as a bundle K, given for
example in [24], which contains the torsion of a generalised connection and transforms in
the 912−1 representation. We also recall that the generalised Lie derivative [23, 24], or
Dorfman bracket, generates infinitesimal diffeomorphisms and gauge transformations and
takes the form

LV α = Lvα− (dω + dσ) · α, (3.9)
8This is analogous to a nowhere-vanishing Spin(6) ' SU(4) spinor being stabilised by SU(3).
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when acting on a arbitrary generalised tensor α, where L is the conventional Lie derivative,
dω and dσ are regarded as sections of ad F̃ and · denotes the adjoint action. In the
following it will also be useful to use the “twisted” generalised Lie derivative defined for
A ∈ Γ(∧3T ∗M and Ã ∈ Γ(∧6T ∗M) via (see for example [32, appendix D])

LF+F̃
V α := e−A−ÃLeA+Ã·V

(
eA+Ã · α

)
= Lvα−

(
dω − ıvF + dσ − ıvF̃ + ω ∧ F

)
· α,

(3.10)

where F = dA and F̃ = dÃ− 1
2A∧F . Given a generalised connection D we can define the

generalised torsion T : Γ(E)→ Γ(ad F̃ ) via [67]

LV α = LDV α− T (V ) · α, (3.11)

where
LDV α = DV α− (D ×ad V ) · α, (3.12)

where ×ad is a projection ×ad : E∗ ⊗ E → ad F̃ and DV = VMDM is the generalised
derivative along V . One finds that this definition implies the torsion actually lies in K ⊕
E∗ ⊂ E∗ ⊗ ad F̃ .

Let us turn first to defining the structure J . Recall that, at a point on the manifold, the
generalised metric defines an SU(8)/Z2 subgroup of E7(7)×R+, and the spinor ζ defines an
SU(7) subgroup of SU(8). There is a U(1) ⊂ SU(8)/Z2 that commutes with this SU(7) sub-
group. It is generated by an element of the su8 Lie algebra conjugate to the diagonal matrix

α = diag(−1/2,−1/2, . . . , 7/2) ∈ su8 ⊂ e7(7) ⊕ R. (3.13)

The normalisation is chosen so that exp(iθJ) with 0 ≤ θ < 2π generates a U(1) subgroup of
SU(8)/Z2. Note that the commutant of this U(1) is an R+×U(7) subgroup of E7(7)×R+.
Globally the U(1) at each point will be generated by a section of the adjoint bundle
J ∈ Γ(ad F̃ ) that is conjugate to α at each point. This leads us to the definition:

Definition. A generalised R+×U(7) structure or almost exceptional complex structure is a
section J ∈ Γ(ad F̃ ) that is conjugate at each point p ∈M to the element α ∈ su8 ⊂ e7(7)⊕R
given in (3.13).

Since the maximal compact subgroup SU(8)/Z2 ⊂ E7(7) and the maximal torus of SU(8)
are each unique up to conjugation, every reduction of the structure group of E to
R+ × U(7) should be included in the definition. Furthermore all such structures will be
related by local E7(7) × R+ transformations. Hence, as discussed in [23], the choice of J
does not fill out all of the 133 representation space but instead lies within a particular
orbit. Concretely, decomposing E7(7) using explicit SU(8) indices (see [23] or [25]) we have

133 = 63⊕ 70 3 (µαβ , µαβγδ), (3.14)

and we can write J using the spinor ζ as

Jαβ = 4ζαζ̄β −
1
2(ζ̄ζ)δαβ , Jαβγδ = 0, (3.15)
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where we have normalised ζ̄ζ = 1. For completeness, we note that further decomposing
under SU(7)×U(1) we have

133 = 10 ⊕ 480 ⊕ (7−4 ⊕ 74)⊕ (352 ⊕ 35−2) (3.16)

where now the subscripts denote the U(1) charge, and J lies in the singlet 10 representation.
Given J , in analogy with a conventional almost complex structure, we can use it to

decompose the complexified generalised tangent space. Under the adjoint action of J on
sections of the generalised tangent bundle, decomposing under SU(7)×U(1), we find

EC = L3 ⊕ L−1 ⊕ L1 ⊕ L−3,

56C = 73 + 21−1 + 211 + 7−3.
(3.17)

Thus we get four rather than two subbundles, with L−3 ' L̄3 and L−1 ' L̄1. As we will
see, L3 will play the analogue of the role of T 1,0 in conventional complex geometry. As
such, this leads to the alternative definition

Definition. An almost exceptional complex structure is a subbundle L3 ⊂ EC such that

i) dimC L3 = 7,

ii) L3 ×N L3 = 0,

iii) L3 ∩ L̄3 = {0},

iv) The map h : L3×L3 → (detT ∗)C defined by h(V,W ) = i s(V, W̄ ) is a definite hermi-
tian inner product valued in detT ∗,

where ×N : E × E → N , with N the generalised tensor bundle transforming in the 1332
representation, is an E7(7)×R+ covariant map given in [24]. In analogy with the generalised
complex structure case we call a subbundle L3 satisfying the first two conditions a (complex)
exceptional polarisation.

Note that the (complex) stabiliser groups in E7,C of all exceptional polarisations are
isomorphic. However the corresponding real stabiliser groups in E7(7) × R+ can differ.
In particular, only almost exceptional complex structures are stabilised by a subgroup
U(7)× R+ ⊂ E7(7) × R+.

We now turn to the SU(7) structure ψ. Decomposing the 912 representation under
SU(7)×U(1) ⊂ SU(8)/Z2 ⊂ E7(7), we find

912 = 36⊕ 420⊕ c.c,
= 17 ⊕ 73 ⊕ 28−1 ⊕ 21−1 ⊕ 35−5 ⊕ 1403 ⊕ 224−1 ⊕ c.c.

(3.18)

where the subscript denotes the U(1) charge. Consider the generalised tensor bundle trans-
forming in the 9123 representation of E7(7) × R+ (where the bold subscript denotes the
R+ weight; the reason for this particular choice will be discussed below)

K̃ = (detT ∗)2 ⊗K ' R⊕ ∧3T ∗ ⊕ (T ∗ ⊗ ∧5T ∗)⊕ (S2T ∗ ⊗ ∧7T ∗)

⊕ (∧3T ∗ ⊗ ∧6T ∗)⊕ (∧3T ⊗ (∧7T ∗)3)⊕ . . . ,
(3.19)
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where K ⊂ E∗ ⊗ ad F̃ is the torsion bundle [24]. The SU(7) singlet in the decomposi-
tion (3.18) implies that each almost exceptional complex structure J defines a unique line
bundle UJ ⊂ K̃C, satisfying

V • ψ = 0 ∀ V ∈ Γ(L3), s(ψ, ψ̄) 6= 0, (3.20)

where ψ is a local section of UJ , the product V •ψ is defined by the projection map E⊗K̃ →
C where C is the generalised tensor bundle transforming in the 86454 representation9 of
E7(7) × R+, and s is the symplectic invariant on the 912 bundle K̃ ⊂ E ⊗ E ⊗ E induced
from the symplectic invariant on the 56 bundle E. One can equivalently define a local
section ψ by the condition Jψ = 7iψ under the adjoint action of J . In complete analogy
with the almost complex and almost generalised complex cases we are then led to define

Definition. Given an almost exceptional complex structure J with trivial line bundle UJ ,
a generalised SU(()7) structure is a global nowhere-vanishing section ψ ∈ Γ(UJ).

Again we expect all generalised geometries with SU(7) structure group will arise this way,
and furthermore any two such structures will be related by a local E7(7) ×R+ transforma-
tion. In particular, any two generalised SU(7) structures with the same almost exceptional
complex structure J will be related by a nowhere vanishing complex function f

ψ′ = fψ. (3.21)

Again [23], ψ parametrises a particular orbit in the 912 representation rather than filling
out the whole representation space. One could always write down the (non-linear) con-
ditions on ψ (and J for that matter) which define the relevant orbits, but we have not
attempted to do so. This would give conditions that are the analogue of stability for a
three-form Ω and non-degeneracy for a two-form ω. Instead, we can always write ψ con-
cretely using the spinor ζ and generalised metric G. Under the decomposition in (3.18) we
can write a section of K̃ in explicit SU(8) indices [23, 25] as

κ = (καβ , καβγδ, κ̄αβ , κ̄αβγδ) ∈ Γ(K̃C). (3.22)

The SU(7) structure can then be written as

ψαβ = λ(volG)3/2ζαζβ , ψ̄αβ = ψαβγδ = ψ̄αβγ
δ = 0, (3.23)

where volG = e2∆√g is the E7(7)-invariant volume defined by the generalised metric [25, 67]
and λ is a non-zero complex number.

Recall that, since SU(7) ⊂ SU(8), the generalised structure ψ also defines a generalised
metric and so completely specifies the supergravity background. This is analogous to a G2
structure in conventional geometry, where the invariant three-form ϕ defines a metric. In
this way, our construction gives what one might call a “generalised G2 structure”. However
this obscures the fact that the stabiliser group is actually SU(7) and not G2 or G2 × G2
as might be expected, so we do not follow this convention. Later we will see that for the
example of a conventional G2 structure, the invariant three-form ϕ does indeed define both
ψ and J .

9Note that this representation is just the next step in the tensor hierarchy [68, 69] above 912.
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3.2 Supersymmetry and integrability

We now turn to the conditions imposed on the generalised structures ψ and J by super-
symmetry. As shown in [27, 28, 70], the vanishing of the generalised intrinsic torsion for
the SU(7) structure is equivalent to N = 1 supersymmetry for the Minkowski space solu-
tion. In what follows it will be useful to consider the intrinsic torsion for both ψ and J

as the conditions for a torsion-free J are a subset of those for ψ. This will allow us to see
that integrability for ψ follows from integrability for J , phrased in terms of an involution
condition plus the vanishing of a moment map for generalised diffeomorphisms, that is the
group of diffeomorphisms and form-field gauge transformations.

Following the analysis in [27, 28, 70], it is easy to show that intrinsic torsion for each
generalised structure lies in a sub-bundle of 912 torsion bundle K transforming as

W int
SU(7) : 1−7 ⊕ 7̄−3 ⊕ 21−1 ⊕ 35−5 ⊕ c.c. (3.24)

W int
R+×U(7) : 1−7 ⊕ 35−5 ⊕ c.c. (3.25)

where again, the subscript denotes that U(1) charge under the action of J . We saw earlier
how integrability of a complex structure can be recast as involutivity of eigenspaces of the
complex structure under the Lie bracket. It is thus natural to define:

Definition. A torsion-free R+ × U(7) structure J or exceptional complex structure is one
satisfying involutivity of L3 under the generalised Lie derivative

LVW ∈ Γ(L3), V,W ∈ Γ(L3). (3.26)

Again in analogy with the generalised geometry case, we call the weaker case of an involutive
exceptional polarisation, an exceptional Dirac structure.

In general LVW 6= −LWV , however the definition of an exceptional polarisation implies

LVW = JV,W K V,W ∈ Γ(L3), (3.27)

where JV,W K = 1
2(LVW − LWV ) is the antisymmetric Courant bracket, and in fact the

involution condition could be equally well defined using the Courant bracket as the gener-
alised Lie derivative.

To prove that involutivity is equivalent to vanishing intrinsic torsion of the R+×U(7)
structure, we first recall that we can always find a generalised connection D that is com-
patible with the R+×U(7) structure, so that DJ = 0, but it will not necessarily be torsion
free. Consider the definition of the torsion (3.11) with V,W = α ∈ Γ(L3). Compatibility
of the connection with J ensures LDVW ∈ L3, so involutivity amounts to checking that
T (V ) ·W is in L3 only. Since the left-hand side of (3.11) does not depend on the choice of
compatible connection, only the intrinsic torsion contributes to the components of T (V )·W
not in L3. Explicitly, the intrinsic torsion representations contribute to T (V ) ·W ∈ Γ(E) as

1−7 ⊗ 73 ⊗ 73 ⊃ 21−1,

35−5 ⊗ 73 ⊗ 73 ⊃ 211.
(3.28)
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In other words, a non-zero 1−7 component of the torsion would generate a 21−1 = L−1
term in LVW . Requiring LVW ∩ L−1 = {0} ∀V,W ∈ Γ(L3) thus sets the 1−7 component
of the torsion to zero. In a similar way, one sees that the 35−5 component is set to zero by
LVW ∩L1 = {0}. One has LVW ∩L−3 = {0} identically just by counting the U(1) charges.

We now need to consider the remaining conditions that imply we have a torsion-free
SU(7) structure and hence an N = 1, D = 4 background. Comparing the representations
that appear in the intrinsic torsion for the R+×U(7) and SU(7) structures (3.24) and (3.25),
we see there must then be an additional condition that sets the 7 and 21 components of
the SU(7) intrinsic torsion to zero. As we will now show these appear as the vanishing of a
moment map µ for the action of generalised diffeomorphisms on the space of ψ structures.

One first notes that the space of SU(7) structures on M admits a natural pseudo-
Kähler metric. This is a consequence of viewing the theory as a rewriting of the ten-
or eleven-dimensional theory so that only four supercharges are manifest (the analogous
situation for N = 2 theories was described in [29, 30, 32, 71]). In analogy to [72], the
local SO(9, 1) or SO(10, 1) Lorentz symmetry is broken and the four-dimensional scalar
degrees of freedom, that is the space of generalised SU(7) structures, can be packaged into
N = 1, D = 4 chiral multiplets [23]. As such they must admit a Kähler metric, albeit
infinite-dimensional. The explicit construction is as follows. At a point p ∈M , a choice of
ψ is equivalent to picking a point in the coset

ψ|p ∈ QSU(7) =
E7(7) × R+

SU(7) , (3.29)

so that an SU(7) structure on M corresponds to a section of the fibre bundle

QSU(7) → QSU(7) →M. (3.30)

We can then identify

space of SU(7) structures, Z ' Γ(QSU(7)). (3.31)

The key point is that the space QSU(7) admits a homogeneous pseudo-Kähler metric of
signature (70, 16), picked out by supersymmetry. One first notes that the related space
E7(7)/U(7) admits a homogeneous pseudo-Kähler metric by a classic result of Borel [73,
Proposition 2]. The metric is unique up to an overall scale [74]. The space QSU(7) can
be viewed as a complex line bundle L over E7(7)/U(7), with the zero section removed,
since we only have an R+ action. There is then a natural one-parameter family of conical,
homogeneous Kähler metrics on QSU(7), distinguished by the relative size of the U(1) circle
relative to the E7(7)/U(7) base. The infinite-dimensional space of structures Z then inherits
a pseudo-Kähler structure from the pseudo-Kähler structure on QSU(7). Our choice of R+

weight for ψ picks out a particular Kähler metric within the one-parameter family with the
explicit Kähler potential given by

K =
∫
M

(
i s(ψ, ψ̄)

)1/3
, (3.32)
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where ψ can be viewed as a complex coordinate on the space of structures, or more precisely
as a holomorphic embedding ψ : Z ↪→ Γ(K̃C). Given the R+ weight of the K̃ bundle, we
need to take the 1/3-power so that the integrand in (3.32) is a section of detT ∗ and hence
can be integrated over M . A different choice of weight would have led to a different power
in K and hence a different Kähler metric.

In analogy to the N = 2 case described in [29, 30, 32, 71], the existence of the Kähler
structure follows from supersymmetry. As we mentioned above, one can consider rewriting
the ten- or eleven-dimensional theory so that only four supercharges are manifest. Similar
to [72], the local SO(9, 1) or SO(10, 1) Lorentz symmetry is broken and the internal degrees
of freedom can be packaged into N = 1, D = 4 chiral multiplets [23] coupled to four-
dimensional supergravity. Note that there are an infinite number of fields as no Kaluza-
Klein truncation is performed: one keeps all modes on the internal space. The scalar
degrees of freedom should hence parametrise an infinite-dimensional Kähler space, but from
our discussion, this is just the space of generalised SU(7) structures.10 In this context,
the particular weight of ψ, and hence Kähler metric, is fixed by the four-dimensional
supersymmetry. In particular, as we will see in section 5.1, the power of 1/3 is required
for the D = 4, N = 1 superpotential on the space of chiral fields parametrising Z to be a
holomorphic function of ψ.

We can write the symplectic structure corresponding to (3.32) very explicitly as follows.
Using$ = i ∂′∂̄′K, we have, contracting two vectors α, β ∈ Γ(TZ) into the symplectic form,

ıβıα$ = i
∫
M

1
3

1(
i s(ψ, ψ̄)

)2/3
(

i s(ıαδψ, ıβδψ̄)− i s(ıβδψ, ıαδψ̄) (3.33)

− 2
3

i s(ıαδψ, ψ̄) i s(ψ, ıβδψ̄)
i s(ψ, ψ̄)

+ 2
3

i s(ıβδψ, ψ̄) i s(ψ, ıαδψ̄)
i s(ψ, ψ̄)

)
.

Note that if we define a new non-holomorphic parametrisation

φ =
(
is(ψ, ψ̄)

)−1/3
ψ, (3.34)

which transforms in the 9121 representation, the symplectic structure takes the simple
form

ıβıα$ = −1
3

∫
M

(
s(ıαδφ, ıβδφ̄)− s(ıβδφ, ıαδφ̄)

)
, (3.35)

that is, it is just the pull-back $ = 1
3φ
∗s of the symplectic form on the space of φ.

One can also restrict to the subspace of structures that define an (integrable) excep-
tional complex structure, so that L3 is involutive,

Ẑ = {ψ ∈ Z | J is integrable}. (3.36)

As we will show in section 5.1, the integrability condition is holomorphic as a function of
ψ and so Ẑ inherits a Kähler metric from the one on Z, with the same Kähler potential.

Finally we can turn to the remaining integrability conditions for the SU(7) structure.
As in our previous examples, the Kähler structure on Ẑ is invariant under generalised

10As we discuss below, the chiral multiplet space is strictly a C∗ quotient of the space of structures.
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diffeomorphisms. Infinitesimally these are generated by the generalised Lie derivative, and
parametrised by generalised vectors V ∈ Γ(E). As deformations in the space of structures,
this defines a vector field ρV ∈ Γ(T Ẑ)

ıρV δφ = LV φ, (3.37)

where for convenience we are using the non-holomorphic structure φ. We then have

ıρV ıα$ = i
3

∫
M

(
i s(ıαδφ, LV φ̄)− i s(LV φ, ıαδφ̄)

)
= − i

3

∫
M

(
i s(LV ıαδφ, φ̄) + i s(LV φ, ıαδφ̄)

)
= ıαδ

(1
3

∫
M
s(LV φ, φ̄)

)
= ıαδµ(V ),

(3.38)

where we have used compactness to integrate by parts and have defined

µ(V ) = 1
3

∫
M
s(LV φ, φ̄)

= 1
3

∫
M
s(LV ψ, ψ̄)(i s(ψ, ψ̄))−2/3,

(3.39)

where in going to the second line we use
∫
M LV (· · · ) = 0. This gives a moment map µ : Ẑ →

gdiff∗, where, as before, gdiff∗ is the dual of the Lie algebra of generalised diffeomorphisms.
We now want to prove that integrability of ψ is equivalent to the vanishing of the

moment map (3.39). Let D be a (torsionful) generalised connection compatible with the
SU(7) structure, that is Dψ = 0 (and hence Dφ = 0). Using the definition of torsion (3.11),
we have

µ(V ) = 1
3

∫
M
s((LDV φ, φ̄)− s(T (V )φ, φ̄)

= 1
3

∫
M
s(DV φ, φ̄)− s((D ×ad V )φ, φ̄)− s(T (V )φ, φ̄)

= −1
3

∫
M
s(T (V )φ, φ̄),

(3.40)

where in moving to the last line we integrate the middle term by parts and use Dφ =
Dφ̄ = 0. Since the definition of µ is independent of any choice of connection, only the
SU(7) intrinsic torsion can contribute in the last expression. Given that the generalised
vector V ∈ Γ(E) transforms in the 7 + 21 + c.c. representation, and φ is an SU(7) singlet,
only the 7 + 21 + c.c. representations of the SU(7) intrinsic torsion can appear11 in µ.
However, from (3.25) and (3.24), we see these are precisely the additional components
that must be set to zero for an exceptional complex structure to be an integrable SU(7)
structure. Thus we have shown that the following definition is consistent:

11Note that there could in principle be a further kernel in the map from the intrinsic torsion to µ so that
only one of the 7 and 21 representations appeared. However it is easy to show that both representations
are in fact present.
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Definition. A torsion-free generalised SU(7) structure is one where L3 is involutive and
the moment map (3.39) vanishes.

Since two SU(7) structures that are related by diffeomorphisms and gauge transfor-
mations give physically equivalent backgrounds, the moduli space of SU(7) structures is
naturally a symplectic quotient by generalised diffeomorphisms GDiff, or equivalently a
quotient by the complexified group GDiffC:

Mψ = Ẑ//GDiff ' Ẑ/GDiffC. (3.41)

Recall that the moduli space of G2 holonomy manifolds in M-theory is associated with
N = 1, D = 4 chiral superfields [1, 8, 75, 76]. For a generic N = 1, D = 4 background,
supersymmetry again implies that the moduli space of integrable (torsion-free) generalised
SU(7) structures should again define fields in chiral multiplets. However, note that not all
deformations of ψ deform the physical fields on the internal space. In particular, only those
within the coset E7(7)×R+/(SU(8)/Z2) are physical (deformations that change the gener-
alised metric). First note that, from the warped product form (3.1), shifts of the warp factor
∆ → ∆ + c for some constant c can be absorbed in the four-dimensional metric. Second
note that any modulus that lies in SU(8)/SU(7) would correspond to a change of Killing
spinor ζ for the same physical background. However this just implies that the background
admits a second Killing spinor and so really preserves N = 2 supersymmetry. The excep-
tion to this is the change of ζ by a constant phase, that is by the U(1) generated by J , since
this too can always be reabsorbed into the four-dimensional spinors in the ansatzë (3.2)
and (3.3). Thus for honest N = 1 backgrounds we only need to consider the action of this
U(1) and the shift in ∆. As we note from the form of ψ in (3.23), shifting ∆ simply rescales
ψ, in fact via the R+ action. Put together we see that the physical moduli space is given by

Moduli space of N = 1 background =Mψ//U(1) 'Mψ/C∗,

where the C∗ action acts as
ψ → λ3ψ, (3.42)

where we have normalised the C∗ action to match the R+ action on ψ which implies
K → |λ|2K. Under the symplectic quotient, the physical moduli space has a Kähler
potential K̃ given by

K̃ = −3 logK. (3.43)

This is the Kähler potential that determines the metric on the moduli space of the
supergravity background. For example, in the G2 case that we will discuss in section 4.1,
this reduces to the known result that the Kähler potential K̃ = −3 log

∫
M vol describes

the coupling of moduli in the four-dimensional effective theory, where vol is determined
by the G2 structure [8, 75, 76].

Note that, strictly, one should check that the kinetic terms and potentials in the
D = 4 effective theory are given by K̃ (specifically checking that the coefficient of −3 is
correct). One check is to compare with the G2 holonomy case, as we do in the next section.
Alternatively, we can note that the quotient is simply the standard relation between the
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Kähler geometry in superconformal supergravity [77–79], using a compensator field, and
the standard supergravity formalism where a gauge for the compensator is chosen. This
fixes the C∗ scaling of K and the factor of −3 comes from the standard normalisation of
the gravitational coupling constant (as reviewed for example in [80]).

4 Examples of integrable generalised SU(7) structures

We now present two classic examples of N = 1, D = 4 backgrounds and describe how they
can be understood as integrable generalised SU(7) structures. We discuss G2 backgrounds
in M-theory and N = 1 GMPT backgrounds in type II theories. In both of these cases, we
will see that involutivity of the L3 subbundle reproduces a subset of the known differential
conditions these backgrounds must satisfy. The final differential conditions come from the
vanishing of the moment map. In particular, this gives a completely new way of viewing
G2 manifolds that, intriguingly, closely mirrors the discussion of complex structures.

4.1 G2 structures in M-theory

Recall that a G2 structure is defined by a nowhere-vanishing three-form ϕ ∈ Γ(∧3T ∗M),
which can be written in a local frame as

ϕ = e246 − e235 − e145 − e136 + e127 + e347 + e567. (4.1)

This defines a metric g = ea ⊗ ea and an orientation vol = e1...7 = ?1. The Hodge dual of
ϕ is

? ϕ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457, (4.2)

so that ϕ∧?ϕ = 7 vol. The structure is integrable, that is we have a G2 holonomy manifold,
if and only if

dϕ = d ? ϕ = 0. (4.3)

Compactifying M-theory on a G2 holonomy manifold with ∆ = 0 gives a N = 1, D = 4
background. One can also include non-trivial three-form potential A such that dA = 0.

We would like to first identify how a G2 structure defines a generalised SU(7) structure.
Before doing so it is useful to define the notion of “type” for almost exceptional complex
structures in M-theory in an analogous way to the type of generalised complex structures
given in [45]:

Definition. The type of an almost exceptional complex structure L3 ⊆ EC is the (complex)
codimension of its projection onto the tangent bundle TC. That is, if π : E → T is the anchor
map then

typeL3 := codimC π(L3) = 7− dimC π(L3). (4.4)

A generic12 seven-dimensional subspace of a fibre of E will have a surjective projection
onto the tangent space T , and hence a generic exceptional complex structure is type-0. We

12Generic in the sense that the set of all seven-dimensional subspaces not of this type is measure zero in
the Grassmannian.
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can always write such a space as

L3 = eα+βTC for α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C). (4.5)

This identically satisfies the first two conditions for an almost exceptional complex struc-
ture, and one gets simple constraints on the polyform α + β from L3 ∩ L̄3 = {0} and the
requirement that i s(V, W̄ ) for V,W ∈ Γ(L3) defines a definite hermitian inner product.
Note that TC is the simplest example of an exceptional Dirac structure (following the defi-
nition given in section 3.2), but is not an exceptional complex structure since, for example,
TC ∩ TC 6= 0. In terms of the Killing spinor ζ, viewed as a complexified Spin(7) spinor,
the requirement that the structure is type-0 is that the scalar ζTζ is nowhere vanishing.13

This is precisely the case discussed in [20] where the real and imaginary parts of ζ have
different normalisations (and/or are non-orthogonal). The analyses in [17] and [19], on the
other hand, fix equal norms and orthogonal real spinors and so define a structure that is
strictly not type-0.

A G2 structure, embedded in generalised geometry, defines the simplest example of a
type-0 almost exceptional complex structure. Taking α = iϕ and β = 0, we have

L3 = eiϕTC, (4.6)

so that a section of L3 takes the form (using the “j-notation” of [24])

Γ(L3) 3 v + i ıvϕ−
1
2ϕ ∧ ıvϕ−

1
6i jϕ ∧ ϕ ∧ ıvϕ

= v + i ıvϕ− ?ıvϕ− i v[ ⊗ vol,
(4.7)

for some v ∈ Γ(TC). The condition on i s(V, W̄ ) for V,W ∈ Γ(L3) is equivalent to the
weighted metric

g̃(v, w) = ıvϕ ∧ ıwϕ ∧ ϕ (4.8)

being positive definite for v, w ∈ Γ(T ). However, this is just the condition that ϕ is a
(positive) stable form in the sense of Hitchin [66]. (It also implies L3 ∩ L̄3 = {0}.) The
R+ ×U(7) structure J is given by

J = ϕ] − ϕ, (4.9)

where ϕ] is obtained from ϕ by raising its indices using the inverse metric g−1 defined by
ϕ. One can check that this satisfies JL3 = 3iL3 using the action of the 133 on the 56
given in [24, appendix C].

We now turn to the integrability condition on J . Involutivity of L3 is simple to show
using the properties of the generalised Lie derivative. Writing generic sections of L3 as
V = eiϕv and W = eiϕw, given two vectors v, w ∈ Γ(TC), we then have

LVW = Leiϕv(eiϕw) = eiϕL
i dϕ+ 1

2ϕ∧dϕ
v w = eiϕ

(
[v, w] + ıwıv

(
i dϕ+ 1

2ϕ ∧ dϕ
))

, (4.10)

13Note that this condition involves ζTζ and not ζ̄ζ, which is what defines the SU(7) structure (see
below (3.2)). Given that ψ is of the form (3.23), this condition amounts to requiring that the 1 ∈ R
component of ψ is non-vanishing.
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where we have used the twisted generalised Lie derivative (3.10). The second term must
vanish for the right-hand side to be a section of L3 only. As this is defined for arbitrary v
and w, the bundle L3 is involutive on L3 if and only if we have a closed G2 structure

involutivity of L3 : dϕ = 0. (4.11)

This condition is weaker than a torsion-free G2 structure (which requires d?ϕ = 0 as well).
A theorem due to Bryant states that, like symplectic structures, all closed G2 structures
are equivalent, taking a standard form in a local patch [65].

Now we examine the moment map for this example. To do so, we first need to define
the SU(7) structure ψ. Recall that ψ is a section of

K̃ ' R⊕ ∧3T ∗ ⊕ (T ∗ ⊗ ∧5T ∗)⊕ (S2T ∗ ⊗ ∧7T ∗)

⊕ (∧3T ∗ ⊗ ∧6T ∗)⊕ (∧3T ⊗ (∧7T ∗)3)⊕ . . . ,
(4.12)

and also that V • ψ = 0 for all V ∈ Γ(L3). Since R is the lowest degree term in K̃, we
note that, taking 1 ∈ Γ(K̃), we must have v • 1 = 0 for any vector v ∈ Γ(TC) viewed as a
section of Γ(EC). Since L3 = eiϕTC we see this means we can construct ψ as

ψ = eiϕ · 1, (4.13)

where the exponential acts on 1 ∈ R via the adjoint action. The components of ψ have the
form

ψ ∼ (1, ϕ, jϕ ∧ ϕ, g̃, . . .). (4.14)

Recall that s(ψ, ψ̄) ∈ Γ((detT ∗)3), so it has 3× 7 = 21 indices. Given that ϕ ∈ Γ(∧3T ∗),
it hence must be degree 7 in ϕ, meaning the Kähler potential (3.32) is degree 7/3. This
is precisely the same scaling as the G2 Hitchin functional [34, 81] so that, up to an overall
constant, we must have

K =
∫
M

(
i s(ψ, ψ̄)

)1/3 ∝ ∫
M
ϕ ∧ ?ϕ. (4.15)

One can check this is indeed the case by an explicit calculation. Using the twisted gen-
eralised Lie derivative and invariance of the symplectic form under a complexified E7(7)
transformation, we can then calculate the moment map (3.39)

µ(V ) = 1
3

∫
M
s
(
LV (eiϕ · 1), e−iϕ · 1

)
(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(eiϕL

i dϕ+ 1
2ϕ∧dϕ

e−iϕV 1, e−iϕ · 1)(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(Li dϕ+ 1

2ϕ∧dϕ
e−iϕV 1, e−2iϕ · 1)(i s(ψ, ψ̄))−2/3.

(4.16)

As e−iϕ has no kernel, we can relabel e−iϕV → V to give

µ(eiϕV ) = 1
3

∫
M
s(Li dϕ+ 1

2ϕ∧dϕ
V 1, e−2iϕ · 1)(i s(ψ, ψ̄))−2/3. (4.17)
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Given V = v + ω + σ + τ and dϕ = 0

L
i dϕ+ 1

2ϕ∧dϕ
V 1 = LV 1 = −(dω + dσ) · 1 = −dω − jdσ. (4.18)

For general γmnp ∈ Γ(∧3T ∗) and πm,n1...n5 ∈ Γ(T ∗ ⊗ ∧5T ∗) we have

s(γ + π,e−2iϕ · 1)(i s(ψ, ψ̄))−2/3
m1...m7

= const× γ[m1m2m3(?ϕ)m4m5m6m7] + const× gnpπn,p[m1m2m3m4ϕm5m6m7],
(4.19)

where, rather than evaluate the expression directly, we have used the facts that it must be
linear in γ and π and a top form, and that the only G2-invariant tensors are ϕ, ?ϕ, the
metric g and its inverse. However for π = jdσ the second term vanishes. We thus have14

µ(eiϕV ) ∝
∫
M

dω ∧ ?ϕ

∝
∫
M
ω ∧ d ? ϕ,

(4.20)

where we have assumed that M is compact to integrate by parts.

vanishing of moment map: d ? ϕ = 0, (4.21)

so that the G2 structure must be torsion free.
We can extend this example to include fluxes by including them in the complexified

transformation as
L3 = eÃ+AeiϕT = eÃ−

1
2 iA∧ϕ+A+iϕT, (4.22)

where A and Ã are three- and six-form potentials. The real E7(7) transformation by A+ Ã

amounts to turning on four-form and seven-form fluxes, given by

F = dA, F̃ = dÃ− 1
2A ∧ F. (4.23)

The involutivity condition is now

[v, w] + ıwıv

(
F + i dϕ+ F̃ + 1

2ϕ ∧ dϕ− iF ∧ ϕ
)
∈ Γ(TM), (4.24)

which holds if and only if
dϕ = F = F̃ = 0. (4.25)

In other words, involutivity of L3 forces the G2 structure to be closed and the fluxes to
vanish. Note that one could include a warp factor by including e∆ in the definition of L3
— one would then find that involutivity also forces the warp factor to be constant. Since
all the fluxes vanish, the twisted generalised Lie derivative is equal to the ordinary Lie
derivative and the analysis of the µ = 0 condition is exactly as before, that is, it simply

14Note that an analogous argument gives the same expression for the variation of the Kähler potential for
δϕ = dω. (This gives a reason for why the coefficient of the first term in (4.19) cannot vanish; one knows
the generic variation of the Hitchin function is non-zero.) As we will discuss in section 5.2, this reflects the
fact that the vanishing of the moment map is the same as the extremisation of the Kähler potential.
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implies d?ϕ = 0, and the G2 structure is integrable. We have thus reproduced the standard
conditions for a supersymmetric compactification of M-theory on a G2 manifold. For the
SU(7) structure there is strictly one extra degree of freedom, since we can always rescale
ψ by a complex constant. As we discussed at the end of section 3.2, this rescaling is not
physical.

Recall that SU(7) structures are equivalent if they differ by generalised diffeomor-
phisms. The gauge symmetries will simply shift

A→ A+ dω, Ã→ Ã+ dσ, (4.26)

thus the physical gauge degrees of freedom parametrise the de Rham cohomology classes
H3

d(M,R) and H6
d(M,R). The conventional diffeomorphisms on the other hand simply

relate diffeomorphic G2 structures. Locally the moduli space of integrable G2 structures is
diffeomorphic to a open set ofH3

d(M,R) (see for example [82]). FurthermoreH6
d(M,R) = 0.

As we will show in section 6, all deformations of the SU(7) structure either deform the G2
structure ϕ, deform A in H3

d(M) or correspond to rescaling ψ. Thus, dropping the non-
physical rescaling, the physical moduli space is

Mψ/C∗ ' H3
d(M,C) (locally), (4.27)

with the Kähler metric given by (3.43), as in [8, 75, 76]. We will comment more on a formal
way to treat this moduli problem in section 6.

In summary, we have shown that by embedding the problem in E7(7)×R+ generalised
geometry, the G2 manifold has an intriguing reinterpretation, as a sort of generalised
complex structure. There is an involutive complex subbundle whenever dϕ = 0, and
the final condition d ? ϕ = 0 comes from a moment map.

4.2 GMPT structures in type II

The GMPT solutions give N = 1 compactifications of type II supergravities and were
first analysed in [47] and further studied in [57]. While the solutions are not completely
general,15 they do cover a large class of compactifications in which the internal manifold
has an SU(3) structure, an SU(2) structure, or an intermediate case where the two SU(3)
structures can degenerate. The key observation of [47] was that these three cases are
examples of SU(3)×SU(3) structures on the generalised tangent bundle E = T⊕T ∗ and can
all be described as generalised Calabi-Yau manifolds admitting two pure spinors [44, 45].
We begin with a brief review of the key aspects of the GMPT solutions before embedding
them into the SU(7) structures we have described above. We will use this formulation of
the solutions to find their moduli in section 6.4.

The GMPT solutions admit two non-vanishing, compatible pure spinors {Φ+,Φ−} with
associated generalised complex structures {J+,J−} satisfying

(Φ+,��V Φ−) = (Φ+,��V Φ̄−) = 0 ∀ V ∈ E ⇔ [J+,J−] = 0, (4.28)
15The construction requires that the two internal spinors {η1, η2} in (3.3) are nowhere vanishing. An

example that falls outside of this classification is an NS5-brane wrapping a Calabi-Yau. As shown in [32],
this class of solution can be embedded within exceptional generalised geometry.
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where [ , ] is the usual commutator and the slash denotes the Clifford action, as it will for
the remainder of this section. This is a special case of the generalised Kähler structures
defined in [83] and gives an SU(3)×SU(3) structure. The two pure spinors are constructed
as bilinears of the Killing spinors {ζ±1 , ζ

±
2 } given in (3.3). The Killing spinor equations in

terms of Φ± were first given in [47]. Here it will be useful to use an equivalent form derived
by Tomasiello [57]

dΦ± = 0, F = −8 dJ±(e−3∆ Im Φ∓), (4.29)
d(e−∆ Re Φ∓) = 0, (4.30)

where dJ = [d,J ], the upper/lower sign is for type IIA/B, ∆ is the warp factor in the
string frame and F is the Ramond-Ramond flux. It is easy to show that, if one assumes the
generalised ∂∂̄-lemma (C.5) [84], then (4.29) implies that F is in the trivial cohomology
class. The spinors are normalised so that

(Φ+, Φ̄+) = (Φ−, Φ̄−) = 1
8e6∆−2ϕ̂ vol, (4.31)

where (·, ·) is the Mukai pairing (A.1), ϕ̂ is the dilaton and vol is the volume form defined
by the string-frame metric. Note that in [57] the twisted differential dH = d−H∧ is used.
Here we will use the convention that the B-field is included in the definition of the spinors
and RR flux (that is they are twisted by e−B relative to those in [57]) and hence the usual
differential d appears.

We now show how to embed these solutions into the framework of generalised SU(7)
structures. We start by defining L3 as16

L3 = eC+8 i e−3∆ Im Φ∓(LJ±1 ⊕ UJ±). (4.32)

Here the upper/lower signs correspond to type IIA/B respectively, LJ±1 ⊂ EC ' (T ⊕T ∗)C
is the +i-eigenspace of J±, UJ± is the pure spinor line bundle defined by J± and C is
the (global) polyform potential for the RR flux F . Note that in writing (4.32), we are
implicitly using an embedding of the O(6, 6) structures into the E7(7) generalised tangent
bundle and adjoint bundle: this is given in appendix A for type IIB.17 We will focus on type
IIB for definiteness but analogous results hold in IIA with the appropriate embedding. It is
relatively straightforward to check that L3 satisfies the necessary and sufficient conditions
to define an almost exceptional complex structure.

Now we turn to the involutivity condition. We will show first that the untwisted bundle
L
J−
1 ⊕UJ− is involutive if and only if J− is integrable. One can check that i s(V, W̄ ) is not

positive definite, thus it defines only an exceptional Dirac structure, but not an exceptional
complex structure. We find that the modified bundle L3 is involutive provided an extra
condition on the twisting factor C + 8 i e−3∆ Im Φ− is satisfied. Let

V = W + αΦ− ∈ Γ(LJ−1 ⊕ UJ−), (4.33)
16Such a procedure for going from generalised to exceptional complex structures was originally formulated

in an E6(6) context by two of the current authors (AA and DW) with Michela Petrini and Edward Tasker [85].
17The powers of ∆ in the normalisation (4.31) imply that Φ± are sections of a weight-three bundle under

the R+ action. The adjoint bundle is weight-zero, hence the e−3∆ factor in (4.32).
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where W ∈ Γ(LJ−1 ) and α ∈ C∞(M,C), and similarly for V ′. Requiring

LV V
′ = LW+αΦ−(W ′ + α′Φ) ∈ Γ(LJ−1 ⊕ UJ−), (4.34)

implies first that
LWW

′ ∈ LJ−1 , ∀W,W ′ ∈ LJ−1 , (4.35)

that is, the generalised complex structure J− associated to Φ− must be integrable.
From (2.32) and ��WΦ− = ��W ′Φ− = 0 we then immediately have

LW (α′Φ−) = (Lvα′)Φ− + α′LWΦ− =
〈
W, dα′ + 2A

〉
Φ− ∈ UJ− ,

LαΦ−W
′ = −d(αΦ−) ·W ′ = −

〈
W ′, dα+ 2A

〉
Φ− ∈ UJ− ,

(4.36)

as required (in the second line d(αΦ−) acts via the E7(7) adjoint action). For the final term
we have

LαΦ−(α′Φ−) = −d(αΦ−) · (α′Φ−) = −α′[(��dα+��A)Φ−] · Φ− = 0 (4.37)

identically, as can be seen simply by counting the J− charge. Hence we see

involutive LJ−1 ⊕ UJ− ⇔ integrable J−. (4.38)

We now define
Σ = C + 8 i e−3∆ Im Φ+, (4.39)

so that eΣV ∈ Γ(L3) if V ∈ Γ(LJ−1 ⊕ UJ−). We then have18

LeΣV (eΣV ′) = eΣLdΣ
V V ′ = eΣ[LV V ′ − (��WdΣ) · V ′

]
, (4.40)

where LdΣ is the twisted generalised Lie derivative (for type IIB, see [32]) and (��WdΣ) acts
on V ′ via the E7(7) × R+ adjoint action. To be involutive we need the term in brackets to
be an element of LJ−1 ⊕ UJ− . Since the first term is differential and the second algebraic
in V and V ′ this can only be true if each term is separately a section of LJ−1 ⊕ UJ− . We
have already analysed the first term. For the second term it means ��WdΣ ∈ Γ(ad F̃ ) must
stabilise LJ−1 ⊕ UJ− . For the W component we have

− (��WdΣ) ·W ′ = ��W
′
��WdΣ. (4.41)

If we will split the spinor bundle S− into its J− ni-eigenspaces, Sn, where n = −3,−1, 1, 3,
and denote by a subscript n the projection of a polyform to Sn, this implies

��W
′
��WdΣ ∈ S3 ⇔ (dΣ)−1 = (dΣ)−3 = 0. (4.42)

Combining these conditions with their complex conjugates we find

F = −8 dJ−(e−3∆ Im Φ+). (4.43)
18Note that the generalised Lie derivative is antisymmetric when L3 is involutive, so checking involutivity

with the generalised Lie derivative is equivalent to checking it with the Courant bracket. The condition
that L3 ×N L3 = 0 ensures this.
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Moreover, just counting the J− charges, we see that this condition is enough to imply
(��WdΣ) ·Φ− = 0. Taken together, we see that the first two equations in (4.29) are necessary
and sufficient conditions for involutivity of L3:

involutivity of L3 : dΦ− = ��AΦ−, F = −8 dJ−(e−3∆ Im Φ+). (4.44)

As expected, involutivity does not provide a full solution to the supersymmetry equa-
tions. Instead we find that it implies essentially the first two (4.29) of the three conditions
found in [57]. From section 3.2 we know that these equations only imply the vanishing of
part of the intrinsic torsion, and that the vanishing of the rest of the intrinsic torsion, here
given by the final equation d(e−∆ Re Φ+) = 0, is implied by the vanishing of the moment
map (3.39). In other words we have

vanishing of moment map : A = 0, d(e−∆ Re Φ+) = 0, (4.45)

that is, the generalised complex structure J− is promoted to a generalised Calabi-Yau
structure, and in addition the third condition of [57] is satisfied. Since the full set of
equation (4.29) and (4.29) are equivalent to supersymmetry, the proof in [27, 28] that
supersymmetry is equivalent to vanishing intrinsic torsion is sufficient for these last condi-
tions to indeed be equivalent to the vanishing of the moment map. Thus, rather than give
all the details, let us simply sketch below how the relevant conditions arise.

Since it defines an exceptional polarisation, the LJ−1 ⊕ UJ− subbundle will have an
associated singlet in the K̃C bundle, just as for an almost exceptional complex structure.
Given the decomposition under O(6, 6)× SL(2,R) ⊂ E7(7)

912 = (352′,1) + (220,2) + (12,2) + (32,3), (4.46)

the only SU(3, 3) ⊂ O(6, 6) singlet appears in the 32 representation, given by, up to detT ∗

factors, Φ− itself. In fact, the R+ weight of K̃ is such that singlet is simply Φ− ∈ Γ(K̃C).
It has the property that V • Φ− = 0 for all V ∈ Γ(LJ−1 ⊕ UJ−). Given the twisting of L3
it is then easy to see that the corresponding SU(7) structure is simply

ψ = eΣ · Φ− = eC+8 i e−3∆ Im Φ+ · Φ−, (4.47)

where, since Φ− is already naturally the section of a weight-three bundle under the R+

action, we do not expect any additional powers of e∆. Turning to the moment map, we
can repeat the same steps in the analysis for G2 structures in section 4.1 to derive

µ(eΣV ) = 1
3

∫
M
s(LdΣ

V Φ−, e−ΣeΣ̄ · Φ̄−)(i s(ψ, ψ̄))−2/3

= 1
3

∫
M
s(LdΣ

V Φ−, e−2i Im Σ · Φ̄−)(i s(ψ, ψ̄))−2/3,
(4.48)

where in the second line we have use the property that we can always choose a gauge for
C such that Σ and Σ̄ commute. We also have

LdΣ
V Φ− = LV Φ− − (��V dΣ) · Φ− = LV Φ− = LZΦ− − (dΛ− + dΛ̃) · Φ−, (4.49)
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where we have used the fact, derived from the involutivity condition, that dΣ stabilises
L
J−
1 ⊕ UJ− and hence the singlet Φ− ∈ Γ(K̃), and in the last expression have split V =

Z+Λ+ +(Λ̃+τ) using the decomposition (B.1). One can argue that the terms that survive
in the moment map are of the form

µ(V ) ∼ const
∫

(LZΦ−, Φ̄−) + const
∫

(dΛ−, e−∆ Re Φ+). (4.50)

This form follows from keeping track of the U(1) ⊂ SL(2,R) charge in the O(6, 6) ×
SL(2,R) ⊂ E7(7) decomposition, noting the R+ weight to get the correct e∆ factor, and
recalling the algebraic relations between J± and Φ±. In particular, the U(1) charge implies
that the second term arises from the third-order term in Im Φ+ exponential. As was first
noticed in [44], one can determine the real part of a pure spinor from the imaginary part19 as
a third-order expression in Im Φ+, hence the appearance of Re Φ+. The first term vanishes
if and only if A = 0, while, integrating by parts on the second term gives d(e−∆ Re Φ+) = 0,
the final condition in (4.30).

4.2.1 Calabi-Yau as N = 1

It is straightforward to describe the usual Calabi-Yau compactifications in our formalism.
While these actually give N = 2 compactifications, we can still write them in our N = 1
language. In this case, the internal spinors are equal, ζ1 = ζ2, and can be used to construct
a complex three-form Ω and a real two-form ω. Given vanishing flux one finds that the
dilaton and warp factor must be constant. The Killing spinor equations then imply

dΩ = 0, dω = 0. (4.51)

These objects can be embedded as generalised complex structures as

Φ− = 1
8e3∆−ϕ̂Ω, L

J−
1 = T 0,1 ⊕ T ∗1,0, (4.52)

Φ+ = 1
8e3∆−ϕ̂eiω, L

J+
1 = Ty(1− iω). (4.53)

where these are chosen such that they have the correct normalisation according to (4.29)
and (4.30).

Focussing on type IIB, we take

L3 = ei e−ϕ̂(ω− 1
6ω∧ω∧ω)(T 0,1 ⊕ T ∗1,0 ⊕ C e3∆−ϕΩ). (4.54)

Integrability of L3 then implies

dΩ = A ∧ Ω, dIω = dI ϕ̂ ∧ ω, (4.55)

where I is the (integrable) complex structure associated to Ω and dI = [d, I]. Clearly these
are not the full set of integrability conditions for Calabi-Yau. Imposing the vanishing of
the moment map, we find that A = d∆ = dϕ̂ = 0 and hence the above become

dΩ = 0, dIω = 0 ⇔ dω = 0. (4.56)
19In fact, in [44] they show that Im Φ can be obtained from Re Φ. However the converse statement is also

true.
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Finally note that we could have instead taken the pure spinors to be

Φ− = 1
8eiαe3∆−ϕ̂Ω, Φ+ = 1

8eiβe3∆−ϕ̂eiω, (4.57)

where α, β are two real constants. This would not change the normalisation condition or
the generalised metric, but would affect what we mean by the real and imaginary parts of
Φ± and hence would rearrange which terms appear in the involutivity and moment map
conditions. This amounts to choosing which N = 1 ⊂ N = 2 we want to make manifest.

5 The superpotential, the Kähler potential and extremisation

As we discussed in section 3.2, the existence of the Kähler metric on the space Z of
generalised SU(7) structures is really just a reflection of fact that one can rewrite the full
ten- or eleven-dimensional supergravity in D = 4, N = 1 language, in line with the N = 2
discussion of [29, 30, 32, 71]. The internal degrees of freedom parametrised by ψ lie in chiral
multiplets and hence parametrise a Kähler manifold. By including the unphysical constant
overall scaling and phase of ψ we are in the superconformal formulation of the supergravity.
The D-term (or more strictly the Killing prepotential P) is just the moment map µ for the
action of the GDiff gauge symmetry, with V ∈ Γ(E) giving a parametrisation of gdiff:

Kähler potential : K =
∫
M

(
i s(ψ, ψ̄)

)1/3
,

D-term : P = 1
3

∫
M
s(LV ψ, ψ̄)(i s(ψ, ψ̄))−2/3.

(5.1)

To complete the description of the chiral multiplet sector we need the generic su-
perpotential W in terms of ψ. This was first discussed in [23]. The D = 4, N = 1
supersymmetry conditions are the vanishing of the D-term, namely P = 0, and the super-
potential conditions δW/δψ =W = 0. In terms of our previous discussion this means that
the superpotential conditions should imply the involutivity of L3. A missing ingredient
thus far in our discussion is to show that involutivity is a holomorphic condition in terms
ψ. In this section, we will extend the analysis of [23] to give the expression for W for a
generic N = 1 background. We will see that it is indeed a holomorphic function of ψ and
furthermore show that, in the special cases of a G2 structure and GMPT, it matches the
standard expressions in the literature.

Recall also that the moment map picture implies that formally the moduli space of
integrable SU(7) structures can be viewed as a quotient by the complexification GDiffC
of the generalised diffeomorphism group. As for the complex and generalised complex
structure cases, the complexification does not really exist as a group, and instead what is
really meant is modding out by the complexification of the orbits generated by the action
of GDiff. The other focus of this section is to investigate this action and show that it
gives a (generalised) reinterpretation of Hitchin’s picture of integrable G2 structures as
extremising a particular functional. We will also comment very briefly on how this might
suggest notions of stability for G2 manifolds and their generalisations.
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5.1 The superpotential

In this section we will derive a general form for the superpotential W, building on work
on superpotentials in the presence of flux first proposed in [86, 87], and the generalised
geometry expressions given in [26]. A natural conjecture is that W is given by the singlet
part of the intrinsic torsion for the SU(7) structure integrated over the internal manifold.
As we will see, one can pick out this singlet by a projection that is holomorphic in terms
of ψ, meaning that the superpotential is a holomorphic function of ψ, justifying ψ as the
holomorphic coordinate on Z.

As mentioned above we expect the supersymmetry conditions δW/δψ = W = 0 to
imply the involution condition on L3. We note that the variations of the SU(7) structure ψ
transform as 17, 73 and 355, and so δW/δψ = 0 will constrain the dual 1−7, 7−3 and 35−5
components of the intrinsic torsion. This means δW/δψ = 0 implies W = 0 (as W itself
is the singlet) and furthermore is a slightly stronger condition than L3 being involutive,
which only constrained the 1−7 and 35−5 components.

Before turning to the superpotential itself, it is useful to show that one can rephrase
involutivity as a holomorphic condition on ψ. Suppose V ∈ Γ(L3) and D is a compatible
generalised connection, that is Dψ = 0. From the definition (3.11) we find

LV ψ = −T (V ) · ψ for V ∈ Γ(L3). (5.2)

Note that this expression is linear in V . For any other R+ weight we would have gotten
an additional factor of the form (D · V )ψ where D · V = DMV

M , and hence a non-
linear expression. Since LV ψ is independent of D, only the intrinsic torsion contributes to
T (V ) · ψ. From the U(1) × SU(7) representations it is easy to check that the 1−7, 7−3,
and 35−5 components of the intrinsic torsion (3.24) appear, precisely the components in
δW/δψ. This gives us an alternative formulation of the involutivity condition20 (i.e. the
vanishing of the 1−7 and 35−5 components):21

involutive L3 ⇔ LV ψ = A(V )ψ ∀ V ∈ L3, (5.3)

where A ∈ Γ(L∗3) is the 7−3 component of the SU(7) intrinsic torsion, and A(V ) = AMV
M

is just the natural pairing between sections of E∗ and E. We also see that we expect

δW
δψ

= 0 ⇔ LV ψ = 0 ∀ V ∈ L3. (5.4)

In analogy with the complex structure and generalised complex structure cases, we expect
that we can always take a ψ satisfying the involutive condition and rescale by a complex
function ψ′ = fψ so that the stronger superpotential condition is satisfied.

Crucially both of these conditions are linear in V and so can be viewed as a holomorphic
expressions in ψ. (Note from (3.20) that L3 is fixed by V • ψ = 0 and so also only

20Note that in the conventional and generalised complex structure cases we could equally well have
formulated the conditions (2.5) and (2.32) as LV Ω = (ıVA)Ω and LV Φ = 2〈V,A〉Φ for all V ∈ Γ(L1).

21Note that relations of this form were first noted in the context of integrable structures in E6(6) generalised
geometry by Edward Tasker (private communication).
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depends holomorphically on ψ.) If we had chosen a structure ψ′ with a different R+-
weight we would have had an additional (D · V )ψ′ term. For the involutivity condition we
could still have phrased the condition in the holomorphic form LV ψ

′ ∝ ψ′, however the
δW/δψ′ = 0 condition would not be holomorphic because it would have to be written as
LV [(is(ψ′, ψ̄′)pψ′] = 0 for some suitable power p. Thus we anticipate that the superpotential
W is a holomorphic function only if we take ψ transforming in 9123.

Returning to the definition of the superpotential, why is it natural to conjecture that
it is the singlet torsion 1−7? Consider the AdS case for a moment. We know from [27] that
the cosmological constant appears as a singlet of the intrinsic torsion when decomposed
under SU(8) and this descends to the singlet for the SU(7) structure (since there is only one
singlet). The supersymmetry conditions for an AdS background include the vanishing of
derivatives of the superpotential (the F-terms) but the superpotential itself does not vanish.
Instead, requiring the superpotential to vanish is the final condition for a Minkowski solu-
tion. Thus it is reasonable that the superpotential itself is simply the singlet of the torsion.

To see this more concretely, we conjecture

W :=
∫
M
W ∼

∫
M

i s(ψ, T ), (5.5)

where T is the intrinsic torsion of the structure. The symplectic product with ψ projects
onto the singlet component (specifically the 1−7 component). We also note that ψ is weight-
3 and T is weight-(−1) with respect to the R+ action. This means i s(ψ, T ) is weight-2
and hence is a volume form which can be integrated over the manifold. From (5.2) we
know that the 1−7 component of the torsion is a holomorphic function of ψ, and hence the
superpotential is holomorphic.

We can make the ψ dependence more manifest as follows. It was shown in [23], using
the Killing spinor equations, that W can be written as22

(D ×ad ψ) · ψ ∼Wψ, (5.6)

where D is now a torsion-free SU(8) connection (not SU(7)), ×ad is a projection to the
adjoint representation 133, so that D ×ad ψ transforms in the 1332 representation, and
W is the desired singlet component of the intrinsic torsion of the structure defined by ψ.
Clearly we can project onto W by calculating

s(ψ̄, (D ×ad ψ) · ψ)
s(ψ̄, ψ)

∼W. (5.7)

At first sight, this appears to depend on ψ̄ and so will not be holomorphic on Z. However,
this apparent dependence factors out. Consider an infinitesimal variation of the structure

δψ ∼ c ψ + a · ψ + ã · ψ,
δψ̄ ∼ c̄ ψ̄ + ā · ψ̄ + ¯̃a · ψ̄,

(5.8)

22Technically, in [23] a specific choice of the connection D was taken. We show that the operator appearing
here is independent of this choice at the end of this section.
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where we are acting with the Lie algebra e7(7)⊕R. Decomposing under SU(7) as in (3.16),
c is a complex singlet coming from 10 and the R action, while a and ã transform in 7−4
and 35−2 representations respectively. Of the antiholomorphic parameters (c̄, ā, ¯̃a), only c̄
can appear in the relevant projection

s(δψ̄, (D ×ad ψ) · ψ) ∼W s(δψ̄, ψ) = c̄W s(ψ̄, ψ) (5.9)

as the parts involving ā and ¯̃a are non-singlet and thus projected out. Thus we are left
with only a C∗ scaling of ψ̄ by the antiholomorphic factor ec̄. However this scaling clearly
factors out of (5.7) and hence W is indeed a holomorphic function of ψ.

In conclusion, the general expression for the superpotential of a generic D = 4, N = 1
background up to an overall constant is

W =
∫
M
W ∼

∫
M

s(ψ̄, (D ×ad ψ) · ψ)
s(ψ̄, ψ)

∼
∫
M

tr(J, (D ×ad ψ)). (5.10)

We have included an alternative expression in a slightly simpler form that has the benefit
of being easier to calculate explicitly. However, it is less obvious to see that it does not
depend on antiholomorphic variations of the structure.

For completeness we should check that our expressions for W are well defined, in the
sense that they do not depend on the parts of the torsion-free SU(8) connection D which
are not determined by the generalised metric G. These undetermined components form
the 1280 + 1280 parts of the connection, and they do appear in the unprojected operator
D ×ad ψ, which thus depends on the choice of the connection D. To see that they do not
appear in our expressions for the superpotential above, note that J , ψ and the operators
tr(J(D×ad ψ)) and s(ψ̄, (D×ad ψ) ·ψ) are all SU(7) singlets. This means that only SU(7)
singlet parts of the connection can appear in them. A routine decomposition reveals that
there are no singlets in the SU(7) decomposition of the 1280 + 1280 representation of
SU(8), and thus these parts of the connection cannot appear in our expressions. As such,
these operators represent a complex SU(7) singlet part of the intrinsic torsion, as claimed.

5.1.1 G2 in M-theory

In the G2 case, it is straightforward to calculate the superpotential directly and compare
with the existing literature. As discussed in section 4.1, the SU(7) structure corresponding
to a G2 structure with flux has the form

ψ = eÃ+Aeiϕ · 1 = eÃ−
1
2 iA∧ϕ+A+iϕ · 1 = eγ · 1,

L3 = eÃ−
1
2 iA∧ϕ+A+iϕ · T = eγ · TC,

(5.11)

where we have defined γ = Ã − 1
2 iA ∧ ϕ + A + iϕ as a sum of six- and three-forms. The

Dorfman derivative of ψ along V = eγv ∈ Γ(L3) satisfies

LV ψ = Leγ ·v(eγ · 1) = eγ · LΓ
v 1 = eγ · (Lv1− ıvΓ · 1) = −eγ · ıvΓ · 1, (5.12)

where the complex flux

Γ = F + i dϕ+ F̃ + 1
2ϕ ∧ dϕ− iF ∧ ϕ ∈ Γ(∧4T ∗ ⊕ ∧7T ∗) (5.13)
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can be viewed as a section of the torsion bundle K. Using the various actions of γ as an
adjoint element, we also have

T (V ) · ψ = T (eγv) · eγ · 1 = eγ · (e−γ · T )(v) · 1 = eγ · ıv(e−γ · T ) · 1. (5.14)

Finally we note that

s(ψ, T ) = s(eγ · 1, T ) = s(1, e−γ · T ) ∼ (e−γ · T )(7), (5.15)

where (e−γ · T )(7) is the seven-form component of (e−γ · T ). However, using (5.2) and
comparing (5.12) and (5.14), we see that (e−γ · T )(7) = Γ(7) and hence

W ∝
∫
M

i s(ψ, T ) ∝
∫
M

(
F̃ + 1

2ϕ ∧ dϕ− iF ∧ ϕ
)
. (5.16)

The superpotential is simply the integral of the seven-form component of the complex flux.
We can compare this expression to those that have already appeared the literature.

Beasley and Witten considered the M-theory superpotential on manifolds of G2 holon-
omy [8] — this means we should assume dϕ = 0 to match their results. In addition, they
take

∫
M F̃ = −1

2
∫
M A ∧ F .23 Using these assumptions, the above superpotential can be

rewritten as
W ∝

∫
M

(1
2A+ iϕ

)
∧ F, (5.17)

which matches that given in [8]. More generally, the M-theory superpotential on manifolds
with G2 structure with flux has been discussed in a number of places [2, 11, 89, 90].
Following [90], we define

P0 =
∫
M

(
F̃ + 1

2A ∧ F
)
∈ (2π)2 Z, (5.18)

which allows us to rewrite our superpotential as

W ∝ P0 +
∫
M

(
−
(1

2A+ iϕ
)
∧ F + 1

2ϕ ∧ dϕ
)

∝ P0 −
1
2

∫
M

(A+ iϕ) ∧ d(A+ iϕ).
(5.19)

This matches the expression found in [90] up to an overall multiplicative constant.
Let us make one further comment. Recall that involutivity for a G2 structure implied

dϕ = dA = dÃ = 0 and so dγ = 0. From (5.12) this means LV ψ = 0 for all V ∈ Γ(L3)
— in other words δW/dψ = 0. This is a result of our choice of normalisation of ψ. If we
had scaled by a complex function f so that ψ′ = eγ · f , we would have had an additional
one-form contribution to the intrinsic torsion T and LV ψ would not vanish, consistent with
the comments below (5.4).

23As discussed by Beasley and Witten, this comes about as the Page charge (the integral of 1
(2π)2 dÃ) is

quantised. Since 1
(2π)2

1
2

∫
M
A∧F is only defined modulo an integer [88], one can take

∫
M

(F̃ + 1
2A∧F ) = 0

without introducing extra ambiguities.
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5.1.2 GMPT

We can repeat the same analysis to give the superpotential in the GMPT case. The SU(7)
structure has the form given in (4.47) and (4.32)

ψ = eΣ · Φ−, L3 = eΣ(LJ−1 ⊕ UJ−), (5.20)

where Σ = C + 8 i e−3∆ Im Φ+. Using (4.49), we then have

LV ψ = eΣ ·
[
LZ+αΦ−Φ− − (��ZdΣ) · Φ−

)
= eΣ ·

[
��ZdΦ− − α(dΦ−) · Φ− − (��ZdΣ) · Φ−

]
,

(5.21)

where we take Z ∈ Γ(LJ−1 ) so that V = eΣ(Z +αΦ−) ∈ Γ(L3) and have used the algebraic
property (Z + αΦ−) • Φ− = 0. As in (5.14) we have for the torsion

T (V ) · ψ = eΣ ·
(
e−Σ · T

)
(Z + αΦ−) · Φ−. (5.22)

Finally we have

s(ψ, T ) = s(eΣ ·Ψ, T ) = s(Ψ−, e−Σ · T ) ∼
(
Φ−, (e−Σ · T )−

)
, (5.23)

where in the last expression we have the Mukai pairing of Φ− and the odd-polyform com-
ponent (e−Σ · T )− of the torsion. However, using (5.2) and comparing (5.21) and (5.22),
we see that (e−Σ · T )− = dΣ and hence

W ∝
∫
M

i s(ψ, T ) ∝
∫
M

(
Φ−, F + 8 i d(e−3∆ Im Φ+)

)
. (5.24)

Taking into account the normalisations (4.31), we see that this is in precise agreement with
the O(6, 6) generalised geometry expressions given in [29, 91–93].

5.2 The Kähler potential, the moment map and extremisation

Almost twenty years ago Hitchin [34] gave an intriguing reformulation of integrable G2
structures as corresponding to stationary points of a suitable functional on the space of
closed structures, that is those satisfying dϕ = 0, taking the variation within the cohomol-
ogy class of ϕ. In this section we will show that the Kähler potential K gives a natural
generalised geometry extension of Hitchin’s functional for SU(7) structures. In particular,
we show that the moment map conditions µ = 0 can be rephrased as stationary points of
K when varying over the space of complexified generalised diffeomorphisms GDiffC. In the
case of G2 structures we show that this is identical to Hitchin’s variational problem.

We start by recalling that an infinitesimal generalised diffeomorphism defines a vector
field ρV ∈ Γ(TZ) on the space Z of generalised SU(7) structures given by24

LρV ψ = ıρV δψ = LV ψ. (5.25)
24Note that here LρV is the Lie derivative along ρV in the space of structures Z, whereas LV is the

generalised Lie derivative on the manifold M .
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The symplectic form $ on Z given in (3.33) is invariant under the action of GDiff, that is
LρV$ = 0, and µ in (3.39) is the corresponding moment map defined by ıρV$ = −δµ(V ).
Note that it is straightforward to check that ıρW δµ(V ) = µ(JV,W K), where JV,W K is the
Courant bracket, and hence the moment map is equivariant. We also immediately note
LρV ψ = LV ψ is holomorphic in ψ hence the GDiff action also preserves the complex
structure on Z.

It is a standard result from the supergravity literature that the moment map (or D-
term) can be solved in terms of the Kähler potential [94]. Explicitly, if ρV generates the
symmetry, one has, by definition,

δµ(V ) = −ıρV$ = −ıρV
(1

2δδ
IK
)

= −1
2LρV (IδK) + 1

2δ(ıρV IδK), (5.26)

where δI = [I, δ] and I is the complex structure on Z. But we have LρV I = 0, so, assuming
we choose the Kähler potential such that it is also invariant, that is LρV K = 0, the first
term vanishes. Using ıIρV δK = −ıρV IδK, one then has (up to closed terms which are fixed
to vanish by the requirement of equivariance)

µ(V ) = −1
2 ıIρV δK = −1

2LIρV K. (5.27)

To check this relation explicitly in our case, we first calculate IρV . Since ψ is holomorphic,
splitting the exterior (functional) derivative on Z into holomorphic and antiholomorphic
parts δ = ∂′ + ∂̄′, we have

LIρV ψ = ıIρV ∂
′ψ = iıρV ∂′ψ = iLρV ψ = iLV ψ. (5.28)

We then have

LIρV K =
∫
M

1
3
(
i s(ψ, ψ̄)

)−2/3(
i s(ıIρV δψ, ψ̄) + i s(ψ, ıIρV δψ̄)

)
= −

∫
M

1
3
(
i s(ψ, ψ̄)

)−2/3(
s(LV ψ, ψ̄)− s(ψ,LV ψ̄)

)
= −

∫
M

2
3
(
s(ψ, ψ̄)

)−2/3
s(LV ψ, ψ̄)

= −2µ(V ),

(5.29)

where we used an integration by parts and compactness to reach the final line. This is in
complete agreement with (5.27). For completeness, using the non-holomorphic structure
φ, we can also check the invariance of K:

LρV K = i
∫
M
s(ıρV δφ, φ̄) + s(φ, ıρV δφ̄) = i

∫
M
s(LV φ, φ̄) + s(φ,LV φ̄)

= i
∫
M
LV s(φ, φ̄) = 0,

(5.30)

where the action of LV on a top-form reduces to the Lie derivative, which then vanishes
due to compactness of M .
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The relation (5.27) is striking because it shows that the zeros of the moment map can
be equally well thought of as critical points of K

µ = 0 ⇔ critical point of K under GDiffC action. (5.31)

The group GDiff does not really complexify, so what is really meant here is motion on the
orbits generated by ρV and IρV . Since K is invariant under the former, the extremisation is
really over iGDiff generate by IρV . For the set of critical points to form a nice moduli space
after quotienting by GDiff, as in the symplectic quotient, strictly one needs to show that a
critical point of the Kähler potential is non-degenerate transverse to the orbit of GDiff [34].
It is a general result that the Hessian for the imaginary transformations is given by

LIρV LIρWK = −2LIρV µ(W ) = −2 ıIρV δµ(W ) = 2 ıIρV ıρW$ = 2 g̃(ρV , ρW ), (5.32)

where g̃ is the pseudo-Kähler metric on Z. Because the metric is pseudo-Kähler, it is
possible that g̃(ρV , ρW ) could vanish for all ρW and this not imply that ρV = 0. Since we
want to mod out by real generalised diffeomorphisms, the non-degeneracy condition we
require is that, at the extremum,

g̃(ρV , ρW ) = 0 ∀W ∈ Γ(E) → ∃ U ∈ Γ(E) : iLV ψ = LUψ. (5.33)

In other words, any degeneracy in the direction of an imaginary GDiff transformation
is always equivalent to a real GDiff transformation. One can rephrase this condition
in terms of the operators discussed in section 6.5. However, at this point, we do not
understand them well enough to check if the non-degeneracy is generically true. That said,
from a physical perspective, since the equations of motion of supergravity are elliptic and
supersymmetry implies the equations of motion, we would expect there to be a sensible
finite-dimensional moduli space.

The extremisation of K is a generalised geometry extension of Hitchin’s extremisation
of a G2 functional [34] as we will now see. We saw in section 4.1 that for G2 structures,
the Kähler potential is proportional to the G2 Hitchin functional V (ϕ)

K(ψ) ∝ V (ϕ) =
∫
M
ϕ ∧ ?ϕ for ψ = eÃ+Aeiϕ · 1. (5.34)

Furthermore, under an imaginary GDiff transformation it is straightforward to calculate

ıIρV δψ = iLV ψ = iLvψ − i(dω + dσ) · ψ,= −d(ıvϕ) · ψ − i
(
dω′ + dσ′

)
· ψ. (5.35)

where ω′ = ω−ıvA and σ′ = σ−ıvÃ− 1
2A∧ıvA+ 1

2ϕ∧ıvϕ and we have used the involutivity
conditions dϕ = dA = dÃ = 0. We see that, up to real generalised diffeomorphisms, an
imaginary GDiff is equivalent to an imaginary gauge transformation. Exponentiating,
again up to real gauge transformations, we get

ψ 7→ ψ′ = eÃ+Aeidσ′ei(ϕ+dω′) · 1 = eÃ+Aei(ϕ+dω′) · (1 + const× jdσ′ + . . . ), (5.36)

where jdσ′ denotes dσm,n1...n5 ∈ Γ(T ∗ ⊗ ∧5T ∗) and the dots denote higher-order terms in
dσ′. In particular, we see the G2 three-form is shifted within its cohomology class. We
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now want to extremise K with respect to the σ′ and ω′ variations. First note that it is
independent of A and Ã since it is a E7(7)×R+-invariant. Next, we first show that dσ′ = 0
is an extremum with respect to the σ′ variations. Writing the modified G2 structure as ϕ′ =
ϕ+ dω′, linearising in π = jdσ′ we then have, using the same arguments that led to (4.19),

δK =
∫
M
κ where κm1...m7 = const× g′npπn,p[m1...m4ϕ

′
m5m6m7]. (5.37)

However, the antisymmetry of dσ′ implies κ vanishes and hence δK = 0. This means we
are back to extremising K(ψ′) in (5.34) with ϕ replaced with ϕ′ = ϕ + dω′. But this is
exactly the extremisation introduced by Hitchin [34]. For a variation δϕ′ = dω′ it gives

δV (ϕ′) ∝
∫
M
δϕ′ ∧ ?ϕ′ =

∫
M

dω′ ∧ ?ϕ′. (5.38)

Integrating by parts shows that V has a critical point for d ? ϕ′ = 0, recovering the
condition from the vanishing of the moment map as we expected.

5.3 Moduli spaces, GIT and stability

The fact that the moduli space can be viewed either as a symplectic quotient or a quotient
by the complexified group is a general result for group actions that preserve a Kähler
structure (see for example the discussion in [95]). For the case in hand, we have

Mψ = Ẑ//GDiff ' Ẑps/GDiffC. (5.39)

There is a subtlety we have glossed over previously which is that for the complex quotient
one needs to consider not the full space of structures but a subset Ẑps ⊂ Ẑ of “polystable”
points. The equivalence of quotients in (5.39) is the Kempf-Ness theorem. This is part of
“Geometric Invariant Theory” or GIT, as reviewed for example in [96]. The point is that
not all complex orbits will intersect the space of zeros of the moment map µ−1(0). If ψ lies
on an orbit that fails to meet µ−1(0) it is called unstable and is excluded from Ẑps. Our
setup is typical of a number of classic geometric problems: one has an infinite-dimensional
Kähler manifold with a group action such that the vanishing of a moment map corresponds
to the solution of a differential equation. For example, it appears in Atiyah and Bott’s work
on flat connections on Riemann surfaces [35], in the “hermitian Yang-Mills” equations of
Donaldson-Uhlenbeck-Yau [36–38], Fine’s formulation of the Calabi conjecture [97], and
the equations of Kähler-Einstein geometry [39–43]. Famously, in each case, developing
the correct GIT notion of stability allows one to translate the question of existence of
solutions to the differential equation into algebraic conditions arising from the analysis of
the complex orbits.

In this section, we will sketch how our description of integrable SU(7) structures might
translate into the GIT picture, and discuss the form of the moduli space. In general,
stability can be understood in the following way. Consider a U(1) subgroup of the group
action. For us this is some U(1) ⊂ GDiff generated by some vector field ρV ∈ Γ(T Ẑ). Under
complexification this gives a C∗ action on the space of involutive structures Ẑ. Starting
at some point ψ ∈ Ẑ the C∗ action generates an orbit of structures ψ(ν) parameterised
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stable

ψ
semistable

unstable

C∗ψ0

Figure 1. Stability for a 1-PS orbit of ψ.

by ν ∈ C∗. If the space of structures were compact up to overall scalings of the SU(7)
structure of the form ψ → λ3ψ with λ ∈ C∗, then in the limit ν → 0, the two C∗ actions
must coincide, giving a fixed line of structures (see figure 1)

lim
ν→0

ψ(ν) = ν3w(ψ)ψ0 ⇒ lim
ν→0
K = |ν|2w(ψ)K0, where w(ψ) ∈ Z, (5.40)

where the weight w(ψ) depends on the orbit (and hence the original structure ψ) and
is necessarily quantised since we have a U(1) ⊂ C∗ action.25 Considering all such U(1)
subgroups, or “one-parameter subgroups” (1-PS), one then defines26

if w(ψ) < 0 for all 1-PS then ψ is stable,
if w(ψ) ≤ 0 for all 1-PS then ψ is semistable,
if w(ψ) > 0 for some 1-PS then ψ is unstable.

(5.41)

The beautiful observation is then that if the function K is convex with respect to varying |ν|,
and is stable in both directions (that is for 1-PS generated by ρV and the inverse 1-PS gener-
ated by −ρV ), then it must have a (unique) minimum. But we have already seen from (5.27)
that a minimum of K is equivalent to the vanishing of the moment map µ(V ) = 0 for this
particular V . Since stability is for all 1-PS it implies there is a unique minimum where
µ(V ) = 0 for all V . Hence if ψ is stable27 then there is a unique solution of the moment
map in the orbit of ψ generated by GDiffC. In the language of GIT we are identifying

norm functional = Kähler potential K (5.42)

which as we saw above is the E7(7) × R+ extension of Hitchin’s G2-functional.
25We have normalised the U(1) charges relative to the R+ action, hence the factor of three in (5.40).
26More generally one can define stability for the action of the whole of the complexified group (in our case

GDiffC) but the Hilbert-Mumford criterion implies that stability for all the 1-PS is an equivalent condition.
27The actual condition is the slightly more subtle notion of “polystability” which includes equivalence

classes of semistable orbits, at the boundary between stable and unstable orbits.
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In the Kähler-Einstein context, Yau [98] originally introduced the notion of a functional
that is the integral of the square of the scalar curvature, and in the moment map picture
is the integral of the square of the moment map. Critical points of the Yau functional are
called “extremal metrics”. In our context, the N = 1, D = 4 supergravity picture gives a
simple interpretation of the analogous object. Recall that the potential of the supergravity
is given by

V = eK
(
ĝij̄DiWDj̄W̄ − 3WW̄

)
+ 1

2(Re τ)abPaPb, (5.43)

where ĝij̄ is the Kähler metric on the space of chiral fields Φi, DiW = ∂iW − (∂iK)W,
and Re τab is an invariant metric on the Lie algebra of the moment map symmetry. If we
consider SU(7) structures that are involutive (or strictly the slightly stronger condition that
the superpotential is extremised (5.4)) the term in parentheses vanishes. The metric on the
Lie algebra is fixed by the generalised metric GMN (see for example [99]) and we are left with

V ∼
∫
M

vol−1
G GMNPNPM ∼

∫
M

volGR, (5.44)

where volG is the E7(7)-invariant volume form defined by the generalised metric. (Note
that the factor of vol−1

G in the first term comes from the fact that P ∈ Γ(detT ∗ ⊗ E∗).)
We see that the potential is the square of the moment map. Furthermore, from the
reformulation of supergravity in terms of E7(7) × R+ generalised geometry [24, 25], the
potential is the supergravity action on M which is just the integral of the generalised Ricci
scalar R as we write in the second term. Thus we have

Yau functional ∼
∫
M

volGR. (5.45)

We see that extremising the Yau functional corresponds to generalised Ricci-flat solutions,
that is generic solutions of the supergravity equations.

Central to the equivalence of stability and the vanishing of the moment map is the
condition that the norm functional is convex. This is usually a consequence of the general
result (5.32) that the second derivative is given by the Kähler metric

LIρV LIρV K = 2 g̃(ρV , ρV ). (5.46)

A positive-definite metric then implies convexity. As we have already mentioned, a key
difference for SU(7) structures is that we have a pseudo-Kähler metric and so we can no
longer guarantee that the norm functional is convex under the action of iGDiff. Thus a
stable orbit may have more than one solution of the moment map, and unstable orbits may
still include solutions, implying stability is only a necessary condition for the existence of
solutions. This problem is closely related to the degeneracy question, mentioned above, as
to whether critical points of K form a nice moduli space.

The pseudo-Kähler structure raises other potential subtleties with the description of
the moduli space of integrable SU(7) structures as we have presented it. First, the holo-
morphic involutivity condition might define a null subspace within the space of structures
Z, meaning there is no guarantee that the subspace Ẑ inherits a Kähler metric (since
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the pullback of the metric can be degenerate). Secondly, if the group action defining the
moment map is null, there is similarly no guarantee that there is a Kähler metric on the
symplectic quotient. Although we have not checked directly, physically we might expect
that neither problem arises, the point being that supersymmetry implies that there must
be a Kähler metric on the final moduli space, since it is a space of chiral superfields. Fur-
thermore, unless the background secretly admits more supersymemtries, this metric must
be positive definite (since it gives the kinetic terms of the four-dimensional fields). If there
are extra supersymmetries these appear as deformations which change the SU(7) structure
but not the generalised metric, and hence are unphysical.

This makes one wonder if there could be a more standard GIT picture underlying the
conditions. Recall that at a point p ∈M the tangent space TQSU(7) to the E7(7)×R+/SU(7)
coset space (3.29) decomposes under SU(7)×U(1) as

TQSU(7) : (10 ⊕ 10)⊕ (7−4 ⊕ 74)⊕ (352 ⊕ 35−2), (5.47)

where the first two terms are generated by the action of J and the R+ scaling. The complex
structure on TQSU(7) pairs the representations in parentheses, with a positive definite
metric on 352 ⊕ 352 and a negative definite metric on the remaining directions giving a
signature (70, 16), which is then inherited by the full space of structures Z. Focusing on the
G2 case, or perhaps more generally the type-0 case, we will now discuss how the negative
deformations can potentially be removed. First one considers the space of exceptional
complex structures J (rather than Z), which removes the two singlet components in (5.47).
Then one takes the symplectic quotient by the normal subgroup of gauge transformations
generated by five-forms which removes the remaining 7⊕ 7 components.

An exceptional complex structure J determines ψ up to rescaling by a function ψ →
fψ. Thus we can define the space of exceptional complex structures as a symplectic quotient

X̂ , space of exceptional complex structures = Ẑ//H. (5.48)

The Lie algebra of H is given by h ' C∞(M) and α ∈ h acts via ρα(ψ) = iαψ, giving the
moment map

µH(α) =
∫
M
α
(
i s(ψ, ψ̄)

)1/3
, (5.49)

and in the quotient we set µH = vol0 for some fixed reference volume form. Since the
action preserves the Kähler structure on Ẑ there is then also a Kähler metric on X̂ though
now based on the coset space E7(7)/U(7) with signature (70, 14). The corresponding Kähler
potential is given by choosing an arbitrary section ψ ∈ Γ(UJ) and calculating

K̃ =
∫
M

log
(
is(ψ, ψ̄)/ vol30

)
vol0 . (5.50)

The action of GDiff descends to X̂ (strictly we need to restrict to the subgroup GDiff0 ⊂
GDiff that preserves vol0, that is in the Lie algebra LV vol0 = 0, but we will ignore this
subtlety). Hence one can define a corresponding moment map µ̃ on X̂ given by

µ̃(V ) =
∫
M

s(LV ψ, ψ̄)
i s(ψ, ψ̄)

vol0, (5.51)
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and define the quotient moduli space

Mphys = X̂//GDiff. (5.52)

We claim that this is isomorphic to the physical moduli spaceMψ/C∗, where the C∗ action
is the constant rescaling ψ → λ3ψ. The point is that the vanishing of the moment map
µ̃(V ) = 0 on X̂ implies the vanishing of the moment map µ(V ) = 0 on Ẑ except for those
transformations that preserve J , that is LV J = 0. However, such transformations simply
rescale ψ. The effect is that for each J satisfying µ̃ = 0 the additional conditions from
µ = 0 simply fix the particular section ψ ∈ Γ(UJ). Up to an overall C∗ rescaling ψ → λ3ψ,
we expect one such solution for each J , and henceMJ is isomorphic to the physical moduli
spaceMψ/C∗. (This is completely analogous to the SL(3,C) structure case.)

If we focus on G2 structures, fixing an integrable J , the compatible ψ can be written as

ψ = eÃ+Aeiϕ · f, (5.53)

for some function f and with dϕ = dA = dÃ = 0. We note that the group Gσ ⊂ GDiff
of five-form gauge transformations forms a normal subgroup. Thus we can do the
symplectic reduction by stages, first reducing by Gσ and then by the quotient group
GDiff ′ = GDiff/Gσ. As we saw in section 5.2, the form of ψ we have written already
satisfies µ(σ) = 0 for all five-forms σ. Hence the symplectic quotient just identifies
Ã ∼ Ã+ dσ. Taking H6

d(M,R) = 0, we have Ã ∼ 0. By moving to the quotient space

X̂σ = X̂//Gσ, (5.54)

we have effectively removed 14 of the allowed deformations. Direct calculation in the G2
case implies that this removes precisely the negative directions in the metric, so that the
Kähler metric on X̂σ is positive definite. Thus we have a conventional picture of stability
with

Mphys ' X̂σ//GDiff ′ ' X̂ ps
σ /GDiff ′C. (5.55)

This suggests that, at least formally, the space of integrable G2 structures, complexified
by including the closed three-form potential A, can be viewed as a GIT quotient of the
space of closed G2 structures. The E7(7) extension of Hitchin’s G2 functional K plays the
role of the norm functional.

A choice of 1-PS in this case should be a diffeomorphism corresponding to circle ac-
tions on M since the gauge transformations in GDiff are always non-compact. If the
diffeomorphism is generated by ξ ∈ Γ(T ), fixed points of the 1-PS amount to solutions to

LξJ = 0 where J = eA
(
ϕ] − ϕ

)
, (5.56)

where we have allowed for a non-trivial three-form potential. The value of the moment
map at the fixed point, suitably normalised, should give an integer invariant. This will be
the analogue of the Futaki invariant in Kähler-Einstein geometry [100]. Furthermore, these
should be obstructions to the existence of solutions to the moment map. The simplest so-
lution to (5.56), is to take Lξϕ = LξA = 0. In this case, the SU(7) structure ψ ∈ Γ(UJ) can
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only depend on the circle action through the function f . One would expect that the integer
invariants would thus encode the topology of the line bundle UJ , since the moment map is
independent of the choice of section. The obstruction is thus that the bundle must be triv-
ial, as we expect for the existence of a globally defined ψ. More interestingly however, the
1-PS motion may lead to other types of solution to (5.56), most notably exceptional com-
plex structures with type-changes, perhaps associated to circle actions with fixed points.
These are structures J which are no longer type-0 in the whole of M . This is possible since
although the C∗ action generated by ξ preserves the cohomology class of ϕ and A, the forms
themselves may vanish or become singular at points in M . The moment map evaluated on
such solutions should again give some integral invariant of the closed G2 structure. Naively,
understanding such configurations would be key to formulating any notion of stability.

6 Moduli of N = 1 backgrounds

The generalised SU(7) structure we have described characterises generic N = 1 flux back-
grounds with a four-dimensional Minkowski factor. A natural question to ask is what is
the moduli space of these backgrounds? If the background is to be used for phenomenol-
ogy, this will tell us about the massless chiral superfields in the four-dimensional effective
theory (ignoring extra M-theory or stringy massless excitations localised at singularities,
since we are in the supergravity limit). Although the answer is well-known for G2 com-
pactifications, very little is known about generic supersymmetric flux compactifications.
In this section we will use the generalised geometrical description to show how the moduli
are related to particular cohomologies. For G2 this reproduces the well-known result that
the number of chiral fields is counted by the third de Rham cohomology H3

d(M,C). The
analysis trivially extends to generic type-0 SU(7) structures giving the local moduli space
as H3

d(M,C) ⊕H6
d(M,C). Remarkably it also gives a complete description of the moduli

for the GMTP solutions, completing an analysis first considered in [57].
As we have seen, the moduli space of a D = 4, N = 1 background is given by

Mphys = Mψ/C∗, where Mψ is the space of torsion-free SU(7) structures modulo gen-
eralised diffeomorphisms. In section 5.3 we argued that if the infinite-dimensional GIT
picture is valid this is equivalent to X̂/GDiffC, where X̂ is the space of exceptional com-
plex structures. If we have a solution J , the local moduli space thus corresponds to a
finding the integrable deformations of J modulo complexified generalised diffeomorphisms.
As we noted, strictly the GIT picture is not necessarily equivalent because the metric on
X̂ is not positive definite. However, assuming the critical points of K are non-degenerate
transverse to the orbit of GDiff, infinitesimally this will produce the correct moduli space.
A generic deformation then defines an element of the intrinsic torsion that must vanish
for the deformation to be integrable. The complexified generalised diffeomorphisms will be
generated by the Dorfman derivative and are necessarily integrable. This sets up a problem
in cohomology and it is this that we aim to understand better. We will start with a quick
review of the moduli of conventional complex structures as this will illustrate many of the
key ideas that we will use in analysing the deformations of SU(7) structures.
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6.1 Review of the moduli space of complex structures

Let us recall how the moduli space of integrable SL(3,C) structures arises. One starts
by considering deformations of an integrable GL(3,C) structure. Define QGL(3,C) =
GL(6,R)/GL(3,C) as the space of (almost) complex structures at a point p ∈M . This can
be viewed as

QGL(3,C) = GL(6,R)/GL(3,C) = GL(6,R) · I0 = GL(6,C)/P, (6.1)

where GL(6,R) · I0 is the orbit of a fixed complex structure I0 under g ∈ GL(6,R), and P
is the parabolic subgroup of GL(6,C) that stabilises L1

P = StabL1 = (GL(3,C)×GL(3,C)) nC9. (6.2)

The orbit picture means that deformations of the complex structure are parametrised by
a choice of element of gl6,C/p at each point in the manifold. In other words, one takes a
section of the vector bundle

gl6,C/p→ QGL(3,C) →M. (6.3)

In practice one can view Q ⊂ ad F̃C by choosing an embedding gl6,C/p ↪→ gl6,C. In
particular, using the real structure one can decompose

gl6,C = gl3,C ⊕ gl3,C ⊕ q⊕ q̄,

p = gl3,C ⊕ gl3,C ⊕ q,
(6.4)

where we identify the (nilpotent) subalgebra q ' Γ(T 1,0
p ⊗T ∗0,1p ). The pair of gl3,C algebras

and q preserve L1 = T 1,0 ⊂ TC. This means a deformation of L1 at a point p ∈ M can
formally be parametrised by ᾱp ∈ q̄ alone, that so one can identify QGL(3,C) ' T 0,1⊗T ∗1,0.
The deformed subbundle is then

L′1 = eᾱL1 = (1 + ᾱ)L1. (6.5)

L′1 can then be used to define L′−1 ⊂ TC via L′−1 = L̄′1 provided L′1 ∩ L′−1 = 0. Note that
nilpotency of q implies exp ᾱ = 1 + ᾱ.

As before, this new subbundle is integrable if and only if

[L′1, L′1] ⊂ L′1. (6.6)

One can check that for an arbitrary deformation parametrised by ᾱ we have(
e−ᾱ[eᾱV, eᾱW ]

)m
= (1 + ᾱ)pq(V qdpWm −W qdpV m)︸ ︷︷ ︸

∈L1

+V qW r(∂ᾱ+ [ᾱ, ᾱ])mqr︸ ︷︷ ︸
∈L−1

. (6.7)

This gives the well-known result that a complex structure deformation is integrable if and
only if ᾱ satisfies the Maurer-Cartan equation.

∂ᾱ+ [ᾱ, ᾱ] = 0. (6.8)
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If one is just interested in the infinitesimal moduli at this point, taking ᾱ = εβ̄, in the
limit ε → 0 the condition is simply ∂β̄ = 0. In general there may be an obstruction to
extending this solution for finite ε, although the Kodaira-Nirenburg-Spencer theorem states
there is no obstruction if the cohomology class H2,0

∂ (M,T 0,1) vanishes. For the moduli space
one should mod out by deformations generated by diffeomorphisms. Infinitesimally, that
is of the form

L′1 = (1 + εLv)L1 v ∈ Γ(T ). (6.9)

Writing v = x+ x̄ for a unique x ∈ Γ(T 1,0), one finds

L′1 = (1 + ε∂x̄)L1, (6.10)

where one views ∂x̄ ∈ Γ(QGL(3,C)). A deformation is then trivial if β̄ = ∂x̄ for some
x̄ ∈ Γ(T 0,1). Hence we get the result that the infinitesimal moduli of GL(3,C) structures
is given by

H1,0
∂ (M,T 0,1). (6.11)

Finally we note that it is simple to connect this picture to the moduli space of SL(3,C)
structures. An integrable complex structure I defines a line of SL(3,C) structures UI .
Up to a constant C∗ rescaling Ω → λΩ there is a unique integrable structure Ω ∈ Γ(UI)
(that is one satisfying dΩ = 0) for each complex structure I. Hence, we get the standard
result that the moduli space of integrable SL(3,C) structures is just H1,0

∂ (M,T 0,1) ⊕ C '
H1,2
∂ (M)⊕H0,3

∂ (M).

6.2 Moduli space of SU(7) structures

Now let us turn to the moduli space Mψ of SU(7) structures ψ. As we have discussed,
locally the physical moduli spaceMψ/C∗ can be identified with the space of deformations
of J that remain integrable, modulo complex diffeomorphisms.

First, let us introduce some notation as we did in the previous section. We consider
the space QU(7)×R+ of almost exceptional complex structures at a point p ∈ M . This can
be viewed as

QU(7)×R+ = E7(7)/U(7) = E7(7) · J0 = E7,C/P, (6.12)

where E7(7) · J0 is the orbit of a fixed almost exceptional complex structure J0 under E7(7)
at some fixed point on the manifold, and P is the parabolic subgroup that stabilises L3

P = StabL3 = GL(7,C) nC42. (6.13)

By considering the orbit of J0 at all points on the manifold, we see that infinitesimal
deformations of the structure can be viewed as a sections of the vector bundle

e7,C/p→ QU(7)×R+ →M. (6.14)

Again, in practice we will embed QU(7)×R+ ↪→ad F̃C by choosing an embedding e7,C/p ↪→
e7,C. Explicitly, we write a generic infinitesimal deformation of L3 as

L3 → L′3 = (1 + εA) · L3, (6.15)
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where we view A ∈ Γ(QU(7)×R+) as a map

A : L3 → EC/L3, (6.16)

and then make a choice of embedding EC/L3 ↪→ EC. As the original subbundle L3 is
involutive, the intrinsic torsion vanishes. For a generic deformation A, L′3 will have some
non-zero intrinsic torsion that appears as an obstruction to the involutivity of L′3 with
respect to the generalised Lie derivative (or equivalently the Courant bracket). Expanding
to first order in ε we get a differential map d2

d2 : Γ(QU(7)×R+)→ Γ(W int
U(7)×R+), (6.17)

where sections of W int
U(7)×R+ are the intrinsic torsion for the deformed almost exceptional

complex structure.28 The L′3 subbundle will be involutive if the intrinsic torsion vanishes,
and so the deformed structure will be integrable if and only if A ∈ ker d2.

We also have the notion of a trivial deformation. As we have discussed, this corresponds
to the action of the complexified generalised diffeomorphism group GDiffC. To linear order,
such deformations are given by the action of the Dorfman derivative. That is, we consider
L′3 to be equivalent to L3 if

L′3 = (1 + εLV )L3 for some V ∈ Γ(EC). (6.18)

This defines a second differential map d1

d1 : Γ(EC)→ Γ(QU(7)×R+). (6.19)

A trivial deformation should automatically be torsion free — by the Leibniz property of
the generalised Lie derivative we have

LW+εLVW (W ′ + εLVW
′) = LWW

′ + ε
(
LLVWW

′ + LW (LVW ′)
)

+O(ε2)
= (1 + εLV )LWW ′ +O(ε2)

(6.20)

and hence any trivial deformation is indeed integrable. This is precisely the statement that
d2 ◦ d1 = 0 and so we have a three-term complex

Γ(EC) Γ(QU(7)×R+) Γ(W int
U(7)×R+).d1 d2 (6.21)

Assuming there are no obstructions, the local moduli space of the SU(7) structure is mod-
elled on the cohomology of this complex.

In the rest of this section we will calculate this cohomology for both the G2, generic
type-zero and GMPT structure examples. In the G2 case we recover the known result that
the moduli are counted by the third de Rham cohomology of the underlying manifold. In
the GMPT case, we find new results — the full set of moduli were previously unknown. We
will see that in both cases the ability to calculate the cohomology of (6.21) relies on finding

28From the discussion around (3.28), note that here W int
U(7)×R+ is strictly a complex bundle transforming

in the 1−7 ⊕ 35−5 representation of U(7)× R+.
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a nice parametrisation of the embeddings EC/L3 ↪→ EC and QU(7)×R+ ↪→ ad F̃C. This then
leads to a description of the moduli in terms of cohomologies defined by differentials that
are naturally associated to the problem. For the G2 (and general type-zero) case this is
the de Rham differential, while for the GMPT solutions it is the generalised Dolbeault
operator associated to the integrable generalised complex structure. One may hope that
the general case could be solved in terms of some natural differential associated to the L3
bundle — we make some comments on this at the end of this section in 6.5, noting some
of the complications that arise.

6.3 Example 1: G2 and type-0 geometries

Recall that we can embed G2 structures into the language of exceptional complex structures
via the definition

L3 = eiϕ · TC. (6.22)

The involutivity of this bundle then gives dϕ = 0. A useful parametrisation of the quotient
spaces as subspace of EC and ad F̃C is given by

EC/L3 ' ∧2T ∗C ⊕ ∧5T ∗C ⊕ (T ∗C ⊗ ∧7T ∗C),

QU(7)×R+ ' ∧3T ∗C ⊕ ∧6T ∗C.
(6.23)

It is worth noting that these are not eigenspaces of the exceptional complex structure J and
hence this is a different parametrisation to that given in (6.48) below. They instead come
from the natural deformations of the underlying exceptional Dirac structure defined by T .
They are invariant under the map eiϕ, meaning they can equally well be viewed as defining
deformations of L3. In the same way, we can also identify the space of the intrinsic torsion as

W int
U(7)×R+ ' ∧4T ∗C ⊕ ∧7T ∗C, (6.24)

that is the space of intrinsic torsion of the Dirac structure.
If we take α ∈ Γ(∧3T ∗C) and β ∈ Γ(∧6T ∗C), the infinitesimal deformation is given by

L′3 =
(
1 + ε(α+ β)

)
· eiϕ · TC = eiϕ+ε(α+β̃) · TC +O(ε2), (6.25)

where β̃ = β− 1
2ϕ∧α. Repeating the calculation in (4.10), we can use the twisted Dorfman

derivative and dϕ = 0 to find

involutive L′3 ⇔ dα = dβ = 0. (6.26)

Hence integrable deformations are given by closed three-forms and six-forms. For the trivial
deformations, writing V = v + ω + σ + τ ∈ Γ(EC) we have, since LvT = 0,

L′3 = (1 + εLV ) eiϕ · TC
=
(
1− ε(dω − dσ − eiϕLve−iϕ)

)
· eiϕ · TC

= (1 + ε(dω̃ + dσ̃))L3,

(6.27)
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where ω̃ = −ω + i ıvϕ and σ̃ = −σ − 1
2ϕ ∧ ıvϕ. Hence the complex (6.21) becomes

Γ(∧2T ∗C ⊕ ∧5T ∗C) Γ(∧3T ∗C ⊕ ∧6T ∗C) Γ(∧4T ∗C ⊕ ∧7T ∗C).d d (6.28)

where d is the exterior derivative, and the inequivalent deformations are counted by

{α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C) | dα = dβ = 0}
{α = dω̃, β = dσ̃} = H3

d(M,C)⊕H6
d(M,C). (6.29)

That is, the inequivalent deformations are counted by the third and sixth de Rham co-
homologies. For a G2 manifold, the sixth de Rham cohomology is trivial and hence the
cohomology of (6.21) is counted by H3

d(M,C) alone. The imaginary elements are defor-
mations of the G2 structure while the real elements shift the gauge potential such that
the flux remains zero. This is in complete agreement with standard analysis of the moduli
space of G2 compactifications of M-theory [8, 75, 76].

It is also clear from the way we have written these deformations that they are unob-
structed. The action of complex gauge potentials α + β can be exponentiated for finite ε
as in the final term of (6.25), such that the linearised closure condition is enough to imply
the deformation is integrable. Thus the moduli space looks like H3

d(M,C) in a finite patch.
Formally this is the statement that there is an open subset of the moduli space V ⊆Mphys
containing this exceptional complex structure, an open subset U ⊆ H3

d(M,C) containing
0, and a diffeomorphism V → U .

Finally we note that the G2-structure calculation extends straightforwardly to a generic
type-0 structure. Recall these take the form

L3 = eα+β · TC, (6.30)

where α ∈ Γ(∧3T ∗C), β ∈ Γ(∧6T ∗C) and involutivity implies dα = dβ = 0. By following the
same analysis as above, one sees that the deformations of this structure will again be given
by

H3
d(M,C)⊕H6

d(M,C). (6.31)

This gives the moduli space of the class of supersymmetric backgrounds discussed in [20],
complementary to those analysed in [17, 19]. It would be interesting to analyse further the
conventional geometry of these solutions.

6.4 Example 2: GMPT geometries

As we saw in section 4.2, we can write the GMPT solutions as

L3 = eΣ[LJ±1 ⊕ UJ± ], Σ = C + 8 i e−3A Im Φ∓, (6.32)

where the upper/lower signs correspond to type IIA/B respectively and the O(6, 6) bun-
dles are appropriately embedded into E7(7) × R+. As before, we will work in type IIB
for concreteness but similar results hold for type IIA. We will use the notation set out
in section 4.2. In particular, recall that the generalised complex structure J− defines a
decomposition of the generalised spinor bundles into in-eigenspaces S+ = S2 ⊕ S0 ⊕ S−2

– 48 –



J
H
E
P
0
1
(
2
0
2
1
)
1
5
8

and S− = S3 ⊕ S1 ⊕ S−1 ⊕ S−3 where S3 ' UJ− . We can always choose C such that the
twisting Σ lies in S0 ⊕ S2 since any component in S−2 acts trivially on L3.

We take the parametrisation

EC/L3 = L
J−
−1 ⊕ (S1 ⊕ S−1 ⊕ S−3)⊕ ∧5T ∗C,

QU(7)×R+ = ∧2(LJ−−1 )∗ ⊕ (S0 ⊕ S−2)⊕ ∧6T ∗C.
(6.33)

As before, these are not eigenspaces of J . Instead they are the spaces of natural defor-
mations of the underlying exceptional Dirac structure defined by LJ±1 ⊕ UJ− ⊂ EC. Since
Σ ∈ Γ(S0⊕S2), these spaces are invariant under the action of eΣ and hence can be used to
describe deformations of the twisted bundle (6.32). One can similarly identify the intrinsic
torsion

W int
U(7)×R+ ' ∧3(LJ−−1 )∗ ⊕ (S−1 ⊕ S−3) (6.34)

as a subbundle of K.
We leave the details of the calculation to appendix C but to summarise, we note that we

deform the L3 bundle by ε ∈ Γ(∧2(LJ−−1 )∗), χ = χ0 +χ−2 ∈ Γ(S0⊕S−2) and Θ ∈ Γ(∧6T ∗),
then assuming the ddJ -lemma (C.5) [84], one can show that the integrable moduli are
counted by

[ε] ∈ H2
dL(M), [χ] ∈ H0

∂̄
(M)⊕H−2

∂̄
(M), [Θ] ∈ H6

d(M,C). (6.35)

The differentials dL and ∂̄ are operators associated to the generalised complex structure
given by Φ− in the IIB case, and are defined in [45]. The operator dL is the differential
associated to the Lie algebroid structure LJ−−1 . The operators ∂̄ are not the Dolbeault
operators but are the generalised Dolbeault operators defined on the spinor bundles by the
decomposition of d = ∂ + ∂̄. Hence we have

dL : ∧p(LJ−−1 )∗ → ∧p+1(LJ−−1 )∗, ∂̄ : Sn → Sn−1. (6.36)

We see that the operators in the complex (6.21) are both given by dL+ ∂̄+ d acting on the
appropriate bundles. The second comhomology group of dL counts the deformations of the
J− generalised complex structure [45]. The ∂̄ cohomology groups count the deformations
of F and Im Φ+. Since M is a generalised Calabi-Yau manifold, the cohomologies of dL
and ∂̄ are actually isomorphic. We see that apart from the top form (which just measures
the Wilson line for the dual NSNS six-form potential B̃), all of the moduli are counted by
natural differentials associated to the integrable SU(3, 3) structure of the GMPT solutions.

This includes and extends the results of [57], where the moduli of Φ+ keeping Φ− fixed
(and vice versa) were examined. It was also suggested that one might be able to find the
full moduli space by varying Φ− and Re Φ+ independently while satisfying their closure
conditions. It was hoped that one could then find a solution to the Im Φ+ equation by ex-
amining critical points of a modified Hitchin functional by varying over a fixed cohomology
class. This allows an estimate of an upper bound for the number of moduli in this case. In
contrast, we are able to find the exact number of moduli by finding variations of Φ− and
Im Φ+ such that

dΦ− = 0, F = −8 dJ−(e−3A Im Φ+). (6.37)
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The final condition d(e−A Re Φ+) = 0 is imposed by the vanishing of the moment map.
However, as we have mentioned, imposing this is equivalent to quotienting by GDiffC and
hence we get it without imposing a further differential condition. As we have noted several
times, this construction works only away from sources and hence these deformations do
not account for deformations of branes or orientifolds.

We can see how each of these deformations affects the form of L3:

Φ′− = (1 + �ε)Φ−, (6.38)

F ′ = F + 1
2d
(
Re(�εµ+ χ)

)
, (6.39)

Im Φ′+ = Im Φ+ + 1
8e3A Im(�εµ+ χ). (6.40)

Here µ is a polyform in Γ(S2), related to Σ and defined in appendix C.7. As noted by
Hitchin [44], Re Φ+ is determined by Im Φ+, and hence these deformations determine the
full solution {Φ+,Φ−, F}. Note that a small deformation of a GMPT solution remains
within the GMPT class. GMPT describes all N = 1 solutions for which the two internal
spinors are nowhere vanishing — this is an open condition and hence will not be changed
by small deformations [47, 57].

Finally we consider the existence of obstructions to the linear deformations described
above. We begin with the observation that a polyform deformation can be lifted to a
finite deformation simply by promoting it to an exponential. Indeed this is precisely what
we have done in the derivation above. The real question then is whether there are any
obstructions to the generalised complex structure deformation ε ∈ Γ(∧2(LJ−−1 )∗). A result
due to Hitchin [44] states that all deformations of generalised Calabi-Yau structures are
unobstructed. Since we have a global Φ− that satisfies dΦ− = 0, we have a generalised
Calabi-Yau structure defined by J−. Taken together, this would seem to imply that the
moduli are unobstructed, much like in the previous G2 case.

6.4.1 Calabi-Yau as N = 1

As we saw in section 4.2, we can embed a Calabi-Yau compactification in type IIB via

L3 = ei e−ϕ(ω− 1
6ω∧ω∧ω)[T 0,1 ⊕ T ∗1,0 ⊕ C e3A−ϕΩ]. (6.41)

As is shown in [45], for Φ− ∝ Ω the generalised Dolbeault operator ∂̄ reduces to the usual
Dolbeault operator associated to the complex structure defined by Ω. It is also shown that

H2
dL(M) = H2

∂̄
(M,C)⊕H1

∂̄
(M,T 1,0

C )⊕H0
∂̄
(M,∧2T 1,0

C ), (6.42)

H0
∂̄
(M) =

3⊕
i=0

H i,i

∂̄
(M,C), (6.43)

H−2
∂̄

(M) = H0,2
∂̄

(M,C)⊕H1,3
∂̄

(M,C), (6.44)

where the cohomologies on the left-hand side are with respect to the generalised Dolbeault
operators and those on the right-hand side are with respect to the usual Dolbeault opera-
tors. Using the isomorphism provided by the three-form Ω, we see that the moduli of such
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a solution are counted by the Hodge numbers

h2,1 + (h0,0 + h1,1 + h2,2 + h3,3) + h3,3. (6.45)

Note that these are the complex dimensions. Here h2,1 corresponds to the deformations
of the complex structure associated to Ω. The real part of the Dolbeault groups in the
parentheses corresponds to shifts in the RR polyform potential C. The imaginary part
corresponds to shifts in Im Φ+, which count deformations of the Kähler potential ω, and the
NSNS fields φ and B. Notice that we have one extra, non-physical modulus here. Finally
the real part of the finalH3,3

∂̄
gives deformations of B̃ ∈ Γ(∧6T ∗), the six-form potential dual

to B. Again we have an extra, non-physical modulus given by the imaginary part of H3,3
∂̄

.
The two extra, non-physical moduli correspond to changing the N = 1 ⊂ N = 2 that is

picked out by our formalism. These moduli do not change the SU(8) structure (which gives
us the physical fields in the theory), though they do rotate the SU(7) ⊂ SU(8). Indeed, we
note that choosing an N = 1 ⊂ N = 2 is equivalent to choosing a U(1) ⊂ SU(2). Hence
there are 2 real or 1 complex parameters that encode this choice, precisely the counting we
have. Note that these extra moduli appear only for Calabi-Yau compactifications as they
are really N = 2 — a generic GMPT solution is a genuine N = 1 solution and hence all
the moduli are physical.

6.5 Comments on the generic moduli problem

We would like to calculate the cohomology of the following complex for a generic integrable
L3 ⊂ EC:

Γ(EC) d1−−→ Γ(QU(7)×R+) d2−−→ Γ(W int
U(7)×R+). (6.46)

We can use the SU(7) structure to decompose the bundles as J eigenspaces follow-
ing (3.17), (3.16) and (3.25)

EC = X3 ⊕ (∧2X∗)1 ⊕ (∧5X∗)−1 ⊕ X∗−3

ad F̃C = adPU(7)×R+ ⊕ (∧3X)2 ⊕ (∧6X)4 ⊕ (∧3X∗)−2 ⊕ (∧6X∗)−4

W int
U(7)×R+ = (∧4X∗)−5 ⊕ (∧7X∗)−7

(6.47)

where X transforms in the 7 of SU(7). A natural parametrisation of embeddings is then

EC/L3 = (∧5X∗)1 ⊕ (∧2X∗)−1 ⊕ X∗−3, QU(7)×R+ = (∧3X∗)−2 ⊕ (∧6X∗)−4. (6.48)

As L3 defines an integrable U(7) × R+ structure, we have a torsion-free compatible con-
nection D. Since d1 and d2 are defined in terms of the Dorfman derivative LV and D is
torsion free, we can replace all Dorfman derivatives with LDV , as in (3.12). This implies the
maps d1 and d2 can be written in terms of D. Moreover, viewing the derivative as a map
D : R → E∗ ⊗ R, for any given generalised tensor bundle R, we can decompose E∗ and
hence D into operators

D = D3 +D−1 +D1 +D−3. (6.49)

The compatibility of the generalised connection ensures that these operators map U(7)
representations into U(7) representations in a way that will be clear in a moment. We
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can think of these operators as the generalisation of the Dolbeault operators to SU(7)
structures.

Describing the operators d1, d2 in this parametrisation, one finds that the com-
plex (6.46) decomposes as

Γ(∧2X∗)+1 Γ(∧3X∗)−2 Γ(∧4X∗)−5

Γ(∧5X∗)−1 Γ(∧6X∗)−4 Γ(∧7X∗)−7

Γ(X∗−3)

D−3 D−3

D−1

D−3

D−1

D−3

D−1D1

(6.50)

Note that the involutivity of L3 implies that (D−3)2 = 0. In fact L3 defines a Lie algebroid
and D−3 is the associated differential

D−3 : ∧pX∗ → ∧p+1X∗, (6.51)

similarly to the situation for a Dirac structure in [45]. It seems likely that under certain
assumptions — notably some generalised version of the ∂∂̄-lemma — it is possible to write
the cohomology of (6.46) in terms of the cohomology groups H•D−3

(M) of D−3. This would
be in line with the theory of deformations of complex structures [101], generalised complex
structures [45], or more generally Dirac structures [102]. However the existence of the D1
action between X∗−3 and ∧3X∗−2 makes the analysis considerably more subtle than that for
the G2 and GMPT examples.

7 Discussion

In this paper we have rephrased generic N = 1, D = 4 flux backgrounds in both M-theory
and type II theories in terms of integrable SU(7)-structures within E7(7) × R+ generalised
geometry. The differential conditions on the SU(7) structure took the form of involutivity
of a certain subbundle defined by a U(7)×R+ ⊃ SU(7) structure, and a moment map for the
combined action of diffeomorphisms and gauge transformations. We showed how the exam-
ples of a conventional G2 structure and the GMPT solutions can be understood as SU(7)
structures, and discussed how our formalism allows an elegant derivation of the moduli of
these solutions, extending previous results for the GMPT example. The space of involu-
tive SU(7) structures admitted a natural pseudo-Kähler metric meaning the moment map
condition could also be viewed as a complex quotient. This connects to the formalism of
Geometrical Invariant Theory (GIT). We showed that the Kähler potential K on the space
of structures plays the role of the norm functional, and can be viewed as a generalisation
of Hitchin’s G2 functional. In particular, we showed that extremising K over the space of
complex generalised diffeomorphisms reproduces Hitchin’s extremisation procedure in the
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case of closed G2 structures. Physically, the pseudo-Kähler metric is just a result of view-
ing the ten- or eleven-dimensional supergravity theory as a D = 4, N = 1 with an infinite
number of chiral fields parametrising the SU(7) structure. We derived the generic form of
the superpotential for this reformulation and showed that it agreed with known examples.

As for example recently emphasised in [16], despite significant progress in constructing
examples, G2 manifolds are far less well understood than, for example, their Calabi-Yau
cousins. Hitchin’s functional picture raises the hope that there might be a unique G2
manifold (up to diffeomorphisms) for each stable closed three-form ϕ. However, there are
examples where this does not hold [103]. The moment map picture here suggests that there
might be a notion of stability that picks out those closed structures that admit a solution.
As we have stressed, a subtlety is that the Kähler metric on the space of structures is
not positive definite. This means that stability may only be a sufficient condition for a
solution. However we showed that, precisely in the G2 case, the moment map is partially
solved in a way that appears to remove the negative part of the metric, so that one is left
again with a conventional GIT picture. The one-parameter subgroups relevant for stability
would correspond to circle actions on the manifold, and in analogy to the Futaki invariant
in the Kähler-Einstein case, there should be invariants associated to actions that leave the
exceptional complex structure unchanged. The interesting actions are those that have fixed
points where the structure undergoes type-change.

Another immediate area it would be interesting to explore is the explicit construction of
flux backgrounds with potential phenomenological applications, and in particular identify
their moduli. We note that the type-0 solutions are particularly simple extensions of G2
holonomy, and notably give a case where the calculations here completely determine the
moduli. The same is true for type IIB GMPT solutions where the underlying generalised
complex structure is actually just a conventional complex structure. Important in both
cases would be understanding the role of sources, particularly orientifold planes, necessary
for the background to be compact. For example one might consider the explicit GMPT
solutions on solvmanifolds found in [104] and [105]. Closely related to this is the question
of how calibrated cycles appear in our formalism. For G2 compactifications, calibrated
cycles also play an important role in non-perturbative physics. It would be interesting to
understand how these cycles, as well as “generalised calibrations”, can be encoded in our
language. In Hitchin’s generalised geometry, there are a large number of results relating
the defining pure spinors to generalised calibrations [92, 106–108] and we note that this
was extended to generic N = 2 AdS5 flux backgrounds in [109].

There are a number of other interesting directions for future study. An obvious gen-
eralisation is to backgrounds with an AdS factor instead of Minkowski. In some ways, this
might be a richer problem to consider as one can have non-trivial fluxes without requiring
the internal space to be non-compact. Roughly speaking, a consideration of the intrinsic
torsion indicates that the involutivity condition will be deformed to include a non-vanishing
singlet torsion (effectively the inverse AdS radius). We expect one will again have a moment
map for the action of GDiff so that one can view the moduli space as a symplectic quotient.
Unlike the Minkowski case, the moduli space is expected to be real, so we will not be able
to reduce the moment map to modding out by the complexified symmetry group. These
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AdS backgrounds will be dual to 3d, N = 1 CFTs, and the moduli of these backgrounds
will give marginal deformations of the CFTs. We hope to return to this fascinating topic
in the near future. Some interesting results on 3d, N = 1 theories coming from heterotic
strings on G2 manifolds were also discussed in [110–112].

Much of what we have discussed can be repeated for type I and heterotic theories,
where the relevant generalised geometry is based on O(d, d+n)×R+ [67, 113]. Again, one
finds that supersymmetry corresponds to the existence of an integrable G-structure, and
the integrability conditions split into an involutivity condition and a moment map. One
expects similar explicit expressions for the Kähler potential and the superpotential, as well
as the moduli and the cohomologies that governs them, which all can be compared with
previous results. There should again, formally, be a GIT picture of the symplectic quotient,
and it would be interesting to compare, for instance, with the “dilaton functional” recently
used by Garcia-Fernandez et al. [114] to argue for a Calabi-Yau type theorem for heterotic
geometries.

Topological string theories on backgrounds with H-flux are described by generalised
complex geometry [26, 115–117]. The SU(7) structures we have described should give
an extension of this to backgrounds with RR flux or to M-theory. Recall that there has
been a proposal for topological M-theory [118, 119] based on Hitchin’s formulation of G2
structures [34]. It would be particularly interesting to quantise these models following the
prescription laid out in [26]. Note that some work in this direction has already been done
in the case of G2 and generalised G2 structures [120, 121], although these results did not
match with topological string calculations upon reduction. In light of our results, this is
not so surprising. The natural generalisation of the Hitchin functional is the SU(7) Kähler
potential. The moduli space calculation shows one should include fluctuations that are
deformations by both exact three- and six-forms. Even though H6

d(M,C) is trivial, these
fluctuations can still contribute to the one-loop calculation.

Finally one might also use the formalism to address higher-derivative corrections to
supergravity. These are essential for turning on fluxes on compact spaces: in M-theory, for
example, eight-derivative R4 corrections to the action of eleven-dimensional supergravity
contribute to the stress-tensor and can be balanced against those of the four-form flux,
permitting non-trivial fluxes on compact spaces. Even at this order, the full set of correc-
tions is not known. Following recent work [122], one might hope to extend the relevant
generalised geometry to capture the higher-order corrections. One would no longer have a
Leibniz algebroid, but a more general L∞ structure. One might hope that this structure
is enough to constrain the form of the flux corrections, or even predict to higher orders in
the derivative expansion. An important related question is whether a given supergravity
background defines a good classical string background. That is, given a supergravity solu-
tion, can one correct it, order-by-order, so that it solves the full classical string equations
of motion, including all higher-derivative corrections? The simplest case of a Calabi-Yau
background without flux is known to provide such a good starting point [123]. Under-
standing whether this also holds for generic flux backgrounds is a difficult and important
problem [124]. A similar space-time analysis has also been performed for G2 manifolds in
M-theory [125], where it was found that G2 holonomy is corrected order-by-order to a G2
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structure. There is no world-sheet calculation for this case, leaving one unsure of what
space of structures the flow takes place in. Indeed, it was conjectured that the corrections
are such that the defining three-form is always closed — this might be akin to imposing our
involutivity condition but relaxing the moment map condition. (Analogous deformations
play a role in corrections to the notion of stability for D-branes [126].) In both of these
cases, it was useful to analyse the corrections using effective field theory and the space-
time superpotential and Kähler potential. One could imagine using the formalism we have
outlined to show that upon including higher-derivative corrections, the torsion-free SU(7)
structure flows to an SU(7) structure with torsion, implying that supersymmetry is enough
to guarantee the existence of the corrected classical string background.29
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A Conventions

We use the musical isomorphism to denote raising or lowering an index with the conven-
tional metric. For example, given a vector v or a one-form w, we have a one-form v[ = gv

and a vector w] = g−1w.
The Mukai pairing [45] of two polyforms α and β is

(α, β) := α ∧ λ(β)
∣∣
top, (A.1)

where λ reverses the indices of the components of β, so that for a p-form λ(β)m1m2...mp =
βmp...m2m1 , and we project to the top-form.

B Embedding of O(6, 6) ⊂ E7(7) × R+ for type IIB

We will follow the conventions and notation of [32] for E7(7) × R+ generalised geometry
applied to type IIB. Recall that the generalised tangent and adjoint spaces and their de-
compositions into O(6, 6) generalised bundles take the form

E ' T ⊕ 2T ∗ ⊕ ∧3T ∗ ⊕ 2∧5T ∗ ⊕ (T ∗ ⊗ ∧6T ∗)

' EO(6,6) ⊕ S− ⊕ (∧6T ∗ ⊗ EO(6,6)),

ad F̃ ' 4R⊕ (T ⊗ T ∗)⊕ 2∧2T ∗ ⊕ 2∧2T ⊕ ∧4T ∗ ⊕ 2∧6T ∗ ⊕ 2∧6T

' 4R⊕ ad F̃O(6,6) ⊕ S+ ⊕ (∧6T ⊗ S+)⊕ ∧6T ∗ ⊕ ∧6T.

(B.1)

29Assuming the background also obeys flux quantisation.
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We use the following rules for embedding the O(6, 6) structures into the E7(7) ×R+ struc-
tures for type IIB.

EO(6,6) → E

v + λ 7→ v − siλ
(B.2)

ad F̃O(6,6) → ad F̃

r + β +B 7→ 1
8 tr(r) +

(
r − 1

8I tr(r)
)

+ 1
4 tr(r)(riεjksk + siεjkr

k)− siB + riβ,
(B.3)

S+ → ad F̃
Σ 7→ riεjkr

kΣ(0) + riΣ(2) + Σ(4) + siΣ(6),
(B.4)

S− → E

Σ 7→ riΣ(1) + Σ(3) + siΣ(5),
(B.5)

where Σ(k) ∈ Γ(∧kT ∗) are the components of the polyform Λ and ri, si are real constant
SL(2,R) doublets such that εijrisj = 1.

C Detailed calculation of GMPT moduli

We have the parametrisation

EC/L3 = eΣ([LJ−−1 ⊕ ŪJ− ]⊕ S1 ⊕ S−1 ⊕ (∧6T ∗ ⊗ [LJ−1 ⊕ LJ−−1 ])
)
, (C.1)

QR+×U(7) = eΣ(∧2(LJ−1 )∗ ⊕ (S0 ⊕ S−2)⊕ ri∧6T ∗
)
e−Σ, (C.2)

where we have used ∧5T ∗ ' ∧6T ∗ ⊗ T . We take χ = χ0 + χ−2 ∈ Γ(S0 ⊕ S−2), ε ∈
Γ(∧2(LJ−1 )∗) and Θ ∈ Γ(∧6T ∗) and consider the following generic deformation

L3 = eΣ[LJ−1 ⊕ UJ− ] → L′3 = eΣ+�εµ+χ+ri(Θ+ 1
2 (Σ,�εµ−χ))[LJ

ε
−

1 ⊕ UJ ε− ], (C.3)

where

Σ = C + 8 i e−3A Im Φ∓, L
J ε−
1 = (1 + ε)LJ−1 , UJ ε− = (1 + �ε)UJ− (C.4)

The latter two define a deformed generalised complex structure J ε−. Note that Φε
− =

(1 + �ε)Φ− is indeed the pure spinor associated to L
J ε−
1 . We define µ ∈ Γ(S2) in the

following manner. Firstly, in what follows we will make the same simplification as in [57]
and assumed that the generalised complex structure J− satisfies the ddJ−-lemma [84]. For
us this will mean that

im ∂ ∩ ker ∂̄ = im ∂̄ ∩ ker ∂ = im ∂̄∂, (C.5)

where ∂ and ∂̄ are the generalised Dolbeault operators of J−. With this we have

(dΣ)−1 = 0 ⇒ ∂̄Σ0 = −∂Σ−2
⇒ ∂∂̄Σ0 = 0
⇒ ∂Σ0 = ∂̄∂α1

(C.6)
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for some α1 ∈ Γ(S1). We then define

µ = Σ2 + ∂α1. (C.7)

Note that ∂α1 is not uniquely defined — the ambiguity is some element of Γ(S2) that is
closed under ∂̄. As we will see, this ambiguity can be absorbed in the definition of χ. For
definiteness, one can see that the deformation (C.3) to linear order is given by

eΣ[ε+ (�εµ+ χ) + ri(Θ− (Σ, χ))]e−Σ ∈ Γ(QR+×U(7)). (C.8)

It is important to note that this is a globally well defined section of QR+×U(7) because F is
in a trivial cohomology class. This is guaranteed by the generalised ∂∂̄-lemma and means
that the gauge potential C is a global polyform.

We now calculate the conditions for integrability of L′3. Following the results of sec-
tion 4.2, we find that we have integrability only if

JL
J ε−
1 , L

J ε−
1 KO(6,6) ⊆ L

J ε−
1 (C.9)

From [45] this implies
dLε = 0, (C.10)

where dL : Γ(∧p(LJ−1 )∗)→ Γ(∧p+1(LJ−1 )∗) is the differential associated to the Lie algebroid
structure LJ−1 . This means that �ε and ∂̄ commute as operators on S:

∂̄�ε = �ε∂̄. (C.11)

Letting Sn, S
ε
n be the eigenspaces of S with respect to J−,J ε− respectively, we further

require
[d(Σ + �εµ+ χ+ riΘ)]Sε−1

= [d(Σ + �εµ+ χ+ riΘ)]Sε−3
= 0, (C.12)

where the notation above means the projection of the polyform onto Sε−1 and Sε−3 respec-
tively. We will still use subscript indices to denote projection onto Sn. Working to linear
order in the deformation parameters and using the integrability of L3, we find

0 = (1 + �ε+ �̄ε)[d(Σ + �εµ+ χ+ riΘ)]−1 − �ε[dΣ]1 − �̄ε[dΣ]−3

= [d�εµ]−1 + [dχ]−1 − �ε[dΣ]1
= ∂̄�εµ2 + ∂̄χ0 + ∂χ−2 − �ε∂̄Σ2 − �ε∂Σ0

= �ε∂̄Σ2 + �ε∂̄∂α1 − �ε∂̄Σ2 − �ε∂Σ0 + ∂̄χ0 + ∂χ−2

= �ε∂Σ0 − �ε∂Σ0 + ∂̄χ0 + ∂χ−2

= ∂̄χ0 + ∂χ−2.

(C.13)

We also have

0 = (1 + �ε+ �̄ε)[d(Σ + εµ+ χ+ riΘ)]−3 − �ε[dΣ]−1

= [dχ]−3

= ∂̄χ−2.

(C.14)
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Taken together, we see that the integrability conditions are

dLε = 0, ∂̄χ0 + ∂χ−2 = 0, ∂̄χ−2 = 0. (C.15)

We can simplify this further. Using the ddJ−-lemma we see that we can write ∂χ−2 =
∂̄∂η−1 for some η−1 ∈ Γ(S−1). Then, defining χ̃0 = χ0 +∂η−1, we see that the integrability
conditions become

dLε = 0, ∂̄χ̃0 = 0, ∂̄χ−2 = 0. (C.16)

Note again that ∂η−1 is only defined up to a term that is ∂̄-exact. We will see shortly that
these terms correspond to trivial deformations.

To find the form of trivial deformations we take

V = eΣ(W + cΦ− + U + ν + riσ + τ), (C.17)

where W ∈ Γ(LJ−1 ), U ∈ Γ(LJ−−1 ), c ∈ C∞(M), ν = ν1 + ν−1 + ν−3 ∈ Γ(S1 ⊕ S−1 ⊕ S−3),
σ ∈ Γ(∧5T ∗) and τ ∈ Γ(T ∗ ⊗ ∧7T ∗). Then we consider

L′3 = (1 + LV )L3. (C.18)

After a lengthy calculation we find that to linear order in V this deformation is given by

eΣ[dLU + (dLU)µ+ (dν)0 + (dν)−2 + ri(dσ̃ − (Σ, (dν)0 + (dν)−2))]e−Σ. (C.19)

which is a section of Γ(QR+×U(7)). Here σ̃ is a 5-form that depends on σ, ν and U and
is of the form σ̃ = σ + f(ν, U) where f is some function whose form we do not need. A
deformation is trivial if and only if

ε = dLU,
χ0 = ∂̄ν1 + ∂ν−1,

χ−2 = ∂̄ν−1 + ∂ν−3,

Θ = dσ̃.

(C.20)

We can simplify this further using the ddJ−-lemma. Notice that we can write ∂ν−3 = ∂̄∂η−2
for some η−2 ∈ Γ(S−2) and hence χ−2 is trivial if χ−2 = ∂̄(ν−1 + ∂η−2) = ∂̄ν̃−1. Moreover,
if we calculate χ̃0 from these we find that χ̃0 = ∂̄ν̃1 for some ν̃1 ∈ Γ(S1). Hence trivial
deformations are given by ∂̄-exact χ̃0 and χ−2.

All of this shows that the inequivalent deformations are controlled by the following
disjoint complex

(LJ−1 )∗ ∧2(LJ−1 )∗ ∧3(LJ−1 )∗

S1 S0 S−1

S−1 S−2 S−3

∧5T ∗ ∧6T ∗

dL dL

∂̄ ∂̄

∂̄ ∂̄

d

(C.21)
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and so the deformations are counted by the cohomology

H2
dL(M)⊕H0

∂̄
(M)⊕H−2

∂̄
(M)⊕H6

d(M,C). (C.22)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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