Extracting group relationships
within changing software using

text analysis

Pamela Dilys Green

School of Computer Science

A thesis submitted to the University of Hertfordshire in partial
fulfilment of the requirements of the degree of Doctor of Philosophy

March 2013






Abstract

This research looks at identifying and classifying changes in evolving software by
making simple textual comparisons between groups of source code files. The two
areas investigated are software origin analysis and collusion detection. Textual
comparison is attractive because it can be used in the same way for many different
programming languages.

The research includes the first major study using machine learning techniques
in the domain of software origin analysis, which looks at the movement of code in
an evolving system. The training set for this study, which focuses on restructured
files, is created by analysing 89 software systems. Novel features, which capture
abstract patterns in the comparisons between source code files, are used to build
models which classify restructured files from unseen systems with a mean accuracy
of over 90%. The unseen code is not only in C, the language of the training set, but
also in Java and Python, which helps to demonstrate the language independence
of the approach.

As well as generating features for the machine learning system, textual com-
parisons between groups of files are used in other ways throughout the system:
in filtering to find potentially restructured files, in ranking the possible destina-
tions of the code moved from the restructured files, and as the basis for a new file
comparison tool. This tool helps in the demanding task of manually labelling the
training data, is valuable to the end user of the system, and is applicable to other
file comparison tasks.

These same techniques are used to create a new text-based visualisation for use
in collusion detection, and to generate a measure which focuses on the unusual
similarity between submissions. This measure helps to overcome problems in
detecting collusion in data where files are of uneven size, where there is high
incidental similarity or where more than one programming language is used. The
visualisation highlights interesting similarities between files, making the task of

inspecting the texts easier for the user.



ii



Acknowledgements

I would like to thank my supervision team: Peter Lane, Austen Rainer and Bodo
Scholz. I am extremely grateful to Peter for his guidance, especially during the
difficult times. I hope that this work, which would not have been undertaken
without his help and advice, reflects well on Peter. I have very much appreciated
Austen’s conscientious attention to detail, which was invaluable in improving the
structure and coherence of this dissertation, and Bodo’s help in putting things in
perspective.

There are so many in the computer science department to thank for providing
help, support, and friendship: Dan, Steve, Min, Frank, Carl, Sue, Bob, Bruce,
Mike, Maria, Colin, Rene, Ian, Na, James, and David, to name a few; also to all the
friendly astronomers.

On the technical side, thank you to the computer science team, for all your
advice, and for fixing the computers when they sulked or died.

No one in the STRI would be able to function without our fantastic administra-
tive team, in particular Lorraine, who deals with every problem calmly, efficiently
and sympathetically. Thank you for everything.

My family and friends have been wonderful throughout, though I know they
all thought it was a crazy thing to do. Thank you for not saying so. Special thanks
to Todd, Joe, and Sam for their continual encouragement. Also to Mum, who
would have been so relieved to see me make it to the end.

The one person who deserves more thanks than anybody else is Dave, who
has unfailingly supported me in every way throughout the whole process, and

through the last 40-odd years — none odder than these last few.

1ii



iv



Contents

1 Introduction . . . . . . . . . . @ e

1.1 Software originanalysis . . ... ................
111 Contextand problem . . . ... ... ... .......
1.1.2  Overview of the approach taken in this research

1.1.3 Description of the final system . . . . . . ... ... ..

114 Results . ... ... ... ..
1.1.5 Contributions . . . ... ... ... ... L.
1.2 Collusiondetection . . .. ... ... ...... . .......
12.1 Contextand problem . . ... ... ...........

1.2.2 Overview of the approach taken in this research

1.2.3 Description of thesystem . ... ............

124 Results . . ... ... ... ...

1.2.5 Contributions . ... ...................
1.3 Visualisation . . . ... ... ... ................

1.3.1 Visualisation for origin analysis . . . . . ... ... ..

1.3.2  Visualisation for collusion detection . . .. ... ...
14 Summary of contributions . . . ... ... ... ... ...
1.5 Dissertation structure . . . . . ... ... .00
Detecting similarity in programcode . . . . ... ... ... ....
2.1 Clone detection and plagiarism detection . .. ... ... ..
2.2 Detecting similarityincode . ... ... .. .. ... ... ..
2.3 Approaches to source-code plagiarism detection . . . . . ..

24 Summary . ...

O g N N =



Vi

CONTENTS

Originanalysis. . . . . ... ... ... .. ... .. .. ... ... 39
31 Survey . ... ... 42
3.2 Approachesindetail . ... .. ... ... .. .. ... .. .. 47
33 Summary . .. ... ... ... 53
Machine learning . . . . .. ... ... o Lo oL 55
41 Why use machine learning? . . . . ... ... ... ...... 55
42 The machine learning process in outline . . . .. ... .. .. 56
4.3 Creating new datasets for machine learning . . . . . . .. .. 58
43.1 Choosing features . . . . ... ... .. .. .. ... 58
43.2 Creating a labelled dataset fromraw data . . . . . . . 59

44 Classifiers .. ... .... ... .. .. .. .. ... . ... 61
4.5 Machine learning in software engineering . . . . . . ... .. 62
46 Summary . . .. ... 63
Visualisation . . . .. ... ... ... ... L o 65
5.1 Plagiarism detection file comparison . . . .. ... ... ... 67
5.2 Other code comparisontools. . . . ... ............ 70
5.3 Colour coding features in software evolution . . . . ... .. 72
54 Summary . ... ... ... Lo 73
Ferret . . . . . . . . . 75
6.1 Background . ............. ... .. .. 0 . 75
6.2 Programcode . ........... ... . ... ... 76
6.3 Files toillustrate similarity tools . . . . .. ... ... ... .. 80
6.4 Similarityscores . . . . ... ..o o L oo 83
6.5 Ferret XMLreport . . ... ... ... ... ........... 85
6.6 Densityanalysis . . .. ... ............. .. .... 87
6.7 Ferret trigram-to-fileindex . . . .. ... ... ... ... .. 90
6.8 Summary . ... ... ... . 91
Trigramanalysis . . . ... ... ... .. ... .. .. .. 93
7.1 Similarity in programcode . . . . . ... .. ... L 94
7.1.1 Within-project similarity . . ... ... ... ...... 94

7.1.2 Across-project similarity . . . ... ... ... ... .. 95

7.1.3 Comparing similarity scores in text and code . . . . . 95



CONTENTS vii

8

714 Stopping . .. ... ... o 97
7.2 Collusiondetection . . . ... ... ............... 97
7.2.1 Example trigram-fileindex . . . . ... ... ... ... 98
7.2.2 Proportional trigram-based measures . . ... .. .. 100
7.2.3 Measures based on counting trigrams . . . ... ... 102
7.2.4 Extending unique sharecounts . . ... .. ... ... 104
725 Making connections . . . . .. ... ... . L., 106
7.3 Source or destination of code in origin analysis . . . . . . .. 107
731 Splitfiles . ... ... .. ... ... .. L 108
732 Disappearingfiles . . . . .. ... ... ... .. ..., 110
7.3.3 Trigram-based measures . . ... ............ 111
74 Summary . ... ... 112
Visualising file relationships . . . . . ... ... ... . ... ... 113
8.1 Displaying student assignments . . . . . .. ... ... .... 113
8.1.1 Uniquetrigrams . . . .. ... .............. 114
8.1.2 Extending the standard Ferret display . . ... .. .. 115
8.1.3 Graduated similarity information . . . . ... ... .. 116
814 Groups . ... ... ... ... e 117
8.2 Comparing one document with a group of others. . . . . . . 117
8.2.1 Multiple blue-red-black displays . . . .. ... .... 118
8.2.2 Displaying multi-file comparisons, 1-to-3 . . . .. .. 119
8.2.3 Scheme for colouring thetext . . ... ......... 125
8.2.4 Displaying multi-file comparisons 1-to-many . . . . . 128
83 Summary . .. ... ... 128
Trigram analysis applied to student assignments . . . . . ... .. 131
91 Data. ... ... .. ... . 132
92 Method . . ... ... ... .. .. 132
93 Results . . ... .. .. ... L 134
9.3.1 Proportional similarity measures . . . ... ... ... 135
9.3.2 Count-based similarity measures . . ... .. ... .. 138
933 Analysis . ............. . ... . ... ... 139

9.3.4 Showing similarity in a group context . . ... .. .. 143



viii CONTENTS

9.4 Discussion . . . ... ... ... o 145

10 Overview of the classificationsystem . . . . . ... ... ... ... 147
11 File ComparisonTools . . . .. .. ... ... ....... ... 151
11.1 Code Clone Finder (CCFinder) . .. ... ... ........ 155
112 Simian . . . .. ... 158
113 Duplo . . .. ... 160
114 P-Duplo . . ... ... .. . ... 162
11.5 Unscrambling clones . . . . ... ... ... ... ... .. 164
116 Summary . . . . ... ... 167

12 Data Collection, Preprocessing, Filtering . . . . .. ... ... ... 169
12.1 Source code collection and organisation . . . ... ... ... 169
12.1.1 Selection of projects from SourceForge . . . . ... .. 169

12.1.2 The selected data - 89 Projects . . . ... ... ... .. 170

12.1.3 Preprocessing . . . . ... ... ... ... ..... 172

122 Terminology . . . . . ... ... ... ... .. L 173
12.3 Filtering . . . .. ... ... .. ... o o 175
12.3.1 Information Gathering . . . ... .. .. ... ... .. 175

12.3.2 Selecting Candidate Files . . . . . .. ... ... .... 177

12.4 ExperimentalData . . ... ... ... ... . ... .. ... 179
12.4.1 Splitfiledataset . . . . ... ...... ... ... ... 180

12.4.1.1 Splitfiles . . . ... ... ... ... ... ... 180

12.41.2 Non-splitfiles . . ... ... ... ....... 185

12.4.1.3 Notclassified . ... ... ... ........ 188

12.4.1.4 Dataset composition . .. ... ........ 188

12.4.2 Disappearing filedataset . . . . .. ... ... ... .. 191

12.4.2.1 Renamed, moved or merged files . . . . . . . 192

12.4.2.2 Other classes of disappearing files . . .. .. 192

12.4.2.3 Dataset composition . ... ... ... .. .. 192

125 Summary . . . .. ... 194

13 Feature Construction . . . . ... ... ... ............. 195
13.1 File combinations and comparisons . . . . ... ... ... .. 196

13.1.1 Comparing singlefiles. . . . . .. ... ... ... ... 197



CONTENTS

13.1.2 Comparing the candidate and concatenated files . . .
132 Features. . . . . . . . .. ...
13.2.1 Raw featuresets . . . . . ... ... ... ... ...,
13.2.1.1 Ferretbasics . . ... ... ... .. ......
13.2.1.2 Ferrettrigrams . . . . . ... ... ... ....
13.2.1.3 Simian, Code Clone Finder and P-Duplo . . .

13.2.2 Feature setsbasedonblocks . . . . ... ... ... ..
13.2.2.1 The candidate differenceset . . . .. ... ..
13.2.2.2 Measurements . . . . .. ... ... ... ...
13.2.2.3 Block-based features . ... ... .......

13.2.3 Final featuresets. . . . . . . . ... ... . .......

133 Summary . . . ...

14 Classifying the split filedataset . . . . . .. ... ... ... ....

14.1 Building models to identify splitfiles . . . . . . .. ... ...
14.1.1 Machine learning algorithms . . . ... ... ... ..
14.1.2 Classifying splitfiles . . .. ... ... ... ... ...

14.2 Tests on other projects . . . . .. ................
14.2.1 PostgreSQL . . . . . . ... ... ...
1422 DNSjava . . ... ...... ... ... ... .. ...
14.2.3 Unseen data classified by trained models . . . . . ..

143 Summary . . ... ...

15 Exploring filtering criteria . . . . . .. ... ... ... ... ...

15.1 Similarity measures . . . . . ... ... ... L.

15.2 Targetfileselection . . .. .. .. ... ... .. ... .. ...
15.2.1 Similarity score (1a) . . . . . ... .. ... . ... ...
15.2.2 Containment (Ic) . . . ... ... ... ... .. ....
15.2.3 Change-based filters (1b,1e) . . . . . ... .. ... ..
15.2.4 Combining similarity score conditions (1a, 1b)
15.2.5 Stratifying shared trigram conditions (le) . . . . . ..
15.2.6 Less direct methods (2a,2b,2¢) . .. ... ... .. ..

15.2.7 Discussion on selecting target files . . . ... ... ..

ix



X CONTENTS

15.3 Ordering targetfiles. . . . .. ... ... ... ..... ... 256
15.3.1 Comparing ranking criteria . . . ... ... ... ... 256
15.3.2 Discussion on ranking targetfiles . . . . . .. ... .. 259

15.4 Refining fileselection . . . . . ... .... .. ... ... ... 260
15.4.1 Filter conditions summarised . ... .. ... .. ... 263

15.5 Checking a change log to verify selection . . ... ... ... 264

15,6 Summary . . . ... ... 266

16 Classifying refiltereddata . . . . ... ... ... ... .. ... .. 269

16.1 Refiltered split file dataset composition . .. ... ... ... 270

16.2 Classifying the refiltered splitfiles . . . . ... ... ... .. 273

16.3 PostgreSQL & DNSjava splitfiles . . . . ... ... ... ... 276
16.3.1 Refiltereddata . . . .. ... .. ............. 276
16.3.2 Classifying unseen refiltered split file candidates . . . 278

16.3.2.1 PostgreSQL . . . . . . ... .. ... ... ... 278
16322 DNSjava . . ... ...... ... ....... 279
16323 Overall . . . ... ... ... ... ... .. 279
16.3.3 Additional unseen data: Strutsand PyX . . . ... .. 280
16331 Struts . . . .. ... oo oo 280
16332 PyX ... .. 281

16.4 Disappearingfiles . . . . .. ... ... .. ....... ... 283
1641 Data . . .. ... ... .. ... 283
16.4.2 Disappearing files with one target. . . . . . . ... .. 284
16.4.3 Disappearing files with more than one target file . . . 286

16.5 PostgreSQL and DNSjava disappearing files. . . . . . . . .. 289
16.5.1 Candidates with one targetfile . .. .. ... ... .. 289
16.5.2 Candidates with two or more target files . . . . . . . . 290

16.5.2.1 PostgreSQL . . . . .. ... .. ... ... ... 293

16522 DNSjava . . ... ...... ... ....... 294

16.5.3 Additional unseen data: PyX . ... .......... 295

16.6 Selectedmodels . . . . . ... ........ ... .. ... 296

16.7 Selected features . . . . . . . . . . ... . 297



CONTENTS xi

16.8 Summary . . . ... ... 300
16.8.1 Splitfiles . . . ... ... ... ... L oL 300

16.8.2 Disappearingfiles . . . . ... .... .. ... ... .. 300

16.8.3 Comparison to other approaches . . . . ... ... .. 301

16.84 Overview . . . . . . .. ... .. o oo 302

17 Discussion and evaluation . . . . .. ... ... ........... 303
17.1 Originanalysis. . . . . .. ... ...... ... ........ 303
17.1.1 Relatedwork . . . . . ... ... ... ... L. 303

17.1.2 Machine Learning System . . . ... ... .. ... .. 307

17.2 Collusion detection . . . .. ... ... ... ... ....... 315
17.3 Visualisations . . . . ... ... ... ... ... ... ..., 317
17.3.1 Collusion detection . . .. ... ... ... ... .... 317

17.3.2 File comparison with3CO . . .. ... ... ... ... 317

174 Othertools . . . . . . . . ... ... . . 319
17.4.1 Density analysis . . . . ... ............... 319

17.4.2 One-to-one matching of cloneoutput . . . . . ... .. 319

175 Summary . . . ... ... 320

18 Conclusions and furtherwork . . . . .. ... ... ... ...... 321
18.1 Contributions to knowledge . . . ... ... ... .. ... .. 321
18.2 Furtherwork . . . . . . .. ... ... ... ... ... 322
18.2.1 Originanalysis. . . . .. ... ... ........... 322

18.2.2 N-gramanalysis . . . ... ................ 323

18.2.3 File comparison with3CO . . ... ... ... ... .. 325

183 Conclusion . . . . . . ... ... 326
BIBLIOGRAPHY . . . . . . . . . . o e 327
A Similaritymeasures . . . . ... ... L o L Lo 351
B Classifiers . . . ... .. ... . 357
B.1 Ensembles . ... .... ... ... ... ... 357
B.2 Selected algorithms . . . . ... ... ... . o000 359

C Machine learning in software engineering . . . . . ... ... ... 361
D Additional file comparison visualisations . . . .. ... ... ... 367

D.1 Clone detectiontools . . . . . ... . ... . ... . ...... 367



xii

©) Z

H ® = O

CONTENTS

D.2 Originanalysistools . ... ................... 369
Ferret: example calculation . .. ... ... ............. 371
Density tool prototype . . . . ... ... ... Lo 373
Similarity rankings for Chapter9 . . .. ... .. .. ... ... .. 379
Details of the 89 projects . . . . ... ... ... .. .. ... .. 381
Density testresults . . . .. ....... ... . ... . ... ... . 387
SVM grid searchresults . . .. ... ... .............. 389
Supplementary results for Chapter14 . . . . ... ... ... ... 393
K.1 Feature sets - further combinations . . . . ... ... ... .. 393
K.2 Heterogenous meta-classifiers . . . . ... ... ... ..... 395
Less direct methods of filtering . . . . ... ... .......... 399
L.0.1 Uniquely shared trigrams (2a) . . . . ... ....... 400
L.0.2 Weighted trigramcount(2b) . . . . .. ... ... ... 401
L.0.3 Trigrams shared with the candidate difference set (2c) 402
L.04 Discussion . ... ................ ..... 403
Extracts from the Lifelines changelog . . .. ... ... ... ... 405
Additional results 1: Chapter16 . . .. ... ... ......... 413
N.1 PostgreSQL. . . . ... ... ... . ... ............ 413
N2 DNSjava . ... ... ... .. i 417
N3 Reporting . . . . ... ... ... . ... . . 417
Additional results 2: Chapter16. . . . . ... .. ... ....... 419
O.1 Disappearing files: classifying imbalanced data . . . . . . .. 419
Digetal.: Strutsresults . . . ... ........ ... .. .... 423
PyX: matched and unmatched disappearing files . . . . . ... .. 427
Comparison between Mossand 3CO . . . . . ... ... ... ... 429
Selected Features . . . ... ... .. ... ... .. ....... 431
Comparing related featuresets . . . ... ... ... ........ 435



List of Figures

1.1
1.2
1.3
1.4

3.1

4.1
4.2

51
52
53
54
55
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Group similarity example . . . . . ... ... ... ... ...
Origin analysissystem . . ... ... ... ..........
Collusion detection system . . . . ... ... .........

3CO file comparisonsystem . . .. ... ...........
File restructurings . . . ... .. .... ... ... .....

Input to and output from a machine learning algorithm . .

The classification model labels each unseen instance . . . .

Showing file similarities . . ... ... ... ... ......
Comparing the codeintwofiles . . . . ... ... ... ...
Graphical displays of file similarity . . . .. ... ... ...
Ribler and Abrams’s graphical displays . . . . . ... .. ..
Windiff, Winmerge and KDiff3 . . .. ... .........
Ball et al.’s line representation . . . . ... ... .......

Augur three-feature colour coding of one file . . . .. ...

Ferret: ‘different’ sequences, with a similarity of 1. . . . . .
Plot of trigram frequency across the projects . . . . . .. ..
Ratio of trigrams to words in text or tokensin code . . . . .
Diagram of the relationship between the three example files
Factorial and powercode . . . . . ... .. ... ... ...,
Original combination and permutationcode . . . . . . . ..
Amended combination and permutation code. . . ... ..

How similarity scores are affected by changes . . . . . . ..

xiii

17
20

41

56
57

66
67
69
70
71
72
73



Xiv

6.9

6.10
6.11
6.12
6.13

7.1
7.2
73
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
717
7.18

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

LIST OF FIGURES

An example of standard Ferret similarity information ... 84
Ferret XML report for a comparison of fact.c and power.c . 86
Factorial and powercode.. . . . . ... ... .. ...... 88
Ferret comparison between the files fact.c and fact-2.c. . .. 89
The impact on similarity of renamed tokens . . . . ... .. 92
Venn diagram: standard Ferret similarity score . .. . ... 93
Two files in the context of a group of files . . . . . ... ... 100
Excluding trigrams from the similarity measure . . . . . . . 101
A potential drawback of proportional measures . . . . . . . 103
“Uniquely shared” trigrams . . . ... ............ 103
Trigrams shared by twoinasmallgroup . . . . ... .. .. 105
[lustration for weighted similarity calculation . . . . . . . . 105
Graph of weighted similaritiesin a setof files . . . . . . .. 106
Subgraphs of files connected by weighted similarity . . .. 107
An example of a differently connected group . .. ... .. 107
Venn diagram: trigrams in the example split files . . . . . . 108
Venn diagram: existing targetfile . . .. ... ... .. ... 108
Venn diagram: multiway splitfile . . . . .. ... ... ... 109
Venn diagram: a renamed or moved file . . ... ... ... 109
Venn diagram: a merged file . . . ... ...... .. .. .. 110
Venn diagram: a disappearing file which has split. . . . . . 110
Venn diagrams: 2 candidate split examples . . . . . .. ... 111
Venn diagrams: 2 more candidate split examples . . . . .. 111
Trigrams unique within the group highlighted . . . . . . . . 114
Amended file similarity display . . . ... ... ... .... 115
Graded similarity colour scheme . . . . . .. ... ... ... 116

Problems comparing many files to one with a two-way tool 118

Three target file colours and their combinations . . . . . . . 119
3CO comparisons between 2 and 3files . . . . . .. ... .. 121
A candidate file compared with its target files . . . . . . .. 122

An extract from Figure 8.7, comparing a file to its targets . . 123



LIST OF FIGURES

8.9

8.10
8.11
8.12

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9

10.1
10.2
10.3

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4
12.5
12.6

Ferret and compact file comparisons . . . . ... ... ...
Tokens coloured to illustrate the scheme . . ... ... ...
A comparison with seven target files . . . . . ... ... ..

A comparison with nine targetfiles . . . . . ... ... ...

File concatenation and comparison . . ... ... ... ...
An extract from the feedback based on unique trigrams

Contour maps of weighted similarity counts . . . . . .. ..
Connections by weighted trigram count>85 . ... .. ..
Connections by weighted trigram count>50 . . ... ...
Project 19 compared with project 54 and the provided code
Graded colour scheme, repeated . . . . .. ... ... ....
An extract from a comparison between projects 8 and 17 . .

An extract from a comparison between 5 files . . . . .. ..

Outline of the learning process . . . . . ... ... ... ...
Learning system overview . . . ... ... ..........

Classification system overview . . . . . ... ... ... ...

Combination and permutation code (repeated) . .. .. ..
Amended combination and permutation code (repeated)
CCFinder report on clones between the three example files
Simian parameter hierarchy . . ... ... ... .. ... ..
Simian report on clones between the three example files . .
Duplo report on clones between the three example files
Examples showing potential duplication in clone detection

Steps in unscrambling clones for one-to-one matching . . .

Source code collection and preprocessing . . . . . ... ...
Comment block example from the biew project . . . .. ..
[lustration of similarities using the example mini-project

Information gathering and filtering . . . . . ... ... ...
Examplesplitfiles . . . ... ... ... ... ... ...,
A simple split fileexample . . ... ... ..... .. ....

XV



XVi

12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

14.1
14.2
14.3
14.4

15.1
15.2
15.3
154
15.5

16.1

LIST OF FIGURES

An example of a file split threeways . ... ... ... ...
An example of a multiway splitfile . . . ... ... ... ..
Example non-split files selected as candidate split files . . .
An example of anon-splitfile . . ... ... ... .. ....
A more complex example of a non-split file . .. ... ...
Number of targets in split file groups . . . . ... ... ...
Candidate split files by project, typeand class . . . . . . ..
Classification of uncertain disappearing files . . . . . . . ..
A disappearing file which has been renamed and edited . .

A disappearing file which has merged with an existing file

Pairwise comparisons between the three main files . . . . .
Example concatenation and comparison . ... ... .. ..
Three target files of similarity 0.3, two scenarios . . . . . . .
A file with two sections split out to two existing files . . . .
File combination and comparison . . . ... ... ... ...
Feature extraction . . ... ... ... ... ... ......
Trigrams shared by two or threefiles . . . . ... ... ...
The files cnp-1.c and cnp-2-editc . . . . .. ... ... ...
Blocks shared by the main target file and the difference set .

Composition of the featuresets . . . ... ... ... ....

Classification by paired featuresets . . . .. ... ... ...
The PostgreSQL files parser.c, analyze.c, datec . . ... ..
MXRecord java: code destination . . ... ... ... ....
MXRecord and KXRecord compared . . . . ... ......

System overview, repeated here for reference . .. ... ..
Target file order: by unique share and by shared change . .
Broadening target file selection: one example . .. ... ..
Number of target files per group: various filter conditions .

Filter criteria . . . . . . . . . . o e

Comparison between refiltered and original datasets . . . .

197
199
199
200
202
203
206
210
215
219

232
238
244
245

249
257
260
262
263

270



LIST OF FIGURES Xvii

16.2
16.3
16.4
16.5
16.6
16.7
16.8

18.1

D1
D.2

EF1
E2
E3
F4

J1
J.2

K1

N.1
N.2

P1
Q.1
R.1

T.1

Refiltered split file dataset by project, type, and class . . . . 272
Classification by paired featuresets . . . . . ... ... ... 275
Relationships between original and refiltered split datasets 276
A disappearing file of indeterminateclass . . . ... .. .. 277
Analysis of disappearing file targets . . . . . ... ... ... 285
The merge between CacheResponse and ZoneResponse . . 295
Features selected by Simple Logistic. . . . . ... ... ... 299
Figures 9.4, 9.9, G.2 repeated for reference . .. ... .. .. 324
Clonetooloutputs . . ... ... ................ 368

Beagle scatter plot and Ecode-wayf class evolution diagram 369

Density tool inputscreen . . . .. ... ... ... ...... 374
Density tool outputscreen . . .. ... ... ... .. ..., 375
Density tool screenshot . . . . ... ... ... .. ... ... 376
Example of Ferret density analysis XML output . . . . . .. 377
SVM grid search results “tris-singles” . . . . ... ... ... 390
SVM grid search results “tris” . . .. ... ... ... ..., 391

The new file MX_KXRecord, referenced in Section 14.2.2 . . 397

The disappearing PostgreSQL file geqo_paths.c . . . .. .. 416
DNSjava project report on directory changes . . . . . . . .. 417
Split files from Struts . . . . ... ... o oL oL 424
Minimal.c matched to simple.py, similarity 0.89 . . . . . .. 427
3CO and Moss file comparisons . . . ... ... ... .... 430

Comparing related featuresets . . . . . ... ... ... ... 436



xviii LIST OF FIGURES



List of Tables

2.1
2.2
2.3

3.1
3.2

6.1
6.2
6.3
6.4

7.1
7.2
73

8.1
8.2

9.1

11.1
11.2
11.3
114

12.1

Examples of parameterisedcode . . . . .. ... ... ... ..
Elements removed from code before plagiarism detection .

Approaches to source code plagiarism detection . . . . . . .

Origin analysis and related work . . . ... ... ... ...

Projects used for origin analysis by various research groups

Matched and unmatched code patterns in different units . .
Denseblocks . . ... ... ... ... ... .. ...
Ferret trigram-file index for the three example files . . . . .

Distribution of trigrams between the three example files . .

Example extracts from a trigram-fileindex . . . . .. .. ..
Different similarity measures based on trigram analysis . .

Shared trigram count report extract . . . . . ... ... ...

File combinations and the colours associated with them . .

Token colouring by example . . . . ... ... ........
Comparing the similarities found by different measures . .

Snippets illustrating parameterised matching . . . ... ..
CCFinder representation of tokens for the file fact.c . . . . .
Duplo matrix showing the result of line-by-line matching .

P-Duplo matrix showing the result of line-by-line matching
Terminology . . ... ... ... ... .. ... .. ... ...

Xix

33

101
102

125
126

135

155
156
160
163



XX

12.2
12.3
124

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9
13.10

14.1
14.2
14.3
144
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16

15.1
15.2

LIST OF TABLES

Size and similarity vectors for the example mini-project . . 176
Analysis of file type and classification of candidate split files 188

File type and classification of “uncertain” disappearing files 194

Keys and names of the featuresets . . ... .. ... . ... 204
Basic Ferret output for the three example files . . . . . . .. 205

Trigram-based features for two and three file comparisons . 206

Raw features taken directly from the tools” outputs . . . . . 211
Clones in cnp-1.cand cnp-2-edit.c . . . ... ... ... ... 212
Blocks from different analyses of the Ferret XML report . . 213
Difference sets and reverse difference sets explained . . .. 214
Features constructed from block sizes . . . . . ... ... .. 217
Features built from the example blocks. . . ... ... ... 218
Feature sets, their contentandnames . . . . . ... ... .. 222
Algorithms ranked by performance over all feature sets . . 225
The reduced set of 23 algorithms listed by group . . . . .. 226
Thetop40results . . ... ..... ... .. ... ...... 228
Performance of each feature set over the 23 algorithms . . . 229

Keys and names of feature sources, repeated for reference . 229
Performance of each algorithm over all of the feature sets . 230

Performance of selected feature sets on multi-target files only 230

Performance of selected feature sets on .c filesonly . . . . . 231
Split files in PostgreSQL, backend subsystem . . . ... .. 235
Split files in PostgreSQL, other subsystems . . . . . . .. .. 236
Refactorings suggested by Antoniol et al.’s system . . . . . 239
Restructured files found by Antonioletal. . . . . ... ... 240
Split files in the DNSjava project, releases 1-39 . . . . . . . . 241
Split files in the DNSjava project, releases 40-56 . . . . . . . 242
Analysis showing why some splits are missed by [6] . . . . 243
Model accuracy and recall on unseendata . . . . ... ... 246
Candidate file selection at a range of thresholds . . . . . . . 252

Ordering target files by uniquely shared trigrams . . . . . . 258



LIST OF TABLES

15.3
154
15.5
15.6

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27

Refiltering target files: varying thresholds . . . ... .. ..
The effect of altering target file selection criteria . . . . . . .
Split files for the project Lifelines. . . . . ... ... ... ..

Lifelines change log entry matches . . . .. ... ... ...

Comparison of refiltered and original dataset composition .
Refiltered candidate split files by project . . .. ... .. ..
The top 40 results on refiltered split files . . . . . ... ...
Performance of the feature sets over the 11 algorithms . . .
The difference in mean accuray over 23 and 11 algorithms .
Performance of each algorithm over all of the feature sets .
Composition of the refiltered unseendata . . . ... .. ..
Model accuracy and recall on unseendata . . . . ... ...
Split files found by Dig et al., Struts release 1.1to 1.2.4 . . .
Classification of Struts candidate split files . . . . . .. ...
Classification of PyX candidate split files . . . . ... .. ..
Disappearing files, one target, top 40 results . . . . . .. ..
Performance of each algorithm over all feature sets . . . . .
Performance of each feature set over the 11 algorithms . . .

Disappearing files, one target, top 40 results . . . . . . . ..

Performance of each feature set over the 9 algorithms

Performance of each algorithm over all feature sets . . . . .
Geometric means for disappearing files . . . . . . ... ...
Disappearing PostgreSQL files with one target. . . . . . . .
Disappearing DNS files with one target . . . . . . ... ...
Three models and their classification . . .. ... ... ...
Disappearing DNS files with two or more targets . . . . . .
Disappearing PostgreSQL files with more than one target .
Classification of PyX disappearing files (1 target) . . .. . .
Classification of 22 PyX disappearing files (2+ targets) . . .
Summary of classification by selected models . . . .. ...

Summary of classification on unseendata . . ... ... ..

XX1

261
261
264
265



xxii LIST OF TABLES
17.1 Proportion of files not classified by category. . . ... ... 313
17.2  Steps in classifying a new project with the models. . . . . . 314
A.1 Similarity measures for sequences . . . . ... ... ..... 352
A.2 Similarity measuresforsets. . . . .. ... ... ... ... 353
A.3 Similarity measures for vectors. . . .. ... ... ... ... 354
B.1  Methods for introducing diversity in ensemble learners . . 358
C.1 Machine learning and data mining in software evolution. . 365
E.1 PFactorialand powercode . . . .. ... ............ 371
E2 Factcand powerctrigrams. . .. ... ... ......... 372
G.1 Comparing the similarities found by different measures . . 379
H.1 The open source projects used in this research . . . . . . .. 383
H.2 Projectsize information . . . . . ... ... .......... 385
L1  Density test parameters . . . . . ... ... .......... 387
I[2  Density testresults . . . .. ... ... ... ........ 388
I.3  Sum of ranks for each component of dd-bb-gg parameters 388
K.1 Performance of 3, 4, and 5-way combinations of feature sets 393
K.2  Performance of the full fb set in combination with other sets 394
K.3 Performance of the full “tris” set combined with other sets . 394
K4 Performance of selected feature sets with selected algorithms 395
K.5 Heterogeneous meta-classifier results . . . . ... ... ... 396
L.1 Target files found by uniquely shared trigrams . . ... .. 401
L2  Weighted trigram count target file selection . . .. ... .. 402
L.3 Trigrams shared with the candidate differenceset . . . . . . 403
N.1 Matched disappearing PostgreSQL files . . . ... ... .. 414
N.2 Unmatched disappearing PostgreSQL files . . . . . . . . .. 415
N.3 Unmatched disappearing DNSjava files . . ... ... ... 417



LIST OF TABLES xxiii

N.4 Disappearing DNSjava files with a match in the next release 418

0.1
0.2
0.3
0.4

Q.1

S1
S.2

T.1

Geometric means for disappearing files . . . . . . ... ... 420
Balancing the dataset with SMOTE . . . . . ... ... ... 420
Cost-based classification . . .. ... ............. 422
Number of minority class examples correct . . . ... ... 422

Matched and unmatched disappearing files: PyX project. . 428

fc+tris-singles features selected by Simple Logistic . . . . . 432
fl+tris-singles features selected by Simple Logistic . . . . . 433

Comparison of classification accuracy of related feature sets 436



Chapter 1

Introduction

The aim of this research is to investigate the application of text analysis
techniques to software code, in particular in extracting group relationships
between evolving files. These techniques are applied in two areas: source
code collusion detection, and software origin analysis, where the history of
a software system is examined to trace code which has moved as the system

has evolved.

Text analysis is attractive because it is simple to apply and can be used in
the same way for many different programming languages. However, files
of program code generally have a certain amount of inherent similarity,
due to the constraints of the language and to programming idiom. This
similarity will tend to increase within a single software system, or in a
group of student submissions. Pairwise comparisons between files will
therefore find similarity which is not due to the transfer of code from one
file to another. Looking at similarities within a group of files can provide
context for pairwise comparisons, and clarify file interactions such as code

transfer, and is therefore helpful in analysing evolving source code.

The underlying thesis behind this research is that, in spite of the re-
stricted vocabulary in program source code, text analysis techniques can be
successfully used to find meaningful relationships within groups of files in

evolving software systems.

The main application of these techniques in this research is in software

1



2 CHAPTER 1. INTRODUCTION

origin analysis, where a machine learning system for identifying and classi-
tying restructured files is developed. In the other application, source code
collusion detection, the similarity between submissions is considered in the
context of the whole group. These same techniques are used to generate
visualisations which support the first two applications. The three applica-
tions, software origin analysis, collusion detection, and visualisation, are
discussed in the next three sections of this introduction.

The systems and tools described in this dissertation were coded by the
author in Racket!, with the exception of the third-party tools: Ferret, from
the University of Hertfordshire [146], and Weka from the University of
Waikato [247]. Three other third-party file comparison tools were explored
in building the origin analysis system, but do not form part of the final

system.

1.1 Software origin analysis

1.1.1 Context and problem

Software is increasingly becoming a part of everyday life [131] affecting
us both directly, in the computer systems we use for work and leisure,
and indirectly in the systems which provide us with our services. A soft-
ware system cannot be static, but must evolve over time in response to
the changing needs and wants of its users, to changes in its environment,
and to correct faults revealed in its use [17, 168, 237]. Changes made to a
system tend to increase its complexity [148]. It is therefore important to
restructure software code periodically, to make it simpler, and thus easier
to maintain [78].

Typically a software system is not developed by one person, but by a
team with fluid membership, and possibly in separate locations. Given
that many systems are poorly documented [40, 67], it can be difficult for a
developer to trace structural changes at a later stage [108, 245]. Maintainers

need to be able to trace the movement of code in a system, to keep track

A dialect of Lisp, see http: //racket-1lang.org/



1.1. SOFTWARE ORIGIN ANALYSIS 3

of unresolved bugs, and to update regression tests to target code in its new
location. Software evolution researchers also want to ensure continuity in

their analysis of code as it moves within a system [6, 22, 68, 128, 231].

Developers, maintainers and researchers therefore need tools to help
them to understand structural changes [90, 130, 252]. The branch of software
evolution research called origin analysis looks at the history of a system to
try to discover where code has moved during its evolution [237, 261]. Origin
analysis is based on matching elements of the code in consecutive versions

of the software, and for this a suitable matching technique is required [127].

Matching techniques vary in their representations of the code, and in
the measures used to determine similarity. Among existing approaches to
origin analysis, the majority use techniques which require that the code is
parsed prior to matching, making them language dependent. For example,
in constructing an abstract syntax tree [77, 179], a control flow graph [8], or
in extracting methods or functions from the code [22, 64, 90, 130]. Text-based
approaches, which do not require parsing, are by implication more widely
applicable, and therefore more attractive. However, challenges remain in

successfully implementing a purely textual approach.

Several previous approaches base their comparisons on the source code
text, but use a single value to describe similarity in the code, information
which lacks depth. For example, Weifigerber and Diehl [245] use a clone
detection tool, Rainer et al. [194] use a fingerprinting technique [193] based
on n-gram analysis [32], and Antoniol et al. [6] use vector space analysis, to

provide a similarity value.

Unless pairs of entities are identical, one of the difficulties faced when
using a single similarity measure is finding the threshold which best sepa-
rates matched and unmatched pairs [6, 22, 64, 127, 262]. A further problem
is that the thresholds for one system are not guaranteed to work well with
other systems [22, 90, 130]. These problems are magnified when more than
one measure is used, as not only does a suitable threshold have to be found

for each measure, but also the best combination of measures must be deter-



4 CHAPTER 1. INTRODUCTION

mined. For example, S.Kim et al. [130],> who combine eight measures from
different sources, find thresholds and combinations by exhaustive search,
but suggest machine learning as an alternative solution for the future, a
challenge which is taken up here.

Matching code is a difficult problem because of its inherent similarity,
in part due to the constraints and idioms of the programming language.
Added to this, within an evolving software system, files will also share sim-
ilar code because of the use of a limited range of variables and functions,
and because of copy-paste-edit practices. The goal is to find relationships
between pairs or groups of files which exist outside of this incidental simi-
larity.

To give an example, in Figure 1.1 there are 12 “files” which are the same
size for simplicity. Each file has one or more sections which appear in at least
one other file, and these are represented by coloured blocks. The highest
similarity, of two blocks, is between each pair of files in the subset a, b, d,
e, h and k. The similarity between file f and each of the other files, except
file 1, is one block. However, because the orange blocks appear only in files
f and g, and the green blocks in only f and j, the similarity between these
pairs of files is more interesting than the similarity between files sharing

the blue or yellow blocks which appear in almost every file in the group.

2Initials are used to differentiate between S.Kim et al. [130] and M.Kim et al. [128]

- ]
#bﬁdeghijkl
- — i —

Figure 1.1: This fabricated example shows 12 equally-sized “files” a-1. The colours
show parts of a file which occur in other files in the group. File f has one
section in common with each of the other files in the group, except 1.
The interesting similarity is that between the orange and green sections.




1.1. SOFTWARE ORIGIN ANALYSIS 5

1.1.2 Overview of the approach taken in this research

The approach to software origin analysis presented in this dissertation dif-
fers from previous approaches in several ways. The main difference is
the use of machine learning algorithms to select suitable combinations of
features and their weights. This allows a broad range of features not previ-
ously considered for this application to be explored. These features, many
developed for this research by analysing the outputs from a set of comple-
mentary copy-detection tools, are based on simple text analysis. The tools
are used to compare not only pairs but also groups of files, which can help
to exclude the inherent similarity in code and give context to the pairwise
comparisons.

Another difference is that the examples used for training the machine
learning models are taken from a range of software projects® which vary
both in application and in development style. This diversity is introduced
with the aim of producing models which can generalise across projects.
In fact, the resulting models, trained with examples in one language, are
able to generalise not only across projects, but also across other languages.
This is because the features used to characterise the examples are abstract
patterns taken from the simple textual relationships between files. This

striking result gives the system a valuable advantage over others.

1.1.3 Description of the final system

The software origin analysis system resulting from this research takes as
input the software releases to be analysed, and outputs information about
restructured files, and those related to them, in both textual and visual
forms. The system is outlined in Figure 1.2 (p.9), where the automated
part is enclosed by the bold line, and the original parts of the system are
shaded.* Ferret [146], a copy-detection tool developed at the University of

Hertfordshire, is used to compare files throughout the system.

3The term project is used from here to mean a software system being analysed, to

differentiate from a system built for this research.
#Parts of the system which are original only in their detail are lightly shaded.



6 CHAPTER 1. INTRODUCTION

The user inputs the software to be analysed, with each release in a
separate, consecutively numbered directory. Source code files are selected
and each file is stripped of comments and placed in a new set of directories,
which have an identical structure to those of the original code.

The next step of the process is to gather information about the files.
The system stores the size of each file, and the similarity to each other file
in the same release, and in the next release. The information is stored for
each file over the lifetime of the project, with special values recorded for
releases where the file does not exist. The similarities are computed using
Ferret, which tokenises the code, and forms trigrams on which its analysis
is based.” Details about Ferret are given in Chapter 6 and the system to this
point is explained in Sections 12.1-12.3.

Once information about the files and their similarities is stored, it is
initially used to filter the files in the project to find those belonging to two
categories. First, and trivially, files which cease to exist during the life of
the project, called disappearing files. Second, to find potentially split files,
meaning files from which code may have been moved to another file, rather
than files where code has been deleted or edited. This selection is more
difficult, and by ensuring that as many split files as possible are found,
some non-split files are inevitably also selected. The disappearing files and
potential split files are called candidate files. Further details can be found in
Section 12.4.

The second part of the filtering task is to find target files which are
possible destinations for the code moved from the candidate file. This part
of the filtering task combines several conditions based on the trigrams in the
files, and is explained in Chapter 15. These filter conditions aim to include
every target for each candidate, however, the cost of such recall is that other
files which are not targets may also be selected.

The next part of the process is to rank the target files according to the like-
lihood that the file is actually a target file, and by the amount of code moved
to the file. Previous text-based approaches to ranking targets [22, 245] use

5 Trigrams are sequences of three consecutive items, e.g. words in text, or tokens in code.



1.1. SOFTWARE ORIGIN ANALYSIS 7

measures of the overall similarity between candidates and targets. In this
system, the parts of the code shared by the candidate file and only one
member of the target group, called uniquely shared trigrams, are also consid-
ered in ranking. For more information about group trigram analysis, see

Chapter 7, and about experiments in ranking techniques, see Section 15.3.

Once the target files are ranked, candidate groups are formed. For
a potential split file, this group consists of the candidate file, its revised
version in the next release, and selected target files. Code from disappearing
files with no targets is assumed to have been deleted, and files with an exact
or very close match among the targets is assumed to have been moved. The
remaining disappearing files, whose classification is uncertain, are grouped
with the most likely target files. Split file candidates can be classified as
split or not. Disappearing files with one target are either matched (that is
renamed, moved or merged) or not, those with two or more targets can also

be split. Models were trained for each of these classification tasks.

To provide data for training these models, candidate files and their tar-
gets were filtered from eighty-nine projects written in C (see Chapter 12).
A wide range of features (see Chapter 13) was generated for each candi-
date group, based on file comparisons made using Ferret and three other
copy-detection tools (see Chapter 11). Each tool compares file texts, but has
different and complementary methods of determining their similarity. Each
candidate file was manually classified to provide labels for the examples.
Experiments were run using Weka [247] to explore how different feature
sets performed with a range of algorithms in training models (see Chap-
ters 14 and 16). These experiments determined which models are most able

to generalise for each task, and these models are used in the final system.

The features selected for the final models are based solely on compar-
isons made by Ferret, between both pairs and groups of files. Pairwise
comparisons are used to create features describing patterns in the blocks
of code shared by the two files. Group comparisons generate features
based on the interaction between trigrams in the set of files in the candidate

group. These two sets of measures provide complementary information.



8 CHAPTER 1. INTRODUCTION

While trigrams can be scattered throughout the source code text, block-
based measures give an indication of their arrangement, and information
about the group interactions puts the pairwise comparisons into context.
The full set of features explored in building the machine learning mod-
els is detailed in Chapter 13, and of those selected for the final models in
Section 16.7. The machine learning algorithm which consistently performs
well with this data is Rotation Forest [203], as shown by the experiments
reported in Chapter 16, with test cases classified with around 90% accuracy.

The output from the system is in two forms: textual and visual. The
textual output lists the directly matched and unmatched files, and the au-
tomatic classification assigned by the models to the uncertain disappearing
files and to the potential split files. The visual output from the system is
produced using a tool developed as part of this research, see Section 1.3.1
and Chapter 8. This tool, called 3CO, generates an XML file displaying a
comparison between the text of a candidate file and all of its target files,
which helps the user to understand where code has moved to. This visual
output can also be used directly for manual assessment of the movement
of code in the project, especially where few restructured files are found in
the project under analysis.

Throughout the system, relationships between groups of files are found
using Ferret to analyse their textual similarity:
e in filtering target files, where for every potential split file in release n, and

each of its possible target files in release n+1, the relationship between

four files is analysed, that is each file in both releases;?

e in ranking the target files, where all of the files in the candidate group
are compared;

e in creating features, where files selected from the candidate group are
compared; and

e in generating 3CO visualisations, where all of the target files are com-

pared with the candidate.

®Or three files, where the target file does not exist in release n.



1.1. SOFTWARE ORIGIN ANALYSIS 9

—
5BBhE &

Strip comments
from selected files

$adad. &

Compare files in the same
and consecutive directories

OuUTPUT

Figure 1.2: Origin analysis system outline. The automated part of the system is
enclosed by the bold line, and contributions are shaded. Light shading
indicates parts which are original only in their detail.




10 CHAPTER 1. INTRODUCTION

1.1.4 Results

The final system was used to analyse four software projects not used in
training the models, three of which have been investigated by other software
origin analysis research groups. The examples extracted from the four
projects are also classified with around 90% accuracy. Details can be found
in Sections 16.3 and 16.5, and are summarised below.

The PostgreSQL “backend” subsystem written in C, which consists of 12
releases and around four and a half thousand files, is studied by Zou [261].
Zou'’s system combines measures of the string similarity of function and pa-
rameter names with call analysis and complexity metrics, to find functions
which have been renamed, split or merged. All of the file level changes
reported by Zou are found by the machine learning system, although two
are not reliably classified. Additional restructured files are found by the
machine learning system, which may be assumed not to be mentioned by
Zou because of the different focus of the two studies.

Forty releases of the DNSjava project, including around three thousand
files, are studied by Antoniol et al. [6], who use vector space analysis on
identifiers in the code to find classes which have been renamed, split or
merged. All of the file level changes found by Antoniol’s system are found
by the machine learning system, although one is not classified correctly.
Two renamed classes found by Antoniol et al. are not found by the system,
because code is not moved from the file and the filename is unchanged.
However, seven further split files, one merged file, and one renamed file
(and class), are identified by the machine learning system and not reported
by Antoniol et al.

Dig et al. [64] study the changes between two releases in the Struts
project comprising a total of just under one thousand Java files. Their
approach combines the text comparison of method bodies to find candidate
refactorings, with call analysis to refine the search. The three file level
changes found by Dig et al.’s approach are found and correctly classified,
as are two others confirmed by another study of Struts by Wu et al. [250],

and two more confirmed by manual inspection.



1.1. SOFTWARE ORIGIN ANALYSIS 11

The last project, Pyx, is a Python project with over one thousand files
in twelve releases. Pyx was analysed for this study with the aid of a fairly
comprehensive change log, as no studies of this type appear to be available
with projects in languages other than C or Java.” These results cannot be
compared with those of another research group, but around 88% of the
model classifications match the manually assigned classifications.

In summary, it seems reasonable to claim that the machine learning sys-
tem performs at least as well as the other systems, although because the
systems have a different focus, they cannot be compared directly. Never-
theless, it seems that several restructured files found by this system are not
mentioned by previous authors. The advantage of this machine learning
system is that the trained models apply across the projects and languages

tested, and theoretically to many more.

1.1.5 Contributions

The main contribution resulting from this research into using text analysis
in the field of origin analysis is the set of trained models for determining
the class of candidate restructured files. The individual parts of the system
which are original are shaded in Figure 1.2, and are detailed below, starting
at the top of the diagram.

The lightly shaded boxes differ from other approaches only in what is
stored and used for subsequent analysis. In this case, the information is
taken from file comparisons made by Ferret. For each pair of files in one
release and in consecutive releases, not only are proportional similarity
scores stored, but also the number of trigrams in each file and shared by the
files.

Target file filtering takes account of all of the stored information, looking
at the changes in each file and its relationship to the changes in the candidate
file, using both proportional and discrete measures. The filtering criteria
result from experiments undertaken as part of this research.

A novel measure derived from a Ferret comparison of the files in each

"Except for one in Smalltalk [60], for which the code is not available.



12 CHAPTER 1. INTRODUCTION

candidate group is used in ranking the target files. This is the number of
trigrams which each target file has uniquely in common with the trigrams
which are no longer part of the candidate file.

The features for the final system result from using new ways to analyse
the outputs from file comparisons made by Ferret. These features aim to
give a fuller picture of the amount and distribution of code shared by the
files in a candidate group than is available from a single similarity measure.
For details of the analysis of Ferret outputs see Chapters 6 and 7.

The machine learning models are trained with a large set of examples
derived from projects written in C. The projects cover a range of application
areas and development styles, with the aim of creating models which are
able to generalise across projects. As the features are based on patterns
in the trigrams shared by two or more files, the models are also able to
generalise across projects in the other languages tested, Java and Python,
and should work with many other languages and with evolving text files.

During this research, it was necessary to compare each candidate file
with its potential target files to understand the interaction between files in
the group. No suitable tool could be found to display these comparisons,
especially for groups containing a large number of files. The 3CO tool,
based on Ferret’s trigram analysis, was therefore developed for this task (see
Section 1.3.1). The ideas behind the display, which uses primary colours to
show which target files contain code from the candidate file, could also be

applied to any system which compares a group of files.



1.2. COLLUSION DETECTION 13

1.2 Collusion detection

1.2.1 Context and problem

Plagiarism in universities is reported to be on the increase [119, 177, 222].
A combination of strategies is generally used to deter such inappropriate
use of the work of others [174]. First, students are given guidance on
plagiarism and how to avoid it. Second, where possible, assignments are
designed to minimise the opportunity for copying. Last, it is important for
students to know that their work will be checked. The automatic detection
of similarities between submissions is crucial in helping tutors in this task.

A group of student programming submissions is also a type of evolving
software. Each submission in a group will be based on examples provided
during the course, which then evolves to suit each student’s work. If
students collude, then code will be transferred between them. As in origin
analysis, there is inherent similarity in programming submissions; in this
case, due to examples used in teaching, to template code, to the common
aim of the task, and possibly to use of a development tool, rather than to the
limited range of variable and function names present in a single software
project. The task in collusion detection is to find sections of code which

may have been passed from one student to another.

Unusual similarity, that is parts of the code shared by only two or
just a few students, is said to be an indicator of possible collusion [52, 110].
Although a tutor marking a small set of submissions can be expected to spot
unusual similarity, when there is a larger number of submissions, or where
marking is undertaken by a team, an automated approach is desirable.
Filtering by automatic means is one part of the task, the tutor must also

assess the similarity found, and for this a suitable visualisation is essential.

Twenty-nine approaches to source code collusion detection were sur-
veyed to provide a background to this work (see Section 2.3). The sur-
vey found that few of the approaches take account of unusual similar-
ity [3, 9, 34, 52, 115], only one specifically targets elements shared by few

files [199], and none directly measure them. It was also found that many



14 CHAPTER 1. INTRODUCTION

approaches can handle a variety of languages. However, very few are able
to analyse a mix of programming languages. There is an increasing em-
phasis on teaching web technologies, where several different programming
languages can be used in building a single project. It is therefore useful to
be able to combine files coded in different languages when measuring the
similarity between students” work. Another common feature noted is that
similarity measures are generally proportional. While this is suitable for
comparing files of around the same size, the similarity of a small file to a

larger one will be understated by some proportional measures.

1.2.2 Overview of the approach taken in this research

The approach to collusion detection developed in this research aims to
tackle the difficulties outlined above in three ways, and so provide a more

suitable system for this type of data.

First, submissions may be written in more than one language. Analysing
the source code textually,® without the use of parameterisation means that
no language-specific processing is required. Although lack of parameter-
isation may mean that well-disguised copies will not be detected, there is
evidence [120] that many students who copy others do so because they
lack either the time or the skill to undertake the task for themselves, and

consequently do not use clever disguises.

Second, submissions often have high levels of incidental similarity due
to auto-generated code, standard constructs, or examples used in teaching.
Measuring similarity which is unusual within the group aims to overcome

this problem.

Third, open-ended assignments can result in submissions of uneven
sizes. This is tackled by using a count-based measure rather than a propor-

tional measure to find the “amount” of unusual similarity.

8Here with a tokeniser for C-type languages, adequate for a range of other languages



1.2. COLLUSION DETECTION 15

1.2.3 Description of the system

The collusion detection system, which is the outcome of the research de-
scribed in Chapter 9, is outlined in Figure 1.3 (p.17). In the same way as for
the origin analysis system, automated parts are enclosed by bold lines, and
contributions are shaded.

Input to the system is a set of folders, one for each student. The contents
of each folder are concatenated to make one large file of source code, so that
there is one file to process for each student. Optionally, code provided by
the tutor, in the form of examples or exercises given during the course, or
template code given for the assignment, is also input. These concatenated
tiles are passed to Ferret for analysis. This system is based on the Ferret
trigram-to-file index, which records every trigram in the set of files along
with the numbers of the files in which each trigram appears (for details, see
Section 6.7). A number of measures can be determined by analysing this
index, for example, unusual similarity and uniqueness.

In Ferret’s normal use, the similarity between two files is computed
based on the proportion of shared trigrams to the total in the two files.
In this system, these trigrams are considered in the context of the rest of
the files in the group. Unusual similarity is calculated by counting the
trigrams shared by only the two files, and adding an inversely weighted
count of those shared by the two files and a few other files. This measure
overcomes the problems associated with inflated similarity due to auto-
generated code, or to the use of tutor-provided code. As a count-based
measure, it will also find sections of code which may not be found by a
proportional measure because they make up a small part of a large file. For
details, see Sections 7.2 and 9.3.

Uniqueness is a count of the number of trigrams unique to any one
file among the group. Identifying unique trigrams has two benefits, first,
to show unusual solutions to a problem or interesting extensions to the
required task, and second, if there is a suspicion that a student has copied
code from an external source, these trigrams provide useful search phrases.

Once similar pairs or groups of files are identified, a visual display of



16 CHAPTER 1. INTRODUCTION

the comparison between files selected by the tutor can help to understand
reasons for the similarity. Two techniques for displaying textual file com-

parisons are outlined in Section 1.3.

1.2.4 Results

This system was trialled with a set of submissions by students who were
developing community websites. It is difficult to draw strong conclusions
about the measures tested with only one set of submissions, however, the
weighted count-based measure of unusual similarity had advantages over
the other measures tested on this data. Details of the experiments can be

found in Chapter 9, where there are also examples of the visualisations.

1.2.5 Contributions

Several contributions result from this part of the research. First, the com-
prehensive survey of work in source-code plagiarism detection. Second,
the measure of unusual similarity which helps to identify sections of code
appearing in two or only a few submissions. Tied in with this analysis of
the trigrams in a group is the ability to find unique trigrams. An important
contribution is the colour-coded display (see Section 1.3.2) which high-
lights both the unusual similarity between files and the unique trigrams.
This makes it easier for a tutor to pinpoint areas of interest in a file than in
a traditional display, which typically only differentiates between the parts

of the files which are shared and the parts which are not.



1.2. COLLUSION DETECTION 17

0 dBass - @

o (EEE

Ferret

Trigram-to-
file index

OUTPUT Tables of *
I
¥

¥
. ile groups
INPUT Pairs of files User-
Q [;| selected

Comparison
tion '

tools

Colour-coded visualisa

of text-based

comparison
between

OUTPUT

Figure 1.3: Collusion detection system outline. The user inputs folders of student
code (1..n) and, optionally, tutor-provided code (P) for analysis. Auto-
mated parts are enclosed by bold lines, and contributions are shaded.



18 CHAPTER 1. INTRODUCTION

1.3 Visualisation

Visualisation of the relationship between files is important in both software
origin analysis and collusion detection. In origin analysis, it is invaluable
to be able to quickly understand the relationship between files, both in la-
belling training examples for building the system, and in displaying results
for the end user. In collusion detection, a tutor will want to check pairs or
groups of submissions which cause concern; having a display where the
interesting similarity between two files is highlighted will help in this task.
Visualisations developed for these two areas, both based on analysis of the

trigrams in a group of files, are described in the next two sections.

1.3.1 Visualisation for origin analysis

The ability to visualise the interaction between files in a project is bene-
ficial in origin analysis. In building the machine learning system for this
research, visualisation was important: in deciding whether files belonged
to a particular class when labelling the training data, and in deciding about
the selection and ranking of target files while exploring the behaviour of the
filtering criteria. It is also valuable for looking at the relationship between
files in other applications.

While these tasks are possible using existing tools which show compar-
isons between two, or at most three files, it is difficult when there are more
files to compare. What is required is a tool which can show a comparison
of one file to a group of other files without the need to align separate dis-
plays, or to scroll each display individually. To do this, the 3CO tool was
developed, based on analysis of the trigrams in a candidate group.

3CO can be used for other file comparison tasks, such as looking at
student files, where a file suspected of containing copied content will be
the file for comparison. The suggested applications are for source code
files, but as the tool is based on trigram analysis, it is equally suitable for
comparing files of natural language.

An outline of the 3CO tool is shown in Figure 1.4. To produce the



1.3. VISUALISATION 19

visualisations, the user provides a list of the files to be compared. The first
file in the list is the base file with which all the other files are compared. In
origin analysis, this is normally the candidate file, and the remaining files
are a ranked list of the target files. In collusion detection, the base file would
be a suspicious file, and the other files those which are most similar to it.

The system divides the target files into groups of three, each group is
then compared with the base file, using Ferret to provide a trigram-to-file
index. The idea is that each of the three files in a group is allocated a
primary colour. The text of the base file is coloured depending on which
other files the text appears in. For example, code in file 1 and not in files 2
or 3 is coloured blue. The circles to the right of the figure show the colours
for each file combination. Each token is a part of three trigrams, each of
which can be in none, one, two, or all three of the other files. The colour of
each token is determined by a vote between the files in which its trigrams
appear. Each group of three (or fewer) files is compared to the base file in
this way, with a new column added to the XML output file for each group,
until all of the files are included in the output.

The output file allows the user to zoom out to see an overview of the
arrangement of the base file contents in the other files, or to zoom in to see
details of the text. As the file contains all of the comparisons, no alignment
or separate scrolling is necessary. The example in Figure 1.4 shows six files
compared to the base file. A more detailed description of the 3CO tool is

provided in Section 8.2, with further examples, in detail and in overview.



CHAPTER 1. INTRODUCTION

20

"9 9seq Ay} ypm swerdiny areys dnoid ayj ur S9[1y 991} Y3 JO YOTYM MOYS 0} PIINO[Od ‘S
1930 2913 Jo dnoid A1949 10§ pajeadar ST YdIYMm ‘B[ aseq Y3 JO 1xa} 9y} Surmoys o[y TIAX ue st indino ay, ‘sofyy Sururewar
Ay} ym paredwod aq 03 oy (9seq) ay} ST YdTYM JO 3SI§ 9y} “‘soty Jo 381 e syndur 1asn oy -weyshs uostredwod a[y ODE 1 2In3L]

: : : : : (:M_E

7 unjon
| 9 a4

. H 1915 [
: o9 £ 19s 8|14 — I an
== nn.A. uayo} 7 185 ajl4 a|lj-0j- :ﬂ“ﬂa
S@ o lage e
c T~ VBN e
e

: Seman L :E:_W m” .m__u_ =
S - = e - !——.Emg
i || s == [ ‘ 18lia] i

!

£ 185 8)l4

N0j03 xapuy i i
EN Z 195 a|id|¢{ -0} erldo: |[)— =M
R aseq

10} 2104, | 195 ailg weabi ) uayo |

Qadino - LndN




1.3. VISUALISATION 21

1.3.2 Visualisation for collusion detection

In collusion detection, the standard output of many tools includes a com-
parison between the source code text of two files, highlighting the parts of
the files common to both. While this is useful, it does not always identify
interesting similarity between the files. It would be helpful to understand
which parts of the file are shared by just the two files, or the two files and a
few others. Conversely, it is not very useful to find parts of the files which
are shared by not only these two files but by many others, or is code which
has been provided by the tutor. Several systems take this last point into ac-
count when computing similarity measures, but do not appear to consider

it when displaying the text.

In showing a comparison between two files, the colouring system pre-

sented in this research distinguishes between:

M trigrams appearing in only one file in the group (unique trigrams),
B trigrams shared by just the two files (uniquely shared trigrams),
M by the two files and up to two others,*
by the two files and three to five others,*
B by the two files and more than five others,*

and “greys out” the uninteresting trigrams, that is those in the provided

code, or not shared by the two files in question.

* These thresholds can be adapted for different group sizes.
Details are in Chapter 8 with a real-world example in Chapter 9.

The information needed to produce this visualisation is taken from the
Ferret trigram-to-file index, in a similar way to the 3CO tool. When two
tiles are compared, the tokens in each file are matched to the trigrams in
which they appear. The number of other files that each trigram appears in
is noted, as is its presence in the tutor-provided code. Each token is then
coloured based on a majority vote among the trigrams in which it appears.

Details are given in Section 8.1.



22 CHAPTER 1. INTRODUCTION
1.4 Summary of contributions

This work investigates the application of text analysis techniques to soft-
ware code, in particular in extracting group relationships between evolving
tiles. The techniques are used in collusion detection, software origin analy-
sis, and in visualisations to support both applications.

In summary, the contributions made by this research are:

¢ A major study of the application of text analysis and machine learning

techniques to software origin analysis, resulting in:

o Trained models for identifying restructured files which generalise

across projects and a range of programming languages.
o Development of the 3CO tool for displaying textual file comparisons.
o Criteria for filtering targets for restructured files.
o A novel method for ranking these target files.

o Construction of a set of features for input to the models, using several

new techniques for analysing the output of copy-detection tools.

o Marked-up datasets for studying origin analysis.

e Aninvestigation to find collusion detection measures suitable for sets of
submissions of uneven size, with high incidental similarity, and using

more than one programming language, resulting in:
o A comprehensive survey of work in source-code plagiarism detection.
o Use of text-based group analysis to measure unusual similarity.

o Development of a colour-coded display to give group context to the

similarity between files.

e Design and prototype code for the systems described in Sections 1.2-1.4.



1.5. DISSERTATION STRUCTURE 23
1.5 Dissertation structure

This section gives an overview of the remaining chapters in the dissertation.

Chapters 2-6 give background to the research and reviews related studies.

Chapter 2 looks at methods for finding similarity in program code, and

surveys previous approaches to detecting collusion in source code.
Chapter 3 provides details of previous methods used for origin analysis.

Chapter 4 gives an overview of machine learning and focuses on the un-
certainties encountered in creating a set of features where the space

of possible features is not well constrained.

Chapter 5 outlines the use of visualisation in source code comparisons,
particularly by the tools reviewed in Chapters 2 and 3, and by tools

which use colour to highlight interesting features in software files.

Chapter 6 describes the trigram-based similarity detection tool Ferret, and
tools developed in this research to analyse its output to provide a

richer set of features than is directly available from Ferret.

Chapters 7 and 8 introduce ideas about finding and visualising relationships
between evolving files, based on analysing the trigrams in the source code,

which form the basis of the rest of this dissertation.

Chapter 7 explains how analysis of the distribution of trigrams in a set of

documents can be applied to collusion detection and to origin analysis.

Chapter 8 shows novel techniques for visualising the interaction between

files in a group context, for collusion detection and for origin analysis.

Collusion detection, and the main application, software origin analysis, are

covered in Chapters 9, and 10-16, respectively.

Chapter 9 applies the measures and visualisations described theoretically

in Chapter 7 and 8 to a set of student assignments.



24 CHAPTER 1. INTRODUCTION

Chapter 10 gives an overview of the machine learning system for classify-
ing restructured files, which comprises data collection, filtering, fea-

ture construction, and the training and testing of classification models.

Chapter 11 introduces the third-party file comparison tools used in feature
construction, describes an adaptation to one of the tools, and a method

for analysing output from the tools to suit their use in origin analysis.

Chapter 12 describes the collection, preprocessing and filtering of evolving

source code from an open source repository.

Chapter 13 details the features constructed for the machine learning sys-
tem, which are based on the output of the file-comparison tools intro-

duced in Chapters 6 and 11.

Chapter 14 presents the first of the machine learning experiments, where
models developed from the training data are used to classify files from

two projects studied by other origin analysis researchers [6, 261].

Chapter 15 explores a range of methods based on trigram analysis for im-

proving the filtering techniques described in Chapter 12.

Chapter 16 looks at the effect of the new filtering criteria on data selection,
and repeats the machine learning experiments with the refiltered data,
testing the new models on the two test projects used in Chapter 14,

and on two further projects.

The research is discussed and evaluated in Chapter 17, and Chapter 18

concludes the dissertation and suggests areas for future work.

Chapter 17 relates this research to that of others, evaluates the experimental

methodology and results, and discusses issues raised by the research.

Chapter 18 reviews the contributions to knowledge made by this work and

suggests ideas for future research.



Chapter 2

Detecting similarity in program

code

The theme of this dissertation is finding relationships within groups of
evolving source code files based on textual analysis. To accomplish this
task, one or more measures of similarity between the contents of the files
are required. Two of the main applications where finding similarity in
program code is important are plagiarism detection and clone detection.
Measures taken from these two areas have previously been used in origin
analysis [22, 130, 245].

In this chapter, first clone detection and plagiarism detection are com-
pared, and their application to origin analysis is explained. Next, the detec-
tion of similarity in source code is outlined in general terms, to give context
to the survey presented in Section 2.2. The survey analyses twenty-nine ap-
proaches to plagiarism detection as background to the collusion detection

application described in Chapter 9.

2.1 Clone detection and plagiarism detection

Clone detection and source code plagiarism detection are both concerned
with finding similarity in program code. In clone detection, the aim is to find

sections of similar code within a project or across a group of related projects

25



26 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

so that they can be abstracted, or be uniformly maintained. Four types of
code clone are generally recognised (see, for example, Roy et al. [204]). The
first three of the four types form a hierarchy: the simplest clones, known as
type-1, are textually identical, with the possible exception of white-space
and layout; type-2 allows for differences in identifier names, in typing
and in literal values; changes introduced by editing, such as additions,
deletions and altered statements, are acceptable for type-3 clones, which
are sometimes known as “gapped clones” because of the breaks between
fragments of similar code [19, 238]. Type-4 are semantic clones, which have
the same function, but use different structure, syntax, or both [87]. Changes
to code in origin analysis are more likely to be of types-1-3 than type-4.

The usual aim in plagiarism detection is to find similarity between
student programming assignments or between assignments and internet-
sourced code.! Plagiarists sometimes attempt to disguise their plagiarism,
and the level at which this is done depends to some extent on their pro-
gramming ability. Joy and Luck [120] define two main types of plagiarism
disguise: lexical changes and structural changes. Faidhi and Robinson [71]
define six levels of disguise instead, three of which fall into each of Joy and
Luck’s categories [47]. Lexical changes, those to comments, white-space and
identifier names are simple. Structural changes require some knowledge
of the programming language used, and include changes such as replac-
ing one control structure with an equivalent one, reordering statements,
combining functions, or rewriting logical operators.

These disguises are similar to the clone types, lexical changes are like the
changes accepted by type-1 and type-2 clones. Simple structural changes
are those which would be found by tools which identify type-3 clones, with
the more complex structural changes being like type-4 clones.

Unlike clone detection, the focus in plagiarism detection is on inappro-
priate copying between authors, therefore within-project copying is not of

interest. Another difference between the approaches is the focus in the re-

1Similarity between two sources does not prove collusion or plagiarism, but indicates
areas for further investigation [52, pp.22-23]. However, “plagiarism detection” is used in

this section to describe this application of similarity detection.



2.2. DETECTING SIMILARITY IN CODE 27

porting of detected similarities. In general, the primary aim of plagiarism
detection tools is to provide a measure of similarity between each pair of
files compared, to highlight suspicious likeness, with the location of the
shared code of secondary importance. In contrast, clone detection tools
provide information about the location of matched sections of code, both
within and between files, but do not always provide a similarity measure.
Both of these approaches are useful in origin analysis. The more general
similarity measure can select files to, or from, which code may have moved,
while pinpointing similar sections of code helps to determine whether this

is the case.

2.2 Detecting similarity in code

The steps taken when looking for similarity in program code are broadly
the same whatever the application, and are outlined in this section, with
examples taken from the fields of both clone and plagiarism detection. The
steps generally consist of:

e preprocessing the code,

e transforming the processed code,

changing the new representation into elements suitable for matching,

matching these elements,

e post-processing the results, and

displaying the results.

Preprocessing: In preprocessing, parts of the code considered unimpor-
tant in matching, such as white-space or headers, are removed. Comments
are normally removed in clone detection, whereas in plagiarism detec-
tion, duplicated comments are sometimes considered useful indicators of
copying, and therefore retained [31, 82]. Some clone detection tools ignore
repetitive structures, such as table initialisations or preprocessing directives,

because they are considered as unsuitable candidates for abstraction [125].



28 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

Code transformation: The simplest first transformation is tokenisation [114,
146, 189]. Other ways to represent code include abstract syntax trees [16,
77,229], parse trees [89, 116, 221], call graphs [42] or program dependency
graphs [134, 151]. In plagiarism detection, where cross-language copying
is also considered, intermediate code, such as Register Transfer Language
(RTL) [9] or Common Interface Language (CIL) [122], is an alternative.
Meta-data, such as metrics, were often used in earlier similarity detection

tools when computing power was limited [7, 136, 165, 170].

After initial transformation, further changes may be made. For example,
parameterising identifiers, to allow code of similar structure to be matched.
In clone detection, the matched sections are candidates for abstraction. In
plagiarism detection, structurally similar code may have been copied and
disguised. Methods of parameterising include standardising synonymous
keywords [246]; replacing syntax tree nodes by their types [18]; or ignoring
differences in user-selected items, such as literals or modifiers [105]. Ta-

ble 2.1 shows a selection of other approaches to parameterising. The code

snippet transformed hereis:  ‘‘for ( int i = 0; 1 < max; i ++ )"
Method Ref. | Original code: for (inti=0;i<max;i++)
ignore keywords [52] | i0imaxi
unify identifiers [199] | for (int$=%;%$<$;%++)
unify identifiers [112] | for (int IDName=IDName; IDName<IDName; IDName++)
unify identifiers, [42] | FOR LPAR identifier ASSIGN SEMI identifier LT ...
remove types
one-to-one or p-matching [12] | for (intpl=p2;pl <p3;pl++)
just keywords, numbered [173] | forl,intl
keyword=0, separator=6 [114] | 60202620262026

identifier=2
replace literals with L, hex-H [99] | for (intI=N;I<I;I++)
(N and I are assumed

for number & identifier)
unify all alphanumeric strings [B1] | t(tt=t;t<t;t++)

55 parameters eg R = for, [34] | RASNKNNJNNDDB
A = (, N = alphanumeric

Table 2.1: Examples of parameterising “for ( int i = 0 ; i < max ; i ++ )”



2.2. DETECTING SIMILARITY IN CODE 29

Another advantage to parameterising is the reduction of complexity in
matching. A disadvantage is that some interesting features of the code
may be lost. Some methods use relaxed parameters for filtering, and per-
form more computationally expensive fine-grained matching only on those

elements which match under the less constrained conditions [18, 34].

Elements for matching: The new representations of the code are usually
broken into smaller elements for matching. Exceptions are metric vectors,
which can be compared directly, and file sequences, when similarity is
computed using either an alignment or a compression algorithm.

Text and tokens may be divided into physical units such as lines, logical
units, such as statements, or sequential units, such as n-grams, which are n
adjacent characters or tokens. The units may be further transformed before
comparison. For example, by hashing [66, 199, 246] ; by fingerprinting [3,
160], reducing information by sampling; or by counting features to give
frequency vectors and therefore losing their order [81]. The transformed
code can be compared directly, such as line-by-line [5, 120], or by grouping
into bags [114], sets [146, 173, 253] or sequences [89]. Bags lose information
about order, as do sets, which also lose information about frequency.

Subtrees are either compared directly [16], or after further processing.
For example, Tairas and Gray [229] flatten parameterised nodes into a se-
quence; Jiang et al. [116] take a similar approach, forming a sequence before
matching with a suffix tree [239]; Belkhouche et al. [18] do the same with a
structure chart; and Noh et al. [181] and Wahler et al. [241] extract frequency
vectors of node types from an XML representation of the tree.

Liu et al. [151] compare the procedure level subgraphs of the program
dependence graph. Chilowicz et al. [42] create a new version of the call
graph where common sub-functions are extracted from the code, which
helps to match code which has been in- or out-lined to disguise copying.

Weighting techniques taken from information theory, and often used
in text retrieval, are used with vectors, to reflect the overall frequency

of terms within the files under scrutiny. For example, Cosma [52] uses



30 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

latent semantic analysis (LSA) in plagiarism detection, as do Marcus and
Maletic [163] in finding concept clones. Ji et al. [115] use weights in the

adaptive scoring applied in their local alignment of keyword sequences.

Matching non-identical elements requires some measure of their similarity
to be computed. The similarity measures referred to in this dissertation,

especially in Tables 2.3 (p.37) and 3.1 (p.46), are explained in Appendix A.

Post-processing is dictated by the application, the elements matched, and
the method by which they are matched. None is required when an immedi-
ate measure of similarity is produced. For example, the similarity between
two sets calculated with the Jaccard [113] or Dice [61] coefficient, or when
the distance between two attribute vectors is calculated.

In plagiarism detection, methods which match sections of code within
files, such as string tiling, alignment methods, or clone-based methods,
normally require post-processing to find a measure of similarity between
the files. Less post-processing is required in clone detection, but is used
in filtering clone classes [66, 125, 229], removing subsumed or insignificant

clones, or joining small clones to create larger gapped ones [11, 137].

Results: Roy et al. [204] categorise the output of clone detection tools into
three broad groups: a listing of the start and end points of each clone, a
graphical output, or a combination of the two.

Plagiarism detection tools typically provide ranked pairwise similarity
scores [31, 34, 41, 42, 115, 146, 175, 181], often with additional displays
mapping the similarities between a pair of files to the source code texts [41,
120, 146, 189]. Others provide graphical displays [52, 81, 114, 120, 173, 199,
253]. Examples of each type of output can be found either in Chapter 5 or
in Appendix D.



2.3. APPROACHES TO SOURCE-CODE PLAGIARISM DETECTION 31
2.3 Approaches to source-code plagiarism detection

In 2009, Roy et al. [204] surveyed clone detection tools available at that time.
Their survey contains detailed analysis of the methods used by around 50
clone detection tools. The reader is referred to this comprehensive survey
for background in clone detection.

Groups of plagiarism detection tools have been analysed previously.
For example, Hage et al. [99] compare the performance of Moss, JPlag,
Sim and Plaggie, in addition to Marble, developed by one of the authors.
Larger studies exist, such as a review of 11 tools by Lancaster [143] in his
2003 dissertation, and of 14 tools by Cosma [52] in her 2008 dissertation.
However, there appears not to be a recent large-scale survey of approaches
to plagiarism detection such as that by Roy et al. of clone detection tools.

In Table 2.3 (p.37), twenty-nine approaches to source-code plagiarism
detection are listed, in date order, from 1996 to 2011 [97]. The tools are
specifically aimed at source code plagiarism detection, and include only
two, GPlag [151] and Sim [89], of those surveyed by Roy et al.

In the first column, the authors and, where relevant, the names of the
tools (in bold text), are listed. During preprocessing, different parts of the
code are excluded by different tools, either explicitly, or as a consequence
of the transformation process, such as white-space (W) in tokenising, or
comments (C) in graph construction. Keys to what is excluded by each tool
are in column 4, with the meanings of these keys in Table 2.2, on page 33.

The column headed “TI” notes how the code is transformed initially.
Tk means the code is tokenised, the most popular method here, with 21 of
the 29 approaches choosing this method; IL that an intermediate language
is generated; Mt that metrics are calculated; Gr that the code is represented
by a graph; and Tr, a tree.

Brief descriptions of further transformation of the code are provided in
the sixth column. This often involves parameterising in one of the ways
already discussed in Section 2.2. Similarity measures are noted in column
8, these vary, depending to some extent on what is suitable for the elements

to be matched, which are shown in column 7. In some cases the researchers



32 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

compare several measures, and the one found to be most effective is listed
here. The next column shows how the results are reported and also, to fit

the page, remarks, which are in square brackets.

The column headed “Exc.” indicates whether the tool is able to exclude
template code (v') [2, 3, 189, 199] or whether common code is inversely
weighted in the calculation of similarity between two programs (*) [9, 34,

52,115], making template code less important in the similarity calculations.

The last column shows whether files which share unusual similarities
are of particular interest. This last feature will not highlight plagiarism
where clever disguises are employed, however, it is of interest where the
plagiarist has too little time or skill to make sufficient alterations to their
submission. Many academics have found that unusual features, such as
identical spelling mistakes, peculiar layout, or errors, in a pair of assign-
ments have triggered their suspicion [52, p.191]. Hoad and Zobel [110, p.2]
state that "In plagiarized assignments, it is common to find that some errors or
atypical usages have been copied verbatim.” Cosma supports this view, saying
that ”Suspicious files share similar source-code fragments which characterise them

as distinct from the rest of the files in the corpus. ” [52, p.23].

Of the 29 approaches analysed, only one, by Ribler and Abrams [199],
specifically targets unusual similarity between files. Moss [3,210] also offers
the option to exclude code appearing in more than m documents, where m
is set by the user, and can exclude template code. However, the example
given in Appendix R shows that its matching technique will not pinpoint
unusual code in every file type. Full details of Moss” matching techniques
are not publicly available, but from this example, the tool appears to exclude
header information, and to parameterise, so that while it would match
unusual structures, it appears that, in some cases, parts of the code with a
commonly occurring pattern are greedily matched. Four other approaches
emphasise less common features by weighting input vectors [52, 115], or by

using a weighted similarity measure [9, 34].



2.4. SUMMARY 33
24 Summary

In this chapter, methods for finding similarity in program code are de-
scribed. Clone detection and plagiarism detection are compared and their
use in origin analysis is discussed. The processes involved in comparing
source code are explained as a background to the survey of approaches to
source code plagiarism detection. In the survey, twenty-nine approaches
to source code plagiarism detection are analysed, in particular to find out
whether the approaches are language dependent and whether unusual sim-
ilarity is taken into account. Among these approaches, only Ferret [146]
and PlaGate [52] are able to analyse almost any mix of programming lan-
guages. This survey finds that although unusual similarity is said to be
an indicator of possible collusion, few of the approaches take this into ac-
count [3, 9, 34, 52, 115], with only one specifically targeting elements shared
by few files [199] and none directly measuring them. The approach to col-
lusion detection reported in Chapter 9 is based on finding these unusual

similarities between source code submissions.

Key | Meaning Key | Meaning Key | Meaning

C Comments I Identifiers || P Punctuation

C-1 | Comments replaced || K Macros S Single character identifiers
by single token L Literals U Unique terms

G Globals M Imports w White-space

H Headers N Numbers ? Possibly other, unknown

Table 2.2: Key to the elements removed from code during preprocessing by the
plagiarism detection tools analysed in Table 2.3, column 4.



CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

34

a3ed j1xau uo panunuo)) uonoajap wstrerderd 0y sayoeorddy ‘€T dqeL
[stoquuAs ¢ ‘sopou 'z | sired pr-ad£) payorewr 3 spI
‘syderdqns ‘T :pazar]] | sodA) ‘sapou paydjew o, Aouanbaiy adA], Areuondrp eyep sserg
S9pOU 23 ‘SaDjeW-Iedu sad A} uaxo} 2 seenqng SOpPON pue ey e
‘SOUDIIA] 9, ISTMITE ] ouanbasqns 'y ‘s nbas ad£) ydeidqng amionns pauonnre | IL (MDD | $0 | [81] ayonoyPRg
pastumdo Surysey 1 Seyaf
A WM ¢IVA se €dvASse | SL | 1°D | 20 | [681] Te 19 3[3Y2a1d
‘JsIp So1 uonnoaxy ‘¢ | sdaAe o] uonndaxXy ‘g awmjoa 23 Are[nqesoa
‘3s1p So1 uonenidwo) g $10309A "13e S0 10117 T PBUI[ ‘s1eyd ‘SpIom
SOTJLILTIWIS SSTMITE ] S0UR)SIP ULSPIPNH ‘] | SI0)09A ANqLnje apo)) ‘T saurpjosjuno)d | L (MDD | 10 | [Z11] sauof
(pastroyourered weiSurayyed
S)[nsaI 10§ Aqreuondo) [es1ro8aje)
ror Kerdstp reonydern sanjea-ysey Suryojejn swerd-u payse swerd-u 1vjoerey)) - M | 00 | [661] |swreiqyzpioiqry
[payepdn sourg] az1s a7y jo u,doid se pastuasor ¢ | ML [MD
WHOS uauoyoy £q “padded aq Aew saurf Jo M “D Surpnpxy g - IMD SPoIdYS
Ppa19)sSN[d SI[TJ IL[IUIG ‘saur| renba jo suny 398 yoey apod rewruQ ‘1 - - | 66 | [0z1l son pue Lof
¢-'# T ‘= suay0} 19430 I9U30 9y} JO ss[npowt MOA-NLL IS
pakerdsrp sired z-'de8 19 ‘# g ‘= spr jsurede wrerdoxd suQp T-AI-N>LL "8 uej, pue
Guroos Y3y JusWUSI[e PISIEULION s3urns usyoL, ‘pastrajpwrere] | ML | 1D | 66 | [68] [Py
Sunyoyewr 3xo)
SUSY0} 29SSUI[ OU paresap arowr 10331 syurrdragury 913 03 paysey [o12] SSOJAl
| 2 ‘o1, S AJLIRTIIIG syurrdraGury Suryorey sanfea Ysey pamOouuIp ‘swerd-uuaol | L | ¢'M | 26 [€] UMy
A[oAnyeray douanbas [1ed £Aq
S paydyew Surp Suing Apsain) S90NPaI U IYM paSuerrear suonouny 1 ¢dVA
Aq a8erano)) o, urqey-drey Suruuny swerd-u payse ‘uoryeoyun wiAuoudg | L | 1D | 96 | [9%¢] ST\
'SIq [oXq [sspreway] amseaw AJLre[nuuig PpaydIeW SyUSWIA[ [reyop uonewrojsuel], | I | WMd Preal  Jod oymny
Sunroday




35

2.4. SUMMARY

a3ed jxau uo panunuo)) uonoajep wstrerderd oy saypeorddy ‘€T dqeL
(PaIyS1oMm) UIRIYSUDA] XLIJeW [0I3U0)) saouanbas [oruo) 7
S9INJEJ A} UO sapuanbaiy amjyesy jo 22adxd
SOTJLI[TWIS JSIMITE ] spuadap uostredwoy) SeDLIjeW JINjed $195 9 0321 TINX'T | IL [M“D | 90 | [181] ‘T2 39 YoN
SauO[ Aq PaILA0d SpoysaIy} uo (syunod 030 “rejowrered ue)
¢ ¢ saqyy jo uonzodorg paseq s1a3sNd SU0D SI0JRA DIRIN | “youeiq) sorgaw uonoung | A |IM D | 90 | [0T] O[T
sapyew APYIun pue (sDad)
sanpaooxd payoyewr SIUN [[EWIS 9PN[IXD 0} syderd souspuadap M Gerdo
-xoxdde jo syjunop wstydiowost yder3qng paxay ‘sired ydern wreroxd rempasorg | 1 | 1D |90 | [151] ‘Te3a nry
SENER |
SITLIL[TWITS dSIMITE ] JUSIOIJO0D pIedde| suredn uaxoL, L M |90 | [9%1] ‘Te 39 due]
o191 SUIN0} Serdx
[renSurp-1o3ug] SUDY0} Pajd[os ‘pastundo y3oySeyer,
N P 9108 %, DALY STNG jo swress-N 1LY 03 papeAu0) | I (M D | 90 6] R WMIY
Kerre xgms Sursn sdaid
XTIyew AjLre[rurrg gmﬁﬁ.ﬁ%@é saouanbas uayo], L M | g0 | [sz1] [T1e 30 Aoao3zolN
PaAd
ydeid pajoornpun {1205 “qaur “T3ur ‘T proa} TeYeAT
PayS1om uo paajsnyd) JUSIDIJ30D predde| 198 promAy ‘30 spromAay paxapuy | L D | go| [gz1] SOPRISSNON
[3s9q swrexdiq spuy - 1- cmwww% X 001 sy passardwo)) passacoxdun] ‘¢
somseaw ¢ areduwod % X 002 SO1 pasueleweIe] g MmopIaL, pue
03 JI0Mawey Js9] | 3,J3900 predde( X 00T surer3iq ,pIop, SpIOM T | L - | so | [¥¥1] I9)sedue]
(g
Kureqruns £q @ L (WD) ais
payues sired a7y doue)sip uorssarduwo)) say passaxdwo) soouanbas uayo1, | L -1y | [1¥] Te 39 uayD
'siq [oxd [syreway] aInseaw AjLre[ruig Ppaydyew syuawa[g [e3op uonewrojsuel] | L | ¥d pPredl  3od oymy
Sunzoday




CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

36

a3ded jxau uo panunuo)) uonoalap wstierded o3 sayoeorddy ‘€7 dqeL
PpasIuay0} wsHerdeJuuy
‘uoryejuasardor D ‘H vvnd
Sa[1j Te[IWIS SISN[D) JUSIDYJO0D pIeddef surei8-y uayoy, meauruI ISV o D | 1L MDD | 60 | [gst] ‘e 3@ Suory

ZHUO0D “TJU0D “WIS suopdUNIqNSs uo paIeys DUl su,dunyqns sad43 uaxoy

SOT}LIRIIWUIS Ppaseq juswurejuod 3 jo ydeid yres reqoro dwos Suryiun M
a1y ISIMITE] JUSIOJO0D pIedde[ Kexre xyns uaxo], ‘pasuaowere | ML | 1D | 60 | [gF] | 139 zotmoryD
NVDSsgd Suisn SH3Ip se - spromA eae(FAad
Sa[1 IRIWIS SI9)SN[D) sy3rp ay jo ‘s10yeredss ‘SIOGTIULPI redeurgy
SOTJLI[TWIS dSIMITE ] JUSIOJO0D pIedde( swreid-y jo Seg Surkyiun ‘pastrojowrere | L (M D | 80 | [FI1] erepe(
SISATeuR dTJULWISS Judje| n

woiy unnsaI s10}09A ‘Sd aene[
x * jord/xtnew Ayrrerrurg AJLIeIuars aursoD) ULI9} [9A9] 91 souanbary iy, | L [ND | 80 [zl eWISOD)

sazIs a[y 03 | seruenbaly promAsy uo TIVOONNA NINLAY

uoryoas paulfe uo pajySrom sa100s AVISIDO1Y A1 4182
N XLIyew Ajire(rumg JUBIYFR00 301 ym juswuSife [ed0] | ,spiomAay, denoness | AL MDD | £0 | [ST1] TR

wer303s1y A, WIS aAT e[y SISATeue soueLIEA pUR
(@u (@)uiD) . .
ydeid 1e3snp ag i (wD) uorssardwo)) g aouenbas Uo7 [18] )4
SOTJLI[TWIS JSIMITE ] DUB)SIP dUISOD) s10309A ‘nbaiy usxoy 1 syunod adAy uayor' T | L nlzo| [zl ‘e 39 21131
[#21nos uado 1nq 1 a138eq
» Seyd( se] - - - - - - Sepdfse | ML | 1D | 0| [l |18 wwurenyy
€- ST “g- [9pul ‘T {ojew

Salojewt }saq uo M =V ) ‘8 umjar ‘g jur

JuswuSife Sung g ‘32 “sad £y uad0y 6
M M SOTJLIL[TWITS dSIMITE ] GINY T surexd-f ad Ay uodoy, jopoypasueowered | L (MDD | 20| [F€]l | Te1d smoxmng
's1q [oxd [syreway] aInseaw AjLre[ruig Ppayoyew syuswa[g [te3op uonewrojsuel] | L | Wd pPredl  3od oyny

Sunroday




37

[aorduur -, g1o11dX0 - A] "pazopIsu0d st dnoid sy Jo 1531 3} 0} JE[IWISSIP ST UDTYM SI[IJ U M)dq AJLIRTIWIS
IIoyM pue ‘9pod aje[duua) Jo UOISN[IXd SMO[e [00} A} IOYIdYM MOYS SUWN[OD g }SE] S, ‘[SIewar pajod[as] pue Sjeuriof
110dar sey g UwuN[oD) 'g-9 SUWN[OD UT 91k SAINSLIW AJLIR[IWIS PUE ‘PIYDJLW SJUSWS[E “UOTJRULIOjSURI} IoU3INnJ Jo suondiisap
jourg -o8en3ue[ 9jeIPOULISIUI-]] PUB ‘SOLIPW-IA ‘9a13-1, ‘Ydeid-10) :a1e sA9y I9Uj0 ‘PasIuado} SI 9pod ayj Jey} suesuwt [
3I9UM “(IL) “UWNjod JXau 3} Ul UMOYS SI 9P0D 3} JO UOTJBULIOJSURI)} [ENIUL SY ], "' 9[qeL Ul aIe SA3Y I9Y)0 ‘UoneurIojsuer)
jo 1onpoid-Aq e 9q ued 3say) Sk “‘UOWUWIoDd Jsouwr a1k (A4) ddeds-a3rym pue (D) SJusUIod ‘f uwmod ut are gurssadordaid Sunmp
P2AOWAI 90D J} JO S)IEJ ‘] UWNJOD UT PIJSI dI SIWEU [00) PUue IOYNY -uondajap wstrerderd apod adimos 0y sayoeorddy :¢'g ajqer,

2.4. SUMMARY

suonedo[ 3
ejepEIOW SPN[OXd 0}
ppe “oops op] "3 pazay ‘o9dendue Jug
Xtyew Ajure[ruig ﬁ:% —1 | Suns ujonnsur suryoep uounuo)) 03 payLAu0) | 1 (MDD | 11 | [gzil Jrum(
239 T SOWIIIUIS JO
UOTjeUIquIOd pajySrom “wirs uo paired sapoN 7 syos adAyopou ISV F ¢ | IL
AS.G:ESV..NSTMN ¢ | yurrdro8uy = senyea ysey Surxs ojur pajyeusyeduod oM
f+1f)8uay_. . ~ . . . . .
SOLIR[IWIS SSIMITE ] Tphsoxg AT WeI3-u pamouupm ‘I paytun sweynuapy ‘T | ML | XD | 01 | [¢r1] [e 30 Suenpyy
o uduay + 1. y8uay
001X (2 ‘1f) sawy juaiof f1p-ou
31008 P[OYSa1Y} dA0qR - 001 = Lyurerung 3108 uonuny reuondo S alqreN
SINLIBIIWITS SSTMITE ] @31p) Surnsqng "1 Sau] pawLIojsuei], ad4y Aq pagnm sussor | L [IND | 01 | [66] Te 19 o8ey
[unprro8re sanuny Aq
Suryoyewr uonoss 1-03-1] saouanbas 105 amseaw suonouNy ‘saur| 4+3=13389
xtyewr Ajurerrung a[qeyms Aue ‘ad10y)D) -0 010D paytun sotewnueydry | ML o1 | [rgl “Te 39 [aIXLIg
'Siq [ox SyIewa aInseaw Ajrre[rur QDLW SPUSUID Te}op UOHRWLIOJSUR, d e 9 Ioyn
d [oxd wx mm Aurepug pay 14 [reop Jsuel] | IL | ¥Ad d P yny
unrodoy




38 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE



Chapter 3
Origin analysis

In this chapter, origin analysis is introduced, along with a survey of related
approaches. Origin analysis is the study of the movement of code within
an evolving software system and is thus a motivating example for the

techniques proposed in this dissertation.

Software systems change over time in response to both internal and
external factors [17]. The changes generally result in increased complex-
ity [148], which may lead to restructuring to simplify the system. These
changes may occur under conditions such as time or cost constraint, leaving
documentation incomplete or absent [40, 67]. The missing documentation
and the often large amount of code make it difficult for subsequent devel-
opers to track changes in the system. This lack of knowledge can lead to
problems such as unexpected side-effects when changes are made to the

system [6], duplication of effort, or time taken in comprehension [51, 159].

It is important to be able to discover how code has been restructured,
both to avoid these problems, and for other reasons. For example, Anto-
niol et al. [6] give three reasons why software engineers find it useful to
know about changes caused by restructuring. First, those maintaining the
software will want to be able to trace the system functionality. Second,
those testing the system will want to refocus system tests appropriately.
Third, those studying software development will be affected by the appar-

ent discontinuity of program elements and want to understand the changes.

39



40 CHAPTER 3. ORIGIN ANALYSIS

Godfrey and Zou [90, p.1] support this last view by saying that “having an
accurate evolutionary history that takes structural changes into account is
also of aid to the research community”.

Analysis of the version history of a program, available in CVS or SVN
repositories, provides one means of recovering information about such
changes. Fowler defines refactoring as making small changes to the internal
structure of a program which do not change its external behaviour, and
says that a system can be restructured through a series of refactorings [78].
Murphy-Hill et al. [176, p.3] point out that there are four main methods

used to find refactorings in a system, each with strengths and weaknesses:

1. Watching programmers at work is expensive in terms of programmer
and researcher time, and may be limited in the data available over the

period of observation, but can provide detailed information.

2. Recording refactoring tool use is accurate when the tool is used in

refactoring, but not informative when the tool is not used.

3. Searching the change log for key words relating to refactoring, help-
ful when the log is complete and accurate, but this is often not the
case [187, 245].

4. Analysing source code history, either manually, which is very time-
consuming and not necessarily complete; or by automatic detection,

which although faster, limits the type of refactorings detected.

The term “origin analysis” was first used in a software evolution con-
text by Tu [236, 237], to describe the process of matching apparently new
program entities in a software system to those apparently disappearing
from the previous release. The term was later applied not only to complete
entities, but to code which moves as a result of splitting and merging [262].

Apart from the introduction of new functionality, new entities may
arise in a system from renaming or moving existing ones, or from splitting,
merging or recombining entities. Examples of each of these restructurings

(here files) are shown in Figure 3.1, where the original file(s) are shown on



41

(i (i ) (iv) (v)

(vil)

v

Figure 3.1: File evolution: splits:(i)-(ii), merges:(iv)-(v), split and merge, or recom-

bination:(iii), rename:(vi), moves:(vii)

the left, and the result of restructuring is on the right of diagrams (i) to (v).
Diagrams (i) and (ii) show a file split into two or more parts, in diagrams
(iv) and (v) the process is reversed as the files merge. In diagram (iii), two
files are recombined, one section of each file is moved to the other file; in
effect each file has been split and then merged with the other partial file. In
Figure 3.1 (vi) a file is renamed, remaining in the same directory. Diagram
(vii) shows a file in directory y moving in three ways: up or down one or
more levels, e.g. to directory x or z; or into a new directory, e.g. directory a.
The processes may be combined. For example, a file may be split, have its
name changed, and move directory at the same time.

As noted by Murphy-Hill, and by other researchers (for example, [6, 60,
64]), manually tracing restructured files is very time-consuming, therefore

an automatic approach to the detection of these files is desirable.



42 CHAPTER 3. ORIGIN ANALYSIS

3.1 Survey

Table 3.1 (p. 46) provides information about selected work related to au-
tomatic origin analysis. The first three columns identify the author, paper
and date. The next column shows the programming language of the code

studied: Smalltalk, C/C++, or Java.

All of these approaches require the code to be parsed before entities, and
facts about them, are extracted. In many cases this is lightweight parsing,
for example, to extract method headers. The column headed A/C/M shows
whether full parsing is needed, either to build an abstract syntax tree, a

control flow graph or to compute metrics, all language specific processes.

The problem of tracing software evolution by comparing consecutive
versions of a program is tackled in various ways by the different research

groups. Five other variables are noted in the table:

e the granularity of the entities compared,

the amount of activity between versions,

the complexity of the matching task,

the representation of the code,

and the method used to match these representations.

Granularity of entities: Kim and Notkin [127] state that versions are
matched at different granularities depending on the task. For example, file-
level matching is useful in program understanding, while more fine-grained
units are matched for more precise tasks. The columns headed Entity and
Detail show the entities matched, Package, Class/File or Method/Function
and whether detailed differences are found, such as those between sig-
natures, parameters, or variables. When more than one entity is listed,
comparisons are usually made in detail at the lower level, and higher levels
are computed from an aggregation of information about the lower level en-
tities they contain. For example, the WeifSgerber group [22, 91, 245] combine

method level changes to find class and package level changes.



3.1. SURVEY 43

Granularity between versions: Murphy-Hill et al. point out that working
at coarser intervals between versions, between releases, rather than trans-
actions, can mean that details of refactoring activities go undetected. While
this loss of fine detail is a problem if programmer behaviour is of interest, it
is of less concern where the aim is to track structural changes to program el-
ements. The column labelled “Int’val” shows the interval between versions:
Release or Commit/Transaction level. The majority of those surveyed work
at release level. Transaction level analysis has the advantage of reducing
the number of possible matches, and of changes between consecutive ver-
sions, while the disadvantage is the increase in the volume of changes to be

analysed in any time frame.

Matching complexity: There are two main approaches to matching pro-
gram entities between versions. The simplest looks for renamed or moved
entities, matching those whose names have disappeared from one version
to those with new names in the following version, e.g. [64, 179, 237, 252].
In this task, if version n+1 has t new entities, then each disappearing entity
from version n has t+1 possible “destinations” (t entities and deletion).
The more complex approach also considers split and merged enti-
ties [6, 90], when possibilities for matching increase exponentially. The
set of candidate entities is larger, as it will include not only those which
have disappeared, but also those whose changes indicate that they may
have split or merged. The target set of entities includes not only new en-
tities, but also all existing entities. Each disappearing entity can be split
into any (reasonable) number of sections, which can be placed in any of the
target entities, making the number of possible combinations of destinations
for each candidate 2! where t is the total number of entities in version n+1.
In practice, this number would be Z'{ (]t() where k is the maximum number of
likely splits.! The value of k is further limited to two for approaches which
consider only two-way splits or merges, such as that of Antoniol et al. [6].

The column labelled S/C shows whether the approach is simple, match-

IThe maximum found during this research was an 18-way split.



44 CHAPTER 3. ORIGIN ANALYSIS

ing whole entities, or complex, matching split and merged entities as well.
The difference between the two is blurred, in that if methods are matched
one-to-one, this is a simple approach. However, a method moved to a
new file is a split at file level, unless all of the methods in a file are moved

together, when it is a file renaming.

Coderepresentation: The elements, or representations of the entity, which
are matched are listed in the last but one column, with a brief description
of the technique or similarity measure in the last column. Most approaches
initially match by name, reasoning that an entity with the same full name as
one in the previous version is the same (if edited) entity. Once the matched
entities are filtered out, matches between the remaining items are often
based, at least in part, on string similarity; 9 of the 15 examples [22, 90, 91,
128, 130, 179, 237, 245, 250], match method header elements like this.
Matching is also based on comparing metrics [90, 130, 237], text [6, 22,77,
130, 245], incoming or outgoing calls [64, 90, 130, 237, 252, 250], graphs [8],
or trees [22, 77, 179]. Many approaches combine two or more techniques
for comparing code, or use a simple method to filter possible matches and

a more precise method to refine the search (e.g. [22, 64, 252]).

Matching technique: As discussed in Chapter 2, the representation of the
code guides the matching techniques and similarity measures chosen for

the task. Each group’s approach to matching is described in Section 3.2.



45

3.1. SURVEY

a3ed jxou uo panunuo) SI0M Paje[aI pue sIsAeue UrdLiQ "T°¢ d[qeL
(Bunjuer 10) JpUrDD Apog yarq =
(uonpagap 105) saduey) I9peay pOypIN | S o) X WDd - X [ 90 | [s¥el 12q13g1oM
Suryoyew ad4£y pue sureu suo-0}-suQ | ISV [AS[-UdUNg S Nt A W v A ) S0 [6£1] ‘[ 39 nyuesN
19q103gToM
syudwdd Jo sadA} 10 saureu jo Ayrenbyg I9peay POy IS ) X WD - X ( S0 [16] 2 3100
DSIDSO1 19peay PoudIN
S9DUE)SIP PISIEWION SOLIPRIN
DSIDSDT s[red
(sprom jo Seq 3unasiayur) DSI ‘DS dureN
[e]ssoN “[ye1]oputdDD ‘[e9lHTP Apog | s D - N W A D S0 | loetl TeP wny's
FUIDLFR09 901 s[eD
bgy7 o yuspR0 9210 aweN [19e]
bgy1 uo jusryze0d 201 sIojowere [29t]
SI0UEYSIP PISI[EULIOU JO uIng SOMPIN | D d - W W A o) S0 [06] Kayypo noz
[e2] yded spownuey ur W) e
sapou jo uonrodoig papuaixg IS NI - WD 9 X ( 0 [g] | Suodeuepemidy
SIPHULPT JO
SI0309A JPI-J} US2MI3(q SUISOD Apog | D A - ) - A [ ¥0 [9] Te 39 [oruojuy
S9[[Ld pue SIS[ED YOI Bice)
(souanbasqns uowruron 3sa8uoy) bgy1 duwreN
SOURISIP JOIOIA UBIPIPN SOUPN | S i1 - W W A ) 20 | [zedd Aozgpoo) ny
SUOTUIQLIOD DUSLN3Y 03 YDIRIN SR | S A - WD W X S 00 [09] Te 30 AR
amseaw Ayureqruig / anbruyoay, wiey | D/S | reaqsur | eeq | Lmug | WOV | esteq | Sueq | areq FEN soyny




JFWWOD)-D) “9SLI[AY-Y [eAIIU]
uonOUNI/POYIRIA-IN “OILI/SSeID-D ‘@8eyded-J :Amug
eAR[-[ ++D/D-D “[EI[eWS-S :Bue] Aoy

SIoM paje[ar pue sisATeue urdLiQ) 1°¢ d[qer.

xo[dwo)-D ‘[duwis-g : /s
(sorqerrea ‘sarnyeudrs ur “3-9) punoj SOUIJIP PIIeIdp-A ‘[1e1d(
SOLIISIA] d3e[Nd[ed 03 10 HD ‘I§V IPNISUO0D 0} Pasu N/D/V

CHAPTER 3. ORIGIN ANALYSIS

46

(Bunyjues 105) swreaBrg/1SV/XI0D Apog
(uona3ap 105) sPZuUERYD Iopedy POy | S o) X WDd v A ( 1 ke Te 30 123919
SayDjeW UMOUY ‘Te}0} 03 UOWWOD JO Oy s[reD
(sdeo uo y11ds sawreu) bgy] 1SIqQ U497 | 1OpRAY POYRIN | D A A NDd - A ( ot | [oszl Te 32 np
sure131q 19)0RILYD JO JUSIDLFI0D I(] S9ARI]
[8¢] woxy paydepe souesstp 31pa o1, Isv | S D A WD d v A [ £0 [2£] Te 30 tm[{
(sde> uo yryds saureu) bgy Iopeay POy | S bl A WDd - A [ 20 | [seil Te 12 Wy N
Sasn pue s[[ed
swa)1 [enba Jo uoOSSIIUI PASIEULION] ‘syuayuod Ayiyuy rderd|
surex31q J9j0RIRYP JO JUBIOYFI0D DI aweN | S A X WDd v A [ 90 | [1s2] | eynomgz durg
SOULIRITWIS P}ISIIP JO UBDIA s[reD
[e61 “z€] (svreprpued 103) surexdiq paysey ApogpoyeIN | S | X WDd v X [ 90 [#9] Te12 310
amseaw AyLre[nuaig / anbruyday, PIleN | D/S | 1eajur | [eieg Aug | WOV | esteg | Sueq | areq JEN| sioyny




3.2. APPROACHES IN DETAIL 47
3.2 Approaches in detail

In this section, each of the approaches listed in Table 3.1 is described in
more detail, for later comparison with the approach used in this research.

Tu and Godfrey [237] introduced the tool Beagle, which used three
matching algorithms to find renamed and moved functions in a system,
and so to reason about files and subsystems. Matching was first based on
the Euclidean distance between vectors of five complexity metrics [135].
The top five matches were then ranked based both on textual similarity of
the function names and on call dependency analysis.

Zou and Godfrey [90, 261, 262] extended Beagle, both to alter the match-
ing techniques and to add a declaration matcher. Parameter names in a
function’s declaration are concatenated alphabetically. The Dice coefficient
is used to compute similarity between these parameter strings, as well as
between function names, and the sets of callers and callees of two functions.
However, the user must select a combination of the four matchers and their
thresholds to define a match.

Zou and Godfrey also reason about other restructurings. They consider
three patterns of two- or multi-way splits or merges: (clone introduction or
elimination, service extraction or consolidation, and pipeline expansion or
contraction) based on the manual analysis of call relations between func-
tions. For example, in clone extraction, incoming calls to an extracted clone
should be the union of the calls to the original functions, while the outgoing
calls of the functions and the extracted clone should be much the same.

Basing their ideas on those of Zou and Godfrey, S.Kim et al. [130] look for
renamed functions automatically. Their approach has several differences.
First, to the similarity metrics, where adapted features based on function
names, calls, complexity metrics and signatures are combined with the
similarity measures of three tools which match the source code text: the
strict line-based matching of diff [63], the more flexible clone detection tool
Code Clone Finder (CCFinder) [125], and the plagiarism detection tool,
Moss [210]. Second, they create an oracle set of matches agreed on by a

minimum of seven of their panel of ten judges, but reinforce the point made



48 CHAPTER 3. ORIGIN ANALYSIS

by Walenstein et al. [242] that people’s opinions vary. The oracle sets consist
of approximately 85% of the Apache and 91% of the Subversion examples.
Each metric is weighted depending on its accuracy in predicting whether
the oracle pairs match. The best combination of metrics combines diff,
names, signatures, and complexity metrics. The dominant factors overall
are diff, outgoing calls, and function names, while individually CCFinder
and complexity metrics are least significant. In addition, the weights from
a subset of the examples in the oracle set from one project are applied to the
rest of the examples in the project, and to the whole of the other project’s
oracle set, with 97% and 86% success respectively. However, 9-15% of the
possible pairs are not agreed on by sufficientjudges to be included, meaning

that the set excludes the examples which are more difficult to categorise.

In work pre-dating that of Tu and Godfrey, DeMeyer et al. [60], also use
metrics to find refactorings. Rather than complexity metrics [130, 237, 261],
these are count-based metrics, such as the number of class variables, or the
depth of the inheritance tree. The metrics are not used directly as a similarity
measure, but rather heuristics about combinations of changes to the metrics
are used to identify class or method refactoring. For example, split methods
are assumed to have reduced numbers of statements, lines and messages
sent. To find factored out code, they look for similar reductions in other
methods. However, although the search space is reduced, the suggested
destinations for the code must be browsed manually to determine the exact
location. Of the possible splits or merges they found at class level, 96 of the
101 cases found in their three test systems were false positives, although 19

did belong to other classes of refactoring.

Gorg & Weifigerber [91] collect names of classes, and information about
methods, before and after a transaction.? From this information, a subset
of possible refactorings are found: rename, hide/unhide, or move methods,
add or remove parameter, and move class. This approach is limited in that
to match two entities only one element can have changed. For example, a

renamed method will not be detected if the parameters have also changed.

2A group of commits performed within a set time frame and so presumed to be related.



3.2. APPROACHES IN DETAIL 49

Weifigerber and Diehl [245] build on the approach described in [91].
Local refactorings are found in a similar way. For structural refactorings,
where entities move, or classes are renamed, candidate pairs are found from
the whole system. Candidate pairs are compared using CCFinder [125], to
find identical bodies, non-identical clones or unmatched code.

Extending this research, Beigel et al. repeat the work in [245], both with
the original filter criteria and with a relaxed filter to give more candidate
refactorings. They investigate three similarity measures for comparing
entity bodies to rank potential targets: text-based - the Jaccard coefficient of
(token) bigrams [32], token-based - CCFinder, and AST-based - JCCD [21].
The outputs from CCFinder and JCCD are used to compute Weifigerber’s
CloneFraction metric [244], which is the proportion of the tokens in the
code covered by clones, to the total number of tokens. They found that the
three measures overlap in 50-60% of cases, with each having its strengths
and weaknesses for the task. Text-based comparison was marginally more
effective than the other two methods in ranking the candidates in this study.

Dig et al. [64] also take a two stage approach, first performing a text-
based analysis by comparing two entity bodies based on token bigrams.
The containment of each entity in the other is used to measure similarity.
Second, they perform semantic analysis based on the calls and references
between two entities. The similarity between two entities is the mean of
their directed similarities, that is the ratio of the common edges to their
total.

Control flow graphs (CFGs) are compared by Apiwattanapong et al. [8]
to match changed interfaces, classes and methods. They introduce an en-
hanced CFG to include features found in object-oriented code, such as types.
Before matching entities, their graphs are simplified to become a series of
minimal hammock nodes [73].2 If one simplified graph is sufficiently simi-
lar to another, the graphs are expanded for detailed matching.

Two groups use abstract syntax trees as the basis for matching the en-

tities. Neamtiu et al. [179] aim to find changes to types and variables in

¥Hammock nodes are induced subgraphs with a single entry and a single dummy exit.



50 CHAPTER 3. ORIGIN ANALYSIS

a system. They match functions by name, then traverse the AST from top
to bottom, noting the identifiers and types which have changed between
versions. The calls to and from already matched functions are used to infer

matches between functions which have changed their names.

A bottom-up approach to matching ASTs is taken by Fluri et al. [77],
who categorise changes which occur between commits. The leaves of the
tree are matched first, and must have the same label, meaning that they
represent the same type of operation. To match, the string similarity of the
leaf values, based on character bigrams, must exceed a threshold. Second,
the inner nodes of the tree are matched, by comparing the nodes in their
subtrees. To match, their Dice coefficient must reach a threshold, which

varies depending on the size of the tree.

Xing and Stroulia [252] use their tool UMLDIff [251] to extract a model of
the system where nodes are packages, classes, interfaces, fields or methods,
and the edges are labelled with their dependencies. Similarity between
nodes is assessed in two ways. First, using the Dice coefficient of character
bigrams of node names. Identically named nodes are stored to allow a
recursive search for entities with similar names and structures. Measure-
ment of structural similarity is based on “relevant facts” for the entity. For
example, the classes and interfaces in a package, or the parameters, fields
and calls of a method. The structural similarity between two entities is the

normalised intersection of identical or previously matched relevant facts.

M.Kim et al. [128] base their work on matching method headers between
program versions. Non-identical methods are matched on the longest com-
mon subsequences among tokens in the method headers, where names are
split on capital letters (assuming camelCase style). Unmatched items are
taken to be deletions. General descriptions of sets of matched pairs are
formed by replacing parts of their names by wildcards. A rule is formed if
the support for a set is above a threshold. Exceptions to the rules are also
noted, as they may be changes which have been missed. This approach is
reported to be robust to combined rename and move operations, but can

fail when method headers have little textual similarity or when unrelated



3.2. APPROACHES IN DETAIL 51

methods have similar names.

Wu et al. [250] build on the work of M.Kim et al., using call dependencies
as well as method headers in matching. Their approach handles one-to-
many and many-to-one changes, providing rules which cover groups of
changes, along with exceptions to these rules. In the same way as Xing
and Stroulia, they start with a set of matched entities, and recursively
add new matches based on those previously found. Two complementary
matches are performed on the tokenised header sequence: textual difference
is calculated using the Levenshtein distance, and textual similarity with the
longest common subsequence. Call dependency similarity is the ratio of
shared calls to or from already matched entities, to the total of such calls.

This value is used to rank the potential matches.

In general, text-based comparisons of the entity bodies are made in
conjunction with other similarity measures. S.Kim et al., Weiigerber and
Diehl, and Biegel et al. use the similarity between method bodies to rank the
target files found by coarser matching. Conversely, Dig et al. find potential
matches by comparing method bodies and then refine on call relations.
Antoniol et al. are the only group of those listed in Table 3.1, to use text-
based analysis on its own, although they suggest that their results may have
been improved by adding further matches to their identifier-based system,

such as matching class names, or finding clones in the text.

Antoniol et al. [6] use identifier names to investigate class level refactor-
ings, specifically class merge, split, rename, move and recombination. They
note that this analysis is applicable at other granularites, such as method
level. Their approach uses an information retrieval method known as vector
space modelling. Vectors of the weighted frequency (tf-idf [206]) of identi-
fiers in the program code are compared. When a class (A) is split into two
parts (A" and B) with no other changes to the text, the sum of the vectors for
A’ and B will be the same as the vector for A. With editing, the two vectors
should still be close in vector space, and the cosine between them be high.

Similar reasoning is applied to renaming, merging and recombination.

Rainer et al. [194] proposed that trigram analysis of source code text



52 CHAPTER 3. ORIGIN ANALYSIS

Compared by | Author Ref. Software projects
M.Kim et al. S.Kim et al. [130] jEdit and ArgoUML
Weifigerber and Diehl [245] jEdit and Tomcat
Xing and Stroulia [251] JFreeChart
Wu et al. M.Kim et al. [128] JHotDraw, jEdit and JFreeChart
Schafer et al. [208] JHotDraw and Struts
Dagenais and Robillard | [56,55] | eclipsejdt.debug.ui, Mylyn and JBossIDE

Table 3.2: Projects used by M.Kim et al. and Wu et al. to compare their work with
others

could be used to characterise aspects of the evolution of a software system.
Their study looks at changes to an individual file through its lifetime, at
patterns of change across a release, and at files which split and merge.
They studied two (C) projects, measuring similarity between files based on
the trigrams present in the code. Apart from the requirement for a lexical
analyser, this approach is language-independent. To find split files, they
find the similarity between files in consecutive releases. Potential source
and target split file pairs are those which have different names, and have a
similarity to each other which is greater than the mean plus one standard
deviation of all pairs. They find 433 such candidates in nearly 8,000 pairs,
and find example split files, but do not go on to categorise all of the pairs,
as this requires visual inspection of each candidate pair. They discovered
that these criteria also select renamed or moved files, and although they do
not report any such examples, merged files would also be selected.

M.Kim and Notkin [127, p.59] noted the absence of benchmarks in
matching program code elements. Researchers typically check the changes
found by inspecting the code themselves. However, S.Kim et al. [130] use
a panel of judges to provide classification, and two of the groups surveyed
compare their results to those of previous research groups. These groups

are listed in Table 3.2 together with the projects they analysed.



3.3. SUMMARY 53

3.3 Summary

Sixteen approaches to origin analysis and closely related work are reviewed
in this chapter. Each one, except for that of Rainer et al., requires that
the code be parsed before analysis, making them language dependent.
The majority look for restructuring at the method or function level, only

Antoniol et al. and Rainer et al. study systems solely at class or file level.

There are differences in the granularity of the analyses: four of the
approaches analyse changes at commit or transaction level, while the others
work at release level. Most of the approaches match only whole entities,
in other words, those which are renamed or moved, rather than matching

more complex types of restructurings, such as splits.

Four of the methods use one feature of the code in matching, while the
rest combine a number of different measures of similarity. These combina-
tions differ in their application: in some cases the features are used together,
and in others they are applied in two passes, with a finer-grained match

applied to the result of a preliminary coarser-grained match.

Third-party similarity detection tools are used in three of the approaches,
each one uses Code Clone Finder [125], with one [130] also using diff [63]
and Moss [3], and one also using JCCD [21]. Apart from Biegel et al.’s use of
the CloneFraction metric [244], these methods use measures taken directly

from the similarity detection tools.

Although many approaches use thorough searches to find threshold val-
ues for similarity measures, or a fairly complex set of rules to make decisions
about what to match, none of the approaches uses machine learning.

The approach to origin analysis taken in this research is described in
Chapters 10, and subsequent chapters. In outline, the approach is based on
that of Rainer et al. [194] in the use of n-gram analysis on source code text
for comparing files, a method also used by Dig et al. [64]. It also combines

elements from other approaches:

o text-based comparisons at file (class) level [6, 194]

e considering splits and merges [6, 90]



54 CHAPTER 3. ORIGIN ANALYSIS

e ranking targets based on comparison of source code text [22, 91, 245]
e use of third-party file comparison tools [22, 130, 245]

e combination of similarity measures [90, 130, 237, 250]

Several aspects of this research differ from previous approaches:

e development of a range of descriptive measures based on clone and

plagiarism detection tool output

e comparison between varied file groups

the use of machine learning to find a suitable set of features

the use of a range of projects with the aim of generalising

e experiments to test applicability across both projects and languages

Note on the use of the terms candidate and target:

Some origin analysis research groups (e.g. [6, 250, 261]), use the term
target to mean the entity which has been restructured (old), and candidate
to describe potential matches (new). Other groups (e.g. [128, 130]) use the
word candidate to describe possible matched pairs or rules (old — new).

In this dissertation, as in [22, 245], candidate means an entity which
may have been restructured, in other words, the source of code which has

moved, and target means the destination of the code.



Chapter 4

Machine learning

This chapter gives an overview of machine learning, and explains its use in
this research. The uncertainties involved in creating a feature set for novel

data are the main focus of the chapter.

4.1 Why use machine learning?

Machine learning has developed from ideas taken from statistics, artificial
intelligence, information theory, data management, psychology and neuro-
science, among others [104, 164, 171]. Samuel described machine learning
as “a field of study that gives computers the ability to learn without being explicitly
programmed.” [207].

Within the space of computer applications there are some tasks which
can be defined as a precise set of instructions for a computer. There is
another set of tasks which are too complicated to be explicitly defined, but
which can be approximated using machine learning [24, 172]. Broadly, three

main groups of tasks fall into this second category [104, 172, 180]:

1. those which are best described by giving labelled examples, such as

machine vision tasks,

2. very large datasets containing interesting, but difficult to find, rela-

tionships, for example, astronomical or genomic data, and

55



56 CHAPTER 4. MACHINE LEARNING

3. machines which need to adapt their behaviour according to their

environment, such as robots in the field.

The task in this research falls into the first category. Finding a set of text-
based features to characterise a file belonging to one category of restructured
fileis very difficult because of the large number of variables. These variables
include the quantity of code moved between files, the size of the enclosing
files, the multiplicity of target files, the amount of editing, both in the code
which has moved and in the files involved in the move, the distribution
of the transferred code in the target file(s), the inherent similarity between

files in a project, and the variation in style between projects.

4.2 The machine learning process in outline

The input to a machine learning system is a set of examples from the do-
main of interest. These examples, the training set, take the form of feature
vectors. The aim is for the machine learning algorithm to adapt in response
to the provided data, to create a useful model (also called the output func-
tion, or hypothesis) [24, 171] (see Figure 4.1). Although machine learning
algorithms learn by fitting to the examples they are given, they also need
to generalise to the population from which the examples are taken, and not
overfit to the training data, for example, by rote learning.

Machine learning tasks can be divided into two main categories, super-

vised and unsupervised learning; other categories include semi-supervised

Optional
Dataset - feature vectors labels

ﬂ Machine learning
algorithm

} [ L. XNy

Figure 4.1: Examples (1...n) in the form of feature vectors (x;...x,;), with or without
labels [y], are input to the machine learning algorithm, to create a model



4.2. THE MACHINE LEARNING PROCESS IN OUTLINE 57

learning [256] and reinforcement learning [228]. In unsupervised learning,
the aim is to find patterns in the data. For example, by clustering, which
means partitioning the data into a number of groups where the members are
related to each other under some criteria; or by association mining, which
looks for relationships between features, especially those which occur fre-

quently.

Supervised learning, based on labelled data, aims to find links between
the input and expected output. There are two main tasks in supervised
learning: regression and classification. When the data labels are numeric,
and usually continuous, the regression function aims to predict the numeric
value of new examples. When the labels are nominal, the task is classifica-
tion. In this case, the feature values are used to create a model which aims

to separate the data into the labelled categories.

A number of steps are recognised in the process of creating a model [27,

72,161], which, in outline, can be thought of as:

understanding the domain,

e gathering the data,

e creating, selecting or combining the features,

e cleaning and preparing the data,

e allocating labels, where appropriate,

e choosing learning algorithms, and

e building and refining the model.

In broad terms, the resulting model is either interpreted to discover

facts about relationships in the input data, or, as in this research, is used to

predict the outcome for previously unseen data (see Figure 4.2).

Unseen example Classification
SENRNEERERARAAERRANN  — Model —

Figure 4.2: The classification model labels each unseen instance



58 CHAPTER 4. MACHINE LEARNING

4.3 Creating new datasets for machine learning

There are two parts in this section, the first explores the difficulty of deciding
on a set of features when creating a dataset in a new domain, and the second

outlines the steps taken in creating a labelled dataset from raw data.

4.3.1 Choosing features

Features describe the characteristics of each instance and therefore the
choice of which features to use has a major role in the outcome of the
learning task. Datasets collected by a third party and available ‘off-the-
shelf’, for example the UCI sets [79], will have a ready-made set of features.
Other datasets are made by selecting information from one or more exist-
ing databases [27], when the features will be determined by the information
available. However, when features are not available, they must be gener-
ated. Guyon and Elisseeff [98, p.2] state that “Finding a good data represen-
tation is very domain specific and related to available measurements.” When no
such measurements exist, then information must be collected and analysed
to create the dataset.

It is not always obvious what information to collect. Ciesielski et al.
say that “There are few guidelines for choosing feature sets. Generally the only
way to determine whether a particular set of features will be useful is by trial
and error” [44, p.1]. Pachet and Roy, in their work on audio analysis, state
that “In machine learning research, it is typically assumed that features naturally
arise from the problem definition. However good feature sets may not be directly
available, motivating the need for techniques to generate features from the raw
representation of objects ...” [184, p.1]. They go on to explain their use of
evolutionary methods to build a set of features taken from representations
which exploit domain knowledge.

In some circumstances, there may be limitations to the information that
can be recorded. For example, because of the instruments available, or
because of practical, financial or moral restrictions [141]. Without these

limitations, the range of options can be vast. For example, as shown in



4.3. CREATING NEW DATASETS FOR MACHINE LEARNING 59

Chapter 2, when matching source code, there is a wide range of tools, of
ways in which the code can be represented, of elements to be matched, and
of similarity measures. Any combination can be used to provide informa-
tion, which can then be analysed in various ways. Leather et al. support
this view, in talking about creating features for compiler optimisation, they
highlight the difficulty of selecting suitable features from a potentially infi-
nite set [147, p.1].

Ludmila Kuncheva recommends a large set of features, stating that “If
the data set is not given, an experiment is planned and a data set is collected. The
relevant features have to be nominated and measured. The feature set should be as
large as possible, containing even features that may not seem too relevant at this
stage. They might be relevant in combination with other features.” [141, pp.1-
2]. This idea is echoed by Guyon, who says that “Although dimensionality
reduction is often summoned when speaking about complex data, it is sometimes
better to increase the dimensionality. This happens when the problem is very
complex and first order interactions are not enough to derive good results” [98].

In general, domain knowledge and the available tools will guide the
initial measurements taken. Once this set of measurements is collected,
additional features can be created, either by further analysing the data
manually, or by some method of automatic feature construction. For ex-
ample, evolutionary methods, such as those surveyed by Espejo et al. [70,

pp-5-6], or pattern-mining methods as discussed by Bringmann et al. [30].

4.3.2 Creating a labelled dataset from raw data

In some datasets the items of interest occur infrequently, however, it may
be possible to filter to remove those instances which are unlikely to belong
to the category of interest. For example, in looking for restructured files,
those which are exactly the same from one release to the next have clearly
not been restructured. There is normally a trade-off between precision and
recall in filtering. With relaxed criteria, all relevant instances should be
selected, at the cost of selecting many irrelevant ones. If the criteria are

too strict, then irrelevant instances have less chance of being selected, but



60 CHAPTER 4. MACHINE LEARNING

relevant instances may be missed.

Preparation is an important step in modelling data, as poor quality in-
put will not lead to good models [104, 191]. Once a dataset is selected and
features created, it is cleaned to deal with unusual or erroneous items [27].
Data prepared by others may have missing values which cannot be cor-
rected, these can be treated as a new category where a feature has nominal
values, but are more usually estimated, or the example is discarded [152].
Outliers, or unusual values, may be errors in measurement or data entry,
when they should be corrected. True outliers are either omitted, which
means information loss, or they are handled by a classifier whose outcome
will not be unduly biased by their presence (e.g. a decision tree). In classi-
fication tasks, duplicate instances are normally removed, while in pattern

mining, duplicates can show support for the patterns and be left in the set.

Where labels are not already available for a classification task, manual
labelling is required, a task which is generally recognised as very time-
consuming [25, 213] and requiring considerable effort, either on the part
of the researchers or volunteers. For example, in software engineering
research, Hindle et al. [108] manually classify 2000 commits using the Ex-
tended Swanson Classification scheme, and Buse and Weimer [35] asked

120 people to categorise 100 code snippets by assessing “readability”.

Once the datais labelled, another concern is the balance of the classes [140].
When the training set is imbalanced, learning algorithms can overlook the
minority class. For example, if a dataset is split 99:1, then a prediction
of the majority class for every instance gives 99% accuracy without find-
ing any of the probably more interesting minority class. A set in which the
classes are balanced is preferable. Two methods for arriving at an artificially
balanced dataset, when one class is significantly smaller than another, are

under-sampling and over-sampling [46, 107].

Under-sampling means making a selection from the majority class to
match the size of the minority class. This strategy will generally be repeated
for a number of partitions of the majority class to ensure good coverage of

the instances. Otherwise, the minority class can be over-sampled to produce



4.4. CLASSIFIERS 61

new examples, using an over-sampling technique such as SMOTE [39]. This
involves selecting a random data point and one of its n nearest neighbours,
then creating a new instance from a random point between the two. This is
repeated until the minority class is the same size as the majority class. As
in under-sampling, over-sampling may be repeated with different random
seeds. Alternatives to balancing the classes include adjusting the learning

algorithm [45, 249], active learning [69], or cost-sensitive learning [215].

4.4 Classifiers

Choosing a suitable classifier is an iterative process. Pyle [191] says that
“ Building any model should be a continuous process incorporating several feed-
back loops and considerable interaction among the components.” This iteration
involves the data, possibly adding more where the problem turns out to
be more complex than first thought; the features, refining them by addi-
tion or reduction; and the algorithms, in choosing from the large range of
possibilities, and tuning the selected algorithm where appropriate.

The choice of algorithm will be influenced by several factors. For ex-
ample, data which includes nominal features cannot be handled by some
classifiers: support vector machines [111] work with numeric values be-
tween 0 and 1, whereas a decision tree can deal with a mixture of numeric
and nominal values. If transparency is important, then tree-based algo-
rithms, such as C4.5 [192], or rule-based algorithms, such as RIPPER [48],
will give results which the user can interpret. If the dataset is very large,
either because of the number of instances or the number of features, then the
time taken by slower algorithms, such as neural networks [205] or stacked
classifiers [248], may be a problem. When such factors are unimportant,
one approach is to try a variety of classifiers to find a suitable one. In this
case, it is useful to have a tool which supports a range of algorithms, such
as the open source machine learning toolkit, Weka [247].

Weka has a large number of tools, to understand the data, to preprocess

it, to run experiments, and to compare the results. The preprocessing



62 CHAPTER 4. MACHINE LEARNING

filters automate tasks such as representational changes, e.g. discretization
or normalisation. Feature selection algorithms are provided, as well as
clustering and association algorithms. The large selection of classification
algorithms are grouped by type: trees, rules, nearest neighbour, Bayesian,
functions, and meta-classifiers.

There are two main sources of error in any classifier, bias and variance.
Bias results from the (in)ability of an algorithm to fit a problem, and variance
results from the under-representation of a problem by the training set. Bias
can be seen as underfitting and variance as overfitting [141]. There is a
trade-off between the two. However, by creating an ensemble of classifiers
based on an algorithm with low bias, variance may be reduced [247]. A brief
explanation of classifier ensembles is provided in Appendix B, along with
the algorithms which have proved most useful in this research: Rotation
Forest [203], Random Forest [29] and Simple Logistic [145, 227].

4.5 Machine learning in software engineering

Machine learning has not been used in origin analysis before, although, as
discussed in Chapter 3, S.Kim et al. [130] use a statistical approach, along
with exhaustive search, to combine measures in their system. A brief review
of the development of machine learning in the more general area of software
engineering can be found in Appendix C. Also included in this appendix
is a review of a selection of software engineering applications which use
machine learning, in particular those related to software evolution, which
aims to ascertain whether there are pointers to suitable features, matching
techniques, or machine learning algorithms.

Among the applications surveyed, those with some relevance to this
research are two which use a combination of a large number of features,
mostly based on analysis of changes to terms in source code text, by Aver-
sano et al. [10] and S.Kim et al. [129]. Shivaji et al. [218] base their work
on [129] and explore the effect of feature selection on classification. Also

Zimmermann et al. [258] test defect prediction models built on one project



4.6. SUMMARY 63

on another project, finding a low success rate of 3.4%.

Although the examples reviewed form a subset of the work in this area,
making it difficult to draw conclusions about commonly-used techniques,
it is clear that a wide variety of algorithms are applied in classification. In
around half of the classification tasks, a number of different algorithms are
applied to the data to find that best suited to the task. Also, a large majority
of the classification tasks use a broad range of features taken from more
than one source.

Ideally, a set of features should be easy to extract, while providing good
discrimination between classes. However, a more complex set of features

may improve performance, at the cost of the time and effort in construction.

4.6 Summary

This chapter has introduced machine learning and outlined the steps in-
volved in categorising data. It focused on some of the questions which
have to be addressed when creating a new dataset for which there appears
to be limited guidance in the literature. The main message is that where
there is uncertainty about the features, one strategy is to create a large
number from which a good subset may be found.

In the absence of previous use of machine learning in origin analysis,
a survey of a selection of machine learning applications to software engi-
neering classification problems was undertaken, aiming to find pointers to
suitable algorithms or features. Although no clear direction is found, this
exercise has shown that one strategy is to use relevant features from a range
of sources, and a selection of machine learning algorithms, and to test the

alternatives experimentally.



64

CHAPTER 4. MACHINE LEARNING



Chapter 5

Visualisation

This chapter gives a brief introduction to the ways that source code com-
parison tools display information. It is not intended as a full overview of
information visualisation, nor does it explore techniques used in the wider
field of software engineering. Instead it focuses on two aspects relevant to
this research: the use of colour in providing information to the user, and

methods for showing interactions between files in a group.

The benefits of visualisations in imparting information are well under-
stood. Stephen Few states that “One of the great strengths of data visualization
is our ability to process visual information much more rapidly than verbal in-
formation. Data visualization is effective because it shifts the balance between
perception and cognition to take fuller advantage of the brain’s abilities” [74,
Sect.6.11]. Colour is usually an important component of visualisation be-
cause it helps to provide separation between different elements (see for
example, Figure 5.5a), and because colour-coding can convey extra layers

of information [224] (see for example, Figure 5.3d).

Visualisation is of interest in two areas of this research. First, because
of the need for an “at-a-glance” comparison of a group of files in origin
analysis. This comparison is used to label candidate restructured files for
input to a machine learning system, a task which proved both difficult and
time-consuming with other methods tried. Second, to express the different

“types” of similarity between files in collusion detection. For example, to

65



66 CHAPTER 5. VISUALISATION

show whether the code identified as common to two files also occurs in
many other files, in a few files, or in just the two. Both of these applications
display the similarity between files by colour coding the text; first, of one

tile to a group of others, and second, of two files in the context of a group.

Examples from a variety of code comparison tools are shown in this
chapter to give context to the visualisations developed in this research. The
majority of these comparison tools are from the field of plagiarism detection.
The other group of tools sampled add colour to text to provide the user with
additional information (see Section 5.3). The illustrations are taken from

the publications referenced, unless stated otherwise.

hi | Graph + P [ Table
Distance One The other

0.055928413 p6e67 p6e67_v2 -
0.059943583 p6d09._2 p6d09 =
0.072289154 p6a0d_v2 p6ao4

0.094527364 P6170 p6170v2

0.18985507 p6e09 p6e09v2

10.2137883 6101 d66

0.22214854 P6103v2 p6f03

0.29664722 p6a64 p6f65

0.37528604 pedes p6dog

0.37769517 P6f09 p6d68

0.38217053 p6do4 p6d08

0.38289964 p6e6Ss p6f09

0.38432267 P6d69 p6dog

0.3860947 p6c0S p6f09

0.38682172 p6dos p6dos

0.3888476 P6109 p6d04

0.38934734 p6e70 p6d08 =
0.3897788 DEe6s {alas (533 i

(a) AC’s sorted pairwise similarities [82]

(c) Brixtel et al.’s similarity heatmap [31]

10

(d) Juricic’s similarity matrix [122]

Figure 5.1: Showing file similarities




5.1. PLAGIARISM DETECTION FILE COMPARISON 67
5.1 Plagiarism detection file comparison

The most common way to provide initial information about the similarity
between files in plagiarism detection is as a list or matrix of file similarities.
Two examples of sorted pairwise similarity lists are shown in Figures 5.1a,
for AC [82] and 5.1b, for Ferret [146].1

Two matrices are those of Juricic [122] in Figure 5.1d (p.66), and of Brixtel
et al. [31] in Figure 5.1c (p.66) which has heatmap colouring (red - similar,
green - dissimilar). The colour in the left-hand matrix allows the user to
quickly focus on the areas of interest, which are in red and orange, whereas
in the right-hand diagram, the user must scan the numbers to find the range

before locating the higher values.

Locally produced screenshot

39 juva (10007430 jva (1000%) Tokems

[oe—p—

(b) Sherlock [120]
Fact.c
tong factorisl (ot n)
long resuk = 1;
int;
for (i = 13 <=rgi++)
return (rea);
¥
Number of dstinct trigrams: 35
foct2.c
long Fact (int rum) PN
-
int i
for (1 = 131 <= rumg +.4)
return (res);
} v
Number of distinct trigrams: 35 —
Aﬂ . zetutn sige: e Similarity measure: 0.346154 teb | save analysis.. Close
(c) SID [41] (d) Ferret [146]

Figure 5.2: Comparing code, side-by-side (a—c), or one above the other (d)



68 CHAPTER 5. VISUALISATION

Many of the tools provide adjacent views of the code in the pairs of
similar files, and these are normally accessed by selecting a pair from the
similarity report. Four examples are shown in Figure 5.2. Each of these
tools uses colour to convey information to the user. JPlag [189]% and SID [41]
colour match sections of code, JPlag giving the text a different colour for
each section, and SID changing the background colour. Sherlock [120]® has
two views of the code, original code (at the top), or a tokenised version (at
the bottom), and colours the matching sections in a profile view to the left
of the text windows. Ferret highlights the matching trigrams in blue and
allows the user to select trigrams from the right-hand window to move the

texts to the first occurrence of the trigram.*

Graphical displays giving an overview of similarity between pairs of
files in the group are provided by some of the tools surveyed, examples
of which are in Figure 5.3. Sherlock uses a circular network graph, see
Figure 5.3a.°> The nodes around the circle represent the files and the edges
show files with a similarity above the selected threshold. Plagate [52] shows
the similarities between files as a box-and-whisker plot. Each vertical line
shows the similarities between a file (on the x-axis) and the rest of the
group. The black line is the median value and the box covers the inter-
quartile range (IQR). Outliers between 1.5-3.0 times the IQR are shown by
a circle and those outside of this range by an asterisk, both are labelled with
the file number. AC displays clusters, also with a user-selected threshold,
see Figure 5.3c. It also shows, for each file, the distribution of similarities
to the other files in the set, using a compressed form of histogram which
relies on colour coding instead of area. Purple means that few files are at
this distance from the file, red that many are, with frequencies between the
two extremes following the rainbow colour sequence. An example of the
histograms are in Figure 5.3d, where one line (p6d66) has been selected for

expansion into a traditional histogram.

http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/demo_jplag.html
3http://www.ics.heacademy.ac.uk/resources/assessrnent/plagiarism/demo,sherlock.html
#Locally produced screenshot
Shttp://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/demo_sherlock.html



5.1. PLAGIARISM DETECTION FILE COMPARISON 69

*39
385

51
&% -

050 . 047 047 047 o7

0102
835 o102

o3

o15
o043

L2l T T T T T T T T T T T T T
294m] 01 02 @3 04 OS5 06 Oo7 0 0 00 o1 o2 013

(a) Sherlock’s graph [120] (b) Cosma’s box and whisker plot [52]
Individual histograms [ Graph + Population histogram | Table | Individual histograms [ Graph + Population histogram | Table
ps_101 PS5_j04 PS_08  P5_j66 [Eo— [Tl =
\ p6e09 i I =
PS_101v7 R3%03 5
p6d66 » l
p6f01 10.2137883] || 1
P5_166 p6f03 Lp6ror |
PS_x68 VL
= P5_104 P603v2 | ]
P5_X08_v7 6165 I 1111
p6a6d | Il
P5_104v7 p6dos
p5_x08 p6d68
p609
p6d04 I
— - - p6ess
- Max. Distance: 0.52 rp_6_069 =1
Edges Shown: 9 605 M

(c) AC’s clusters [82] (d) AC’s histograms [82]

Figure 5.3: Graphical displays of file similarity

Ribler and Abrams take a different approach, which gives a detailed
look at the similarity of one file in the context of the group. The categorical
patterngram in Figure 5.4a has the sequence of n-grams in one file along the
x-axis. The number of other files in the group which contain each n-gram
are plotted in red for the values 1-9. If the n-gram is unique to the file being
analysed, it is plotted at y = 1 and shown in blue. If in 10 or more files, it is
considered uninteresting, plotted at y = 10, and shown in green. Figure 5.4a
shows a file which shares a suspicious sequence of code with one other file,
indicated by the dense sequence of red lines at n = 2.

To show which files contain the n-grams, another graph, the composite
categorical patterngram, is constructed, see Figure 5.4b. This graph is based
on one file, with the n-grams it contains plotted for each of the files in the

comparison group. This time, the y-axis is labelled with the file numbers



70 CHAPTER 5. VISUALISATION

{1 SR e

1 i | \
M1 L1 TR T T T -+
(000 1 (EWEN 10— .
T T Lo

100¢ 1500 200¢ 2500 0 500 100( 1500

(a) Categorical patterngram (b) Composite categorical patterngram
Figure 5.4: Ribler and Abrams’s graphical displays [199]

and the presence of the n-gram in a file marked by a coloured point. The
point is green if the n-gram is in 10 or more files and red if in fewer.
The composite patterngram highlights with which files the base file shares
significant sections. Figure 5.4b is based on the same file, number 45, as
Figure 5.4a, and shows that most of the code shared by few is in file 46,
where the large amount of common code indicates collusion.

Ribler and Abrams’ tool does not appear to give a measure of similarity
between files but gives a pointer to areas in the files which deserve further
attention. Their method is the closest to that developed in this dissertation.
The measure for collusion detection is based on the unusual similarities
between files in the context of a group, and the visualisation colour codes
the text of the two files under investigation, depending on the number of

other files which contain the code they share.

5.2 Other code comparison tools

There are a large number of other graphical tools for comparing code. A
small selection of relevant tools are described in this section. Windiff°
see Figure 5.5a, compares two files, and shows the lines which appear in

both files on a white background. Lines which differ are repeated with

®http://msdn.microsoft.com/en-us/library/aa242739(v=VS.60).aspx



5.2. OTHER CODE COMPARISON TOOLS 71

=10l x| 78 Wintkcrge

Fle Edt View Expand Options Mark Help Ac FA Mrw Begr Ts Miges whees Hep
Anew.txt : Yold.t<t D:\Mijn WinDiffD: : D:AMi| Outline D & AR ZHE BEFve b A paA&

B DiffContext.cpp - DiffComext.cpp

This is a file to demonstrate what
WinDiff's output typically looks like.
It shows some identical lines, deleted
and added lines, moved lines and similar
lines. It also demonstrates WinDiff's

* Wpsian lia) dio_pus CIT| * L

void oDiffIanzet::Updatat|vaid fIontans:  Updsted

picture feature. DIFFITEM sdi — n_plis. DIFFITEM sdi - o_pL_sL
n This paragraph contains text that is it (kLufo) it (LLufLu)
>3 outdated - it will be deprecated and { {
n deleted in the near future. [ dmilefz.chesry:l | 4. lefz. Clesvpsrti
> This is an important notice?! It should if lldi.diztsoda.i if (Jdi.diTzconz.iw
= therefore be located at the beginning of < 3 e 7

this document? BN 53 - e 1y e wn

| i LeZl, Cloaciis
2 Ai et . S1aarpavria’ (O
hand, I could do with some shoarma. E( >
(= CH5er3-c3 7 0° 22
(a) Windiff (b) Winmerge
mg KDiff3
File Edit Directcry Movement Mernge Settings Help
N, ox A
L]%d;swx!-vg;fin B C“Q"_.-”m
ftes >y A o test/testl txt @ Topline ] C @ test/test3. txt : Topline -
Not changed anywhere. 14 Not changed anywhere.
B==C. B_Is_different. 15 A==C. O
A==B. A==B. 16 Cois different.
A_is_different. B==C. 17 B==C.
| A12_are_different. | Especially_B. 18| | c_dis_very_dirferent. =
Vhite space in B. White_ space_ in B. 19 White space in B. -
on
Output : unnawed. txt |~
Not changed anywhers.
B]B is different. n
C]C 1s different.
C | B==C.
7 Jl<Merge Conflict: =
BE|White space in B. -
=
4 4
Ready.

(c) KDiff3 - merge screen

Figure 5.5: Windiff, Winmerge and KDiff3

the line from one file on a red background and from the other, a yellow
background. Winmerge,” see Figure 5.5b, is similar, but presents the two
files side-by-side, highlighting differences between them by colouring the
background.

KDiff3,® shown in Figure 5.5c is one of the few tools available which
compare three files. The upper part of the screen colours the differences
between the three files in red. Lines which match in all three files are shown

in black text, if in two files they are purple (1, 2), green (1, 3) or blue (2, 3)

"http://winmerge.org/
8ht‘rp://1<diff3.sourceforge.ne‘c/doc/index.h‘cml



72 CHAPTER 5. VISUALISATION

Figure 5.6: Ball et al.’s line representation [14]

depending on which pair has the similar code. The lower part of the screen
shows what will happen when the files are merged.
There do not appear to be any tools which make text-based comparisons

between more than three files.

5.3 Colour coding features in software evolution

The field of software evolution visualisation is large, and visualisations
are often very sophisticated. Starting points for further information are the
surveys by Storey et al. [225] and Caserta [37], or Voinea’s dissertation [240].

Some tools depict information about an evolving system, such as 3DSoft-
Vis [200]. Other tools give information about one version of a system. Two
examples of single version tools are shown here. These tools are chosen
because they colour the source-code text to display facts about the sys-
tem, which is how the visualisations developed in this research provide
information to the user.

Figure 5.6 [14] shows Ball et al.’s “line representation” where the code
in a file is coloured to represent one aspect of the file’s development. For

example, the developers, the version, or as here, the age (where green means



5.4. SUMMARY 73

Author Legend Structure Legend Date Legend
. Sandy . Constructor | Mar 11
., Edward BN, Comment W Mar 06

—J Jon B, Method W Feb 02

"——

L —
L

_

il

HelloWorld.java

Figure 5.7: Augur three-feature colour coding of one file [86]

old code and red new code).

Augur, a tool developed by Froelich and Dourish [86], also colours
features of the code. This tool uses different sets of colours to show different
sets of features. In the example in Figure 5.7, three features are highlighted.
The code is coloured to show its age, there are also two other colour sets
applied on the left margin, the left-hand set showing the author and the
middle set showing elements of the code, such as comments and methods.

Displays of similarity between files, taken from three clone detection
tools, are available in Appendix D. This appendix also shows graphical
displays from two tools from the field of origin analysis, where colour is

used to add information about the movement of code in a system.

5.4 Summary

This chapter has reviewed tools which are relevant to the visualisations
developed in Chapter 8 to support the applications described in Chap-
ters 9 and 10. It looked at the output of source code comparison tools,
in particular, comparisons between pairs of files, between groups of files,

and of pairs of files in a group context. The use of colour was also consid-



74 CHAPTER 5. VISUALISATION

ered, both for highlighting important parts of a display, and for providing
additional information to the user when applied to text.

The majority of the plagiarism detection tools surveyed provide infor-
mation about the similarity between files in one of three forms: pairwise
similarity based on a single similarity measure (see Figure 5.1), group in-
teraction based on a single similarity measure (see Figure 5.3), or pairwise
text comparisons (see Figure 5.2). Ribler and Abrams provide information
about the interaction between the files in a group at n-gram level, but do
not appear to map this to the text of the file. In general, file comparison

tools do not show comparisons between the text of more than three files.



Chapter 6

Ferret

The primary similarity detection tool used in this research is Ferret, de-
veloped at the University of Hertfordshire [155]. Ferret is an obvious first
choice for the file comparison tasks, both because it is efficient and because
itis an in-house tool. Ferret detects matching token trigrams wherever they
occur, and is therefore useful for finding similarity between files even when
copied sections are subject to replacement or rearrangement [157, 158].

In this chapter, Ferret is introduced, and its use with program code is
discussed. Example files are then provided for illustrating Ferret and the
other similarity detection tools used in this research. Next, the outputs from
Ferret are described. During this research, features for machine learning
were created by finding new ways to analyse these outputs. The analyses

are described in the last three sections of this chapter.

6.1 Background

Ferret was originally developed by the UH Plagiarism Detection Group to
measure similarity between text files [155, 157].1 The similarity measure
is based on trigrams — sets of three consecutive words. For example, the
phrase “sequences of three consecutive words” produces the three trigrams:

/ZanTi

“sequences of three”, “of three consecutive” and “three consecutive words”.

1http ://homepages.stca.herts.ac.uk/~comgpcl/ferret.html

75



76 CHAPTER 6. FERRET

Ferret accepts as input a list of files for comparison. Processing effi-
ciency is achieved by making a single pass through each file, during which
an inverted index is constructed. The file identifier is recorded once against
each trigram it contains, using a table to which new trigrams are added as
they are encountered. The resulting trigram to file index is used to calculate
the similarity between two documents using the Jaccard coefficient, also

known as the resemblance measure [162, p.299].

| Intersection of the distinct trigrams |

accard coefficient = - — -
J | Union of the distinct trigrams |

This measure has a value between 0 and 1; 0 means there are no matching
trigrams and therefore no matched text, while a score of 1 shows that all of
the trigrams in one text also occur in the other. Although, in theory, this
does not necessarily mean that the two texts are identical, because trigram
frequency is not measured; in practice, two texts with a similarity score of
1 are unlikely to be different. One way in which exact repetitions of every
trigram can occur in two non-identical sequences is illustrated in Figure 6.1.

In the sequences x and y, the blocks labelled ‘a’~’d” represent words.

a[bSI8la]b] [alb[ef@]a[b[c]d]a[b[c]d]a[b[c]d]a[bc]d]

sequence X sequence y

b [a[b b
b b b b
a

b b

[b] trigrams

Figure 6.1: Sequences x and y are two sequences with a similarity score of 1. The
same 4 trigrams, shown below the sequences, are repeated in the files.

6.2 Program code

Ferret has also been adapted for use with program code, with lexical tokens

used in place of words.? Variations in white-space and layout are ignored,

Currently with a tokeniser for C-type languages



6.2. PROGRAM CODE 77

because the code is tokenised. A study by Rainer et al. shows that although
some language specific trigrams, suchas “ ) } ; “or“ i = 1 ”, occur
often, the frequency of trigrams in program code follows a similar Zipfian,
or negative exponential, distribution to that observed in trigrams of words
in a natural language sequence [156]. Rainer et al. obtained this distribu-
tion [194, Fig.1] by analysing the files in every snapshot in their code base,
taken from the SAC (Single Assignment C)® project, and repeated here on
the left of Figure 6.2.

To look at the trigram distribution over a broader selection of code,
the files in the last release of each of the eighty-nine projects studied for
this research (see Chapter 12) were analysed. This code base consists of
7,449 files, a similar number to the 7,819 files analysed by Rainer et al.
There is a difference in the number of trigrams, the multiple projects have
2,749,150 trigrams, nearly four times as many as the 722,425 in the Rainer
et al. study. The Zipfian distribution is based on plotting the frequency of
the trigram against its rank, 1 for the most frequently occurring, 2 for the
next most frequent, and so on. The right-hand graph in Figure 6.2 shows a
distribution of similar shape to that of Rainer et al. There is one difference

which reflects the data: analysing one project across a number of releases

Shttp://www.sac-home.org/

8000 8000
7000 7000
6000 6000
5000

5000
0

4000 -

Occurrences

3000 3000

Trigram frequency
IS
1]
8

2000 2000

1000 1000 \
———

0

T T T T T T T T T T T T T T 1
500 1500 2500 3500 4500 5500 6500 7500 8500 9500
Trigram in order of frequency

0 2000 4000 6000 8000 10000
Rank

Figure 6.2: On the left, the first 10,000 trigrams of 0.72m trigrams, ranked by fre-
quency, from Rainer et al. [194, Fig.1]. On the right, the first 10,000 of
2.75m trigrams in the 89 projects. Frequency is plotted against rank.



78 CHAPTER 6. FERRET

inevitably produces more frequently occurring trigrams than analysing one
release of each of a number of projects.

Rainer et al. state that this type of trigram distribution in code indicates
that Ferret should be as effective in matching program texts as it is in
matching document texts because the majority of the trigrams appear in
few files [194]. However, the trigram distribution is only part of the story.
What is also interesting is the ratio of tokens to trigrams in code against the
ratio of words to trigrams in text.

To compare the two, the code in one release of each of the projects used
in this research was analysed, along with fifty books from the Gutenberg
project. In addition, figures were taken from an analysis of corpora previ-
ously undertaken by Lyon et al. [157].

The books from the Gutenberg project comprise twenty books by Charles
Dickens, and thirty other books, each with different authors. Each of the
books had the preamble and the licence at the end removed. The books

were analysed to find the number of trigrams to the number of words in

1.0 + projects
Ii. T, B books
0.9 A COrpora
g gy g p
] ]
0.8 "'.
A A
0.7
A
0.6
0.5
s
0.4 fo*p +
v'}"
03 ”"‘!v,': ;’ﬂ
. Al 4 P ’0 oS 00”
3 “w *a .t e . +« + ¢ N
0.2 - LA + hd
+
+*
0.1 *
00 T T T T T 1

T T T T
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Figure 6.3: The ratio of trigrams to words/tokens in the books, corpora or projects
against the number of words (books and corpora) or tokens (projects).



6.2. PROGRAM CODE 79

each one. The source code was also analysed to find the trigram to token

ratio in one release in each project.

These ratios are plotted in Figure 6.3 together with data on three of the
five corpora analysed by Lyon et al.: TV News corpus (335 documents), the
Federalist Papers (81 documents) and one of the three from the Wall Street
Journal corpora (whose size is not reported).4

Unsurprisingly, the graph shows that, for each group, there is a slight
trend for the ratio of trigrams to words/tokens to decrease as the number
of words/tokens in the documents increases. The distinction between text
and code is clear. For example, at 100,000 words or tokens, there are about
90% as many trigrams as words in the books, around 75% as many trigrams
as words in the corpora, but, on average, in the project code the ratio of
trigrams to tokens is just 25%.

‘Singleton trigram’” is the name used by Lyon et al. to describe a trigram
which occurs in only one document in a set. There is less variation between
text and code in the ratio of singleton trigrams to the total trigrams in the
sets. Lyon et al. report ratios of 85-87% on the three corpora plotted, and
for the larger corpora 82% and 77%, while the mean ratio of singletons to

the total trigrams in the project code is just over 80%.

However, because of the small proportion of trigrams to tokens com-
pared to the trigrams to words, the ratio of singleton trigrams varies be-
tween text and code. Over the three corpora, the ratio of singleton trigrams
to the total number of words in a document is around 61%. This figure
is close to the 66% of singleton trigrams to words in the set of 20 Dickens
books (2.2m singleton trigrams to 3.3m words). In contrast, in the projects,
the mean ratio of singleton trigrams to total tokens is just under 20%, with
a range of 2-45%.

These figures indicate that although in general there are sufficient sin-
gleton trigrams to make it possible to match a file in one release to the correct

one in another release, the task will be more difficult for source code files

The fourth and fifth sets are not shown because they have 4.5m and 38.5m words, which

squashes the rest of the data points on the graph. Their ratios are 0.54 and 0.37 respectively.



80 CHAPTER 6. FERRET

than for files of text, and especially difficult in projects with few singleton
trigrams. The problem may be compounded when the section of code to be
matched is small, has been edited, or both. Similarly, it is harder to detect

duplication or copying between files of code than between files of text.

6.3 Files to illustrate similarity tools

Four example files are used to illustrate both Ferret and the other similarity
detection tools applied in this research (see Chapter 11). The first file,
cnp-1.c¢, listed in Figure 6.6, is for calculating the number of combinations
and permutations which can be made from a subset of items taken from
a set of a given size. Two other files are the amended version of cnp-1.c,
called cnp-2.c, and a new file, fact.c, formed when the first file is split
by moving the factorial function, see Figure 6.4. These two files are shown
in Figure 6.7. A small file, power.c, on the right of Figure 6.5, is used for

illustration where larger files would produce unwieldy output.

Amended file

Original file

DT

Figure 6.4: The relationship between the 3 example C files, cnp-1, cnp-2 and fact.c

//fact.c /] power.c
long factorial (int n) long power (int base, int n)
{
long result = 1; long result = 1;
inti; inti;
for (i=1;i<n;i++) for(i=1;i<n;i++)
result *=i; result *= base;
return (result); return (result);
} }

Figure 6.5: Code for fact.c and power.c.



6.3. FILES TO ILLUSTRATE SIMILARITY TOOLS

81

/[ ecnp-1.c
#include <stdio.h>

long factorial (int n);
long combinations (int n, int k;
long permutations (int n, int k);

int main()

int setsize, subsetsize;

printf (“Set size? ”);

scanf (“%d”, &setsize);

printf (“Subset size? ”);

scanf (“%d”, &subsetsize);

if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)

printf (“Mission impossible\n”);
return (1);

printf (“%ld combinations and %ld permutations of %d items
taken from %d \n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);
return (0);

}

long factorial (int n)

long result = 1;

int i;
for i=1,i<n;i++)
result *=1i;

return (result);

}

long combinations (int n, int k)

{
return (factorial(n) / (factorial(k) * factorial(n-k)));
}

long permutations (int n, int k)

return (factorial(n) / factorial(n-k));

}

Figure 6.6: Original code for finding combinations and permutations of a subset of
items, cnp-1.c. This file, and the two files which result from splitting it,
cnp-2.c and fact.c, shown in Figure 6.7 are used as a running example.



82 CHAPTER 6. FERRET

/] enp-2.c

#include <stdio.h>
#include “fact.c”

long combinations (int n, int k);
long permutations (int n, int k);

int main()

{
int setsize, subsetsize;
printf (“Set size? ”);
scanf (“%d”, &setsize);
printf (“Subset size? ”);
scanf (“%d”, &subsetsize);
if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)

printf (“Mission impossible\n”);
return (1);

printf (“%ld combinations and %ld permutations of %d items
taken from %d\n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);
return (0);

}

long combinations (int n, int k)

{

return (factorial(n) / (factorial(k) * factorial(n-k)));

}

long permutations (int n, int k)

return (factorial(n) / factorial(n-k));

}

// fact.c
long factorial (int n)

long result = 1;

int i;
for(i=1,i<n;i++)
result *=i;

return (result);

Figure 6.7: Amended code for finding combinations and permutations of a subset
of items, split into 2 files - cnp-2.c (top) and fact.c (below).



6.4. SIMILARITY SCORES 83

6.4 Similarity scores

As already explained, Ferret provides the Jaccard coefficient, or similarity
score, for two files.> Broadly, five factors affect this similarity score:

e the amount of matching code,

e the size of each document,

e repetitions of trigrams in the documents and whether they are in the

5 An example similarity score calculation can be found in Appendix E.

ulvw[x]y
1]2[3][4][5
6[7/8(9|0
(a) Twenty of the sixty to- (b) More matched code in (c) The same matched
kens in each file are files of the same size code as Fig. 6.8a in
the same, making the as Fig.6.8a. Similarity smaller files. Similar-
similarity $ = 0.18. is 3 = 40. ity is 22 = 0.64.

S

| ]

(d) Repeated trigrams in (e) The matched code is (f) The matched code is
the unmatched code scattered through the edited in the second
in the two files. Simi- second file. Similarity file. Similarity is 1%7 =
larity is % = 0.20. is % =0.115. 0.085.

Figure 6.8: The effect of changes to the amount of matched code, to file size, to
trigram repetitions and to layout in the matched code. Darker coloured
blocks with letters show matched code, and blank pale blocks represent
tokens in unmatched and unique trigrams.



84 CHAPTER 6. FERRET

matched portions of code,
e whether the matched code is contiguous or scattered,

e and whether there is editing within the “matched” sections of code.

The effect on similarity scores of each of these factors is illustrated in
Table 6.8. In the diagrams, matched code is shown in colour with a letter
or number to identify the token. Unmarked ‘tokens’ are assumed to be
unique. Figure 6.8a is the example against which the others are compared.
It is clear that either more matched code, Figure 6.8b, or smaller containing
files, Figure 6.8c, increase the similarity score. Figures 6.8d, 6.8e and 6.8f
show files of the same size as those in Figure 6.8a with the same number
of matching tokens. Figure 6.8d depicts files with repeated trigrams in the
unmatched code, thus reducing the total number of trigrams and increasing
the similarity score. Likewise, if the matched code contains repeated tri-
grams, the similarity score is reduced. In Figure 6.8e the code in the second
file is scattered and in Figure 6.8f the code is edited; in each case the number
of shared trigrams, and therefore the similarity score, is reduced.

The basic output from Ferret is a set of comparisons, one for each pair
of files, listing the name of file 1, the name of file 2, the number of distinct
trigrams common to the two files, the number of distinct trigrams in file 1, in
file 2, the similarity measurement and containment of each file in the other.
The containment of file A in file B is calculated by dividing the number of

trigrams appearing in both files A and B by the number in file A ( lAQIBl).

An example of this output is given in Figure 6.9.

common file1 file 2 simil- | cont’'t | contt
file 1 file 2 trigrams | trigrams | trigrams | arity 1lin2 | 2inl
frel-n/filea | ../rel-n+1/filea 1335 1453 1512 0.8190 | 0.9188 | 0.8829
frel-n/filea | ../rel-n+1/filez 46 1453 173 0.0291 | 0.0317 | 0.2659
./rel-n/fileb | ../rel-n+1/filea 182 290 1512 0.1125 | 0.6276 | 0.1204
./rel-n/fileb | ../rel-n+1/filez 0 290 173 0 0 0

Figure 6.9: Ferret output for files in consecutive releases of a project



6.5. FERRET XML REPORT 85

Similarity score and containment are rapidly calculated measures be-
tween two files. There is a trade-off between the speed of calculation and
the amount of detail provided about the similarity between files.

Other outputs are available from Ferret: a report of the trigram to file
(trigram-file) index (see Table 6.3, p.90) listing the trigrams and the files
in which they occur; reports for each comparison between a pair of files
highlighting the duplicated trigrams in the files, either in PDF or XML
format (see Figure 6.10, p.86).

The rest of this chapter describes methods developed in this research
to analyse the XML output and the trigram-file index to obtain further
information about the distribution of matched and unmatched trigrams and

the relationship between the files in the group presented for comparison.

6.5 Ferret XML report

The XML report produced by Ferret shows matched and unmatched
trigram sequences related to the source code (or text). The example in
Figure 6.10 is the report for a comparison between fact.c and power.c. In
the header section, the number of matched trigrams and the similarity score
for the pair of files is shown. For each document, the number of trigrams
and the containment of the file in the other file are given, along with the
source text, which is separated into sequences of tokens (or words) for
which the trigrams appear in the other file (tagged “copied”), and the rest
(tagged “normal”).

More information about the similarity between files can be recovered
by analysing the XML file to find patterns in the alternating sequences of
matched and unmatched trigrams in the code. The sizes of contiguous
blocks of code containing shared trigrams can be found, giving an idea of
the presence or absence of interesting similarity.

The sizes of these blocks of code can be expressed in terms of tokens,
characters, or lines of code, which are approximated here by deducting one

from the total number of new line characters in a sequence. The patterns



86 CHAPTER 6. FERRET

taken from the example XML file in Figure 6.10 are shown in Table 6.1.

Looking at the last copied section in the file fact.c, which is:

7
return (result);

}

there are seven tokens which are: ; return ( result ) ; |}
These tokens consistof 1+ 6 +1+6 + 1+ 1+ 1 =17 characters.

There are 3 newline characters, so the estimated number of lines is 3-1=2,

<?xml version="1.0" encoding="IS0-8859-1"7>
<?xml-stylesheet type="text/xsl" href="uhferret.xsl" 7>
<uhferret>
<common-trigrams>29</common-trigrams>
<similarity>0.659091</similarity>
<document> <source>C:\...\power.c</source>
<num-trigrams>38</num-trigrams>
<containment>0.828571</containment>
<text>
<block text="normal"><![CDATA[long power (int base, ]]></block>
<block text="copied"><![CDATA[int n)
{

long result = 1;

int i;

for (i = 1; i <= n; i++)

result *=]]></block>

<block text="normal"><![CDATA[ base]]></block>
<block text="copied"><![CDATA[;

return (result);
}11></block>
</text>
</document>

<document> <source>C:\...\fact.c</source>
<num-trigrams>35</num-trigrams>
<containment>0.763158</containment>
<text>
<block text="normal'"><![CDATA[long factorial (]]></block>
<block text="copied"><![CDATA[int n)
{

long result = 1;

int 1i;

for (i = 1; 1 <= n; i++)

result *=]]></block>

<block text="normal"><![CDATA[ i]]></block>
<block text="copied"><![CDATA[;

return (result);
}11></block>
</text>
</document>
</uhferret>

Figure 6.10: Ferret XML report for a comparison between fact.c and power.c.



6.6. DENSITY ANALYSIS 87

which is a reasonable approximation, as the first semi-colon in the sequence

is only a small part of a line.

power.c fact.c
n c n ¢ n ¢ n ¢
Tokens 6 27 1 7 3 27 1 7
Characters | 18 49 4 17 | 14 49 1 17
Lines 0 4 0 2 0 4 0 2

Table 6.1: The pattern of matched (c) and unmatched (n) code between power.c
and fact.c, shown in three different units: tokens, lines and characters.

6.6 Density analysis

Analysing the Ferret XML report as described in Section 6.5 finds contiguous
blocks of code, or identical copies in the code, like type-1 clones. When code
has been edited between releases, for example, by replacing identifiers, or
by a copy-paste-edit sequence, then the blocks of matched code will be
“gappy”, like those found in type-2 or type-3 clones [204, 238]. The idea
behind density analysis is to find these gapped blocks by matching blocks
of code which are nearly contiguous.

The alternating matched and unmatched blocks in the Ferret XML report
can be analysed to discover these larger blocks of densely matched tokens,
where most, but not all, of the tokens match. To illustrate, a contrived ex-
ample is shown in Figure 6.11. The original factorial file, fact.c, is amended
to become fact-2.c, in which the function name is changed from “factorial”
to “fact”, “n” to “num”, and “result” to “res”. These are the type of changes
which may be made in a simple attempt to disguise plagiarism, or in the
renaming of identifiers to suit a new location. The result of comparing the
two files with Ferret is shown in Figure 6.12, where matched trigrams are
highlighted in bold blue text.

The matched and unmatched tokens can be represented in shorthand as
a pattern of blocks of copied and non-copied tokens as follows:

(n 5)(c 3)(n 1)(c 14)(n 1)(c 4)(n 1)(c 5)(n 1)(c 3).



88 CHAPTER 6. FERRET

This means that 5 unmatched tokens are followed by 3 matched tokens,
then 1 unmatched, 14 matched, and so on.

The method developed for density analysis uses a top-down algorithm,
which is described in detail in a technical report [96, pp.8-14], or briefly
at http://homepages.stca.herts.ac.uk/~gp2ag/density\_analysis\_overview.html,
with diagrams. The copy patterns used in this explanation are based on
tokens but can also be expressed in lines or characters.

In brief, the tool finds dense blocks based on three main parameters:
minimum density, minimum block size and maximum gap size. Density is
calculated by dividing the number of matched tokens by the total number
of tokens in the sequence. In the example above, the first unmatched block
of 5 tokens would be excluded from the pattern, leaving 33 tokens, of
which 29 are matched, a density of % = 0.88. To avoid selecting blocks
with few tokens, which are likely to be incidentally similar rather than the
product of moved or copied code, a minimum block size is specified by the
number of matched tokens it contains. Maximum gap size is the maximum
number of consecutive unmatched tokens permitted within a dense block.
For example, a sequence such as ((c 200)(n 100)(c 200)) has a density of
0.8, however, this is likely to be considered as two separate copied blocks
rather than one edited block. The maximum gap ensures that sequences of
this type are split into two blocks. There are two other parameters used in
this analysis. The first allows a choice of unit: tokens (or words in text),
characters or lines. The second allows a choice of block selection criterion,

which can be based on the highest density, on the most copied tokens, or on

//fact.c // fact-2.c
long factorial (int n) long fact (int num)
long result = 1; long res = 1;
int i; inti;
for i=1;i <num;i++) for(=1i<n;i++)
result *=i; res *=1i;
return (result); return (res);
} }

Figure 6.11: Code for fact.c and an amended version fact-2.c.



6.6. DENSITY ANALYSIS 89
Block | Copied/Non-copied Copied | Total Will be selected
Name | Pattern tokens | tokens | Density | because most ...

a ((c9)(n1)(c 10)(n 1)(c9) 27 30 0.90 dense
b ((90)(20)(80)(20)(90)) 260 300 0.87 copied tokens
c ((80)(20)(50)(20)(30)(10)(60)(10)(30)) 250 310 0.81 tokens overall

Table 6.2: Three dense blocks illustrate the selection criteria.

the largest total number of tokens, in a block. For example, given the three

blocks, a, b and ¢, in Table 6.2, the most dense is block a, the block with the

most copied tokens is block b, and block ¢ has the highest total number of

tokens.

This method of analysis is used in two ways, first, in finding dense

blocks of similar code between files, which are analysed to provide features

for the machine learning experiments (see Chapter 14). Second, the idea has

been developed to provide a prototype stand-alone visualisation tool which

fact-2.c
long Fact {int num)

longres =1;

inti;

for (i = 1;i <=num; i++)
res ¥=1i;

return (res);

MNumber of distinct trigrams: 35

Bl Ferret: Analysis of copying between fact-2.c and fact.c

S(=1c

Fact.c

long Factorial {int n)

long result = 1;

inti;

for{i=1;i <=nji++)
result *=1i;

return (result);

MNumber of distinct trigrams: 35

Similarity measure: 0.346154

e

Help

v

Matching trigrams

(i=

<=
jinti
; return
=1;
for (i
i++)
i; for
i; return
i=1
inti;

18 matches

I Save Analysis ... l

Close |

Figure 6.12: Ferret comparison between the files fact.c and fact-2.c.



90 CHAPTER 6. FERRET

stdio . h FILES:[01] ; int main FILES:[01] % 1d combs FILES:[01]
.h> FILES:[01] ;inti FILES:[02] % 1d perms FILES:[01]
.c” FILES:[ 1] ; printf ( FILES:[01] d”, FILES:[01]
h># FILES:[ 1] ; scanf ( FILES:[01] d\n” FILES:[01]
h > long FILES:[ 0] S if ( FILES:[01] d items taken  FILES:[01]
> #include FILES:[1] ; return ( FILES:[012] | & setsize) FILES:[01]
>long fact  FILES:[ 0] ; } long FILES:[01] & subsize ) FILES:[01]
intn) FILES:[012] main () FILES:[01] 1d perms of FILES:[01]
intn, FILES:[01] {long result  FILES:[02] and % Id FILES:[01]

Table 6.3: Extract from the Ferret trigram-file index for cnp-1.c [0], cnp-2.c [1] and
fact.c [2]. The trigrams are listed with the files in which they appear. For
example, “h > #” is only in file 1, while “int n )” is in all 3 files.

can be used to find and display dense blocks from any Ferret XML file [92].
It highlights areas where there are gapped matches in the text, which may be
the result of obscured plagiarism or a copy-paste-edit operation on the code.
It is especially useful where the files being compared are large, providing
easy access to the interesting parts of the file. Details of this prototype
can be found in Appendix F, (or at http://homepages.stca.herts.ac.uk/~gp2ag/

density.html).

6.7 Ferret trigram-to-file index

Apart from the pairwise comparisons, Ferret also provides access to its
trigram-file index. Table 6.3 shows an extract from the trigram-file index
output by Ferret when the three files cnp-1.c (file 0), cnp-2.c (file 1) and

fact.c (file 2) are compared. The trigrams are shown together with the files

Key Present in No.of trigrams
[0] cnp-1.c only 3

[1] cnp-2.c only 9

[2] fact.c only 0

[01] cnp-1.c and cnp-2.c 141

[02] cnp-1.c and fact.c 29

[12] cnp-2.c and fact.c 0

[012] | all3files 6

Table 6.4: Trigrams shared by different combinations of the 3 example files



6.8. SUMMARY 91

in which they appear. For example, the trigram “ h > # ” appears only in
the file cnp-2.c, shown in the report as “FILES:[1]”, whereas “ intn ) ” is in
all three files, “FILES:[0 1 2]”. These examples are highlighted in the table.

The trigram-file index can be analysed to find out how many trigrams
are shared by different combinations of files. The distribution of trigrams
between the files can give an indication of their relationship. For example,
when a file is split without further edits, such as when cnp-1.c is split to
become cnp-2.c and fact.c, the expectation is that most of the trigrams in
cnp-1.c will be shared with one or other of cnp-2.c and fact.c. It is possible
that each file may have a few trigrams which occur only in that file as the
code is normally disturbed by a split. In a simple split, it is unlikely that
there will be many trigrams shared by the amended and new files which
are not also shared by the original file.

Analysis of the trigram-file index, shown in Table 6.4, supports this
expectation; the majority of the trigrams, 170 out of 188, are shared either
by cnp-1.c and cnp-2.c “FILES:[0 1]” or cnp-1.c and fact.c “FILES:[0 2]”.

6.8 Summary

The copy detection tool Ferret was introduced in this chapter. Factors which
impact on the similarity score between files were identified. A comparison
between files of natural language text related by topic or by author, and
files of source code text related because they belong to the same project,
showed that trigrams in source code occur more frequently in a set of files
than trigrams in text. This makes the task of matching files across releases
difficult, in that multiple files share the same trigrams and there are fewer
singleton trigrams.

All reductions used in comparing code, such as the transformations
considered in Section 2.2, result in some loss of the information in the
original code. Reducing code to a set of trigrams means that location and
frequency information is lost. However, because the matched trigrams are

subsequently mapped back to the code, and output as an XML report, this



92 CHAPTER 6. FERRET

information can be recovered to some extent.

Ferret is moderately robust to identifier renaming (see Figure 6.13).
However, by analysing the density in the sections of code, copied and not
copied, in the XML report, blocks of code with replacements can be found.
An early prototype tool based on this analysis was also introduced.

Ideas for analysing another output of the Ferret tool, the trigram-file
index, were also outlined, and these ideas are developed in the next two

chapters.

Figure 6.13: The impact on similarity of renamed tokens. In this example three of
the twenty tokens are renamed, bringing the similarity from 1 to 0.5.
At 0.85 density, the whole block would be identified as a gapped copy.



Chapter 7

Trigram analysis

As described in Chapter 6, Ferret normally uses the trigram-file index to
calculate similarity scores for pairs of documents in a set. The similarity
measure between two files is the ratio of the number of trigrams they share,

to the number they contain in total, Ig B g: in Figure 7.1.

This chapter considers alternative ways to analyse the trigram-file index
to identify relationships between files. For example, between one file and
the rest of the set; between pairs of files in the context of the whole set; or
between a small group in the context of the whole set of files.

There is inherent similarity in program code because of the constraints
of the language and because of idiomatic style [16, 33]. This similarity may
be increased when documents are drawn from a related set, such as files
from the same project, or from a set of student assignments [52]. When
comparing files, this background similarity can obscure more interesting

specific similarities.

Figure 7.1: The Venn diagram represents the trigrams in the files A and B.

93



94 CHAPTER 7. TRIGRAM ANALYSIS

In the next section, similarity in program code is discussed and com-
pared to similarity in natural language text. Measures which discount
background similarity and target specific relationships between files can
be derived from the trigram-file index. These measures differ depending
on the application; those for collusion detection and for software origin

analysis are described in Sections 7.2 and 7.3 respectively.

7.1 Similarity in program code

In any group of documents there are elements which occur frequently. For
example, articles and prepositions will appear in most English language
texts. If the documents are on the same subject, topic-related words may also
be repeated [23, 59]. In program code, keywords, idioms such as “for (i=0;
i<n; i++)” , and common constructs, such as “#include <stdio.h>" in C,
will appear in many files. Other causes of similarity between documents

within and across projects are considered in the next two sections.

7.1.1 Within-project similarity

In software origin analysis, the interest is in code which has moved between
tiles. For example, code from files which have disappeared from the system
may have moved to one or more files in the next release. Similarity measures
offer one way to try to find out where this code has gone. Within a project,

background similarity between files can be high because:
e there are common function calls in the project,
e there is an “in-house” style, or
e a copy-paste-edit sequence has been used to create new code [33, 204].
When a file has simply been renamed, the location of the new file will be
evident because the two files have a similarity of, or close to, one. However,
where the file has been edited, split, or merged with another file, there

may be a number of files with similarities of the same order as the true

destination file(s).



7.1. SIMILARITY IN PROGRAM CODE 95

7.1.2 Across-project similarity

Investigating similar code in programming assignments differs from inves-
tigating similar text in essay-based assignments. There is likely to be more

duplication in code-based assignments [52, 83, 99, 174], because of:

1. code typically provided by the tutor and therefore likely to be in most
submissions, such as code used in exercises and examples during the

course, or template code provided as part of the assignment; or

2. the constraints of the task, which may lead to similar code, or the
requirement for the students to use a development tool which auto-

matically produces code (e.g. Microsoft Visual Studio™).

When comparing assignments using the usual proportional measures,
similarity between the files may be high in a number of situations where
copying has not taken place. This is particularly so when two students
have done little independent work. For example, if they have used in-class
examples and not developed the ideas, they will share much of their code
with other students who do the same. Similarity will also be increased
when there is automatically generated code, which will be common to all,
or most, of the submissions. This code will have a greater impact on the
similarity between small files than between larger ones, if the similarity
measure does not take account of frequency of occurrence, or on the larger

files when frequency is accounted for.

7.1.3 Comparing similarity scores in text and code

In this section, the similarity between program code files is compared to
that of files of text of approximately the same size, to establish whether
there is a difference between the two.

Analysis of random selections of 10,000 words from books in the Guten-
berg Project by Lyon et al. [154] showed the highest Ferret similarity score
between texts belonging to the same book to be 0.03, and between texts
from different books, 0.002.



96 CHAPTER 7. TRIGRAM ANALYSIS

In the projects selected for origin analysis (see Chapter 12), the mean line
count per file is 260, and the mean token count per line is 7, making mean file
size around 1820 tokens. To find a measure of similarity in natural language
text to compare to within-project similarity and inter-project similarity, 21
Dickens books, and 84 books?, by different authors were selected, also from
the Gutenberg project. The books have a mean of nearly 11 words per line,
so that 170 lines is approximately equivalent to 1820 words.

Chunks were taken from the books by selecting a random start point and
a random number of lines between 10 and 330. The chunks were selected

in the following groups:
1. 1 from each of the mixed set of 84 books
2. 1 from each of the 21 Dickens books, and
3. 84 non-overlapping chunks from one book, Bleak House.

The resulting chunks ranged in size between 41 to 3184 words, with
a mean of 1816. Mean similarity between the mixed chunks was 0.0013,
that between the Dickens chunks was 0.0025, and between the Bleak House
chunks, 0.003. The figures for separate books are similar to those of Lyon
et al., but those from the same book are very different. The range for pairs
of Bleak House chunks is 0.0-0.0135, and for the set of complete Dickens
books, which contain a mean of 117,000 words is 0.000004-0.0667. The
maximum similarity value for the chunks of 10,000 words of Lyon et al.,
0.03, lies between these two maximum values, indicating that document
size is likely to be a factor in similarity. It therefore seems reasonable to
compare 0.003, the within-book similarity for chunks of comparable size to
the files, to the within-project similarity in code.

The mean within-project similarity of the 89 projects collected for this
work, based on the most recent release of each project, is 0.034, more than
10 times that for the within-book chunks of a similar size to the project files.
It is therefore likely to be more difficult to separate relevant similarity from

incidental similarity in files of code than in files of text.

IThe mean number of files per release in the projects is 84.



7.2. COLLUSION DETECTION 97

7.1.4 Stopping

In comparing natural language documents, stop-lists are sometimes used
to exclude common words, such as “the” or “"a” in English texts, from
calculations of similarity between documents [20]. Han and Kamber [103]
state that beside these common words, stop words may also be context
dependent, so that words which occur frequently in the set of documents
to be compared are added to the list of excluded words.

The same principle can be applied to program code. Several collusion
detection tools, such as JPlag [189], Moss [3], and Plaggie [2] allow the user
to provide template code for exclusion from the similarity calculations.

This idea is extended here, so that all frequently occurring elements
within the set of documents are also excluded from the similarity mea-
sures, leaving only the less common elements accounted for. Ribler and
Abrams’ [199] use a similar method, highlighting elements in the code
which are unusual within the group, as shown in their graphs in Fig-
ures 5.4a and 5.4b (p.70). The application of these measures to collusion

detection and to origin analysis is discussed in the next two sections.

7.2 Collusion detection

Joy and Luck [120] highlight two reasons for one student to copy another’s
work: they are either unable to understand how to do the work, or are
unwilling to take the time to do so. In both cases, it might be assumed
that the ability or time needed to disguise the copied work is lacking. As
discussed in Chapter 2, unusual elements shared by two or more student
submissions trigger suspicion of inappropriate collusion.

Finding code which is unusual in the group, but which is present in two,
or a small group, of assignments can thus provide clues to inappropriate
collusion. The review of 29 approaches to source-code plagiarism detection
in Section 2.3 showed that the majority of the approaches focus on overall
file similarity, and not on unusual shared elements. In particular, none of

these approaches directly measure the unusual similarities between files.



98 CHAPTER 7. TRIGRAM ANALYSIS

Two reasons for code appearing in many files among a group of student
assignments were identified in Section 7.1.2: code provided for the course,
and code produced due to the constraints of the task. Either one or both
of these elements can be discounted by analysing the trigram-file index.
Provided code can be added to the set of documents presented for compar-
ison, allowing the trigrams in the code to be identified, and excluded from
similarity measures if required. To exclude commonly occurring code, the

number of documents in which each trigram occurs is taken into account.

7.2.1 Example trigram-file index

Table 7.1 gives an excerpt from a made-up trigram-file index to help explain
the analysis. Thirty-one files are compared, file [0] is the code provided for
the course, and files [1-30] are the student assignments. Trigrams are listed
on the left of the table and the files in which the trigrams occur are on the
right. Several interesting relationships between files are exemplified here.
The top three lines, section A, show a set of trigrams which are only
in one file. These trigrams represent code which is not shared by other
students and can be seen as an indication of the student’s individual effort.
The next four lines, section B, show trigrams shared by just two students,
numbers 12 and 24, indicating possible collusion. The trigrams in section D
also appear in the code of students 12 and 24, but are shared by a few other
students as well. It is possible that this is the result of collusion among a
small group, or that the two students, 12 and 24, have copied from other
students. There is evidence, from membership of the small groups of files
sharing the trigrams in sections C, D, and E, that student 19 is working
with students 12 and 24. Of the thirteen trigrams for student 19, six are
in the provided code and therefore unlikely to be cause for concern. The
remaining seven are shared with student 24, and five by both 12 and 24.
The six trigrams in section F are in the provided code [file 0], unsur-
prisingly, more assignments include these trigrams. The three trigrams in
section G also appear in a large number of files, although not in the provided

code. Sharing these trigrams will not usually indicate collusion.



7.2. COLLUSION DETECTION 99

Trigram Files
A. | uniqueidentifier=-1  FILES{17]
} unique_identifier = FILES:[ 17 ]
else } unique_identifier = FILES:[ 17 ]
B. char*id123, FILES:[ 1224 ]
void func234 ( FILES:[ 1224 ]
; shiftleft ( FILES{[ 1224 ]
if (xyz FILES:[ 1224 ]
C ; struct abc FILES:[ 19 24 ]
D. | 1;struct FILES{[1219 24 |
* list ) FILES:[ 121719 24 ]
char timestr [ FILES:[2121924 ]
nodedata ) ; FILES:[2121924 ]
timestr [ 50 FILES:[1121424]
E. ), frame FILES:[ 13192024 ]
inta= FILES:[38121617 19 202224252729 ]
E inty = FILES:[04679131617 192022242729 ]
=1, FILES:[01356781012141517 18 192021 23 24252627 2829 30 |
printf (“ FILES:[0134679101214 151719 202324 2527 2829 30 ]
=(" FILES:[013591213171924]
static void { FILES:[023456781113141517 192224 25262830 ]
(i= FILES:[01345678911121314151617 1819
212223242627282930]
G. | a=b FILES:[12456791112131617 182022232526 272930 ]
d>f FILES:[12345679111213151617 182123242527 2829 ]
g==h FILES:[23467891013141517202122232425262830]

Table 7.1: Example extracts from a trigram-file index showing trigrams and the files
where they occur. For example, the trigram “if ( xyz” is in just two
files, numbered 12 and 24, while the trigram “( i =" is in the majority of
the 31 files. The letters A-G are not part of the report, but section labels.

This example shows how the trigram-file index can provide useful in-
formation about the interaction between the files presented for analysis.
In the next three sections, measurements based on the trigram-file index
are discussed. First, amendments to the standard proportional similarity
measure are considered. Then two count-based measures are described:
one counts the trigrams shared by only two files within the group, and the

other extends this to count the trigrams shared by small groups of files.



100 CHAPTER 7. TRIGRAM ANALYSIS

7.2.2 Proportional trigram-based measures

Three variations on proportional measures which exclude commonly oc-
curring trigrams are considered here. Instead of comparing the whole of
the two files, elements are excluded from the comparison when calculating
their similarity. These elements are:

1. trigrams in code provided as part of the course (P),

2. trigrams in code shared by the majority of other students (O), and

3. both of these sets of trigrams.
In Figure 7.2 the files A and B are represented in red and blue, as in
Figure 7.1, also shown are the trigrams in the provided code (P) and in the
other files in the group (O). Measure 1, which excludes the trigrams in the

provided code, shown in Figure 7.3a, is

I(AN B)\P|
I(AUB)\P|

and measure 2

I(AYB\OI

I(AUBM\O
excludes commonly occurring code, i.e. that which occurs in other students’
work, shown in Figure 7.3b. Combining the two previous exclusions gives

measure 3

I(ANB\PUO)
I(AUBNPUO)

which will generally be the same as that which excludes other students’

code, unless one student has used provided code which others have not,

e group

Figure 7.2: Venn diagram representing the trigrams in the files A and B, with those
in the provided code (P) and those in other students’ files (O).



7.2. COLLUSION DETECTION 101
Ferret Provided Code shared by
Files similarity score | code excludes | others excluded
12 and 24 L =071 4 =073 =1
17 and 24 1 =046 £ =033 g=0

Table 7.2: Different similarity measures based on trigram analysis

for example, by using alternative or advanced ideas introduced during the

course which are not essential to the completion of the assignment.

To illustrate the measures, imagine that the trigrams in Table 7.1 are the
only trigrams in the set. Three similarity measures, calculated for files 12
and 24, and for files 17 and 24, are shown in Table 7.2. The first of these
measures is the standard Ferret score, the second excludes trigrams which
are in the provided code, and the third excludes trigrams shared by any
file other than the two of interest. As expected, those for files 12 and 24 are
high, but as the common trigrams are removed, the similarity between the
two files increases. Scores for the files 17 and 24 change as the method of
calculation changes, from 0.46, through 0.33 to zero. Although the example
is drawn from a very small subset of the trigrams in the set of documents,
it shows that by removing the commonly occurring trigrams, the more
interesting similarity between documents is clarified. An empirical study

of a set of assignments is described in Chapter 9.

A Fil

O : Other files in the group

B : Fil P : Provided code

ANB\P
7 (AUB)\P

(b) or code shared by others, EQUgRg

(a) Excluding provided code

Figure 7.3: Venn diagrams representing the trigrams in the files A and B, with those
in the provided code (P) or those in other students’ files (O).



102 CHAPTER 7. TRIGRAM ANALYSIS

Analysis of the trigram-file index gives the number of trigrams shared
by different combinations of documents, as in the extract in Table 7.3. For
example, at the top left of the table, document 12 has 35 unique trigrams,
while document 5 has 7,902. Below this, the uniquely shared trigrams are
shown, such as documents 12 and 24 which share 586 trigrams not in any
of the other documents in the group. It is from this analysis that measures

are calculated.

7.2.3 Measures based on counting trigrams

When a portion of a large document is copied to another document, the
proportion of copied trigrams to the total may be small. This means that,
although significant, copying may be missed. In Figure 7.4, file B is com-
pared with two other files, A and C. The similarity score between files A
and B is % = 0.33, and between files B and C is % = 0.2. File B is more
likely to be derived from file C than file A, but the similarity score between

files A and B is higher than that between files B and C.

No. of | No. of Document || No. of No. of | Document
docs trigrams | identifiers docs trigrams | identifiers
1 35 (12) 4 5 (0610 20)
1 165 (24) 4 10 (21214 24)
1 720 (19) 4 25 (1221 24 29)
4 37 (1216 21 24)
1 7407 (17)
1 7902 ®) 5 18 (1121921 24)
5 24 (51219 24 30)
2 50 (1219)
2 154 (19 24) 6 48 (0613182329)
2 586 (12 24)
10 30 (013679111317 21)
3 13 (612 24)
3 16 (1214 24) 15 22 (024679111517 20 23 26 27 28 30)
3 42 (1221 24)
3 65 (1216 24) 20 69 (024578101214 15
3 72 (12 24 30) 17 19 21 23 24 25 27 28 29 30)
3 88 (1221 24) 20 71 (0123679111213
3 240 (1219 24) 1416 17 18 19 20 22 24 26 28)

Table 7.3: The triples in this extract show the number of trigrams shared by a group
of documents. For example, the top left triple shows that document 12
has 35 unique trigrams; and the top right, that 4 documents, 0, 6, 10, and
20, share 5 trigrams which are not in other documents.



7.2. COLLUSION DETECTION 103

C:FileC
A:File A
B:FileB
B :File B
(a) |A|=|B|=200, |A N B|=100 (b) |C| = 1000, |B| =200, |C()B| =200

Figure 7.4: File B has 200 trigrams and is compared to two other files, A and C. File
A also has 200 trigrams and the 2 files share 100 trigrams. File C has
1000 trigrams and contains file B.

One option which overcomes the potential drawbacks of proportional
measures where file sizes differ is to count the number of trigrams uniquely
shared by each pair of files, |(A () B)\(P U O)| in Figure 7.5. This count gives
an idea of the amount of code shared by only the two documents.

Counting trigrams is useful in other respects: for giving a measure of
individual effort, for measuring engagement with tasks set during a course,
and for measuring group co-operation.

Trigrams which occur in only one document give an idea of its “unique-

ness”. This may be seen as a measure of individual effort. Alternatively, if

A File A O : Other files in : O : Other files in
the group the group

B : File B

(a) Little unusual similarity (b) Much unusual similarity

Figure 7.5: Files A and B share the same number of trigrams. On the left, the
majority appear in other files in the group, while on the right, there are
a large number of “uniquely shared trigrams”, |(A (N B)\(P U O)I.



104 CHAPTER 7. TRIGRAM ANALYSIS

there is suspicion that code has been sourced from the internet, the unique
trigrams can be used as search terms.

If the students” work is regularly committed to a repository, then a mea-
sure of each student’s engagement with exercises set during the course can
be found by counting trigrams shared with the provided code. For example,
AP or B(P in Figure 7.5. It may be difficult to determine the number
of trigrams which should be shared, as the provided code will probably
need to be edited to complete the exercises. However, assuming some of
the students are doing the exercises, a baseline level should be apparent,

and students falling behind with the set work can then be identified.

7.2.4 Extending unique share counts

The similarity measure discussed in Section 7.2.3 focuses on uniquely shared
trigrams. Collusion is not always between just two people, but may also
be among a group. For example, in the excerpt in Table 7.1, students 12
and 24 not only uniquely share 3 trigrams, but also share 5 other trigrams
with one or two others (section D). This may be because of group collusion
or because the pair working together have had help from others in parts of
their work, but is less likely to be due to incidental similarity.

The count of trigrams shared by just two students can be extended to
include the trigrams shared by the two and by a small group of others. In
Figure 7.6, the area shared by the two files A and B, and by other files except
for the provided code, ((A () B() O)\P), is shown split into sections. Some
of these trigrams will be shared by files A, B, and just one of the other files.
The other file can be any one of the rest of the group. In the top left part
of the diagram, three such groups are shown. These groups are formed by
A, B, and each of the files labelled i (green), ii (pink) and iii (cyan). In the
lower left section, three groups of four files which include files A and B are

shown in the same way.

One way to compute this extended count of shared trigrams is to weight
the trigrams shared by A, B, and n others according to the number of files
containing the trigrams. Illustrated in Figure 7.7, the two files, A and B,
uniquely share 100 trigrams, share 60 with any one of the other files, and



7.2. COLLUSION DETECTION 105

e
N
R

o1 1 ' e
Wil [gn g e
T

Figure 7.6: Two files may share trigrams uniquely, or may share trigrams which
are shared with few other files. This diagram illustrates the files A and
B, and examples of the way they may share trigrams with one other file
at the top, or two other files at the bottom.

L

240 with any two others. If the shared trigrams are weighted by -1, the
weighted similarity count is:

(100* %) + (60* %) + (240* %) — 100 + 30 + 80 = 210.

In this example, groups of up to four files are taken into account, however,

the method allows for calculation of any maximum group size.

2 +1:42

100 60:240

Figure 7.7: Files A and B uniquely share 100 trigrams, share 60 which are also
shared with one other member of the group, and 240 with two others.



106 CHAPTER 7. TRIGRAM ANALYSIS

7.2.5 Making connections

Several of the plagiarism detection tools reviewed in Chapter 2 produce
graphs of clusters of similar files, for example, those shown in Figure 5.3
(p.69). In common with other similarity measures, the weighted trigram
counts between each pair of documents can be used to construct a similarity
graph for a set of files. Figure 7.8 shows a graph for a small example set of
six files [1-6]. The lengths of the connections are inversely proportional to
the weighted similarity between the file pairs, marked on the graph edges.
By setting a threshold value below which connections are removed,
groups within the set can be found. For this example, connections of less
than the mean weight, 160, are removed, leaving the three subgraphs shown
in Figure 7.9. File 2 is unrelated to the other files in the set, files 1 and 5 are
related, and files 3, 4 and 6 form a totally connected group. Relationships
between the files indicate possible collusion between the authors.
Different structures will indicate different types of co-operation in a
group. For example, the group shown in Figure 7.10, where file x is at the
centre of the four files, labelled a-d. Here, file x could result either from a
student having had help from a number of others (a, b, c and d), or from
student x providing help to the others in the group in different aspects of the

work. Connections between the “satellites” may mean that the connected

Figure 7.8: An example graph for a set of six files. The connection lengths are
inversely proportional to the weighted similarity between the files.



7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 107

250

Figure 7.9: Connections < the mean weight, 160, are removed from the graph in
Fig. 7.8 leaving 3 subgraphs, showing that files 3, 4 and 6, and files 1
and 5 are related. File 2 is not especially similar to other files in the set.

students have given or received help in the same area, or that one student

has passed code taken from the source to another student.

Figure 7.10: A group centred on one document implies that the file at the centre is
either the source, or the recipient, of code in the other files.

7.3 The source or destination of code in origin analysis

When tracing the source or destination of code which has moved in a
restructured software system, a file which has been subject to change is
compared to all files in the next release to find target files from, or to which,
code has been moved. This comparison can be efficiently undertaken using
Ferret. However, as discussed in Section 7.1, similarity between files does

not necessarily mean that code has been moved from one file to the other.



108 CHAPTER 7. TRIGRAM ANALYSIS

Snin rel n+1

Figure 7.11: A Venn diagram of the trigrams shared by a file which is split, S,,, its
amended form, S,,1, and anew target file, T. This diagram corresponds
to the split file example cnp-1.c (S,), cnp-2.c (Sy+1) and fact.c (T).

7.3.1 Split files

The Venn diagrams in Figures 7.11-7.13 show the distribution of trigrams in
three example file groups, where a file is split into new, existing, or multiple
files. The circles in these diagrams are placed to represent the approximate
overlap between the files: one in release n, S, in red, from which code has
been moved, the revised version of this file in release n+1, S,.41, in blue,
and a number of target files, labelled T[m], also in release n+1, selected as
possible recipients of the code because of their similarity to the original file.

Figure 7.11 is the simple split file example, cnp-1.c, its revised form

cnp-2.c, and the new file fact.c (see pp. 81-82). The trigram analysis is

T: Target file

Figure 7.12: A split file where the extracted code is placed in an existing target file.
The trigrams from S,, are also mostly in either of the files 5,41 or T, but
file T has more trigrams unique among this set of files than Fig. 7.11.



7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 109

Figure 7.13: A more complex split, where the code moved from S, has been put in
target files 1, 2 and 3. Targets 4 and 5 are selected as likely recipients
of the extracted code because of their incidental similarity to S,,.

in Table 6.4 (p.90). Most of the trigrams from file S, are either in S, or
T. A few trigrams are unique to the two larger files, the result of minor
adjustments to the code, and background similarity means that six trigrams
are shared by all three files. Figure 7.12 shows another file, from which code
is moved to an existing file. This is similar to the simple split in Figure 7.11,

but the target file T has more trigrams unique among this set of files.

A multiway split is depicted in Figure 7.13. The target files, labelled 1-5,
are selected because they are similar to S,. Of these targets, files 1-3 are
the real targets, and files 4 and 5 are incidentally similar. File 4 shares code
with files 1, 3 and S, but the code shared with S, is covered by files 1 and
3. File 5 shares code with S,, and is why it has been selected as a possible

target, but the code is also shared with file S,,1, so has not been moved.

rget file

Disapp!

Figure 7.14: The file D, has been renamed or moved to become file T.



110 CHAPTER 7. TRIGRAM ANALYSIS

Tn: Target
file, rel

n+1: Target
ile in rel n+1

Dn:
Disappearing file, rel n

Figure 7.15: The file D,, has merged with the file T, to create the larger file T).;.

7.3.2 Disappearing files

Figures 7.14-7.16 depict three possible destinations for a file which has
disappeared. Each of the disappearing files is labelled D, and shown in
red. The target files are labelled T[m]. In the first diagram, 7.14, the file has
been renamed or moved, so that there is another file in the system which is
either identical, or, as in this case, very similar.

Figure 7.15 shows that the file D, has been merged with the file T}, to
produce T,,11, which contains the code from each of the files. In this case,
some of the trigrams are shared by the two original files, but this is not a
precondition of merging. The last diagram, 7.16, shows a disappearing file
which has split, with the code going to the target files T1 and T2. This is

similar to the simple split file except that the name of both files has changed.

Dn:
Disappearing file, rel n

Figure 7.16: This disappearing file, D,, has split to become files T1 and T2. This is
like the simple split in Figure 7.11, but both files have new names.



7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 111

Figure 7.17: The diagram on the left is similar to Figure 7.11. The files on the right

are the same size, but the target file trigrams are a subset of those in

the amended file, making the similarity g:g% =

Other splitting configurations are not shown here.

7.3.3 Trigram-based measures

The file similarity measures suggested for collusion detection in Sections 7.2.2
and 7.2.3 exclude common code from the calculations. The same idea can
be used when measuring similarity between files for origin analysis.

The left-hand diagrams in Figures 7.17 and 7.18 are similar to those in
Figures 7.11 (split to anew file) and 7.12 (split to an existing file) respectively.
In the right-hand diagram in each figure, the files are similar to those on
the left, but do not represent split files, as the trigrams shared by S, and T
overlap those of 5,,.1. The trigrams in the group can be analysed to produce

various measures. For example: g’:ﬂ% which excludes the trigrams

T: Target file

Figure 7.18: The left-hand diagram repeats Fig. 7.12. On the right, the target and

amended files overlap. Here g:[}% will also be close to zero.



112 CHAPTER 7. TRIGRAM ANALYSIS

in the revised version of file S, from the similarity measure between the
original and target files. In the examples, the measure will be zero for
non-split files and thus provide useful separation from split files. For real

examples, the distinction may be less clear, but should still be valuable.

Su ASne1 U D\ (Sn1 N D]
Sn\(SnH ﬂ T)

i.e. that which occurs in all three files. This measure will be high if most of

The measure excludes commonly occurring code,

the code is in only one other file, as the left-hand diagrams of Figures 7.17

and 7.18, and lower if the files are related as the right-hand diagrams.
Another example is the proportion of trigrams unique to a file to the

total in the file, such as %ﬁUT)

. The meaning of this measure depends
on the file in question. For the candidate split file, S,;, a high proportion of
unique trigrams indicates deletion from the file, or heavy editing. For S,.11,
the amended version of the file, it means there is edited or additional code
in the file. If the target file has more than a few unique trigrams, this may
mean that the file already existed, or that other code was added to the file.

These, and other proportional measures are used as features for the
classification of restructured files by machine learning, and are described
in full in Chapter 13. Trigram counts, such as the number of trigrams in
the candidate file which are shared with one other file, or the sum of the
trigrams in the amended and target files, are also used as features in the
machine learning task. The number of trigrams shared by the candidate file
and each of the target files is used in ranking target files to select the most

likely recipients of the code removed from a candidate file (see Chapter 15).

7.4 Summary

This chapter has covered techniques for identifying interactions between
files in a set from the distribution of trigrams. Alternatives to the standard
Ferret similarity measure were introduced and their application to collusion
detection discussed. Also, features which describe various relationships

between files were suggested for use in origin analysis.



Chapter 8

Visualising file relationships

The use of trigram analysis to display information about the interaction
between files in the context of a group is explored in this chapter. As
explained in Chapter 5, file comparison tools do not generally provide text-
based comparisons which show how the code shared by two files relates to
the code found in the rest of the files in the group. Also, there do not appear
tobe any tools which relate the text in one file to that in more than two others.
As part of this research, the trigram-file index was analysed to create text-
based displays of comparisons between one or more files in the context of
a group. The next section looks at a selection of displays based on trigram
analysis, used to show the interaction between student assignments. The
following section describes a method for showing the relationship between
one file and many others, which has proved invaluable in origin analysis in

this research.

8.1 Displaying student assignments

Three ways of highlighting aspects of a file in relation to a group are in-
cluded here. First, to show the text unique to one file. Second, to extend the
standard Ferret display which shows text shared by two files. The exten-
sions take two forms: one adds a distinction between shared and uniquely

shared code; and the other further extends this idea to show other cate-

113



114 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

gories, such as code shared by the two documents and by few others in the
group. The examples given here suggest particular colours for highlighting,

but font colour and style can be adjusted to suit the user’s preferences.

8.1.1 Unique trigrams

Figure 8.1 shows two extracts from a document with the elements unique
within the comparison group highlighted in black. The top part is typical of
a “function” introduced in class and amended to suit the student’s project.

The lower part is typical of independently written (or sourced) “code”.

Picking out the unique parts of a student project may be useful if there
is doubt about whether the code has been produced by the student or
sourced from a third party, or to see what interesting ideas the student
has implemented. This display may also be useful in comparing other
documents, such as contracts, where it is often important to be able to

pinpoint differences in the texts, rather than their similarity.

the identifier names

therefore be unigque.

However, this pretend function is
one written student to suit (1 needs of their
project and has little in common
functions in other student’s projects.
This function stand out from rest
of the code unique parts are coloured,

Figure 8.1: An example file with trigrams unique within the comparison group
highlighted in black. The upper part of the diagram shows “code”
mostly used by other students, the lower part shows an independently
written function. Commonly occurring “code” fragments are in cyan.



8.1. DISPLAYING STUDENT ASSIGNMENTS 115

8.1.2 Extending the standard Ferret display

The standard Ferret display, see the top half of Figure 8.2, shows the text
covered by trigrams common to two files in blue, with the rest in black.
The lower part of this diagram shows a simple extension to the colour
scheme where code which is “uniquely shared” by the two files is coloured
red to highlight possible collaboration between the two students. Each
token appears in three trigrams, if two or three of these are uniquely shared

between the two files then the token is coloured red.

Here is a file which has been compared to
another file in the group.

When displayed with the standard Ferret display,
the shared code is highlighted in bold blue text.
Text which does not appear in the other file

15 shown in normal black font,

[f there are parts of the files which are shared by just these two files,
it will not be evident.

However, by colouring ““unigquely shared™ parts
of the files in red, or any other colour,

this extra level of information becomes clear.

Here is a file which has been compared to
another file in the group.

When displayed with the standard Ferret display,
the shared code is highlighted in bold blue text.
Text which does not appear in the other file

is shown in normal black font.

If there are paris of the files which are shared by just these two files,
it will not be evident.

However, by colouring " uniguely shared™ parts
of the files in red, or any other colour,

this extra level of information becomes clear,

Figure 8.2: An example of the revised colouring. This passage is repeated, the
upper version is standard Ferret display. In the lower version, parts of
the text which are uniquely shared by the two files are in red.



116 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

8.1.3 Graduated similarity information

The black-blue-red colour scheme can be extended to add information about
trigrams shared by only a few others in the group. The idea is to display
not only the “uniquely shared” code but also evidence of possible group
collaboration. Following the idea of the weighted trigram count, parts of
the code shared by the two students and by few others are highlighted as
shown in Figure 8.3. Assume that a group of files, including file A and file
B, are compared. The text of file A is coloured to reflect its similarity to file

B within the context of the group. Where text is:

e black it is unique to file A;

e red it is “uniquely shared” with file B;

o dark orange it is shared by file B and up to 2 other files;

e paler orange it is present in files A and B and 3-5 other files;
e blue itis in files A and B as well as many other files; and

e pale blue it is either provided for the course, or is not in file B; in other

words, parts of the file of no interest when checking for collusion.

Figure 9.8, on page 144, shows this colour scheme applied to a pair of
files from the set of student projects analysed in the next chapter. The size
of the subgroups is arbitrary, and it is possible that a larger group warrants
larger subgroups. However, Burrows [34, p.14] states that “Our test data
and anecdotal evidence indicates that students generally do not work in very large

groups”, and this is taken into account.

When comparing two files, shared trigrams are differentiated as follows:

1. “Code” which is unique to this file (A) is coloured black.
2. If “uniquely shared” by file A and the file to which it is compared (B), then it is red.

5. Code shared by A, B, and 6 or more other files is in blue.

Figure 8.3: One way to colour the code in a file (A) compared with another (B). The
colours and gradations can be altered to suit the user’s needs.



8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 117

8.1.4 Groups

A method for displaying the relationship between one file and a number of
other files is explained in Section 8.2. Although developed for visualising
the relationships between files in origin analysis, it is also useful for other file
comparison tasks. In collusion detection, it can provide information about
which file contains what code in a group of similar files. This is particularly
useful where one student is thought to be either the main developer, or
the main recipient of the code, as in Figure 7.10 (p.107), when their file can
be used as the base against which the other files are compared. Figure 9.9

(p.146) gives an example of this visualisation applied to student code.

8.2 Comparing one document with a group of others

A large part of the work involved in creating marked-up datasets for origin
analysis is in manually comparing groups of files to try to understand
their interaction. Most file comparison tools only show the similarities (or
differences) between pairs of files, although some tools, including KDiff3
(see Figure 5.5¢, p.71), allow for three files to be viewed together. Although
comparison between one file and a group of others can be accomplished by
arranging pairwise comparisons alongside each other, as in Figure 8.4, it is
inefficient. Not only must each comparison be selected and arranged on
the screen separately, but also to view the comparisons side-by-side, each
one must be scrolled separately, tasks which are awkward with a few target

files, and which become more difficult as the number of files increases.

What is required is a tool which can show the relationships between
one file and any number of other files. The development of such a tool is
explained in this section. The ideas are illustrated using one file from the
split file dataset, which is introduced in Chapter 12. This file (fa.c) is large,
having nearly 1800 lines, and has been split to produce three files. Two

different ways of displaying this information are described here.



118 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

& Femet: Al of copying betwesn cllecksh and u_albecksh !’!Em Snelysis o coping between calbcksh snd plgin st clbcish
abadsh

il _R _CALLBAGKS H_
sdefine R cAuBA.u H_
n

1 et nsyi of conyingbetween albacksh nd wﬁ

aalbadish

albadsh

e’ _R_CALLBACG 4_ ifce” _R_CALBACKS H_ B

defe _R_CALLIACKS H_

mi save_as.cb  (GtkButton * button, gpointer user_data);
adif

Mdzﬂll’l[ LADCCA

lvoid cca_save_cb  (Gtkbutton * button, gpointer user.data);

e

ifdef HAVE_GUOME

jvoid _about b (GEkV/idget * widget, gpainter user_data);

#endif
/cm st cange 2

(6thtutton * btton poiner wser_dota),
(6tkButton * button, gpointer user_data;

[ﬁmog;eiumn * buttor, gpointer user_data);
b

IGtRarge * ae, gpoiner user_data,

=
Jvod - contrlJoce_cb (GToogkButtr * button, gpointer user_data);
Ivoid contolfoat b (Gtiange *range, gpointer user_data);

(GtkMenultem * menuitem, gpointer user_datal;

(GtiWidget * button, GdiEventEu:ton 'mluwnur user_data

(GBidget * button Gdvertton * angpoml:lustl dal

(GHkWidget * widget, GHEventEurton * event, gpointer user_{|

vod save_zs.b  (GtkBution  button, gpointer user_data);
gendi
ftef 4AE LADCCA
Void ceasave st (GkButton * button, gpointer user_data);
endi

fief VE G

o
vod abeutch  (GekWidget * widget, gpointer user_data);
it

void - slat_change_cb
o slot_move_cb
voud _slat_remove_cb

(GtkButton * button, gpointer user_datz);

void  contrel lock_cb (GtkToggleButton * buttor, gpcinter user_data);
vod cntd] ﬂnatd:[(.lkhng: range, gpointer user_data);

(GtkiMenuTtem * menitem, gpoiater user_data);

(GtkButton * button, gpointer user_data);
(GtkWidget * button, GekEventButton “event, gpointer user_cal
(GtkToggleButton * button, gpointer user_cata)
(Gtkiidget * button, GdkEventButton *event, pointer user da|
void  slot_wet_dry_lock cb (GtkToggleButton * butten, gpointer user_datal;
void _ shot_wet_dry_control_ch (GtiRange * range, gponter user_data);
\gboolean contro_bution_press b (GthiWidget * widget, GakEventButton * event, gpointer user_cal

#include #incude "ac_configh #incude “ac_corfigh”

#include <gﬂ('glkh> #incude <gtk/gtkh> include <gtk/gtich>

Ivoid  ady (GtkHenultem * menvitem, gpointer user_data); ¥ (GtkMenultem * menuitem, gpointer user_data); void ade b (GtkMenultem * menwitem, gpointer user data);

\void  charnel_cb  (GtkWidget * button, gpointer user_datal; vod charnel b (GtkWidget * button, gpointer user_datz); vod charnel & (GtkWidget * button, gpointer user.data);

void new_ch  (Gikiidget  button, gpointer user_data); od e (GEkWidget  button, gpointeruser data}; vod rench  (GtkiWidget * button, gpointer user_data);

lvoid_quit c (GtkEutton * button, gpointer user_data); vod to  (GtkButton * butten, gpointeruser_data); vod quth  (Gtfutton* button, gpointer user_data)

(abeolean window_destroy_ch (GtkiWidget *widget, inter user_datal;  destroy_cb (GEkVIidget *widget, GAEvent *event, gpointer user_data); g:auearvmdw | destroy_ct (Gkridget *widget, GdkEvent *event, gpointer user_data);
#ifdef HAVE XL e HAVE XM ildelFAVE XL

lvoid open_ch  (GtkButton * button, gpointer user_data); Vol opend  (GkButton * butten, gpainter user_datal; Vil openh  (skéuton * button,gpointeruser_data;

lvoid savech  (GtkButton * button, gpointer user_data); sied  (GtkButton * button, gpointer user.datal; vod e (Gution * button, gpointer use_data);

vovd sa/i : a5 (GHBution * button, gpointer user_data);

a\ﬁafHA\’E LAOCCA
Vil cca save b (Skutor * button, gpointer user_data);
endif

iteFHAYE_GhOVE
Vil asbouk  (GEkVIidget * widget, gpointer user_data);

#endi

Wid sot dhangz b (GtkMenultem * menuitem, gpointer user_data);

vod sof_moved  (GHiButton * button, gpointer user_ata);

vod ot renoje b (sdutior * button, gpointer user_datal;

(gaooear st ablse & (GtkWidget * button, GdkEventButten *event, gpointer user_datal;
t (GtkToggleButton * button, gpointer user cata);

(gooean dot wet dry b (GEkWidget * button, GdkEventButton “event,gpairter user_data);
id " dot wel_dy o+ (GtToggleButton * button, gpointer user.cata);

void  slot vet_dry _cortrol b (GtkRange * range, gpeinter user_data);

\gboalean control_button_ press_ch (GtkWidget * widget, GekEventfutton * event, gpointer use
void control_ock _cb (GtkToggleButton * button, gpointer user_data);

vod - cantrol_loat_cb (GtkRange * range, gpointer user_datal;

H
g
=3

vold curiralfoat_text cb (GHEnty *enry, opoiner user_catal; void _ contolfoat_textcb G4ty "enty, painteruser_datal; vod _contol fat_text_cb Gtintry * entry,gponter iser_da
o L} l . 0 - t m - +

Humber of dstnct rigrams: 164 Nuner of dstnct igrams: 164

Nanker of dstnct igams: 154

u_abadsh phgn_sot cabadeh ool aloadsh

el _R Ul CALBACKS <

UGN SLOT_CALLBAQG H_ aifc
define _R_UT_CALIBACKS H_

acefne CALBACG H_ < _X_CONTRD.
#inchude "ac_confg #include "ac_configh” #include "ac_configh”
#include <lﬂ<’q(k.n #include <gtk/gthh> #include <gth/gtich>
addch  (GtkMenultem * menuitem, gpoiner user.data); vod shot_change cb  (GtkienuTtem * menuitem, gpointer user_data); gboolun(onlml button \_press_ch (GtkWidget * widget, GekEventButton * mm,gpmnmu;.

void  channel_cb  (GtiiWidget * button, gpointer user_datal; \void slot_move cb  (GtkEutton * button, gpointer user_datz); control_k (GtkToggleButten * button, gpointer user ¢

lvoid new_ch  (GtkiWidget * button, gpointer user_datal; \void slot_remove_cb  (GtkButton * button, gpointer user_data); m control_floct_¢ ch (GtkRange * range, gpointer user_data);

void quit b (Gtkutton * button, gpointer user data); (GticWidget * button, GdkEventButton *event, gpointer user_dat \void  control_float_text_cb (GtkEntry * entry, gpointer user_data);

|aboolean window_destroy_ch (GtkWidget *widget, GdkEvent *event, gpainter user_datal; (Gt¥ToggleButton * button, gpointer user_cata) vod control_bool b (GEkToggleButton * button, gpointer user_data;

M_drﬂu'll XML . (Gtkiidget * button, GdkEventsutton *event,gpointeruser dalf| jvod controlint b (GtkspinButton * spinbutton, gpointer user_datal;

void open cb  (GtkButton * button, gpointer user_data); void  slot_wet_dry_lock cb (GtkToggleButton * butten, gpointer user_datal; ildef FAVE_ALSA

\void save cb  (GtkButton * button, gpointer user_data); void _ slot_wet_dry_control_cb GtkRange * range, gpointer user_data}; igoooear iet_dry buttor_prass o (GticNidget * widget, GdkEventButton * event, gpointer user_d:
red_save_peh  (imon bt gtz ey, contdl_sdd rid o (Gtkienultem * menuitem, gpointer user_data)

e e

#def HAVE LADCCA et

\void_cca_save b (GtkButton * button, gpointer user.data);

e

idef HAVE_GlONE

void about b (Gtkridget * widget, gpointer user_data);

encit

idef NE A4

vid mdo  (GHlWidget * button, gpointer user_datal;

#end

loint plugin_button_cb (6ticidge “widget, Gakevent “event)

lgbooleanidle_cb (gpointer data);

‘ ‘ 0 ' 0 )
Number of distinct rigrams: 108 Nanter of dstinct vigrams: 73 | Number of dstrct rigrams: 84
Similarity measure: 0.536723 Hep Similarity measure: 0.385965 tep || Similarity measure: 0.370166 Help ‘ EY

Figure 8.4: In looking at how one file relates to a set of others based on 2-way file
comparison, the user must align each window on the screen, and scroll
through them individually. Here callbacks.h is compared with each of
ui_callbacks.h, plugin_slot_callbacks.h and control_callbacks.h.

8.2.1 Multiple blue-red-black displays

The first idea was to apply the colouring technique described in Section 8.1.2
(blue shared, red uniquely shared, otherwise black) several times to com-
parisons between the candidate file and each of the potential target files,
then to view the results side-by-side to help determine the destination of

code from a split file, or the sources of a merged file.

On the left of Figure 8.7 (p.122), three versions of the example file are
shown side-by-side. The first is compared with the amended file in the next
release, the second and third versions are compared to the two target files.
The mostly red coloured text shows that the amended version of the file

has retained code from the first and last parts of the file. The most similar



8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 119

target file contains most of the rest of the first half of the code. The other
target file contains the remaining code from the second half of the file, as
well as a small section from the middle of the part marked by dashed lines.

This marked section is shown in more detail in Figure 8.8 (p.123). This
tigure shows that the small function ‘validate-reply” is in the third file while
the remainder of the code in this section is in the second file. Using red
to colour those trigrams uniquely shared by the two files gives a clearer

picture of code destination than having all common code the same colour.

8.2.2 Displaying comparisons between one file and three others

Although the three comparisons shown on the left of Figure 8.7 are effective
in identifying the destinations of a file, it would be more convenient to

have this information in one column rather than three. A three-way colour

Document: base-filec

Blue file: base-file-new-version.c.......e.ceeussuens (file 1)
Red file: first-target-file.c (file 2)

Here is some "code" which is in the revised
base file, and is not in the other files.
This has moved to the first target file,
known as file 2, and therefore is in red.

This text appears in fil
This line has parts in both in each.
This stays in the revised file, but is also

in the 2nd target file, and is therefore green.

2 & 3, so is orange

These two lines stay in the base file and are
in the first target file, so are in purple.
Code in all three files is coloured black.
This code the new the

but has edited, which gappy -

File 3

Figure 8.5: Each target file is assigned a primary colour. The base file text is shown
and coloured according to which of the target files its trigrams are in.



120 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

scheme is developed here to show which of the target files share code with
the file of interest, and so condense the information into one column.

The idea is to colour the base file code which is “uniquely shared” with
the first file blue, with the second file red, and the third, yellow. If the code
appears in two files, the standard mixes of primary colours, purple, green,
and orange are used. If in all three files, then it is black, and if the code does
not appear in any of the three files, the tokens are coloured pale cyan. The
scheme is outlined on the left of Figure 8.5 and the colour mixes shown on
the right.

To accustom the reader to the colour scheme, simple example compar-
isons are provided in Figure 8.6. On the left, a file which has apparently
disappeared from the system is the base file. It is compared with the most
similar file in the next release. The text is coloured blue where the trigrams
appear in the other file, and cyan otherwise. The file on the right is com-
pared with two other files. Where text is in the first file, in this case the new
version of the base file, it is coloured blue. Text which appears in the other
tile, resulting from a split, is coloured red, and text in both files is purple.

The larger example file, fa.c, which is split three ways, is shown using
this colour scheme to the right of Figures 8.7 and 8.8, where the blue, red,
and yellow sections match the red parts of the comparisons on the left of
the figure.

The pairwise comparisons between callbacks and three other files, first
seen in Figure 8.4, are repeated in Figure 8.9 along with the equivalent
group comparison, demonstrating its compactness. The group comparison
overcomes the problems with multiple pairwise comparisons: itis fast, does
not have to be organised on the screen and the comparisons scroll together.

Also, by zooming out, a quick overview of large comparisons is possible.



8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 121

Comparison generated by analysis of the trigram report produced by the Ferret Copy-
Detection Tool, (¢) School of Computer Science, University of Hertfordshire, 2010.

Comparison generated by analysis of the trigram

Documents . pbbutons ptbendsrpbbipeh 17 b

(c) School of Computer Science, University of
Hertfordshire, 2010.

|B||1e file: /.../phbuttons-n+1/pbbuttonsd/libpbhipe/phhipe.h

|Red file: No second file _

[Vellow fle: No third file

#ifudef THCLUDE PEBIEC ‘Blne file: /.../nap-n+1/sscr.h
#define INCLUDE_PBBIPC H \Red file: /.../map-n+1/winio.h X
#define CHUNE(a,b,c,d) ((a)<<24 | (b)<<16 | (c)<<B | (d)) “f‘""“- file: No third file
¢define SERVERPORTREY CEUNK('P', 'B', 'B', '§')
#define MESSAGETYEE CHUNE('E', 'B', 'B', 'M') #ifndef NAP SSCR H
gdefine MAXCLIENTS 10 pdefine NAT_SSCH_H
#define REGISTERCLIENT 1 finclnde eads. k"
$define UNREGISTERCLIENT 2 :t'"“t LS
l}def?ne REGFAILED 3 unsigned char 1n[256]:
#define CLIENTEXIT 4 unsigned char d:
#define CHANGEVALUE 10 chans t #chan:
#define CHANGEERROR u struct scrls s *own;
#define WARNING 12 struct scrls s #prev:
#define READVALUE 13 struct scrls:s *next;
struct pbbmessage | }:

typedef struct scrls s serls t;

long nmessagetype;

(ssearch t *):

long void plist(ssearch t * *, int);
struct tagitem taglist[1]: int sinput(WINDOW *, sock t *);

}: void uscr(void);

gendif fendif

Figure 8.6: In each comparison, the base file text is coloured blue if it appears in
the 1° target file, red for the 2", and cyan if neither. The left-hand file is
compared with a very similar file, where 2 lines have been edited. On
the right, the file sscr.h is split, forming the new file winio.h. Trigrams
in the amended sscr.h are blue, in winio.h red, and purple if in both.



122 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

Figure 8.7: On the left, the candidate file is compared with each of three target files.
Looking at the mostly red coloured code, it is clear that the majority of
the file has been placed in one or other of the target files. On the right
the same file is compared with the same 3 target files. Here code in the
first file is coloured blue, in the second, red, and in the third, yellow.



8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 123

«
102 (L0G KARNING, validate_reqest
reverse tanneling not edvan)

erroz_coda -
REGREP. REVERSE_TU

ngle tunns
31

"REGRED_REVERSE_TUNIEL, ANOKTORY_FA;

sise e (taxtooreror
sE.

L)

©6 contig-oendBle. Setangie, tunneling = 0)

L0G2 (L0G_WARNTNG, “dended request for
riangle Tumel\nn)

arror_coda - REGRES, ACHIN_PROMIBITED_FAs
sise 1t (nuthorised chuck (contis®
>authorized networks, cli_add:.sin_addr))

062 (10G_wAram

Py fotture_seply (error_code, ext-srod,
sl

unsianed chaz e ARSI
struct reg_rep

“Sending failure reply

z.5_adds;
(roply->1d, req->id, sizeot (req-

sizeof (struct reg_rep);
wozi)

STH_BLG w05, sk, sk len,

ith *) (mag + maglen),

static ine
add_key_request (strict reg_extension
“exi, Int +len, char *meg)

«

s de
;‘u\u‘l “ta_spi

struct mag key *
e (mnfnr>hqun.( =
a Caddr

iz stn_sddr:
(©, destr:

fa_sot = get_ta,
L€ (fa_spi 1= WOLL)
¢

1 rien ¢ siseot (et msg_key) >
o

muc mnm FLAG, F # adding fe_keyreq
> ", +len)

olse
«

i€ feien ¢ oun_se Bt

o public )

o) :
ST, olem

«
10G2 (10G_MARNING, "validate _request:
roverse tunneling not * "allowed\n®)
error_code =

REGREE. REVERSE_TUNNEL_UNAVAIL,_FA.

)

it (mtoracoomts ¢
e o) =0

G,
danies request 5x triangle el -
innel required\n)

?_REVERSE_TUNNEL MAKDATORY_FA
)
vise e (toxeoomeqopes ¢
-0
X conFg-saniBle, triangle. tunneling == 0)

10G2 (LOG_MARNING, "denied request for
frerivgnmivel
exror_code = REGREP_ADMIN_PROHIBITED_FA.

elee if (tauthorized check (config-
>authorized networks, ¢li_addr.sin_adds))

L0G2 (1OG_MARNING, “request from an "
"unauthorized address te\n",

inet_ntoa (cli_adds.ain_adds))

arror coda = REGRER_ADMIN PRORIBITED FA;
)

andex_sobiie (axt) G contis-

- FaLSE)
ING, "M trying to access -

Mais not alloved in this FA")

ezror code = REGRES_ADMIN_PROHIBITED_FA;

it (error_code 1= 0)

soné_tatiure reply (arror_code, ext->req,

static int
validate_reply (struct meg_extensions
vaxt)

taxt-out suth 66 ext-orep-socde
REGREF._ACCE

DEBUG (DEBUG_FIAG, “validate_reply
riasing ax_aath\nY)
urn

)
if (tomegoistatize 1= 0 4 text-
>fa_piokeyrep 4 lext->fa_keyrep)

¢
DEBUG (DEBUG_FIAG, “validate_reply:
Riasing fa_keyres/fa_pubkeyrap\n®) :

static in
o eattuenceupty (1akieotei(atoans
reg_teq *req,

sttt sockadar_in sol4_sade, int spt,

. ailure_tine =
e

. tine

cine)
FLAC, Ssanting failure seply

adar m.. \_addr) , ntohs
(el sade-ontn pore)

et (fepiy, 0, STeane (atmet

(veply->id, req->id, sizeof (req-

‘mencpy
>5d))

mglen += sizeof (struct reg_rep):

if (s 1= UL

«

maglen 4

auth_sdd_vendor (AUTH_ALG MDS, sk, sk_len,
nsg,

{atzuct vandor_nag_suth 4 (asg + magien),
L EXT_DIKAMICS SK_AUTH, spi)
nd_addrass_ok (cli_addr->sin_addz))

ock . mag, maglen, 0,

it .mx. _reply")

static inc

cay_ro (struct msg_extensions
Vet Lot tlen, char +meg)

sepes_fa_adaz.sin adds;
i (0, dast) ;
\_ops 15 NOLL)

«
48 (+len + sizeot (struct msg_key) >
MAxuSG)

return 1
oy = (et oo oy ) (o ¢ t1
init key extension (ke

VENDGR, BRI DINANICS.PA.KEYREQ, htond

o

*len 4= GET KEY_EXE_LEN (key);

DEIG (DRBUG FIAG, ° + adding o Kerrea
$)\a", *len)

0
if (tlen + GBT_KEY B IBN (fa_pubiic key)

et
mencpy (nsg + *len, fa_public )
ST B L (Fa_pabhie k)|

leh 4o GUT_KEY_BKT LN (€8 public_ e
DEBUG_(DEBUG_FIAG, * * adding
2a_public key (len ==> $)\n", *len);

)
zoturn 0
)

062 (10G_WARNTNG, "validate_request:
Canneling not " "allowed\a®);

ror_coda -
REGRE REVERSE_TU

ie ((ext->req->opts &
FEVERSE_TUNNEL) == 0

Fiangle tusnel -
oL requireduin;

REGREF REVERSE_TUMNEL, MANDKTORY_FA:
)

slse if ((ext->req->opts &

Re L, == 0

e

oo i,
Ao

Tre, oli_sddr. sin_sddr))

¢

an wang, equet tron on *

£9ing to access -
iyt \'\l

static
v-ha-u seply (stsust. neg_sxcenstons
xt)

h
Sf (lext->ak_auth 66 ext->rep->cods
REGREP_ACCEFTED)

¢
o e S
th\n

)
Lf (ext->rep->lifetine lx 0 54 lext-
3t ibkersep s {axsoota bayeer)

Sasc (omavs_ruac,
niasing o Kayeep £ pibkereop.
raturn 1

zaturn 0

)

static
2and. nﬁm reply (int code, struct

e
atiien sockeads_ta +cli_addr, int spl,
unsigned char

int sk_len)
«

insigned chax megions);
el

turn

time (slast_failure time);

DEBUG (DEBUG_FLAG, "Sending failure reply
code,

(reply>id, reqroid, sizeot (req-

sizeot (struct req_rep):
wozz)

msglen -
Suh 0 andor (0308, ok, ok ten,

oteuct: vendos_maq_soth *) tneg + meqlent,
VENDOR, EXT DAGMICE SK AUTH, spi)
)

sondio,(req_sock v, mag, meglen, 0,
(struct sockadds -
sizeot (eeruet sokadis i)
chack, (esult, raglen

=

2 by roquest. struct asg extessicns
ox, int *lon, char *m

e
it lcantign >Mgnu: ™

return
Loy = (stzuct seicker 4 ey + <l
_xey.

®1REQ, heonl

+= GET_XBY_BXT L8N (key)
DEB0G (DEDUR FLG, 7+ addieg £a Xeyreq
(len => 3)\n", *len);

)

olse

¢
Sf (vien + GET_KEY_EXT_LEN (fa_public_key)
> anesc)

2ty u. Peblic_key)

5 e = S, 1o

«
1062 (10G_WARNING, “validate_request: reverse
tusneling not * "allowed\n’
'REGRE?_REVERSE,_TUNNEL,_UKAVALL, FA;

L) = 0
wvorse_tunneling 1= 0
46 config->enable_triangls_tunneling == 0)
«

; WARNING,
“danied raquest for triangle tunsel -
“reverse tunnel required\n®);

error_code
'REGRE?_REVERSE_TUNNEL,_MANDATORY_FA

)
else if ((oxi-reg->opts &
'REGREQ_REVERSE._TUNNEL,
&6 config->enable_triangle_tunneling == 0)

1062 (10G_WARNING, “dented request for
triangle Tunnel\n

error_code = REGREPR_ADMIN_PROHIBITED_FA:
)

4e (lauthorized check (contig-
Senthorize networke: o1i.sids.ein sdde))

1032 (106, WARMING, “roquest £rom an *
somaushorTzed sddiess

et non (o15 adar ot sdde1)
erzor_code = REGREF_ADMIN_PRO
)

r70_PA.

it (is_sender_mobile (ext) &4 config-
SlTou mabiTe nodes o= TALSE)
«

1062 (106_KARNING, access - is
oot alloess in this A
error_code = REGREP_ADMIN_PRO

x7ED_PA.

)
if (error_code 1= 0)
i

send_tadlure_seply (ercor_code, extooreq,

2 ext->mh_auth->eps : 0,

)
if (ext

DEBUG (DEBUG_FLAG, ™

return 1

static
send. failore_reply (int code, struct reg_req

struct socksdds_in +cld_sdds,
unsigned char

e spt,

int msglen = 0
1c.

(el

(O11-adae->sin pore))

measet (reply, 0, sizeof (struct
1ifatine = 0:

roply->
roply->c:

ey ey N
meacpy (reply->Ld, req->id, sizeof (rea-
>5d))

msglen 4= sizeot (struct

i€ (ek t= NULL)

(
asglen

meglen)
spi)

)
i€ (1send addrass_ok (c1i_addr->ain_addr))

sendto ( . maglen, 0, (struct

=)
add:
upper_ta_addr.sin_addr.
0, dest)

L€ (€a_opi 1= NOLL)
L€ (*len + sizeot (struct meg key) >
Key = (struce mag key %) ( “lem)

nic key_excansion (key,
:_DYIAMICS_FA_KEYREQ, htonl (

“len 4= )

DEBUG (DEBUG_FLAG, * £a_keyreq (len
\n", *len)

)

«

e (rlen + £a_public_xey) >
1

meacpy “lan, fa_public ke

G B (f0_pibic kep))

*lan + _public_xey)

DEBUG (DEBUG_FLAG, * £a_public X

(len Tov, +len);

return 0

Figure 8.8: Extracts from the file comparisons in Figure 8.7, expanding the section
marked by dashed lines. In this section, most of the code from the
base (candidate) file has moved to the second file, with one function,
‘validate-reply’, in the third file. On the left are a set of three compar-
isons, one for each target file. The comparison on the right echoes the
three on the left in compact form. Yellow code is the same as the red in
the third file, and red code, the same as the red code in the second file
on the left.



CHAPTER 8. VISUALISING FILE RELATIONSHIPS

124

*s[003 uostredwod a1y Auew £q pasn suostredwod aspmired ayy jsurede yorordde mojod aa1y) ayj Jo ssauoeduwod oy Junens

-uowap “ Syoeq[[ed [0I3U0d pue | syoeqreo-1ofs urdnid 1 syoeqres

uostredwod ypeduio)) (q)

fiwawp, prea) o= wacpynae ysel B
{{wavp JwquTedB) o= eTRT weTood
{lzomas , ymapEn 3eSeTe . jeSeTens)

| £ (wywE aean TeguTed
B “aedpTa & vl eqang Teaees wwered)
v T oo siows , sSewmpnel o5 TemyEes i s 36TE P
{ [wawp Twen JeuTedd mey3ngeriSernn] S5 wmer LIE Jm 30TE PYA
| £ {ww awan TwguTed
SITESATEY SIINE . JedtTn] S5 LI e 3ETE Swsed
£ {wawp Jwan TwyTed ¢ soyyrgeTSornn] S5 TIV 3SeT 36T P
¢ (v e ey
SR ‘meg3ng . jslfoTEnis] o e ﬂl uotu T
{ (vawp e JwETedS ‘IR . SRIEIE] GO WACHRI 3STE B
{ (wywp Team swquTedS me3jng . moyynEnE] OO wace jeTT P
£ {ww Teen Tequvedt ‘megreoes , o Inomen)

{wawp Tean IequTcdR ‘jsipia . JeSpTNNRS] o 3ROOE PG

¢ (wgep ean aequedd ‘moyyng , USIINEMGE] S0 Y s
f{wawpaeen JwquTedt ‘mmyyng . SSRIREGIE) S5 wAeE BT
f{wawE men amguTed® Cuoiing , woInEGE) o Ueds BT

‘UMAS , JERANYPE JSSETA , JeSPTHRE] OF ACTINEE ACPUTA U
£ {wawp Jwan sequTed ‘mo33ng . woRIREGE] = 3R P

{iwaws awen awquTeds ‘woyang . IedETEE] o AR B
{lwwEawan awedt Cwand , jelETenE) TR

X epequey jors mEngd s T+u-per-pel @y v«&
X TepeqIes sy [+a-peiypel Ay ang

o7 e ) Ag peonpasd odas miE ) # o sisd]ER Aq paiesued vosiedm)

994048'0 ‘2nseau Kjue|uig 9969880 :2anseaw uejus

m pue | syoeqred usamiaq suostredwon jo119,] pue OD¢ :6'g 931

S9[IJ IOYJ0 DI} pue [ Sdeq[ed usamiaq suostieduiod joro,] (€)

£2/989'0 ‘2inseau fuejuis

(eyep iasn saquiodf ‘ionIng , UONNGNID) (O TIARSTED  proA|

“(e3ep 195N 13310 WSYNUSW , WIITNUSLPAD) G5 U
2p 49sn s3ui0db JURA3 , UORNGUIAPIPY J0PIM . JIBPINID) s

ppuag
{eyep aasn saquiodd iopng , uoTNPAI)  OSEaARS  proa|
{(erep I pTanes pron
“(eqep”4asn Jajuiodb ‘uong , UORNEND) P uado  ploa|

“(e3ep” s9sn s3qui0d6 ‘Sbues , 3Bueypn9) @ joquod"Aip M jofs P
“(e3ep™sasn sa3uiodb ‘uopng , uopng(660 RY) GO i3Im0l pu
125 s2quiod A2, UORINGIUATIRS ‘UOTNG . 126PINDAD)

“(eep 42sn 23uiodb ‘woying . UoRNgRI660L0)
ep” 25 423u10db ‘A2, UOHNGIUATAPD ‘UoRNq , 326PIMRD)
(eep4asn s2quiodb ‘voqing , uORNGPY)

{R1ep 25N 3UOA 3K3, JUIATIPD ‘30PN, TIOPLNIS) Ao sap MOpUY UEa|00qH

.F.E_ Jasn 2ju1od ‘26uei , 26uepo)
.?.i “sasn s2quiodB ‘voing , ___E._«_u_aa..:u&

“(e3epsasn s23ui0db ‘vonng , UORNGR9)
{(eyep™sasn rquiod AwRyNURW , WATNUAPAS)

(18 13sn 13]u0d5 uonng , 196PIALD) G PULRYD  pioa
“(e3ep rosn 2quiodb ‘waynusw , WSAMUSLPRD) © ppe

801 :swesbig pugsp jo squny

’
“(e3ep s93ui0db) g0 3ypt ues|ooqb|

(auana, uanPip9 396pw, 9BPINORY) GO uopng uibnid Juib)
o8

(e3ep aasn s23uiodb ‘voning , 326pIND) a‘ﬁ_n_ __._us
VSV IAVHIRPHE

Hpuag

{(eyepTiasn squiodd 3a6pm , 120pLAD)  TIn0ge  pron)
IHOND T IAVH J2pp#|

Hpuag

V22QVTIAVH 3P

(e38p 1a5n 3uiodD UOTNG , UORIAGPRD) GO b pion
(eepJasn AOM “ONING , J3OPIVIS) D MWau ik

THS0VETIO I %

TH SOVETIV I W 2P|

spegesn

971 1SURLDLE 1UGSP 30 QI

" {(eyep iasn 2quod6 “Aqus . A3u399) G I Je0y josuod i
“(e3ep” 1asn Jajuiod6 ‘3buel , S6URYNH) G e0y”[0JUOY  PK
“(zyep sasn s2jui0db ‘voyng , uongRIB6O RD) G poT [o4uo> P

“(erepsasn saynod “Aayia , Anyiypo) -
{eyepsosn auodd abuea , abueyppo)
(e1ep 25N 12)u1000 ‘UOYNG , UOLING3IO60LNID) G

“(e3epa2sn a2qui0db ‘26ues , 2buepRY) G (04U AP M J0is

“(e3ep 135 3u10d6 ‘36UE , 36UBYHD) Gj0U0S /
“(e3ep”s2sn s2quiodb ‘uonng , uoRng(660 1Y) G201 AIp3am 30l i

£(2Jepasn 33U0A5 WORNG , UONGAIHOLND) (egepsasn rauods ‘uoying

425N 42quiodB U242, UOINGIUAATIPI ‘WONNG , 326PIANID)
“{e3ep s2sn s23uiodd ‘uoying . uoyng2j66o1 9)

op”J2sn s2u1edb ‘Ju2A2, UORNGIUATIPY ‘uolang , 326PIMRO)

#(eyep”aasn s2quiodf ‘uoing , UCRNGIO)

quana,
“(e3ep”4asn 43quiodb ‘uonng , UOYNG:

(e1epI351 133u10d5 4U3A3,, LOTINGIUAIIP) ‘UORING . JOPNIO)
“(e3ep sasn s3uiodb “UoYIng , UGTINGIIBEO1 1)
(e1epT438N 131u10d5 "JU3A3,, LOWNIUATAP) ‘U03INq , 136PINYID)
{erep”sasn s23u10db ‘uopng , uopnR9)
{(erep™sasn s23ui0db ‘uopng , uopPR9)
“(e3ep s2sn sayu0db ‘wapnuaw , WAYMNULPRY)

(eyep sasn s23u10db 326pm , 336pIVR9)

(eyepsasn s2quiodb ‘vonng , UORNGRO)
{(erep™sasn ayurod ‘wapnuRw , WANULPAS)

?E_ 125n 123u0d ‘uo}ang , ORNGR) @ snoujos  pion)
(eyep sasn saquiodb wanuaw , wMUDLNY) @ B Ios o

“(eyep™aasn saquiodt 4aBpi . 126PIID)

“(e3ep™rasn s23ui0db ‘vonng , LoRNGRS) “(e3ep™4asn Jajuiodd “UoRNg , UOHNPHD) e3epa2sn 23uiod6 'UONNG , UORNPAD)  GUTAARS @D proa|

{(23ep™ 135 J3yuiodt ‘uopng , UORNGPRD)
“(e1ep” 135 J3quiod5 ‘W01 . UORNGPHS)
“(e1ep™ 1250 J33u10d6 ‘UopNq , UORNGPRS)

{eyepiasn saquod uoyng , uogHs) {eyep™sasn sauods ‘wonng , uopngHI9) - TSECaNeS  puony

{exepasn saquodd “uopng , upngqs)

{e1ep 425N 2UOA 2K2, UIATAPI ‘120U, TIOPLIS) G0 AoASIp MOPUY UEa}0oq0

“(e3ep 4asn s23uodb “onng , 326pRD)
{(eep 12sn s2quiodd WRANRW , WATNURAPAD)

EG 1951 13]u10d5 AWAYNUBL , WSYNUSLD) GO ppE  pio

Hpu#

“(eaep uasn a2uiodb 320pim , 16PIMRD) G Inoge  proa|
IHONY IAVH 2Py

Jpug

{(eyep”iasn J2juiodt ‘woynq , uoyngy)s)  @2nes  proa
{(eqepaasn ayuodh ‘opng , uopngy) g uado  proa|

(eyepJasn 3Juiod ‘oOlIng , UORNENID) 3 Wb pioA
Ei @ MeU  pioa|
@ Ruvey  pioA|

<prorRo Spmpus




8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 125

8.2.3 Scheme for colouring the text

The scheme for colouring the tokens in the base file is described next, with
the aid of an example. As the target files are represented by primary colours,
the maximum number of target files which can be displayed in one group
is three. The example therefore has three target files.

Each trigram in the base file can appear in any of the eight combinations
of the target files. The colours allocated to these combinations are listed in
Table 8.1. Each token in the file is a member of three trigrams, except for
the first and last two tokens in the file. Given that there are eight possible
groups of files that each trigram can appear in, and that each token is in 3
trigrams, a token can be in one of 120 possible combinations of file groups.
The formula, where n is the number of choices, i.e. file combinations, and r

is the number of places, i.e. trigrams, is:

= = = =120.
rtm-1)! 317! 3x2 0

( n+r—1 J_ (n+r—-1)! 100 10x9x8

r

There are 8 combinations where all of the trigram file memberships are the
same, for example, [(1 3) (1 3) (1 3)]; 56 combinations where two are of one
tile membership and one of another, for example, [(2) (2) (1 2 3)]; and also
56 combinations where there are three different file membership groups, for

example, [() (2) (1 2)]. The tokens are coloured as follows:

o If there is a majority file combination, use its colour.
For example, in the group [(1 2)(3)(1 2)], (1 2) is the majority combination, so colour
purple, a mix of red and blue, the colours of files 1 and 2.

e Otherwise find the most common file in the combinations. If one file is
in the majority, colour to match.

For example, [(1 2)(2 3)(1 2 3)] - file 2 is in the majority - colour red.

One file | Primary colour Two files | Secondary mix Other Colour
(1) blue (12) purple (123) | black
(2) red (13) green () pale cyan
(3) yellow (23) orange

Table 8.1: File combinations and the colours associated with them



126 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

o If two files share the majority, colour with the secondary colour which
combines the two primaries representing the files.
For example, [(1 2)(3)(2 3)], the majority is shared by files 2 and 3, so colour orange, a
mix of red and yellow.

e Otherwise, colour brown, the tertiary mix. (e.g. [(123)23)(1)])

To give an idea of the number of tokens belonging to trigrams of the
same or different types, a random sample of 10 files, each with three target
files, taken from the split file dataset (see Chapter 12) were analysed. In
these files, ranging from 700 to 12,000 tokens, 64% of the tokens belong to
trigrams with the same file set, 32% have 2 sets, and only 4% have 3.

As an example, these rules are applied to the data in Table 8.2, which
is based on a sequence of 15 tokens, labelled a—o. The trigrams are listed
on the left, and the files in which they occur in the next column. The
tokens are listed in the third column and the sets of files which the trigrams
are part of are in column four. The first column of the “Token colouring’
section shows the majority file group, where there is one; the next column,
the majority file(s) where there is no majority; and the last column is the

colour for the token. The file groups are chosen to exemplify the different

Token Colouring
Trigram | Files Tkn | Sets of containing files Majority | Majority | Colour
groups files

abc 023) a [(023)] 023) n/a Orange
bcd 01) b [(023) (01)] n/a 123 Brown
cde 012) c [(023)(01)(012)] n/a 12 Purple
def 023) d [(01)(012)(023)] n/a 12 Purple
efg 02) e [(012)(023)(02)] n/a 2 Red
fgh 023) f [(023)(02)(023)] 023) n/a Orange
ghi (03) g [(02) (023) (03)] n/a 23 Orange
hij (013) h [(023)(03)(013)] n/a 3 Yellow
ijk 012) i [(03)(013)(012)] n/a 13 Green
ikl 0123) | j [(013)(012)(0123)] | n/a 1 Blue
klm (0123) | k [(012)(0123)(0123)] | 0123) | n/a Black
Imn (0) 1 [(0123)(0123)(0)] 0123) n/a Black
mno 0) m [(0123) (0) (0)] 0) n/a Pale

n [(0) (0)] (0 n/a Pale

o [(0)] 0) n/a Pale

Table 8.2: Example of the token colouring scheme described in Section 8.2.3. Tri-
grams, the files they are in, the tokens in the base file, and the set of files
that the trigrams they belong to are in. Note that file 0 is the base file.



8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 127

abcdefg 1 Ijkli

Figure 8.10: Colouring scheme applied to the tokens from Table 8.2

colouring patterns, see Figure 8.10; real examples are shown elsewhere,
such as Figures 8.11 and 8.12. However, the figure shows that the sequence
"ab cd e f” appears in file 2 as the letters are coloured red, purple, orange
or brown, that “f g h i” is in file 3, coloured yellow, orange or green, and
that “c d” and ”ij” are in file 1, being blue, green or purple. The sequence

"k 1” is in all three files and “m n o” in none of the files.

Figure 8.11: A large file split 7 ways, compressed to fit the page. This example is
unusual in being a well-defined split with little incidental similarity.



128 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

8.2.4 Displaying comparisons between one file and many others

The colouring scheme is well-suited to groups of three target files, if more
files and therefore more colours were added, there would be insufficient
separation between colour mixes. However, this does not mean that the
visualisation is limited to a comparison between the base file and three
others. By repeating the base file and comparing it with each group of three
target files, information about the similarities between any number of target
files can be displayed.

Figures 8.11 and 8.12 show multiple comparison examples. The file in
Figure 8.11, from the PostgreSQL project, is split seven ways, and therefore
displayed 3 times. This file contains around 2,000 lines and is compressed
to fit the page. Most of the code from the first half of the base file is in the
files in the first column, with two small sections going to the “red” file in
the second column. Most of the rest of the code moves to the second “red”
and “blue” files, with some going to the second “yellow” file and one small
function to the seventh file, shown in blue in the third column.

In Figure 8.12, the file callbacks.h, from the jack-rack project, has nine tar-
get files. Callbacks.h appears to be split into three new files, ui_callbacks.h,
plugin_slot_callbacks.h and control_callbacks.h, which are respectively the
“blue”, “red” and “yellow” files in the first column. The top two lines are
not in any of the files, but otherwise the code is in blocks in one or other of
the three files. The other target files are incidentally similar.

This tool is named 3CO,! further examples of its use are available at

http://homepages.stca.herts.ac.uk/~gp2ag/trigram-analysis-examples.htm.

8.3 Summary

In this chapter, methods for displaying different aspects of the interactions
between the files in a group were described. In particular, a novel method
for displaying a comparison between one file and a number of others in a

convenient and reasonably compact manner, based on colouring text.

13CO is for COCOCO, which in turn stands for COmmon COde COlouring



129

8.3. SUMMARY

“UWIN|od puey-Jy 311 Y3 UT ¢ ISe] 94} YIIM “UWN]0d S[PPIW S} UI SI[J € XU 3} Y3Im pareduwrod pue pajeadar usyy st a1y aseq

9} “UWN{0d puey-3Jo 93 Ul 3] aseq a3} YIm pareduwrod are sa1 Te[TwIs 1SOW ¢ 3], *SIY 1981e) 6 YIIm 3 e Jo ajdwrexa uy :g1'g a1

- - 37
Slwavpe pyta) g2 aspIngr yeel
[v3wp zeguyodd)
Slamean o ITeApe CIeipTA . 3eipTani0)

] _Bﬂuu-- L
Sy 1o Feyuyedd ¢ s
Jlvavp 3een i
Clvaep aeen I
CwavyTaenn aejuyedd ¢ T I
[vavp 1w 3wy
= ‘anipIa .
‘nagTaeen »Ie
Jlwaep zeen aejuyedd ¢ = LAl
[w3wp 2enn 3e3uy
. ‘B033ng o
JwavpTaenn ae3uyeds ¢ I
[vavp aeen 3w3Ey
- ‘Emaang .
B e FeyTyedd ‘Te3lng o s
.l_-..- Teen JeTyodd ‘ueasng . s
Jlwaep aeen aeauyedd ‘weitnuem L

J(wawpTaenn eaiedd 3elpia o 3epTai0) duu-oa- L
DIORD BAYE 39P5T

= B
JlwanyTaeen ye3uyedd ‘eling o welIneAI0) 9 ATE WD Y
YOUNT BAYE 39P3T

TP

‘ITAR o TOIINEITEATAPO IGDPIA o

‘3e0pIA o
[v3vp zen ze3uyodd ‘uolinquide o UeIIREUIAEAIL)
_ﬂ-dlud- 2e3uTedd ‘ue3ang o UoIIREETABOINI0)
(w3wp zenn -uﬂouu ‘Axyve o Aryugnag) a0
(v3wp zeen ye3uyodd ‘eduex o -unq-xu?
(v3wp zenn ‘we33ng o uoIIngeTiboy:

3 Ie0pTNa0) 3 2 1933ee3
(v3wp zeon ze3uyedd ‘ebuex , eduwgy3n) 7 roayEes Lip 3eA 30T
(V3w 300 se3syedd ‘emaang o seadreeIlleinae) 37 a0t A awa 3eTr
(w3ep zenn zejuyodd
‘ITOAR ¢ TOIIDEITEATIPO CEUIING o INPIANIO)
[vavp zenn Fe3uyodd ‘mo3ang o ToRInQETAdosI0) S0 TIV XPOT 3TN
[v3wp zean zw3uyodl
IENAR 4 ETIILEITNATIRO (EIINT o IedpTawI0)
[vavp~zean ze3uyodd ‘0332 o TIIITETIO) I qu- Ll
[vavp zenn 3e3uyodd ‘T033ng o TOIIRGWIO) I3 wATE 3070
(w395 209 ze3uyodl ‘meijnves o weIITTeNNIL)

[v3wp ze9n ze3uiodd ‘Jedpia o
v

[v3vp 209 Ie3uiodl ‘To3ang o

_Siuzu- Te3uyedd ‘Te3ang o
_S-dl_-a-n Fejuyedd ‘vejaeg o
[w3ep 300n so3uyedd ‘weaseg o

[vawp zeen yezuyodd
IeBpIA .
[vavp ze9n 3e3uyedd ‘mo33eq o
[v3wp 300n ze3uyodd ‘uo33ng o
[w3wp zeen e3uyodd ‘weaaeq o
[vavp ze9n Te3uyodd ‘meygnues o
<y nd/nd e
RRIFEEN

[v3wp zenn zw3uyodl)

! (vawp zeen Feymyedd ‘usiing

. _ e
Clwavpe pita) g saspanar aewl By
{[vavp 3wywyedd) g erpy weey
_ Clawean 4 3meazpe C3eipia o 3etpianiol
SlvepTreen
Cwawy e soyuyedd ‘uoiing

CwanpTaeen awasy
L) --annquux 1933857 TRy
. ebuwgxin) T T0x3893 nl I 30Ty v
uoIngerdioznag) 3 oo n-d I8 3978 PV
_33 RIS i
TIURAN L uOIINEINEATNPO (EOIING 4 IeBpINNIL) 3T h-.- u-: 3978 TweTON
i (wvawp zeen zeqmyedd ‘uciing . weIInETABOINIL) T TIV nuﬂ 010 P
< wawpTaeen awasy
¥ o SRIIREITATAPY TIINR 4 I0BPINAID) T0 -:n- 3070 TweTOn
{(VawpTTONR JO3ETLD ER33nG o ETIINENID) T GATEOI 3018 PV
SlwawpTaern se3Eyedd ‘ueaang . wTIInENIN) 39 e4Ta 3918 PV

v Taeen . w037

I(wawp zenn reiuyodl eluns

FTvee

{(wavpTIeRn Je3ETA 3eNTA 4 3eNTANAS) S92 3ROV Y
DIOSY BAYE 39937

3 S0 g
{wawpTIern awaEiedd 503ang o EMAInENI0) 33 AN 9ID BT
YIOONT 2AYE 3995T

.33 Torn 303Tedd ‘T33ng o INNPTANIO) 7 TOEENED BV
Clwawp aeen 37

X Y0080 p leauy . s-pea-pel Jag e .ﬁ

X Taopma oo

pu-prl g a ._

X TprgR powe

+rpu-prl g a ._

X Ty T-.ﬁ:ﬂ-.. g 1&

X ITPIge sy _%ﬂ:ﬂ.q .mvﬁ

X TP e -niu:_.qea.cz .mzu_

X P BRIy apapr g sng|

X R iep wdagdoas . a-prrprl g sug)

X TP B puprl g sngl

L0 Smmpaoie 30 A soeing sedwie) 30 [00g3g (2) 1001 BoRsae-Ade) 16 § g A3 pecepesd uodes waslia o5 0 riwor g peessnsd sommdue)




130 CHAPTER 8. VISUALISING FILE RELATIONSHIPS



Chapter 9

Trigram analysis applied to
student assignments

Trigram-based measures of unusual similarity for use in collusion detection
were introduced in Chapter 7, and Chapter 8 showed a way to highlight
interesting parts of the code, such as unique trigrams, or those shared by

just the two files, in a comparison between files in the context of a group.

The application of these techniques to a set of student projects is reported
in this chapter. The group in the study were taking the “Web Scripting
and Content Creation” course, during which they were asked to develop a
community website using ASPNET and VB.NET. Unique trigram counts
were used in generating reports for feedback. At the end of the course, the
highest ranked file pairs identified by each of the set of collusion measures

were compared.

The students were expected to commit their code to an online repository
regularly, and staff had access to the code for analysis. Use of a repository
meant that staff could both review progress and provide feedback to stu-
dents. The twin aims were to encourage a steady development pattern and
to discourage contract cheating. Trigram analysis was used in the feedback,

to measure originality, and in the monitoring, to measure similarity.

131



132 CHAPTER 9. STUDENT ASSIGNMENTS

9.1 Data

Sixty-two students were initially registered on the course. Their projects
were developed using Visual Studio™, which produces a large amount
of auto-generated code. The files were filtered, so that only those expected
to contain the student’s own code were selected for analysis. These were
.ascx, .css and .master files, with scripts from .aspx files, and classes from
.vb files. Although filtering is not necessary for the trigram analysis, except

to exclude image files, other analysis of the code made it necessary here.!

9.2 Method

Each student’s code was concatenated into one large file to simplify com-
parisons between their work, as shown on the left-hand side of Figure 9.1.

This concatenation technique is used by others in plagiarism detection and

Unformation in this report is anonymised and has UH Ethics Approval 1011-129

Student
projects

file

file

Provided I

code

Figure 9.1: The selected files are concatenated to form one file for each student
(shown on the left). Provided code is also placed in one file. This file
and those of student code are presented to Ferret to obtain information
about the distribution of trigrams in the files.



9.2. METHOD 133

in clone detection. For example, Lancaster and Tetlow [144], and Kamiya et
al [125], who also add file delimiters. The concatenation introduces new tri-
grams at the file margins and these vary depending on file order. However,
this is a small price for making the rest of the process more straightforward.

Ferret currently has a tokeniser for C-type languages, but in this work is
used for other languages and appears to be effective with the varied code. A
C-type tokeniser will give a slightly different token set to a language-specific
tokeniser. For example, “not equals” in Visual Basic, “<>", is treated as two
tokens, “<” and “>", instead of one.

The code provided for the course, in the form of examples or exercises,
was also concatenated into one file. This file, and all of the student files were

compared by Ferret to provide a trigram-file index and similarity scores.

Feedback The students’ projects were downloaded weekly for analysis
throughout the course. The primary purpose was to provide feedback
to staff and students, showing progress in terms of the amount of code
produced, and its individuality. An anonymised report was posted every
week showing the “top 30” students in each of these respects. The amount
of code was measured in non-blank lines. Individuality was measured by
counting the unique trigrams in a project. An excerpt of a weekly report
is shown in Figure 9.2. Each student was allocated a flag, known only to
them and to staff. Twenty flags are shown for the student with the largest
number of unique trigrams, the number of flags for the remaining students

is proportional to this baseline figure.2

Collusion detection At the end of the course, the files of student code and
of provided code were compared to check for inappropriate collusion. The
four proportional similarity measures were applied to the projects. These
measures are the standard Ferret similarity score, those with trigrams in the

provided code, in common code, or in both, excluded. Counts of shared

2This work was undertaken with Steve Bennett, the course tutor, who set up the reposito-
ries, and whose ideas included monitoring development patterns and providing anonymous

feedback. The implementation of these ideas and use of trigram analysis were mine.



134 CHAPTER 9. STUDENT ASSIGNMENTS

f p—

j

Figure 9.2: An extract from the weekly feedback to students charting their progress.
Twenty flags are shown for the student with the most individual tri-
grams to date, the rest of the flags are allocated proportionally.

trigrams were also computed, those uniquely shared by two files, and the

weighted count of trigrams shared by up to two, four, and six others.

9.3 Results

The pairs of files found to be similar by the different methods are reported,
compared and analysed in this section. As the course was closely moni-
tored, inappropriate collusion was not expected, and generally this was the
case. However, a number of features make this set of projects a good test
for the measures. The projects range from 400 to 7,000 lines of filtered code.
There is high incidental similarity, both because of the development tool
and because many of the ideas introduced in class were incorporated into
the projects as they were developed. There is also some unusual similarity,
where a few students trying out more advanced ideas have found similar

ways of dealing with technical problems.



9.3. RESULTS

9.3.1 Proportional similarity measures

135

Table 9.1 shows the pairs of files with the 20 highest scores under each

measure. In the first column, file pairs are listed. In the next 4 columns,

there is a tick under each measure where the similarity between the pair is

ranked 1-20. As expected, the measures which exclude common code, in

columns 4 and 5, mostly agree. However, only four of the fifty-five selected

pairings score high under all four proportional measures. These pairings
are (3, 15), (3, 25), (24, 40) and (57, 60). The last two columns in the table

relate to count-based measures, which are discussed in the next section.

3Table G.1 in the Appendix shows the numbered rankings.

3

Ratios Counts Ratios Counts

Proj- Fer | Ex. | Ex. | Ex. | Wt. | Wt Proj- Fer | Ex. | Ex. | Ex. | Wt. | Wt

ret P O | PO 2 4 ects ret P O | PO 2 4
3,7 v v 19,27 v v
3,15 v v v v v 19,36 v
3,20 v v 19,43 v v
3,25 v v v v v v 19,46 | v
3,56 v 19,54 | Vv
4,44 v 21,28 v v
5,13 v v 22,61 | v
5,52 v v 23,41 v v v v
7,15 v 24,30 v v v v v
7,25 v v v v 24,40 | Vv v v v v v
8,17 v v v v v 26, 52 v
8,23 v 27,28 | v v
8,25 v 27,53 | V
8,63 v v v 27,61 v
10,29 v 29,42 | v v
10,42 | v v 29,58 v
10, 58 v v v 30,40 | v v v v
13,49 v v 32,33 v v v
13,52 v 34,53 | V
13,56 v 36, 43 v
14,22 41, 58
14,53 v 42,58 v v
14,61 | v 43,46 v v
15,25 v v v 47,48 v v v v
15,56 | v v 49, 52 v v
17,34 v 51,63 v v v
17,63 v v 53,61 | v

57,60 | v v v v v v
Table 9.1: Top 20 similarities by various measures. Proportional measures are stan-

dard Ferret, and those excluding: provided code (P), shared by others
(0), and both (PO). Count-based measures are uniquely shared trigrams
(Wt.2) and the weighted count for groups of up to 4 members (Wt.4).
Pairs of projects with the top 20 scores under one or more measures are
in columns 1&8, the remaining columns show for which measure(s).




136 CHAPTER 9. STUDENT ASSIGNMENTS

1.3 5 7 9 111315 17 1921 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

(a) Max in group =2

0420-480
@360-420
@300-360
M 240-300
0180-240
0120-180
m60-120

1 3§ 7 9 11131517 1921 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 §3 55 57 59 61 €3 -0-60

(b) Max in group = 4 (c) Scale

Figure 9.3: Weighted trigram counts: the contour maps depict weighted trigram
counts of groups of 2, and up to 4, files sharing the trigrams.



9.3. RESULTS 137

Figure 9.4: Connections between files with a weighted trigram count of at least
85, calculated for a maximum of 4 files. The connections are inversely
proportional to the weighted trigram count. The graph in the top right
corner of the figure repeats Figure 9.3b; and has the similarities between
members of the groups marked by circles which echo the node colours.



138 CHAPTER 9. STUDENT ASSIGNMENTS

9.3.2 Count-based similarity measures

The weighted count of trigrams shared by two files and few others varies
depending on the maximum number of other files accounted for. The
maximum group sizes for the graphs in Figure 9.3 are two (9.3a) and four
(9.3b). These graphs are contour maps of the weighted similarity counts
between pairs of project files. The student identifiers are shown on both
axes and run from 1-64.* Where the similarity between two files is higher
than the “background” level indicated by the scale, the graph shows the
level of similarity as a coloured spot. The size and colour of the spot reflects
the magnitude of the similarity measure. When the group size is two, the
count is of uniquely shared trigrams. When there are four in the group,
then trigrams shared by the pair and by up to two others are included in
the count. For this set of projects, the similarity rankings were unchanged
in groups larger than four, and are therefore not reported.

Graph 9.3a shows that few pairs of students uniquely share more than
60 trigrams. Looking at the second graph, 9.3b, groups emerge, such as the
four students 3, 7, 15 and 25, or the group of three, 8, 17 and 63. Most of
the larger points in Figure 9.3b are also present in Figure 9.3a. However,
the notable exceptions are the group 3, 7, 15 and 25, indicating that these
students are likely to have worked together as a group.

To better show the connections, Figure 9.4 depicts the group similarities
as an undirected graph, with the projects as the nodes, and the weighted
trigram count between them as the edge weights.> Connections of less than
an arbitrary weight of 85 are removed, as are the resultant unconnected
nodes. This leaves four pairs of files and four groups. The group formed
by 24, 30 and 40 is fully connected, the others partially so. In this diagram,
the distance between the nodes is inversely proportional to the weight of
the connection. The graph in the top right corner of the figure repeats
Figure 9.3b, with the similarities between members of the groups circled.

In Figure 9.5, weighted counts of 50 or more are shown, however, for

42 students had extra, unused, accounts (11&39) retained to preserve the numbering.
5Graph produced with the aid of Graphviz http://www.graphviz.org/



9.3. RESULTS 139

clarity, the connections here are not proportional.® It is interesting to see
the projects which are connected to many others, numbers 5 and 52. This
connectedness may be because the students have worked with a number
of others, whether as helper or recipient of help. In fact, in this case, these
two students produced well-developed projects and were active in helping

others overcome technical difficulties through the class discussion forum.

9.3.3 Analysis

In this section, the top twenty pairs under each similarity measure are

compared, and reasons for the different rankings discussed.

Standard Ferret The standard Ferret measure finds ten similar pairs of
projects not found by other measures, seven of these are between projects
53 and/or 61 and others (14, 22, 27 and 34), two are between project 19
and others (46 and 54), and one between 36 and 43. The reason for the
relatively high similarity scores between these pairs is that these students
did not develop their projects much beyond the ideas provided in class.

This means that the majority of each file is based on provided code, making

Figure 9.5: Connections between files with at least 50 weighted trigrams shared by
a maximum of 4 files, (connection length not proportional to similarity).



140 CHAPTER 9. STUDENT ASSIGNMENTS

the files similar to others using the same parts of the code.

As an example of this similarity, Figure 9.6 shows a section of code from
project 19, compared to project 54 and to the provided code. Code shared
by project 54 is coloured blue, that shared with the provided code is red, if
shared by all three, it is purple, and if the code appears only in project 19,
it is pale cyan. It is clear from this diagram, where most of the code is in
purple, that the majority of the code shared by the two projects is provided
code, in other words, that the students have probably not colluded.

Provided code excluded Column 3 of Table 9.1 shows the top 20 most
similar pairs of projects measured by excluding the provided code. The

top ranked similarities which do not occur under other measures are due

—— s — —— -

— —

———————— — -

Figure 9.6: A section of the 3-way comparison of project 19 with project 54 and the
provided code. Code shared by the 2 projects is in blue, by project 19
and provided code is red, by all 3 is purple, otherwise is pale turquoise.



9.3. RESULTS 141

to common code which is not part of the provided code. The similar code
in the five pairs ranked in the top 20 by this measure but not by other
measures also occurs in other files. This is likely to be because examples
given in class were included in many of the students’ code, but were not
part of the provided code. These student’s files were among the smaller

ones, so that this code had a greater impact on their similarity scores.

Code shared by others excluded, with and without provided code The
column headed “Ex.O” in Table 9.1 shows similarities calculated by exclud-
ing code shared by others, and the column headed “Ex.PO” that excluding
both that shared by others and by the provided code. As already men-
tioned, these measures are almost the same because provided code is likely
to be used by many students, therefore excluding code shared by others
excludes all or most of the provided code. The higher ranked similarities
which are not picked by other measures all have project 19 as one half of
the pair. These pairs are also more similar than most because they are small
tiles containing code based on the provided code, with parts amended in
similar ways, which can happen when two students sit together in class and
receive help from their tutor. The other four pairs, 3 and 20, 17 and 34, 21
and 28 and 43 and 46 are also not large files. They either share incidentally
similar fragments, such as the same font or colour, or have not renamed
automatically named elements, such as “TextBox4.Text”. The fragments
add up to make the proportional similarity higher than that in large files

which share more significant amounts of code.

Weighted trigram count, group size2 The uniquely shared trigram count,
in Figure 9.3a, shows only those pairs sharing at least 60 such trigrams. The
main pair here is 8 and 17. An extract of a comparison between these two
projects is shown in of Figure 9.8 (p144). The code shown belongs to project
8, in the middle column code not shared by the two projects is black; if
shared by the two projects, but also by others, it is coloured blue; and if
shared by just the two projects, it is red. There are two sizable functions

coloured red, in this case the two students were trying an idea suggested in



142 CHAPTER 9. STUDENT ASSIGNMENTS

class, and had found an unusual solution to the problem.

Five pairs, 5 and 13, 5 and 52, 8 and 63, 13 and 49, and 51 and 63 show
up under this measure and not the previous ones. The students involved
in these pairings all did very well on the course, and the similarity between
them is mostly due to their finding similar solutions to difficult problems.
For example, students 8 and 63 have found the same solutions to problems
related to handling different image types, and to a problem with coding for
a Mac; whereas the trigrams shared by 51 and 63 appear to be because they
have both explored the more advanced ideas introduced in class. Third-
party code, such as that for dealing with differences in browser display, is

properly attributed in these students’ files.

Weighted trigram count, group size 4 The similarities found by the
weighted trigram count for a group of up to four include all of those agreed
on by the four proportional measures, as well as pairs not found by any of

the other measures.

Four groups who may possibly have worked together on some of their
code are discovered by the weighted trigram count. These are numbers 3,
7,15 and 25; 24, 30 and 40; 8, 17 and 63, with 51; and 5, 13, 49 and 56.

The first group, who appear to have incorporated each other’s code,
had low final scores. The second group has used similar code to handle
discussion groups, user profiling and the display of ratings. The code they
share may be the result of admissable cooperation, or of independently

finding the same solution to these problems.

The similarity between students 8 and 17, 8 and 63, and 51 and 63,
members of the third group, has already been discussed. Features shared
by 17 and 63 have some overlap with project 8, but mostly appear to be the

result of cooperation on handling rss feeds.

The code shared by the fourth group is more fragmented and gives no
reason for concern, as it is not likely to be the result of copying. The students

in the second, third and fourth groups produced good projects.



9.3. RESULTS 143

9.3.4 Showing similarity in a group context

Methods for visualising the interaction between files in the context of a
group were described in Section 8.1.3. Examples from the study are shown

in this section.

Graded colouring The scheme for graded colouring, introduced in Sec-
tion 8.1.3, is repeated in Figure 9.7 for reference. Figure 9.8 (p.144) is an
extract from project 8 compared with project 17, coloured using three dif-
ferent schemes. The left-hand column shows the code coloured by Ferret in
normal use. The code shared by the two files is coloured blue, otherwise it is
black. This does not provide information about the nature of the similarity
between the projects.

By analysing the trigrams, more information can be shown. In the mid-
dle column, the trigrams uniquely shared by the two projects are coloured
red. On the right, the idea is developed to provide additional information.

The code is coloured black only if it is unique within the group. Red
code is, again, that uniquely shared with the other project. Shades of orange
show those trigrams which are shared by the two, but which are also shared
by few others. Here, dark orange is used to show one or two others sharing,
and pale orange for three, four or five others sharing. Bright blue means
that the code is shared by the two projects but by at least six others, and pale
blue means that either the code is not shared or is provided for the course,

and is therefore uninteresting whether it is shared by 8 and 17 or not.

When comparing two files, shared trigrams are differentiated as follows:

1. “Code” which is unique to this file (A) is coloured black.
2. If “uniquely shared” by file A and the file to which it is compared (B), then it is red.

5. Code shared by A, B, and 6 or more other files is in blue.

Figure 9.7: One way to colour the code in a file (A) compared with another (B).
The colours and gradations can be altered to suit the user’s needs. First
shown in Figure 8.3, and repeated here for the reader’s convenience.



144 CHAPTER 9. STUDENT ASSIGNMENTS

_.l"!_... ok LA ITESE .. —
Hose e -—
A AN
g:m:—"-— m —
— e
E e
'::__ - e — -
- - - =
B - i
fe— e -
_ = _ = i - __ LS.
E o £ o E
= = s
B : B T

E . | S B
_— =_ ===
= D =
= - = —

R e -
= B -
::::.—--_“ === :-F—_:_—-—*. z
—_—— ——— e e
T 20 2 = i
e B g
E . % -
—F—-—-’—*——— F———-————-—-—-—- —— -....... wm——
e e s s
= = —
- e -
=3 =3 3

: = =
-'":“_“____“__‘“ rw\____: e RS-
P = e S
— = s
_ . E“’a& g

Figure 9.8: An extract from a comparison between projects 8 and 17. Standard
Ferret colouring, where shared trigrams are in blue, and are otherwise
black, is on the left. In the middle the trigrams uniquely shared by the
two projects are in red. On the right, the excerpt is coloured according
to the scheme in Figure 9.7. The red code is two sizable functions
uniquely shared by the projects, and the orange shows smaller sections
which are shared by the two files but also by a few others in the group.



9.4. DISCUSSION 145

3CO colouring The 3CO colouring scheme was introduced as a way to
depict the source or destination of files which have moved during system
restructuring. As already shown in Figure 9.6, the scheme can also be used
to display the interaction between a file and others which are found to be
similar within the group.

Extracts from the five-way comparison between projects 63, 8,17, 51 and
the provided code are illustrated in Figure 9.9. The base file here is project
63. The colours in the first column are blue for 8, red for 17 and yellow for
51. Text in the second column is coloured blue where trigrams match the
provided code. By looking at areas which are coloured in the first column
and not in the second column, parts of the code which are shared by one
or more of the projects and which are not part of the provided code can be
identified. Here these are the blue and yellow sections in the first column.

As shown in Chapter 8, this visualisation scales for any number of projects.

9.4 Discussion

Each of the four proportional similarity measures has drawbacks for the
style of project investigated here. These drawbacks are likely to apply to
other cases where file sizes differ, where a significant amount of code is
provided or where code is auto-generated.

Counting trigrams which occur in one pair of assignments, but not
in others, appears to offer a reasonable measure of pairwise cooperation,
however, counting those which are shared by 2 students and up to 2 others
finds several groups not found by the other measures.

It should be noted that these students were aware that their code was
monitored and were given feedback on the “most original” projects on a
weekly basis. This probably had two effects, first, of encouraging individual
development and second, of reducing the amount of collaboration between
students. Most of the similarity between projects in this course appears to
be due to cooperation in solving difficult tasks, rather than in inappropriate

collusion. Incidentally, the feedback generated greater interest in the course



146 CHAPTER 9. STUDENT ASSIGNMENTS

than previously experienced.

The graduated visualisation pinpoints the areas of similar files which
warrant investigation, especially helpful for large files with high levels of
incidental similarity. Parts of the file which are unique to one student are
also highlighted, useful in understanding the novelty of the work, or per-
haps where outside sources have been used. No other approach has been
found which offers the detail displayed by this source code visualisation.
Although the display is based on trigram analysis, other units of compari-

son, such as clones, could be used as a basis for colouring the code.

Figure 9.9: An extract from a 5-way comparison between projects 63, 8, 17, 51 and
the provided code. The code, from project 63, is coloured blue where
shared with project 8, red with 17, yellow with 51, and blue in column
2 for the provided code. Green code is that shared with 8 and 51, and
black with 8,17 and 51. The blue and yellow sections in column 1 do not
correspond to the provided code, so are areas for further investigation.




Chapter 10

Overview of the classification

system

This part of the dissertation is about the second, and main, practical appli-
cation of the ideas introduced in Chapter 1. This is an investigation into the
use of text analysis and machine learning techniques in analysing software
projects. In particular, to find and match files which have been restructured
between releases of a project. This chapter outlines the system for finding
candidate restructured files, and for classifying these candidates.

Many descriptions of the machine learning, or knowledge discovery,
process exist. The steps described by different authors vary, however, the
underlying process is similar and usually involves iteration at one or more
points (see, for example, Bramer [27], Fayyad et al. [72], Mannila [161], and
Pyle [191]). These steps are outlined below, followed by an explanation of
the organisation of the chapters relating to the machine learning system.

The steps in the system developed for this research are depicted in

Figure 10.1, and are broadly:

e data collection and preprocessing,

filtering,

feature construction and data labelling,

feature selection,

and model production and selection.

147



148 CHAPTER 10. OVERVIEW OF THE CLASSIFICATION SYSTEM

Data collection In spite of the widespread availability of open source
software, there is a lack of marked-up datasets in the field of software
evolution which are suitable for use directly in data-mining studies [49, 127].
For this research, datasets were created from source code collected from an
open source software repository. A range of projects was selected so that a

variety of development styles is represented in the datasets.

Preprocessing In preprocessing, the files under investigation, in this case
mostly C code files, are selected from each project. Comments and blank
lines are removed from the selected files because movement of code is the

focus when trying to find restructured files.

Filtering The aim of filtering in this system is twofold: first, to select from
the large number of files in the projects the comparatively small number of
tiles which could belong to the category of interest; and second, to find files
which are related to them. As many software projects are large, the filtering
process needs to be efficient. The similarity measures used for filtering in
this system are produced by Ferret, as it runs in approximately linear time.
Each file in a release is compared to every other file in that release and to
all of the files in the next release. Similarity scores and file sizes are stored

so that files of different types can be selected based on this information.

Manual classification To label filtered files, a file and those related to it
are inspected, initially with the aid of the 3CO tool (see Chapter 8), and

when classification is unclear from this, by inspecting the text of the files.

| [ |

Model

Data Pre- i Manual Feature Feature Classifier production
& - s —» Filtering —» e e S 3 - g -
collection processing classification construction selection selection and
evaluation
Data collection & preprocessing Filtering Feature construction Feature selection Model production

Figure 10.1: Outline of the learning process, indicating steps which can be iterative.



149

Feature construction The development of machine-learning models from
labelled examples assumes the existence of an adequate set of descriptive
features or measurements of the data, from which distinctions between
classes may be derived. As discussed in Chapter 3, there is no previous
work on machine learning in origin analysis, and little work comparing
the utility of different similarity measures in matching restructured entities.
There is therefore little guidance on suitable features for the task. One
observation from the origin analysis survey (see page 46) is that the majority
of approaches combine similarity measures from two or more sources when
comparing code.

The features in this system are based on the similarity between two or
more files in a group, measured using four similarity detection tools with
complementary methods. Features are constructed directly from the tools’
outputs, and by analysing these outputs to give more detailed information.

One of the recommendations for building features when there are no
restrictions, and no obvious choices, is to create a large set which can then
be reduced. This is the approach taken here, but rather than selection from
the whole set, selection is based on limiting the sources of the features, to

simplify the generation of features for new data.

Refining the model In refining the model, the filtering, feature construc-
tion, feature selection, model selection and production phases are iterated.

The aim is to maximise the correct classification of the training examples,

1 1 i [}
Model
Data Pre- i Manual Feature Feature Classifier production
: . Filtering b 7 : .
collection processing classification. | construction selection selection and

evaluation

Data Source Processed Candidate Feature Feature Classifier
repository data data groups vectors subsets

Figure 10.2: An overview of the system used to build a model for classifying re-
structured files. The processes are on the top row, and the inputs to
and outputs from each step are on the bottom row.



150 CHAPTER 10. OVERVIEW OF THE CLASSIFICATION SYSTEM

while maintaining the ability of the model to generalise. The top row of
Figure 10.2 repeats the processes of Figure 10.1, while the bottom row shows

the outputs of each step, which act as input to subsequent steps.

Classifying new data When classifying data from new projects, see Fig-
ure 10.3, data collection, preparation and filtering are the same. Feature
construction differs in that only the subset of features required for input to
the particular model needs to be generated. The final step is classification

of the filtered files by using these features as input to the learned model.

Organisation of this part of the dissertation There are six further chapters
in this part of the dissertation. As already explained, Ferret is the main file
comparison tool used in this application, the other comparison tools are
described in Chapter 11. The remaining chapters have two purposes, to
explain how the datasets are created, and to report experimental results.
Data collection, preprocessing and filtering are described in Chapter 12,
and feature construction is explained in Chapter 13. Three chapters describe
the experimental part of this research. The classification system is tested
and the results compared with the work of two other research groups in
Chapter 14. Some weakness in filtering is identified from this study. Ex-
periments aimed at improving the filtering are described in Chapter 15.
The system is retested using datasets resulting from the adjusted filtering

techniques and the results are reported in Chapter 16.

he b Filtering Feature Model
construction

collection processing

——
Data Source Processed Candidate Feature Class
repository data data groups vectors

Figure 10.3: Overview of the system for classifying new data. Processes are on the
top row, and inputs to and outputs from each step on the bottom row.




Chapter 11

File Comparison Tools

As explained in Chapter 10, features for the machine learning system are
created by comparing files with a set of four complementary similarity
detection tools. One of these tools is Ferret, already described in Chapter 6.

The purpose of this chapter is to introduce the other three tools.

Each tool has strengths and weaknesses in detecting code which has
moved between files. By combining tools, gaps in one tool are plugged
by another. For example, a tool which matches blocks of identical lines of
code will overcome the problem of matching incidentally similar snippets of
code, but will not match code with small edits, such as renamed identifiers;
and a tool which parameterises identifiers will match such code, but may

also match similar structures in the code which are not from the same source.

As noted in Chapter 6, Ferret is very efficient and thus suitable for
filtering to find candidate files from large datasets. Its strength is in match-
ing small sections of code, making it moderately robust to many forms of
editing. However, incidental matches, due to common constructs in the lan-
guage or to programming style, are also detected. Repetition of trigrams is

not accounted for, therefore quantifying the ‘amount’ of copying is difficult.

As discussed in Chapter 2, clone detection tools provide complementary
information to that given by plagiarism detection tools such as Ferret. The
stand-alone clone detection tools used in this research were chosen from

the University of Alabama Clone Detection website [182], which lists both

151



152 CHAPTER 11. FILE COMPARISON TOOLS

a range of clone-related literature and a variety of clone-detection tools.

Duplo detects blocks of strictly matched lines of code and is useful for
finding identical sections of code in the files, information not directly avail-
able from Ferret. However, this means that small edits, such as parameter
renaming, will prevent the detection of otherwise matched code.

Code Clone Finder (CCFinder), is a mature and widely used token-
based clone-detection tool.! It parameterises identifiers, so that they can
be matched without having the same name, either on an any-to-any or a
one-to-one basis. While this overcomes the drawbacks of the matching pro-
cess used by Ferret and Duplo, CCFinder has its own disadvantages when
used for tracking restructured files. These disadvantages are twofold: first,
CCFinder disregards code such as preprocessing directives and initiali-
sations, making the tool less informative for the typical header file; and
second, because of the parameterisation, similar code structures, such as
idiomatic code, may render the matching too general.

Simian falls between Duplo and CCFinder in that it matches lines of
code which are first tokenised, and can be parameterised using a range of
options. This tool was chosen to reduce the amount of code which isignored
by CCFinder, while having choices in the sensitivity of the matching.

Three tools were developed during this research to alter or analyse the
output from the third-party tools. These three tools helped in constructing
features for machine learning. The first, P-Duplo, uses a similar method to
Duplo but produces output in a form more easily analysed for this appli-
cation. The second, a clone ‘unscrambler’, analyses the output from clone
detection tools to provide information about duplication on a one-to-one
basis, more useful for this application than the all-to-all matches output by
the tools. The third, explained in Chapter 6, is the density analysis tool,
which acts on Ferret’s XML output to discover blocks of mostly copied code,
which are possibly the result of copying and editing.

CCFinder, Simian and Duplo are described in Sections 11.1-11.3. P-
Duplo and the Unscrambling tool are explained in Sections 11.4, and 11.5.

1708 citations logged by Google Scholar at 20.1.13, & used in origin analysis [22, 130, 245]



153

The example file, and the two files resulting from its split, first shown in
Chapter 6, are repeated in Figures 11.1 and 11.2, as they are used to illustrate
features of the other three file comparison tools. On the left of Figure 11.1,
line numbers, or the number of the first token in the line, have been added

for reference.

CC| SM| DP| PD
1 // cnp-1.c
1 2| 1| #include <stdio.h>
2
3 2 | long factorial (int n);
4| 3| 3| longcombinations (intn, int k;
5| 4| 4| longpermutations (intn, int k);
6
0 71 5| 5| intmain()
6| 8 6 {
7 9 6 7 int setsize, subsetsize;
12| 10| 7| 8 printf (“Set size? ”);
18| 11| 8| 9 scanf (“%d”, &setsize);
271 121 9| 10 printf (“Subset size? ”);
33| 13| 10| 11 scanf (“%d”, &subsetsize);
42| 14| 11| 12 if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)
57| 15 13 {
58| 16| 12| 14 printf (“Mission impossible\n”);
64| 17| 13| 15 return (1);
67| 18 16 }
68| 19| 14| 17 printf (“%ld combinations and %ld permutations of %d items
taken from %d \n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);
85| 20| 15| 18 return (0);
98| 21 19 }
23
99| 24| 28| 20| long factorial (int n)
107, 25 21 {
108 26| 29| 22 long result = 1;
113 27| 30| 23 inti;
116] 28| 31| 24 for(i=1i<n;i++)
1300 29| 32| 25 result *=i;
135/ 30| 33| 26 return (result);
139 31 27 }
32
141] 33| 32| 28| long combinations (int n, int k)
152 34 29 {
153 35| 33| 30 return (factorial(n) / (factorial(k) * factorial(n-k)));
166 36 31 }
37
168 38| 34| 32| long permutations (int n, int k)
179 39 33
180 40| 35| 34 return (factorial(n) / factorial(n-k));
196 41 35 }

Figure 11.1: Code for finding combinations and permutations of a subset of items
- cnp-l.c. The first 4 columns show the number of the first CCFinder
token in each line, and the Simian, Duplo and P-Duplo line numbers.
Line 19 (14 or 17) is spread over 3 lines to fit the page.



154 CHAPTER 11. FILE COMPARISON TOOLS

// ecnp-2.c

#include <stdio.h>
#include “fact.c”

long combinations (int n, int k);
long permutations (int n, int k);

int main()
{
int setsize, subsetsize;
printf (“Set size? ”);
scanf (“%d”, &setsize);
printf (“Subset size? ”);
scanf (“%d”, &subsetsize);
if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)

printf (“Mission impossible\n”);
return (1);
}
printf (“%Ild combinations and %ld permutations of %d items
taken from %d\n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);
return (0);

}

long combinations (int n, int k)

{
}

return (factorial(n) / (factorial(k) * factorial(n-k)));

long permutations (int n, int k)

{
}

return (factorial(n) / factorial(n-k));

// fact.c
long factorial (int n)

long result = 1;

inti;
for(=1i<n;i++)
result *=i;

return (result);

Figure 11.2: The amended code for finding combinations and permutations of a
subset of items, split into 2 files - cnp-2.c (top) and fact.c (below).



11.1. CODE CLONE FINDER (CCFINDER) 155

11.1 Code Clone Finder (CCFinder)

CCFinder [124, 125] is a token-based code clone detector. As one of the aims
of the tool is to recommend practical code abstractions, a number of reduc-
tions and transformations are performed on the code before matching. The
reductions include filtering out parts of the file which are considered to be
uninteresting, such as comments; or parts which may produce false clones
because of their repetitious structure, such as declarations, preprocessing di-
rectives and initialisations. The code is transformed using language-specific
rules to produce a sequence of tokens consisting of keywords, identifiers,
literals and special characters. CCFinder offers flexibility in the size of clone

detected and in the type of matching performed.

Clone size is determined by specifying the minimum number of tokens
in a sequence and the minimum number of token types. The tokens and
token types for the file fact.c are shown in Table 11.2. Token types include
identifiers (such as i - shown as id-i), typed literals (1 - 1.int-1), one for each

operator (< - op-le), and for each delimiter (; - suffix:semicolon).

When a file is moved or renamed, identifiers may be given new names
or types. One reason for using CCFinder is that it offers a choice in matching
types, constants, and identifiers. To illustrate, consider the code snippets
in Table 11.1. Snippet 2 is the same as snippet 1, except that the identifiers
are directly replaced: d for a, and e, f, u, v, w and 7 for b, ¢, X, y, z and 10,
respectively. Snippet 3 has the same operators and identifiers as snippet 1,

but the assignments are different; where a is used in snippet 1, either a or

1. First example

2. Direct replacement
of identifiers

3. Different assignments,
same operators

4. Different operators

inta, b, c
intx=a+b;
inty=a-c;
intz=10+c-b;

intd, e, f;
intu=d+e;
intv=d-f;
intw=7+f-e¢;

inta, b, c;
intx=c+b;
inty=a-b;
intz=4+a-g¢

inta,b,c;
intx=a-b;
inty=a*g;
intz=10-c*b;

Table 11.1: Code snippets to illustrate one-to-one or p-matching, and any-to-any
matching. Snippets 1 and 2 match under p-matching, snippets 1, 2 and
3 with any-to-any matching. Snippet 4 does not match in either case.



156 CHAPTER 11. FILE COMPARISON TOOLS

b are used in snippet 2; likewise b and c replace b; and b and a replace c.
Snippet 4 has the same identifiers as snippet 1, but with different operators.
One-to-one parameter matching, or p-matching [13], only matches snip-
pet1and snippet 2. With more relaxed any-to-any identifier matching, snip-
pets 1, 2 and 3 are matched. Snippet 4 does not match because operators
are not parameterised. P-matching is used in this application.
Command-line outputs include a list of clone pairs which detail the two
files in which the clone occurs, the start and end token numbers in each file,

and the number of tokens in the clone. Figure 11.3 shows the output from

1.1.0 0 | (defblock

1.1.0 4 | rint

1.6.5 9 | id—factorial

1.10.f 0 | cfunc

1.10.f 1 | (paren

1.11.10 | 3 | r.int

11514 | 1 | id—n

1.16.15 | 1 | )paren long factorial (int n)
2118 " |1 | (brace = = {

331d " |4 | rint T T T T 7]

3.a.24 6 | id—result

3.11.2b | 1 | op-assign

3.132d | 1 | Lint—1

3.14.2e 1 | suffix:semicolon | longresult=1;
4333 " |73 | rint ~ T T T 7]

4.8.38 1 | id—i

4.9.39 1 | suffix:semicolon | inti;
533e | 3 | rfor T T T 7]

5.7.42 0 | cloop

5.7.42 1 | (paren

5.8.43 1 | id—i

5.a.45 1 | op-assign

5.c.47 1 | Lint—1

5.d.48 1 | suffix:semicolon

5.f4a 1 | id—i

5114c | 2 | ople

5.14.4f 1 | id—n

5.15.50 1 | suffix:semicolon

51752 | 1 | id—i

51853 | 2 | op-increment

5.1a.55 | 1 | )paren for (i=1;i<n;i++)
6.55c | 0 | (brace T T T 7]

6.5.5¢ 6 | id—result

6.c.63 2 | op-mul_assign

6.£.66 1 | id—i

6.10.67 | 1 | suffix:semicolon | result *=i;
736c | 0 | )brace ~ ~ = |

7.3.6¢ 6 | r_return

7.b.74 6 | id—result

7.12.7b | 1 | suffix:semicolon | return (result);
8.1.7e ~| 1 | )brace ~ ~ ~ |

8.2.7f 0 | )defblock }

al83 |0 |eof ~ 7 7 7]

Table 11.2: CCFinder token types for fact.c. Columns 1-3 show the token’s source
code location, its type identifer, and its CCFinder representation. Line
breaks are shown, with the program text in column 4.



11.1. CODE CLONE FINDER (CCFINDER) 157

a comparison between the three example files, with the parameters:

e minimum tokens in a clone, 10,

e minimum token types in a clone, 2, and

e matching, any-to-any.

Three large clones, marked by asterisks, contain the other smaller clones.
Two are between the files cnp-1.c (file 1) and cnp-2.c (file 2), tokens 0-99 in
both files, and tokens 141-207 in file 1, and 99-165 in file 2. The remaining
clone is between cnp-1.c and fact.c (file 3), tokens 99-141 in file 1, and 042
in file 3. The first column in Figure 11.1, giving CCFinder token numbers,
shows that these are the expected spans for the blocks of matched code, for

example, the factorial function is covered by tokens 99-140 in file 1.

version: ccfx 10.2.7
format: pair_diploid
option: -b 10

option: -s 2

option: -u -

option: -t 2

option: -w f-g+w-
option: -preprocessed_file_postfix.cpp.2_0_0_2.default.ccfxprep
preprocess_script: cpp
source_files {

1 cnp-l.c 208
2 cnp-2.cC 166
3 fact.c 43

source_file_remarks { }
clone_pairs {

1.0-99 2.0-99
10 1.12-27 2.27-42
10 1.27-42 2.12-27
5 1.72-82 2.80-90
5 1.80-90 2.72-82
27 1.141-207 2.99-165 *
26 1.142-152 2.137-147
26 1.179-189 2.100-110
1 1.99-141 3.0-42 *
2 2.0-99 1.0-99
10 2.12-27 1.27-42
10 2.27-42 1.12-27
5 2.72-82 1.80-90
5 2.80-90 1.72-82
27 2.99-165 1.141-207
26 2.100-110 1.179-189
26 2.137-147 1.142-152
1 3.0-42 1.99-141
}

clone_set_remarks { }

Figure 11.3: CCFinder clone report for a comparison between the files cnp-1.c, cnp-
2.c and fact.c. Parameters and filenames are at the top. Clone pairs

are in the lower section, once for each file. Asterisks have been added
to show the clones which are not subsumed by another.



158 CHAPTER 11. FILE COMPARISON TOOLS
11.2 Simian

Simian [105] has a variety of parameterisation options and although, like
CCFinder, it disregards some parts of the code, it is less vigorous in this
respect. Simian is not an open source tool, nor are its methods documented
in detail, so little can be said of its workings.

What is known is that Simian ignores white-space, comments, imports,
includes and package declarations. It tokenises the code to allow a number
of optional parameters for relaxed matching. Parameters specify which
differences between source code elements are ignored; those investigated
in this research are shown in hierarchical form in Figure 11.4. For example,
if differences between strings are ignored, then string case is irrelevant.
The default setting ignores modifier differences. After experimenting with
various combinations of options and their effect on classification, literals
and identifiers are also parameterised in this research. Matching is based
on the hashed values of significant lines of the transformed code. Significant
lines exclude blank lines and, for example, those with a single brace.

The user is able to specify the minimum number of lines in a clone. The
tool outputs a list of all matches, both within file and between files, which
can be parsed to find the start and end line numbers for each inter-file clone.
Simian’s comparison between the three example files is given in Figure 11.5.
Each block is described by the number of significant duplicate lines and the
line number at the start and end of the block. Optionally, the duplicate code
can be printed, as it has been here. Simian finds the same three blocks as
CCFinder in this code.

Literals Identifiers
|
v v v ¥ ¥
Numbers Strings Characters Variable Subtype Modifiers
9 Names Names
| | —
Y
String Character Identifier
Case Case Case

Figure 11.4: Simian parameter hierarchy, the most general parameters at the top



11.2. SIMIAN 159

Similarity Analyser 2.2.24 -

http://www.redhillconsulting.com.au/products/simian/index.html

Copyright (c) 2003-08 RedHill Consulting Pty. Ltd. All rights reserved.

Simian is not free unless used solely for non-commercial or evaluation purposes.
{failOnDuplication=true, ignoreCharacterCase=true, ignoreCurlyBraces=true,
ignoreIdentifiers=true, ignoreModifiers=true, ignoreStringCase=true,
reportDuplicateText=true, threshold=2}

Found 4 duplicate lines in the following files:
Between lines 24 and 31 in /home/.../cnp-2.c
Between lines 33 and 40 in /home/.../cnp-1l.c
long combinations (int n, int k){
return (factorial(n) / (factorial(k) * factorial(n-k)));

}

long permutations (int n, int k)
{

return (factorial(n) / factorial(n-k));

Found 6 duplicate lines in the following files:
Between lines 1 and 7 in /home/.../fact.c
Between lines 24 and 30 in /home/.../cnp-1l.c

long factorial (int n){

long result = 1;

int i;

for (i = 1; 1 <= n; i++)
result *= ij;

return (result);

Found 14 duplicate lines in the following files:
Between lines 4 and 21 in /home/.../cnp-2.c
Between lines 4 and 21 in /home/.../cnp-1.c

long combinations (int n, int k);

long permutations (int n, int k);

int mainQ)

{
int setsize, subsetsize;
printf ("Set size? ");
scanf ("%d", &setsize);
printf ("Subset size? ");
scanf ("%d", &subsetsize);

if (setsize < O || subsetsize < 0 || setsize < subsetsize)
{

printf ("Mission impossible\n");

return (1);
}

printf ("%ld combinations and %ld permutations of %d items taken from %d\n",
combinations (setsize, subsetsize), permutations (setsize, subsetsize),

subsetsize, setsize);
return (0);

Found 48 duplicate lines in 6 blocks in 3 files
Processed a total of 49 significant (86 raw) lines in 3 files

Figure 11.5: Simian comparison between cnp-1.c, cnp-2.c and fact.c. Default pa-
rameters are used, except that the minimum number of lines required
for a clone is 2 instead of 6, and the clone contents are printed.



160 CHAPTER 11. FILE COMPARISON TOOLS

11.3 Duplo

Duplo [5] is an open source command-line tool similar to ‘Duploc’ [65, 66],
which matches hashed lines of code to detect clones. Duplo differs from
the other tools in that only exact matches are identified. Blocks of matched
code in the files are determined by two parameters: the minimum number
of characters in a line, and of consecutive matched lines in the block.
White-space, comments, and, optionally, preprocessing directives are
removed, so that a line such as "a = b + ¢; /+ some comment */” becomes
"a=b+c;”. Lines with fewer than the minimum characters specified are
ignored. Each line is hashed with the MD5 algorithm [201] before matching.
A matrix is coded to show whether each pair of lines in the files match, 1
for a match, or 0 for a mismatch. The matrix is then scanned diagonally,
from top left, to find contiguous matches, and those of at least the minimum
number of lines are reported. The matrix in Table 11.3 shows the comparison
between the files fact.c and power.c (code in Figure 6.5, p.80), with both
parameters set at 2. The sequence of three matched lines is highlighted.
The report in Figure 11.6 is for a comparison between the three example
files. Three matched blocks are found, two between cnp-1.c and cnp-2.c, the
first starting at line 3 in each file, and the second on line 32 in cnp-1.c and
line 23 in cnp-2.c, and one block between cnp-1.c (starting at line 28) and

fact.c (atline 0). Following the information about matched blocks are details

A
& T s
R 3 5
s |5 ,\(Zdl =1 8
k3] n = Il )
E | 8 || E
@ || o = =]
S8 |5 |&|¢g|¢
longpower(intbase,intn) 0 0 0 0 0 0
longresult=1; 0 1 0 0 0 0
inti; 0 0 1 0 0 0
for(i=1;i<n;i++) 0 0 0 1 0 0
result*=base; 0 0 0 0 0 0
return(result); 0 0 0 0 0 1

Table 11.3: A Duplo matrix resulting from matching lines in power.c and fact.c.
Matches are indicated by a 1. Sequences of 1s running down diagonally
left to right, such as those highlighted, are consecutive copied lines.



11.3. DUPLO 161

of the parameters used for the comparison, and a summary of the results,
giving the number of lines in the files and in the duplicated blocks. The line
count excludes those with fewer than the minimum number of characters
specified, in this example, where the minimum is two, lines with single
braces are ignored. Duplo finds the same copied blocks in the example

code as Simian and CCFinder, because the example code is not edited.

/home/ . ../cnp-2.c(3)
/home/.../cnp-1.c(3)

long combinations (int n, int k);
long permutations (int n, int k);
int main(Q)

int setsize, subsetsize;

printf ("Set size? ");

scanf ("%d", &setsize);

printf ("Subset size? ");

scanf ("%d", &subsetsize);

if (setsize < ® || subsetsize < 0 || setsize < subsetsize)
printf ("Mission impossible\n");
return (1);
printf ("%ld combinations and %ld permutations of %d items taken
from %d\n", combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);
return (0);

/home/ . ../cnp-2.c(23)
/home/.../cnp-1.c(32)

long combinations (int n, int k)
return (factorial(n) / (factorial(k) * factorial(n-k)));
long permutations (int n, int k)
return (factorial(n) / factorial(n-k));

/home/ . ../fact.c(0)
/home/.../cnp-1.c(28)

long factorial (int n)
long result = 1;

int 1i;
for (i = 1; i <= n; i++)
result *= i;

return (result);

Configuration:
Number of files: 3
Minimal block size: 2
Minimal characters in line: 2
Ignore preprocessor directives:
Ignore same filenames: 0

Results:
Lines of code: 52
Duplicate lines of code: 24
Total 3 duplicate block(s) found.

Time: 0.062 seconds

Figure 11.6: Output from Duplo for a comparison between the files cnp-1.c, cnp-
2.c and fact.c. The two cnp files share 18 lines of code with at least 2
characters, in 2 blocks of at least 2 lines. The files cnp-1.c and fact.c
share 6 lines of code in 1 block, making a total of 24 lines in 3 blocks.



162 CHAPTER 11. FILE COMPARISON TOOLS
114 P-Duplo

P-Duplo was developed for this research because it is difficult to determine
the exact length of the clones detected by Duplo, information needed for
removing repeats in the clone pairings, as explained in Section 11.5. P-
Duplo uses a modified version of Duplo’s method. P-Duplo is implemented
in Racket,2 while Duplo is written in C.

Duplo detects matches between lines of code by:
1. Removing comments and white-space from each line in the file.
2. Ignoring lines with fewer than the minimum required characters.
3. Storing the MD5 hash values of the resulting strings.
4. Comparing the hash values between pairs of files.
5. Recording matching hash values, 1 for a match, 0 otherwise.

6. Scanning diagonally for sequences of at least the minimum size.

P-Duplo works in a similar way, with the following changes:

. Removing white-space (comments are already removed here).

. Hashing each line with the built-in Racket function “string-hash”.
. Storing the hash value and the number of characters in the line.

. Comparing - as Duplo.

a1 H~ W N —

. Recording a match with the number of characters in the line,

or 0 for a non-matching pair, see Table 11.4.

6. Scanning the matrix to find sequences of at least the minimum

number of lines with at least the minimum number of characters.

The benefit of P-Duplo, apart from finding the exact length of a block, in-
cluding lines with fewer than the minimum characters, is that once the hash
values and number of characters in the line are stored, any combination of
line and block sizes can be found from the stored information without re-
running steps 1-5. The line numbers are consecutive, unlike those output

by Duplo, see, for example, the gap between lines 15 and 28 in Figure 11.1,

thtp ://racket-lang.org/



11.4. P-DUPLO 163

£ ~

£ . T =

e I 2 3

o = VI B 0}
longpower(intbase,intn) || 0 0 0 0 0 0 |0 0
{ 0 1|0 0 0 0|0 0
longresult=1; 0 0 13 | 0 0 0 |0 0
inti; 0 0 0 5 |0 0|0 0
for(i=1;i<n;i++) 0 0 0 0 17 |0 |0 0
result*=base; 0 0 1] 0 0 0 0 0
return(result); 0 0 0 0 0 0 15 0
} 0 0 0 0 0 |0 1

Table 11.4: P-Duplo matrix resulting from matching lines in power.c and fact.c.
Matches are indicated by the number of characters in the line. Diagonal
sequences of numbers > 1, such as those highlighted, show consecutive
copied lines and can be matched to the given criteria.

making it possible to understand the relationship between the blocks. How-
ever, the design is specific to this application where comments and blank
lines are removed from the code prior to processing.

The P-Duplo matrix in figure 11.4 shows a line-by-line comparison be-
tween the two files power.c and fact.c, the same files compared in Table 11.3.
There are two differences: every line, regardless of length, is compared and
where a match is found, is recorded by entering the number of characters
in the line rather than a “1”. In scanning the matrix, instead of looking for
“1”s in the grid, the number of characters in the line must be at least the
minimum required.

The results may differ slightly from those of Duplo, in that lines with
fewer than the minimum characters, ignored by Duplo, must match for a
sequence to be recognised by P-Duplo, even though they are not part of
the line count for the block. However, in this example, when looking for
sequences of at least 2 lines of at least 3 characters, the same block will be

found by both tools.

long result = 1;
int i;
for (i=1; i<=n; i++)




164 CHAPTER 11. FILE COMPARISON TOOLS
11.5 Unscrambling clones

While clone detection tools offer a variety of flexible matching techniques,
they have one drawback when used to find the amount of code shared by
two files. The drawback is that every match between the files which fulfils
the criteria of the provided parameters is reported. There can be more code
contained in the clones in total than exists in the file. For example, the
clones found by CCFinder between cnp-1.c and cnp-2.c total 244 tokens,
while the files contain 208 and 166 tokens respectively (see Figure 11.3.
There are three reasons for this, which are illustrated in Figure 11.7,
where the shaded areas represent copied blocks, and identical blocks are
given the same shape and shade. The height of the block relates to the size
of the clone, but widths vary only to help distinguish between the blocks.

File 1 Fie 2
a (20-90] u (10-40)
b (30-70) n (30-70)
. (80-110) o (80-110)
1201
[ d (120-130) ] p {120-180)
) 2070} I q {150-160) ]
[ T {190-200) ]
210-270
g { ) s (210-240)
[ h (240-250) ]
r (200:270)
[ i {280-290) ]

Figure 11.7: Example duplicated blocks in two files. Each block is labelled with a
letter, and with start and end numbers. Identical blocks have the same
shading and width; for example, block a (file 1) and block r (file 2).
Block heights are proportional to their length.



11.5. UNSCRAMBLING CLONES 165

First, when there are multiple copies of the same block of code, each of
the blocks in one file is matched to each of the blocks in the other file. For
example, if there are 3 copies of a block in one file, such as d, fand hin file 1,
and 2 copies in the other, such as q and t in file 2, there will be 6 reported
matches of 11 lines, a total of 66 lines; whereas the correspondence between

the files is 2 blocks in one file matching 2 in the other, that is 22 lines.

Second, two clones can overlap, so that the overlapping code is counted
twice, such as the lines 80-90 in file 1, which are matched as part of block a

to r, as well as block c to o.

Third, one clone can be subsumed by another. Consider the block n
which is matched to block b. As block a is matched to block r, the clones b
and s which are subsumed by blocks a and r, do not need to be accounted
for. As block n is matched to block b and has no other match, it should not

be considered as part of the correspondence between the files.

Clone detection tools match clones on a many-to-many basis. One-to-
one matching is likely to be more useful in matching restructured files. The
duplication in clone tool outputs can be made to approximate one-to-one
matching by an unscrambling technique described in full in a technical
report [94]. The three step unscrambling process is illustrated in Figure 11.8

and described briefly here.

First, subsumed clones are removed, in the example, blocks b and h
in file 1, and blocks q and s in file 2, are subsumed by blocks a, g, p
and r respectively. Blocks whose only match is a subsumed block, such
as block n in file 2, matched to block b, are also removed. Figure 11.8b
shows the matching blocks after removal of the subsumed blocks and their

dependants.

Second, unmatched multiple copies are removed. The strategy used
here is to match the multiple blocks in the order that they appear in the file.
This means that block d is matched to block t. Block f is unmatched and

therefore removed. The remaining blocks are shown in Figure 11.8c.

Third, where blocks overlap, the strategy is to remove the overlapping

code from the smaller of the two blocks. The overlapping code is also



166

CHAPTER 11. FILE COMPARISON TOOLS

removed from its partner in the other file. In the example, lines 80-90 in

block ¢, which overlap block a are removed. The same eleven lines are also

removed from block o which is the block paired with ¢, see Figure 11.8d.

Once the three steps are complete, the blocks remaining in each file

match, the amount of copied code in the two files is the same, and none of

the matching code is counted more than once.

b (3070) N (30-70)
[ (1201301 ) Fp s [ (1201301 )
120180
(190200 [P T90:200 )
: l s (210-240) 9 (210270)
[ h (2402501 ]
T o (200270)
(280290 ]

(b) Subsumed clones removed

a  (2090)
part ¢ (91-110)
20130
P (120180) : P (120180)
g (210270) g (210270)
r (200-270) r o (200-270)
2802901 ) 1280290

(c) Unmatched multiples removed

(d) Overlapping removed

Figure 11.8: Steps in unscrambling clones for one-to-one matching.




11.6. SUMMARY 167
11.6 Summary

In this chapter, the third-party tools Code Clone Finder, Duplo and Simian
were introduced along with P-Duplo, an adaptation of the method used by
Duplo more suited to origin analysis. Each of these tools uses a represen-
tation of the code based on tokens or text, rather than more complex trans-
formations, such as abstract syntax trees or program dependency graphs.
The tools were described and compared, highlighting their benefits and
drawbacks in matching code for origin analysis. The tools provide comple-
mentary information about matched code, with the weakness in each one
generally covered by the strengths of the others.

The “over-stated” clones reported by the clone detection tools are iden-
tified as a problem for matching code in origin analysis. The Unscrambling
tool, developed to give a set of blocks which are matched one-to-one, was
described in this chapter. As noted in Chapter 6, the Ferret XML report
can be analysed to produce information about blocks of code covered by
matching trigrams, both directly, and by using the density analysis tool.
The raw output from the tools, and the blocks from each of the tools are

used as the basis for feature construction, which is described in Chapter 13.



168 CHAPTER 11. FILE COMPARISON TOOLS



Chapter 12

Data Collection, Preprocessing

and Filtering

This chapter describes the data collection, preprocessing and filtering
steps outlined in Chapter 10, and is in four main parts. The first describes the
source code collection and preparation. Next, terminology used in this and
subsequent chapters is introduced. The filtering process is then explained,

followed by a description of the resulting datasets and their labelling.

12.1 Source code collection and organisation

The source code for this study was drawn from the open source repository
SourceForge [183]. About three hundred projects were initially selected and
downloaded. The selection process is explained in Section 12.1.1. These
projects were examined and unsuitable ones rejected, resulting in a final
set of eighty-nine projects, which are described in Section 12.1.2. Prior to

filtering, the data is organised and preprocessed as detailed in Section 12.1.3.

12.1.1 Selection of projects from SourceForge

SourceForge.net lists a large number of open source projects (more than

280,000 in May 2012). It offers a range of selection criteria, such as program-

169



170 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

ming languages used, development status, operating systems supported

and topic. The criteria used to select projects for this task were:
e Programming language: C

e Operating system: Linux

e Development status: Production/Stable or Mature

When the projects were selected (2006), the concurrent versioning system,
CVS, was more commonly used than Subversion [57, p.4]. To allow projects
to be downloaded with a single script, only those using CVS were consid-
ered. Prior to downloading, manual filtering, using the Eclipse workbench!
to inspect the files, excluded projects with few C code files, with fewer than
three releases, or those which had been removed from the repository.

Versioning systems record every change committed, but to reduce the
amount of material stored and processed, and to build a system which
should generalise to software systems where only stable releases are avail-
able, only versions tagged by the developers as significant were down-
loaded for analysis. Although the authors of different projects determine
these intervals in different ways, this subset of revisions provides a rea-
sonable granularity for study. Downloading was automated with a bash
script based on the tags. Several of the projects were subsequently found
to be incorrectly ordered or to contain branches, which was resolved by
downloading the affected projects manually, release by release.

Figure 12.1 outlines the steps in data collection and preparation. The top
half of the diagram shows the organisation of the code, with each project
in a separate directory. Within the projects, each release goes to a separate,

consecutively numbered, directory.

12.1.2 The selected data - 89 Projects

Details of the 89 projects selected are provided in two tables in Appendix H.
Table H.1, on pages 382-383, shows the project names and purposes, and
Table H.2, which follows on pages 384-385, shows the project sizes and the

1http ://www.eclipse.org/



12.1. SOURCE CODE COLLECTION AND ORGANISATION 171

amount of code in the source code files. As C code is used in this study,

there is a natural bias towards scientific, engineering or technical projects.

Repository

Select and
download
projects

Projects

Releases

Preprocessing

Select
.cand .h files

l

Strip
comments
from files

|

Standardise
layout

SR D
f50il

Prepared
files

- (n] Releases

Files ready for
filtering

Figure 12.1: Source code collection and preprocessing. Each project is downloaded
and stored in its own directory (labelled a...z) with each release in a
separate subdirectory (labelled 1..n). C code files are selected and
comments stripped from each file, and layout is standardised. The
prepared code is stored using the same structure as the raw code.




172 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

The projects vary in size and growth rate. Some of the projects, possibly
those established before joining Sourceforge, change little between releases,
while others show rapid growth. The two extremes are exemplified by the
projects ‘giw’, which remains almost the same size, 10 KLOC, throughout
the 3 releases, whereas “xastir” grows from 47 to 111 KLOC over 140 releases.
The granularity of releases varies from those tagged at every change, to
those only tagged when the project is deemed stable after major changes.

The C code in individual releases varies from just over 100 lines of code
(LOC) to over 200 KLOC, in 2 to 752 files. The number of releases per project
ranges from 3 to 140, with a mean of 16. There are 11,210 distinct C code
tiles, with a total of approximately 117,500 files in the 1,405 releases.

12.1.3 Preprocessing

The bottom half of Figure 12.1 shows the steps in preparing the code for
comparison. First, all of the C source code files (“.c” and “.h’) were selected
from the projects. Then comments were removed from the files. This is
particularly important in projects where large identical comment blocks,
such as those detailing licences, are placed at the head of each file, because
the similarity between the files will be distorted by the comments in text-
based comparisons. For example, two files from the biew project, illustrated
in Figure 12.2, share the same comment block, highlighted in red. The files,
ref.c and codeguid.h, have little code in common, but because of the shared
comments have a fairly high similarity score of around 0.33. Without the
comments their similarity is 0.02.

Removing such comment blocks is useful in this context, however, it is
less clear whether the removal of all comments is the best strategy overall.
On the one hand, similar comments may point to similarity between files,
but on the other hand, it is possible that unrelated comments have elements
in common, such as the author’s name or the use of standard wording for
standard tasks. However, as noted in Chapters 2 and 3, few of the ap-
proaches to clone detection, plagiarism detection or origin analysis include

comments in their file comparisons. It therefore seems reasonable to do the



12.2. TERMINOLOGY 173

Ia% Jrx
* @namespace  biew * @namespace  biew

* ffile refs.c * ffile codeguid.h

* @brief This file contains basic level routines for resolving references,  * fbrief This file contains prototypes code navigator.

* @version - * fversion -

* @remark this source file is part of Binary vIEW project (BILEW) * @remark this source file is part of Binary vIEW project (BIEW)

* The Binary vIEW (BIEW) is copyright (C) 1995 Nick Kurshev. * The Binary vIEW (BIEW) is copyright (C) 1995 Nick Kurshev.

* All rights reserved. This software is redistributable under the * All rights reserved. This software is redistributable under the
* licence given in the file "Licence.en” ("Licence.ru” in russian * licence given in the file "Licence.en" ("Licence.ru” in russian
* translation) distributed in the BIEW archive, * translation) distributed in the BIEW archive.

* Gnote Requires POSIX compatible development system * @note Requires POSIX compatible development system

* *

* fauthor Nick Kurshev * @author Nick Kurshev

* f@since 1995 * @since 1995

* @note Development, fixes and improvements * @note Development, fixes and improvements

Y hidd

#include <stdio.h> #ifndef _ CODEGUID_H

#include <string.h> #define _ CODEGUID_H

#include <stdlib.h>

#ifndef _SYS DEP H
#include 'reg_form h" #include "_sys_dep.h"
#include "biewutil.h" Hendif
#include "beonsole.h”

#ifdef _ cplusplus

extern REGISTRY BIN binTable; extern "C" {
unsigned long _ FASTCALL__ AppendAsmRef (char *str,unsigned long ulShift,int #endif
mode, char codelen, unsigned long r_sh)
{ - extern char codequid_image|];
static tBool warn displayed = False;
unsigned long ret = RAPREF NONE; extern void _ FASTCALL__ GidResetGoAddress( int keycode );
i bind) ret = extern void " FASTCALL _ GidAddGoAddress (char *str,unsigned long
>bind(stz,ulshift,node,codelen, z_sh) ; addr) ;
else extern void __FASTCALL__ GidAddBackAddress( void );
extern unsigned long __FASTCALL  GidGetGoAddress (unsigned keycode);
if (detectedFornat != gbinTable &6 'warn_displayed) extern char * __FASTCALL__ GidEncodeAddress (unsigned long
cfpos, tBool aresolv) ;
“Sorry! ing for this format still not
supported" NULL) ; extern tBool __FASTCALL__ initCodeGuider( void );
wazn_displayed = True; extern void __FASTCALL__ termCodeGuider ( void );
}
) #ifdef _ cplusplus
return ret; }
) #endif

Hendif

Figure 12.2: The files refs.c and codeguid.h from the biew project. The shared
comments, which are coloured red, are about one-third of the size of
the files. Without the comment block, the files have little in common.

same. As some of the tools used to compare the files do so on a line-by-line

basis, pretty-printing is used to standardise the layout.?

12.2 Terminology

The terms used when discussing file selection are shown in Table 12.1.
A candidate file is a file which matches the filtering criteria and is therefore
possibly an example of the type of file sought. An amended file is a candidate
file in the next release. In the same way as many others (e.g. [22, 90, 128,
130, 179], the approach in this research first matches by name, forming two
groups of files: those which are matched by files of the same name in the
following release, and those which are not, known as disappearing files. The

words similarity, similarity score or similarity coefficient mean the Jaccard

2Gnu Indent with the options -gnu -bli0 -di0 -i0 -ip0 -nhnl, removing indentations and

ignoring breaks within a line, combined with the removal of leading spaces and blank lines



174 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Term Notation Description

Candidate file f Any file a in release n, matching the filter criteria
Amended file e+l Revised version of the candidate file in release n+1
New file fg’*l o3 Iy A file in release n+1 not in release n

Disappearing file | f e # fi+1 A file in release n not in release n+1

i.e. a renamed, moved or deleted file

Similarity Sim(f1, f2) Jaccard coefficient of similarity between
files f1 and f2, based on token trigrams

|f1trigrams N f2trigrams|
|f1trigrams ) f2trigrams|

Consecutive- Sim(fy, f;“) Similarity between 2 files in consecutive releases
similarity

Self-similarity Sim(fr, fitly Consecutive similarity of files of the same name
Same-similarity Sim(f¢, fy) Similarity between files in the same release
Similar file 4L Sim(fn, f1+1) >Min-sim | File x @ Sim(fll e ) 2

minimum similarity threshold

Table 12.1: Terminology

coefficient of similarity between two files based on token trigrams in the
files. Similarities between different groups of files are given special names

which are explained in Section 12.3.1.

Two other terms used are target file and candidate group. A target file is a
file related to the candidate file by similarity and proximity. For example,
a candidate split file’s targets are files in the next release similar to the
candidate file, which may therefore be recipients of the code removed from
the candidate. The targets for a disappearing file are the file or files in the
next release which are similar enough to the file to be the possible new
location(s) of the file. A candidate group consists of the candidate file, the
amended version of this file, where it exists, and the target file or files. There
can be one or more target files in a group, and they can be any mix of new
files similar to the candidate, and existing files which have become more

similar to the candidate than they were in the previous release.



12.3. FILTERING 175

12.3 Filtering

There are two steps in filtering the code to find potentially interesting files.
The first step is to gather information about the relationships between files
throughout a project, and the second step is to combine aspects of this
information to find files of different types. The information gathering step

is described in Section 12.3.1 and the filtering in Section 12.3.2.

12.3.1 Information Gathering

Once the source code is collected and prepared, the files in each release are
compared to all of the other files in the same release, and all of the files in
the next release. There are two aims in comparing the files. First, to find
tiles with changes between releases which indicate possible membership of
the category of interest; and second, to find other files which may be related
to the change in the candidate file.

Ferret is used for comparing files in the filtering stage because of its rel-
atively fast processing time [194]. There are a large number of comparisons
made during the filtering stage. For this group of projects, with an average
of 16 releases per project and 84 files per release, an estimated 14 million
comparisons between pairs of files are made.’

Vectors of file sizes, in bytes, and of similarities between the files in each
project are stored for use in filtering. The three types of similarity calculated
are: self-similarity, of each file to the file of the same name in the next release;
consecutive-similarity, of each file to every other file in the next release; and
same-similarity, of each file to every other file in the same release.

An example mini-project is used to illustrate the three types of similarity.
This mini-project has 3 releases and 2 original files, a and b. File b is split
between releases 1 and 2 to form file c. Table 12.2 lists example similarities
and file sizes. The similarities are marked in Figure 12.3, except those
between files a and ¢, as they would make the diagram too cluttered.

Self-similarity shows whether a file has changed between releases. Cons-

3(Estimate: 89 « [([(84 + 83)/2]  16) + (84 + 84 + 15)] = 14,383, 824)



176 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

File a 1.0 File a 0.95 File a
l 0.02 - I 0.01
0.07 0.02 il 0.03
| o7 | o002 |
H————0.5— File b H—0.96— File b
File b
I 015 - |
0.15 s 0.13 Key
0.35 ’ s
R l 0.13 T ‘Ir ——  Self-similarity
File c 1.0 File c
l Same-similarity
~ Consecutive-
4 similarity
Release 1 Release 2 Release 3

Figure 12.3: The example mini-project with self-, same- and consecutive-
similarities shown, except those between files a and c.

ecutive-similarity is used to find similarities between the file of interest and
files in the next or previous releases. Comparisons between same-similarity
and consecutive-similarity are used to detect the changes to similarity be-
tween releases. The vectors include information for every release or pair of
releases. Where a file does not exist in a release, its size is set to 0 and its

similarities to -1.

Size in bytes a <3000, 3000, 3100> | b <6000, 4000, 4200 > | ¢ <0, 2400, 2400>
Self-similarity a <1.0,0.95> b <0.5,0.96 > C <-1,1.0>
Same-similarity | a-b  <0.07,0.02, 0.03> b-c  <-1,0.15,0.13> a-c <-1,0.02,0.01>
Consecutive- a-b  <0.02,0.01> b-c  <0.35,0.15> a-c  <n/a here>
similarity b-a <0.07,0.02> cb  <0.13> c-a <n/a here>

Table 12.2: Size and similarity vectors for the mini-project. Same-similarity is be-
tween files in the same release, self similarity between a file in one
release and the same file in the next release, and consecutive-similarity
is that between files in consecutive releases, excluding self-similarities.



12.3. FILTERING 177

In the example, file a is unchanged between releases 1 and 2, and there-
fore has a self-similarity of 1.0, it has minor edits before release 3, when the
similarity between releases is 0.95. File b splits after release 1, resulting in a
smaller file b, and the new and similar file c. File b has self-similarity of 0.5,
and a consecutive-similarity with file c of 0.35. As file ¢ does not exist in
release 1, the value -1 is used in place of similarity scores between this file

and other files.

12.3.2 Selecting Candidate Files

The stored vectors are scanned to find possible examples of the required
type of file. Different filtering criteria are used for each application.

The main filter for renamed or moved files is size, to find files which
exist in release n, but not in the next release, n+1. Consecutive-similarity
provides a second filter, finding target files in release n+1 which are similar
to the file which has disappeared.

Split file filters are based on size and similarity. A split file is expected
to become smaller, and the self-similarity to be lower than it would be after
edits such as within-file abstraction. In addition, one or more target files,
those which now contain the extracted code, will increase their similarity
to the old file.

Merged files can be viewed as the reverse of split files, and by scanning
the releases in reverse order, a merged file will appear to be a split file. They
can also be filtered by looking for files which have increased in size and
have become more similar to a file from the previous release, which may
either have disappeared or have become smaller. However, the view taken
in this study is that for code from one file to be merged with another file,
it must have originated somewhere in the system. As such, a merge can
only happen if a file in the previous release has either split or disappeared,
so that looking for merged files repeats the work of finding the other two
types of restructuring.

Other aspects of file evolution can also be found. From size alone,

growing, shrinking, static and new files can be pinpointed. Other changes



178 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

to files can be traced from self-similarity.

The groups formed with each category of candidate file differ. Split file
candidate groups consist of the candidate file, from release n, the amended
tile from release n+1, and one or more target files, also in release n+1: either
new files whose similarity exceeds the minimum threshold, or existing files

which have increased their similarity to the candidate file by at least the

Prepared files )
Information

gathering l l 1

( Same- ) ( L ) (Consecutive-) ( — :
similarity Self-similarity similarity File sizes

Filtering
Select Scan file
split files sizes
Potential split Disappearing
file file
A Y
. Selec
Not split L No¢” Similar No—»| Deleted file

. target
o)
files? files
FILTER
CRITERIA Yes
d Renamed/
ves *"95" moved file
Mo
For
Target files sorting Target files
targets

Sorted target
files

Sorted target
files

Uncertain file

Amended

version

Candidate group Candidate group

Figure 12.4: Information gathering and filtering



12.4. EXPERIMENTAL DATA 179

minimum margin between releases n and n+1.

Disappearing files encompass moved, renamed or deleted files, files
which merge with others, or files which are split, where both newly created
files are renamed. Groups related to these files consist of any files in the next
release with a similarity to the disappearing file which is above a chosen
threshold.

Figure 12.4 gives an overview of the filtering processes for split and dis-
appearing files and their targets. Disappearing files are found by scanning
the file size vectors. Target files are found by looking at consecutive- and
same-similarities. If there are no similar files, then the file is assumed to
have been deleted. If the most similar file is a close match (similarity >0.85),
then the file is assumed to have been moved or renamed. Disappearing files
which belong to neither of these two categories are called the uncertain set.
The target files for the uncertain set are sorted according to the chosen
criteria and grouped with the disappearing file for further investigation.

Candidate split files are selected based on size and self-similarity. Target
files are selected using the filter criteria based on consecutive- and same-
similarity. If there are no target files, the file is assumed to have been edited
but not split. Otherwise, the target files are sorted and grouped with the

candidate split file and its amended version for further investigation.

12.4 Experimental Data

Two different datasets were extracted from the 89 project source code
database: candidate split files, described in Section 12.4.1; and disappear-
ing files, described in Section 12.4.2. For each set, both theoretical and real
examples are provided to give an idea of the range of relationships between
files in each of the classes. Also provided are examples where classification
is difficult. In the text, the real examples are mostly based on small files,
and headers are sometimes removed, to fit the page. Full versions of the

files and larger file examples are available online.* These examples are

4http ://homepages.stca.herts.ac.uk/~gp2ag/trigram-analysis-examples.htm



180 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

produced by the 3CO tool, see page 117, Chapter 8.

For each of these datasets, the class of the candidate files was decided
by visual inspection of all files in the comparison group. Much of the
file classification was undertaken prior to the development of 3CO, which
would have streamlined the process.

To put the choice of filtering thresholds in context, the mean consecutive-
similarity across all projects in this study is around 0.04. This figure excludes

self-similarity, where the mean is 0.95.

12.4.1 Split file dataset

Candidate split files for this experiment were selected by filtering to find
files with a reduction in size of at least 10% and no more than 0.9 self-
similarity. Target files were selected if their consecutive-similarity was at
least 0.1, and, for existing files, an increase in similarity of at least 10%. Two
classes were assigned to the set of candidate split files, either split or not.
There were a few files for which classification was not clear, and these were

excluded from the dataset.

12.4.1.1 Split files

Split files vary in their complexity. Three example split files are shown
as block diagrams in Figure 12.5. The first of these, 12.5a, a simple split,
will generally only apply to .h files, as it is usually difficult to split a .c file
without the need to include at least some of the original code in both the
resulting files. The second block diagram, 12.5b, shows a file from which
some code has been deleted, some added and some edited. One section of
code has also been moved to an existing file. The last diagram, 12.5¢, shows
a file split three ways, one part forming a new file and one part added to an
existing file. There is also another file in the system which has been edited
and has incidentally become more similar to the candidate file. This file is
therefore selected as a target file, although the code from the split file has
not been moved to it.

Three examples taken from the dataset illustrate a simple two-way split,



12.4. EXPERIMENTAL DATA 181

a three-way split and a multi-way split. The simple split file example is
in Figure 12.6.> Code which remains in the amended version of the file
diagram.h is coloured blue, and code going to globals.h is red.

A slightly more complex example is shown in Figure 12.7, which is laid
out in two columns to fit the page.® This file, gemdos.h, has been split
into three parts and some of the code has been edited or deleted. The code
remaining in the new version of the file is coloured blue. Code which goes
to the new file gemdos_defines.h is red, and that going to the existing file
gemdos.c is yellow. Edited code is not matched in the other files and is
therefore coloured cyan.

There is a wide range of patterns in the candidate groups, which are
mostly more complex than these two examples. Even simple splits vary:

the amount of code moved can be very small relative to file size, for example

5http ://homepages.stca.herts.ac.uk/~gp2ag/xmls/diagram.xml
6http ://homepages.stca.herts.ac.uk/~gp2ag/xmls/gemdos.xml

Release n Release n+1 Release n Release n+1

Existing file,

ST now a target file

(a) A simple split file (b) A more complex split

A target file
Release n Release n+1

(c) A three way split with an unrelated
file selected as a target file

Figure 12.5: Example split files



182 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

typedef enum

|

LINEAR =0,
LOG =1,
SQRT =2

}
size_mode_t;

typedef struct

{

guint8 *canvas_node_id;

node_t *node;
GnomeCanvasltermn *node_item;
GnomeCanvaslitem *text_item;
GnomeCanvasitern *accu_item;
gchar "accu_str;
GnomeCanvasGroup “group_item;
H

canvas_node_t:

typedef struct

t

guintd *canvas_link_id;

link_t *“link;

GnomeCanvasitem *link_item;

GdkColor color;

H

canvas_link_t

gdouble get_node_size (gdouble average);

gdouble get_link_size (gdouble average),

gint reposition_canvas_nodes (guint8 * ether_addr,

canvas_node_t * canvas_node,

GtkWidget * canvas);

gint update_canvas_links {guint8 * ether_link, canvas_link_t * canvas_link,
GtkWidget * canvas);

gint update_canvas_nodes (guint8 * ether_addr, canvas_node_t * canvas_node,
GtkWidget * canvas);

gint check_new_link {(guint8 * ether_link, link_t * link, GtkWidget * canvas);

gint check_new_node (guint8 * ether_addr, node_t * node, GtkWidget * canvas);
guint update_diagram (GtkWidget * canvas):

wvoid init_diagram ();

Figure 12.6: An example of a simple split file. This shows the file diagram.h from
the etherape project. Itis split, with some of the code going to globals.h
(coloured red), and most of the rest remaining in diagram.h (blue).

15 0f 970 lines; or can be a large proportion, such as 1067 out of 1080 trigrams.
There may be multiple target files, for example, one of the candidate files in
the set is split into 11 of its 13 target files.” This large file (over 1000 lines) is
shown in Figure 12.8, the parts of the file moved to some of the target files
is more scattered than in the previous examples. The text of the candidate
file is repeated five times as there are thirteen target files. The first of these
is the amended version of the candidate file in the next release. The rest of
the files are new ones created as a result of the split, or existing files which
are similar enough to the candidate file to be considered as targets. Vertical

bars have been added to the right of the text to highlight the file to which

7http ://homepages.stca.herts.ac.uk/~gp2ag/xmls/dialog-8.xml



12.4. EXPERIMENTAL DATA

#itndef HATARI GEMDOS_H
#define HATAR]_GEMDOS_H
#define GEMDOS_EOK 0
#define GEMDOS_ERROR -1
#dafine GEMDOS_EDRVNR -2
#define GEMDOS_EUNCMD -3
#define GEMDOS_E_CRC -4
#define GEMDOS_EBADRQ -5
#define GEMDOS_E_SEEK -6
#define GEMDOS_EMEDIA -T
#define GEMDOS_ESECNF -8
#define GEMDOS_EPAPER -9
#define GEMDOS_EWRITF -10
#define GEMDOS_EREADF -11
#define GEMDOS_EWRPRO -12
#define GEMDOS_E_CHNG -14
#define GEMDOS_EUNDEV -15
#define GEMDOS_EINVFN -32
#define GEMDOS_EFILNF -33
#dafine GEMDOS_EPTHNF -34
#define GEMDOS_ENHNDL -35
#define GEMDOS_EACCDN -36
#define GEMDOS_EIHNDL -37
#define GEMDOS_ENSMEM -39
#define GEMDOS_EIMBA -40
#define GEMDOS_EDRIVE 46
#define GEMDOS_ENSAME -48
#define GEMDOS_ENMFIL 49
#define GEMDOS_ELOCKED -56
#define GEMDOS_ENSLOGK 50
#define GEMDOS_ERANGE -64
#define GEMDOS_EINTRN 65
#define GEMDOS_EPLFMT -66
#define GEMDOS_EGSBF 47
#define GEMDOS_ELOOP -80
#define GEMDOS_EMOUNT -200
#define GEMDOS_FILE_ATTRIE_READONLY O

... cantinued

typedef struct

{
char hd_emulation_dir|
char fs_currpath{
int hd_battar;
} EMULATEDDRIVE;
extern EMULATEDDRIVE **emudrives;
#define
GEMDOS_EMU_ON {emudrives != NULL)

extern BOOL binitGemDOS;
extern

void GemDOS_Init (veid);
extern void GemDOS_Reset (void);
extern void GemDOS_InitDrives (void):

#dafine GEMDOS_FILE_ATTRIE_HIDDEN (02 extern veid GemDOS_UninitDrives (void);
#define GEMDOS_FILE_ATTRIB_SYSTEM_FILE w04 extarn void GemDOS_MemorySnapShot_Capture
#define GEMDOS_FILE_ATTRIE_VOLUME_LABEL 0x08 (BOOL bSave);

#define GEMDOS_FILE_ATTRIB_SUBDIRECTORY 0x10
#dafine GEMDOS_FILE_ATTRIB_WRITECLOSE 0x20
# 1 T

continued ...

extern void GemDOS_CreateHardDriveFileName
{irt Drive, char *pszFileName,
char *pszDesiName);

extern BOOL GemDOS (vold};

extern void GemDOS_OpCode (void);

extern void GemDOS_Run0ldOpCode (void);

extern void GemDOS_Boat (void);

Bendif

183

Figure 12.7: This file is gemdos.h from the hatari project which is split 3 ways, with
some editing. The blue code appears in the file in the next release. That
coloured red is in the new file gemdos_defines.h and the yellow has
moved to the existing file, gemdos.c. The cyan code has been edited.

each section of the code has moved. For example, the first part of the code
is found in the amended file (blue, first column); the next section of code
has been moved to the fourth of the thirteen other target files (red, second
column); and the next section has been moved to the ninth of the targets
(blue, fourth column). The last two target files (yellow, column 4 and the
blue, column 5) are not true targets as they are only incidentally similar to

the candidate file.



184 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Figure 12.8: The file dialog.c from the hatari project, has over 1000 lines and there-
fore laid out in two columns to fit the page. The file is split into 11 of
the 13 target files. Coloured bars added to the right of the text show
which of the target files contains each section of code.



12.4. EXPERIMENTAL DATA 185

12.4.1.2 Non-split files

Not all of the selected candidate files turn out to be split. Block diagrams of
examples of such files are shown in Figure 12.9. There are two conditions
for a file to be selected. First, it must reduce in size, and this is represented
by the block of deleted code common to each example. Second, there must
either be a similar file introduced to the system, or a file which has become
more similar to the potential candidate than it was in the previous release.
This can occur when an existing file is edited, either by adding code which
is incidentally similar to the candidate (Figure 12.9¢), or by removing code
which is not. A new file may be similar to the candidate either incidentally
(Figure 12.9a), or because a section of the candidate file has been used in a
copy-paste-edit operation when creating the new file (Figure 12.9b).

An example of a non-split candidate, inglossarydlg.h from the interest
project, is shown in Figure 12.10. Here the file has been edited, thus be-
coming smaller. The two files which share code with the file do so because
of in-project similarities. Apart from the edited code in cyan, all of the

remaining code is coloured blue or a mix of colours which contain blue.

N =N e -

New incidentally 4 New file resulting
similar file from copy-edit
Release n Release n+1 Release n Release n+1
(a) New file is incidentally similar to (b) Part of the candidate file is copy-
candidate file paste-edited to create the new file

making the two files similar

. Amended target
file - unrelated

Release n Release n+1

(c) Existing file altered, making it
more similar to the candidate file

Figure 12.9: Example non-split files selected as candidate split files. In each case,
the file becomes smaller, fulfilling part of the selection criteria.



186 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

#ifndef __IN_GLOSSARYDLG_H__
#define __IN_GLOSSARYDLG_H__
Zinclude <gtk/gtk.h>

#ifdef __cplusplus

extern “C"

{
#endif
#define IN_GLOSSARYDLG(obf)
GTK_CHECK_CAST(obj, in_glossarydig_get_type{), InGlossaryDIg)
#define IN_GLOSSARYDLG_CLASS(klass)
GTK_CHECK_CLASS_CAST(klass, in_glossarydig_get_type(), InGlossaryDIg)
#define IS_IN_GLOSSARYDLG(obj)
GTK_CHECK_TYPE(obj, in_glossarydig_get_type{))
typedef struct
typedef struct

{

GtkWindow win,
GtkWidget “clist;
GtkWidget *desc_label;
}

{
GtkWindowClass parent_class;

¥

GtkType in_glossarydig_get_type (void);
GtkWidget *in_glossarydig_new ();
#ifdef __cplusplus

}

#endif

Bendif

Figure 12.10: An example of a non-split file, interest/src/inglossarydlg.h, selected
as a split candidate because it has reduced in size, and two files in
the system are similar enough to be possible target files. However,
code in the target files is also in the revised version of the candidate.

The green code is also shared by the existing file inchartcfg.h, as is the black
code which also appears in the new file widgets/innumentry.h.

In the example in Figure 12.11, acld.c from the xmp project, a first look
at the red and orange coloured code might appear to be a split to the “red”
file. In fact, the code occurs commonly throughout the project, which can
be seen from the other columns where the code is coloured black meaning
it is in each of the three files in that column. The amount of common code
is also magnified here because a few lines are repeated (see e.g. the boxed

code in the lower right corner of the figure).



12.4.

EXPERIMENTAL DATA

i
]

i
i

]

M

M

1|ﬂhlu}
i

| o
E : 1 g ---33-‘5-.5 5‘3 3"3
H i o BE B B--BF-"§%8
. i || N Q Q0 ece o0 oQ
: i LISt i YA cH A s A
i v .._-1 i J'll it | |l LT T T -H : g ) 4 ) A " ad " A
X ||1l;:llll SN j l] A S I W L AL
I R S S B S
T e O MR AR EY
850y 88c8:8.88,,88
AT R
GIIRREEREEEEEEDER
'i: L
i
'
i il 1 o
i A
|l R rlllrll
I |
s '
i |"“||||,,||,,|I i '1| .! ' H i
! 1 p "-'ll "'ll ilitigfitt i i 'l! ll i i o ' i I'I if} :}I
i r:“ i ""qﬂ‘] SN i : I] i e | 1 lllf' n
g e 1T P
10 Al o il 4t
|
i
H i
i I il .
I i o : it 1
T | 1 i i iy i i i "} :}
) lll"l]l]lll]ll” lllll .-l] tlITIRTIIAR IR oo
|i 1 g i) o
11 o rlllrll o 1
d
'
| i Yooy
! ) ._-;!|’u i !m i III ; _,E,JII i
i X "".] llll]ll]l]lll]ll” {1111 : I] i;‘.‘.i | i | 28 b
I ply
T Illlllll rl|lrl| 1 i "ll Sl 1l 1
l
i
. it
=. i g ,
i ARSI H N Wi | ;E
i 1. |“!!||!!! : | 1] ll‘ ih 1 ll’ll'l': I ) T
!1‘ : ! rli:;‘.l'l'li".‘;i" il I'[] ll il My i i f ‘l' F b I‘ 'll J'Il
it :ln"l‘l ";;h,i o |i G II-!”r i -El
1] LALLLY i
illl] w1 i whi{id i 5 1
A .I.

187

to the “red” file. However, there are two things which prompt further checking. First, the red/orange code is repetitive
(see insert), and second, there are 17 other files in which all or most of the code appears, indicating incidental similarity.

Figure 12.11: This is an edited file which has not been split. Looking at the first column of the .xml file, the file might appear to be split



188 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

File type Ke h Total
Split 130 64 194
Not 146 47 193
Total 276 111 387

Table 12.3: Analysis of file type and classification of candidate split files

12.4.1.3 Not classified

In discussing her work with the project PostgreSQL, Zou states that “Cases
of structural changes can be so complicated that they are hard to detect even by
manual examination.” [261, p.23]. This is also true for some of the examples
taken from the 89 projects, where not all of the files selected by filtering
could be classified with confidence; these examples were excluded from the
dataset. The file config MUSENKLh is one such example.® This is difficult
to classify by manual comparison of the files in the candidate group. The
code colouring shows several small groups of lines which appear in only
one of the target files. However, the overlaps between blocks of code in
different files make the relationship between them confusing.

This example contains many of the features which made it difficult to
classify files. The factors include having a large number of target files,
having high incidental similarity, and the code which has been edited or
removed is scattered throughout the candidate file. Also excluded from the

dataset are files of examples or tests, and duplicated files.

12.4.1.4 Dataset composition

Table 12.3 shows the composition of the resulting dataset. Of the 387 in-
stances, 194 are classed as split (130 .c and 64 .h); and 193 are negative
examples (146 .c and 47 .h); so that the dataset is nearly balanced. File sizes
vary from 5 to 9377 lines and there are between 1 and 19 target files in the
comparison groups. An analysis of the number of target files in the groups
is shown in Figure 12.12. More than half of the candidates have only one

target file, approximately a quarter have two, few have more than eight.

8http ://homepages.stca.herts.ac.uk/~gp2ag/xmls/config\_MUSENKI.xml



12.4. EXPERIMENTAL DATA 189

13_14_15 16 18
101! N/

Figure 12.12: Analysis of the number of targets in the split file candidate groups

The x-axis of the graph in Figure 12.13 is labelled with the projects for
which filtering selects candidate split files. The bars show the total for each
project, with the composition represented by colours. Files classified as
split are in red, as non-split in blue, and the unused files are in grey. In each
case, the .h files are shown in a paler shade than the .c files. Fifty-five of
the 89 projects have candidate split files and of these, the majority, 41, have

fewer than 7 candidates.



190 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Bz
AWSA
duwx
aeqx
3poI3IPMEX
Ajsex
pxm
+Jay1eam wm
sauxn)
auIxo)
TXuIyds
Exulds
punoseuas
19|dde-nas
Jaup
Boyss.)
] [:a]]
ayewsald
1ooqodd
oid
suojingqd
[bs Aw-wed
MMO
dnayem- weiau
a|you
deu
oueu
diusw
dodw
siw
g 5/00)5)W
5 250|
e ||
- Saullay|
op|
yoes-oe
dood
15343)U1
X[exdy
Liejey
uolppAm3
|aqeqsd3
Jues
ajesopl)
,e)xa
adelay)s
A23)J9
SO|WeuAp
elp
[3ALIP
PIEIp
peqp
malq
1dAnaaq
poojqpie

=} o
—

Unclassified h files
Unclassified c files
H Non-split h files
m Non-split c files

| Split h files
W Split ¢ files

20
80
70
60
50
40
30
20

Figure 12.13: The number of candidate files shown by project, with split files in red, non-split in blue and unclassified files in grey.

In each case .c files are represented by a darker colour than .h files.



12.4. EXPERIMENTAL DATA 191

12.4.2 Disappearing file dataset

The disappearing files were found by scanning file size vectors. Possible
destinations for the code from disappearing files were selected based on
similarity. Files with an identical target file are assumed to be renamed
or moved files. Manual classification of a test subset of disappearing files
found that files with a high similarity to their main target file, all of those
above 0.788 and most above 0.55, had been renamed or moved; and that
tiles with low similarity, all of those below 0.0925 and most below 0.15, were
incidentally similar, see Figure 12.14. Adding a margin to these figures to
allow for unusual cases, files with a target similarity of at least 0.85 are
automatically considered to be moved or renamed files. Those with a
similarity of 0.05 or less are considered to be incidentally similar. The
remaining set of disappearing files (the uncertain set) were those to which
machine learning was applied. The files were partitioned into two groups:
those with just one target file and those with more. When there are at least

two target files, one of three classes are assigned to the disappearing files.

<=1.0

<04 ]
Incidental
<0.3
Unclear
Split
<0.2 |
Merge
<0.1 Rename
0 20 4

0 60 80 100 120 140

Figure 12.14: Classification of the test set of disappearing files. The y-axis shows
the range of similarity between the file and the most similar file to
it in the system. The x-axis shows the number of files in the range.
Classifications are shown by the colours in the bars.



192 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

One class is split, another is rename, which includes moves and merges,
and the last is that no related file is found. The group with only one target

file cannot be split and therefore has only two possible classes.

12.4.2.1 Renamed, moved or merged files

Two examples are shown in this section. One from gwyddion, libgwypro-
cess.h, on the left of Figure 12.15 has been moved and edited. The new file
gwyprocess.h, on the right, has the same code, with five new lines.

The other file, on the left of Figure 12.16 is sysexits.h, a file which
disappears from the fidogate system. The file is compared to fidogate.h,
an existing file, and the only target. All of the code from sysexits.h is also
in fidogate.h. There are two possible reasons for this, either the files have
merged, or the code was already in fidogate.h, and sysexits.h is deleted to
remove the duplication from the system. The file on the right is fidogate.h in
the next release, and it is compared to sysexits.h (in blue) and to fidogate.h

in the previous release (in red), showing their merge.

12.4.2.2 Other classes of disappearing files

Disappearing files which have split, or are incidentally similar to their
targets, are like those discussed in the section on split files. Examples of
disappearing files which have split,” and one which is incidentally similar

to the target files!? are available online.

12.4.2.3 Dataset composition

Apart from 997 files moved to new directories in the project “mkcdrec”,
there are 1,893 files which disappear from the projects. Of these, 525
are matched by other files in the system, 322 identically. Among the 525
matched files, 21 are ambiguous because two or more of the most closely

1’11

matched files are identica otherwise the matches are the same as made

9http://homepages.stca.herts.ac.uk/~gp2ag/xmls/p1ayer.xml&/protos—7.xm1
10http://homepages.stca.herts.ac.uk/~gp2ag/xmls/indatedlg.xml
1116 with 2 identical targets, 4 with 3, and 1 with 7



12.4. EXPERIMENTAL DATA 193

#ifndef __ GWY_GWYPROCESS_H__
#define __GWY_GWYPROCESS_H__
#include <libprocess/datafield.h>
#inchlude <libprocessidataline.h>
#inchlude <libprocess/interpolation.h>

#ifndef __ GWY_GWYPROCESS_H__ #include <libprocessicwt.h>
#define __GWY_GWYPROCESS_H__ #include <libprocess/ >
Finclude <libprocess/datafield h> #inchlude <libprocess/ >
Finclude <libprocess/dataline.h> #inchude <libprocess/ >
#include <libprocess/interpolation.h> #inchlude <libprocess/ >
#include <libprocess/simplefft.h> #inchude <libprocess/ >
#include <libprocess/cwt.h> #include <libprocessisimplefft. h>
G_BEGIN_DECLS G_END_DECLS G_BEGIN_DECLS G_END_DECLS
Zendif #endif

Figure 12.15: The file on the left, gwyddion/libgwyprocess.h, has disappeared. Its
code, along with 5 new lines is in the new file gwyprocess.h, shown
on the right. Two other files, responsible for the green, purple and
black code, are incidentally similar to the disappearing file.

#include "config.h"
#include "paths_h"
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#ifdef OS2

# include <io.h>

# include <process.h>
#endif

#include <ctype.h>
#include <string h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <errno.h>
#include <dirent.h>

#ifdef
h>
#
EX_OK 0
#define EX_OK 0 # define EX_USAGE 64
#define EX_USAGE 64 # define EX_DATAERR 65
#define EX_DATAERR 65 # define EX_NOINPUT 66
#define EX_NOINPUT 66 # define EX_NOHOST 68
#define EX_NOHOST 68 # define EX_UNAVAILABLE 69
#define EX_UNAVAILABLE 69 # define EX_ SOFTWARE 70
#define EX_SOFTWARE 70 # define EX_OSERR 71
#define EX_OSERR 71 # define EX_OSFILE 72
#define EX_OSFILE 72 # define EX_CANTCREAT 73
#define EX CANTCREAT 73 # define EX_IOERR 74
#define EX_IOERR 74 #endif
#define EXIT_OK 0 define EXIT_OK 0
#define EXIT_ERROR 1 #define EXIT_ERROR 1
#define EXIT_BUSY 2 #define EXIT_BUSY 2
#define EXIT_CONTINUE 3 #define EXIT_CONTINUE 3
#define EXIT_KILL 32 #define EXIT_KILL 32
TRUE 1
#define FALSE 0
#define OK 0
#define ERROR -1)
#define EMPTY -1)
#define INVALID -1)
#define WILDCARD -2)

#undef _toupper

#undef _tolower

#undef toupper

#undef tolower

#define _toupper(c) ((c)-'a'+'A")

#define _tolower(c) ((c)-"A'+'a")

#define toupper(c) (islower(c) ? _toupperic) : (c})
#define tolower(c) (isupper(c) ? _tolower(c) : (c))
#define exit(x) fidogate_exit(x)

#include "declare.h™

#include "node.h™

#include "packet.h™

#include "structs_h"

#include "prototypes.h™

Figure 12.16: On the left, the file sysexits.h is compared with fidogate.h, which
shares all of the code. On the right, fidogate.h is the base file, code
in its previous version is red, and sysexits code is blue, showing a
merge with no overlapping code.



194 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

by visual inspection. Another 443 are unmatched, leaving 925 for which
the destination of the code is uncertain.

Note that the “uncertain” dataset reported in Table 12.4 is the result
of filtering with the improved filter criteria described in Chapter 15. The
number of disappearing files is unchanged whatever filter is used. Matched
files also remain the same here. The differences between the original and
new filtering criteria mean that more marginal target files are selected, so
that more of the files (142 .c files and 38 .h files) fall into the uncertain rather
than the unmatched category.

As with the split files, some of the files selected by filtering are excluded.
Most of these are examples or tests, with a few files which could not be
classified with confidence. Of the remaining 752 files, 177 have 1 target file,
575 have more; 478 are .c files and 274 are .h. These are mostly unrelated
and renamed files, 360 (47.9%) and 333 (44.3%) respectively, with only 59
(7.8%) split files. There are up to 99 target files in a candidate group.

12.5 Summary

In this chapter, the collection, selection and preprocessing of files is de-
scribed along with their filtering to find two different sets of candidate
groups. The composition of these datasets by project, file type and class are
described. In the next chapter, the features constructed for these datasets as
input for machine learning are explained. These features are derived from

comparison of the files by the tools described in Chapters 6 and 11.

2 or more target files 1 target file Totals
File type .c h Total .C .h | Total .C h | Total
Unrelated 158 97 255 73 32 105 231 | 129 360
Renamed 175 | 86 261 28 | 44 72 203 | 130 333
Split 44 15 59 - - - 44 15 59
Unclassified | 116 21 137 24 12 36 140 33 173
Total 493 | 219 712 125 | 88 213 618 | 307 925

Table 12.4: File type and classification of “uncertain” disappearing files



Chapter 13

Feature Construction

This chapter explains how the features for classifying evolving files are
constructed. These features are used to build machine learning models
which aim to classify candidate split files as positive or negative examples,

and to classify disappearing files as split, renamed, or deleted.

Feature construction is a two-stage process in this research. In the
first stage, pairs or combinations of files are selected from those in the
candidate group. Second, features are constructed by comparing the pairs

or combinations of files generated in the first stage.

The main idea is to build sets of features based on each comparison tool,
and investigate the predictive power of the sets, both individually and in
combination. The goal is to find a set of features which is simple to compute
while providing good discrimination between the classes.

The two tasks, classifying split and deleted files, are related in that
both look at the movement of code from one file to another, and consider
how the group of files is related. Assessing split files is possibly the more
difficult task because it is uncertain whether the code removed from the file
is significant, whereas a file which disappears is automatically of interest.

The features were originally developed to classify split files, and expla-
nations in this chapter generally refer to split files. However, because the
task of classifying a disappearing file as renamed, split or deleted is similar,

the features are also used to classify disappearing files.

195



196 CHAPTER 13. FEATURE CONSTRUCTION

When deciding whether a file is split, questions asked about the rela-

tionship between files, and the code they contain, include:

e Are blocks of code missing from the candidate file in the next release?

Are the blocks large enough to be interesting?

Do these blocks appear in other files?

How similar are the associated files?

What proportion of the files are matched?

How is the matched code distributed within one file?

How is the matched code distributed among the group of files?

The features constructed for this data aim to answer such questions
about the files in a group and their interaction, and so provide suitable

information for the file classification tasks.

There are two parts to the chapter. Section 13.1 looks at the way that
files in a candidate group are selected and combined ready for comparison.
Section 13.2 describes the features constructed from the results of comparing

the files using the tools described in Chapter 11.

13.1 File combinations and comparisons

Two candidate groups were introduced in Chapter 12. Split file groups
consist of a candidate split file, an amended version of this file in the next
release, and a group of target files. Disappearing file groups are just the

disappearing file and a group of target files.

The files in a group are compared in two ways. Either pairwise com-
parisons between selected single files, described in Section 13.1.1, or com-
parisons between the candidate file and various combinations of the other

files in the group, explained in Section 13.1.2.



13.1. FILE COMBINATIONS AND COMPARISONS 197

13.1.1 Comparing single files.

The three single files compared pairwise are the candidate file, the amended
version of the file and the ‘main’ target file, or, for disappearing file groups,
the two main targets. The ‘main’ target file is the one selected under some
similarity measure as most likely to contain the majority of the code re-
moved from the candidate file. A straightforward approach is taken to
selecting target files in the experiment reported in Chapter 14. Potential tar-
get files are ranked by the change in similarity of the target file, from release
n to n+1, to the candidate file in release n [Sim(C,,, Ty,+1) — Sim(C,,, Ty)].
This selection has a bias towards choosing new files over existing files.
Based on earlier findings [93], if a file has been restructured and there is a
similar new file in the system, it is likely to result from the restructuring.
Figure 13.1 illustrates the selection of the main target file by change in
similarity score. The example candidate group has four target files, shown
on the left of the diagram. Of these, two are new, and two are existing
files. These files are shown with two similarity values, chosen to illustrate
the selection criteria. The similarity values are labelled “similarity up from

x to y”, where x = Sim(C,, T;;), (same-similarity); and y = Sim(Cy, Ty41),

Example target files

S 1 1-2.
CIEIRES o Candidate and
Candidate file
?a? ?Iml arity up amended
from-1t00.5 -
L
g‘
from -1t0 0.1 21 1-3. 2
Amended file Candidate and 2
Existing targets (Similarity 0.4) main target ]
=
(C) Simifarity up B
from 0210 0.8 3
A Select target with 3. Main target 2-3. =
(fd) Slr(r)1|l1a;'|tyou2p greatest increase file Amended and ¢
TOMIUAIROI, in similarity (Similarity 0.5) main target
Selection 3 single files Comparison

Figure 13.1: The target file with the largest increase in similarity to the candidate
file is selected as the main target file. Pairwise comparisons are then
made between the candidate, amended and main target file.



198 CHAPTER 13. FEATURE CONSTRUCTION

(consecutive-similarity). When a file does not exist in release n, it is assigned
a similarity value of -1, assuring the selection of new files over existing files.
This is just one possible strategy, which could be altered; for example, by
reducing the bias, or by removing it al’cogether.1

The selected target file, the candidate file and the amended file are then
compared to each other. Comparisons between the three files as a group

are explained in Sections 13.2.1.2 and 13.2.2.1, and are not depicted here.

13.1.2 Comparing the candidate and concatenated files

The other approach to file comparison looks at the candidate file and various
groups of files taken from the amended and target files. Each group of files
is concatenated to make one file, which is compared to the candidate. Five
combinations are considered below, with the target files which would be

selected from the example set, files a-d in Figure 13.1, noted in brackets:
A The amended file and the main target file (a),

B the amended file and all target files (a, b, c and d),

C the two files among the group most similar to the candidate (a and c),
D the amended file and all new target files (a and b), and

E the amended file and the target file most similar to the candidate file (c).

One example of a comparison between the candidate file and a concatena-
tion is shown in Figure 13.2. All of the new target files and the amended file
are combined (concatenation D); the file resulting from the concatenation
is compared to the candidate file. At the end of this Section, on page 202,
Figure 13.5 illustrates all of the concatenations and comparisons.

There are two reasons for combining the files. First, comparisons be-
tween the candidate file and the concatenations can provide useful infor-
mation. For example, if a file is simply split to produce an amended file and
one or more new files, a high proportion of the original file’s code is likely

to appear in a concatenation of the new and amended files.

1Other similarity measures can be used for selection, alternatives are explored in Chap. 15.



13.1. FILE COMBINATIONS AND COMPARISONS 199

Example target files

72 il
Newlalyots Amended file Candidate file
from -1 to 0.5
2. 1-D.

from -1 10 0.1 Amended file Candidate and
concatenation D

Existing targets New file (a)

Select all new
from 0.2 to 0.8
from 0.1 t0 0.2
Selection Concatenation Comparison

Figure 13.2: An example concatenation, that of all the new target files with the
amended file, and its comparison to the candidate file.

Two examples are shown in Venn diagram form in Figure 13.3. On the
left is the file fa.c, introduced on page 122, which is split three ways. The
similarity between each of the three targets and the candidate file is around
0.3. The similarity between the candidate file and the concatenation of the
three files resulting from the split is 0.666. The containment of the candidate
file trigrams in the concatenation is 0.89, a high value reflecting the fact that
most of the candidate file code appears in one of the three files.

A contrary example is pictured on the right of Figure 13.3. Imagine
that instead of being split, a file has been edited, so that, as in the previous
example, the amended file has a similarity of 0.3 to the candidate. The two

target files for this candidate also have similarities of around 0.3. However,

Figure 13.3: In each diagram, the amended file (A, in blue) and two target files (T1,
T, in yellow and green) have a similarity to the candidate file (C, red)
of around 0.3. The file on the left is split, the one on the right is not.



200 CHAPTER 13. FEATURE CONSTRUCTION

most of the code common to the candidate and target files is a subset of that
shared by the amended and candidate files. In this case, the containment
of the candidate in the concatenation is about the same as the containment
of the candidate in the amended file.

Another example, in Figure 13.4, shows a file split into three. One part
forms the amended file, the others are placed in existing files. Although
the similarity between the candidate file and a concatenation of the two
target files with the amended file will not be as high as the fa.c example, the
containment of the candidate file in the concatenated file should be high.

The second reason for combining files is that as the number of target
files in the groups varies, the concatenations provide a standard number
of comparisons of the set of target files, regardless of their number, while
including all members of the group in at least one comparison.

The combinations were chosen with two aims. First to select combina-
tions of files which are more likely to be the targets of the code removed
from the candidate file, such as groups A (amended and main target files),
C (the two files with the highest similarity) and E (the target file with the
highest similarity and the amended file). Two of the groups, A and E, pair
the amended file with one target file. These two groups are aimed at simple
splits where code is moved from one file to another, such as cnp-1.c where

some of the code is moved to the new file fact.c. Group C is similar, but

Another target
file

Another file

Concatenation of
amended and

Release n Release n+1 target files

Figure 13.4: A file with two sections split out to two existing files. A concatenation
of the resulting files should contain the majority of the code from the
original candidate file.



13.1. FILE COMBINATIONS AND COMPARISONS 201

allows for two recipients, like the example in Figure 13.4.

The second aim is to include as many of the true targets as possible for
a multiway split. Group B, where the amended file is concatenated with
all potential target files, is motivated by the fact that a file may be split into
more than two target files, and that it may not always be the most similar
files which are the true targets. Group D is similar, but is based on the
assumption that new files are likely to be true target files.

There is a disadvantage to this approach. With just one or two target
files, the groupings cause some duplication of features when the feature
sets are combined. For example, if there is just one new target file, then all
concatenations are the same, and consist of the amended file and the target
file. With a single existing target file, all except concatenation D are the
same, being the amended file and target file. D will simply be the amended
file, thus repeating the single file comparison between the candidate and
amended files. This duplication is a cost of including all target files in the
combinations, and may sometimes affect classification. For example, where
random subsets of features are selected in creating classifiers.

Figure 13.5 shows the file groups, with the same four target files as
Figures 13.1 and 13.2. Target file selections are shown in the second column
of the diagram. Asin Figure 13.1, the file with the largest change in similarity
is selected as the main target. This means that the new file (a) is chosen,
although the similarity of the existing file (c) is higher. To balance this
method of selection, two of the groups, C and E, look instead for files with
the highest similarity to the candidate file, regardless of previous similarity;
in this case file (c) with a similarity of 0.8 is chosen ahead of file (a) at 0.5.

The lower part of the third column in Figure 13.5 shows the file combi-
nations. Each file group is concatenated into a single file. The last column
shows the pairs of files passed to the similarity tools for comparison. There
are eight file pairs, three pairwise combinations of the candidate, amended
and main target files, with the other pairs made up of the candidate file and
each of the five concatenations. The information output by the tools is used

to construct features which are explained in the next section.



CHAPTER 13. FEATURE CONSTRUCTION

202

smoys werderp sy, ‘SunsIxa g pue mau g ‘sa[y 39318} § sey dnoid ajeprpued spdwexs ay “uostredwod pue uoryeurquiod I G ¢T 9In3L]

"djeprpued 3y} 03 paredurod usy) a1 YdTYM SI[TJ PIJLUD}BIUOD J)
JIOJ UOT}O3[3S I JOJ BLIDILID a3 smoys osfe 3] "doj ayy Je suostredwod afy a[3urs ayy} pue o[y jo31e) UTew Sy} Jo UOTdI[as Y}

suosuedwo?)

Comparisons between concatenations
and candidate file

3 UOIBUS)EIU0D
pue sjepipued ‘3-|

SUOIEUIqWOD

(] UoIELS}EdUOD
pue ajepipued Q-1

Rypejus
1saybiy yim 1e6.ey
pue papuswy 3

uonaajes ajy 1ebie | sajy 1obie) ajdwexy

2 UONBUSIBIUCD
pue sjepipued "O-L

sjeblie} mau |
pUE papuawy Qg

g UoIjeUs]eouo?
puUE 8jepIpUED "g-|

\

Asejiwis 1saybiy
yum siebieyz 0

Ryie|is
1s3yB1y ypm
= Ll s P zoor 10
woyy Ajuenuig
sa|y
10612 MaU 10383 p (0) gomzo
A | woy Auejwis

Aepwis ysaybiy

'/ UOIEUSJEDU0D
pue sjepipued y-|

sjebley ||e
pue papuawy g

sjefire) Gupsix3

Uim sajy ¢ 19818S

Pairwise single file
comparisons

1ebuE} UIEW
pue pspusuy ‘g-z

18buey UleWw
pue sjepipuey ¢-|

papuawe
pue sjepipueg “g-|

18618} UIEW
pue pspuswy 'y

3|l ajepIpued
b

<L M (@) Loolt-
jeb1gy |B J0818S woy Auewisg
] B (B) 00} |-
U] "oul “XBLU Upm — || |won Auepuig

jebie) josies ¢
sjablie) maN

3|} papuswy
@

| UORONASUOD
ainjee




203

13.1. FILE COMBINATIONS AND COMPARISONS

"T'€T 9[qeL. Ul PajsI] a1e S 1o g se yons ‘soureu dnoid ainjeay pajeraaiqqe ay} jo sdurueawr ayJ,

‘mdino sy SursATeue pue sj003 9y Jo yoea yrm sdnoid oty syeprpued oy Surredwod £q PajonIIsuod a1e sarnjes :9'¢l Ly

induj

suted 8)14

(shay) SIOIOBIXD ssaoosd —— —
SaInjes aunjea— BT
A u sjels
oS N mey -
uelwig
uopejuasaldal
a ORI B|gLUBIDSUN sauo|
sieys
_ Ho mey
WiBpui43D e
uopejuasalday
e S s|gLUEIISUN sauoj)
A “ siels
Hd mey
odng-4 [+
uoneussaudal
i a|gLUBIISU ==10Ts)
uonejuasalday sisfjeue
2 #30|g/8uo|D fysuag
(» )
uoneussaldas
. sisfjeue oo,
( 14 ¢ Y0012/ 1sh[eue oolg
() e
sisfjeue Woday
SHL WwesBu ) Wweabu 7 s
A u s1e18 .
=} + mey -

Z Uononsuod
alnjea4




204 CHAPTER 13. FEATURE CONSTRUCTION

13.2 Features

As noted in Chapter 4, the choice of features is important in machine learn-
ing. It can be difficult to make a suitable selection when the possibilities are
not well constrained. In general, for restructured files, the features should
aim to describe the relationships between the contents of the selected files.
In practice, as discussed in Section 12.4.1.1, file sizes, the amount of code
moved, and the complexity of its distribution vary widely, making the
choice of descriptive features difficult.

The second stage in feature construction is explained in this section and
illustrated in Figure 13.6. The eight file pairs described in the previous
section are compared using the four tools Ferret, P-Duplo, CCFinder and
Simian. The outputs from the tools are analysed to provide twelve sets of
features, represented in the diagram by keys, which are listed in Table 13.1.

There are two groups of features, raw and block-based. Raw fea-
tures, described in Section 13.2.1 are taken directly from the output of each
tool. Block-based features, explained in Section 13.2.2, are constructed by

analysing the clones or matched blocks reported by each of the tools.

13.2.1 Raw feature sets

Among the five raw sets of features, four sets are derived from the statistics
reported by each of the four tools. The fifth set comes from the Ferret
trigram-file index; a little analysis is needed to construct this set, but as the
seven other feature sets have much in common, being based on blocks or

clones, the trigram features are grouped with the four raw sets.

Key Raw features Key Block-based features
FB Ferret Basics FC,FT,FL  Ferret XML Blocks
(measured in characters, tokens, lines)
Tris  Ferret Trigrams FD Ferret Dense Blocks
PR P-Duplo Raw PB P-Duplo Blocks
CR  CCFinder Raw CB CCFinder Blocks
SR Simian Raw SB Simian Blocks

Table 13.1: Keys and names of the feature sets



13.2. FEATURES 205

Raw features are included because they are simple to collect and be-
cause several of the approaches to origin analysis reviewed in Chapter 3
use measures taken directly from similarity detection tools. Also, in earlier
experiments [95], 2 of the 32 features chosen by a selection algorithm (cor-
related feature subset selection [101]) from a set of over 2,000 were based
on the direct output from a clone detection tool. These 2 features are ratios
of the code in all of the clones to the total in a file. As previously discussed
(Section 11.5, p. 164), the amount of code in these clones can be greater
than that in the file, because of the many-to-many matching used in clone
detection. It is possible that a large number of such clones indicates a file

ripe for code abstraction, which increases its chance of being split.

13.2.1.1 Ferret basics

Features constructed from the raw output from Ferret are called Ferret
basics. The example of Ferret’s default output in Table 13.2 lists file names,
the number of trigrams in each file and shared by the files, similarity score,
and containment of each file in the other. All of these measurements are
used directly as features. The proportion of trigrams in the non-candidate
files to the candidate file is also calculated, as is the ratio is of the target file

trigrams to those in the amended file.

13.2.1.2 Ferret trigrams

The Ferret trigram-file index, an example of which can be seen in Figure 6.3
on page 90, lists all of the trigrams in the files, and shows which files

contain each trigram. This index is analysed to create the features listed in

common file1 file 2 simil- cont’t cont’t
file 1 file 2 trigrams | trigrams | trigrams arity 1in2 2in1
cnp-l.c | cnp-2.c 142 179 151 0.755319 | 0.793296 | 0.940397
cnp-l.c | fact.c 35 179 35 0.195531 | 0.195531 | 1.000000
cnp-2.c | factc 2 151 35 0.016393 | 0.019868 | 0.085714

Table 13.2: Basic Ferret output for the three example files (cont’t - containment)



206 CHAPTER 13. FEATURE CONSTRUCTION

B

Amended

Main target

Figure 13.7: The features in Table 13.3 are based on these Venn diagrams, repre-
senting comparisons between the candidate and a concatenation (left),
and between the candidate, amended and main target files (right).

Table 13.3, where A, B, and C refer to the files shown in the Venn diagrams
in Figure 13.7. In concatenation comparisons, file A is the candidate file
and file B the concatenated file. File A is also the candidate file in three-way
comparisons, while file B is the amended file, and file C the main target file.

Nine features are constructed from the comparisons between the can-
didate file and each of the concatenated files. These features include the
number of trigrams unique to each file; the proportion of these to the total

in the file; and the proportion of shared trigrams to the total in each file.

Trigrams in
Features 2 files 3 files
In one file A,B A,B,C
In amended and target files BUC
Shared by all ANB ANBNC
Shared by two of three A(B\C,ANC\B,BNC\A
Shared by candidate and one other file (ANBUONBNCO)
Cand. trigrams not shared by one file A\BUOCOHYUANBNO
Unique to one file A\B, B\A A\(BUC), B\(AUC),B\(AUC)
Unique proportions #, % A\(ZU Q, B\(ABU Q, C\(ACU B)
Shared proportions ’%, # ’%, ’%, ’%, ‘ﬂ, %, %
Shared by all to each file AmiﬁC,AﬂgﬂclAmng
Proportion of candidate shared by one file Ww
Proportion of candidate shared by any file w

Table 13.3: Trigram-based features for comparisons between the two and three
files. A, B and C refer to the files shown in Figure 13.7.



13.2. FEATURES 207

The remaining three features repeat information found in the Ferret basic
set: the shared trigrams and the trigrams in each file. However, because
this research explores the comparative classification rates of the different
feature sets, the features are also included in this set.

The three-way comparison between the candidate, amended and main
target files provides twenty-four features which mostly represent relation-
ships between the three files. The features in the set are split into two types:
counts of trigrams in various combinations of files and the proportions of
these counts to the total in one or more files in the combination.

The counts include the numbers of trigrams in each file, unique to one
file in the group, shared by each pair of files, and shared by all three files.
Other count-based features are the sum of the trigrams in the amended and
target files, the number of trigrams shared by the candidate and just one
other file, and this figure subtracted from the total in the candidate file.

Proportional features relate the counts to the total of one of the files
compared. For example, the number of trigrams shared by the candidate
file and just one of the other two files to the number of trigrams in the
candidate file. For a simple split, with little incidentally similar code, this
tigure should be close to one. In general, the proportion should be high for
two-way splits, although it will be reduced by editing or by code common
to the three files.

Some of the proportional features echo the basic Ferret features. For
example, the proportion of trigrams from the candidate file which appear
in either of the other two files is the same as the containment of the candidate
file in the concatenation of the amended and target files. Most features, such
as the proportion of a file covered by the trigrams which are unique to that

file, are not calculated elsewhere.



208 CHAPTER 13. FEATURE CONSTRUCTION

13.2.1.3 Simian, Code Clone Finder and P-Duplo

The features constructed from the clones reported by each of the clone-

detection tools are:

e the number of clones of 5 minimum sizes,

e proportions of lines/tokens in the above to the size of file 1, and
e proportions to the size of file 2.

Both file sizes and the amount of code moved vary, making it difficult to
choose one clone size to fit all situations. A range of minimum clone sizes
are set, the specification of which depends on the tool. P-Duplo and Simian
are based on line counts and the values chosen for the five minimum clone
sizes are 2,4, 8, 16 and 32 lines.

CCFinder clones are based on tokens instead of lines. Analysis of all of
the C code files in the most recent release of each of the 89 projects used in
this research shows that the average number of tokens per line is around
7 (mean 6.95, median 10, and mode 7). The CCFinder clones are therefore
selected using minimum sizes of 14, 28, 56, 112 and 224 tokens.

An edited version of the file cnp-2.c, cnp-2-edit.c, is introduced here.
This file is the same as cnp-2.c except that the variable names “combina-
tions” and “permutations” are changed to “combs” and “perms”. The code
is shown with cnp-1.c in Figure 13.8 (p. 210). The files are compared to
provide examples to show how clone and block sizes are derived from each
of the tools.

P-Duplo The raw features from P-Duplo are taken from a summary of the

clones. In each file there is one clone of 13 lines (5-17).

Lines in file 1: 36
Lines in file 2: 28
Clones: ((5 17)(5 17))




13.2. FEATURES 209

Simian The raw Simian features are taken from the summary statistics
reported by the tool. An extract from the Simian report for a comparison

between the files cnp-1.c and cnp-2-edit.c is shown below.

Found 36 duplicate lines in 4 blocks in 2 files
Processed a total of 43 significant (64 raw) lines in 2 files

Simian records the number of duplicate blocks and duplicate lines, which
are counted twice, once for each file. Simian disregards ‘includes’, and
lines with one character, therefore records fewer total lines than P-Duplo.
However in its ‘raw’ count, these lines are included.

With parameterised identifiers, Simian finds two clones in each file, 18
significant lines in total. The first spans lines 3 to 20 in both files, the second,
lines 28 to 36 in file 1, and lines 20 to 28 in file 2. The first clone is counted
as 14 lines long and the second as 4 lines, as lines with a single brace are
not counted. This differs from P-Duplo in that lines with altered identifier

names are matched, but single character lines are not counted.

CCFinder The extract from the CCFinder report below is also for a com-

parison between the files cnp-1.c and cnp-2-edit.c.

source_files {

1 cnp-l.c 208

2 cnp-2-edit.c 166

}

clone_pairs {

1 1.0-99 2.0-99 1 2.0-99 1.0-99

8 1.12-27 2.27-42 8 2.12-27 1.27-42

8 1.27-42 2.12-27 8 2.27-42 1.12-27

2 1.74-92 2.74-92 2 2.74-92 1.74-92
15 1.141-207 2.99-165 15 2.99-165 1.141-207
}

This report first gives the number of CCFinder tokens for each file. This
number differs from the number of actual tokens, because of the exclusions
and transformations which occur during preprocessing by the tool. The
location and size of each clone is reported and these are totalled. The total
number of tokens in the clones reported here is 100 +16 + 16+ 19 + 67 = 218;
whereas the unscrambled clones, that is the first and last of the clones,
contain 100 + 67 = 167 tokens.



210 CHAPTER 13. FEATURE CONSTRUCTION

CCFinder allows the minimum token types for a clone to be specified;
this is aimed at users wanting to exclude small repeated structures in the
code but is not used in this research where all matches may be interesting.

The “raw” features are listed in Table 13.4. In addition to those described
in Sections 13.2.1.1-13.2.1.3, the total units in each of the single files and the
five concatenated files measured by each of CCFinder, Simian and P-Duplo,
as well as the number of characters, tokens and lines in the file are included;

as are the type of file (.c or .h), and the number of target files.

1. #include <stdio.h>

2. long factorial (int n);

3. long combinations (int n, int k);

4. 1long permutations (int n, int k);

5. int mainQ

6. {

7. int setsize, subsetsize;

8. printf ("Set size? "); _ ,

9. scanf ("%d", &setsize); 1. #include fStd1°-§>

10. printf ("Subset size? "); 2. #include "fact.c"

11. scanf ("%d", &subsetsize); 3. long combs (int n, int k);

12. if (setsize < 0 || subsetsize 4. long perms (int n, int k);

< 0 || setsize < subsetsize) Z- int mainQ)

13. .

14. printf ("Mission impossible\n"); 7. int  setsize, subsetsize;

15. return (1); 8. printf ("Set size? ");

16. 9. scanf ("%d", &setsize);

17.  printf ("%ld combinations and %ld 18.  printf ("Subset size? ");
permutations of %d items 11. scanf ("%d", &subsetsize);
taken from %d\n", 12.  if (setsize < 0 || subsetsize

18. combinations (setsize, subsetsize), <0 || setsize < subsetsize)

permutations (setsize, subsetsize), 3. { L. . .
subsetsize, setsize); 14. printf ("Mission impossible\n");

19. return (0); 15. return (1);

20. } 16. }

21. long factorial (int n) 17.  printf ("%ld combinations and %ld

22. permutations of %d items

23. long result = 1; taken from %d\n",

24. int i 18. combs (setsize, subsetsize),

25. for (i = 1; i <= n; i++) perms (setsize, subsetsize),

26. result *= i; subsetsize, setsize);

27. return (result); 19.  return (0);

28. } 20. % ) )

29. long combinations (int n, int k) g%- %ong combs (int n, int k)

30. :

31. ¢ return (factorial(n) / 23.  return (factorial(n) /
(factorial(k) * factorial(n-k))); 24. 1 (factorial(k) * factorial(n-k)))

32. } . , ,

33. long permutations (int n, int k) gg- {1ong perms (int n, int k)

34, .

35. ¢ return (factorial(n) / 27.  return (factorial(m) /

factorial(n-k)); factorial (n-k))

36. } 28. %

The file cnp-1.c The file cnp-2-edit.c.

Figure 13.8: Files used to provide examples of the blocks or clones found by the
tools. Cnp-2-edit.c is an edited version of the original cnp-2.c, with
the variable names “combinations” and “permutations” changed.



13.2. FEATURES 211
Tool Measure No. [Total
Ferret Similarity score (simscore) 1

Number of trigrams in each file, and those common to both files 3
Proportion of trigrams in other file to those in the original file 1
Containment of each file in the other 2
Total 7 |56
Ferret Trigrams unique to each file 2
Trigrams Trigrams shared by the 2 files 1
Two files - Total trigrams in each file 2
used for Proportion of trigrams in only one file to the total in that file 2
cand-concat Proportion of shared trigrams to the number in each file 2
comparison Total 9 45
Ferret Trigrams unique to each file 3
Trigrams Trigrams shared by just 2 files 3
Three Trigrams shared by all 3 files 1
Files Total trigrams in each file 3
- Sum of trigrams in amended and target files 1
used for Trigrams shared by the candidate and just one of the other files 1
3 main Trigrams in the candidate file not shared by just one of the other files 1
files Proportion of trigrams shared by one other file to total in candidate file 1
Proportion of trigrams shared by any other file to total in candidate file 1
Proportion of trigrams unique to each file to the total in the file 3
Proportion of trigrams shared by two files to totals in each file 6
Proportion of the shared trigrams to totals in each file 3
Total 27 | 27
All sets (7) Total units in single files 3 x 7 21
CCFX,Sim,PDp| Units in concatenated files 5 X 7 35
FC, FT, FL, FD | Total 56 | 56
P-Duplo The number of clones of min m lines of min n characters
For (m n) of (2 2)(4 3)(8 4)(16 5)(32 6) 5
Proportion of lines in the above to file 1 size 5
Proportion of lines in the above to file 2 size 5
Total 15 1120
CCFX The number of clones of min m tokens, m is 14, 28, 56, 112, 224 5
Proportion of tokens in the above to file 1 size 5
Proportion of tokens in the above to file 2 size 5
Total 15 1120
Simian The number of clones of min m lines
Form=2,4,8,16 and 32 5
Proportion of tokens in the above to file 1 size 5
Proportion of tokens in the above to file 2 size 5
Total 15 ]120
Sundries File type (.c or .h) 1
Number of files in target group 1 2
Grand Total 546

Table 13.4: Raw features taken directly from the tools” outputs. All of the features,
except the sundries and trigram-based ones, are constructed for the 8
file pairs. Column 3 shows the number of features for each pair of files,
and column 4, for all relevant pairs.



212 CHAPTER 13. FEATURE CONSTRUCTION

13.2.2 Feature sets based on blocks

The other seven feature sets, based on either the blocks from the Ferret XML
and density analyses,? or the clones found by CCFinder, Simian or P-Duplo,
are similar to each other. Features are constructed by analysing the number
of blocks (or clones), their sizes, and relationship to the containing file size.
The word block is used here to describe matched sections of code.

The two Ferret analyses result in a list of block sizes. The clone-detection
tools provide information about matching blocks of code as a list of start
and end points from which their sizes are calculated. As described in
Chapter 11, for the purposes of this research, the clones are post-processed
to approximate one-to-one matching (unscrambled).

As an example, Table 13.5 shows the results of comparing the two files,
cnp-1.c (file 1) and cnp-2-edit.c (file 2), using each of the clone-detection
tools. The tool and the unit used to measure clones are in the first two
columns of the table. The unscrambled clone pairs are in the third column,
where each clone is represented by a start and end (token or line) number
(start end), and each clone pair is a file 1 clone paired with a file 2 clone ((f1-
start f1-end)(f2-start f2-end)). The clones for files 1 and 2 are separated, as
in columns 4 and 5. Any contiguous blocks are merged, such as the blocks
(099) and (100 165) found in file 2 by CCFinder. The length of each block is

2The results of classification tests to find suitable parameters for density analysis on the

data used in this research are listed in Appendix L

Tool Unit Clones File 1 File 2 File 1 File 2
filel file2 blocks blocks block block
((start end)(start end)) lengths | lengs

CCFX Token | (((099)(099)) ((099)(142 207))| ((099)(100 165))| (100 66) | (166)
((142 207)(100 165)))

Simian Line (((319)(3 19)) ((3 19)(29 35)) (3 19)(21 27)) 177) 177)
((29 35)(21 27)))

PDuplo | Line ((517)(517))) ((517)) ((517)) (13) (13)

Table 13.5: Clones reported by the three tools when cnp-1.c (file 1) and cnp-2-edit.c
(file 2) are compared. The clones are listed in column 3, with those in
each file shown in columns 4 and 5. Contiguous clones are merged,
and the lengths of the resulting blocks listed in the last column.



13.2. FEATURES 213

then calculated, giving the list of block sizes in the last two columns.

As this is a small example, the results for the tools are not dissimilar. The
main difference between CCFinder, which works with tokens, and the other
tools, which are line-based, is one of scale. Other differences are caused by
features of the matching algorithms. For example, Simian breaks the blocks
in file 2 on the “insignificant” line ('} ) between the two sections, but would

otherwise have one block in file 2 like the other tools.

As described in Chapter 6, analysis of the Ferret XML report produces
a list of block sizes, which can be recorded in terms of tokens, lines or
characters. A density analysis of the same report produces a list of dense

blocks, usually in tokens, but optionally, either of the other two units.

The results of analysing the Ferret XML report are in Table 13.6. The
upper part of the table shows the sizes of the matched blocks in each of the
units. More tokens are found than by CCFinder, partly because CCFinder
does not account for includes and declarations, and partly because the min-
imum block size specified for CCFinder comparisons was 14 tokens, which
approximates to 2 lines, whereas Ferret, because it works with token tri-
grams, finds matches of three or more consecutive tokens. The number of
lines found by the Ferret analysis falls between those found by P-Duplo and
Simian, because P-Duplo ignores lines of fewer than the minimum specified
characters, and Simian matches code in which the identifiers are changed,
and therefore matches more lines. Character counts can differentiate be-

tween short statements, such as “ i =1" and longer, and therefore more un-

Ferret File 1 block File 2 block

Analysis Unit lengths Total | lengths Total
XML: Tokens | (769110618334 3224) 222 (79110 6 18 32 24) 206
Lines | (13233) 21 (13233) 21

Chars (1711162842158 687 6849) | 545 (171628421 58 68 49) | 513

Density:
Parameters: | Tokens | (166 66) 232 (221) 221
0.9, 50,10

Table 13.6: Blocks resulting from different analyses of the Ferret XML report of the
comparison between the files cnp-1.c and cnp-2-edit.c.



214 CHAPTER 13. FEATURE CONSTRUCTION

usual sequences, such as “ some.long.and.not.so.common.identifier =2.975".
The lower part of the table shows the results of density analysis with

density 0.9, minimum block size 50, and minimum gap 10. Density analysis

provides a means of matching edited code, which is reflected in the results,

where more tokens are “matched” than by straightforward matching.

13.2.2.1 The candidate difference set

Trigram analysis provides information about the relationship between the
candidate, amended and main target files. To find similar information from
the three clone detection tools, a further set of blocks taken from the output
of each of the tools is analysed. These blocks are those shared by the main
target file and the candidate difference set (defined in Table 13.7), like the
examples in Figure 13.9.

The blocks in the candidate file shared by its amended version are:

((20 30)(50 90)(130 150)(180 220))

which means that the blocks in the difference set are:

((019)(31 49)(91 129)(151 179))

The blocks shared by the candidate and main target files are:

((10 60)(70 120)(140 220))

Therefore blocks shared by the main target file and the difference set are:
((10 19)(31 49)(91 120)(151 199))

As CCFinder, Simian, P-Duplo, their difference sets, and the XML anal-

Term Notation | Description
A file i A file a in release n
Amended (revised) file e+l Revised version of file a in release n+1

A" The set of trigrams in a file a, release n, f'

Al The set of trigrams in the revised version of file a, f;'*!
Difference set AMA™1 | Trigrams which disappear from the file in the revised version
Reverse difference set AMI\A" | New trigrams in the revised file

Table 13.7: Difference sets and reverse difference sets explained in terms of tri-
grams, also apply to tokens or lines (as Figure 13.9)



13.2. FEATURES 215

Blocks shared by Blocks shared by Shared by main
candidate and Difference set candidate and main target and
amended files target files difference set

(0-19) | (A0:79)
(20-30) | (10-60)
(31-49) | (31-49)
(50-90)
(70-120)
(91-129) (©14120)
(130-150)
(151-179) (140-220) (151-199)
(180-220)

Figure 13.9: In the first representation of the candidate file, blocks shared by the
amended file are labelled. In the second, the difference set is shown.
The third labels blocks shared by the main target file, and the last,
blocks shared by the main target file and the difference set.

yses each produce a list of block sizes, features can be constructed in the
same way. Given the block sizes and the file size, there are a number of

ways to present the information, which are discussed in the next section.

13.2.2.2 Measurements

Standard machine learning algorithms require feature vectors of uniform
length. This requirement can be a challenge when the amount of informa-
tion to be represented varies between instances. In the split file dataset,
the number of blocks in a file varies from one to over a thousand, with
maximum block sizes ranging from 2 to around 5,000 lines. This section
considers how to present the data in a uniform but meaningful way.

Descriptive statistics summarise such information with measurements
based on central tendency (mean, median and mode), dispersion (standard
deviation, variance and range) and distribution, which can be given in
terms of frequencies.

To construct a frequency distribution it is useful to know two things
about the data: the range of values of the variable under consideration and

the sample size. For this data, the number of blocks and their sizes are



216 CHAPTER 13. FEATURE CONSTRUCTION

unknown a priori. There is no standard method of selecting the number
of bins in a frequency distribution, although if the sample size is known
there are several suggested guidelines, such as Sturges formula, [1 +logon],

where n is the sample size [226].

In the absence of this information, the important thing is to choose
sufficient bins to provide some separation between different sized blocks,
while not selecting too many, as each extra bin means another set of features
(7 x 32 = 224 features here). The spacing between intervals is normally
equidistant. For example, evenly distributed intervals might be chosen at
5,10, 15, ... lines per block. For this data, the importance of blocks of a
particular size is unknown, though it can be estimated that the data is likely
to be skewed, with more small blocks due to incidental similarity. The
intervals chosen are evenly distributed intervals on the log, scale: powers

of two, from 2 to 32.

It is not only the absolute size of the blocks which can be important, but
also the size of the blocks relative to the size of the file. Therefore another
set of intervals was selected based on file size. Powers of two are employed

again, with the bin intervals set at 61—4 to 411 of file size.

Another choice is whether to count the members of each bin or to report
the cumulative counts of these blocks. Here the number of blocks is accu-
mulated as the block size decreases. A further choice is how to represent
the blocks. This can be a simple count of the blocks or, more expressively, a

count of the units within the qualifying blocks.

Measurements can be absolute, or relative to file size. In the context of
one file, the only difference between these measures is the scale. However,
each type of measure has a role in describing the features of files in general.
In characterising a block of copied code, absolute units give the true size
of a block, and relative units determine the importance of a block in the
file. For example, a block of 25 tokens is a large chunk of a file containing
50 tokens, but is possibly less interesting as part of a file of 5,000 tokens,
where this similarity could occur incidentally. However, a block of 20 lines

is likely to be significant in any file, even if it is a small part of a very large



13.2. FEATURES 217

file. The ratio of block size to the total copied lines or tokens in a file may

indicate whether all or most of the copied code is in one chunk.

13.2.2.3 Block-based features

Table 13.8 shows the measures chosen for the block-based features. The

idea was to include both general descriptive and frequency-based features.

Eight features (1-8), describe the blocks in a general way. Four feature
sets divide the blocks into five groups, giving cumulative measures; one set
(9) gives the total units in blocks of at least 2, 4, 8, 16 and 32 lines (or 14-224
tokens, or 40-640 characters); another set (11) uses fractions of file size for
the interval values, é—};. Both sets are also represented as a proportion of

file size. Each feature is constructed for both files in a comparison.

To provide an example of the measurements described in Table 13.8,
imagine a file of 800 units in which there are 20 blocks. The first block starts
at unit 201 and the last ends at unit 700, a spread of 500 units. The sorted
block sizes are: (2,2,2,2,3,3,3,3,4,4,5,6,8,9,12, 15, 22, 30, 50, 175). The

measurements based on these blocks are listed in Table 13.9.

Z
°

Ref. | Measure

Number of blocks

Number of units in the blocks

Proportion of (2) to total

Mean block size

Proportion of (4) to total

Largest block size

Proportion of (6) to total

Proportion of copied lines to spread

Cumulative frequency of units in blocks > m lines or 7m tokens
m=2,4,8,16,32

10 Proportion of (9) to total 10
11 Cumulative frequency of units in blocks > (file size / n) 10
n=42816,32,64
12 Proportion of (11) to total 10

00N UT W N =
SNRNNRNNNNN

Total 56

Grand total = 56 x 7 sets x 8 comparisons = 3136
+ 28 x 3 difference sets = 84 3220

Table 13.8: Features constructed from block sizes. Each measurement is for both
of the files in the comparison, except for difference set measures.



218 CHAPTER 13. FEATURE CONSTRUCTION

13.2.3 Final feature sets

The proportions of the different subsets within the full feature set are de-
picted in Figure 13.10. This diagram shows both the relative sizes of the
single and concatenated features, and the Ferret- and non-Ferret-based fea-
tures in the full set. The proportions of concatenated and single features
apply to each subset of features. The non-Ferret features are split evenly
between the three other tools. These sets incorporate the raw features which
account for around a sixth of the set. The Ferret features are constructed
in a different way, so that the raw feature sets are separated from block-
based features, and these are about one-eighth of the total number. The
block-based feature sets echo those of the three other tools.

The feature sets are listed in Table 13.10. The abbreviated names are
hyphenated strings, which for features derived from Code Clone Finder,

P-Duplo and Simian generally follow the pattern:

Source - Raw/block/both - Single/concatenated/both
ccf - raw - singles

pdp - blocks - cats

sim - -

The first part of the name shows which tool is used to measure the similarity

between files; the second part, whether the measures are direct from the

Block size list: | 2,2,2,2,3,3,3,3,4,4,5,6,8,9,12,15,22,30,50,175 | Start 201, end 700.
Ref. Measure No.
1 Number of blocks 20
2 Number of units in the blocks 360
3 Proportion of (2) to total units in file 0.45
4 Mean block size 18
5 Proportion of (4) to total 0.0225
6 Largest block size 175
7 Proportion of (6) to total 0.219
8 Proportion of copied units to spread % =0.72
9 Number of units in blocks > m lines
m=2,4,8,16,32 400, 340, 321, 277,225
10 Proportion of (9) to total 0.5, 0.425,0.4,0.35,0.28
11 Number of units in blocks > (file size / n)
n==64,32,16,8,4 292,255, 225,175,0
12 Proportion of (11) to total 0.365, 0.32,0.28,0.22,0

Table 13.9: Features built from the example blocks.



13.2. FEATURES 219

tool (raw), or result from analysis of the blocks (blocks), or both (); and the
last part, whether the comparison is between the candidate, amended and
main target files (singles), or the candidate and a concatenation of the target
tiles (cats) or both (). For example, the set of features built from the blocks
found by Simian when comparing the candidate file with a concatenation
of files is called “sim-blocks-cats”, and those built from the raw output of
CCFinder with single file comparisons is called “ccf-raw-singles”. When
both raw and block-based features are included in a set, neither raw or
blocks are stated, for example, pdp-cats means all P-Duplo-based features

from comparisons between the candidate file and each concatenated file.

The pattern for Ferret-based features is different, as each set is treated
separately, so that its source is either raw or block-based and no distinction

is necessary. The trigram and basic similarity information is “raw”, all
y y

2nations

Basics Trigrams

Figure 13.10: Feature set composition, shown proportionally. For example, just
under half of the features are from analysis of Ferret outputs, the rest
are derived equally from the other three tools.



220 CHAPTER 13. FEATURE CONSTRUCTION

other sets are based on blocks. However, there is another dimension to
these features: different units are used to measure the blocks, thus “fc”,
“ft”, “f1” and “fd” are used to indicate characters, tokens, lines and dense
blocks, measured in tokens in this dataset. Features taken from Ferret’s
basic output are labelled “fb” and from trigram-based features, “tris”. Sets
labelled “fall” include all of the Ferret features in that category and “not-

fall” are all non-Ferret features.

Combining all the sources, there is one set of features for each group of
concatenated files, making five in all. For example, the feature set “cat-am-
n-alikest” contains all features which are based on the comparison between
the candidate file, and the concatenation of the amended file and the target

file having the highest similarity to the candidate file.

There are fifty-four feature sets, seven based on each of CCFinder, Simian
and PDuplo, and four which combine these, a total of twenty-five; three
based on each of the six Ferret sources, and three which combine these, a
total of twenty-one; there are five sets of the different concatenation combi-
nations, one set combines all features based on pairwise file comparisons,
one set combines all features based on comparisons with concatenated files,

and one set combines all features.

Guidance on a suitable approach to feature construction varies. On
the one hand the advice is to include as many features as possible. For
example, Guyon and Elisseeff say, in stressing the importance of not losing
information when deciding on features, “We arque that it is always better
to err on the side of being too inclusive rather than risking to discard useful
information.” [98, p.4]. On the other hand, the advice is to keep in mind
the ratio between the numbers of features and the number of instances
available. For example, Mark Hall recommends that “You should normally

have at least twice the number of instances as attributes.” [102].

Both of these requirements are taken into account. The full set of features
islarge, meaning that there is variety in the information available. However,
the aim is to find a subset of these features, preferably from one source to

make it simple to compute, so that the final set of features should be smaller.



13.3. SUMMARY 221

13.3 Summary

The steps taken to construct features were explained in this chapter. First,
the selection of target files, the file combinations and their comparison are
described. Then basic features constructed from the results of comparing
the files with each of the four tools were detailed. Finally, different ap-
proaches to describing a set of matched blocks in a file were considered,
and the set of features listed.

The final set of 3,766 features comprises 546 taken fairly directly from
the tools” outputs and from the Ferret trigram-file index, and 3,220 block-
based features. The features are grouped into 54 subsets, which are listed
in Table 13.10. Experiments to find the more useful feature subsets are

described in the next chapter.



CHAPTER 13. FEATURE CONSTRUCTION

222

"1 103deyD) Ul paqrIdsSap UoeurquIod a1y 3y}

10J WU PURYHIOYS dY} ST, XXX, dIBYAM+ "SI[I pajeusjeud;edouod jo sdnoid ayy 1o ‘suostredwod ayj ur pasn sy 9y

“wayy) aonpoid 03 pasn S[00} 3} UO paseq dIe S3as A, *SI[qe) J[NSI S} UI WAL]} J0J Pasn SaUIeu 9y} pue ‘s}as arnjeaq :01°¢T d[qeL

¥a [e10L

¢ | syease syed-[[e sor3urs-[[e Sunphroag

G | pxxx-jed SUOT}EUS}EIU0D)

€ rej syeo-[rej sa[3urs-[[ey PRI TV
¢ Py S3e0-PJ sa[durs-py SO0[q ASu_(]
¢ g Sye2-0J sa13urs-oy s1a)0eIRyD)
¢ B Syed-1§ sa[3urs-jj saury
¢ g Syed-13 sa13urs-13 SUSYOL,
¢ sin S)ed-SLI} sa[3urs-sin surex3riy,
¢ QG syed-qJ so[3urs-qy orseq

jo113

(391194 J0U)

¥ | [Meja0u | sjed-[rejjou sa[3urs-[[ej-jou SYO0[q-ZT-qNs-€ T aA0qe 3} JO [V

/ WISS}ed-WIS | S}ed-SYO0[q-WIS | S}ed-MEI-WIS so[durs-wirs | sa[3urs-syoo[q-wis | sa[durs-mer-wis ueruig

/ dpd syeo-dpd | syeo-syporq-dpd | syeo-mer-dpd sor3urs-dpd | sopdurs-syoorq-dpd | sapdurs-mer-dpd ordngd

/ J [S1:RB o) S}ED-SXD0[q-JOd S}E>-MBI-JOd sa[3urs-Jod S9[3UIS-$300[q-J20 Sa[3urs-meI-od RPULIDD

SYOO[g+MeY] SYoo[g mey SYOTg + MeY sYoo[g mey
'ON v SUOT)eU)EOU0)) sa[3urg 0oL,




Chapter 14

Experimental results - Part 1:

Classifying the split file dataset

The origin analysis experiments are presented in this chapter and the two
that follow. The first of two sections in this chapter reports on experiments
to test classification of the split file dataset introduced in Chapter 12. Each
of the feature sets described in Chapter 13 was used to build models with a
range of learning algorithms, with the aim of selecting those most suitable

for use with this data.

In the second section, the results of applying selected models to can-
didate files from two unseen projects, PostgreSQL and DNSjava, are re-
ported. The results are compared with those of other origin analysis re-
search groups. Although classification of the dataset is very good, problems

in filtering are identified from this comparison.

Chapter 15 describes investigations into alternative filtering criteria
which aim to improve the following aspects of this approach: candidate

tile selection, target file selection, and target file ordering.

The data is refiltered based on the outcome of these investigations, and
experiments with the revised data, and with disappearing files are reported
in Chapter 16.

223



224 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.1 Building models to identify split files

The 89 project dataset was described in Chapter 12. Filtering these projects
for split files results in a set of 387 candidates. The experiments described
in Section 14.1.2 compare the classification of these candidates by a range of
algorithms with each of the 54 feature sets described in Chapter 13. Further
experiments explore the effect of combining feature sets and combining
classifiers.

Unless stated otherwise, in the experiments reported in this chapter and
in Chapter 16, each of the feature sets was used to classify the data with
each of the chosen algorithms. The generalisation of each combination of
feature set and algorithm was tested by training with 100 different random
selections of 66% of the data, leaving 34% of the instances for testing. The
performances recorded are the mean percentage of the results over the 100

test sets for each combination.

14.1.1 Machine learning algorithms

The machine learning algorithms used in this research are provided by the
Weka [247] machine-learning toolkit (v.3.7.3). At the start of this research,
a broad selection of these algorithms were chosen by excluding from those
available any unsuitable for these datasets. The resulting set is shown in Ta-
ble 14.1. There are three main reasons for the exclusions: algorithms which
are extremely slow to run with feature sets of this size, such as MultiLay-
erPerceptron and NBtree; those unsuitable for numeric attributes, such as
PRISM and ID3; and those unsuitable for binary classed data, such as Mul-
tiClassClassifier. This initial set of algorithms also excludes heterogenous
meta-classifiers (Grading, MultiScheme, Stacking and Voting), because the
choice of base classifiers for combination by the meta-classifiers was dic-
tated by the results from the initial tests. Decisions about further reducing
the set of algorithms used in the experiments, and how they are configured,

are based on the results of earlier investigations using similar data.

First, previous experiments in this research have shown that for most of



14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 225

Rank Algorithm Rank Algorithm Rank Algorithm

1 F  SimpleLogistic 16 M Class’'nViaRegression | 31 M  MultiBoostAB
2 T LMT 17 M  AdaBoostM1 32 L IB1

3 M RotationForest 18 T  ADTree 33 L LWL

4 T RandomForest | 19 M RandomSubSpace 34 R NNge

5 T FT 200 T  LADTree 35 T  RandomTree

6 F SMO 21 R PART 36 R  DecisionStump
7 M Decorate 22 T J48 37 M RBFNetwork

8§ F SGD 23 R JRip 38 R  ConjunctiveRule
9 M Rand’Comm’ee | 24 B  BayesNet 39 V. VH

10 M Bagging 25 T  SimpleCart 40 F  Logistic

11 M LogitBoost 26 B  BFTree 41 R  OneR

12 R  FURIA 27 L IB5 42 B NaiveBayes

13 M  RealAdaBoost 28 R  Ridor 43 'V HyperPipes

14 F  SPegasos 29 T  REPTree

15 M Dagging 30 R DecisionTable

Table 14.1: Algorithms ranked by accuracy over all feature sets. Weka provides the
algorithms and each algorithm’s type (assigned by Weka) is noted by the
key: Bayesian, Function, Lazy, Meta, Rule, Tree, and V miscellaneous.

the algorithms tested, the default settings give results which are at least as
good as the alternatives tested. Therefore, default settings are used with the
following exceptions. IBk was tested with 3, 5, 7, 11, 15 and 21 neighbours,
and 5 selected as the best performer; RandomForest has 25, rather than 10
trees, as this number gave a good balance between performance and speed
in earlier experiments on similar data.

Second, in earlier experiments, each feature set was run with each of
the 43 algorithms listed in Table 14.1. The results from each of 3 sets of ex-
periments were averaged over all runs for each feature set. The algorithms
were ranked for each experiment: 1 for the highest accuracy, 2 for the next,
and so on. The ranks in Table 14.1 are the mean of these 3 results. The
reduced algorithm set, shown in Table 14.2 was selected by taking 19 of the
top 20 algorithms,! and adding the best of the simple rule-based (PART),
tree-type (J48), Bayesian (BayesNet) and lazy (IB5) algorithms.

Third, in addition to the Weka based classifiers, grid-searches were run
on support vector machines (SVMs), with both a radial basis function and
a linear kernel.? The SVMs did not outperform the Weka algorithms in the

early experiments, and so are not included in experiments reported here.’

!Not LMT, as results on this data are similar to Simple Logistic, which is faster [227].
2Using Chicken Scheme libsvm implementation: http://wiki.call-cc.org/eggref/4/libsvm
3Graphs of the results of two of the grid searches can be found in Appendix |



226 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Functions Trees Rules Meta

SGD* ADTree* FURIA | AdaBoostM1 ... continued

SimpleLogistic | FT PART Baggin, LogitBoost

SMO J48 ClassificationViaRegression | RandomCommittee

SPegasos* LADTree Lazy Dagging RandomSubSpace
RandomForest | IB5 Decorate RealAdaBoost*

Bayes continued ... RotationForest

BayesNet

Table 14.2: The reduced set of 23 algorithms, used in the reported experiments,
are listed by Weka's groupings. Those marked with an asterisk are not
suitable for the multiclassed dataset of disappearing files.

14.1.2 Classifying split files

Experiments undertaken to discover which set(s) of features and which
learning algorithms combine to give good classification rates for split files
are reported here. Given a number of good combinations, selection can be
guided by the cost of computing the features. Itis more useful for the feature
set to be simple to compute than for the model to be built quickly, because
model-building is a one-off cost, while features have to be constructed for
each new dataset to which a model is applied.

The first experiment was to find results for the individual models. These
results were analysed to determine the better performing algorithms and
feature sets overall. The next experiment investigated the effect of combin-
ing some of the better performing feature sets. A third experiment looked
at the effect on classification of combining the better performing algorithms
with heterogenous meta-classifiers.*

In a two-class problem, classification of an individual falls into one of
four categories. Positive instances, in this case, split file examples, can be
classified correctly, true positives (TP), or incorrectly, false negatives (FN).

Negative examples can also be correctly (TN) or incorrectly (FP) classified.

#The difference in performance between many of the classifiers cannot be considered sig-
nificant. However, to make discussion simpler, if one model has a higher mean classification

accuracy over 100 train/test partitions than another, it is described as ‘better’.



14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 227

There are a number of standard measures used to describe the results of

classification. Those reported in this chapter and Chapter 16 are:

e Success rate, or % correct or accuracy = %

The proportion of correct instances in the dataset.

Precision (of positive instances) = TPTfFP

The proportion of instances identified as positive which are correct.

Recall (of positive instances) = %

The proportion of positive instances which are identified as such.

2XTP
(2XTP)+FN+FP

The harmonic mean of precision and recall 2 X

e F-measure =

precisionxrecall
precision+recall *

Geometric mean = \/ (% X % for two classes, and similarly,

A/accy X accy X ... X acc, for more classes, where acc is the ratio of the
correctly classified to the total instances of the class. This is a useful

measure for imbalanced datasets.



228 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Experiment 1. Applying the algorithms to each of the feature sets

Each of the algorithms listed in Table 14.2 was applied to each of the
feature sets listed in Table 13.10. The top 40 (an arbitrary choice) of the 1242
results, ranked by mean % correct classification, are listed in Table 14.3. The
top 8 results are obtained with the SVM-based algorithms, SMO [106, 126,
188], SGD and SPegasos [214]. The top 17 results are based on 4 closely
related feature sets: the basic Ferret (fb), and trigram-based (tris) features,

both full (including concatenations) and singles sets in each case.

Mean % | Std. | Mean | Mean | Mean F-
Feature set | Algorithm correct | Dev. | prec'n | recall | measure

1 | fb SMO 94.29 1.89 | 0.940 | 0.947 0.943

2 | b SGD 94.17 199 | 0938 | 0.947 0.942

3 | tris-singles | SMO 94.16 156 | 0.929 | 0.957 0.942

4 | tris SMO 94.15 1.73 | 0939 | 0.945 0.941

5 | fb-singles SGD 94.15 1.88 | 0.939 | 0.946 0.942

6 | tris-singles | SGD 94.01 1.82 | 0937 | 0.945 0.940

7 | tris SGD 93.96 194 | 0937 | 0.944 0.939

8 | fb-singles SPegasos 93.84 221 0.934 | 0.945 0.939

9 | tris-singles | Dagging 93.78 190 | 0906 | 0.978 0.940
10 | fb SimpleLogistic 93.68 203 | 0930 | 0.946 0.937
11 | fb-singles SMO 93.46 2.03 | 0913 | 0.962 0.936
12 | tris-singles | SimpleLogistic 93.42 1.93 | 0926 | 0.945 0.935
13 | tris-singles | SPegasos 93.40 214 | 0931 | 0.939 0.934
14 | tris SimpleLogistic 93.37 174 | 0926 | 0.943 0.934
15 | fb-singles FT 93.37 1.88 | 0919 | 0.953 0.935
16 | tris RotationForest 93.36 1.80 0.939 0.928 0.933
17 | fb-singles SimpleLogistic 93.36 1.91 0.921 0.950 0.935
18 | fall-singles | RandomForest 93.33 199 | 0921 | 0.949 0.934
19 | b FT 93.27 219 | 0928 | 0.939 0.933
20 | tris-singles | RotationForest 93.20 1.96 0.930 0.936 0.932
21 | tris Dagging 93.12 178 | 0.907 | 0.962 0.933
22 | tris-singles | FT 93.11 1.92 | 0.920 0.946 0.932
23 | fall-singles | RotationForest 93.10 1.84 | 0927 | 0.937 0.931
24 | tris RandomForest 93.05 1.89 0.935 0.926 0.930
25 | fall RotationForest 93.04 179 | 0931 | 0.931 0.930
26 | fb Dagging 93.00 190 | 0909 | 0.957 0.932
27 | all-singles | RandomForest 92.99 193 | 0926 | 0.936 0.930
28 | tris FT 92.95 206 | 0922 | 0.938 0.929
29 | all-singles | RotationForest 92.94 235 | 0932 | 0.927 0.929
30 | all-singles | SimpleLogistic 92.79 220 | 0918 0.941 0.929
31 | fb RotationForest 92.71 186 | 0932 | 0.923 0.927
32 | all-feats RotationForest 92.71 2.19 0.931 0.924 0.927
33 | fall SimpleLogistic 92.66 1.92 | 0916 | 0941 0.928
34 | fall-singles | SimpleLogistic 92.64 2.01 | 0914 | 0.942 0.927
35 | tris-singles | BayesNet 92.63 213 0.934 0.918 0.925
36 | tris-singles | RandomForest 92.61 192 | 0927 | 0.925 0.926
37 | all-feats SimpleLogistic 92.54 211 0.917 | 0.936 0.926
38 | tris-singles | ClassificationViaRegr'n 92.53 2.02 | 0913 | 0.941 0.926
39 | fall-singles | Rand’Comm’ee 92.46 1.90 | 0.903 0.953 0.927
40 | fb SPegasos 92.44 2.38 0.927 0.925 0.924

Table 14.3: The top 40 results for split file classification sorted by mean % correct.



14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 229

Which feature set gives the best classification over the set of algorithms?

Table 14.4 shows the mean classification rate for each feature set over all
23 algorithms. Looking at the top performing sets, those in the left-hand
column, 11 of the 18 are Ferret-based. Of the other seven, three combine
the three other tools (“not-fall” - all non-Ferret features, “not-fall-singles” -
all non-Ferret single file comparisons, and “13-sub-12-blocks-singles” - all
non-Ferret block features based on the difference set), three are based on
P-Duplo, and the other set combines all of the features. However, none of
the smaller non-Ferret feature sets achieve an accuracy above 89.85%.

Two groups of feature sets are noticeably worse than others: the CCFinder

based features and those based on concatenations. Reasons for these poor

performances are explored after the next section.

Mean % Mean % Mean %
Feature set correct Feature set correct Feature set correct
tris-singles 92.11 fl 87.96 cat-all 84.21
tris 91.91 fl-singles 87.92 fc-cats 84.18
fb-singles 91.27 fd 87.66 sim-blocks-cats 83.14
fb 91.27 fb-cats 87.41 sim-cats 82.89
all-singles 91.21 fd-singles 87.39 cat-2alikest 82.88
fall-singles 90.89 pdp-raw-singles 87.26 cat-am-+alikest 82.24
all-feats 90.88 tris-cats 87.09 cat-am+main 82.12
fall 90.69 sim 86.37 cat-am+news 81.60
13-sub-12-block-singles| ~ 89.85 sim-blocks-singles|  86.33 sim-raw-singles 81.05
fc-singles 89.79 sim-singles 86.27 ccf-blocks-singles 81.05
pdp 89.73 all-cats 85.63 ccf 80.94
pdp-blocks-singles 89.43 pdp-blocks-cats 85.55 ccf-singles 80.88
not-fall-singles 89.31 pdp-cats 85.46 ccf-raw-singles 79.64
pdp-singles 89.30 fall-cats 85.32 pdp-raw-cats 79.09
fc 89.21 not-fall-cats 85.17 ccf-blocks-cats 78.75
not-fall 89.18 fl-cats 84.83 ccf-cats 78.57
ft-singles 88.77 ft-cats 84.59 sim-raw-cats 78.13
ft 88.72 fd-cats 84.31 ccf-raw-cats 75.49

Table 14.4: Mean classification rate for each feature set over all of the 23 algorithms.

Key Name Key Name Key Name

fb Ferret basics fl Ferret blocks in lines pdp P-Duplo
tris Ferret trigrams fd Ferret dense blocks ccf CCFinder
fc Ferret blocks in characters fall All Ferret features sim  Simian

ft Ferret blocks in trigrams not-fall  All non-Ferret features

Table 14.5: Keys and names of feature sources, repeated for reference



230 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Which algorithm gives the best classification over all of the feature sets?

Table 14.6 shows the mean classification rate for each algorithm over all
of the feature sets. Although the SVM-based algorithms perform well with
selected feature sets, Simple Logistic performs best overall. This is possibly
because the algorithm incorporates feature selection. The reduced set of
algorithms used in the experiments reported in Chapter 16 are selected
from these results: the top 8 algorithms (in the left-hand column) and 3
algorithms which appear more than once in the top 40 individual results in
Table 14.3: SGD, Dagging and SPegasos.

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct
SimpleLogistic 90.14 Bagging 88.41 RandomSubSpace 87.32
RotationForest 89.98 SG 88.14 SPegasos 87.18
RandomForest 89.75 Dagging 88.11 LADTree 86.89
FT 89.34 AdaBoostM1 88.07 PART 85.80
SMO 89.27 RealAdaBoost 87.95 1B5 85.63
RandomCommittee 88.90 FURIA 87.90 J48 85.62
Decorate 88.72 Class'nViaRegr'n 87.66 BayesNet 84.74
LogitBoost 88.48 ADTree 87.40

Table 14.6: Mean classification rate for each algorithm over all of the feature sets.

Concatenation based feature sets

Feature sets based on concatenations on their own do not perform as well
as the “singles” sets, and although 4 of the 10 top-performing sets include
both sources, mixed sets do not outperform singles sets from the same
source. As concatenations are partly aimed at dealing with multi-target
cases, features based on these comparisons may better classify candidates
with more than one target file. In this dataset, 176 of the 387 files have more
than one target. The two top singles sets, “tris-singles” and “fb-singles”

were compared to the related sets of concatenated features, “tris-cats” and

Multi-target
Feature set | Full set file set Change
fb-singles 91.27 91.17 -0.10
fb-cats 87.41 89.45 2.04
tris-singles 92.11 91.60 -0.51
tris-cats 86.93 88.87 1.94

Table 14.7: Mean classification rate over the 23 algorithms, multi-target files only.



14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 231

“fb-cats”, on the multi-target files only. The results in Table 14.7, show that
although the “cats” features improve on this subset of files and the singles
sets are slightly worse, the singles sets still outperform the concatenated
sets. The difference in performance between datasets is not significant
(under the corrected paired two-tailed t-test, with 95% confidence) on the

cats features tested, but each algorithm’s accuracy improves by 0.05-5.11%.

Code Clone Finder based feature sets
The feature sets based on CCFinder (ccf) do not perform well on their
own, all 6 sets are in the bottom 9 results. CCFinder excludes much of the
information found in header files, of which there are 111 in the dataset, and
this may be the reason for the poor performance overall. To test this, the
. files were separated and classified using the 2 top ccf sets, “ccf-blocks-
singles” and “ccf-singles”, and the 2 top singles sets, “tris-singles” and
“fb-singles”. The results are compared to those on the full set in Table 14.8.
The change in classification rate between the full and .c file sets is telling,
with a marked improvement for the ccf-based feature sets, while the other
teatures do not do so well. However, the ccf sets still do not outperform the
other two sets. The minimum improvement in classification for either of the
two ccf sets for one algorithm is 3.5%. Based on the t-test (as above), 15 of
the 23 algorithms have significantly improved results on the “ccf-singles”
set, and 14 of the 23 on the “ccf-block-singles” set.
These results show that .h files are classified less successfully than .c files
by CCFinder features, while the reverse is true for the other two algorithms
tested. CCFinder’s lower accuracy for .c files may be because parts of .c

files are also excluded by CCFinder, or because the matching is too general.

Feature set Full set | .cfileset | Change
tris-singles 92.11 90.82 -1.29
fb-singles 91.27 89.95 -1.32
ccf-blocks-singles 81.05 87.52 6.47
ccf-singles 80.88 87.42 6.54

Table 14.8: Mean classification rate over the 23 algorithms on .c files only.



232 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Experiment 2. Does combining feature sets improve performance?

The nine singles sets, “fb, fc, fd, fl, ft, ccf, pdp, sim and tris”, were com-
bined pairwise and run with the 23 algorithms, to find out whether features
built on different comparisons complement each other. The mean classifica-
tion accuracy of the paired sets over the algorithms are shown graphically
in Figure 14.1. The x-axis shows one of the sets in the combination, and
the column colour shows the other one of the pair. Where the two labels
correspond, the mean classification for the single set is shown. Adding an-
other set to the “tris-singles” set does not improve its overall performance of
92.11%. Combining the “pdp” with either “fc” or “ft” singles sets improves
individual set results by at least 1%. Apart from this, the single sets are only
noticeably improved by adding a better set, i.e. one to the left in the graph,

where the sets are ranked by overall performance.

Further combinations of feature sets Combinations of three, four and
five singles feature sets, also of combining the full fb and full tris features
sets with singles sets are reported in Section K.1 in the appendix. These

experiments show no improvement over the best results reported here.

93

B ris b B pdp ufc Bt mfl o fd Hsim ccf

92
91

90
89
88
87
86
85
84
83
82
81
80

tris fb pdp fc ft fl fd sim ccf

Figure 14.1: Split file classification with single feature sets and their pairwise com-
binations. X-axis labels show one of the pair, and the column colour
the other. Where these are the same, the single set result is plotted.




14.2. TESTS ON OTHER PROJECTS 233

Combining algorithms Experiments where algorithms were combined
with heterogenous meta-classifiers are reported in Section K.2. As with the
feature sets, combining algorithms shows no improvement over the best
results reported so far. This lack of improvement indicates that the limit of

classification accuracy for this data has been approached.

14.2 Tests on other projects

To test the generality of the approach, a selection of the models giving the
highest classification rate on the split file dataset from the 89 projects were
tested by applying them to unseen data. Two studies, by Zou [261], and
by Antoniol et al. [6], provide information about split files found in their

origin analysis research.

Zou uses Beagle, a tool with a range of matching techniques (details
p-47), to investigate the project PostgreSQL. Although the prime purpose
is to trace the movement and restructuring of functions, Zou also uses this

information to reason about changes to files.

Antoniol et al. look at restructuring at the class level. They use a text-
matching technique, comparing the cosines between weighted frequency

vectors of the identifiers in each class of the DNSjava project (details p.51).

The files in each of the PostgreSQL and DNSjava projects were collected
and filtered to find sets of candidate split files. The models described in
Sections 14.1.2 are used to classify these candidate files, and the results are

compared with those of Zou and of Antoniol et al.

In this second part of the chapter, there are three sections. In the first
two, the two projects, PostgreSQL and DNSjava are introduced. Lastly,
the classifications output by the better performing classifiers reported in
Section 14.1.2 are compared. Although the classification of the files in the
dataset is very good (accuracy 99%), the comparison with previous results
shows that some candidate and target files are missed in the filtering stage

of the system.



234 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.2.1 PostgreSQL

Zou's study covers 12 releases of PostgreSQL?, looking at C code in the
‘backend” subsystem [90, 261]. Zou reports on two groups of operations
which include six file level splits, and also notes two other restructurings
where code is moved from one file to one or more others.
e Between versions 6.2 and 6.3, in the subsystem parser [261, p.77]:
o analyze.c is split to 7 new files: analyze.c, parse_agg.c parse_clause.c,
parse_expr.c, parse_func.c, parse_oper.c, and parse_target.c;
o catalog_utils.cis deleted and splitinto4 files: parse_func.c, parse_oper.c,
parse_agg.c and parse_type.c; and
o parser.cissplit, but details not given, except that the function parse_agg
from parser.c forms part of the new file parse_agg.c.
e Between versions 6.5.3and 7.0, in the subsystem utils/adt [261, p.82]:
o dt.cis deleted and the functions placed in: datetime.c and time.c;
o datetime.c functions are all moved to: date.c and nabstime.c ; and
o date.c functions are moved to the file: nabstime.c
e Between versions 7.1 and 7.1.3, in access/nbtree [261, p.84]:

o nbtcompare.c: 2 functions are moved to float.c, and 1 function to each

of varlena.c and nabstime.c.
e Between versions 6.4.2 and 6.5 [261, p.99]:

o geqo_eval.c and geqo_path.c are merged with [unspecified] files in the

optimizer/geqo subsystem.

Candidate split files The backend subsystem explored by Zou is con-
tained in the ‘src” directory along with eight other folders. The complete
‘src’ directory was used in the experiments reported here.®

Table 14.9 shows the 28 candidate split files selected by filtering the back-
end subsystem. Of the nine split files identified by Zou, analyze.c, parser.c

and date.c are among the filtered split files. Three others, catalog_utils.c,

Shttp://www.postgresql.org, releases 6.2 to 7.2
“backend’ files are separated from the rest



14.2. TESTS ON OTHER PROJECTS 235

dt.c and geqo_paths.c, are deleted on splitting and so are part of the dis-
appearing file set (see Chapter 16). The remaining three files, datetime.c,
nbtcompare.c and geqo_eval.c are not selected.

Columns 3-5 in the table give the file name and path (postgresql/sr-
c¢/backend/...). The second column has the version number, and the first,
the reference number used to give consecutive numbering in this research.
The column headed MC gives the manual classification, 1 means split, 0
not. Where Zou identifies a file as split, there is a ”Yes” in the next column.
The last column gives detail about the splits found by inspecting the code.
Table 14.10 (p.236) lists the 45 candidate split files from the include and
interfaces directories and the classification assigned to them by inspection.

The 3CO visualisations in Figure 14.2 (p.238) show interesting features

Ref | Vn. src/backend/... file MC | Zou | Comment
12 | 6.2 parser analyze.c 1 Yes | 5-way, but missing 2 sections
12 | 6.2 parser parser.c 1 Yes | 3-way
12 | 6.2 port hpux | port-protos.h 0
12 | 6.2 utils init postinit.c 1 2-way
11 | 6.3.2 | utils error | excabort.c 0
10 | 6.42 | libpq pqcomm.c 1 Among many edited functions,
one small function, pq-getstr
& a heavily edited function,
pg-getint, go to libpg/pqformat.c
10 | 6.42 | nodes outfuncs.c 0
10 | 6.42 | optimizer | plan planmain.c 1 2-way
8 6.5.1 | utils cache | rel.c 0
6 6.5.3 | optimizer | path | joinrels.c 1 Yes, but heavily edited
6 6.5.3 | port random.c 0
6 6.5.3 | port srandom.c 0
6 6.5.3 | storage file fd.c 1 2-wa
6 6.5.3 | storage ipc shmem.c 1 3 heavily edited functions to
sinval.c, TransactionldIsInProgress,
GetSnapshotDat, GetXmaxRecent
6 6.5.3 | storage page | itemptr.c 0
6 6.5.3 | utils adt date.c 1 Yes | Almost all code to nabstime.c
6 6.5.3 | utils cache | rel.c 0
6 6.5.3 | utils cache | syscache.c 1 TypeDefaultRetrieve moved to
Isyscache.c as get_typedefault
4 7.0.3 | catalog indexing.c 0
4 7.0.3 | commands vacuum.c 1 2-way
4 7.0.3 | executor execTuples.c 1 2-way
4 7.0.3 | executor nodeAppend.c/ 0
4 7.0.3 | executor nodeMaterial. 0
4 7.0.3 | executor nodeSeqscan.c| 0
4 | 703 | regex regfree.c 0
4 7.0.3 | utils adt regproc.c 0
4 7.0.3 | utils cache | fcache.c 0?
2 7.1.3 | utils adt regproc.c 0

Table 14.9: Columns 2-5 identify 28 possibly split files selected by filtering from the
backend subsystem of PostgreSQL. The next two show files identified
as split by manual classification and those noted by Zou. Inspection of
the source code and 3CO provides the detail in the last column.



236 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

among three candidate split files and their target files. They also show up

some problems with the selection and ordering of the target files.

Parser.c, shown in Figure 14.2a, is split three-ways. The largest block
of code, around half of the original file, has moved to parser_expr.c, but
this is the second target file here, while parser_agg.c, to which less code is

moved, is selected as the main target file. Parse_agg.c is more similar than

Ref | Vrsn postgresgl/src/... file MC | Comment
11 | 632 | include port irix5.h 0
11 6.3.2 | include port linux.h 0
11 | 6.3.2 | include storage s_lock.h 1 2-way
10 | 6.4.2 | include port aix.h 0
8 6.5.1 | include utils datetime.h 0
6 6.5.3 | include executor functions.h 0
6 6.5.3 | include executor nodeAgg.h 0
6 6.5.3 | include executor nodeAppend.h 0
6 6.5.3 | include executor nodeHash.h 0
6 6.5.3 | include executor nodeMaterial.h 0
6 6.5.3 | include executor nodeMergejoin.h 0
6 6.5.3 | include executor nodeNestloop.h 0
6 6.5.3 | include executor nodeResult.h 0
6 6.5.3 | include executor nodeSegscan.h 0
6 6.5.3 | include executor nodeSort.h 0
6 6.5.3 | include executor nodeUnique.h 0
6 6.5.3 | include optimizer joininfo.h 0
6 6.5.3 | include optimizer planmain.h 0
6 6.5.3 | include optimizer restrictinfo.h 0
6 6.5.3 | include optimizer varh 0
6 6.5.3 | include storage fd.h 1 2-way
6 6.5.3 | include utils invalh 0
4 7.0.3 | include executor functions.h 0
4 7.0.3 | include libpq pgsignal.h 1 2-way
4 7.0.3 | include nodes nodeFuncs.h 0
4 7.0.3 | include optimizer joininfo.h 0
4 7.0.3 | include optimizer planner.h 0
4 7.0.3 | include parser analyze.h 0
4 7.0. include port bsdi.h 0
4 7.0.3 | include port hpux.h 0
4 7.0.3 | include port sco.h 0
4 7.0.3 | include port univel.h 0
4 7.0.3 | include port unixware.h 0
4 7.0.3 | include rewrite rewriteSupport.h 0
4 7.0.3 | include tco pquery.h 0
4 7.0.3 | include utils dynamic_loader.h 0
4 7.0.3 | include utils inval.h 0
4 7.0.3 | include ch 1 2-way
2 7.1.3 | include commands view.h 0
2 7.1.3 | include utils elog.h 0
2 713 | include postgres_fe.h 0
11 6.3.2 | interfaces | libpq fe-exec.c 1 2-way
11 | 632 | interfaces | libpq libpg-fe.h 1 2-way
11 6.3.2 | interfaces | odbc psqlodbe.c 0
10 | 6.4.2 | interfaces | ecpg/preproc | extern.h 1 2-way

Table 14.10: Columns 2-5 identify 45 candidate split files selected by filtering from
the include and interfaces subsystems of PostgreSQL. The next column
shows files identified as split (1) or not (0) by manual classification.
Inspection of the source code provides the detail in the last column.



14.2. TESTS ON OTHER PROJECTS 237

parse.c to parse_expr.c, although they share considerably less code, because
parse_agg.c contains fewer trigrams than parse_expr.c, thus inflating the
similarity score, and the code moved to parse_expr.c contains 5 switch
structures making it repetitive, thus reducing the similarity score.

Analyze.c is a seven-way split, shown in Figure 14.2b. In filtering,
two target files are missed as their similarity to analyze.c is below 0.1, the
threshold, suggesting that either a lower threshold or alternative selection
criteria may be better. The similarity of parse_agg.c (second yellow file) to
analyze.c is 0.099, and of parse_oper.c (third blue file) just 0.033, as one 5
line function is moved to the file, which has 425 lines. The files share 520
and 190 trigrams with analyze.c, and their containment is 0.612 and 0.193
respectively. Shared trigrams or containment may improve file selection.

Date.c is also recognised as a split file, the 3CO trigram analysis (see
Figure 14.2c) shows that almost all of the code has been moved to nabstime.c.
This is supported by Zou’s explanation that all but one of the functions
from date.c moved to the file nabstime.c, while much of the new file date.c
consists of functions moved from datetime.c [261, p.83].

Datetime.c, another file from this group, is not selected by filtering
because it becomes four times its original size in the new release.

Nbtcompare.c has three target files, float.c, varlena.c and nabstime.c,
not selected by filtering because their similarity to nbtcompare.c is below
the similarity threshold of 0.1, at 0.027, 0.050, and 0.022 respectively.

Geqo_eval.c has a similar problem, but here the similarity of the target
file, optimizer/joinrels.c, reduces from 0.584 to 0.333.

Dt.c, catalog_utils.c, and geqo_paths.c also identified by Zou as split,

ceased to exist at the time of splitting, and are therefore disappearing files.

In summary, three of the six PostgreSQL files noted as split (and not
deleted) by Zou are selected in filtering and correctly classified. The three
remaining files are not selected, either because the candidate increases in
size, or because the target files fall outside the filter criteria. Nine fur-
ther files in the backend subsystem are found to be split and are correctly

classified, as are the seven files in the other subsystems.



238 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

(a) Parser.c ~ 400 lines (b) Analyze.c = 2000 lines (c) Date.c ~ 875 lines

Figure 14.2: Three PostgreSQL split files and their targets

(a) Distribution of code from the file parserc in 3 files in the
next version. That in the revised version of parser.c is blue, red in
parser_agg.c and yellow in parser_expr.c.

(b) Analyze.c is split 7 ways, the majority of the code is fairly
evenly split between 5 target files, with less in the 2nd yellow file and
just one function in the 3rd blue file. (First seen in Fig.8.11)

(c) Most code from date.c is only in the target file nabstime.c
(red), a little also remains in date.c (purple) and there is a little editing.



14.2. TESTS ON OTHER PROJECTS 239

14.2.2 DNSjava

Antoniol et al. [6] study 40 versions, 0.1 to 1.4.3, of the project DNSjava.?
They construct weighted frequency vectors of the identifier names in each
class. The cosines between vectors are used to reason about the relationship
between files in consecutive releases. Two of their categories of refactoring,
class extraction (or factoring out, where the original file retains its name)
and class split (where new names are given to both parts of the file) are
equivalent to split files when a file is assumed to equate to a class. Generally,
asplit file will mean a split class, but a renamed file may not mean a renamed
class, nor will a renamed class necessarily mean that a file is renamed. The
refactorings suggested by their method are listed in Table 14.11, the first five

columns of which are taken from [6, Table 2]. In four cases, more than one

thtp://www.dnsjava.org

Type of Classes Classes Cos- | Verified
Refactoring Relis | involved in involved in ine | by code
Performed release n release n+1 inspect’n
Factor out 2-3 dns dns, Type 0.76 | Split
Replacement 34 dnsServer jnamed 0.71 | Rename

Replacement 4-5 CountedDatalnputStream| DataBytelnputStream 0.32 | Rename
Split 4-5 CountedDatalnputStream| DataByteInputStream, 024 | X
DataByteOutputStream

Replacement 7-8 Resolver SimpleResolver f 0.79 | **Split**

Replacement 7-8 FindResolver FindServer 0.31 | Rename

Split 7-8 FindResolver ExtendedResolver, 031 | X
FindServer

Merge 7-8 FindResolver, Resolver SimpleResolver 075 | X

Replacement | 11-12 | CacheElement Element 0.85 | Rename

Merge 11-12 | CacheElement, IO Element 0.77 | X

Merge 12-13 | CacheResponse SetResponse, 0.88 | Merge

ZoneResponse

Replacement | 32-33 | AXFREnumeration AXFRlIterator 0.9 Rename

Merge 32-33 | AXFREnumeration AXFRlIterator, 088 | X
Enumerator

Table 14.11: Refactorings suggested by Antoniol et al.’s system, see [6, Table 2],
here sorted by release and name. Their code inspection showed only
1 of the 3 suggested splits, 1 of 4 merges, and 5 of 6 renames to
be so. fResolver was deemed **split** to SimpleResolver and Ex-
tendedResolver. Also tCountedDataOutputStream was renamed to
DataByteOutputStream, not found by vector analysis.



240 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

refactoring was suggested. Antoniol et al. inspected the code to find the
correct class of refactoring, which is shown in the last column of the table. In
one case, marked by asterisks, a new classification was allocated: Resolver
was split to become Resolver, SimpleResolver and ExtendedResolver. A
further refactoring, not found by their system but during inspection, was
CountedDataOutputStream, renamed to DataByteOutputStream.

There is a difference between the systems: Antoniol et al. compare
classes, while this research compares files. CacheElement and AXFRlIterator
are renamed within the files Cache.java and Zone.java respectively, and not
picked up by the file-based system because they do not involve other files.

Antoniol et al. find four renamed files, and four suggested merges,
only one of which, CacheResponse and ZoneResponse merging to become
SetResponse, proved to be correct. Therefore a total of six files are found
which equate to the disappearing files of the research reported in this dis-
sertation. Table 14.12 lists these disappearing files and the two split files
found by Antoniol et al.

Candidate split files In addition to the forty releases (1-40) studied by
Antoniol et al. 17 further releases (41-57) are analysed here. Table 14.13
shows the six candidate split files selected by filtering DNSjava releases
1-40, all of which are classified as split on inspection. Among these six are
those found by Antoniol, dns (release 2) and Resolver (release 7). Table 14.14
lists the 55 candidate split files selected from releases 40-57. Although

Antoniol et al. analyse releases 1-40, changes to files in release 40 can only

Ref. | Rel. | File Target(s) Detail
56 2 dns Type 2-way split
51 7 Resolver SimpleResolver
ExtendedResolver 3-way split
55 3 dnsServer jnamed Rename
54 4 CountedDataByteInputStream DataByteInputStream Rename
54 4 CountedDataByteOutputStream | DataByteOutputStream | Rename
51 7 FindResolver FindServer Rename
46 12 | CacheResponse }
46 12 | ZoneResponse } SetResponse Merge

Table 14.12: The 2 split and 6 disappearing files found by Antoniol et al.



14.2. TESTS ON OTHER PROJECTS 241

be found with information for release 41, these candidates are therefore in
Table 14.14. Of the 55 files listed, 7 are identified by inspection as split. The
tables are laid out like the those for PostgreSQL. The 2 highlighted files are
those which are mostly labelled incorrectly: KeyBase, where the target files
are incorrectly ranked, by 90% of the models; and UNKRecord, where the
main target file is not selected, by all of the models tested.

The comments in Table 14.13 differentiate between split and extract
operations. Split means that part of the code is moved to another file. Extract
means that a superclass is created, and code is moved from the original file
to the superclass file. For example, in Figure 14.3 the file MXRecord is
shown with its text coloured by 3CO. Most of the code, in red, has gone to
the first target file, MX_KXRecord, suggesting that method stubs are left in
the original file. KXRecord appears to share the method headers, except for
the names, as the code is coloured black, showing that it is in all three files.
These suggestions are supported by inspection of the amended version of
the file, see Figure 14.4, which shows that a new class MX_KXRecord, see
Figure K.1 (p.397), has been created to extend Record. MXRecord and the
newly created KXRecord extend MX_KXRecord, see Figure 14.4.

SimpleResolver has 734 of Resolver’s 750 trigrams, which evolves from class to interface.

ExtendedResolver implements Resolver, but seems not to result from a split as suggested.

=dnsjava/. ..

tdnsjava/org
Ref| Vn. /xbilf/DNS/, ..| File MC| Ant| Comment

56| 2 * dnsjava 1| Yes| 3-way, to Type & Rcode, edited

521 6 * Zone.java 1 Split to Master, extract to NameSet
which Zone now extends

51| 7 * Resolverjava 1| Yes| ToSimpleResolver 4

41| 17 | + MXRecord java 1 Extract to MX_KXRecord
which MXRecord now extends

27| 31 | tsecurity/ DNSSEC Verifierjaval 1 2-way split to DNSSEC

26| 32 |t dnsjava 1 2-way split to Lookup, bitty

Table 14.13: Columns 2-3 identify 6 possibly split files selected by filtering DNS-
java, releases 1-39. Manual classification is in the column labelled
MC, those found by Antoniol et al. are in the column labelled Ant.,
and inspection of the text provides the detail in the last column.



242 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Ref. | Vn. | dnsjava/org/xbill/DNS/. .. MC | Comment
18 40 | DClass.java 0
18 40 | KEYRecord.java 1 Extract to Keybase which
it now extends
18 40 | Section.java 0
18 40 | SIGRecord.java 1 Split to FormattedTime & extract

to SIGBase, which it now extends
17 41 | A6Record.java

17 41 | AAAARecord.java
17 41 | ARecord.java

17 41 | CERTRecord.java

17 41 | CNAMERecord.java
17 41 | DNAMERecord.java
17 41 | DNSKEYRecord.java
17 41 | DSRecordjava

17 41 | HINFORecord.java
17 41 | KEYBase.java

17 41 | KEYRecord java

17 41 | KXRecordjava

17 41 | LOCRecord.java

17 41 | MXRecordjava

17 41 | NAPTRRecord java
17 41 | NSECRecordjava

17 41 | NSRecord.java

17 41 | NXTRecord java

17 41 | OPTRecord.java

17 41 | PTRRecordjava

17 41 | RPRecord.java

17 41 | RRSIGRecord java
17 41 | SIGBasejava

17 41 | SIGRecord.java

17 41 | SOARecord.java

17 41 | SRVRecordjava

17 41 | TKEYRecordjava

17 41 | TSIGRecord java

17 41 | TXTRecordjava

17 41 | UNKRecord java

14 44 | KEYBase.java

12 46 | FindServerjava

11 47 | AFSDBRecord java
11 47 | ARecordjava

11 47 | CNAMERecord java
11 47 | DNAMERecord java
11 47 | MBRecord.java

11 47 | MDRecord java

11 47 | MFRecord java

11 47 | MGRecord java

11 47 | MRRecord java

11 47 | NSAP_PTRRecord java
11 47 | NSRecord java

11 47 | PTRRecord.java

11 47 | RRSIGRecord.java
11 47 | SIGRecord.java

11 47 | SimpleResolverjava
11 47 | SingleCompressedNameBase javal
9 49 | AAAARecord java

8 50 | TXTRecordjava

4 54 | NSECRecordjava

Extract, but main target not selected
2-way split, but to 3rd target
Extract to ResolverConfig

Split and extract to TXTBase
Split to TypeBitmap

e leleolololeoleoleoleoleoleoleleolsleleolelig b eleleoleleoleleolololeolelecleleoleolelele oo ol No oo lo Yo Yo o]

Table 14.14: Columns 2-3 identify 55 possibly split files selected by filtering DNS-
java, in releases 40-56 Manual classification is in column 4, and in-
spection of the text provides the detail in the last column.



14.2. TESTS ON OTHER PROJECTS 243

In summary, Antoniol et al. found two split files in releases 1-40, both
are correctly classified here, as are the four other split files found in these
releases. Seven others are found in releases 41-57, two of which are incor-
rectly classified because of problems in filtering.

The file MXRecord shows one reason why Antoniol et al. did not find all
of the split files found here. Table 14.15 shows the unweighted frequency of
each of the identifiers in the 3 relevant files. For a split to be identified, the
cosine between the summed vectors for the amended version of MXRecord
and the new MX_KXRecord should be above the threshold set for the project.
Identifiers conforming to the expected pattern are ticked. Among the others
is “ab”, renamed to become “sb”, and many of the identifiers, such as

“_name”, which appear the same number of times in each file.

Old Amended New col.3+col.4
MXRecord | MXRecord” | MX_KXRecord ~col.2 ?

MXRecord

ou.t )

priori

Recorgl

rrToWire
rr'ToWireCanonical

target
sze.MX
al

sb
_dclass
_name
_priority
_target
-ttl

_type

C

in

length
MX_KXRecord
origin

st

3

KR mR oo

—HRW O ONWAS WO, —~,R,NOW
w
T T e NN NN NN NN

NNFENNDN OO
WP, EROAANNOO O

WN

Table 14.15: Identifiers in MXRecord and the 2 files resulting from extraction, in-
dicating why Antoniol’s analysis would not find this extraction. The
sum of identifier frequencies in columns 3 and 4 should be approxi-
mately the same as the figure in column 2, but more than half are not.



244 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

UH-Ferret: Trigram analysis

Comparison gomerated by analysis of the Tgram repoet prnduced by the Fermet Copy Dvsertion Tool, () Schood of Compuner Science. Unevanity of Hetdomdubine. 2010,

Document: /home/pam/86-dnsjava/scode/dnsjava/dnsjava-41/org/xbil/DNS/MXRecord.java

Blue file: /home/pam/86-dnsjava/scode/dnsjava/dnsjava-40/org/xbil/DNS/MXRecord.java
Red file: /home/pam/86-dnsjava/scode/dnsjava/dnsjava-40/org/xbill/DNS/MX_KXRecord.java

Yellow file: /home/pam/86-dnsjava/scode/dnsjava/dnsjava-40/org/xbill/DNS/KXRecord.java

package org.xbill DNS;

import java.io.*;

import java.util.*;

import org.xbill.DNS.utils.*;

public class MXRecord extends Record {
private short priority;

private Name target:;

O {1
MXRecord (Name name, short _dclass, int _ttl, int priority, Name _target)

super (_name, Type.MX, dclass, _ttl);

priority = (short) _priority;

target = _target:
}
MXRecord (Name name, short _dclass, int _ttl,

int length, DataBytelnputStream in, Compression c)

throws IOException
{

super (_name, Type.MX, dclass, _ttl):

if (in == null)

return;

priority = (short) in.readUnsignedShort():

target = new Name (in, ¢):
}
MXRecord (Name name, short _dclass, int _ttl, MyStringTokenizer st, Name origin)
throws IOException
{

super (_name, Type.MX, dclass, _ttl):

priority = Short.parseShort(st.nextToken()):

target = new Name (st.nextToken(), origin):

}
public String
tosString() {
StringBuffer sb = toStringNoData():
if (tarxget '= null) {
sb.append (priority) :
sb.sppend(” ")
sb.append (target) ;
)
return sb.toString():
}
public Name
getTarget() {
return target;

}
public short
getPriority() {
return priority;
}
void
rrToWire (DataByteOutputStream out, Compression c¢) throws IOException (
if (target == null)
return;
out.writeShort(priority);
target. toWire (out, null);
}
void
rrToWireCanonical (DataByteOutputStream out) throws IOException {
if (target == pnull)
return;
out.writeShort(priority):
target. toWireCanonical (out) ;

Figure 14.3: The file MXRecord showing the relationship of its code with possible
destination files. Code in the amended version of the original file is
coloured blue (or green, purple or black, if also in the other potential
destination files). Red code is only in the first selected target file.



14.2. TESTS ON OTHER PROJECTS 245

—KXRecord.java

package org.acbill.DNS;

import java.io.™;

import java.util.*;

import org.xbilLDNS. utils. *;

public class KXRecord extends MX_KXRecord

{
private KXRecord ()

{
¥

public ¥XRecord (Name _name, short _dclass, int _ttl, int _preference,
|Name _target)

{
super (_name, TyperX, ddass, _ttl, _preference, _target);

K¥Record (Name _name, short _dclass, int _ttl, int length,
DataByteInputStream in, Compression c) throws IDException
{

super (_name, TyperX, _dclass, _ttl, length, in, c);
¥

KxRecord (Name _name, short _dclass, int _ttl, MyStringTokenizer st,
|Name origin) throws I0Exception
{

super (_name, TypetX, _dclass, _ttl, st, origin);
¥
}

4

Mumber of distinct trigrams: 105

—M¥Record.java

package org.xbill. DNS;

import java.io.*;

import java.util.*;

import org.xbil.LDNS. utils. *;

public class M¥Record extends MX_KXRecord

{
private M¥Record ()

{

}

public M¥Record (Hame _name, short _dclass, int _ttl, int _priority,
|Name _target)

{
super (_name, TypeMX, _dclass, _ttl, _priority, _target);
¥

MyRecord (Name _name, short _dclass, int _ttl, int length,
DataByteInputStream in, Compression c) throws IDException
{

super (_name, TypeMX, _dclass, _ttl, length, in, c);
¥

M¥Record (Name _name, short _dclass, int _ttl, MyStringTokenizer st,
|Name origin) throws I0Exception

{
super (_name, TypeMX, dclass, ttl, st, origin);
}

¥

L

Mumber of distinct trigrams: 105

Figure 14.4: Ferret comparison between the amended version of MXRecord java
and the new file KXRecord.java showing their use of MX_KXRecord



246 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.2.3 Unseen data classified by trained models

The model which best classifies the 89 project dataset is the {b/SMO com-
bination. When this model is used to classify the filtered PostgreSQL and
DNSjava files, the classification accuracy is reduced: 84.7% over the two
projects (87.5% on PostgreSQL and 80% on DNSjava) and recall of 78.1%
(73.7% and 84.6%). Simple Logistic is the algorithm which performs best
overall on the 89 project dataset, and is best with both the “fb” and “tris-
singles” (the best set overall) feature sets on the unseen data. To find out
whether other feature sets produce better models, all of the sets which per-
form at least as well overall as the “fb” (Ferret basic) set were used to build
models with Simple Logistic. Classification of the unseen data with these
models is shown in Table 14.16 in terms of accuracy and recall, where the
top two models have an overall accuracy of 99.2% and a recall of 93.7% (19

of 19 PostgreSQL, and 11 of 13 DNSjava split files) on the unseen data.

Simple Logistic Overall PostgreSQL DNSjava

Feature set Accuracy | Recall || Accuracy | Recall || Accuracy | Recall
fc+tris-singles 0.992 0.937 1.000 1.000 0.983 0.846
fc+fb+pdp-singles 0.992 0.937 1.000 1.000 0.983 0.846
tris-singles 0.978 0.906 0.973 0.947 0.983 0.846
all-fc+all-tris 0.978 0.906 0.973 0.947 0.983 0.846
fb-singles 0.970 0.906 0.960 0.947 0.983 0.846
fb-+tris-singles 0.970 0.906 0.960 0.947 0.983 0.846
fb 0.955 0.781 0.945 0.789 0.967 0.769
all-fb+tris-singles 0.955 0.781 0.945 0.789 0.967 0.769
tris 0.940 0.750 0.918 0.737 0.967 0.769
all-fb+fc-singles 0.933 0.687 0.918 0.684 0.950 0.692
fc+fb-+tris+pdp 0.909 0.875 0.945 0.895 0.867 0.846
fe+ft+fb+tris+pdp 0.909 0.875 0.945 0.895 0.867 0.846
pdp-+tris-singles 0.879 0.906 0.945 0.947 0.800 0.846
all-tris+fc-singles 0.864 0.937 0.932 1.000 0.783 0.846
att-sel-all-feats 0.864 0.969 0.945 1.000 0.767 0.923
fe+tris+pdp 0.864 0.906 0.960 0.947 0.750 0.846
fb+tris+pdp 0.864 0.875 0.960 0.895 0.750 0.846
all-tris+pdp-singles 0.857 0.812 0.918 0.789 0.783 0.846
all-fb+pdp-singles 0.848 0.812 0.945 0.842 0.733 0.769

Table 14.16: The accuracy and recall of PostgreSQL and DNSjava candidate split
files with models built with the Simple Logistic algorithm and a variety
of feature sets. The figures are shown separately for the two test sets
and the feature sets are sorted by descending total accuracy, and,
where a place is tied, by the size of the feature set, smallest first.



14.3. SUMMARY 247
14.3 Summary

In this chapter, the effect of combining feature sets and algorithms to create
models for classifying candidate split files was explored. Investigations into
improving the classification rate by combining algorithms with heteroge-
nous meta-classifiers and by combining feature sets were reported. Little is
gained by combining algorithms, which implies that the better performing
algorithms are able to correctly classify the same instances, and that one
classifier is sufficient. Combining the feature sets generally only improves
on the performance of the less good performers.

A number of models were tested on the unseen data. The classification
rate of the model which performs best on the 89 project dataset, {b/SMO,
drops on the unseen data, achieving only 84.7% classification accuracy
(against 94.3%), with recall of 78.1%, implying overfitting.

Each of the models built using the best overall classification algorithm,
Simple Logistic, with the top performing feature sets give better results
than the fb/SMO model on the unseen data. The best of these, fc+tris-
singles/Simple Logistic, classifies with an accuracy of 99.2% (against 93.0%
on the 89 project set) and recall of 93.7%.

In the backend subsystem of the project PostgreSQL, Zou identifies nine
split files. Of these, three are disappearing split files. Of the remaining six,
three are selected by filtering and classified as split. The remaining three
tiles are not selected either because the candidate file has become larger as
a result of recombination, the target file has been recombined and become
less similar than in the previous release, or the target file has too low a
similarity score. Nine other files in the backend subsystem are identified
as split by code inspection and correctly classified. In the include and
interfaces subsystems, a further seven split files are identified among the
filtered files, all of which are also correctly classified.

Zou's system, by operating at function level, is able to detect more subtle
changes, such as recombination, and moves of single functions from one
file to another, which are not always picked up at the file level. Zou reports

fewer splits at file level, but the focus of her study is at function level and



248 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

therefore has a different perspective.

Antoniol et al. identify two split files in the project DNSjava. Both are
detected by this system, along with four others not found by Antoniol, all
six of which are correctly classified by the majority of the models. Seven
other files are identified in the releases not studied by Antoniol, of which
five are confirmed as split. Two files are misclassified: one because its target
file is not selected, and the other because its target file is incorrectly ranked
second to an incidentally similar file, meaning that the features created for
the singles sets are based on the wrong file.

Antoniol et al. recognise that their system is vulnerable to identifier
renaming. The file MXRecord exemplifies this shortcoming, as well as
showing that unless a split is fairly “clean”, the thresholds on the cosine
between vectors will cause problems. The analysis in Table 14.15 does not
weight the identifiers as the tf-idf approach used by Antoniol et al. does,
but gives an idea of the problem.

The results of classifying the candidate split files from the two unseen
projects with the models built on the 89 project dataset are good. However,
comparing the results with those of Zou and Antoniol et al. highlights prob-
lems in the selection of the candidate files and the selection and ordering of

target files, most of which are addressed in the next chapter.



Chapter 15
Exploring filtering criteria

In the previous chapter, four main problems were identified in finding split
files in the unseen projects. Each problem has its root in the filtering stage.

First, the amount of code moved to a target file can be too small to qualify
under the filter conditions. Second, if the target files are ordered incorrectly,
feature construction is affected, making classification difficult. Third, other
changes to a target file reduce its similarity to the candidate file, so that it is
not selected. Fourth, a split file may not be selected as a potential candidate
because more code is added than is removed during restructuring, making
the file larger than in the previous release. The third and fourth problems
are caused by the granularity of the data, in that several changes can be
applied to a file between releases. They can be seen as the same problem

affecting the candidate and target files respectively.

The first and second of the four problems are explored in this chapter.

Model

] i i i
Data Pre- Manual Feature Feature Classifier production
collection processing

Filterin e N N N
9 classification| [construction selection selection and

evaluation

Source Processed Candidate Feature Feature -
Classifier
data data groups vectors subsets

Data
repository

Figure 15.1: System overview, repeated here for reference

249



250 CHAPTER 15. EXPLORING FILTERING CRITERIA

Different conditions for filtering and ordering target files are considered,
to discover how they affect file selection. Candidate disappearing files are
simple to identify, but the same problems exist in selecting their targets as
for split files. Finding the correct set of target files and putting them in the
right order is important for matching renamed, moved or split files.

In this chapter, a range of similarity measures based on trigram analysis
are considered first. Sections 15.2-15.4 cover three sets of investigations:
selecting target files, ordering the selected targets, and refining the selection
based on knowledge gained from the previous experiments. Next, the split
files found by the new filtering criteria are compared to the information

given in the change log of a well-documented project. A summary follows.

15.1 Similarity measures

As noted in Chapters 3 and 13, any reasonable measure of similarity can be
used to look for target files. There are a number of ways that the similarity

between files can be expressed based on trigrams, and include those:
1. taken fairly directly from Ferret, and first described in Chapter 6:

(a) similarity score, Sim(Cy, F41),
where C,, is the candidate file and F,,; is a potential target file,

(b) change in similarity score, [Sim(C,, F1)] = [Sim(C,,, Ey)l,

(c) the containment of one file in another C @T”“l or |C”|Q(ﬁ“|,
n n

where C is the set of trigrams in the file C,and ¥ in F,

(d) the number of shared trigrams, |Cy, () Fpn+1l, Or
(e) change in the number of shared trigrams, |C;, () Fr+1] —ICn (N Faul-

2. computed less directly from information about the trigrams in a group

of files, as discussed in Chapter 7:

(@) the number of trigrams uniquely shared with the candidate file

[Cn ﬂ ¢in+1] \ [U;nzl Tjn+l]

where j # i, m=number of files in release n+1,



15.1. SIMILARITY MEASURES 251

(b) the weighted trigram count, }; c,%l
where i is a trigram € C, U [UJL; F jius1]
¢; is the no. of files sharing trigram i (and ¢ < given maximium)

(weighted trigram counts are explained on page 104), or

(c) the number of trigrams shared with the candidate difference set,

[Ci\Cr+1] N Frs1, (unsuitable for disappearing files as #Cy,11).

There are two tasks in finding target files: selecting the right target files,
and ordering the selected files. The first task combines the two opposing
aims of selecting all true target files, and not over-selecting incidentally sim-
ilar files. This opposition leads to the standard trade-off between precision
and recall, and makes it difficult to find the right balance when choosing
thresholds for target file selection.

The second task is to rank target files according to how likely they are
to be the new location of code moved from the candidate file. As explained
in Chapter 13, this is an important requirement for feature construction.

The three sets of investigations reported in this chapter look at split files.
Similar methods can be used to find and sort targets for disappearing files.
Experimenting with all of the data would be the ideal. However, some
of the tasks, such as judging the most suitable order for target files, are
labour-intensive. Therefore an arbitrary subset of six projects, with around
70 positive examples of split files, was used in these investigations.

The first set of investigations considers each of the proposed filtering
conditions, and the effect of different parameters, on file selection. The aim
is to reduce thresholds for target file selection to the point where few, and
preferably no, split file examples are excluded from the set of candidates,
while not including too many negative examples, and making target sets too
large. The second set looks at the selected split files, examining differences
between the ordering of target files by different similarity measures.

Finally, the criteria explored in the two previous investigations are com-
bined to refine the method for selecting and ordering target files. The chosen
method is applied to the best-documented project from the test set, and the

results compared to information found in its change log.



252 CHAPTER 15. EXPLORING FILTERING CRITERIA
15.2 Target file selection

In this section, target file selection is investigated, using various similarity
measures and thresholds. Similarity score is a simple measure to explore
because the values are stored during the information gathering phase of
filtering, and the threshold is easy to vary. The first experiment in this set
aims to find a baseline number of candidate files by looking at the effect on
target file selection of a range of similarity thresholds. Other measures are
more difficult to explore as thoroughly because there are more variables to
consider. The results of filtering with these other measures are related to
those from the similarity score investigation. Labels relating to the measures

listed in Section 15.1 are noted in the headings of the following sections.

15.2.1 Similarity score (1a)

In early experiments [93], similarity score was used to select target files. A
threshold value of 0.1 was chosen from 0.05, 0.075, 0.1, 0.15 and 0.2. The two
higher values excluded too many split files from the candidate set, because
no target files were matched to them. With the similarity scores 0.05 and
0.075, there were too many target files, given the time-consuming method
of hand-checking candidate groups prior to the development of 3CO.

In this investigation, lower similarity scores were used to filter the tar-
get files: 0.1, 0.083, 0.066, 0.05, and 0.033. The number of candidates are

recorded in Table 15.1, along with the number of positive examples of split

Threshold | Number of Mean Increase in | New candidates
value candidates | targets | candidates which are split
0.100 209 9.5 - -

0.083 251 10.5 42 4
0.066 315 13.5 64 3
0.050 351 26 36 3
0.033 370 69 19 0

Table 15.1: The effect of different similarity score thresholds on candidate and target
file selection. Column 2 shows the number of candidates selected, with
target file set size in column 3. Additional candidate files are noted in
column 4, and the number of these which are split in column 5.



15.2. TARGET FILE SELECTION 253

files added at each level, and the mean size of the target file sets.
The results show that among these thresholds, 0.05 selects the maximum
number of split files as candidates in this dataset. The lower value of 0.033

finds 19 more candidates, none of which are split files.

15.2.2 Containment (1c)

To find target files based on shared trigrams, the threshold can either be a
discrete value, or a proportion of file size. Given the range of file sizes, the
proportional measure containment was chosen, and various values tested
to find a reasonable set to compare with the similarity score set.

At 0.25 of the smallest file size, 351 candidate files are selected, exactly
the same number as with a similarity value of 0.05. Each set has 16 can-
didates which do not appear in the other set. None of the 16 selected by
containment are split files, whereas 2 selected by similarity score are split.
The mean number of target files per candidate selected by this method is
also 26. Based on this test, similarity score seems to be a marginally more

useful filter than containment.

15.2.3 Change-based filters (1b, 1e)

Filtering by containment or similarity score alone results in large target file
sets. Any file which is similar to a candidate file will be selected as a target
under each of the two measures. However, if this similarity is unchanged
or is reduced, the file is unlikely to be a true target, unless the code removed
from the candidate file was already in the target file, as is sometimes the
case when files are merged. The aim of using change-based filters is to
exclude incidentally similar, but otherwise unrelated, target files.

Initially the two change-based measures (changes to similarity and to
shared trigrams) were explored using just one selection condition. How-
ever, to include all of the split files found by the similarity threshold of 0.05,
the change-based thresholds have to be lowered to the point where the tar-
get file sets become larger (mean files per set >40), making these measures

unsuitable for use on their own.



254 CHAPTER 15. EXPLORING FILTERING CRITERIA

Other strategies for including change-based filters were therefore tested:
pairing similarity score with change in similarity, and stratifying the changes
in shared trigrams, depending on the ratio of the change to overall file size.
Finding parameters for these two groups was an iterative process. Thresh-
olds were estimated for each change measure, candidate files selected, and
the resulting sets compared to that reported in Section 15.2.1. The filter

thresholds were then adjusted to include the missing split files.

15.2.4 Combining similarity score conditions (1a, 1b)

For a file to qualify under the combined similarity conditions, it must both
have a similarity to the candidate file of at least 0.05, the base score estab-
lished for this dataset, and the similarity of the target file to the candidate
must be larger than the similarity of the file in release n. To select files
where the code already exists in the target file but is extracted from the split
file, targets with a high similarity to the candidate are selected, regardless of

change in similarity. The set of parameters chosen after iteration were:
e similarity between files is at least 0.05 and increases by at least 10%,
e or similarity is greater than 0.5, regardless of change.

These parameters result in a set of 263 candidates which include all but
one of the positive candidates found with a similarity of 0.05 and above.
The mean number of target files is 6.6. The similarity of the target for the

missed split file changes by less than 10% and it is therefore not selected.

15.2.5 Stratifying shared trigram conditions (1e)

A range of options was explored to find conditions based on the change
in the trigrams shared by the target file in releases n and n+1, and the
candidate. In the end, the increased numbers of shared trigrams were
stratified, depending on the size of the smaller of the two files compared.
The idea is that a small increase in shared trigrams may be more significant

inasmallfile than alarge one. The conditions are an increase of atleast:

e 10 shared trigrams, and at least 30% of the smaller of the file sizes, or



15.2. TARGET FILE SELECTION 255

e 20 shared trigrams, and at least 20% of the smaller file size, or
e 50 shared trigrams, and at least 10% of the smaller file size, or
e 100 shared trigrams.

This results in a set of 271 candidates with a mean of 13 target files. One
of the split files is also missing from this set, it has a similarity of 0.065 to
the target file, and the two files share 201 trigrams. However, the two files,
which contain 1445 and 1843 trigrams, share 151 trigrams in release n, so

there are 50 new shared trigrams, which is less than 10% of either file size.

15.2.6 Less direct methods (2a, 2b, 2¢)

Similarity, shared trigrams, and containment measures are either stored, or
can be calculated from measures stored during the information gathering
process described in Section 12.3.1. More work is required to compute
the three less direct measures (uniquely shared trigram counts, weighted
trigram counts, and trigrams shared with the candidate difference set),
making them less attractive as a first filter, unless the gain is substantial.
Each of the measures in this category was tested on a small set of files taken
from the dataset, and the results reported in Appendix L. The tests show that
although these measures reduce the number of incidentally similar target

files, they do not select true targets as well as the more direct methods.

15.2.7 Discussion on selecting target files

None of the three less direct measures, which require more processing,
perform as well as the simpler methods in selecting target files for the
more difficult of the files tested. However, they do reduce the number of
incidentally similar files selected as targets for other files.

Similarity score or containment result in large target file sets, as do the
change in similarity or the change in shared trigrams. However, smaller tar-
get file sets result from either combining similarity and change in similarity
measures, or stratifying the conditions for changes to shared trigrams.

One positive candidate file is excluded by the proposed filter conditions



256 CHAPTER 15. EXPLORING FILTERING CRITERIA

for both the similarity combination, and the shared trigrams. Target file sets
are reduced to a mean of 13 in the shared trigram change set, and to less than
7 in the similarity score combination set. The set of candidate files is also
smaller, as it contains fewer negative examples. The selection of true target
files is also a little better with the similarity combination. Investigations

into target file ordering are therefore based on this set.

15.3 Ordering target files

The features constructed for this research are based on comparisons between
the candidate file and different selections from the group of target files (see
Chapter 13). The more successful feature sets contain features based on the
three-way comparison between the two versions of the candidate file, and
the main target file. When there is more than one target file, it is important
that they are ranked correctly, so that the main target file is that most likely

to contain the majority of the code removed from the candidate file.

15.3.1 Comparing ranking criteria

The set of target files selected by similarity combination (Section 15.2.4) was
used to explore the effect of different measures on target file ranking. Any
of the measures discussed for selecting target files can also be used to rank

the files. Three of these ranking criteria are compared in this section:
e change in similarity score,
e change in shared trigrams, and

e the number of trigrams uniquely shared with the candidate file.

Method

The two change-based measures are found from stored information. To
find the number of unique trigrams, the candidate file, amended file and all
of the selected target files are compared by Ferret to produce a trigram-file
index. The trigrams uniquely shared by each target file and the candidate

file are counted, and the files ranked by this count.



15.3. ORDERING TARGET FILES 257

To assess target file order, the 3CO comparisons between each candi-
date and its targets were examined. Files considered to be true targets were
ranked by eye according to the code shared with the parts of the candi-
date file not covered by the amended file, and their order by each method
noted. As an example, Figure 15.2 shows a file whose targets are ordered
by uniquely shared trigrams on the left, and by change in shared trigrams
on the right. As a reminder, code in the amended file is blue, the file se-
lected as the first (main) target, red, and the second target file, yellow. The
true target file, which contains the code not in the amended file, is selected
tirst by uniquely shared trigrams (on the left), and second by the change in
shared trigrams. It is easy to see why: the “red” (or first) file on the right has
a large number of trigrams shared with the candidate file, however, most

of these trigrams (in purple) are also shared by the amended file.

Figure 15.2: Target files ordered by uniquely shared trigrams (left) or by change in
shared trigrams (right). The interesting section is coloured red on the
left, and yellow on the right, showing this target is ranked first by one
method and second by the other. The green or purple section is shared
by the second, or first target respectively, and the amended file.



258 CHAPTER 15. EXPLORING FILTERING CRITERIA

Results

Using the test subset, the three methods of ordering target files are com-
pared in Table 15.2: ordering by uniquely shared trigrams, by change in
shared trigrams, and by change in similarity. The first three columns report
on the number of rankings which are the same under all measures, showing
the number of target files, the number of “true” targets and the number of
times the rankings agree. For example, the figures to the left of the asterisk

in column 4 mean that there are two instances where there are two target

Total | True Count Ordered by | Ordered by | Ordered by Count

targets | targets | matched uniques shared similarity unmatched
1 1 24
2 1 4 1 1 2 1
2 1 2 2 4
3 1 3 1 1 2 1
4 1 2 1 1 4 1
5 1 1 3 1
6 1 2
7 1 2
8 1 1 1 4 4 1
11 1 2 2 1
17 1 1
21 $ 11 18 4 1
23 1 2 2 1
44 1 1
2 1,2 2 *
3 1,2 1,2 1,6 1
4 1,2 1
5 1,2 1
14 1,2 1 1,2 1,2 1,6 1
14 1,2 2,7 2,6 1
26 1,2 5,2 1,2 1
23 1,2,3.. 4,2,10.. 7,5,9.. 1
24 £ 1,234 1,2,12,7 1,2,4,3 1
6 1,2,3.. 1
17 1,2,3,4,5 1,6,4,2,3 1,2,4,53 1

Totals 46 19

Table 15.2: Comparison of target file order by uniquely shared trigrams, changes to
shared trigrams, and to similarity. The first column shows the number
of targets selected. The next two give information about the files whose
targets are ranked the same by each method. Columns 5-8 show those
with different rankings. Symbols in column 4 are referenced in the text.



15.3. ORDERING TARGET FILES 259

files, with the files correctly ranked first and second by all methods.

The last four columns show the rankings which disagree. The fifth
column has the order of true targets under uniquely shared trigrams, the
next column, under change in shared trigrams, and the next, under change

in similarity. The last column gives a count of the occurrences.

For example, the figures to the right of the $ in column 4 mean that
there is one instance where the uniquely shared trigrams rank the single
true target first, but other methods rank it differently, at positions 18 and
4. Another example, indicated by the £ in column 4, shows a set of 4 true
targets from a pool of 24. Under uniquely shared trigrams these are ordered
as expected, but under change in shared trigrams or similarity these targets

are in positions 1, 2, 12 and 7; and 1, 2, 4 and 3 respectively.

The target files in this set are placed in the “correct” order when ranked
by uniquely shared trigrams. The other methods rank target files in the
same order in 46 of the 65 cases, of the other 19, 6 are ranked the same by
change to shared trigrams and not by similarity, while 2 are ranked the same

and 2 nearly the same, by change in similarity, and not by shared trigrams.

15.3.2 Discussion on ranking target files

Using the set of candidate file groups selected by similarity, the target files
were ranked by uniquely shared trigrams, change in shared trigrams and
change in similarity. Ordering by uniquely shared trigrams outperforms

the other methods for this data, giving the “correct” order in every case.

One problem identified while determining target file order is that some
candidate files have blocks of code which are unmatched by any of the
selected target files, even when the file is apparently split. An example is
shown on the left of Figure 15.3, where two blocks of code appear to have
moved to another file, but two other blocks are unmatched (mostly cyan).
On the right of the figure, the wider selection of target files includes the file
which contains the missing code. The next section explores ways to balance

the inclusion of such targets while not including too many unwanted files.



260 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.4 Refining file selection

The idea in refining target file selection is to increase recall. This is achieved
by relaxing the selection criteria to generate a larger initial set of files, then
refiltering to exclude files which are unlikely to be true targets.

If a file does not share trigrams with the difference set it is not normally
a true target, and can be discarded from the set of target files. As previously
explained, extra time and space are required to make the comparisons
required to select files which share trigrams with the candidate difference
set from all of the files in release n+1. However, it is simpler to select such
tiles from a smaller set of target files chosen by other criteria.

As a test, the threshold for selection on file similarity, regardless of
change, was altered from 0.5 to 0.25. This increases the number of candi-

dates from 263 to 266 and mean targets from 6.6 to 8.4. Files were then

il

Figure 15.3: On the left, target files are selected by similarity combination (Sec-
tion 15.2.4). Two sections of the candidate file are not matched by
a target file. On the right, additional targets are selected by adding
shared trigram conditions. The code is matched by the 1st (red) file.



15.4. REFINING FILE SELECTION 261

Trigram shared Number of | Mean number | Positive splits
with difference set | candidiates target files selected?
no filter 266 8.4 all known
=0 227 7.2 all known
<5 189 5.7 all known
<10 161 5.2 all known
<20 137 4.8 all known

Table 15.3: Changes to the number of candidate and target files made by removing
target files with few trigrams shared with the candidate difference set

removed from the target set if they shared fewer than n trigrams with the

difference set. The results for different values of n are in Table 15.3.

In the subset of projects used in these investigations, only irrelevant
files are removed, as there is no reduction in the number of positive split
file examples and their true targets. There are two cases in the remaining
projects where split files will not be matched if target files with fewer than

20 trigrams in common with the difference set are removed.

To explore whether the blocks which are not matched by a target file can
be found in target files selected under lower thresholds, several variations
to the filter conditions were tested. These are listed in Table 15.4. In each
case, target files are removed if they have fewer than twenty trigrams in

common with the difference set. The similarity combination has the form

[(sim = a) A (sim > (prev X b))]

V [sim > c] Shared | Gaps | New | Candidate Positive Mean
a b c added? | filled | splits files examples | targets
0.05 0.05 0.25 n 0 3 137 69 4.8
0.05 0.025 0.25 n 0 3 137 69 4.8
0.05 0.01 0.25 n 0 3 158 69 6.4
0.05 0.05 0.1 n 2 7 154 73 59
- - - y(1,2) 4 5 146 71 148
0.05 0.05 0.1 y(1) 7 7 166 73 10.8
0.05 0.05 0.1 y(1,2) 9 9 166 75 14.2

(1) means changes to shared trigrams added, (2) means 0.5 containment of smallest file added

Table 15.4: The effect of altering target file selection criteria. Extra shared trigram
criteria are noted in Column 4. The next 2 columns show whether newly
selected target files cover the gaps found in 22 files, and additional split
files detected. The last 3 columns give the total candidate files, those
identified as split, and the mean number of target files.



262 CHAPTER 15. EXPLORING FILTERING CRITERIA

[(sim > a) A (sim > (previous X b))] V [sim > c], a combination like that in
Section 15.2.4. The values for a, b and ¢ are shown in the first three columns.
In the last three tests, the shared trigram change filters (see Section 15.2.5)
are added to the criteria. Two tests also have containment of >0.5 added.
Twenty-two split files have sections not matched by the target files
selected, gaps are filled in two of these files by changing the similarity (c) to
0.1, and in seven files by adding the shared trigram change filter conditions.
The shared trigram and containment conditions on their own fill gaps in four
tiles, and adding the shared change conditions to the similarity conditions
finds nine gap-fillers. Three new files are identified as split by changing
similarity (c) from 0.5 to 0.25 and four more by changing this parameter to
0.1. A further two are identified by adding the containment condition.
Although the mean number of target files per group is high (14.2) in the
last group in Table 15.4, 99 of the groups contain fewer than 5 files, 125 fewer
than 10 and only 25 have more than 20, most of these being in the project
ppcboot, which has a large number of parallel subsystems. The number of

target files per group is plotted in Figure 15.4.

100

90

80

70

60

50

40

30

Number of target files per group

20

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Figure 15.4: Target files selected by the conditions on the bottom row, Table 15.4



15.4. REFINING FILE SELECTION 263

15.4.1 Filter conditions summarised

This section provides a summary of the filter conditions.

e Potential split files are selected if the file reduces in size:
o by at least 5%, or
o at least 200 bytes.

e Target files are selected for either split or disappearing files under any of
the following conditions (stated as formulae in Figure 15.5):

o similarity is at least 0.05 and is increased by at least 5%

o similarity is at least 0.1

o shared trigram change > a and > b of the smaller file’s trigrams
where a, b are either 10, 30% or 20, 20% or 50, 30%

o shared trigram change > 100

o shared trigrams > 50% of the smaller file size

e For split files, the resulting targets are removed if they do not share at
least 20 trigrams with the candidate difference set.

e The remaining targets for split files are sorted by the number of trigrams
uniquely shared with the candidate file, or in the case of a tie, the number
of trigrams shared with the difference set.

e The disappearing file targets are sorted by unique trigrams, or in the case

of a tie, by similarity score.

* [Sim(Cy, Fy1) 2 0.05] A [(Sim(C,, Fpi1) — Sim(Cy, Fy)) 2 (0.05 x Sim(C,, F,))]
* Sim(Cp, Fus1) > 0.1

* [[(|Cn ﬁ 7:n-¢—1| - |Cn ﬂ 7:11”) 2 El] /\ [(Icn ﬂ 7:rz+1| - |Cn ﬂ 7:n|) 2 (b X Min(|cil|/ |‘7:n+1|))]]
where (a, b) € {(10, 0.3), (20, 0.2), (50, 0.1), (100, 0)}

* [ICh N Fnaal 2 (0.5 X Min(ICul, [Fnsa )]

Figure 15.5: Filter criteria, C, ¥ are the set of trigrams in the files C, F



264 CHAPTER 15. EXPLORING FILTERING CRITERIA
15.5 Checking a change log to verify selection

To validate the selection of candidate and target files, the change log of
one of the projects, “Lifelines”, was searched to find entries relating to split
files. Change logs are often incomplete, Chen et al. [40] found that changes
omitted from the change logs of three well-established open source projects
ranged from 4% to 78%, with a mean of 22%. Parnin discovered that only 7
of 55 refactorings they found in the project Cecil were noted in the change
log [187]. However, Lifelines appears to be fairly well-documented. Of
the 44 candidates, 11 are not split. Only 5 of the 33 split files are not

documented, shown by the explanatory notes in Table 15.5, meaning that a

Rel. | Dir. File Change log reference (see Appendix M).
4 hdrs gedcom.h 13
4 interp interp.c 2
4 liflines | screen.c 3,4,5
4 liflines | llexec.c 12
4 stdlib signals.c 10
4 liflines | main.c 11
4 hdrs date.h 15,16
4 gedlib | init.c 14
4 liflines | error.c 7,9
5 gedlib | node.c 23
5 stdlib mystring.c | 24
5 hdrs cache.h 25
5 gedlib | init.c 17
6 liflines | llexec.c — nearly % to ui_cli.c, little to screen.c
7 hdrs interp.h 26,27
9 gedlib | node.c 29
9 interp | pvalue.c 28
9 liflines | edit.c 30
9 liflines | newrecs.c —- ask_for_record to ask.c
10 | gedlib | translat.c —- more than % to charmaps.c
10 | hdrs gedcom.h 32
10 liflines | llinesi.h 43
10 hdrs standard.h | 31
10 | liflines | export.c 33
12 stdlib stdstrng.c 38
12 | hdrs mystring.h | 38
12 liflines | newrecs.c —- nvaldiff to nodeutls.c
12 | stdlib mystring.c | 38
13 interp pvalue.c 42
13 | hdrs interp.h 41
13 | liflines | import.c 40
14 liflines | delete.c 48
14 | gedlib | valid.c —- strings moved to messages.c

Table 15.5: Lifelines split files, identified by release number, directory and name.
Column 4 gives the number(s) assigned to the change log extract in
Appendix M, or details of the split when no entry is found in the log.



15.5. CHECKING A CHANGE LOG TO VERIFY SELECTION 265

high proportion, 85%, of the split files found by the system are documented.

The log was searched for the words ‘(re)move’, ‘split’, ‘(re)factor’, and
scanned visually for other indications of refactoring. The log was also
searched to match the names of files classified as split by inspection of the
candidate files, but not found by these terms. The edited log entries are
shown in Appendix M, with the split operations numbered from 1-48. Of
these 48 log entries, 31 are matched by files found by filtering, and 17 are
not matched, for which there are four reasons.

First, some changes involve removal of code introduced in the same
release as the change, meaning that the file is unchanged from one release to
the next. Second, some candidate files have not reduced in size, as although
code has been removed, other code has been added. As previously noted,
this is a feature of working at release level. Third, the target file’s similarity
to the candidate file can fall between releases despite having code moved to
it, because of other changes to the file. Lastly, although files are selected as
potential candidates, the amount of code moved to the target file is so small
that it does not fulfil any of the filter criteria. Table 15.6 lists the Lifelines

log entries, noting whether they are matched, or if not, why not.

No. | Matched? No. | Matched? No. | Matched?
1 Within release 17 v 33 v
2 v 18 Candidate grows 34 Within release
3 v 19 | Candidate grows 35 | Candidate grows
4 v 20 Candidate grows 36 Within release
5 v 21 | Within release 37 | Candidate grows
6 Target similarity falls 22 | Candidate grows 38
7 23 | Vv 39 | Candidate grows
8 Change too small 24 | Vv 40
9 v 25 v 41 v

10 v 26 v 42 v

11 v 27 v 43 v

12 v 28 v 44 Within release

13 v 29 v 45 Within release

14 v 30 v 46 Within release

15 v 31 v 47 Within release

16 v 32 v 48 v

Table 15.6: Lifelines: of the 48 change log entries relating to splits, 31 are matched
by candidates, and 17 are not; either because a split file has become
larger, the target similarity score falls, the change is too small, or the
change is made within the release.



266 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.6 Summary

With a perfect filtering strategy, there would be no need for the classifica-
tion part of the system, as every candidate selected would be a split file,
and every target file a true target. However, it is unlikely that any filtering
strategy will achieve this perfect precision and recall. There is a natural
conflict in selecting all split files, while not selecting non-split candidates;
and in selecting all true target files, while not selecting too many targets
for each candidate file. Filtering is nevertheless important, both in reduc-
ing the number of candidate files, and in selecting target files. It keeps
the negative examples to a reasonable level, helping to balance the dataset
for machine learning; as well as reducing the burden of manual classifica-
tion. The experiments reported in Chapter 14 identified four problems in
filtering:
1. too little code moved to qualify under the original conditions,
incorrect target file ordering,

2.
3. other changes to the target file, making it less similar, and
4.

candidate files are not selected because they increase in size.

The investigations reported in this chapter seek to address problems 1
and 2. By widening the selection criteria, problem 1 should be resolved in
the majority of cases, although movement of small amounts of code may
only be detected with even lower thresholds. The decision to favour recall
against precision, or vice versa, can be made when running the system,
depending on requirements. This type of decision occurs in many domains,
for example, the detection of craters on Mars, where a minimum size of
5 pixels is used to reduce the number of false positives detected [223].
Problem 2 seems to be resolved by ordering target files by unique trigrams,

as each of the test cases appears to be ranked correctly.

In addition, problem 3 will be partially resolved by the change in filtering
conditions. If the similarity between a true target file and the candidate file
is reduced, because code other than that moved from the candidate file

has also been moved to the file, then the conditions based on the change in



15.6. SUMMARY 267

shared trigrams may select the target file. A different approach to candidate
file selection is required to overcome problem 4, and has still to be explored.
The size of a file’s difference set may offer a solution to this problem.

The chosen filter conditions combine similarity, change in similarity,
change to shared trigrams, and containment, so that target files selected by
any of these conditions are added to the set. Re-filtering then removes files
which share few trigrams with the candidate difference set, as these files
are unlikely to be true targets. The remaining target files are sorted on the
number of trigrams uniquely shared with the candidate file.

The difference set for a disappearing file is the file itself, therefore sec-
ondary filtering using the difference set is not possible. However, the target
files can be selected and ordered in the same way apart from this. The next

chapter reports on machine learning experiments with the refiltered data.



268 CHAPTER 15. EXPLORING FILTERING CRITERIA



Chapter 16

Experimental results - Part 2:

Classifying refiltered data

This chapter consists of five main parts. The first compares the refiltered
split file dataset with the original set. The second reports on experiments in
classifying the refiltered split file dataset, where the accuracy is over 90%.
The third part gives the results of applying the top performing models to the
two unseen projects, with additional test sets from the Java project Struts,
and the Python project PyX. In the fourth part, which is about classifying
the disappearing file datasets, the candidates are divided into two groups.
Candidates with only one target file are classified with 95% accuracy, and
the more challenging group with at least two targets, which is a three class
problem, is 88% correct. The last part of the chapter gives the results of
using these models to classify the equivalent datasets from the PostgreSQL
and DNSjava projects, with PyX providing an additional test set.

The experiments in this chapter are run in a similar way to those re-
ported in Chapter 14, in that each feature set/algorithm combination is run
over 100 different random splits. Although all of the feature sets from Chap-
ter 14, including the combined ones, are used in the experiments, a smaller

selection of algorithms is applied to these sets.

269



270 CHAPTER 16. CLASSIFYING REFILTERED DATA
16.1 Refiltered split file dataset composition

This part of the chapter covers the composition of the refiltered split file
dataset and compares it with the original set. The refiltered split file dataset
comprises 810 instances, of which 414 are negative, and 396 are positive,
more than twice the number of files selected by the previous filtering con-
ditions. The types and classes of the files are shown in Table 16.1 with those
of the original set. Only the negative header file category is reduced. All of
the positive instances from the original set are included in the refiltered set,
except for two, both small header files. In one case, a small 3 line struct is
moved, and in the other, 2 lines are moved; neither qualify under the new
requirement that at least 20 trigrams belonging to the difference set should
be moved between the files.

The pie chart on the left of Figure 16.1 shows the number of target files
in the candidate groups. Although there are proportionally fewer files with
a small number of target files in the refiltered set than in the original set (on
the right), there are around one and a half times as many files with one or
two targets because the set is larger. Less than 10% of the files have 19 or

more targets, although 16 files have more than 50 targets.

55 g5
4 [7|4/1zo

35

15 16 18

| —— ¥

111314
g 10

Figure 16.1: The number of target files in refiltered split file candidate groups (left),
with the same information for the original set, repeating Fig. 12.12



16.1. REFILTERED SPLIT FILE DATASET COMPOSITION 271

Refiltered set Original set

File type .C h Total File type .c h Total

Split 285 111 396 Split 130 64 194
Not 386 28 414 Not 146 47 193
Total 671 139 810 Total 276 111 387

Table 16.1: File type and classification of candidate split files

Table 16.2 shows the number of candidate files per project: the refiltered
and original sets, and the change. Candidate files are selected for 67 projects,
rather than 55. The majority of projects have 10 or fewer candidates, 17
projects have between 11 and 42. Exceptionally, Gwyddion, the second
largest project, with 6.5 times the mean number of files, which includes a
high level of incidental similarity, has 191 candidates. Figure 16.2 shows the
distribution of candidate files, their type and class in the same way as the
original set (Figure 12.13, p.190). Overall, the new filter conditions select
more positive candidate split files, and fewer of the more certain negative
candidates. The cost is the increased number of target files, but this should

mean that the correct targets are more likely to be among those selected.

Project Or. | Re. | A || Project Or. | Re A || Project Or. | Re. A
acidblood| 4 6 | 2 || jack-rack 0 1 1 || premake 6 23 17
aqtwo-tng| 0 3| 3| Ilde 2 7 5 || pxlib 0 1 1
artoolkit 0 5| 5 || lejos 0 1 1 || rcalc 5 6 1
beecrypt 4 3 | -1 || Igeneral 0 3 3 || rsyslog 13 35 22
biew 4 3 | -1 || libbt 0 1 1 || rtnet 7 15 8
cipe-linux| 0 0 | 0 || lifelines 22 | 42 | 20 || seti-applet 1 3 2
dbacl 2 4 | 2 || lirc 13 | 13 0 || sf-xpaint 0 3 3
diald 2 3| 11| loge 1 3 2 || sonasound 5 8 3
drivel 1 3 | 2 || mfstools 1 1 0 || sphinxthree 11 15 4
dta 0 0| 0| mjs 3 7 | 4 || sphinxtwo 1 4 3
dynamics| 9 22 | 13 || mkecdrec 0 2 2 || toxine 0 3 3
ei}éectv 36 39 | 3 || mpop 1 4 3 || tulip 0 1 1
etherape | 15 28 |13 || msmtp 3 0 | -3 || tuxnes 3 5 2
extace 1 2|1 nano 7 9 2 || wmweather+ 2 3 1
felt 0 3| 3| na 8| 10 2 || wxd 2 3 1
fidogate 6 7 | 1 || noffle 2 5 3 || xastir 3 32 29
ganc 2 3 | 1 || nvram-wakeup| 1 2 1 || xawdecode 4 15 11
gpsbabel 2 25 |23 || oww 2 5 3 || xbae 1 17 16
wyddion| 83 | 191 (108 || pam-mysql 1 1 0 || xmp 6 16 10
atari 16 27 | 11 || pbbuttons 4 4 0 || ysmv 2 5 3
hptalx 1 1 | 0 || pidgin-hotkeys| 0 1 1 || zimg 2 3 1

interest 22 42 |20 || pio 5 7 2
ipcop 3 7 | 4 || ppcboot 24 | 38 | 14 ([~ 7 ST 1 -
Total 387 | 810 | 423

Table 16.2: Candidate split files by project: original set, refiltered set, and difference



272

CHAPTER 16. CLASSIFYING REFILTERED DATA

Unclassified h files
M Unclassified c files

m Split hfiles

B Split c files

H Non-split h files
B Non-split c files

210
200

190

180
170

160
150

140
130
120
110
100

o L

90
80
70
60
50
40
30
20
10

e

m Swiz
- AWISA
- dwix

9eqgx
9podapMEX
J13SeX

pxm
diayileamwm

| sauxn}
- din

auIxo}
| omaxulyds

-~ 994y1Xulyds
punoseuos

- juredx-js

- 1ojdde-11as
%auu
o[sAs4
3|E:J.I
- gixd
2jewa.d
j00q2dd
old
shayloy- U|8p|d
su011nqq
" |bsAw-wed
- MMO

- dnayem-wesau
" 9|ou
deu

- oueu
" djwsw

dodw

" 021poywW

s
S%OOlS].LU
o
)
saula|
]qql
|BJauaﬂ|
so a|

ﬁDBJ -oef
ood|
1saJ91U|

-~ x| eady
1ieley
uol ppAms
|anqsd3
sued
21e50p1}
94
2IB1XD
adesaya
FNLEITE]
SOIWBUAp
e]

_[9Bgp
" xnuij-adio
malq

- 1dA1d99q
UY|OOLIE
Sdll omibe
~ poojqpioe

Figure 16.2: Refiltered split file dataset by project, type, and class



16.2. CLASSIFYING THE REFILTERED SPLIT FILES 273

16.2 Classifying the refiltered split files

Each of the 11 algorithms listed in Table 16.6 (p.275) was applied to each
of the feature sets explored in Chapter 14. The top 40 results, ranked by
mean % correct classification, are listed in Table 16.3. The “best” mean
classification accuracy on the test partitions for this set is around 4% lower
than on the original set, 90% rather than 94%. However, the refiltered set
includes more marginal examples, both positive and negative, than the
original set, and also excludes some of the more certain negative examples.

In this context, marginal means that little code is moved between the files.

Mean % | Std. | Mean | Mean | Mean F-
Feature set Algorithm correct | Dev. | prec'n | recall | measure
1 | fct+ft+tris+pdp-singles| RotationForest 90.32 1.79 0.90 0.92 0.91
2 | fc+tris+pdp-singles LogitBoost 90.26 1.78 0.90 091 091
3 | all-tris+all-fc SimpleLogistic 90.23 1.56 0.88 0.93 091
4 | fc+ft+fb+tris+pdp-s’s | RotationForest 90.22 1.57 0.90 0.91 0.91
5 | all-singles LogitBoost 90.17 157 0.90 091 0.90
6 | fc+fb+tris+pdp-singles LogitBoost 90.15 1.81 0.90 091 0.90
7 | fc+tris-singles RotationForest 90.07 1.40 0.89 0.92 0.90
8 | fc+ft+tris+pdp-singles| LogitBoost 90.04 1.72 0.90 0.91 0.90
9 | fc+tris+pdp-singles RotationForest 90.02 1.63 0.89 091 0.90
10 | ft+fb+tris+pdp-singles| RotationForest 89.99 1.85 0.90 091 0.90
11 | fe+ft+fb+tris+pdp-s’s | LogitBoost 89.99 1.89 0.90 091 0.90
12 | fc+fb+tris+pdp-singles RotationForest 89.93 1.65 0.89 0.91 0.90
13 | all-feats LogitBoost 89.91 1.45 0.90 091 0.90
14 | fall SimpleLogistic 89.90 1.49 0.88 0.93 0.90
15 | fc+fb+tris-singles RotationForest 89.89 1.66 0.89 0.92 0.90
16 | tris-singles RotationForest 89.83 1.63 0.89 0.92 0.90
17 | fb+tris+pdp-singles RotationForest 89.80 1.60 0.89 091 0.90
18 | fc+ft+tris-singles RotationForest 89.79 1.63 0.89 0.92 0.90
19 | fc+tris+pdp-singles RandomForest 89.73 1.52 0.88 0.93 0.90
20 | all-singles RotationForest 89.73 1.71 0.89 091 0.90
21 | all-tris+all-fd SimpleLogistic 89.73 1.42 0.88 0.92 0.90
22 | fc+tris-singles SimpleLogistic 89.71 1.57 0.88 0.93 0.90
23 | tris RotationForest 89.71 1.51 0.89 0.91 0.90
24 | pdp-+tris-singles RotationForest 89.71 1.54 0.89 0.91 0.90
25 | fct+ft+tris-singles SimpleLogistic 89.70 1.58 0.88 0.93 0.90
26 | ft+tris+pdp-singles RotationForest 89.69 1.65 0.89 0.91 0.90
27 | fc+fb+tris+pdp-singlesy RandomForest 89.69 1.46 0.88 0.92 0.90
28 | all-feats SimpleLogistic 89.68 143 0.88 0.92 0.90
29 | all-tris+fc-singles RotationForest 89.67 1.61 0.89 0.91 0.90
30 | fc+tris+pdp-singles SimpleLogistic 89.67 1.52 0.88 0.93 0.90
31 | all-tris+tb-singles RotationForest 89.67 1.71 0.89 0.91 0.90
32 | all-tris+ft-singles RotationForest 89.67 1.83 0.89 0.91 0.90
33 | fc+ft+tris+pdp-singles| RandomForest 89.67 1.70 0.88 0.93 0.90
34 | all-tris+all-pdp LogitBoost 89.65 1.57 0.89 0.91 0.90
35 | all-tris+pdp-singles RotationForest 89.65 1.65 0.89 0.91 0.90
36 | fc+ft+fb+tris-singles SimpleLogistic 89.64 1.57 0.88 0.93 0.90
37 | all-feats RotationForest 89.63 1.62 0.89 0.91 0.90
38 | all-tris+pdp-singles LogitBoost 89.61 1.55 0.89 091 0.90
39 | fct+ft+fb+tris-singles | RotationForest 89.60 1.55 0.89 0.92 0.90
40 | fl+tris-singles RotationForest 89.60 1.71 0.89 0.91 0.90

Table 16.3: Classifying refiltered split files: top 40 results, sorted by mean % correct.




274 CHAPTER 16. CLASSIFYING REFILTERED DATA

Mean % Mean % Mean %

Feature set correct Feature set correct Feature set correct
fe+tris+pdp-singles 88.70 ft+fb+pdp-singles 86.66 ft 83.82
fc+fb+tris+pdp-singles|  88.68 all-fb+all-pdp 86.38 fd+ccf-singles 83.69
fc+tris-singles 88.54 all-fb+fc-singles 86.27 fb+ccf-singles 83.66
all-tris+fc-singles 88.49 ft+pdp-singles 86.25 fl-singles 83.30
fc+ft+tris+pdp-singles|  88.48 fd+pdp-singles 86.08 fl 82.85
fc+fb-+tris-singles 88.45 fc+sim-singles 85.91 sim+ccf-singles 82.80
fc+ft+fb+tris+pdp-s’s 88.44 fb+fc-singles 85.72 fd-singles 82.73
dep+tris—singles 88.27 fc+ft+fb-singles 85.64 fb-singles 82.72
+tris+pdp-singles 88.24 all-fb+all-fc 85.63 fd 82.44
all-tris+pdp-singles 88.23 fl+pdp-singles 85.56 sim-blocks-singles|  81.77
fe+ft+fb+tris-singles 88.20 ccf+pdp-singles 85.56 sim-singles 81.72
fc+ft+tris-singles 88.17 all-fb+ft-singles 85.56 sim 81.44
ft+fb+tris+pdp-singles|  88.09 fc+ccf-singles 85.53 ccf-blocks-singles |  81.13
fl+tris-singles 88.08 pdp-blocks-singles 85.49 ccf-singles 81.11
all-singles 88.06 pdp-singles 85.46 all-cats 80.93
ft+tris+pdp-singles 88.05 sim+pdp-singles 85.45 ccf 80.73
ft+fb-+tris-singles 87.91 not-fall-singles 85.44 fb-cats 80.59
all-tris+ft-singles 87.85 fc+fl-singles 85.29 fall-cats 80.56
ft+tris-singles 87.84 not-fall 85.27 de-raw-singles 80.10
all-tris+all-fc 87.77 fc+ft-singles 85.15 c-cats 79.70
all-feats 87.72 all-fb+ccf-singles 85.07 not-fall-cats 79.50
fd-+tris-singles 87.68 13-sub-12-blocks-s’s)  85.04 tris-cats 79.49
all-tris+fb-singles 87.59 dp 85.01 ft-cats 78.99
fb+tris-singles 87.59 Ft+sim—singles 84.97 cat-2alikest 78.96
all-fb+tris-singles 87.56 fc-singles 84.95 fl-cats 78.66
fall-singles 87.54 fb+fd-singles 84.84 pdp-cats 78.64
tris 87.51 all-fb+all-ft 84.82 dp-blocks-cats 78.58
all-fb+all-tris 87.46 fc+fd-singles 84.79 Fd—cats 78.43
tris-singles 87.45 fc 84.77 ccf-raw-singles 77.10
all-tris+all-pdp 87.43 fb+ft-singles 84.77 cat-am+news 77.08
sim+tris-singles 87.33 fb+fl-singles 84.75 cat-all 76.97
fc+fb+pdp-singles 87.22 ft+ccf-singles 84.56 ccf-cats 76.82
all—tris+aﬁ)-ﬂ 87.21 fb 84.45 ccf-blocks-cats 76.69
all-fb+pdp-singles 87.15 fd+sim-singles 84.36 sim-blocks-cats 76.57
fc+ft+t%+ dp-singles 87.08 fb+sim-singles 84.32 sim-cats 76.56
all-tris+all-ft 87.00 ft+fl-singles 84.29 cat-am+main 76.00
ccf+tris-singles 86.93 fd+fl-singles 84.23 cat-am-+alikest 75.25
fc+pdp-singles 86.87 fl+ccf-singles 84.16 pdp-raw-cats 73.53
fall 86.86 all-fb+all-ccf 84.06 sim-raw-cats 72.74
fe+ft+pdp-singles 86.78 ft-singles 84.03 sim-raw-singles 72.66
fb+pdp-singles 86.72 fl+sim-singles 84.02 ccf-raw-cats 72.63

all-tris+all-td 86.67 ft+fd-singles 83.95

Table 16.4: Mean classification rates for the feature sets over the 11 algorithms

Mean accuracy
Feature set 23 algorithms | 11 algorithms | Difference
tris-singles 92.11 93.02 0.99
fb-+tris-singles 91.89 92.86 1.06
tris 91.91 92.83 1.00
fb-singles 91.27 92.34 1.17
pdp-+tris-singles 91.44 92.05 0.67
all-singles 91.21 92.02 0.88
Mean difference 0.96

Table 16.5: Selected feature sets and their mean accuracy on the original dataset.
Means are given over the 23 algorithms used with the original set and
the 11 algorithms used with the refiltered set. The mean increase using
the reduced set of algorithms over these feature sets is around 1%.




16.2. CLASSIFYING THE REFILTERED SPLIT FILES 275

89 <

M tris M pdp m fc - ft m fb mAfl m fd W sim ccf
[ ]

tris pdp fc ft fb fl fd sim ccf

4

Figure 16.3: Split file classification with single feature sets and their pairwise com-
binations. X-axis labels show one of the pair, and the column colour
the other. Where these are the same, the single set result is plotted.

Feature sets Table 16.4 shows mean classification rates for the feature sets
over the 11 algorithms. These rates are not directly comparable with those
for the original dataset, where 23 algorithms are averaged. To give an indi-
cation of the difference, Table 16.5 lists a selection of the better algorithms
on the original dataset, giving the mean accuracy over the original 23 algo-
rithms, and the 11 used here. Over this sample, the mean difference ~ 1%.
Figure 16.3 shows results for paired singles sets as before (see p.232). In
contrast, here all of the single sets are improved by adding another set. The

best combination being Ferret trigram- and character-based features.

Algorithms Table 16.6 gives the mean results for each algorithm over all
feature sets. As with the original set, combining models based on different

algorithms does not improve the accuracy of the better models.

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm | correct
RotationForest 85.84 Decorate 83.90 LogitBoost 83.25
SimpleLogistic 85.29 RandomCommittee 83.83 SPegasos 82.30
RandomForest 84.80 FT 83.69 Dagging 81.35
SMO 84.08 SGD 83.52

Table 16.6: Mean classification rate for each algorithm over all of the feature sets.



276 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3 PostgreSQL & DNSjava split files

The results of classifying the refiltered split file data from the two unseen
projects, PostgreSQL and DNSjava, are reported in this section. First the

refiltered datasets are described, then classification results are presented.

16.3.1 Refiltered data

Figure 16.4 shows the relationship between the original and refiltered
datasets. The DNSjava set is smaller, with half of the original negative
examples removed from the set, and only 8 new ones. PostgreSQL has 42 of
the original negative examples replaced by 135 new ones. The composition
of the PostgreSQL and DNSjava datasets is summarised in Table 16.7.
There are 49 instances in the refiltered DNSjava set: 17 positive exam-

ples, 31 negatives and one indeterminate example, which is therefore not

Not'in Original ‘ W
refiltered set sets sets

Figure 16.4: The relationship between original and refiltered DNSjava and Post-
greSQL datasets. Original sets are in the middle, with split examples
in red, and non-split examples in blue. The composition of the re-
filtered sets are shown on the right, with new instances cross-hatched.
Examples from the original sets not in the refiltered sets are to the left.



16.3. POSTGRESQL & DNSJAVA SPLIT FILES 277
Refiltered set Original set
PostgreSQL | DNSjava || PostgreSQL | DNSjava
Total split 53 17 19 13
Not split 147 31 54 48
Indeterminate 7 1 - -
Total 207 49 73 61

Table 16.7: The composition of the refiltered PostgreSQL and DNSjava datasets

labelled. The positive examples include the 13 previously found; of the 4

additional examples, 3 have little code moved between files.

The refiltered PostgreSQL dataset comprises 207 instances, of which 147
are not split, 7 are indeterminate, and 53 are split files. These files include
the 19 found previously; of the other 34 examples, 12 are marginal. An
example of a file of indeterminate classification is shown in Figure 16.5!
where 7 target files have the same similarity score, 8 of which share the
same code with the disappearing file, and there are no unique trigrams
in the group. It is difficult to judge whether the file is renamed or just

incidentally similar to the target files, half of which are new.

Talso at http://homepages.stca.herts.ac.uk/~gp2ag/xmls/port-protos-11.xml

Comparison generated by analysis of the trigram report produced by the Ferret Copy-Detection Tool, (c) School of Computer Science, University of Hertfordshire, 2010.

Blue file: /home/.../postgresql-

n+1/src/back

Blue file: /homel.../postgresql-
diport/dynloader/univelh O

Blue file: /home/.../postgresql-
u+Lisre/backend/port/dynloader/dgux.h O

eh X

diport/dynls wt1/srcback

Red file: /home/.../postgresqgl-
n+l/src/backend/port/dynloader/sunosd.h O

#ifndef PORT_PROTOS H

#define PORT PROTOS H

#include "fmgr.h"

#include "utils/dynamic loader.h"
#include " h"
#define pg dlopen(f)
define pg dlsyn
#define pg dlclose
#define pg dlerror
#endif

dlopen (£,
dlsym
dlclose
dlerror

Red file: /home/.../postgresgl-
n+1/sre/backend/port/dynloader/irix5.h O

#ifndsf PORT PROTOS H

#define PORT PROTOS H

#include "fmgr.h"

#include "utils/dynamic loader.h"
#include " h"
#define pg dlopen (f)
define pg_dlsym
#define pg dlclose
#define pg dlerror
#endif

dlopen(f,
dlsym
dlclose
dlerror

Red file: /home/.../postgresql-
nt+1/sre/backend/port/dynloader/sco.h O

#ifndef PORT_PROTOS_E

#define PORT PROTOS H

#include "fmgr.h"

#include "utils/dynamic loader.h"

#include " h"

#define pg dlopen(f)
define pg_dlsym

#define pg_dlclose

#define pg dlerror

pendif

dlopen (£,
dlsym
dlclose
dlerror

Figure 16.5: The disappearing PostgreSQL file port-protos.h and 9 of its 12 target
files. The file cannot be classified, as 8 targets share the same code
with port-protos.h, and 7 have the same similarity to the file, 0.745.



278 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3.2 Classifying unseen refiltered split file candidates

The models which best classify the 89 project refiltered set were used to clas-
sify the unseen data. Their accuracy and recall is listed in Table 16.8, sorted
by overall accuracy. Also included in the table are other models which
perform well on the unseen data. Combining groups of the better models
(top 3, 5,7, or 10 based on accuracy on the training data) by voting, either
by majority or by mean probability, does not improve on the classification

of the “fc+tris”/Rotation Forest model.

16.3.2.1 PostgreSQL

The three PostgreSQL files listed by Zou [261], analyze.c, parser.c and date.c,
correctly classified by the original models, are correctly classified again.
The other split file listed, datetime.c, is also now found and correctly clas-
sified. The new filter criteria also select all seven of the target files for
analyze.c, unlike the original criteria. The two other files Zou reports are:
geqo_eval.c, where eight functions are moved to joinrels.c, which is also
correctly matched and classified; and nbtcompare.c, where four functions
are moved to three other files. However, only one of the three qualifies

as a target, the others have too few additional trigrams (12 and 22, ~ 3%),

Opverall PostgreSQL DNSjava
Rk. | Feature set Alg’'m. | Acc’y | Recall || Acc’y | Recall || Acc’y | Recall
7 fe+tris ROT 0.944 | 0.873 0.950 | 0.906 0917 | 0.824
46 fl+tris SL 0.927 | 0.803 0.920 | 0.774 0.958 | 0.941
22 fe+tris SL 0.923 | 0.803 0.935 | 0.811 0.896 | 0.824
4 fe+ft+fb+tris+pdp | ROT 0919 | 0.831 0.920 | 0.849 0917 | 0.824
3 all-tris+all-fc SL 0915 | 0.746 0.920 | 0.774 0.896 | 0.706
9 fe+tris+pdp ROT 0915 | 0.845 0915 | 0.868 0917 | 0.824
40 fl+tris ROT 0915 | 0.845 0.920 | 0.849 0.896 | 0.882
1 fe+ft+tris+pd ROT 0915 | 0.803 0.910 | 0.811 0.938 | 0.824
6 fe+fb+tris+pdp LB 0915 | 0.803 0.905 | 0.792 0.958 | 0.882
8 fe+ft+tris+pdp LB 0.903 | 0.761 0.905 | 0.774 0.896 | 0.765
5 all-singles LB 0.891 | 0.775 0.890 | 0.792 0.896 | 0.765
10 fb+ft+tris+pdp ROT 0.891 | 0.817 0.885 | 0.811 0.917 | 0.882
2 fe+tris+pdp LB 0.891 | 0.775 0.885 | 0.774 0917 | 0.824

Table 16.8: Classification accuracy and recall of selected models on PostgreSQL
and DNSjava candidate split files, sorted by total accuracy. The column

headed ‘Rk.” shows the model’s rank in Table 16.4. ROT - Rotation
Forest, SL - Simple Logistic, LB - Logit Boost, RAND - Random Forest.



16.3. POSTGRESQL & DNSJAVA SPLIT FILES 279

consequently only one-third of the models tested classify the file as split.
In summary, there are 32 positive split file instances in the backend
subsystem and 21 in other subsystems. The “fc+tris”/Rotation Forest model

misclassifies 5 of these 53, and 5 of the 147 negative instances.

16.3.2.2 DNSjava

All of the DNSjava files found by the original filter conditions and cor-
rectly classified by the models are correctly classified after refiltering. UN-
KRecord.java and KEYBase.java were incorrectly classified by the original
models. The KEYBase main target was ranked third, making classification
difficult; the new ranking orders the target files correctly. The UNKRecord
main target was not selected previously, but the new filtering both selects
and orders the targets correctly. Both files are now correctly classified.

Four additional split candidates are found by refiltering, three of which
are marginal examples: 2 lines, 4 lines (2 edited), or a few lines (all edited) are
moved. The new models classify the thirteen original split file candidates
and the one new non-marginal example accurately. However, the marginal
examples are incorrectly classified by the majority of models tested.

In summary, both of the split files found by Antoniol et al. [6] are found
and correctly classified by the “fc+tris”/Rotation Forest model. Nine other
split files are found in the releases studied by Antoniol, of which seven are
correctly classified. In the remaining releases, eight split files are found, all

but one of which are correctly classified, as are all of the negative examples.

16.3.2.3 Overall

The best of the models on the unseen data, “fc+tris”/Rotation Forest, has an
overall accuracy of 94.4% and recall of 87.3% (48 of 53 PostgreSQL, and 14 of
17 DNSjava) on the unseen data. The same feature set is in third place, with
the Simple Logistic algorithm, the same combination which best classified
the original unseen datasets. The reasons for misclassification varies: either
little code (<3 lines) is moved, the code is heavily edited, or, as in the

nbtcompare.c example, target files are not selected.



280 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3.3 Additional unseen data: Struts and PyX

The models were also tested on two further projects: the Java project Struts,
which has previously been analysed by several other origin analysis re-
search groups [64, 208, 250], and the Python project PyX, which was anal-

ysed manually with reference to the change log.

16.3.3.1 Struts

Dig et al.’s [64] approach (see p.49), which first matches method bodies
textually, then refines by call analysis, was tested on a pair of releases taken
from each of three Java projects : Eclipse.UI (2.1.3-3.0), JHotDraw (5.2-
5.3) and Struts (1.1-1.2.4).2 Among the changes considered in their study,
those found and reported are: renamed classes and methods, pulled up
and moved methods, and changes to method signatures. Of these, moved
and pulled up methods relate to split files. JHotDraw does not include any
such changes; of the other two, Struts was chosen to provide a further test
for Java files here. Dig et al.’s results for Struts are given in Appendix P,
and show that the three files listed in Table 16.9 were split between releases
1.1and 1.24.

Other than test and example files, which are not reported by other
researchers, 14 candidate split files are found by filtering, and these are
listed in Table 16.10. The models built with the “fc+tris-singles” or “fl+tris-
singles” feature sets with Simple Logistic or Rotation Forest algorithms
assign the same class to all of the files as the manual classification. Among
these files are the three in Table 16.9, RequestUtils, ResponseUtils and Ac-
tionMapping, all of which are correctly classified. Four other files, Dy-

2Results are published at http://netfiles.uiuc.edu/dig/RefactoringCrawler

File Split to

RequestUtils ModuleUtils and TagUtils
ResponseUltils TagUtils
ActionMapping | ActionConfig

Table 16.9: Split files found by Dig et al., Struts release 1.1 to 1.2.4



16.3. POSTGRESQL & DNSJAVA SPLIT FILES 281

Candidate split files MC | CI'n
/src/share/org/apache/struts/action/ActionMapping.java * 1 1
/src/share/org/apache/struts/util/RequestUtils java * 1 1
/src/share/org/apache/struts/util/ResponseUtils java * 1 1
/[contrib/struts-faces/src/java/org/apache/struts/faces/taglib/FormTag.java 1 1
/src/share/org/apache/struts/tiles/DefinitionsUtil java 1 1
/src/share/org/apache/struts/validator/DynaValidatorActionForm.java 1 1
/src/share/org/apache/struts/validator/Validator ActionForm java 1 1
/src/share/org/apache/struts/action/Action.java 0 0
/src/share/org/apache/struts/action/ActionServletjava 0 0
/src/share/org/apache/struts/config/ConfigHelper.java 0 0
/src/share/org/apache/struts/taglib/html/MessagesTag java 0 0
/src/share/org/apache/struts/taglib/logic/MessagesPresentTag.java 0 0
/src/tiles-documentation/org/apache/struts/webapp/tiles/rssChannel/Channels java 0 0
/src/tiles-documentation/org/apache/struts/webapp/tiles/rssChannel/ 0 0
RssChannelsAction.java

Table 16.10: Classification of Struts candidate split files. MC is manual classifi-
cation, Cl'n is class assigned by the fc+tris-singles/Rotation Forest or
fc+tris-singles/Simple Logistic models.

naValidatorActionForm, ValidatorActionForm, DefinitionsUtil and Form-
Tag are also split. The first two are confirmed by Wu et al. [250],2 (for
details see p.51). Four methods are removed from DefinitionsUtil, these
methods are already present in other files, one in ReloadableDefinitions-
Factory, and three in TilesUtillmpl. Five methods are removed from con-
trib/.../ struts/faces/taglib/FormTag, all of which are already present in the
file src/.../struts/taglib/FormTag. Neither of these two files are reported by
Wau et al. or Dig et al. The changes between these two releases were also

tested by Schafer et al. [208], but these results are no longer available online.

16.3.3.2 PyX

The approaches to origin analysis surveyed in Chapter 3 are tested on C,
Java or Smalltalk code. The Smalltalk code used by DeMeyer et al. [60]
is no longer available online. Without relevant data from previous re-
search, to test projects in other languages, they must be well-documented,
so that the results can be assessed. Many projects in other languages were
inspected with the aim of finding one with reasonable documentation, in-

cluding around 40 projects in Python. PyX* is a Python graphics package

3Whose results are available at www.ptidej.net/downloads/experiments/icsel®b
4http ://pyx.sourceforge.net/index.html



282 CHAPTER 16. CLASSIFYING REFILTERED DATA

=
o
2]
<
=)

Candidate split files MC | Doc. | Class'n

1
—_
*

0.10 | /examples/axis/log.py
0.10 | /setup.py

0.8 | /examples/axis/rating.py
0.8 | /pyx/box.py

0.8 | /pyx/pattern.py

0.8 | /pyx/pdfwriter.py

0.8 | /pyx/text.py

0.7 | /pyx/graph/axis/axis.py
0.7 | /pyx/graph/graph.py
0.7 | /pyx/text.py

0.5 | /pyx/mathtree.py

0.5 | /pyx/graph.py

0.5 | /pyx/tlstrip/__init__py

. /pyx/data.py

0.10 | /pyx/pdfwriter.py

0.10 | /pyx/pswriter.py

0.8 | /examples/bargraphs/compare.py
0.8 | /pyx/path.py

0.8 | /pyx/typelfont.py

0.7 | /pyx/canvas.py

0.7 | /pyx/dvifile.py

0.6 | /pyx/deco.py

0.4 | /pyx/canvas.py

0.4 | /pyx/helper.py

0.4 | /pyx/text.py

0.3 | /pyx/canvas.py

0.3 | /pyx/graph.py

el et e el e e = N e e N o o No No NoNo No o N N

S5O0 ONOUIUIUIWWS OO WO UlUlUlUlulww
=)
NS
1
R R R R R R PR PP P00 OO

*

ZZ KRR ZK R

Table 16.11: Classification of PyX candidate split files. MC is manual classification;
Doc: Y if in log, N if not; Class'n is class assigned by the models built
with fc+tris-singles or fl+tris-singles feature sets and Rotation Forest
or Simple Logistic algorithms.

for creating PostScript and PDF files. This project is the best documented
among those considered, and was therefore selected as an additional test of
the classification system.

There are 27 candidate split files, which are listed in Table 16.11, with
their manual classification, whether the code movement is documented

5 Moves which are

in the Change Log, and the system’s classification.
not logged are assigned their manual classification only after confirmation
by detailed code inspection. All but two (which are asterisked) of the

candidates are correctly classified, a precision of 93%.

5The three “canvas.py” split files can be viewed at

http://homepages.stca.herts.ac.uk/~gp2ag/xmls/canvas-0.3.xml1(/0.4.xml/0.7.xml)



16.4. DISAPPEARING FILES 283
16.4 Disappearing files

This section reports on classifying the 89 project disappearing file dataset,
introduced in Chapter 12. As already noted, a disappearing file for which
there is no similar file in the system is assumed to have been deleted. When
there is a close match between a disappearing file and a new file in the
next release, it is assumed to have been moved (different directory, same
name), renamed (same directory, different name) or both (different name
and directory). It is less clear what has happened to the uncertain set,
the files whose similarity falls between the two conservative thresholds,
0.05 and 0.85, and these are the files to which machine learning is applied.
The datasets are described in Section 16.4.1 and their classification in Sec-
tion 16.4.2. The experiments are similar to those for classifying split files

reported in Section 16.2.

16.4.1 Data
Three classes are assigned to the uncertain set of candidate files:

1. Thereis no meaningful relationship between the disappearing file and

any of the target files (class 0),
2. the file is renamed, moved, or merged with another (class 1), or
3. thefileissplit, forming new files or merging with existing files (class 2).

The candidates are divided into two groups: those with one target file
and those with more. A disappearing file with only one target file cannot
be split, it is also impossible to create a full set of features, as comparisons
can only be made between the disappearing file and the target file. There
are 177 files with one target and 575 with two or more. Of the 177 files, 105
are unrelated to their target, and 72 are renamed or merged, a ratio of 59:41.
The set with more than one target is less balanced, with 255 unrelated, 261
renamed or merged, and 59 split files, a ratio of approximately 45:45:10.

Figure 16.6 (p.285) shows the target files per candidate. Approximately

85% of the files have 12 or fewer targets, and 4% have 50 or more files.



284 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.4.2 Classifying disappearing files with one target file

The eleven algorithms applied to the split file dataset were also used to
classify the disappearing files with one target file (see Table 16.13). As
shown in Table 16.12, the model with the highest mean classification rate,
95.06%, is the “fb-singles” set with the SGD algorithm. The mean accuracies

of the feature sets over all of the algorithms are listed in Table 16.14.

Feature set Mean % | Std. Mean | Mean | Mean F-
(all sets are singles) | Algorithm correct | Dev. | prec’'n | recall | measure
1 | fb SGD 95.06 2.36 0.950 0.969 0.959
2 | fct+sim FT 94.94 241 0.949 0.968 0.958
3 fb RotationForest 94.89 2.68 0.954 0.962 0.957
4 | fb+tris SMO 94.84 2.52 0.946 0.969 0.957
5 | fb+tris SGD 94.79 2.62 0.950 0.964 0.957
6 | fc+fb+tris+pdp RandomForest 94.79 230 | 0947 | 0.968 0.957
7 | fct+fb+tris RandomForest 94.64 2.29 0.946 0.966 0.955
8 | tris SGD 94.61 257 | 0.952 0.958 0.955
9 | tris SMO 94.51 242 0.944 0.966 0.954
10 | fc+sim LogitBoost 94.50 244 | 0948 | 0.962 0.954
11 | fc+fb+pdp RotationForest 94.49 238 | 0948 | 0.962 0.954
12 | fc+sim RotationForest 94.47 2.74 0.951 0.958 0.954
13 | fb+pdp SMO 94.44 2.40 0.941 0.969 0.954
14 | fc+tb+tris RotationForest 94.42 2.66 0.952 0.956 0.953
15 | fb+fc RotationForest 94.41 2.40 0.951 0.956 0.953
16 | fb+fc RandomForest 94.40 2.62 0.948 0.960 0.953
17 | fe+tris+pdp RandomForest 94.39 2.51 0.943 | 0.965 0.953
18 | fc+sim Decorate 94.38 249 0.939 0.970 0.954
19 | fb+pdp RotationForest 94.38 2.67 | 0952 | 0.955 0.953
20 | fc+sim SimpleLogistic 94.38 2.62 | 0939 | 0.969 0.954
21 | fc+ft+fb+tris+pdp | RandomForest 94.37 240 | 0942 | 0.966 0.953
22 | fb+tris RotationForest 94.37 3.20 0.948 0.960 0.953
23 | fc+fb+tris+pdp RotationForest 94.37 245 | 0945 | 0.963 0.953
24 | fb SMO 94.36 2.52 0.936 0.972 0.954
25 | fb+fd RotationForest 94.36 2.94 0.949 0.959 0.953
26 | fc+fb+pdp LogitBoost 94.35 2.68 0.947 0.960 0.953
27 | fc+fb+tris SMO 94.34 2.58 0.941 0.968 0.953
28 | fc+pdp RotationForest 94.32 2.30 0.949 0.957 0.952
29 | fc+tb+pdp Decorate 94.31 250 | 0940 | 0.968 0.953
30 | fb+fc RandomComm’ee 94.31 2.40 0.940 0.967 0.953
31 | fec+tris RandomForest 94.30 2.31 0.945 0.962 0.953
32 | fc+fb+pdp RandomForest 94.29 261 | 0944 | 0.962 0.953
33 | fc+pdp SimpleLogistic 94.28 244 | 0942 | 0.965 0.953
34 | fc+sim RandomForest 94.28 242 0.938 0.969 0.953
35 | fc LogitBoost 94.27 2.63 0.945 0.962 0.952
36 | fc+ft+fb+pdp LogitBoost 94.27 2.68 0.945 0.961 0.952
37 | fc RandomForest 94.26 247 | 0.944 0.962 0.952
38 | fc+ft+fb LogitBoost 94.24 2.69 0.944 0.961 0.952
39 | fb SimpleLogistic 94.23 2.83 0.941 0.965 0.952
40 | fc+ft+fb+tris RotationForest 94.22 2.57 0.948 0.957 0.952

Table 16.12: Classifying disappearing files with one target file: the top 40 results,
sorted by mean % correct.



16.4. DISAPPEARING FILES 285

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm | correct
RotationForest 91.63 SimpleLogistic 91.07 Dagging 89.75
RandomForest 91.41 SM(g 90.78 SGD 89.68
LogitBoost 91.30 RandomCommittee 90.76 SPegasos 89.05
Decorate 91.08 FT 90.74

Table 16.13: Mean classification rate for each algorithm over all feature sets on the
disappearing files with one target file

Feature set Mean % || Feature Mean % || Feature Mean %
(all singles sets) correct set correct set correct
fc+fb+tris 93.89 fe+fd 93.04 fb+sim 91.32
fc+sim 93.89 ft+fb+tris 93.03 fl+pdp 90.89
fb+fc 93.82 fe+ocf 92.95 fl 90.66
fb+tris 93.74 ft+fb+tris+pdp 92.95 fd+fl 90.59
tris 93.74 fb+fd 92.86 fd+pdp 90.57
fc+tris 93.72 ft+tris 92.85 fl+sim 90.54
fe+ft+fb+tris 93.65 fb+£t 92.81 fl+ccf 90.28
fe+ft+fb+tris+pdp 93.64 dp-+tris 92.76 fd+sim 89.98
fc+tb+tris+pdp 93.63 t+tris+pdp 92.68 fd 89.66
fb 93.62 fb+pdp 92.68 fd+ccf 88.98
fc 93.62 ft+£+pdp 92.68 pdp-blocks 88.72
fc+fb+pdp 93.59 fd+tris 92.66 pc}p 88.60
fe+ft+fb+pdp 93.55 ccf+tris 92.64 ccf+pdp 87.87
fe+ft+fb 93.54 sim-+tris 92.40 pdp-raw 87.86
fe+tris+pdp 93.53 fl+tris 92.36 sim+pdp 87.23
fe+ft+tris+pdp 93.50 fb+ccf 92.16 not-fall 86.71
fe+pdp 93.49 fb+£1 92.15 sim-blocks 82.52
fe+ft+tris 93.49 ft+sim 92.08 sim+ccf 82.26
fc+ft 93.43 ft+pdp 92.07 sim 82.07
fe+ft+pdp 93.35 ft 92.07 ccf-blocks 75.21
fb+tris+pdp 93.16 ft+fd 91.85 ccf 75.19
fc+fl 93.08 ft+fl 91.78 sim-raw 74.51
all 93.06 ft+ccf 91.34 ccf-raw 72.33
fall 93.05

Table 16.14: Mean classification rate for each feature set over the 11 algorithms on
the disappearing files with one target file

20

Figure 16.6: Analysis of the number of target files for the set of disappearing files



286

16.4.3 Disappearing files with more than one target file

CHAPTER 16. CLASSIFYING REFILTERED DATA

As disappearing files with more than one target have three classes, two of

the algorithms used previously, SGD and SPegasos, cannot be used with

this dataset. Otherwise the experimental process is the same as before.

The top 40 results of classifying these disappearing files are listed in

Table 16.15, sorted by mean % accuracy. It is noticeable that only one of the

top 20 combinations (no.8) is based solely on comparisons between single

files. This is in contrast to the results for classifying split files, where only 4

of the top 20 combinations include concatenated file comparisons.

Mean % | Std. | Mean | Mean | Mean F-
Feature set Algorithm correct | Dev. | prec’n | recall | measure
1 | all-tris+all-fl RotationForest 88.13 1.93 0.90 0.92 0.91
2 | fall RotationForest 87.75 1.72 0.90 0.92 0.91
3 | all-feats RotationForest 87.71 2.05 0.90 0.92 0.91
4 | all-tris+fc-singles RotationForest 87.57 1.90 0.90 0.90 0.90
5 | all-fb+all-pdp SimpleLogistic 87.50 2.02 0.90 0.92 0.91
6 | all-tris+all-fc RotationForest 87.31 1.89 0.90 0.90 0.90
7 | tris RotationForest 87.22 2.13 0.90 0.89 0.89
8 | fl+tris-singles RotationForest 87.20 2.04 0.88 0.92 0.90
9 | all-cats RotationForest 87.18 2.16 0.90 0.92 0.91
10 | fall-cats RotationForest 87.17 191 0.90 091 0.91
11 | all-fb+tris-singles RotationForest 87.14 2.02 0.90 0.90 0.90
12 | all-fb+all-tris RotationForest 87.13 1.92 0.90 0.90 0.90
13 | all-tris+pdp-singles RotationForest 87.08 1.95 0.89 0.90 0.90
14 | tris RandomForest 87.08 1.81 0.89 091 0.90
15 | all-tris+all-pdp RotationForest 87.06 2.04 0.89 0.91 0.90
16 | all-tris+fc-singles RandomForest 87.00 1.84 0.89 0.92 0.90
17 | all-tris+pdp-singles RandomForest 86.99 1.80 0.88 0.91 0.90
18 all-tris+a11-}adp SimpleLogistic 86.93 2.05 0.89 0.92 0.90
19 | all-tris+all- LogitBoost 86.87 2.09 0.89 091 0.90
20 all-tris+all—p%p LogitBoost 86.86 2.05 0.89 0.91 0.90
21 | fc+fb+tris+pdp-singles RotationForest 86.84 2.19 0.88 0.91 0.90
22 | all-fb+all-tris RandomForest 86.81 191 0.89 091 0.90
23 | all-feats LogitBoost 86.80 2.18 0.89 0.91 0.90
24 dp-+tris-singles RotationForest 86.78 1.94 0.88 0.91 0.89
25 | fe+tris+pdp-singles RotationForest 86.76 1.96 0.88 0.91 0.89
26 | fall LogitBoost 86.73 1.99 0.89 091 0.90
27 | all-feats RandomForest 86.72 1.90 0.90 0.92 0.91
28 | all-fb-+tris-singles RandomForest 86.70 1.75 0.89 0.91 0.90
29 | all-fb+pdp-singles SimpleLogistic 86.67 2.07 0.90 091 0.90
30 | all-fb+pdp-singles RotationForest 86.66 1.99 0.89 0.90 0.90
31 | fc+tris-singles RotationForest 86.60 1.92 0.88 0.91 0.89
32 | all-tris+ft-singles RotationForest 86.59 1.90 0.89 0.90 0.89
33 | all-tris+all-fc RandomForest 86.57 1.91 0.89 0.92 0.90
34 | all-fb+all-pdp FT 86.56 2.09 0.90 0.90 0.90
35 | all-fb+pdp-singles RandomForest 86.54 1.86 0.88 0.92 0.90
36 | fc+ft+tris-singles RotationForest 86.53 2.14 0.88 091 0.89
37 | all-tris+all-pdp 86.52 2.13 0.89 091 0.90
38 | fc+ft+fb+tris+pdp-singles | RotationForest 86.52 2.20 0.88 0.91 0.89
39 | all-tris+all-ft RotationForest 86.50 2.03 0.88 0.90 0.89
40 | all-fb+all-fc RotationForest 86.47 1.95 0.90 0.90 0.90

Table 16.15: Classifying disappearing files with at least two target files: the top 40
results, sorted by mean % correct.




16.4. DISAPPEARING FILES

287

A similar pattern can be seen in Table 16.16, where the feature sets are

ranked by classification accuracy over the 9 algorithms. None of the sets in

the top 20 are based solely on single file comparisons. Also noticeable is that

two of the sets (“all-cats” and “fall-cats”) are based only on concatenated

file comparisons, whereas for split files, the 22 concatenation sets are in

the bottom 27 of the 116 sets. For both split and disappearing files, the

CCFinder and Simian sets perform poorly, as do the raw P-Duplo sets.

As this dataset is imbalanced, it is useful to assess the performance of the

models using the geometric mean, as discussed in Chapter 14. The geomet-

Mean % Mean % Mean %

Algorithm correct Algorithm correct Algorithm correct
all-tris+all-fl 86.02 fc+fb+tris-singles 83.84 pdp-singles 82.08
all-tris+all-pdp 85.78 fc+tris-singles 83.84 dp-cats 82.05
all-tris+fc-singles 85.74 fb+tris+pdp-singles|  83.81 Fc+fd-singles 82.04
all-feats 85.63 ft+tris+pdp-singles| 83.77 ft-singles 82.02
all-tris+all-fc 85.61 pdp-+tris-singles 83.75 fl+cct-singles 81.98
tris 85.53 cat-am+alikest 83.68 dp-blocks-cats 81.97
all-tris+pdp-singles 85.48 fe+fb+ dp—singles 83.63 c+sim-singles 81.91
all-fb+all-tris 85.43 fe+ft+fb+tris-s’s 83.56 fb+fd-singles 81.78
all-fb+all-pdp 85.38 fc+ft+tris-singles 83.50 cat-all 81.75
fall 85.33 83.48 ft+sim-singles 81.74
all-fb-+tris-singles 85.30 fd-cats 83.40 cat-am+main 81.65
all-tris+ft-singles 85.26 ft+fb+tris-singles 83.39 ft+fd-singles 81.63
all-fb+pdp-singles 85.23 fc+pdp-singles 83.37 fl+sim-singles 81.62
all-fb+all-fc 85.19 fe+tt+fb+pdp-s’s 83.36 ft+ccf-singles 81.61
fall-cats 85.16 fe+ft+pdp-singles 83.35 sim+pdp-singles 81.36
all-fb+fc-singles 85.00 ft+tris-singles 83.27 fb+ccf-singles 81.29
all-cats 84.96 not-fall-cats 83.27 ccf+pdp-singles 81.21
all-tris+all-ft 84.75 not-fall 83.25 fd-singles 81.21
fb 84.71 fall-singles 83.21 fd+cct-singles 81.18
all-fb+ft-singles 84.70 all-singles 83.17 fd+sim-singles 81.01
fc 84.63 fl+pdp-singles 83.14 fb+sim-singles 80.94
fl 84.62 ft+fb+pdp-singles 83.13 cat-am+news 80.75
fb-cats 84.59 fb+fl-singles 83.11 not-fall-singles 80.74
all-tris+all-fd 84.44 ft+pdp-singles 83.07 pdp-raw-singles 79.61
fc+fb+tris+pdp-singles|  84.36 fc+fl-singles 83.04 pdp-raw-cats 79.61
all-fb+all-ft 84.31 sim+tris-singles 82.83 sim 77.67
fl+tris-singles 84.29 fb+fc-singles 82.82 sim+ccf-singles 77.43
tris-cats 84.29 fd+tris-singles 82.78 sim-blocks-singles|  76.79
fc-cats 84.28 ccf+tris-singles 82.77 sim-singles 76.67
fl-cats 84.24 ft+fl-singles 82.73 sim-blocks-cats 76.42
fc+tris+pdp-singles 84.24 fb+pdp-singles 82.67 sim-cats 76.41
}f:; p 84.20 fe+ft+fb-singles 82.59 ccf 73.14
c+ft+fb+tris+pdp-s’s 84.03 fc+ft-singles 82.57 sim-raw-cats 72.69
fe+ft+tris+pdp-singles|  84.02 fl-singles 82.51 ccf-blocks-singles |  71.67
all-fb+all-ccf 83.99 fc-singles 82.50 ccf-singles 71.54
ft 83.97 fb-singles 82.42 ccf-cats 71.25
all-tris+fb-singles 83.95 fd-+fl-singles 82.41 sim-raw-singles 71.05
fb+tris-singles 83.91 cat-2alikest 82.35 ccf-blocks-cats 71.02
all-fb+ccf-singles 83.91 dp-blocks-singles 82.25 ccf-raw-singles 68.78
ft-cats 83.86 }f?b+ft—singles 82.23 ccf-raw-cats 68.43
ft+fb+tris+pdp-singles|  83.84 fc+ccf-singles 82.15

tris-singles 83.84 fd+pdp-singles 82.13

Table 16.16: Mean classification rate of disappearing files with at least two target

files for each feature set over the 9 algorithms.




288 CHAPTER 16. CLASSIFYING REFILTERED DATA

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm | correct
RotationForest 83.71 SimpleLogistic 81.98 SMO 80.50
RandomForest 83.42 Decorate 81.96 FT 80.29
RandomCommittee 82.58 LogitBoost 81.96 Dagging 78.97

Table 16.17: Mean classification rate for each algorithm over all feature sets on the
disappearing files with at least two target files

ric mean of accuracies is not available directly from the Weka experimenter
which was used to run the experiments; to calculate it, accuracy values
were taken from individual 10-fold cross-validated runs. In Table 16.18,
the accuracy on each class of each of the top ten models from Table 16.15 is
noted along with their geometric mean. Under this measure, the singles set
“fl+tris-singles” is most accurate.

Strategies for dealing with imbalance in the classes are reported in Ap-
pendix O. These strategies are: over-sampling and under-sampling the
data, and use of cost-based algorithms. In most of the tests reported there
are no significant changes. Models built using data over-sampled by the
SMOTE algorithm tend to increase the correct classification of the minor-
ity class by one instance on the Random Forest models tested. However,
this effect is not repeated in the better models, such as the “all-tris+all-
f1”/SimpleLogistic model, which already classifies 11 of the 14 instances
correctly. Consequently, tests on the unseen data are reported for models

built without adjustment for the imbalance.

Feature set Algorithm | Unrelated | Renamed | Split | Geo.mean
fl+tris-singles ROT 0.929 0.885 0.729 0.843
all-fb+all-pdp SL 0.906 0.897 0.712 0.833
all-tris+all-fl ROT 0.922 0.904 0.661 0.820
all-tris+fc-singles | ROT 0.890 0.908 0.678 0.818
all-tris+all-fc ROT 0.898 0.893 0.678 0.816
tris ROT 0.906 0.877 0.661 0.807
fall-cats ROT 0.910 0.893 0.627 0.799
fall ROT 0.902 0.897 0.627 0.797
all-feats ROT 0.918 0.889 0.576 0.778
all-cats ROT 0.929 0.893 0.508 0.750
Abbreviations: ROT - Rotation Forest, SL - Simple Logistic

Table 16.18: Geometric means of accuracy for the top 10 results from Table 16.15



16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 289

16.5 PostgreSQL and DNSjava disappearing files

Disappearing files from the two unseen projects were classified using the
models built from the refiltered 89 project datasets. Lists of the matched
and unmatched files for these projects can be found in Appendix N. The
results for candidates with one target from the uncertain set are reported in

the next section, and those with two or more in Section 16.5.2.

16.5.1 Candidates with one target file

Nineteen of the PostgreSQL disappearing files have only one target, and
are listed in Table 16.19, with those in the backend subsystem at the top. All
of these files are correctly classified by the ten top-performing models on
the 89 project dataset, except for the “fc+sim”/FT model which misclassifies
one positive example.

The five DNSjava disappearing files listed in Table 16.20 have one tar-
get; three are renamed, one unrelated, and one, KeyConverter, is difficult to
classity, for several reasons. Although some of the functionality from Key-

Converter is merged with the file DNSSEC, the code is edited and scattered.

Ref. | Vn. | Path File MC | Model
10 | 6.42 | backend | access common | heapvalid.c 0 0
6 6.5.3 | backend | optimizer | path mergeutils.c 0 0
6 6.5.3 | backend | utils sort sort.c 0 0
4 7.0.3 | backend | libpq e-pgexec.c 0 0
4 7.0.3 | backend | port hpux fixade.h 0 0
4 7.0.3 | backend | storage Imgr multi.c 0 0
2 7.1.3 | backend | access transam | transsup.c 0 0
2 7.1.3 | backend | storage buffer s_lock.c 1 1
2 7.1.3 | backend | utils mb utftest.c 0 0
12 6.2 | include | catalog pg-defaults.h 0 0
12 6.2 | include catalog pg-magic.h 0 0
12 6.2 | include | catalog pg-user.h 1 1
10 | 642 | pl Flpgsql src scan.c 1 1
6 6.5.3 | include ib gsorth 0 0
4 7.0.3 | include | port solaris_i386.h 1 1
4 7.0.3 | include | regex cdefs.h 0 0
4 7.0.3 | include | utils module.h 0 0
2 7.1.3 | include catalog pg-inheritproc.h 0 0
2 7.1.3 | include | storage multilev.h 0 0

Table 16.19: Disappearing PostGreSQL files with one target and their classifica-
tions determined both by inspection and by the fb-singles/SGD model.
Every file is correctly classified by the fb-singles/SGD model.



290 CHAPTER 16. CLASSIFYING REFILTERED DATA

Ref. | Vn. | Path File MC | Model | Notes
46 12 DNS CacheResponse.java* 1 1
46 12 DNS ZoneResponse java* 1 1
12 48 | org | xbill | DNS | utils hmacSignerjava 1 1 Edited
2 56 | org | xbill | DNS | security | KEYConverterjava 1? 0 Merged?
2 56 | org | xbill | DNS | security | SIGOSignerjava 0 0

Table 16.20: Disappearing DNSjava files with one target and their classifications
determined both by inspection and by the fb-singles/SGD model. Files
from the versions 1-39 are at the top of the table, the rest at the bottom.

It is also a small part of the code in the new version of DNSSEC which is

more than four times larger than in the previous release.

16.5.2 Candidates with two or more target files

PostgreSQL has 106 uncertain disappearing files with two or more targets,
and DNSjava has 23. Six of the PostgreSQL files are indeterminate, these
are small header files with a large number of similar files in the system. This
leaves 100 files, of which 57 are unrelated to their targets, 30 are renamed
or merged, and 13 are split. The DNSjava files consist of 8 unrelated files,
13 renamed or merged files, 1 split file, and 1 indeterminate file. The two
split and renamed PostgreSQL files identified by Zou, catalog_utils.c and
dt.c, are asterisked in Table 16.23. However, the target file for geqo_paths.c
(the other asterisked file) is not selected because their shared trigrams are
reduced from 231 to 119, (see Figure N.1, p.416).

Over one hundred models were tested with this data, including those se-
lected using the results from the 89 project dataset, those based on datasets
balanced by under- and over-sampling, and cost-based classifiers. The
model built using the combination which best classifies the 89 project
dataset, (“all-tris+all-fc”/Rotation Forest) correctly classifies 108 of 122 in-
stances (88.5%) and 8 of the 14 instances in the minority class. Of those
tested, three models based on the 89 project dataset, with no adjustment
for the imbalance, give the best classification of the unseen data. Although

the Simple Logistic algorithm is ranked fourth overall in classifying the 89



16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES

Model Feature set Algorithm Classn. | Splits
‘Best” all-tris-all-fl Rotation Forest | 108/122 8/14

A all-tris+all-fl Simple Logistic | 110/122 | 11/14

B all-tris+all-fc Simple Logistic | 110/122 | 8/14

C fc+tris-singles | Simple Logistic | 111/122 9/14

D ‘Best’singles set | fl+tris-singles | Rotation Forest | 109/122 | 10/14

291

Table 16.21: The ‘best” model over the 89 project dataset and the four models, A,
B, C, and D, and their classification of the PostgreSQL and DNSjava

disappearing files with at least two targets.

project dataset, each of these models use this algorithm, with the feature

sets “all-tris+all-fl” (model A), “all-tris+all-fc” (B) and “fc+tris-singles” (C).

A fourth model, D, “fl+tris-singles”/Rotation Forest, gives the best classifi-

cation on the 89 project data among the singles sets. The classifications of

the four models are shown in Tables 16.21-16.23. These models correctly
classify 110, 110, 111 and 109 instances out of 122, respectively, with 11, 8, 9

and 10 of the 14 split files correctly classified.

Model
Ref| Vn. | Path File MCIATBJC
55| 3 dnsServerjava* 1
54| 4 DNS | utils | CountedDatalnputStream java* 1
54| 4 DNS | utils | CountedDataOutputStream java* 110|010
51| 7 DNS FindResolverjava* 1
47| 11 DNS 10 java 1
45| 13 DNS DNSSEC java 1
45| 13 DNS EDNS java 1
45| 13 DNS ExtendedResolver.java 1
45| 13 DNS Resolverjava 1
45| 13 DNS ResolverListener.java 1
451 13 DNS RRset.java 1
451 13 DNS WorkerThread java 2
38| 20 | org | xbill | DNS EDNS java 0
32| 26 | org | xbill | DNS TypeClassMap.java 0] 1
24| 34 | org | xbill | DNS | utils | MyStringTokenizerjava 0
17| 41 | org | xbill | DNS | utils | DataByteInputStream java 0
17| 41 | org | xbill | DNS | utils | DataByteOutputStream.java 0
17| 41 | org | xbill | DNS MX_KXRecord java 170|010
17| 41 | org | xbill | DNS NS_CNAME_PTRRecord java 0
11| 47 | org | xbill | DNS dnsjava 0
11| 47 | org | xbill | DNS FindServer.java 0
11| 47 | org | xbill | DNS Inet6Address.java 1

Table 16.22: Disappearing DNSjava files with two or more targets and their classi-
fications, determined both by inspection and by the four models. In
the last 3 columns, the incorrect class is noted against instances which
are misclassified by the models.




292 CHAPTER 16. CLASSIFYING REFILTERED DATA

Three instances are misclassified by every one of the models tested,
those shaded grey in Tables 16.22 (DNSjava), and 16.23 (PostgreSQL). A

question mark indicates files which are difficult to classify manually.

Model
Ref| Vn. | Path File MCATBTJCTD
12| 6.2 | backend commands purge.c 0
12| 6.2 | backend lib gsort.c 0
12| 6.2 | backend optimizer prep archive.c 0
12| 6.2 | backend parser catalog_utils.c* 2
12| 6.2 | backend parser dbcommands.c 1
12| 6.2 | backend parser parse_query.c 2
12| 6.2 | backend parser sysfunc.c 0
12| 6.2 | backend port aix dlfen.h 1
12| 6.2 | backend port aix port-protos.h 1
12| 6.2 | backend port alpha port.c 1
12| 6.2 | backend port hpux port.c 2 0]0]0
12| 6.2 | backend port i386_solaris | port.c 2 111
12| 6.2 | backend port i386_solaris | port-protos.h 110 0
12| 6.2 | backend port irix5 port.c 0 1
12| 6.2 | backend port sco port.c 1
12| 6.2 | backend port sparc_solaris| port.c 2 0
12| 6.2 | backend port svrd port.c 2
12| 6.2 | backend port ultrix4 port.c 0
12| 6.2 | backend port ultrix4 port-protos.h 0
12| 6.2 | backend port ultrix4 strdup.c 0 1
12| 6.2 | backend port univel port.c 2
12| 6.2 | backend port univel port-protos.h 0
12| 6.2 | backend tcop variable.c 1
11| 6.3.1 | backend optimizer util internal.c 20 [0]0 |0
11| 6.3.1 | backend regex utils.c (4 lineedit) 2| 1 | 1 | 1 1
11| 6.3.1 | backend regex wstremp.c 1
11| 6.3.1 | backend utils adt oidint2.c 0
11| 6.3.1 | backend utils adt oidint4.c 0
11| 6.3.1 | backend utils adt oidname.c 0
10| 6.4.2 | backend libpq pqcomprim.c 1? 2
10| 6.4.2 | backend optimizer geqo geqo-paths.c* 0
10| 6.4.2 | backend optimizer path joinutils.c 1
10| 6.4.2 | backend optimizer util clauseinfo.c 1 2
6 | 6.5.3 | backend optimizer geqo minspantree.c 0
6 | 6.5.3 | backend optimizer path hashutils.c 0
6 | 6.53 | backend optimizer path prune.c 0
6 | 6.5.3 | backend optimizer util keys.c 0
6 | 6.53 | backend optimizer util ordering.c 0
6 | 6.5.3 | backend utils adt dt.c* 2
4| 703 | backend lib fstack.c 0
4| 703 | backend optimizer geqo geqo-params.c 0
4| 703 | backend optimizer util indexnode.c 0
4| 703 | backend port dynloader | solaris_i386.h 1
4| 703 | backend port dynloader | solaris_sparc.h 1
4| 703 | backend port hpux port-protos.h 0
4| 703 | backend rewrite locks.c ?7/0 0] 0|0
4| 703 | backend storage Imgr single.c 0
4| 703 | backend utils adt filename.c 0
4| 703 | backend utils adt lztext.c 0
4| 703 | backend utils init enbl.c 0
4| 703 | backend utils mb variable.c 1
4 | 703 | backend utils misc trace.c 0
4| 703 | backend utils mmgr oset.c 0
4| 703 | backend utils mmgr palloc.c 70 0] 0|0
2 | 713 | backend access nbtree nbtscan.c 0
2| 7.1.3 | backend lib hasht.c 0
2| 713 | backend libpq pqpacket.c 0
2 | 7.1.3 | backend storage ipc spin.c 1 2 |2
Continued on next page




16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 293
cont’d. Model
Ref] Vn. | Path File MC| BTCTD

2 | 713 | backend utils cache rel.c 0
2| 71.3 | backend utils mb common.c 1
2 | 713 | backend utils mb liketest.c 1 0
2| 71.3 | backend utils mb palloc.c 0
2 | 713 | backend utils mb sjistest.c 0
6| 653 | bin psql psql.c 2 0]0]0O0
4| 703 | bin pg-version pg-version.c 0
12| 6.2 | include commands purge.h 0?
12| 6.2 | include parser catalog_utils.h 2
12| 6.2 | include parser dbcommands.h 1
12| 62 include parser parse_query.h 2
12| 6.2 | include parser parse_state.h 1
12| 6.2 include port BSD44 _derived.h | 1
12| 6.2 | include tcop variable.h 1
11| 6.3.1 | include regex pg-wcharh 1
10| 6.4.2 | include executor nodeTee.h 0
10| 6.4.2 | include optimizer clauseinfo.h 1
10| 6.4.2 | include optimizer geqo-paths.h 0
6 | 6.5.3 | include optimizer keys.h 0
6 | 653 | include optimizer ordering.h 0
6 | 6.53 | include utils dth 2
6 | 6.5.3 | include utils rel2.h 0
4| 703 | include optimizer internal.h 0
4| 703 | include port alpha.h 0
4| 703 | include port bsd.h 1
4| 703 | include port solaris_sparc.h 1
4| 703 | include rewrite locks.h 0
4| 703 | include utils fcache2.h 0
4| 703 | include utils lztext.h 0
4| 703 | include utils mext.h 0
4| 703 | include utils trace.h 0
2| 713 | include access giststrat.h 0
2| 713 | include access rtstrath 0
2| 713 | include lib hasht.h 0
11| 6.3.1 | interfaces | libpq fe-connect.h 0
6 | 6.53 | interfaces | ecpg lib ecpglib.c 2
6 | 6.5.3 | lextest lextest.c 0
10| 6.42 | pl plpgsql src gram.c 1
4| 703 | test examples testlo2.c 1
4| 703 | utils version.c 0
41703 | win32 endian.h 0
Table 16.23: Disappearing PostgreSQL files with more than one target. The manual

classification is in the column labelled ‘MC’. In the last 4 columns, the

incorrect class is noted against instances which are misclassified.

16.5.2.1 PostgreSQL

Zou notes the following file moves:

e 6.2t06.3.2[261, p.77]:

e tcop/aclchk.c to catalog/aclchk.c

e tcop/variable.c to commands/variable.c

e parser/dbcommands.c to commands/dbcommands.c

e 6.4.2t06.5[261, p.80]:



294 CHAPTER 16. CLASSIFYING REFILTERED DATA

e commands/defind.c to commands/indexcmds
e optimizer/joinutils.c to optimizer/pathkeys.c
e optimizer/clauseinfo.c to optimizer/restrictinfo.c

The files aclchk.c and defind.c are automatically matched to their new
destinations because the similarities are 0.94 and 0.96 respectively. The
other four files are matched to the correct targets and correctly classified by
all of the models tested. Their similarities are 0.70, 0.82, 0.40 and 0.80.

16.5.2.2 DNSjava

In release 13 of the DNSjava project, forty-nine files are moved from /DNS to
/org/xbill/DNS, and in release 11, one file is moved from /DNS to /DNS/utils.
These files have a similarity of at least 0.85 and bear the same file name as
each other. Files with no qualifying targets in the next release are assumed to
be deleted. These sets of files are listed in appendix N, in Tables N.3 and N.4.

Files falling between the two similarity values 0.05 and 0.85 are listed
in Tables 16.20 and 16.22. Of these 27 disappearing files, 5 are part of the
large-scale move of files in the directory /DNS to the new subdirectory
/org/xbill/DNS, and 1 is split, all are correctly classified.

Six files are identified by Antoniol et al. as renamed or merged, and are
asterisked in the two tables. The merge of CacheResponse and ZoneRe-
sponse is captured, see Figure 16.7, as both of these files are renamed to the
same target, SetResponse. Both dnsServer and FindResolver are success-
fully identified as renamed files. The files CountedDatalnputStream and
CountedDataOutputStream are successfully matched with their destination
files as the first target file, but because the ‘Output’ file is heavily edited,
it is not classified as renamed. This file was not found by Antoniol et al.’s
system either, and the ‘Input’ file caused difficulties because it appeared to
have split to become DataByteInputStream and DataByteOutputStream. In
this system classification of the ‘Input’ file is indefinite, in that around a half
of the models tested correctly classify the file, and the majority of models

have low probabilities one way or the other.



16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES

295

Comparison generated by analysis of the trigram report produced
by the Ferret Copy-Detaction Tool, (c) School of Computer
Science, University of Hertfordshire, 2010.

Blue file: /home/. . Jdnsjava-(n+1)DNS/CacheR java
Red file: /home/. . .Jdnsjava-(n+1)/DNS/ZoneResponse.java

3 e:Not €

package DNS:

import jma.util.*:
import DES.utils.*:
public class

firal byte UNEHOWN = 0:

tatic firal byte B 2;

static firal byte NODATA = 3

static firal byte PARTIAL =
firal byte SUCCESSFUL =
byte type:

ciate Object data;

te Vector backtrace:

_type, Object _data)

_typed
this (_type, rall);
H

hoid set (byte _type, Object _data)
1

Type = _nypes

dmta = _data:

1

[vmid addREser (RRser rrset)

1

if (data = rull)

data = rew Vector ():

Mector v = (Mector) data;

| addElement (rrset) :

¥

hoid addCHAME (CHAMERecord crame)
L

if (backtrace = rull)

backtrace = new Wector ():
backtrace.insertElementAt (crame, 0):
¥

public boolear islrknown ()

1

retumn (type = UNKNOWN) ;

}}mhu: boolean isMegative ()
L:nn-. {type = HEGATIVE) ;
public boolean isW/DOMAIN ()
et (type = WOGRIN) ;
public boolean isHODATA ()

return (type = NOOATA) :
;vnh]_i.: beolesn izPareial ()
L:nn. (type = PARTIAL) :
}}:mh]_i.: boolear isSuccessful ()
L:nn. (type = SUCCESSFUL) ;
}}:mh]_i.: BRzet[] answers ()

1

if (type != SUCCESSFUL)
retumn roll;
= (Vector) data;

ts = new B csize (01:
= 0: i < rrsets.length; i)
= (BRset) v.elementht (i):

public CHMERecord partial ()
L

if (type '= SUCCESSFUL)
retumn rull;

return (CHNMERecotd) data;
1

public Vector backtrace {)
1

return backtrace:

1

public Strirg toString ()
1

switch (type)

L

case UNKNOWN:

returr "urkrown";

caze NEGATIVE:

retum "negative”;

caze NADCMAIN:

retnmn "MADOMAIN' ;

casze HODATA:

tetorn "NOORTA" ;

caze PARTIAL:

retun "partial: teached " + data:
case SUCCESSFUL:

retum "smocessful”;
defanle:

retumn rull;

1

¥

¥

Figure 16.7: The merge of the two DNSjava files CacheResponse (in blue) and
ZoneResponse (in red) into SetResponse. The file SetResponse is the
base file and is shown in two columns to fit the page.

16.5.3 Additional unseen data: PyX

There are twenty-five uncertain disappearing files in the PyX releases anal-

ysed. The three files with only one target are listed in Table 16.24, all

are correctly classified. Those with at least two target files are listed in

Table 16.25. In both tables, ‘MC’ means the manual classification, ‘Doc.’

shows whether the change is documented in the log: Y/N, or Y? where the

wording appears to support the classification, but not clearly. All of the




296 CHAPTER 16. CLASSIFYING REFILTERED DATA

Ref. | Vn. | Disappearing files (one target) MC | Doc. | Class'n

8 0.3 | /manual/tex2.py 0 - 0
3 0.10 | /examples/bargraphs/months.py 1 - 1
12 0.1 /pyx/datafile.py 1 Y 1

Table 16.24: Classification of PyX disappearing files with one target file.
Class'n is the class assigned by the fb/SGD model.

Model

Ref.

<
5
<
@
o
8
>
o~
@
g

Disappearing files (two plus targets)

o
—_
—_

/fag/tipa.p

/examples }E)argraphs/addontop )4
/examples/bargraphs/multisubaxis.py
/pyx/mathtree.py

/[contrib/dvips.py

/pyx/prolog.py

/newbox.py

/manual/tex1.py

2 0 -

5 0.8 0 -

5 0.8 0 -

5 0.8 0 -

6 0.7 0 -

6 0.7 0 Y

7 0.6 0 -

8 0.5 0 -

2 0.11 /gallery/ graphs/mandel.py 1 N

3 0.10 yx/font/afm. 1 Y?

5 0.8 /p examples/path/springs.py 1 N 0 0
6 0.7 /examples/misc/valign.py 1 N

7 0.6 /examples/circles.py 1 N

7 0.6 /exa les/graphs/bar.py 1 N 0

8 0.5 yx/data.py 1 Y 0]0]0]O0
9 0.4 /gyx/attrhst py 1 Y

3 0.10 yx/dvifile.py 2 Y

3 0.10 /gyx/font/encodmg py 2 Y? 1 (111
3 0.10 yx/font/tlfont.py 2 Y? 1 1

3 0.10 /gyx/typelfont Py 2 Y? 1

8 0.5 yx/graph.py 2 Y

8 0.5 F pyx/timeaxis.py 2 N 1 (111

Table 16.25: Classification of PyX disappearing files with at least two target files.

unrelated files are correctly classified, but the renamed and split files are
less successfully classified, an overall accuracy of 77-82%. Matched and

unmatched files are listed in Appendix Q.

16.6 Selected models

In Table 16.26, the classifications of eight models are listed. The models are
based on the two simplest feature sets with a mean classification accuracy
of over 90% on the 89 project split file dataset: fc+tris-singles and all-
tris+all-fc; and the top performing feature set, and the top performing
singles feature set on the 89 project disappearing file (2 or more targets)
dataset: fl+tris-singles and all-tris+all-fl. Each feature set is tested with

the Simple Logistic and Rotation Forest algorithms. The table shows the



16.7. SELECTED FEATURES 297

Disappearing files: Split files
(2 or more targets)
Mean | Unseen Mean | Unseen Grand

Feature set Algo. || on tests data Total || on tests data Total Total
fc+tris-singles | ROT 165 123 288 243 272 515 803
all-tris+all-fc SL 164 128 292 244 265 509 801
fl+tris-singles | ROT 167 127 294 242 264 506 800
all-tris+all-fc ROT 167 124 291 241 266 507 798
all-tris+all-fl ROT 169 125 294 242 262 504 798
all-tris+all-fl SL 166 127 293 242 263 505 798
fc+tris-singles | SL 159 128 287 242 267 509 796
fl+tris-singles SL 161 123 284 242 268 510 794
Out of 192 144 336 270 289 559 895
Max.% 88.0 88.9 87.5 90.4 94.1 92.1 89.7

Table 16.26: Summary of the classification by models based on fl+tris and fc+tris,
singles and complete feature sets. Results are for the mean of the 89
project test sets and the unseen data: PostgreSQL, DNSjava, Struts and
Pyx. Results are ranked by the total for split and disappearing files.

mean classification accuracy over the 100 test sets on the 89 project datasets
and the classification of data from all four unseen projects, for each of the
split and disappearing files (with 2 or more target files), and the models
are ranked by the total. The simpler singles sets give the best performance
when combined with the Rotation Forest algorithm. The fc+tris set, which
combines trigrams and character-level analysis of their distribution, is best
overall and on the split files, while the fl+tris set (trigrams and line-level
analysis) is best for the disappearing files. Both of these models give the
same results on the disappearing files with one target as the best (fb/SGD)

model.

16.7 Selected features

The two models discussed above use the Rotation Forest algorithm. This is
a ‘black-box” algorithm, in that it is not easy to understand which features
are important in classification. To give an idea of important features, those
selected by the Simple Logistic algorithm are presented in Figure 16.8.
This figure shows the selected features in terms of the relationships be-
tween files and how their similarity measure is represented. There are five

diagrams for each feature set: those for classifying split files, for disappear-



298 CHAPTER 16. CLASSIFYING REFILTERED DATA

ing files with one target file, and one for each class for disappearing files with
two or more targets (labelled Dis.0-2). Two features are not shown in the
diagram: the number of target files in a group, and the type of file. Detailed
lists of the selected features are provided in Appendix S. In Figure 16.8 the

large numbers 1-3 represent the 3 files in a single file comparison:
1. the candidate file,
2. the amended file (or most similar target for disappearing files), and
3. the main target file (second similar target for disappearing files).

Examples from the top-left group (split files, fc+tris-singles) help to explain
the layout. Many of the features relate the similarity between two files to
one of the two. For example, 4 features are selected which relate the code
shared by files 1 and 3 to file 1, denoted by the blue 4, and 3 to file 3, by the
yellow 3. Features accounting for three files are shown on the edge of the
circle opposite the file to which they are proportional. For example, the red
1 on the outer circle means that there is 1 feature which relates some aspect
of the 3 files to the size of file 2. Quantitative features (in boxes) include
code shared by files 1 and 3, shown by the green 1; a measure of the code
in file 3, by the yellow 1. Further explanations are provided in the key.

In general, more features are selected for the fc+tris set than for the
fl+tris set, but the patterns are broadly similar. This does not mean that the
features selected are the same. For example, for both sets the disappearing
and renamed files (Dis.1) have two features relating the similarity between
files 1 and 3 to file 1. One of these features is the same in both sets (the
lines/characters in blocks of at least 32 lines/640 characters), and one in each
set is different: lines in blocks of at least one-sixteenth of file size, and
characters in the largest block to file size.

Asmightbe expected, the relationship between the two target files is less
important for disappearing files than the relationship between the amended
and target files for classifying candidate split files. Atleastone feature which
takes account of the interaction between all three files is selected for split
files and disappearing files in classes 0 and 1. It is less clear why features

which involve all three files are not selected for the disappearing split files.



16.7. SELECTED FEATURES 299

Features which are the same for both sets are highlighted in Table 5.2 in
Appendix S. For each class of file, approximately even numbers of trigram-
based and block-based features are selected. The containment of the target
file (or second target file) in the candidate file is the feature selected more

than any other.

1 Target 1 Target

fl+tris-singles |

Key: counts are in rectangular labels [X], and proportional measures are in circles )
Shared by candidate and amended : candidate Relationship between all 3 files : candidate
Relationship between all 3 files : amended Shared by candidate and amended : amended

- Amended total Shared by candidate and target
Shared by amended and target : amended \J Shared by amended and target : target
Shared by candidate and amended k | Target total
Shared by candidate and target : candidate @ Shared by candidate and target : target

Figure 16.8: File relationships represented by features selected from the sets fc+tris-
singles and fl+tris-singles, by the Simple Logistic algorithm. The 5 di-
agrams for each set are: split files, disappearing files with 1 target, and
the 3 classes for those with 2 or more targets (Dis.0-2). Relationships
between files are shown with the number of features of this type noted
in the circles. The key to the relationships describes files as “amended

and target”, for disappearing files, these are the 1 and 2™ targets.



300 CHAPTER 16. CLASSIFYING REFILTERED DATA
16.8 Summary

16.8.1 Split files

The effect of the revised filter criteria on the split file dataset has been
explored in this chapter; with the revised criteria, twice the number of
candidate files are selected, and include all except for two of the previous
positive examples. Although there are more ‘marginal’ candidates and
fewer definite negative examples, the refiltered data is classified with over
90% accuracy.

The model which best classifies the 89 project dataset, “fc+ft+tris+pdp-
singles”/Rotation Forest, classifies candidates from the unseen projects Post-
greSQL and DNSjava with 91.5% accuracy, and these candidates are classi-
fied with 94.4% accuracy by the “fc+tris”/SimpleLogistic model. This same
model correctly classifies all of the candidates found in the Struts project
(release 1.1) and 93% of those in the PyX project.

The effect of the revised filtering criteria on the candidate split files
selected from the two main unseen projects differs between the projects. In
both, filtering is able to screen out at least half of the previously selected
negative examples. The PostgreSQL system includes sets of files which have
the same function for different operating systems, meaning that target files
are found in many cases where the files are unrelated except by function,
and this accounts for the large increase in negative candidates. In contrast,

DNSjava, with no parallel subsystems, has fewer new negative examples.

16.8.2 Disappearing files

The uncertain set of disappearing files is partitioned into two: files with
one target, which are classified with 95% accuracy, and those with two or
more target files, with 88% accuracy.

The ‘best” model for classifying the disappearing files with one target
from the 89 project dataset is that based on Ferret basic features using the
SGD algorithm. This model, along with many others, is able to correctly

classify all of the examples from the unseen data except for one, which is



16.8. SUMMARY 301

also difficult to classify manually.

For the files with two or more targets, the ‘best” model based on ac-
curacy is “all-tris+all-fl”/Rotation Forest (88.13% accuracy, 81.97% geomet-
ric mean), with “fl+tris-singles”/Rotation Forest having the best geometric
mean (84.3%) of those tested. Strategies for improving classification in
imbalanced data did not improve classification in the tests.

Results are reported for four models: “all-tris+all-fl”/Simple Logistic
(A), “all-tris+all-fc”/Simple Logistic (B), “fc+tris-singles”/Simple Logistic
(C) and “fl+tris-singles”/Rotation Forest (D), are based on the original,
rather than manipulated, data. The models correctly classify 90.2%, 90.2%,
91.0% and 89.3% of the examples respectively, with 78.6%, 57.1%, 64.3% and

71.4% of the minority class, split files, correctly classified.

16.8.3 Comparison to other approaches

Antoniol et al. find two split classes in releases 1-40 of DNSjava. My system
finds eleven split files in these releases, correctly classified except for two
marginal examples. Antoniol et al. did not find the additional split files for
reasons already discussed. They find two classes which are renamed, but
which do not move files, and so not identified by my approach. Antoniol
et al. find one merged file, also found by my approach, as are the four
renamed files, and although two of these are not reliably classified, their
target files are correctly identified. Antoniol et al. also had problems with
one of these files, only finding its correct classification by inspection of the
code. My approach finds one file not found by Antoniol which is both
split and renamed. It also finds ten renamed files, all of which are correctly
classified by the majority of models, and two which are possibly renamed,
for which classification is mixed.

Zou’s work is at function level, and although file level changes are re-
ported, it is unlikely that every change to functions which results in file
restructuring is mentioned, given the additional restructured files found
in the PostgreSQL project by my system. As already discussed in Sec-

tion 16.3.2.1, comparison with the available results shows vulnerabilities in



302 CHAPTER 16. CLASSIFYING REFILTERED DATA

my approach: first, that a target file will not be selected if other changes
to the file mask the relevant changes; and second, that text analysis is not
always sufficient to decide between a number of textually similar possibil-
ities.

All of the changes to the Struts project found by Dig et al. are found
and correctly classified by the system, as are two others supported by the
findings of Wu et al. The PyX project is manually classified with help from

the change log, and therefore cannot be compared with other results.

16.8.4 Overview

The revised filter criteria exclude at least half of the negative examples
selected by the original filters, and select approximately twice as many
positive examples overall, although the changes vary between projects.
The system is trained with C code, the test data comprises four projects:
one C, two Java, and one Python. As shown in Table 16.27, every category
in each of the projects is classified with at least 77% accuracy, with the mean
across all restructured files selected from the unseen projects of over 91%.
The two models, fc+tris-singles/Rotation Forest or fl+tris-singles/Rotation
Forest, are among the top three models overall, and have the benefit of sim-
ply constructed feature sets, as all the features are derived from analysis of

Ferret’s outputs and do not need the concatenated files.

Project Language Split files Disappearing files
1 target 2+ targets
n. acc. | n. acc. | n. acc.
| 8 projects | C | 810 | _90% | 177 | 95% | 575 | _ 88% |

PostgreSQL | C 200 95% | 19 | 100% | 100 | 90-91%
DNSjava Java 48 | 91.7% | 5 80% | 23 | 87-91%
Struts Java 14 100% - - - -
PyX Python 27 93% 3 100% | 22 | 77-82%

Table 16.27: Summary of the classification results for PostgreSQL, DNSjava, Struts
and Pyx by the best model tested in each case. The number of instances
and accuracy are shown for each group.



Chapter 17

Discussion and evaluation

The main part of this project explored the use of machine learning tech-
niques in the field of software evolution, using features generated from
comparisons between source code texts. There are several challenges in
creating a new dataset for machine learning, among which are developing
a suitable filtering technique, selecting a means of generating information
about the data, creating features from this information, and manual clas-
sification of the instances. Features were created by comparing both pairs
and groups of files, and looking at the size, distribution and interaction
of blocks of matched code in the files. Techniques used in creating these
features were also applied to collusion detection, and to visualising textual
relationships between files. This chapter is in four sections: in the first sec-
tion origin analysis is discussed and evaluated, the three following sections

cover collusion detection, the visualisations, and other tools.

17.1 Origin analysis

17.1.1 Related work

The approach to origin analysis in this research has its roots in that taken by
Rainer et al. [194] in the use of trigram analysis to filter the files in a system
to find unusually similar pairs. However, the ideas are developed in many

ways: in the different filtering techniques; in the novel set of features;

303



304 CHAPTER 17. DISCUSSION AND EVALUATION

in exploring the use of complementary approaches to file comparison; in
classifying potential matches using machine learning; and in providing the

3CO file comparison tool for the visual inspection of groups of files.

There is also similarity to Antoniol et al.’s approach [6] where text-
based measures are used to analyse a system at class level. Antoniol et al.’s
approach is one of two (with Zou [261]) of those surveyed which consider
the relationship between more than two entities at a time. Antoniol et al.
take account of the interactions between vectors from three classes when
trying to find split or merged files, and from four classes for recombined
files. Their view is that splits, merges or recombinations between more
than the minimum number of classes are unlikely. However, multi-way
splits occur in many of the 93 projects studied in this research, showing the
importance of considering this possibility when working at file level. For
example, one fifth of the splits found in the projects ‘Lifelines” and ‘Hatari’

are multi-way, as are nearly one half of those in the project ‘Etherape’.

Antoniol et al. report that their approach is vulnerable to renaming.
The example in Chapter 14 (p. 243) shows this vulnerability, and another
problem, that files must be split fairly “cleanly” to qualify as candidates
under the cosine similarity measure. In my work, the first of these problems
is reduced by the use of trigram analysis, which is moderately tolerant to
renaming; and the second by training the models using a range of features,

and examples from projects of varying development styles.

DeMeyer et al. [60] also work partly at class level, using heuristics based
on the changes to the metrics of each class to suggest possible refactorings.
However, the user must browse the code to find out whether refactoring
has taken place, and to discover the other class(es) involved. DeMeyer et
al. found a high proportion (x96%) of false positives in their work. This
is partly because they consider the changes to only one file, making it

impractical to filter out files with no obvious targets.

In common with others [237, 250, 252, 261], S.Kim et al. [130] combine
a small set of features from different sources. Unusually, they include mea-

sures of text similarity from three third-party tools. These measures are



17.1. ORIGIN ANALYSIS 305

based on strict matching (diff), parameterised matching (CCFinder) and
n-gram matching (Moss), a similar combination of tools to that used in
this research, respectively the P-Duplo, CCFinder and Simian, and Ferret
tools. S.Kim et al.’s features are weighted according to each one’s accuracy
in predicting matches in a set of method pairs determined by their expert
panel. Their approach is the closest to machine learning among the sur-
veyed work, and they suggest using machine learning methods in future

searches for suitable feature combinations and threshold values.

In the same way as many others (e.g. [22, 90, 128, 130, 179, 250]), the
approach in this research first matches by name, forming two groups of files:
those matched or unmatched by files of the same name in the following
release. Matching entities are not normally considered for change, whereas
in this research, changes to matched files are taken into account in looking
for split files. Once candidates are established, potential target files are
selected based on their similarity to the candidate file, whether the files are

new or already exist.

Many of the approaches surveyed match names or method headers
textually (e.g. [128, 179, 194]). Only Dig et al. [64], compare the text of the
method bodies as an initial filter, whilst others (e.g. [22, 130, 245]) use the
text similarity of entity bodies as a second filter. In my work, both the first
coarse-grained, and the second fine-grained filters use textual similarity

based on trigram analysis of the full text of the files.

Several of the approaches use n-grams to match elements in the code [22,
64, 77, 130, 252]. Biegel et al.’s [22] finding, that ranking targets by simi-
larity measured using token bigrams is not only faster, but marginally
outperforms both CCFinder and an AST-based similarity tool, supports the

use of n-gram based similarity measures in this task.

Tools which parameterise, such as CCFinder, Simian and Moss, do not
seem to be the best way to match code for origin analysis. The reasons
relating to file comparison are pointed out in Section 14.1.2. However,
both S.Kim et al. and Biegel et al. also found CCFinder to be less useful

than other features in comparing methods in Java code. While the header



306 CHAPTER 17. DISCUSSION AND EVALUATION

information which is ignored by CCFinder will not be an issue for functions
or methods, the relaxed matching allowed by parameterising may be the
cause. Although parameterising helps to match edited code, it can also
allow matches between standard forms, such as accessors, which are present

in many files.

In general, method or function level approaches, especially those which
consider split or merged entities, should find most of the same restructur-
ings as found by my approach. They will also find within-file changes,
such as method renaming, but do not find changes to the code which falls
outside the methods/functions, while my approach will find movement of

code from any part of many types of file.

There are four main differences between my approach and those detailed
in the review of origin analysis in Chapter 3. First, machine learning is used
to classify the candidate files, based on a training set derived from a large
number of open source projects. Second, the novel features derived from
the similarity detection tools used to compare the source code. Third,
comparisons between entities are normally made pairwise; whereas here,
group comparisons are used to create some of the more predictive features,
and are also used in ranking target files. Lastly, the models built using
source code in one language are successfully tested on systems written in

other languages.

The task of determining whether code taken from one file should be
matched to that in one or more other files is very difficult, given the wide
variation in file sizes, the amount of code moved, the extent to which it is
edited, the way the code is distributed in both the source and target files,
and the inherent similarity within a project. Rather than using a pre-defined
set of rules to work out whether files should be matched, this system uses
machine learning to discover, among a large number of features, patterns
which apply to a collection of projects, with the aim of creating a model

which will be generally applicable.

Working at file level with text-based analysis allows the approach to be

used on most other programming languages and on text. The approach is



17.1. ORIGIN ANALYSIS 307

not restricted to files containing methods, functions or classes. Although
the models built for this study are based on C code, they work well on the
Java and Python projects tested.

The experiments show that Ferret-based features provide sufficient in-
formation for good classification. Ferret is used in primary and secondary
filtering and in target file ranking. The supporting tool 3CO is also based on
Ferret. This means that apart from a machine learning tool such as Weka,
Ferret is the only third-party tool needed to classify the restructured files.

In discussing matching techniques for multi-version analysis, M.Kim et
al. suggest hybrid matching as a good way forward. However, they also
caution that “combining results from multiple matchers will require tremendous
efforts because (1) not every matching tool is available for public use or applicable to
popular programming languages and (2) different matchers use different program
representations” [127, p.5]. By applying different techniques to the various
outputs of the trigram analysis tool Ferret, some degree of pseudo-hybrid
matching, applicable to a wide range of languages, is gained without the

need for other matching tools, thus partly addressing Kim’s concerns.

17.1.2 Machine Learning System

Two of the main challenges in creating the machine learning datasets for this
application are how best to filter the very large amount of data to identify
the items of interest, and what features might best characterise the data to
allow discrimination between the classes.

There is a natural trade-off between precision and recall in filtering. The
aim here was for good recall, while keeping a reasonable balance between
the classes for machine learning.

Feature construction presents many challenges: which tools to use to
compare files, and what features to create from among the almost limitless
number of potential features available from analysing the output of these
tools. Without prior knowledge of suitable features these decisions are
difficult. To explore the possibilities, a large pool of features was created

using a set of complementary comparison algorithms, and a wide range of



308 CHAPTER 17. DISCUSSION AND EVALUATION

measures. Features were grouped into smaller sets based on their source,
and compared so that a suitable subset could be chosen.

In the rest of this section, each step in the origin analysis system is dis-
cussed. These steps are: data collection, preprocessing, information gather-
ing, filtering, manual classification, feature construction, feature selection,

and model selection.

Data collection The projects chosen for training the models were all writ-
ten in C. As the features used in this system characterise the distribution of
matched text in the evolving files, theoretically the projects could have been
written in any one, or a mixture, of most programming languages. Given
that the models built with C code perform well on projects in two other

languages, it is possible that either strategy would have worked as well.

Preprocessing Relevant source code files (e.g. “.c” and “.h’) were selected
from the stored versions and prepared by removing comments. Comment
removal is the only part of the system where language specific processing is
necessary. To assist with Duplo and Simian’s line-by-line matching, pretty-
printing was originally used, to standardise the code layout. As Duplo
and Simian features are not used in the final models, pretty-printing is not

necessary.

Information gathering The next step is to compare the files in each release,
both within the release, and with files in adjacent releases, and to store the
results. The information was stored in hash tables, written to file for reuse.
Racket’s hash tables are limited in size, therefore using a database for storage
may be a better strategy. Once stored, the results of comparing the files are

used to filter for candidate restructured files.

Filtering An initial filter for finding potential split files in this system is
a reduction in file size. This reduction was found not to be a feature of all

split files, as other within-release changes may result in a larger file. One



17.1. ORIGIN ANALYSIS 309

solution to this problem is to consider the number and distribution of the

trigrams in each file’s difference set, however, this remains as future work.

Target file selection is also an important part in the process. The investi-
gation reported in Chapter 15 explored criteria and thresholds for target file
selection in the test subset of the data. One of the aims of this research was
to remove predetermined thresholds. However, as the simple filter criteria
tirst applied were inadequate, new criteria were found by experimenting
with a subset of the data, and in balancing precision with recall, the criteria
turned out to be fairly complex. Simplifying these conditions is possibly
an area for further work. Although the thresholds which suit the test set fit
most of the remaining data, there are cases which fall outside the parame-
ters. The main problem is that target files are not selected when the number
of shared trigrams does not increase sufficiently between releases, because
of other changes. As with the candidate files, the changes to the target
file may offer a solution, the interesting trigrams in this case are the new
trigrams in the file, in other words, the reverse difference set (see p.214).

Target file order is important for matching files in general [22], and for
feature construction in this system. Initially, the target files were sorted on
their change in similarity to the candidate file. The experiments reported
in Chapter 15 showed that this strategy was not as successful as sorting by
unique trigram count for the target files in the test set of split file candidate
groups. The order is mainly judged using 3CO, which is also based on
trigram distribution, and so may be subject to bias. However, files previ-
ously misclassified because of incorrect target file ordering were correctly

classified after reordering their targets by unique trigram count.

Manual classification Manual classification of the candidate files was
very time-consuming prior to the development of 3CO. The tool usually
provides sufficient information for classification. Otherwise, the number of
files which need to be inspected is normally reduced by its use.

Given that manual labelling is subjective, independently labelled train-

ing data would have been of benefit, but availability was limited. The



310 CHAPTER 17. DISCUSSION AND EVALUATION

unseen data is partly labelled by other research groups, but the same sub-
jectivity is present in labelling the examples not reported by these groups.
Several files were excluded because they could not be classified, a par-
ticular problem for projects with parallel subsystems, like the example in
Figure 16.5. This file highlights a weakness in using text analysis alone, and

is a case where call analysis [64, 250, 261] should provide a solution.

Feature construction Advice on feature construction varies. For exam-
ple, Guyon and Elisseeff [98] suggest creating a large number of features
to include as much information as possible, while Hall [102] recommends
that there should be at least twice the number of instances as features. The
approach taken in this research considers both of these requirements: by
constructing a large set of features to give variety, but comparing classifi-
cation by reasonably sized subsets of these features. The final models were
built with sets of 200 features, well under half the number of instances in
the datasets.

At the start of this project, Ferret, Duplo, Simian and CCFinder were
selected as complementary tools for comparing files. As the work pro-
gressed, P-Duplo was developed using the ideas behind Duplo, to better fit
the requirements of the task. The idea that the Ferret XML report could be
analysed to provide additional information was also a later development.
To some extent, the XML analyses have similarities to the other tools.! The
line-based analysis has much in common with P-Duplo, and density analy-
sis finds the gapped copies which are the main reason for using both Simian
and CCFinder. With hindsight, it would have been sufficient to explore the
range of features available from analysing the outputs from Ferret.

Features are based on comparison between the three main files or the
candidate file and various combinations of the other files in the group.
Comparisons of concatenated files were used as a solution to the problem
of representing multiple targets, and as a way to measure how much of a

candidate file is covered by combinations of its targets. There is a compu-

IComparison between the predictive accuracy of these sets can be found in Appendix T



17.1. ORIGIN ANALYSIS 311

tational cost in generating these features, as the files must be concatenated,

and additional groups of features generated.

Although the difference between the top performing feature sets for
each task is not significant, the “top 20” feature sets for split files are mostly
based only on features generated from comparisons between single files
(“singles” features), while only one of the 20 for disappearing files with
two or more targets has only singles features. It is possible that ordering
targets by unique trigrams is less suitable for disappearing files than for
split files, so that files other than the first two of the ordered targets must be
considered. However, as there are singles sets which perform well on the
data, the ordering problem may only affect a few cases. Investigating the

order of disappearing file targets remains as further work.

Feature selection Standard solutions to finding a good subset of features
from a large set include the use of a feature selection algorithm or a ma-
chine learning algorithm which incorporates feature selection. However,
in this research, one important factor in choosing a feature set was the
ease of extracting the features from new data. The features are derived
from comparisons made by four tools, and there is further complexity in
constructing the concatenated files. The ideal is a small feature set, taken
from simple comparisons between files, based on the output of one tool.
The combination of trigram and block based features (“fc+tris-singles” or
“fl+tris-singles”) derived from Ferret fits these requirements. As noted in
Chapter 16, both of these feature sets give good results on split and on dis-
appearing files, although the former is better with split files and the latter
with disappearing files. The trigram based features take account of inter-
actions between the three ‘main’ files with no sense of the arrangement or
frequency of the trigrams, while the measures of the sizes of the matched
blocks, either in characters (fc) or in lines (fl), give a fairly precise analysis

of the arrangement of matched parts of a file and their significance.

In the simpler tasks of classifying the original split file dataset and the

disappearing files with one target, one feature set is sufficient for classifica-



312 CHAPTER 17. DISCUSSION AND EVALUATION

tion. However, for the more challenging tasks of classifying the refiltered
split file set and the disappearing files with more than one target, classifi-

cation is improved by using complementary feature sets.

Model selection It is not possible to find out which classifier will be
the best for all new data, but by training classifiers with one portion of the
available data and testing with another portion, an estimate of the predictive
accuracy of each classifier can be found [27, p.79-80].

Here the training data was split 100 times, with two-thirds of the data
used for training and one-third for testing. The “best” models were selected
on their mean classification accuracy over the 100 test sets. Results demon-
strated that these models were not necessarily the best on the unseen data.
Tests on unseen data were used to decide on the “best” models overall.

Various strategies for improving classification were tested during this
research. These strategies included exploring algorithm parameters, com-
bining algorithms with heterogenous meta-classifiers, and for imbalanced
data, under- and over-sampling and use of cost-sensitive classifiers. In gen-
eral, these strategies did not improve classification accuracy on this data.

Although a subset of the possible combinations of feature sets were
investigated, given the large number of sets, a full exploration was not

undertaken, and may be an area for further work.

Results Classification of the candidate split files reported in Chapter 14
was around 94% for the 89 project dataset and, using models built on
this data, 99% on the unseen data. However, comparison with the results
from other research groups on this data highlighted weaknesses in the
filtering process: not all candidate files were selected, not all target files
were selected, and target files were ranked incorrectly.

Extensive experiments in filtering, reported in Chapter 15, found strate-
gies for correcting many of the identified problems. The new set of candi-
date split file groups selected by refiltering from the 89 projects are classified
with a mean accuracy of 90%. Candidates from the four unseen projects are

classified with a mean accuracy of over 94%.



17.1. ORIGIN ANALYSIS 313

Files which disappear from the system are initially matched to their
targets by similarity score. Those with identical or nearly identical files in
the next release are classified as renamed, and those with no similar file as
deleted. The remaining files, the “uncertain set” fall into two groups, those
with one target file and those with more. The former group is classified
with a mean accuracy of 95%, and 96% on the unseen data. The latter group

with mean accuracy of 88% and around 89% on the unseen data.

These percentages are not directly comparable with those of other re-
search groups. The two approaches which compare files [6] or classes [60]
directly do not provide estimates of their accuracy. Unless the system anal-
ysed is fully documented, or there are other means of tracing all of the
changes, it is not possible to know what percentage of changes have been
found. Approaches which provide percentages use varied bases. For exam-
ple, S.Kim et al. [130] give the percentage of matches between disappearing
and new methods made by their system to those in their oracle sets as 87.8—
91.1%. However, the oracle sets contain 85-91% of the examples judged,
and it can be assumed that the pairs left out are the more challenging ones
to classify, as the panel does not agree on these pairs. As another example,
Dig et al. [64] report 100% precision and 86% recall on the Struts project,
using entries in the change log to give the expected results. The results of

Wau et al. [250] show that not all of the changes are logged.

The figures presented in my work are also based on a subset of the
candidates. On the one hand, examples whose classification is unclear are

omitted. This means that 14% of the split file candidates from the 89 projects

Split Disappearing

Cand- Not % not Directly Not % not
idates | included | included classified | Uncertain | included | included
89 projects 944 134 14.2 1965 925 173 6.0
PostgreSQL 207 7 3.4 81 125 6 2.9
DNSjava 49 1 2.0 65 28 1 1.1
Struts 14 0 0.0 - - -
PyX 27 0 0.0 44 25 0 0.0

Table 17.1: Proportion of total candidate split and disappearing files not classified.



314 CHAPTER 17. DISCUSSION AND EVALUATION

are excluded, although more than 97% of the unseen data is retained. Other
figures are shown in Table 17.1. On the other hand, the results given for the
disappearing files include only the uncertain set. The remaining examples
are directly classified as matched or unmatched. Although nearly 19%
of the uncertain disappearing files from the 89 project dataset cannot be
classified with confidence, this represents only 6% of all disappearing files.
The directly matched files also affect the overall classification rate of the
disappearing files. For example, in the Pyx project there are 34 renamed
tiles and 8 unmatched files. While it is almost certain that all of the renamed
files are correctly matched, the unmatched files may not be matched because
their targets have been missed. Assuming all of these files to be correctly

classified, the percentage of correctly matched files would rise to 93%.

Analysing new projects with the models Table 17.2 gives the steps re-
quired to classify a new project with the models. Most of the steps are a
subset of those used in building the models. The difference is that should
filtering a new project result in few candidate files, then the simplest way
to find out what has happened to the code is to view the 3CO files for
the candidate groups. With more files, automatic analysis is required and
features must be constructed so that the files can be classified using the
models. Each step runs automatically, except when manual downloading

is necessary at step 1, and at step 7a, where inspection is required.

Store the data in consecutively numbered directories.

Select file types (e.g. not makefiles, images, binaries)

Prepare as necessary, i.e. remove comments

Compare the files using Ferret and store the information

Filter to find the type of files required (e.g. split, disappearing) and their targets.
Process file groups to produce 3CO XML files.

*If not many candidates, then 3CO files should provide sufficient information quickly.

If more candidates, use automatic analysis, extract the features to create a machine learning file.

o B RS IR NC I

Run through the appropriate model to classify.

Table 17.2: Steps in classifying a new project with the models.



17.2. COLLUSION DETECTION 315
17.2 Collusion detection

Twenty-nine approaches to source-code plagiarism were analysed in Chap-
ter 2. Although many people involved in marking assignments recognise
that unusual similarity between students” work prompts suspicion of col-
lusion between students [52], the survey found that few approaches take
account of unusual similarity and none measure it directly.

Another observation from the survey is that twenty-one of the ap-
proaches initially tokenise the code. Tokenising requires a suitable lexer, but
means that the method is otherwise language-independent. A lexer for one
language can be used to tokenise other languages in a reasonable manner,
as is shown by use of a C-type lexer for Visual Basic and ASP in the ap-
plication reported in in Chapter 9. However, eighteen of these approaches
parameterise the tokenised code, meaning that a language-specific lexer is
required to identify keywords.

Tools which change the code to graph, tree or metric representations are
tied to one language. Those which convert the code into an intermediate
language aim for language independence, but are restricted to the languages
supported. Among the approaches listed in Table 2.3, few will be able to
analyse almost any mix of languages. Those which can are Ferret [146] and
PlaGate [52].

Proportional measures will sometimes rank small amounts of similarity
between two small files above significant similarity between two larger
files. This was found to be a feature of measures based on Ferret where
similarity is computed using the presence of trigrams in a file, regardless of
their frequency. Where there is a large amount of repetitive code, measures
which match sections of code in a file each time they occur, such as [99, 115],
may exaggerate this problem. It is important to be aware of what collusion
detection tools are measuring and therefore what is being reported.

Almost all of the similarity measures used by the approaches surveyed
are proportional to the size of one or both of the files compared. Although
proportional measures are likely to perform well with files of similar sizes,

there can be a problem when file sizes differ. Count-based measures find



316 CHAPTER 17. DISCUSSION AND EVALUATION

similarity which may be missed by proportional measures, especially where
files are large. However, care must be taken in what is counted, otherwise
pairs of large files will have more in common than pairs of small files,
because of the inherent similarity in program code. By computing similarity

based on less common trigrams, the focus is only on unusual similarity.

A number of methods used to disguise plagiarism are reported by
Jones [117, p.2]. These are changes to comments, white-space, identifiers
and data-types; reordering code within statements, moving blocks of code,
adding redundant statements, and exchanging one type of control structure
with another. Many of the approaches surveyed are naturally concerned
with detecting similarity in the face of these disguises. Strategies such as
parameterising and attribute counting lead to a loss of textual information.
However, there is a place for approaches which preserve more information,
such as those of Liu [151], Cosma [52] and Ferret [146].

The approach to collusion detection presented in Chapters 7 and 9 is
language independent, is based on recognising unusual similarity between
pairs of assignments, preserves much of the textual information, and does
not rely on proportional measures. Despite an increase in web technology
courses,” where several programming languages may be used in building a
project, there appears to be no other reported work in source code collusion

detection where files in more than one language are analysed together.

Although the method is not robust to systematic identifier renaming, it
will find unusual shared code which has not been well disguised. This type
of similarity is likely to be found naturally by someone marking a small
group of moderately sized assignments. However, as the size and number
of assignments increases, and particularly when marking is distributed
among several tutors, unusual similarity is unlikely to be found without
automatic analysis. A full evaluation of this approach would need further

tests on groups of different sizes and with different styles of assignment.

2158 courses with a web technology content are listed on the UCAS site for 2013,

(36 specifically for web technology, and 9 for multimedia web production)



17.3. VISUALISATIONS 317
17.3 Visualisations

17.3.1 Collusion detection

In Chapter 5, the outputs of a selection of collusion detection tool file com-
parisons were shown. A large number of such tools were examined during
the course of this research and only that of Ribler and Abrams [199] was
found to show details of the similarity between two files in the context of
the group. However, a display of this type is useful in three ways, first in
highlighting the more unusual elements shared by two students, second in
highlighting the elements unique to one student, and last in showing which
parts of the code are of less interest. The adaptation of the Ferret display,
based on the analysis of two files in the context of the group, provides all
of this information, and also allows the user to see the relevant text.

The visualisation adds group context to the comparison between two
files. The more interesting sections of the file are highlighted, which helps
in assessing the nature of the similarity between the files. The tool has not
yet been applied to other groups of submissions, or by other users, therefore

it is difficult to evaluate its usefulness.

17.3.2 File comparison with 3CO

There does not appear to be a tool available which can display comparisons
between more than three files at once. This makes comparing files in origin
analysis very difficult. Asshown throughout this dissertation, the relatively
compact display of 3CO has proved invaluable in understanding interac-
tions between a group of files, and in speeding up manual classification of
the large number of file groups in this research. It also has a place in other
tile comparison tasks, such as collusion detection, as shown in Chapter 9.

Without this tool, much of the work in this research would not have
been possible. For example, it would have been unthinkable to undertake
the very large number of file comparisons in the filtering experiments.

The XMLs are produced in reasonable time, the average over a set of 400

tiles with a mean of 8 target files each, is 1 second per file, under Ubuntu



318 CHAPTER 17. DISCUSSION AND EVALUATION

on a machine with 2.9GB memory and a 2.4 GHz processor. The analysis is
not yet integrated into Ferret but works externally, analysing the trigram-
file index, the trigrams, and related white-space, then mapping back to the

original code. It should be considerably faster if integrated into Ferret.

There are a couple of negative points about the display. First, because the
colour of each token is based on the files each of its three trigrams appear in,
heavily edited sections of code may not be coloured as expected, and if there
are high levels of incidental similarity the code can appear very fragmented.
These conditions occur infrequently, and alternative techniques could be
adopted when they do. For example, for gapped copying, a “darker” colour
scheme where tokens for which only one of the three trigrams belongs to
a file are coloured to match that file, giving a similar result to a standard

Ferret comparison between two files for the gapped copy region.

Second, from my limited observation of people’s understanding of the
tool, the majority easily grasp how it works. However, for some it takes a
little more work to get a “feel” for it. A more subtle colour scheme using
intermediate hues [224] would provide more information, but would need
tuning to an individual monitor, and the finer differences in colour may
be difficult to perceive, and less easily understood. As already noted, the
colour scheme can be adjusted to cater for colour blindness. For example,

using underlining or shaded backgrounds in place of one or more colours.

Set against the benefits of the tool is the fact that by focusing on the
base file, information about the target files, which is available in pairwise
comparisons, is lost. One way to overcome this drawback, and to make
3CO suitable for more general use, would be to provide the option to select
alternate views. For example, to show a pairwise comparison between the
base file and any of the target files, or to select a new base file from among
the group displayed. Also, in origin analysis, the ability to select a file to
view its evolution would be helpful, in other words, a new display with the

tile compared with itself in the previous, next or both versions.



17.4. OTHER TOOLS 319

17.4 Other tools

17.4.1 Density analysis

The density analysis technique used to measure “gapped” blocks and to
create features performs as expected. However, as a top down approach it
can be slow when the files being analysed are large and have high levels
of incidental similarity (i.e. there are many segments), and therefore may
benefit from a different approach. Bottom-up approaches were considered,
but not fully explored [94, p.8]. The density tool is an early prototype based
on the density analysis. The following additions would make the tool more

generally useful:

e profiles of each file with block positions highlighted and selectable,
e links from blocks in one file to the closest match(es) in the other file, and

e a more functional front end, so that the user has only to choose the files
and the parameters, rather than, as in the present version, providing the

result of a previous Ferret comparison in the form of an XML file.

17.4.2 One-to-one matching of clone output

It is difficult to assess how the Unscrambling tool performs because the
only comparisons between tools are the relative merits of the feature sets,
for which there are too many other variables. On test data it performs as
expected. Although useful for files where there may be a large number of
many-to-many clones, this analysis is perhaps less useful in smaller entities,
such as methods, because there are unlikely to be enough clones in smaller
entities for it to be worthwhile. There are limitations in the approach
taken to matching multiple copies, where a greedy first-come first-matched
approach is adopted. This could be altered, perhaps by considering the

surrounding code.



320 CHAPTER 17. DISCUSSION AND EVALUATION
17.5 Summary

This chapter has discussed the similarities and differences between this
research and other research in software origin analysis and collusion de-
tection. Also discussed are the difficulties encountered, their solutions or
suggested future solutions, and the limitations of the approaches.

There were a number of difficulties to overcome in this research. One
of the major problems is matching code in the face of high levels of inher-
ent similarity. For collusion detection this was tackled by looking instead
at the unusual similarities between files, an approach also used in origin
analysis, along with a range of other features looking at various aspects of
the relationships between pairs and groups of files.

Another difficulty was the need to label the training data and some of the
test data for machine learning. Manual classification was extremely time-
consuming prior to the development of the 3CO tool. However, this tool
enabled a more in-depth study than would otherwise have been possible.

Filtering in origin analysis is also difficult, because of the range of in-
teractions between a candidate file and its potential targets. Experiments
to find suitable criteria for filtering were mostly successful, but two areas
remain unresolved. Split files which have become larger are not selected,
and neither are target files which have become less similar to the candidate
file than in the previous release. As discussed, both of these problems may
be overcome by taking account of the difference sets.

As a purely textual approach, the collusion measure is limited in that it
will not detect well-disguised copying, but does mean that multi-language
projects can be processed. The measure is also useful when file sizes vary,
there is auto-generated code, or there is group collusion. In very large files,
the density tool could also be used to identify the blocks of duplicate code.

Potential improvements to the visualisations are discussed in this chap-
ter, the main improvement to both of these, and to the density tool, is to
incorporate them with Ferret.

The next chapter considers further application of the techniques and

tools developed, and the contributions made by this research.



Chapter 18

Conclusions and further work

In this chapter, the contributions to knowledge made in this dissertation are

reviewed and their application to other problems discussed.

18.1 Contributions to knowledge

The contributions are:

e Application of machine learning and text analysis techniques to the
field of software origin analysis, developing models from one set of
projects which have been successfully applied to four other projects,
three of which help to demonstrate the language independence of the

approach.

e Techniques for measuring relationships between files in a group,
based on trigram analysis of the source code text, and the devel-

opment of a novel set of features based on this analysis.

e A method for visualising the similarity of one file to a set of others by

colour coding the file text based on trigram analysis.
e A survey of approaches to source code plagiarism detection.

e A novel similarity measure for use in collusion detection.

321



322 CHAPTER 18. CONCLUSIONS AND FURTHER WORK

A method for colouring text to provide information about pairwise
comparisons between files in a group, giving contextual detail not

found elsewhere in the field of source code collusion detection.

e Techniques for providing information about the distribution in one
file of the trigrams shared with another file, both as sequences and, by

developing a flexible density analysis algorithm, as “gapped” blocks.

e A new method for ranking potential matches between entities in ori-

gin analysis, by finding “uniquely shared” trigrams.

e A technique for converting the many-to-many results of clone detec-

tion tools to match the clones on a one-to-one basis.

18.2 Further work

This section discusses ways in which the techniques developed in this dis-
sertation might be of benefit in other applications. Three areas are consid-

ered: origin analysis, n-gram analysis, and visualising file comparisons.

18.2.1 Origin analysis

Methods used in creating the machine learning models for origin analysis
could be applied to other projects, either as a whole or individually. The
models built to classify both split and disappearing files should apply to
other projects, certainly those written in C, and based on the test data, also
to those in Java and Python. In principle there is no reason why the models
should not work with many other programming languages, or with text,
however this would need to be tested.

The method of ranking target files by the number of unique trigrams they
share with the candidate file could be applied to other entities, and therefore
used in other origin analysis research, and potentially in matching other
documents. A version of this method is applied in the weighted trigram

count used in the collusion detection application described in Chapter 9.



18.2. FURTHER WORK 323

Individually, other techniques which have been used in this approach
and which could be applied to work both inside and outside the field of
software origin analysis are: building features based on group compar-
isons, using complementary measurements to improve generalisation, and

analysing similarity detection tool output to create a broad set of features.

18.2.2 N-gram analysis

The techniques described in this dissertation for analysing the trigram-file
index and XML output from Ferret can be applied to any n-gram analysis
tool which creates an inverted index, and maps the analysis back to the
source. However, the future application of these techniques are discussed
in terms of additions to the Ferret tool.

Ferret is a well-established copy detection tool. In practical terms, it
is simple to use, is very fast, can be used for both text and code, and is
a standalone tool, which is important where confidentiality is required.
When presented with a set of documents, it provides a similarity measure
for each pair. The user can select any of these file pairs to view their text, in
which the shared trigrams are highlighted. The techniques developed for

analysing other outputs available from Ferret are broadly:

e Analysis of the trigram-file index to

o find groups of related files,

o find the relative “importance” of the shared trigrams, based on the
number of files which contain them, and

o produce measures based on less frequently occurring trigrams.

e Analysis of the XML output to

o find out about the distribution of the shared trigrams in the texts.

The results of these analyses could be used to add features to Ferret to

provide a wider range of information for the user. For example:

1. Integrating other code colourings into the present text comparisons,



324 CHAPTER 18. CONCLUSIONS AND FURTHER WORK

9.4 |9.9(ii)

File 1l:=-

Units (tokens/words/characters) in file: 242213

Hatched and unmatched sections in file: 36660
Number of dense blocks in file: 71
Total units in dense blocks: 105633
Covered by matched trigrams: 99337
Not ,covered by matched trigrams: 6296

t

Figure 18.1: Figures 9.4, 9.9: (i) uniquely shared code in red and (ii) code shared
by groups in shades of orange to red, and F.2 repeated for reference

such as those shown in the middle and on the right of Figure 9.8, and

repeated to either side of Figure 18.1.

2. Adding alternative similarity measures to the table of pairwise simi-

larity scores, with the option to sort on these measures.

3. Providing statistical information about blocks found by density anal-

ysis in the pairwise reports, such as that at the top left of Figure F.2



18.2. FURTHER WORK 325

(also at the bottom of Figure 18.1); and giving the full results of the
analysis as a click-through screen, based on that shown in Figure F.2,

with the amendments recommended in Section 17.4.1.

4. Producing graphical displays of group interactions based on the cho-
sen measure, such as that shown in Figure 9.4 and at the top of Fig-
ure 18.1.

5. Identifying unique trigrams among a group to enable use of these

trigrams as search terms in cases where their source is uncertain.

These features would also be suitable for application to other collusion
detection tools. However, approaches which make comparisons on a purely
pairwise basis would not be able to adopt the first two, or the last, of these
suggestions.

Also, as discussed in Chapters 6 and 17, the density analysis tool is
an early prototype. There are a number of alterations and improvements
suggested in Section 17.4.1 which would help in developing this tool for

more general use.

18.2.3 File comparison with 3CO

The ability to view relationships between files based on the trigrams they
contain has saved time in the task of manually classifying files. It is also
shown to be useful in quickly understanding the interaction between one file
and a group of others where inappropriate code duplication is suspected.

This way of displaying files should be useful in other origin analy-
sis tasks, as the same technique will work with smaller entities, such as
methods. The visualisation is also helpful in understanding the interaction
between entities where there are numerous potential matches.

The idea of combining primary colours to show the elements from one
file present in up to three others can also be applied to comparisons based
on other units, such as lines or sequences. To use the technique with n-
grams where n#3, the voting mechanism for choosing the colour of a token

would need to be adapted.



326 CHAPTER 18. CONCLUSIONS AND FURTHER WORK
18.3 Conclusion

In this chapter, the contributions made by this work have been reviewed,
and applications for the techniques developed have been suggested as po-
tential avenues for further work.

The aim of this work was to investigate the identification and classifi-
cation of changes to evolving software code. In particular, to extract group
relationships between evolving files using text analysis, and to use machine
learning to classify files based on these relationships.

The application of these techniques to origin analysis has been success-
ful. Previous approaches to origin analysis rely on predetermined rules in
selecting matches between software entities. The approach taken in this
work tackles this difficult problem by allowing machine learning to find
patterns which best describe the problem in data from a range of sources.
Also, because the approach is text-based, it should be applicable to most
programming languages and to text.

A subset of the techniques were applied to collusion detection and
have provided a useful similarity measure which overcomes many of the
problems identified in detecting collusion in groups of unevenly sized files
with high incidental similarity, and consisting of a mix of languages.

The visualisations created to support each of these applications are also
based on text analysis and the relationships among files in a group. Further
work is needed to assess the worth of the collusion detection visualisation.
The 3CO tool has proved particularly useful in this work and could prove

to be more generally applicable in file comparison tasks.



Bibliography

[1]

3]

[4]

[5]

[6]

[7]

Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API patterns as
partial orders from source code: from usage scenarios to specifications. In
ESEC-FSE '07: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 25-34, New York, NY, USA, 2007. ACM.

Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: GPL-
licensed source code plagiarism detection engine for Java exercises. In
M. Wiggberg A. Berglund, editor, 6th Baltic Sea Conference on Computing
Education Research, pages 141-142. Uppsala University, Sweden, 2007.

Alex Aiken. Moss system for detecting software plagiarism. http://theory
.stanford.edu/aiken/moss/, 1997.

Stephen F. Altschul, Warren Gish, Webb C. Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. Journal of molecular
biology, 215(3):403—410, October 1990.

Christian M. Ammann. Duplo - code clone detection tool. Sourceforge

project, 2005. http://sourceforge.net/projects/duplo/.

Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic
approach to identify class evolution discontinuities. In IWPSE "04: Proceed-
ings of the 7th International Workshop on Principles of Software Evolution, pages
31-40, Washington, DC, USA, 2004. IEEE Computer Society.

Giuliano Antoniol, Umberto Villano, Massimiliano Di Penta, Gerardo
Casazza, and Ettore Merlo. Identifying clones in the linux kernel. In SCAM
"01: Proceedings of the 1st IEEE International Workshop on Source Code Analysis
and Manipulation, pages 92-99. IEEE Computer Society, 2001.

327



328

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A
differencing algorithm for object-oriented programs. International Conference
on Automated Software Engineering, 0:2-13, 2004.

Christian Arwin and Seyed M. M. Tahaghoghi. Plagiarism detection across
programming languages. In Vladimir Estivill-Castro and Gillian Dobbie,
editors, ACSC, volume 48 of CRPIT, pages 277-286. Australian Computer
Society, 2006.

Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from
bug-introducing changes to prevent fault prone code. In IWPSE 07: 9th
International Workshop on Principles of Software Evolution, pages 19-26, New
York, NY, USA, 2007. ACM.

Brenda S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In WCRE, pages 86-95, 1995.

Brenda S. Baker. Parameterized pattern matching: Algorithms and applica-
tions. Journal of Computer and System Sciences, 52(1):28-42, 1996.

Brenda S. Baker. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM Journal on Computing, 26(5):1343—-
1362, 1997.

Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE
Computer, 29(4):33-43, 1996.

Victor R. Basili and Lionel C. Briand, editors. 13th Working Conference on
Reverse Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy. IEEE
Computer Society, 2006.

Ira D. Baxter, Andrew Yahin, Leonardo Mendonca de Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syntax trees.
In ICSM "98: Proceedings of the 14th IEEE International Conference on Software
Maintenance, pages 368-377, 1998.

Laszlo A. Belady and M. M. Lehman. A model of large program develop-
ment. IBM Systems Journal, 15(3):225-252, 1976.

Boumediene Belkhouche, Anastasia Nix, and Johnette Hassell. Plagiarism
detection in software designs. In Seong-Moo Yoo and Letha H. Etzkorn,
editors, ACM Southeast Regional Conference, pages 207-211. ACM, 2004.



BIBLIOGRAPHY 329

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE Transactions
on Software Engineering, 33(9):577-591, 2007.

Houda Benbrahim and Max Bramer. Text and hypertext categorization. In
Max Bramer, editor, Artificial Intelligence: An International Perspective, volume

5640 of Lecture Notes in Computer Science, pages 11-38. Springer, 2009.

Benjamin Biegel and Stephan Diehl. JCCD: a flexible and extensible API
for implementing custom code clone detectors. In Charles Pecheur, Jamie
Andrews, and Elisabetta Di Nitto, editors, ASE, pages 167-168. ACM, 2010.

Benjamin Biegel, Quinten David Soetens, Willi Hornig, Stephan Diehl, and
Serge Demeyer. Comparison of similarity metrics for refactoring detection.
In Arie van Deursen, Tao Xie, and Thomas Zimmermann, editors, MSR,
pages 53-62. IEEE, 2011.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-
tion. Journal of Machine Learning Research, 3:993-1022, 2003.

Avrim Blum. Machine learning theory (essay). http://www.cs.cmu.edu/
~avrim/, 2007.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with
co-training. In COLT: Proceedings of the Workshop on Computational Learning
Theory, Morgan Kaufmann Publishers, pages 92-100, 1998.

Salah Bouktif, Balazs Kegl, and Houari Sahraoui. Combining software qual-
ity predictive models: An evolutionary approach. In ICSM 02: Proceedings
of the International Conference on Software Maintenance, pages 385-392, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

Max Bramer. Principles of Data Mining. Springer, 2007.
Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Bjorn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-
based classification: A unifying perspective. CoRR, abs/1111.6191, 2011.

Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain
Robbes. Language-independent clone detection applied to plagiarism de-
tection. In SCAM'10:Proceedings of 10th IEEE International Workshop on Source
Code Analysis and Manipulation, pages 77-86. IEEE Computer Society, 2010.



330

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

BIBLIOGRAPHY

Andrei Z. Broder. On the resemblance and containment of documents. In
SEQUENCES '97: Proceedings of the Compression and Complexity of Sequences
1997, page 21, Washington, DC, USA, 1997. IEEE Computer Society.

Steven Burrows. Source Code Authorship Attribution. PhD thesis, School
of Computer Science and Information Technology, College of Science, En-
gineering and Health, RMIT University, Melbourne, Victoria, Australia.,
November 2010.

Steven Burrows, Seyed M. M. Tahaghoghi, and Justin Zobel. Efficient pla-
giarism detection for large code repositories. Software Practice and Experience,
37(2):151-175, 2007.

Raymond P. L. Buse and Westley Weimer. A metric for software readability.
In Barbara G. Ryder and Andreas Zeller, editors, ISSTA, pages 121-130.
ACM, 2008.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes.

Ensemble selection from libraries of models, 2004.

Pierre Caserta and Olivier Zendra. Visualization of the static aspects of
software: A survey. IEEE Trans. Vis. Comput. Graph., 17(7):913-933, 2011.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-
nifer Widom. Change detection in hierarchically structured information. In
H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD Conference,
pages 493-504. ACM Press, 1996.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. ]. Ar-
tif. Intell. Res. (JAIR), 16:321-357, 2002.

Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and Gillian Z. Heller.
Open-source change logs. Empirical Software Engineering., 9(3):197-210, 2004.

Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker. Shared
information and program plagiarism detection. IEEE Transactions on Infor-
mation Theory, 50(7):1545-1551, 2004.

Michel Chilowicz, Etienne Duris, and Gilles Roussel. Finding similarities
in source code through factorization. Electronic Notes in Theoretical Computer
Science, 238(5):47-62, 2009.



BIBLIOGRAPHY 331

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Kenneth Ward Church and Jonathan Isaac Helfman. Dotplot: A program
for exploring self-similarity in millions of lines of text and code. Computing
Science and Statistics, 24:58, 1993.

Victor Ciesielski, Brian T. Lam, and Minh Luan Nguyen. Comparison of
evolutionary and conventional feature extraction methods for malt classifi-

cation. In IEEE Congress on Evolutionary Computation, pages 1-7. IEEE, 2012.

David A. Cieslak and Nitesh V. Chawla. Learning decision trees for un-
balanced data. In Walter Daelemans, Bart Goethals, and Katharina Morik,
editors, ECML/PKDD (1), volume 5211 of Lecture Notes in Computer Science,
pages 241-256. Springer, 2008.

Daoud Clarke, Peter Lane, and Paul Hender. Developing robust models for
favourability analysis. In Proceedings of the 2nd Workshop on Computational
Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011), pages 44-52,

Portland, Oregon, June 2011. Association for Computational Linguistics.

Paul Clough. Old and new challenges in automatic plagiarism detection. In
National Plagiarism Advisory Service, 2003; http:/fir.shef.ac.uk/cloughie/index.html,
pages 391407, 2003.

William W. Cohen. Fast effective rule induction. In ICML, pages 115-123,
1995.

Stephen Cook, Keiichi Nakata, and Paul Wernick. European laboratory for
software evolution (else): Vision statement. In Automated Software Engi-
neering Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International
Conference on, pages 92-95. IEEE, 2008.

James R. Cordy and Chanchal K. Roy. The NiCad clone detector. In Susan E.
Sim and Filippo Ricca, editors, ICPC, pages 219-220. IEEE Computer Society,
2011.

Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and
Rainer Koschke. A systematic survey of program comprehension through
dynamic analysis. IEEE Trans. on Software Engineering, 35(5):684-702, 2009.

Georgina Cosma. An approach to source-code plagiarism detection and inves-
tigation using Latent Semantic Analysis. PhD thesis, University of Warwick,
2008.

UCL Crest SBSE Group. Search Based Software Engineering Repository.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html.



332

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

BIBLIOGRAPHY

Davor Cubranic and Gail C. Murphy. Automatic bug triage using text cat-
egorization. In SEKE '04: Proceedings of the 16th International Conference on
Software Engineering & Knowledge Engineering, pages 92-97, 2004.

Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive
changes for framework evolution. In Schéfer et al. [209], pages 481-490.

Barthélémy Dagenais and Martin P. Robillard. Semdiff: Analysis and recom-
mendation support for API evolution. In Fickas et al. [75], pages 599-602.

Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger.
Analysing software repositories to understand software evolution. In Mens

and Demeyer [167], pages 37-67.

Neil Davey, Paul Barson, Simon Field, and Ray Frank. The development of
a software clone detector. International Journal of Applied Software Technology,
1(3/4):219-236, 1995.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science, 41(6):391-407, 1990.

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refac-
torings via change metrics. In OOPSLA "00: Proceedings of the 15th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 166-177, New York, NY, USA, 2000. ACM.

Lee R. Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297-302, 1945.

Thomas G. Dietterich. Ensemble learning. In M.A. Arbib, editor, The Hand-
book of Brain Theory and Neural Networks, Second edition. The MIT Press, Cam-
bridge, MA, 2002.

Diff - The linux diff utility:. http://www.gnu.org/software/diffutils/.

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Auto-
mated detection of refactorings in evolving components. In Dave Thomas,
editor, ECOOP, volume 4067 of Lecture Notes in Computer Science, pages 404—
428. Springer, 2006.

Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On the effec-
tiveness of clone detection by string matching: Research articles. Journal of
Software Maintenance and Evolution, 18(1):37-58, 2006.



BIBLIOGRAPHY 333

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language inde-
pendent approach for detecting duplicated code. In Hongji Yang and Lee
White, editors, ICSM "99: Proceedings of the 15th IEEE International Conference
on Software Maintenance, pages 109-118. IEEE, 1999.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding program
comprehension by static and dynamic feature analysis. In ICSM "01: Proceed-
ings of the 17th IEEE International Conference on Software Maintenance, pages
602-611, 2001.

Emelie Engstrom, Mats Skoglund, and Per Runeson. Empirical evaluations
of regression test selection techniques: a systematic review. In H. Dieter
Rombach, Sebastian G. Elbaum, and Jiirgen Miinch, editors, ESEM, pages
22-31. ACM, 2008.

Seyda Ertekin, Jian Huang, Léon Bottou, and C. Lee Giles. Learning on the
border: active learning in imbalanced data classification. In Mario J. Silva,
Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness,
Bjorn Olstad, Oystein Haug Olsen, and André O. Falcdo, editors, CIKM,
pages 127-136. ACM, 2007.

Pedro G. Espejo, Sebastidn Ventura, and Francisco Herrera. A survey on the
application of genetic programming to classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part C, 40(2):121-144, 2010.

Jinan A. W. Faidhi and Stuart K. Robinson. An empirical approach for
detecting program similarity within a university programming environment.
Computers and Education, 11(1):11-19, 1987.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
data mining to knowledge discovery in databases. Al Magazine, 17(3):37-54,
1996.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program de-
pendence graph and its use in optimization. In Manfred Paul and Bernard
Robinet, editors, Symposium on Programming, volume 167 of Lecture Notes in

Computer Science, pages 125-132. Springer, 1984.

Stephen Few. Data Visualization for Human Perception. The Interaction Design
Foundation, Aarhus, Denmark, 2010.



334 BIBLIOGRAPHY

[75] Stephen Fickas, Joanne M. Atlee, and Paola Inverardi, editors. 31st In-
ternational Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings. IEEE, 2009.

[76] Beat Fluri, Emanuel Giger, and Harald Gall. Discovering patterns of change
types. In Automated Software Engineering, pages 463—466. IEEE, 2008.

[77] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change
distilling:tree differencing for fine-grained source code change extraction.
IEEE Transactions on Software Engineering, 33(11):725-743, 2007.

[78] Martin Fowler. Refactoring: Improving the design of existing code. Addison-
Wesley, Reading, MA, USA., 1999.

[79] A.Frank and A. Asuncion. UCI machine learning repository, 2010.

[80] Eibe Frank, Geoffrey Holmes, Richard Kirkby, and Mark Hall. Racing com-
mittees for large datasets. In DS’02: Proceedings of the 5th Int’l. Conference on
Discovery Science, pages 153-164, London, UK, 2002. Springer-Verlag.

[81] Manuel Freire. Visualizing program similarity in the AC plagiarism detection
system. In Proceedings of Advanced Visual Interfaces (AVI), pages 404-407, New
York, USA, May 2008. ACM Press.

[82] Manuel Freire, Manuel Cebridn, and Emilio del Rosal. AC: An integrated

source code plagiarism detection environment. CoRR, abs/cs/0703136, 2007.

[83] Manuel Freire, Manuel Cebrian, and Emilio del Rosal. Uncovering plagia-
rism networks. arXiv:cs/0703136v7 [cs.IT], 2007, revised 2011.

[84] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In EuroCOLT '95: Proceedings
of the 2nd European Conference on Computational Learning Theory, pages 23-37,
London, UK, 1995. Springer-Verlag.

[85] Jerome Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:

a statistical view of boosting, 1998.

[86] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in a visual
tool for distributed software development teams. In ICSE, pages 387-396.
IEEE Computer Society, 2004.

[87] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of seman-
tic clones. In Schifer et al. [209], pages 321-330.



BIBLIOGRAPHY 335

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Tudor Girba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and Ratiu
Daniel. Using concept analysis to detect co-change patterns. In IWPSE "07:
9th International Workshop on Principles of Software Evolution, pages 83-89,
New York, NY, USA, 2007. ACM.

David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in
computer programs. In Jane Prey and Robert E. Noonan, editors, SIGCSE,
pages 266-270. ACM, 1999.

Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging
and splitting of source code entities. IEEE Transactions on Software Engineering,
31(2):166-181, 2005.

Carsten Gorg and Peter Weifigerber. Detecting and visualizing refactorings
from software archives. In IWPC ’05: Proceedings of the 13th IEEE Int’l.
Workshop on Program Comprehension, pages 205-214. IEEE Computer Society,
2005.

Pam Green. Ferret density analysis tool. http://homepages.feis.herts.ac.uk/
~gp2ag/density.html, 2010.

Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Building
classifiers to identify split files. In Petra Perner, editor, MLDM Posters, pages
1-8. IBal Publishing, 2009.

Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz.
Analysing Ferret XML reports to estimate the density of copied code. Tech-
nical Report 501, University of Hertfordshire, College Lane, Hatfield, Herts
AL109AB, UK, April 2010.

Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Selecting
features in origin analysis. In Max Bramer, Miltos Petridis, and Adrian
Hopgood, editors, SGAI Conference, pages 379-392. Springer, 2010.

Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Un-
scrambling code clones for one-to-one matching of duplicated code. Tech-
nical Report 502, University of Hertfordshire, College Lane, Hatfield, Herts
AL109AB, UK, April 2010.

Pam Green, Peter C. R. Lane, Austen Rainer, Sven-Bodo Scholz, and

Steve Bennett. Same difference: Detecting collusion by finding unusual



336 BIBLIOGRAPHY

shared elements. In Proceedings of the 5th International Plagiarism Con-
ference, Newcastle-upon-Tyne, UK, July 2012. iParadigms, iParadigms.

http://archive.plagiarismadvice.org//conference-programme.

[98] Isabelle Guyon and Andre Elisseeff. Feature extraction: Foundations and ap-
plications, volume 978-3540354871 of Studies in fuzziness and soft computing,
chapter An Introduction to Feature Extraction. Springer-Verlag, New York,
Secaucus, NJ, USA, August 2006.

[99] Jurriaan Hage, Peter Rademaker, and Nike van Vugt. A comparison of plagia-
rism detection tools. Technical Report UU-CS-2010-015, Utrecht University,
June 2010. Further information from http://www.cs.uu.nl/docs/ vakken/a-

pa/10plagiarismdetection.pdf.

[100] Maria Halkidi, Diomidis Spinellis, George Tsatsaronis, and Michalis Vazir-
giannis. Data mining in software engineering. Intelligent Data Analysis,
15(3):413-441, 2011.

[101] Mark A. Hall. Correlation-based Feature Subset Selection for Machine Learning.
PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[102] Mark A. Hall. Weka forum advice. http://comments.gmane.org/gmane
.comp.ai.weka/10582, August 2007.

[103] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[104] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data
Mining. MIT Press, Cambridge, MA, 2001.

[105] Simon Harris. Simian. http://www.redhillconsulting.com.au/products/
simian. Copyright (c) 2003-08 RedHill Consulting Pty. Ltd.

[106] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In
NIPS '97: Proceedings of the 1997 conference on Advances in neural information
processing systems 10, pages 507-513, Cambridge, MA, USA, 1998. MIT Press.

[107] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. Know!-
edge and Data Engineering, IEEE Transactions on, 21(9):1263-1284, Sept. 2009.

[108] Abram Hindle, Daniel M. German, Michael W. Godfrey, and Richard C.
Holt. Automatic classification of large changes into maintenance categories.
In ICPC '09: IEEE 17th International Conference on Program Comprehension,
pages 30-39. IEEE Computer Society, 2009.



BIBLIOGRAPHY 337

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

Timothy C. Hoad and Justin Zobel. Methods for identifying versioned and
plagiarized documents. Journal of the American Society for Information Science
and Technology, 54(3):203-215, 2003.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to

support vector classification, 2000.

Liuliu Huang, Shumin Shi, and Heyan Huang. A new method for code
similarity detection. In Progress in Informatics and Computing (PIC), 2010
IEEE International Conference on, volume 2, pages 1015-1018, dec. 2010.

Paul Jaccard. Etude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles,
37:547-579, 1901.

Ameera Jadalla and Ashraf Elnagar. PDE4Java: Plagiarism detection engine
for Java source code: a clustering approach. IJBIDM, 3(2):121-135, 2008.

Jeong-Hoon Ji, Soo-Hyun Park, Gyun Woo, and Hwan-Gue Cho. Source
code similarity detection using adaptive local alignment of keywords. In
David S. Munro, Hong Shen, Quan Z. Sheng, Henry Detmold, Katrina E.
Falkner, Cruz Izu, Paul D. Coddington, Bradley Alexander, and Si-Qing
Zheng, editors, PDCAT, pages 179-180. IEEE Computer Society, 2007.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
DECKARD: Scalable and accurate tree-based detection of code clones. In
ICSE '07: Proceedings of the 29th International Conference on Software Engineer-
ing, pages 96-105, Washington, DC, USA, 2007. IEEE Computer Society.

Edward L. Jones. Metrics based plagiarism monitoring. Journal of Computing
Sciences in Colleges, 16(4):253-261, 2001.

Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic
model of information retrieval: development and comparative experiments -
parts 1 and 2. Information Processing and Management, 36(6):779-808, 809-840,
2000.

Mike Joy, Georgina Cosma, Jane Yau, and Jane Sinclair. Source code plagia-
rism - a student perspective. IEEE Trans. Education, 54(1):125-132, 2011.



338

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

BIBLIOGRAPHY

Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE
Transactions on Education, 42(1):129-133, 1999.

Elmar Jiiergens, Florian Deissenboeck, and Benjamin Hummel. CloneDetec-
tive - a workbench for clone detection research. In Fickas et al. [75], pages
603-606.

Vedran Juricic. Detecting source code similarity using low-level languages.
In Information Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd Inter-
national Conference on, pages 597 —602, June 2011.

Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of Software Maintenance, 19(2):77-131, 2007.

Toshihiro Kamiya. AIST CCFinder official site. http://www.ccfinder.net/in-
dex.html.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a mul-
tilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering, 28(7):654—670, 2002.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to Platt’s SMO algorithm for SVM classifier design. Neural
Computation, 13(3):637-649, 2001.

Miryung Kim and David Notkin. Program element matching for multi-
version program analyses. In MSR “06: Proceedings of the 2006 International
Workshop on Mining Software Repositories, pages 58—-64, New York, NY, USA,
2006. ACM.

Miryung Kim, David Notkin, and Dan Grossman. Automatic inference
of structural changes for matching across program versions. In ICSE "07:
Proceedings of the 29th International Conference on Software Engineering, pages
333-343, Washington, DC, USA, 2007. IEEE Computer Society.

Sunghun Kim, E. James Whitehead Jr., and Yi Zhang 0001. Classifying
software changes: Clean or buggy? IEEE Transactions on Software Engineering,
34(2):181-196, 2008.

Sunghun Kim, Kai Pan, and E. James Whitehead Jr. When functions change
their names: Automatic detection of origin relationships. In WCRE “05:
Proceedings of the 12th Working Conference on Reverse Engineering, pages 143—
152, Pittsburgh, PA, USA, 2005. IEEE Computer Society.



BIBLIOGRAPHY 339

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Rob Kitchin and Martin Dodge. Code/Space: Software and Everyday Life. MIT
Press, Cambridge MA, 2011.

Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combin-
ing classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(3):226-239, 1998.

Patrick Knab, Martin Pinzger, and Abraham Bernstein. Predicting defect
densities in source code files with decision tree learners. In MSR "06: Pro-
ceedings of the 2006 International Workshop on Mining Software Repositories,
New York, NY, USA, May 2006. ACM Press, ACM Press.

Raghavan Komondoor and Susan Horwitz. Using slicing to identify dupli-

cation in source code. Lecture Notes in Computer Science, 2126:40-56, 2001.

Kostas Kontogiannis. Evaluation experiments on the detection of program-
ming patterns using software metrics. In WCRE "97: Proceedings of the 4th
Working Conference on Reverse Engineering, pages 44—, 1997.

Kostas A. Kontogiannis, Renato De Mori, Ettore Merlo, M. Galler, and Mor-
ris Bernstein. Pattern matching for clone and concept detection. Reverse

engineering, pages 77-108, 1996.

Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using

abstract syntax suffix trees. In Basili and Briand [15], pages 253-262.

Yasemin Kosker, Burak Turhan, and Ayse Basar Bener. An expert system for
determining candidate software classes for refactoring. Expert Systems with
Applications, 36(6):10000-10003, 2009.

Jens Krinke. Identifying similar code with program dependence graphs. In

Proc. Eighth Working Conference on Reverse Engineering, pages 301-309, 2001.

Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced
training sets: One-sided selection. In Douglas H. Fisher, editor, ICML, pages
179-186. Morgan Kaufmann, 1997.

Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. Pre-
dicting the severity of a reported bug. In Jim Whitehead and Thomas Zim-
mermann, editors, MSR, pages 1-10. IEEE, 2010.



340

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

BIBLIOGRAPHY

Thomas Lancaster. Effective and Efficient Plagiarism Detection. PhD thesis,
Birmingham City University, Birmingham, UK, 2003.

Thomas Lancaster and Mark Tetlow. Does automated anti-plagiarism have
to be complex? Evaluating more appropriate software metrics for finding
collusion. In Ascilite 2005, pages 361-370, Brisbane, Australia, 2005. Ascilite
2005.

Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine
Learning, 59(1-2):161-205, 2005.

Peter C. R. Lane, Caroline M. Lyon, and James A. Malcolm. Demonstration

of the Ferret plagiarism detector. In 2nd Int’l. Plagiarism Conference, 2006.

Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. Automatic
feature generation for machine learning based optimizing compilation. In
CGO, pages 81-91. IEEE Computer Society, 2009.

M. M. Lehman. Laws of software evolution revisited. In Carlo Montangero,
editor, EWSPT, volume 1149 of Lecture Notes in Computer Science, pages 108—
124. Springer, 1996.

Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting im-
plicit programming rules and detecting violations in large software code. In
ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 306-315, New York, NY, USA, 2005. ACM.

Christian Lindig. Mining patterns and violations using concept analysis.

http://www.st.cs.uni-sb.de/lindig/papers, 2007.

Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: detection of
software plagiarism by program dependence graph analysis. In Tina Eliassi-
Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD,
pages 872-881. ACM, 2006.

Wei Zhong Liu, Allan P. White, Simon G. Thompson, and Max A. Bramer.
Techniques for dealing with missing values in classification. In Xiaohui Liu,
Paul R. Cohen, and Michael R. Berthold, editors, IDA, volume 1280 of Lecture
Notes in Computer Science, pages 527-536. Springer, 1997.

V. Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding com-

mon error patterns by mining software revision histories. In 13th ACM



BIBLIOGRAPHY 341

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

SIGSOFT International Symposium on the Foundations of Software Engineering,
pages 296-305. ACM Press, 2005.

Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. Experiments in
electronic plagiarism detection. Technical Report 388, University of Hert-
fordshire, 2003. http://hdl.handle.net/2299/1774.

Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. A theoretical basis
to the automated detection of copying between texts, and its practical im-
plementation in the Ferret plagiarism and collusion detector. In JISC(UK)

Conference on Plagiarism: Prevention, Practice and Policies Conference, 2004.

Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. Plagiarism is easy,
but also easy to detect. Plagiary: Cross-disciplinary studies in plagiarism, fabri-
cation and falsification, 1:1-10, 2006.

Caroline M. Lyon, James A. Malcolm, and Bob Dickerson. Detecting short
passages of similar text in large document collections. In Proceedings of Con-
ference on Empirical Methods in Natural Language Processing. SIGDAT, Special
Interest Group of the ACL, 2001.

James A. Malcolm and Peter C. R. Lane. An approach to detecting article

spinning. In 3rd International Conference on Plagiarism, 2008.

Jonathan I. Maletic and Andrian Marcus. Supporting program comprehen-
sion using semantic and structural information. In ICSE '01: Proceedings
of the 23rd International Conference on Software Engineering, pages 103-112,
Washington, DC, USA, 2001. IEEE Computer Society.

Udi Manber. Finding similar files in a large file system. In USENIX Winter,
pages 1-10, 1994.

Heikki Mannila. Data mining: Machine learning, statistics, and databases.
In Per Svensson and James C. French, editors, SSDBM, pages 2-9. IEEE
Computer Society, 1996.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, Cambridge, MA, USA, 2001.

Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept

clones in source code. In ASE, pages 107-114. IEEE Computer Society, 2001.

Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman
& Hall/CRC, 1st edition, 2009.



342

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

BIBLIOGRAPHY

Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the au-
tomatic detection of function clones in a software system using metrics. In
ICSM, pages 244-253, 1996.

Prem Melville and Raymond J. Mooney. Constructing diverse classifier
ensembles using artificial training examples. In Georg Gottlob and Toby
Walsh, editors, IJCAI, pages 505-512. Morgan Kaufmann, 2003.

Tom Mens and Serge Demeyer, editors. Software Evolution. Springer, 2008.

Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans-
actions on Software Engineering, 30(2):126-139, 2004.

Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters,
and Burak Turhan. The PROMISE repository of empirical software engineer-
ing data. http://promisedata.googlecode.com, June 2012.

Ettore Merlo. Detection of plagiarism in university projects using metrics-
based spectral similarity. In Rainer Koschke, Ettore Merlo, and Andrew
Walenstein, editors, Duplication, Redundancy, and Similarity in Software, vol-
ume 06301 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2006.

Thomas M. Mitchell. Machine Learning. McGraw-Hill Higher Education,
1997.

Tom M. Mitchell. The discipline of machine learning. Machine Learning
CMU-ML-06-108, Carnegie Mellon University, July 2006.

Lefteris Moussiades and Athena Vakali. PDetect: A clustering approach for
detecting plagiarism in source code datasets. The Computer Journal, 48(6):651—
661, 2005.

Maxim Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. PhD
thesis, Department of Computer Science, University of Joensuu, University
of Joensuu, P.O.Box 111, FIN-80101 Joensuu, Finland, November 2007.

Maxim Mozgovoy, Kimmo Fredriksson, Daniel R. White, Mike Joy, and
Erkki Sutinen. Fast plagiarism detection system. In Mariano P. Consens and
Gonzalo Navarro, editors, SPIRE, volume 3772 of Lecture Notes in Computer

Science, pages 267-270. Springer, 2005.



BIBLIOGRAPHY 343

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]
[184]

[185]

[186]

[187]

Emerson Murphy-Hill, Andrew P. Black, Danny Dig, and Chris Parnin.
Gathering refactoring data: a comparison of four methods. In Proceedings of
the 2nd Workshop on Refactoring Tools, WRT "08, pages 7:1-7:5, New York, NY,
USA, 2008. ACM.

Sandra Nadelson. Academic misconduct by university students: Faculty
perceptions and responses. Plagiary: Cross Disciplinary Studies in Plagiarism,
Fabrication, and Falsification, 2(2), 2007.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In ICSE "06: Proceeding of the 28th Int’l. Conference
on Software Engineering, pages 452-461, New York, NY, USA, 2006. ACM.

Iulian Neamtiu, Jeffrey S. Foster, and Michael W. Hicks. Understanding
source code evolution using abstract syntax tree matching. In MSR. ACM,
2005.

Nils J. Nilsson. Introduction to machine learning: An early draft proposed
textbook. http://robotics.stanford.edu/people/nilsson/mlbook.html, 1998.

Seo-Young Noh, Sangwoo Kim, and Cheonyoung Jung. A lightweight pro-
gram similarity detection model using XML and Levenshtein distance. In
Hamid R. Arabnia, editor, FECS, pages 3-9. CSREA Press, 2006.

University of Alabama. Code clones literature. http://students.cis.uab.edu/

tairasr/clones/literature/#standalone.
Sourceforge open source software repository. http://sourceforge.net/, 1998.

Francois Pachet and Pierre Roy. Analytical features: A knowledge-based
approach to audio feature generation. EURASIP J. Audio, Speech and Music
Processing, 2009, 2009.

Frank Padberg, Thomas Ragg, and Ralf Schoknecht. Using machine learning
for estimating the defect content after an inspection. IEEE Transactions on
Software Engineering, 30(1):17-28, 2004.

Kai Pan, Sunghun Kim, and Jr. E. James Whitehead. Bug classification
using program slicing metrics. In SCAM ’06: Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and Manipulation, pages 3142,
Washington, DC, USA, 2006. IEEE Computer Society.

Chris Parnin and Carsten Gorg. Improving change descriptions with change
contexts. In Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey,
editors, MSR, pages 51-60. ACM, 2008.



344 BIBLIOGRAPHY

[188] J. Platt. Fast Training of Support Vector Machines using Sequential Minimal Op-
timization, chapter Advances in Kernel Methods - Support Vector Learning.
MIT Press, Cambridge, MA, USA, 1999. pp. 185-208.

[189] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms
among a set of programs with JPlag. The Journal of Universal Computer Science,
8(11):1016-1038, 2002.

[190] NASA Metrics Data Program. NASA software metrics dataset. http://mdp.

ivv.nasa.gov.
[191] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[192] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[193] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-15-81, Center for Research in Computing Technology, Harvard Univer-
sity, 1981.

[194] Austen W. Rainer, Peter C. R. Lane, James A. Malcolm, and Sven-Bodo
Scholz. Using n-grams to rapidly characterise the evolution of software
code. In The 4th International ERCIM Workshop on Software Evolution and
Evolvability, 2008.

[195] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-
sensitive inference of function precedence protocols. In ICSE "07: Proceedings
of the 29th International Conference on Software Engineering, pages 240-250,
Washington, DC, USA, 2007. IEEE Computer Society.

[196] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Static
specification inference using predicate mining. SIGPLAN Notices, 42(6):123—
134, 2007.

[197] Jacek Ratzinger, Thomas Sigmund, Peter Vorburger, and Harald Gall. Mining
software evolution to predict refactoring. Empirical Software Engineering and

Measurement, International Symposium on, 0:354-363, 2007.

[198] Evandro N. Regolin, Gustavo A. de Souza, Aurora R. T. Pozo, and Silvia R.
Vergilio. Exploring machine learning techniques for software size estimation.
In SCCC "03: Proceedings of the 23rd International Conference of the Chilean Com-
puter Science Society, page 130, Washington, DC, USA, 2003. IEEE Computer
Society.



BIBLIOGRAPHY 345

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

Randy L. Ribler and Marc Abrams. Using visualization to detect plagiarism

in computer science classes. In INFOVIS, pages 173-178, 2000.

Claudio Riva. Visualizing software release histories with 3DSoftVis. In ICSE,
page 789, 2000.

Roland Rivest. The MD5 Message-Digest algorithm. http://tools.ietf.org/pdf/
rfc1321.pdf, April 1992.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-
Beaulieu, and Mike Gatford. Okapi at TREC-3. In TREC, pages 109-126,
1994.

Juan J. Rodriguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation
Forest: A new classifier ensemble method. IEEE Transactions Pattern Analysis
and Machine Intelligence, 28(10):1619-1630, 2006.

Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. Comparison
and evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming, 74(7):470-495, 2009.

David E. Rumelhart and James L. McClelland. Parallel distributed processing,
2 vols. MIT Press, 1986. Explorations in the microstructure of cognition;

Vol.1: Foundations; Vol.2: Psychological and biological models.

Gerard Salton and Chris Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513-523, 1988.

Arthur L. Samuel. Informal quote. Reported by Andrew Y. Ng, In The Moti-
vation and Applications of Machine Learning, Video Lecture from the Stan-
ford Engineering Everywhere Series., May 2009. http://videolectures.net/
stanfordcs229f08_ng_lec01/.

Thorsten Schifer, Jan Jonas, and Mira Mezini. Mining framework usage

changes from instantiation code. In Schéfer et al. [209], pages 471-480.

Wilhelm Schifer, Matthew B. Dwyer, and Volker Gruhn, editors. 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008. ACM, 2008.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local
algorithms for document fingerprinting. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, pages
76-85, New York, NY, USA, 2003. ACM.



346 BIBLIOGRAPHY

[211] Alexander K. Seewald. How to make stacking better and faster while also
taking care of an unknown weakness. In ICML "02: Proceedings of the 19th
International Conference on Machine Learning, pages 554-561, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[212] Alexander K. Seewald and Johannes Fiirnkranz. An evaluation of grad-
ing classifiers. In IDA '01: Proceedings of the 4th International Conference
on Advances in Intelligent Data Analysis, pages 115-124, London, UK, 2001.
Springer-Verlag.

[213] Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

[214] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM. In Zoubin Ghahramani, editor,
ICML, volume 227 of ACM International Conference Proceeding Series, pages
807-814. ACM, 2007.

[215] Victor S. Sheng and Charles X. Ling. Cost-sensitive learning. In John
Wang, editor, Encyclopedia of Data Warehousing and Mining, pages 339-345.
IGI Global, 2009.

[216] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. An empirical study on
evolution of API documentation. In Dimitra Giannakopoulou and Fernando
Orejas, editors, FASE, volume 6603 of Lecture Notes in Computer Science, pages
416-431. Springer, 2011.

[217] Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin. Mining
the maintenance history of alegacy software system. In ICSM "03: Proceedings
of the International Conference on Software Maintenance, page 95, Washington,
DC, USA, 2003. IEEE Computer Society.

[218] Shivkumar Shivaji, E. James Whitehead Jr., Ram Akella, and Sunghun Kim.
Reducing features to improve bug prediction. In ASE, pages 600-604. IEEE
Computer Society, 2009.

[219] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In MSR '05: Proceedings of the 2005 International
Workshop on Mining Software Repositories, pages 1-5, New York, NY, USA,
2005. ACM.

[220] Temple F. Smith and Michael S. Waterman. Identification of common molec-

ular subsequences. Journal of Molecular Biology, 147:195-197, 1981.



BIBLIOGRAPHY 347

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

Jeong Woo Son, Seong-Bae Park, and Se-Young Park. Program plagiarism
detection using parse tree kernels. In Qiang Yang and Geoffrey I. Webb,
editors, PRICAI, volume 4099 of Lecture Notes in Computer Science, pages
1000-1004. Springer, 2006.

Dejan Sraka and Branko Kaucic. Source code plagiarism. In Vesna Luzar-
Stiffler, Iva Jarec, and Zoran Bekic, editors, ITI, pages 461-466. IEEE, 2009.

Tomasz F. Stepinski, Michael P. Mendenhall, and Brian D. Bue. Machine
cataloging of impact craters on mars. Icarus, 203(1):77-87, 2009.

Maureen Stone. Choosing colors for data visualization. Business In-
telligence Network http://72.251.211.178/articles/b-eye/choosing_
colors.pdf, January 2006. Accessed January 2012.

Margaret-Anne D. Storey, Davor Cubranic, and Daniel M. German. On the
use of visualization to support awareness of human activities in software
development: a survey and a framework. In Thomas L. Naps and Wim De
Pauw, editors, SOFTVIS, pages 193-202. ACM, 2005.

Herbert A. Sturges. The Choice of a Class Interval. Journal of the American
Statistical Association, 21(153):65-66, Mar 1926.

Marc Sumner, Eibe Frank, and Mark A. Hall. Speeding up logistic model tree
induction. In 9th European Conference on Principles and Practice of Knowledge

Discovery in Databases, Porto, Portugal, pages 675-683. Springer, 2005.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-
duction. IEEE Transactions on Neural Networks, 9(5):1054-1054, 1998.

Robert Tairas and Jeff Gray. Phoenix-based clone detection using suffix trees.
In ACM Southeast Regional Conference, pages 679-684, 2006.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment:
bugs or bad comments?*/. In SOSP "07: Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles, pages 145-158, New York, NY,
USA, 2007. ACM.

Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How
do software engineers understand code changes?: an exploratory study in
industry. In Will Tracz, Martin P. Robillard, and Tevfik Bultan, editors,
SIGSOFT FSE, page 51. ACM, 2012.



348

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

BIBLIOGRAPHY

Suresh Thummalapenta and Tao Xie. NEGWeb: Static defect detection via
searching billions of lines of open source code. Technical Report TR-2007-24,
North Carolina State University Department of Computer Science, Raleigh,
NC, August 2007.

Suresh Thummalapenta and Tao Xie. Alattin: mining alternative patterns for
defect detection. ASE "11: Proceedings of the 26th IEEE International Conference
on Automated Software Engineering, 18(3-4):293-323, 2011.

Kai Ming Ting and Ian H. Witten. Stacking bagged and dagged models.
In Proc. 14th International Conference on Machine Learning, pages 367-375.
Morgan Kaufmann, 1997.

Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. Journal
of Artificial Intelligence Research, 10:271-289, 1999.

Qiang Tu. On navigation and analysis of software architecture evolution.
Master’s thesis, Mathematics and Computer Science, University of Waterloo,
Ontario, Canada, 2002.

Qiang Tu and Michael W. Godfrey. An integrated approach for studying
architectural evolution. In IWPC "02: Proceedings of the 10th Int’l. Workshop on
Program Comprehension, pages 127-136. IEEE Computer Society, 2002.

Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On
detection of gapped code clones using gap locations. In APSEC 02: Pro-
ceedings of the Ninth Asia-Pacific Software Engineering Conference, page 327,
Washington, DC, USA, 2002. IEEE Computer Society.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-
260, 1995.

Stefan-Lucian Voinea. Software Evolution Visualization. PhD thesis, Technische
Universitat Eindhoven, 2007.

Vera Wahler, Dietmar Seipel, Jiirgen Wolff von Gudenberg, and Gregor Fis-
cher. Clone detection in source code by frequent itemset techniques. In
SCAM, pages 128-135, 2004.

Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakho-
tia. Problems creating task-relevant clone detection reference data. Reverse

Engineering, Working Conference on, 0:285, 2003.



BIBLIOGRAPHY 349

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

Geoffrey 1. Webb. Multiboosting: A technique for combining boosting and
wagging. Machine Learning, 40(2):159-196, 2000.

Peter Weiigerber. Automatic Refactoring Detection in Version Archives. PhD
thesis, Universitat Trier, 2009.

Peter Weifsgerber and Stephan Diehl. Identifying refactorings from source-
code changes. In ASE '06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages 231-240, Washington,
DC, USA, 2006. IEEE Computer Society.

Michael J. Wise. Yap3: improved detection of similarities in computer pro-
gram and other texts. In John Impagliazzo, Elizabeth S. Adams, and Karl J.
Klee, editors, SIGCSE, pages 130-134. ACM, 1996.

Ian H. Witten and Eibe Frank. Data mining: Practical machine learning tools
and techniques with Java implementations. Morgan Kaufman, San Francisco,
CA, USA, 2000. http://www.cs.waikato.ac.nz/ml/weka.

David H. Wolpert. Stacked generalization. Neural Netw., 5(2):241-259, 1992.

Gang Wu and Edward Y. Chang. Aligning boundary in kernel space for
learning imbalanced dataset. In ICDM, pages 265-272. IEEE Computer So-
ciety, 2004.

Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura:
a hybrid approach to identify framework evolution. In Jeff Kramer, Judith
Bishop, Premkumar T. Devanbu, and Sebastidn Uchitel, editors, ICSE "10:
Proceedings of the 32nd International Conference on Software Engineering, pages
325-334. ACM, 2010.

Zhenchang Xing and Eleni Stroulia. UMLDIff: an algorithm for object-
oriented design differencing. In David F. Redmiles, Thomas Ellman, and
Andrea Zisman, editors, ASE '05: Proceedings of the 20th IEEE/ACM Int’l.
Conference on Automated Software Engineering, pages 54—-65. ACM, 2005.

Zhenchang Xing and Eleni Stroulia. Refactoring detection based on UMLDiff
change-facts queries. In Basili and Briand [15], pages 263-274.

Hao Xiong, Haihua Yan, Zhoujun Li, and Hu Li. BUAA AntiPlagiarism:
A system to detect plagiarism for C source code. In International Conference
on Computational Intelligence and Software Engineering, CISE 2009., pages 1-5,
2009.



350

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

BIBLIOGRAPHY

Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.
Predicting source code changes by mining change history. IEEE Transactions
on Software Engineering, 30(9):574-586, 2004.

Du Zhang and Jeffrey J. P. Tsai. Machine Learning Applications In Software
Engineering (Series on Software Engineering and Knowledge Engineering). World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 2005.

Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report

1530, University of Wisconsin-Madison, December 2007.

Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E. James White-
head Jr. Mining version archives for co-changed lines. In Stephan Diehl,
Harald Gall, and Ahmed E. Hassan, editors, MSR, pages 72-75. ACM, 2006.

Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger,
and Brendan Murphy. Cross-project defect prediction: a large scale experi-
ment on data vs. domain vs. process. In Hans van Vliet and Valérie Issarny,
editors, ESEC/SIGSOFT FSE, pages 91-100. ACM, 2009.

Thomas Zimmermann, Nachiappan Nagappan, and Andreas Zeller. Pre-

dicting bugs from history. In Mens and Demeyer [167], pages 69-88.

Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. In ICSE '04:
Proceedings of the 26th International Conference on Software Engineering, pages
563-572, Washington, DC, USA, 2004. IEEE Computer Society.

Lijie Zou. Toward an improved understanding of software change. Master’s

thesis, Computer Science, Waterloo University, Ontario, 2003.

Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using
origin analysis. In Arie van Deursen, Eleni Stroulia, and Margaret-Anne D.
Storey, editors, WCRE, pages 146-154. IEEE Computer Society, 2003.



Appendix A

Similarity measures

In Chapter 2, methods for matching program code were discussed. This
appendix describes measures for computing the similarity of program code
elements. The measures are not exhaustive, but are selected because they are

mentioned in this dissertation, especially in the surveys in Chapters 2 and 3.

Measures on sequences can be applied to any type of element, such as
letters in a string, tokens in code, or words in a sentence. The example
measures in Table A.1 are based on the strings ‘nearest” and ‘measure’.

The longest common substring (LCS) is the longest unbroken sequence
of elements shared by two sequences. The longest common subsequence
(LCSq. here, to differentiate) is the longest shared sequence which can be
obtained by deleting intervening elements.

The Hamming distance is the number of differences between sequences
of the same length. For two sequences s and t, the elements sl and t1, s2
and t2, ... , sn and tn, are compared. The Hamming distance is the total
number of these pairs in which the elements differ.

The Levenshtein edit distance is computed by adding 1 for each change,
delete or insert operation performed to obtain a match between the two
sequences. Weighted versions of this distance, termed local alignment, are
also common, especially in string alignment, such as DNA sequencing,

and is also used to match source code. For example, Burrows et al. [34]

351



352 APPENDIX A. SIMILARITY MEASURES
Measure Description Example S/D
Longest common | The longest consecutive sequence nearest
substring of elements shared by the sequences. measure

ea or re S
Longest common | The longest sequence shared by nearest
subsequence the sequences which can be obtained measure
by deleting intervening elements. eare S
Hamming The number of differences between two nearest
distance sequences of the same length. measure
1001111 D 5
Levenshtein The edit distance between two sequences. | nea--rest
distance (number of deletes, inserts, and changes) measure--
1 change (n/m)
+ 4 inserts (-) D 5
Sequence A weighted edit distance nea--rest
alignment For example, measure--
change =-1, 1 change = -1
insert/delete = 0, 4 inserts =0
match =1. 4 matches = +4 - 3

Table A.1: Similarity(S) or distance(D) measures, based on ‘nearest’ and ‘measure’

score matches as 1, inserts or deletes -2, and mismatches (changes) -3; or
Gitchell and Tran [89], allocate lower penalties to mismatched identifiers
than to other tokens, reasoning thatidentifier renamingis a likely disguise in
plagiarism. The deliberately simple example in Table A.1 scores mismatches
as -1, matches +1, and inserts or deletes 0. Alignment is usually performed
by considering a matrix of possible alignments produced by combining the
available operations [220], or an optimised method, e.g. BLAST [4].

S.Kim et al. [130] also use the measure LCSC, longest common subse-
quence count. Their LCSC similarity between two strings is defined as the
mean of the proportion of the longest common subsequence to each of the

1 [LCSCap , LCSCup
sequence lengths, 5 [T + =g ]

Compression distance measures, of which several variants exist, are also
used on sequences. The idea is that the more similar two files are, the
smaller will be the distance between the size of one compressed file and
the compression of a concatenation of the two files. Three variants are

reproduced here, where Cm means the size of the compressed file.



1. Freire et al.’s normalised compression distance [82]

Cm(ab) - min{Cm(a),

Cm(b)}

max{Cm(a), Cm(b)}

353

2. Chen et al.’s conditional compression distance using their compres-

sion algorithm, TokenCompress [41]

1- Cm(a)-Cm(a—b)

Cm(ab)

3. Lancaster and Tetlow’s compression based similarity measure [144]

100 Cm(a)+Cm(b)

X Cm(ab)+Cm(ba) ~

1

Measures on sets or bags which are commonly used by the approaches

discussed in this dissertation are the Jaccard and Dice coefficients. The Dice

coefficient is twice the size of the set intersection divided by the sum of the

set sizes. The Jaccard coefficient is the size of the set intersection divided by

the size of the set union. Containment, a related measure, is the proportion

of a set which is shared by another. S.Kim et al. also use the measure ISC,

the intersecting ‘set’ count on the bag of letters which form a string. They

define ISC similarity as the mean of the proportion of the bag intersection

to each of the bag lengths.

Measure Description Example S/D
Sets Dice coefficient Set intersection size divided by | {a, e, 1,5, 1, t}
the sum of the two set sizes {a,e, r,s, m, u}
2IANB| 2x4
JAT+B] 6+6 S 0.67
Jaccard coefficient Set intersection size divided by | {a, e, 1,5, 1, t}
the size of the set union {a,e, r,s, m, u}
AN B| 4
AUT 3 S 0.5
Jaccard distance 1 minus the Jaccard coefficient 1- % D 0.5
1- AN B IAUBI-IAB|
|AUBI [AUBI
Containment (A in B) | The amount of A in B {a,e 1,8 n,t}
% {a,e,1,5,m, u}
4
z S 0.67
Bags | Intersecting ‘set’ The mean of the ratios {a,e, e 15, n,t}
count (ISC [130]) of intersection to file size {a,e e 15, m, u}
1[ANBl | IANBI 5
2[5 + ] 7 5 | 071

Table A.2: Similarity (S) and distance (D) measures for sets, with examples based
on the sets, e.g. {a,e,n, 1,5, t} or bags, e.g. {a, e, e, n, 1,5, t}




354 APPENDIX A. SIMILARITY MEASURES

Measure Description Example
Manhattan distance | Sum of the differences (a, e, i, 1, m, r, s, t, w
between pairs (1, 9,2,1,1,1, 1,0, 0
(1, 2,0,0,1,1, 1,0, 1
Xila; — bj| 0+2+2+1+0+0+0+0+1 6
Euclidean distance Root of the sum of squared (a, e, i, 1, m, r, s, t, w
differences between pairs (1, 08, 2,1, 1, 1, 1, 0, ®
1, 2,6,0,1,1, 1,0, D
VEi(a; — b;)? JO+4+4+1+0+0+0+0+1) | VIO
Cosine similarity The cosine between (a, e, i, 1, m, r, s, t, u)
two vectors (1, 8,2,1,1,1, 1,80, 0
,2,06,0,1,1,1,0, 1
Ti(aixb;) 1-+0+0+0+1+1+1+0+0 4
VI VI b VA+4+TH1+H1 )X /(1 +4+T+14+14+1) 9
a.b for normalised vectors

Table A.3: Similarity measures for vectors. The examples are based on the (un-
weighted) frequency of the letters in the words ‘similar” and ‘measure’.

Measures on frequency vectors of features in the code, such as words [6],
tokens [82], n-grams [9], keywords [58], tree nodes [116], and metrics [136,
170], are also used to measure similarity. Table A.3 shows 3 examples of
similarity measures on vectors, based on the frequency of the letters in the
words ‘similar” and ‘measure’. A simple distance measure for 2 vectors
is the Manhattan or City Block distance, which is the sum of the absolute
differences between each pair of elements in the vectors. Another measure
is the Euclidean distance, the root of the sum of the squared differences
between the pairs of elements. The cosine measure has a value between 0,
dissimilar, and 1, identical, when the terms in the vectors are positive [6].
Weighting is used in some vector similarity measures, reflecting the
relative frequency with which each term appears in the document set, the
query document and the document to which it is compared. Burrows et
al. [34] and Arwin and Tahaghoghi [9] test several such measures, both
finding the BM25 ranking function [118, 202] most effective in plagiarism

detection in the tests.

Measures on trees: As previously discussed, trees are often transformed

into sequences or vectors. However, two approaches match trees more



355

directly. Baxter et al. [16] first try to find isomorphic subtrees, and then
similar subtrees, using a similarity measure which is like the Jaccard coeffi-
cient, where the shared nodes in two trees are divided by the total number of
nodes. Chawathe’s minimum conforming edit script [38] is based on anidea
like the weighted edit distance for sequences, but the operations are insert,
delete, move, update and align. Fluri et al.’s minimal tree edit script [77], is

an adaptation of Chawathe’s algorithm, to make it more suitable for code.

Measures on graphs: Graphs are matched in similar ways to trees, either
matching subgraphs directly, or by transforming the graphs into another
representation. Krinke [139] matches program dependency subgraphs for
clone detection, as do Liu et al. [151] to detect plagiarism. Gabel et al. [87]

transform a program dependency graph into vectors for matching.



356 APPENDIX A. SIMILARITY MEASURES



Appendix B

Classifiers

This appendix provides further information about classifier ensembles, in
particular those with the best results for the datasets in this research. The
motivation for combining classifiers is explained, along with methods of
combining them, and the ways in which diversity is introduced into classi-

fier ensembles are analysed.

B.1 Ensembles

Dietterich [62, p.3] states that “Learning algorithms that output only a single
hypothesis suffer from three problems that can be partly overcome by ensemble
methods: the statistical problem, the computational problem, and the represen-
tational problem.” These problems are caused respectively by difficulty in
selecting which of many equally suitable hypotheses are appropriate; diffi-
culty in finding the best hypothesis where local minima exist; and the lack
of a suitable function within the hypothesis space. In each case, a com-
bination of hypotheses can improve the outcome of the learning system.
Kuncheva [141] notes that although an ensemble may not improve on the
performance of a single classifier, experiments with ensembles have proved
their worth.

There are several ways to combine the classifiers in an ensemble. The

simplest is a vote-based system, using, for example, majority, weighted or

357



358 APPENDIX B. CLASSIFIERS

Algorithm Reference Data Features Parameters| Classifiers
AdaBoost [84] v

Bagging [28] v

Dagging [234] v

Decorate [166] v

EnsembleSelection [36] v
Grading [212] v
LogitBoost [85] v

MultiBoostAB [243] v

RacedIncrementalLogitBoost [80] v

Random Forest [29] v v

RandomCommittee - v
RandomSubSpace [109] v

Rotation Forest [203] v v

Stacking [211, 235, 248] v
Voting [132, 141] v

Table B.1: Methods for introducing diversity in ensemble learners.

thresholded votes [132, 141]. These may be applied to absolute or probable
classifications from the ensemble members. Another way to combine the
classifiers is to use a learning algorithm to combine the outcomes of the
individual classifiers to best effect, for example, by Stacking [211, 235, 248].
The learning algorithms may combine the outputs from all of the classifiers,
or select one or more which are most effective in the region of the newly
presented instance by Grading [212].

Without diversity among the classifiers in an ensemble, there is un-
likely to be any advantage over a single classifier. Diversity can be in-
troduced in several ways: by combining a selection of different classifiers
(heterogenous), or, when building ensembles from one type of classifier (ho-
mogenous), the training data, the features or the parameters can be varied.
Table B.1 notes the aspect(s) varied in 15 classifier ensemble algorithms.

Other meta-learners provided by Weka fall into two main groups; those
which seek to optimise in some respect and those which manipulate data.
The first group aim to optimise either a specific measure, for example f-
measure; or take account of a user-defined cost function which can be
useful, for example, in medical diagnosis, where it is important not to miss
a positive case. The second group allows data to be used with classifiers
which would not otherwise be suitable, for example, multiclass problems

can be structured to use binary class classifiers.



B.2. SELECTED ALGORITHMS 359
B.2 Selected algorithms

Three classifiers have proved more successful than others in this research:
Rotation Forest [203], Random Forest [29] and Simple Logistic [145, 227].

Random Forest [29] uses bagged data sets to build an ensemble of ran-
dom decision trees, which are combined by voting. Bagging [28] creates
varied datasets, usually of the same size as the full dataset, by randomly
sampling with replacement. Random Trees are constructed by considering
a random selection of features at each node.

The Rotation Forest [203] algorithm randomly selects a subset of the
features, performing Principal Component Analysis (PCA) to give linear
combinations of the selected features rotated around the original axes. The
principal components are then used to build a tree and the process repeated
to create a forest.

Simple Logistic [227] models are built step by step. At each step, Log-
itBoost is used to optimise a simple logistic regression function for each
of the features, and the feature giving the smallest squared error is added.
To reduce complexity and prevent overfitting of the models, features are
added only if the performance on unseen examples in cross-validation is

improved. This method naturally results in feature selection.



360 APPENDIX B. CLASSIFIERS



Appendix C

Machine learning in software

engineering

Machine learning appears not to have been used in origin analysis before,
although, as discussed in Chapter 3, S.Kim et al. [130] use a statistical ap-
proach, along with exhaustive search, to combine measures in their system.
This section provides a brief review of the development of machine learning
in the more general area of software engineering. A selection of software
engineering applications using machine learning, in particular those related
to software evolution, are analysed in Table C.1 with the aim of ascertain-
ing whether there are pointers to suitable features, matching techniques, or

machine learning algorithms for use with software code.

In 2005, Zhang and Tsai published a survey on the use of machine learn-
ing in software engineering [255] covering the period from the mid-1980s
to 2002. This survey shows that most applications at the time were aimed
at predicting either aspects of development, such as cost and productiv-
ity; maintenance effort; or aspects of quality, such as defect prediction or
testability. These areas of research were in large part due to the public
availability of the NASA software defect and effort datasets [190], which
are now available at the Promise repository [169], along with other datasets

contributed by researchers in the field.

Automated search in software engineering, known as search-based soft-

361



362APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING

ware engineering (SBSE), is a growing area of research. This encompasses
applications using evolutionary methods of machine learning in many areas
of software engineering. A list of SBSE applications are held at the reposi-
tory maintained by the research group at University College London [53].

Open source software repositories have become accessible in recent
years, providing a large amount of data for analysis. Kagdi et al. [123] sur-
veyed work in mining software repositories to discover patterns in evolving
software (up to August 2006). Their survey identifies ten areas of research,

in many of which machine learning techniques have been used [p.15].

The 2011 survey by Halkidi et al. [100] places software engineering tasks
which use data mining and machine learning into six categories: require-
ments elicitation and tracing, development analysis, testing, debugging,
maintenance, and software reuse, showing that machine learning is now

used widely in software engineering.

Table C.1, on page 365, analyses a selection of work in the area. The
selection includes applications concerned with changes to code, but mainly
focuses on classification tasks, particularly those using multiple versions of
evolving software. These examples are based on static analysis of code, or
of associated artefacts. There also exists a large body of work, not included
here, based on dynamic analysis, especially in the areas of testing and usage

patterns.

The first three columns in the table identify the paper by author, refer-
ence and date. The upper part of the table shows work based on evolving
software, a C in the fourth column means that the intervals between ver-
sions studied are either commit or transaction level, R means release level.
Work based on a single version of a project is in the lower part of the table
and is marked “-”. The entries are sorted by date within the upper and

lower parts of the table.

Halkidi et al. [100] categorises machine learning and data mining tasks
in software engineering into: classification(C), clustering(G) and pattern
mining(P). The research in the table has been labelled with these categories
in the column headed “C/G/P”. Brief descriptions of the algorithm(s), the



363

features, and the purpose of the investigation are provided in columns 5-7.

Change related tasks include predicting future refactorings from the
change history of a project [197], categorising change types, finding patterns
of change types by clustering [76, 216], and finding co-change patterns [88,
217,254, 257, 260]. Another popular class of applications mines patterns in
software to find exceptions, and so to alert the user to inconsistencies when
making changes [1, 149, 150, 153, 195, 196, 232, 233]. Many classification
tasks relate to predicting defects. For example, predicting post-inspection
defects [185], or defect density [133], investigating whether a module’s
complexity metrics can be used to predict post-release defects [178, 186],
assessing a bug’s severity from its report wording [54, 142], and classifying
bug-introducing changes [10, 129, 218, 219, 259].

In summary, in around half of the classification tasks shown, a number
of different algorithms are applied to the data to find that best suited to the
task. Also, the large majority of approaches to classification surveyed use a

broad range of features taken from more than one source.



364 APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING

a3ed jxou uo panunuo) Sy[Sk} JULIAUI3UD dIEM}JOS UT SUTUTW Bjep pue SUTUIes] SUIYdeA ‘1D 9qeL
sadueyd woiy uondrpaid 3nq ([621] uo paseq)
aaoxduwr 0y uonoayes amyeay Sursn saoInos paxtw ‘snorowmny | D |dry[ ‘gx[ ‘sekeq aareN “INAS ) 60 | [812] ‘Te 19 1leanyg
sa8ueypd Supnponur-3ng purg S90INOS paxIw ‘snopwnyN | O (eoM) INAS D 80 | [6c1l ‘Te 3@ woy's
santanoe yuawdoPAap 03 Yui| 9)9[op 1939wered “}rasur 3DUR)SIP SUISOD
‘surapred adueyd purg jusurayeys3-a sadAy auey) | o uo 3urreisnyD ) 80 [9/] ‘Te 39 L[
saduep ‘s3nq 03 ayerax sayouelq ‘Aduanbaiy 1eyriuapr NN ‘TIA ‘soheg
Sraw Ajjiqepear e dofpas p8uay aury “8-2 pased-xaL, | D "DUI [BIOADG NI 80 [cel ISWIDA pue asng
jsed woxy Ay1anoe Suriojoeyar I1Pal ] $90IN0S paxIwW ‘snorwnyN | D A8uN Ay ‘TINT ‘88 | D 20 | [z61] ‘e 30 128urzyey
(spoypour-ou “Ayrxardurod 39)
suraped a8ueyp-0o pur] soujewr axemyjos uraueyd) | J sisATeue jdeouod rewzog | WD | Z0 [88] e 39 eqiID)
sadued 1Xa} 901N0s Ul soLewmnueydre onsi3oardurg ‘4soogepy
Supnponur-3nq PIparg 03 s93UBLD JO JPI-f} JO J0I9RA | D (ODNNM‘SPO‘WAS | D | 20 | [otl Te 39 ouesIoAy
saur padueyp-0d aduep Yrym
sdnoi8 aur| padueyo-0d pur{ 9pOd JO saul] [eNpIATpU] | J SGururw Josweyr yuenbaig D 90 | [zgzl | Te 39 uuewLowwIZ
uonprpaid uonouny 2 SOLI}OUI SIBM}JOS PIRpUR)S
a1y £88nq ur sorgow aredwo)) pue soLjowt paseq-adIg | D SNI0MmIaN sokeg D 90 | [981] ‘Te 39 ueg
SUOTIOUNJ “S9DUDIDYAI “S[[ed
S3[Y UI A}ISUDP 103J9p IIPAIJ ‘sajqerres ‘DO Jo sjuno) | D @vh1a | ¥ | 90 | [getl Te 30 qeuy
Jur| snotaqo noyyrm-dsa
‘say Surdueyd-o0d pury uonoesueI} B UI S | Jg Sururu ursyyed yusnbaig ) 70 | [¥s2] ‘Te 30 Surx
sassed Jo A[iqess a3 1paLd SOHJOW SIBMPOS O-O | D VO ‘1s00gepy (6¥D)1d | A | 20 [92] Te 312 Juqnog
asodimng samjeay |J/9/D) unpuodry | WD | Ik 3oy oyny




365

‘() Surunua wraped 10 (D) Surreysnid ‘(D) UOTIEIYISSE]D JO SUO SI YSe} Y} IBYI_YM SMOYS (/D)D) 9 uwnjo)
‘g 79 / ‘G SUWIN]OD Ul d1e yse} ay} jo asodind pue ‘sarnyeay ‘(s)wyyrrode ayy jo uondiidssp jariq v

*(-) UOTSIDA S[3UIS  WOIJ 10 ‘() [9AI] 9SES[I 10 (D)) [9AS] JTUILOD “SUOISISA POD DINOS USDIM)I] S[EAISIUL SMOUS F UWN[OD)

‘Posn axe MCMCME ejep pue auryoeuwr yoIiym Ut syse] paje[al UOINJOAd aIeMIJOS JO UOTI[aS Y 1D °[qe],

JuRju0d 310dar Wwoxy AJL19AdS nq OTPaI] syprodax Snqurspiop | D safeq aAreN - ot | [e¥1] “Te 30 Juesue|
suorydedxa pue sa[nI pury sdnoi8-ordoy 991} UOISIDAP
‘9p0d 0} SPUSWIWIOD I, ‘SPUOWIWIOD UO JIN | IDD ‘urrgysnid “Gururu SNy - 20 | [ogal ‘Te 30 uey,
sa[npour Jo ainjrey asesa1-3sod Jorpaig SOIPIN | D VDd U0 uorssa13ay - 90 | [8z1] ‘Te 30 ueddeSeN
S90UDI9JaI ‘S[[ed
say parepdn-o0o pury pareys ‘spiomjo3eq | D 9313 UOISIDA(] - 0 | [z12l ‘[e 39 peqeIys
9pod Jo saur| Jo saz1s yusuodwod
ISqUINU 3} 9)eWnSH pue syutod uonpuny | D NN pue 49 - €0 | [861] ‘Te 32 uro8ay
$00p IJV UT sauT|
a8ueyd jo sadAy asrro8aye) PayIPOW WOIy SPIOA, | O | Sa[naonsumay - Surreisni) ) 11 | [912] ‘Te1 Iys
uonrpaid 3095ap Ayrrerruurs 30afoxd 105 1930 9913 UOISDAP
300lo1d-sso1d ayednsaauy ‘uonorpaid 109§op 10§ SOLUAIA | D ‘uorssai3a1 onsido| N| 60 | [8sz] | ‘Te 39 uuewrowrwuryz
Sur0100a1 10§ S[qRIINS SISSL PUL] | SOLIIDU dIRMIJOS PAJUSLIO-1RIqO | D sakeq aATeN PaIySopm Ni 60 | [8€1] “Te 39 19[SO
9AT}D3110D “9A1d9)19d 3o sad Ay oy “szoyine ‘sadessowr dry( g1 ‘OIS
saduep asr10893e) JIUIWOD UL SPIOM (BJRPeRRIN | D 238y “aN ‘8% ([ ) 60 | [801] “Te 39 S[PUIEL
asoding sarmnyes] | 1/9/D wpuodry | /D | Ik ‘7 oymy




366 APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING



Appendix D

Additional file comparison

visualisations

This appendix supplements Chapter 5, showing visualisations produced by
a selection of other tools referenced in this dissertation. First, the similarity
between files output by three clone detection tools, in particular, Code
Clone Finder which is used in creating features for the machine learning
application described in Chapter 10. Second, examples of visualisations of

the movement of code in a system found by other origin analysis tools.

D.1 Clone detection tools

Clone detection tools are not set up to find relative similarity between files
but rather to find fragments of code which recur throughout a file or a
system. Their initial reporting therefore differs from plagiarism detection
tool output. Rather than the similarity between files, the tools report on
clone classes. A small sample of their outputs are displayed in Figure D.1,
the two on the left giving information about more than two files, one as a
list and one graphically.

Figures D.1a and D.1b show clone classes reported by NiCad [50] and
CloneDetective [121] respectively. NiCad provides HTML output and

shows the location and content of clone classes. CloneDetective shows

367



368 APPENDIX D. ADDITIONAL FILE COMPARISON VISUALISATIONS

the clone coverage in files in the left-hand panel (as a percentage of the file,
in this example), the bottom panel shows the location of the clone(s) in the

files and the central panel shows the clone code in one of the selected files.

Figures D.1c and D.1d show two of the available Code Clone Finder
(CCFinder) output screens [125].1 On the left is the scatter plot or dot-
plot [43]. A dotplot is a matrix with the matched elements on each axis, a
dot indicates a match between the elements, so that sequences of matching
elements show on the plot as a line. The dotplot is another method of dis-
playing the similarities between pairs of files in a group. In the CCFinder
scatter plot shown, 15 files are compared, with lines showing the bound-
aries between files. The right-hand figure shows the code comparison

screen, with code from the selected clone highlighted.

Locally produced screenshot

Sh8
LezllollelOlis, oo e
e s e e e

Class 129 (3 tragments) - Nominal size 8 lines.

e S

Ready PSijva  eFies:89(0) #Clone Sets: 217 ()

(c) CCFinder scatter plot (d) CCFinder code comparison [125]

Figure D.1: Clone tool outputs



D.2. ORIGIN ANALYSIS TOOLS 369

D.2 Origin analysis tools

oerauLY

(a) Beagle scatter plot [261] (b) Ecode—wayf refactoring chart [244]

Figure D.2: Beagle scatter plot (left), where the dashes represent functions, the
colours of which show whether they have been moved, merged or
split. Weifigerber’s Ecode-wayf (right) which shows the evolution of

a class, colouring the connectors to show types of refactoring.

Two examples of origin analysis tools which colour-code changes to
software entities are included here. The University of Waterloo’s tool Bea-
gle [261] has a scatter plot to show the changes to functions between versions
(Figure D.2a). The dashes on the plot are coloured to show whether they
have been moved, renamed, split or merged. Weifigerber and Schafer’s
Ecode-wayf [244] hierarchy graph in Figure D.2b, shows the evolution of a
Java class, with the connectors coloured to indicate the type of refactoring

undertaken between transactions.



370APPENDIX D. ADDITIONAL FILE COMPARISON VISUALISATIONS



Appendix E

Ferret: example calculation

To illustrate how Ferret computes a similarity score, the files fact.c and
power.c, shown together in Table E.1, are compared. The trigrams for the
two files are presented in Table E.2. There are 36 trigrams in total in fact.c,
one of these, “= 1 ;”,labelled 10, is duplicated, making 35 distinct trigrams
in the file. Power.c has 39 trigrams, with one duplicate, making 38 distinct
trigrams. The files share 29 trigrams, so that 6 in fact.c and 9 in power.c
are not shared. There are therefore 29 + 6 + 9 = 44 distinct trigrams in the

two files. The Jaccard coefficient, or similarity score, for the two files is

29 _
2 = 0.659.

//fact.c

long factorial (int n)

{

long result = 1;

int i;
for(=1;i<n;i++)
result *=i;

return (result);

/| power.c

long power (int base, int n)
{
long result = 1;
inti;
fori=1;i<n;i++)
result *= base;
return (result);

}

Table E.1: Code for fact.c and power.c.

371




372 APPENDIX E. FERRET: EXAMPLE CALCULATION

1 long factorial ( 13 | int i ; 24 | ; i ++

2 factorial ( int 14 | i ; for 25 | i ++ )

3 ( int n 15 | ; for ( 26 | ++ ) result
4 int n ) 16 | for ( i 27 | ) result *=

5 n ) { 17 | ( i = 28 | result *= i

6 ) { long 18 | i = 1 29 | *= i ;

7 { long result 10 | = 1 ; 30 | i ; return
8 long result = 19 | 1 ; i 31 | ; return  (

9 result = 1 20 | ; i < 32 | return ( result
10 | = 1 ; 21 | i < n 33 | ( result )

1 | 1 ; int 22 | < n ; 34 | result ) ;

12 | ; int i 23 | n ; i 35 | ) ; }

i long power ( 1 |1 ; int 23 | n ; i

ii power ( int 12 | ; int i 24 | ; i ++
ii | ( int base 13 | int i ; 25 | i ++ )

iv int base , 14 | i ; for 26 ++ ) result
\% base , int 15 | ; for ( 27 | ) result *=

vi |, int n 16 | for ( i vii | result *= base
4 int n ) 17 | ( i = viii | *= base ;

5 n ) { 18 | i = 1 ix base ; return
6 ) { long 10 | = 1 ; 31 | ; return  (

7 { long result || 19 | 1 ; i 32 | return ( result
8 long result = 20 | ; i < 33 | ( result )

9 result = 1 21 | i < n 34 | result ) ;

10 | = 1 ; 22 | < n ; 35 | ) ; }

Table E.2: The 35 distinct trigrams in fact.c (top) and 38 in power.c. In each file
“=1;”, no. 10, is duplicated. Power.c trigrams matching those in
fact.c have the same numbers, the remaining 9 trigrams have Roman
numerals.



Appendix F

Density tool prototype

This appendix shows the input and output screens of the density tool in-
troduced in Section 6.6.1. The input screen, see Figure F.1, allows the user
to choose the input XML file (previously output from a Ferret comparison
between two files), the density, the minimum number of matched units in a
dense block, the gap size, whether to base the calculations on tokens, words,
or characters and how to prioritise the blocks - by density, matched units,
or total units. Output from the tool is in two forms: either the interface
exemplified in Figures F.2 and E.3, or the XML output shown in Figure F.4.

In Figure E2 the dense blocks have been found in the comparison be-
tween two very large text files (a quarter, and a third of a million words)
taken from the database of source and suspicious documents created for
the PAN’09 (Plagiarism ANalysis 2009) competition.? In the upper part of
the screen, statistics for the two files, such as size in words, the number
of blocks found, and the matched and unmatched words, are displayed
on either side. In this example there are 71 blocks in file 1 and 25 in file
2. The parameters chosen for the analysis are shown in the centre. In the
lower part of the screen, the blocks and their individual statistics, location,

density, number of words, both matched and unmatched, are displayed on

LA prototype of the tool is available from http://homepages.stca.herts.ac.uk/~gp2ag/

density.html
2http://www.uni—weimar.de/medien/webis/research/workshopseries/pan—®9/competition.

html\#corpus

373



374 APPENDIX E DENSITY TOOL PROTOTYPE

either side. The centre panel shows the text in the block selected from one of
the side panels, with matched trigrams highlighted in blue text against the
unmatched text in grey. Figure F.3 shows detail from a similar comparison
between two other files.

Figure F.4 shows the XML output containing information about the
dense blocks found in two other large files from the PAN’09 collection. This
example has been chosen because the output is short and therefore fits into
a screenshot. In this case, the files have around a quarter of a million words
each and share over 9200 trigrams, however, there is only one small dense
block of 37 words. The matched trigrams are highlighted in bold purple

text, with unmatched text in grey.

. . 5
) Choose files and parameters for XML o =
C:\Users\Admin\Documents\panxmis\source-documenti85 13-suspicious-document 1216 1.

Density is matched units/total units Density [r]
0.8

Minimum number of matched units per block Min.matched [r,i]
25

Maximum consecutive non-matched units per block Max.unmatched [i]

5
r:real [0.0, 1.0], i : integer [>=0]; min. matched : i units, or {r *units in file)

Unit Prioritise blocks by

tokens highest density

@ words matched units
characters @ total units

C:\Users\Admin\Documents\ex-c-files-2\out

Output (*.xmi) Browse...

Running ...

Cancel

Figure F.1: Density tool input screen, which allows the user to choose the minimum
block density; the minimum number of matched units in a dense block,
e.g. 25 (or can be expressed as a proportion of file size, e.g. 0.1); the
maximum number of consecutive unmatched units in the block; choice
of unit; and how to sort the blocks.



375

ua10s yndino 00} Aysud(q g 9In3L]

5 txoord|

5z
678z
pLEz
6670
250LET

1H20TA WP SaTER pRyEIEW
APOTA WP SATWR PRUSATH
1q90Tq wr sapn Teael
hatswsp xoTH

ratmn ae Burazeag

¥ ixooTd

58z
P63
6LEE
2670
0gzZET

[

IHI0TY WT S3TUM peUDAENL
130T UT SATIM PAUDIER
130T UT FATER TEILL
tAatsusp ¥20Td

1atmm 3 BuTaaEag

£ ixPeTd

353
apsE
LE3E
160
PTORZT

t420Tq W saTom paypaemuy
HI0Tq WT SITEN PIYDARH
‘oot wr saTwm TEasL| |
rdatswsp HooTd

taTim a® Burareag

2 ixoeTa

L15
ELES
£2L¥
&80
PLESZ

[

<

1490 W SaTEn pEypasmu
Ha0Tq WT SATWN PayDARH
HO0Tq WT satwn Teao)
tiaTswsp HooTd

taTmm 98 Purareag

T xmoTa

Bupje] Ul BunUEM JOU AUSM Y ISYIESM NIR) PUE IR LM P3pUS e
amm Aay) 2y} "PaAISSqo 3q 1SN 1 10} JSUCP AIAM SPULM “ AN 3Y] 2y sadoy sn aAeS YL
“seyeam Aurl “Azey yum papusie “aeb ysau) e 0] pasealul JaLe U0os SIY| YINos ay] wayy

azaauq e AQ papasoons SeM WeD 3yl “BurLIoW 3y Ul 30,0 IN0jJ J8 JSqUSAD) JO 15| Yl uQ

wpes 3y 4

JaYe £IN0Y 0/ PUZ |PAUSESD] ULIOK B4 USYM "GP ||} PANUNUCD M LOHENJIS LOIM Ul
:jres-Aeje-uazmu 3y Japun o}-31| 0} sn pabijge pue “Ainy pajqropal Yim Molq o) uebaq )1 aye
Anuasaud 1oy ‘asoda ARSWOW B AUD paAtd SL 11 |PASEE0 2D PUIM Sy BUILBAS aU) Ul

00,0 XIE I/ 'SIN5E3] USOHNO}I0 SAPM] IUBSIP " M'N"M /00 SUIRIINOK AMOUS S} UOOU 2
UE *}53M SU] 0] POOTE SM LDILM JSPUN ‘S35IN03 0M) B4 ALIED 0] SN JuIGd O] SB 0% "PAjeqe |
2u0/pquonenys sy} ul Buo) usaq Jou pey am Nq ‘Lo Pay=d e 0] paseanul Bulrey pum ayy
‘s Apjs-USziu pue IS-510) U} JApUN *0] YGNAI] PUE AloM DM Uay) JBL o Bujiou Busag

‘Bunsow sy ur
amuaApy 2yi Y Gurpom jo sadoy Ul “IYOR |12 PIEMISED S} 0] PUETS O} PANURUED 3| “WaY) puey
01 pabiigo asam am 210jaq Buol Aued Jou pNCo am Jaue| 2yl INq spes-do) pajeal-asop pue
SITNOD OM] U} JOPUN “PIZMISES 2] 0] POOIS PUR “PadjOR] 2M S5U% 3JRU SUO JO 2DURISIP 2Y) 18
SWOUIE} SALFAJUSM] PUE ‘SWOLE} UBASS-AHO0 "SI0LS By} WaI} SSJ B3N} o SOURISIP 3y} 12 51

JEU) “SWOLIE} BAN-AIUSM] O] USASS -A}0J WAL 2IaM SSUPUNGE IN() PEIGELUI SEM (5260 aU)

12y} UK aIns e 1aIoys ay) BUOIE 5208|d [EISADS UL 2H0WE MES DM "PUB| 3Y) paydeaidde am Sy

“snoazapual jo aoeid ay) 6usaq ey) punog ay) o]

etz 0} SU 10} AIBSS309U || pew LoGEIedas o 1N “SE0d Ay} BUoe BUIBURI 10} 3[q2NoLe)

MO SEM PULM SUJ SB 'IN0s J2Upe) sepiue 255U} 126 0} aoeld e 1oy Wbnos szl pue “aem

PUE POOM 0} pUNOS, 5,21PpEL) U3aNE 0] 6uIdS Jo sKGROY] [ dn UIAIG AeY PINOYS | B Y
uBaq ays pey 1o} "AMUAAPY 3] Jo S50| By) peiel Nou | feq afie) e jo souereadde auy)

SEeMm QL) AUBYM L0 -SIO0T] Y] JO PIEMPUIA 0] SINGE3| 3A1) 10 IN0J NOGE ‘SURKINOKY AMOUS

Btj}J9pUN "pUE| 3YJ ik UI P2LD}S M. JEL] OS “YHou Sy} 0] Alou 1531 0] pue ‘Sjeqe o) uebaq

Sjeb auy) uoowa e Sy} Ul aany) Iy ‘Senbeo) XGE 1o uaAas P TN Aq "M ai0q Padwe)

ade7) uoou Iy JEsdorUEW M2U @ BUITHIDS 1 “SISINCO GM] INO JBpUN SN GULq 0] S2 JauUEw

2 4ons Ul paseanul YoM T MNN 12 PULM 3Y] JilM QUEMISaM 2] 0] YOJANS 0] Panupuod ap

0 Jo WBIS 350] 2 auAnzeUEW YoM AG TN S4E 0
poajs pue paxoe} pey ays pasaddns ap, “IYBIHARP I8 USSE 5q OF 3us sam Jou passaddesp aus

Joye Auasald pUe "B SO DAL I0 OM} S2M SUS DU O 38 BRI [N L33E

SEM UG AUBOWOD Ul ANJUSAPY SU] YJIM “SIEINGD PUe sjesdo] pajaal3jBUss J2pUn * pAS gl

0] PAUPIRIEE 3K UDRIM LM “I[E5 Usal) © M3l pue *\NJS1enD PIo S11 0] PalJiyS Uik au)
SuIL 2 INq “ABP PXBU B PUNOS BU) LDBAI PNOYS am BUI| IEYM L0XD2I 0] UeBaq M JBY) O 'Usin

PIo0 am se ey se NN waly azaa] apuab e q papaacons Sem Wied ayj YOo[P,0 UIAAS Iy

[T

BF ¥20Td

€6
rzse
(AL
w60
L26L0T

IIOTH W SITMR pEURIFWHL

1HROT WE SITUN PEUAIER
1HPOTq WE sarum TEacl
shatsusp qooTg

tatun g Aurtareag

£F 1H20TE

£8T
zEL
518
&0
LELPOT

IHSOT WT SATEM paUAIEWUL

%3079 UT SITM paYsIER
1¥907q WT saTWm TEASD
:AaTsuse X014

ratun aF Gurarsag

3]
134
8EPT
3670
$50E0T

IHOOTH WT SATUN payaIEmHg

IHOOTH UT SITUN PAUATEH
1HOOTT UT SaTWm TEICL
tEaTsusp qaoTd

saTum 4 Aurtareag

TF i¥20TE

66
0sLT
€581
¥E0
8TTEE

IHIOTH WT SATMR pAURATWHL

1HOOTq UT SATUN PAUAIEH
tHoOTq UT Sarun TEa0L
tEaTsusp a0

taTun 9 Autareag

oF t¥aoTd

Taxs3 335 03 HITT2 ISHIOTH 2 BTT

z0ee
16088
£68T6

69TLE
0ZLESE

:swRahTIY payodEm Aq PaTasco 0
:eweahTI payodEm Aq paTssc]

19007 ASUSP UT £3TUM TRIOL

313 UT SY00Tq aSUEP JO TaQUO

313 UT SUDTIOE PAYIIEUUN PUR PIWIIRH

13113 Wr (533308IEYD/EPION/SUIHOA) SITH

-iZ 3T

(e s60eip)

Xa0Tq asuap

19S0W U0 UOTAIITIE YI0Td

oT :def paysaEmm WwTXER
oot :007q 23d S3TUN payoIEW -uTH
80 sEateuag
spaop :saTUg

-1 ST31amMeIR

9629
LEEEE
££950T
T
0999
£TZEFE

Taxsa 885 03 HOTTD ISXOTA T STTL

:eweahTI9 paysdem AQ palascs Jof
:eme16T19 paysaRm Ag pazaacy
1SY20TQ 3SUSP UT €3TUM TR0

3713 UT £X207q 3SUIP Jo IaqUny
37T UT SUOTI03E PAYIIEWN PUB PIUIIEH
i3TT3 WT (5I310BIBYI/SPION/EUIH0]) S3TUL

—iT AT




376 APPENDIX E DENSITY TOOL PROTOTYPE

File 1:- Parameters :-

| Units (tokens/words/characters) in file: 282827 Units: Tokens
Matched and unmatched sections in file: 36660 Density: 0.8
| Number of dense blocks in file: 564 Min. matched units per block: 25
| Total units in dense blocks: 148679 Maximum unmatched gap: 10
Covered by matched trigrams: 138901 Block selection on most: dense block
Not covered by matched trigrams: 9778

Deraity analysis of comparison oetwrated by Perret CopysDetection Yool
el School of Compater Science, University of Bertfordshire, 2010,

Hh 2 blocks: click to see text.

Tocnl units in block: 4110

Matched units in block: 4042
- ; Unmatched units in block: 368

o st s - e et ot o -

Block: 24

Starting at unit: 238733

Block density: 0.94

Total units in block: 4674

Matched units in block: 4420

Unmatched units in block: 254

-

Block: 2§

Starting at unit: 245816

Block density: 0.91

Total units in bloc 19501

Matched units in b

Unmatched units in block: 154

Block: 26

Having got. we wore, and lay on the other tack: clear kid of the land and. | directed my course for
Cape the sea broke exceedingly high. The gale increasing obliged us to hand the main-sail.
close-reef, our top-sails, to strike top-gallant yards. Nor did we see gannets. or the black

bird. commonly called the Cape Hen. till we were nearly within sight of the Cape do. After this
we stood to the westward all night. in order to get of the land. having the wind at N.N.W.

and N.W_ could, blowing in lls attended with rain. which obliged us to reef our topsails

One of the ships. viz. the La Fortune, soon after arrived at the Mauritius, the captain of

which was sent home to France with an account of the discovery. However, | am very sure that
they do not extend very far west from the Cape. We kept on to the southward with the wind at north
till night, which we spent in making short trips, first one way and then another, under an

easy sail; thermometer these, two other French ships from the island of Mauritius, touched

at the Cape in way to the South Pacific Ocean; where they were going to make discoveries, under
lost the command of M. Marion For, from the time our leaving St Jago to our of arrival into

the latitude of 1-1/72° N., which was eleven we could. thinking to get into the bay before

dark. But the greatest misfortune that us, was the loss of great part of our live stock

with caution. At two in the afternoon on the 29th, we made the land of the stipend besides

At eight p. m. we wore and lay with our heads to the N.E. Two made the Adventure signal to
make sail; and soon after made sail ourselves under the courses and close-reefed top-sails

Mr Shank the first lieutenant having been in an ill state of health ever since we sailed from
Plymouth, and not finding himself recover here the we were visited by the captain of the port,

or master-attendant, some other officers belonging to the company. and Mr to our view We now
crowded all the sail. which we had brought the Cape. and consisted of sheep. hogs. and geese
eight and nine o'clock. the fiactional sea, within the compass of our, became at once, as it

were illuminated: or. what the seamen call. all on fire. The lay: ships were caulked and

painted: and.’ in every respect, put in man as good a condition as when about the size of
pigeons with blackish bills and feet distant four miles

Figure E.3: The density analysis tool screen and detail from it, clockwise from top
left: file details; parameters used; a list of the dense blocks found in file
2; and text from the selected block, with matched trigrams in blue. File
2 statistics and the file 1 block list mirror those of the other file.



377

Parameters:-
Unsts Tokens
Density 0s
Mimmue copeed umts in a block 30
Maumum son-<opsed g2p 10

Density asalysis of comparnison generated by the Ferret Copy-Detection Tool, (c) School of Computer Science, University of Hertfordshire, 2010

File 1:

Total units in file: 282508
Total sections in file: 37674
Number of dense blocks m file: 1
Unsts in dense blocks:

Covered by matched tngrams 30
Not covered 5
Total 37

Bleck starting at unit: 126763

Stasting at section: 16597
Stast yest: 126763
Unsts covered by matched trignms: 30
Total uaits in the block: 37
Block deasity: 081
Text (matched text is purple):

from him: and then he put it off with a laugh cting » part with so much

that it was hardly possible for me %0 be ang:ry with him: 30 that we

File 2 :
Total umits in file: 221057
Total sections in file: 23854
Nusnber of dense blocks in file: 0
Unsts in dense blocks:
Covered by matched tngrams 0
Not coversd 0
Total 0

Figure F.4: Example of the XML file output by the Ferret density analysis tool. This
shows the results of analysing a comparison between two very large
text files, where only one small block of 2 lines is found.



378 APPENDIX E DENSITY TOOL PROTOTYPE



Appendix G

File pair ranks from Chapter 9

Ratios Counts Ratios Counts
Fer | Ex. | Ex. | Ex. | Wt. | Wt. Fer | Ex. | Ex. | Ex. | Wt. | Wt.
ret P O PO 2 4 ret P (@] PO 2 4
3,7 17 19 19,27 5 5
3,15 3 3 17 19 13 19, 36 3
3,20 18 16 19,43 1 1
3,25 2 4 11 8 11 7 19, 46 8
3,56 20 19,54 1
4,44 20 21,28 14 14
5,13 8 9 22,61 7
5,52 4 2 23,41 20 17 9 14
7,15 19 24,30 16 6 3 6 5
7,25 12 16 13 11 24,40 6 11 8 6 10 10
8,17 14 2 2 1 1 26,52 19
8,23 16 27,28 | 20 10 9
8,25 18 27,53 17
8,63 20 5 4 27,61 11
10, 29 9 29,42 18 13
10, 42 16 7 29, 58 8
10, 58 2 13 9 30,40 19 15 11 16
13,49 7 8 32,33 4 3 6
13,52 14 34,53 13
13, 56 18 36,43 15
14,22 41,58 19
14,53 14 42,58 6 12
14, 61 10 43,46 10 7
15,25 5 5 12 47,48 12 10 12 18
15, 56 4 1 49,52 17 20
17,34 15 51, 63 18 2 3
17,63 15 15 53, 61 12
57,60 9 15 7 4 13 17

Table G.1: The top 20 similarities determined by the different measures shown in

Table 9.1. Column 1 gives the pairs of student projects which have high
similarity scores under one or more measures, the remaining columns
indicate for which measure(s) this is so, ranked from 1-20, top down.

379



380 APPENDIX G. SIMILARITY RANKINGS FOR CHAPTER 9



Appendix H

Details of the 89 projects

The eighty-nine projects from which the split and disappearing file datasets
were collected are introduced in Chapter 12. The tables in this appendix
give details of these projects. The first, Table H.1, shows the project names
and purposes, while Table H.2 shows statistics relating to the size of the

projects, which are, ordered by column:
1. The number of releases in the project.
2. The size in Mb of all of the code in the project.
3. The total number of files in the project.
4. The amount of C code in KLOC in the project.
5. The minimum number of KLOC of C code,
6. and the maximum in one release.
7. The size of the stripped C code in the project in Mb.,

8. and the number of C code files.

381



382 APPENDIX H. DETAILS OF THE 89 PROJECTS
Project Purpose
acidblood an IRC robot
aqtwo-tng Action Quake2 variant
artoolkit captures images from video sources, optically tracks markers in the images
barcode barcode printer
beecrypt cryptography libraries
biew file viewer with built-in editor for binary, hexadecimal and disassembler modes
bitcollider generates bitprints and metadata tags from files for Bitzi metadata project
cipe-linux encrypts IP over UDP tunneling, can be used to build a range of VPN solutions
dbacl general purpose digramic Bayesian text classifier
diald link management tool able to control dial-on-demand network connections
drivel GNOME client for working with blogs
dt3155a version 1.8 of the Linux DT3155 device driver, for kernels 2.2, 2.4 and 2.6
dynamics scalable, dynamical, and hierarchical mobile IP software for Linux
effectv real-time video effector
etherape graphical network monitor like etherman, displaying network activity graphically
extace 3D audio visualization tool
felt finite element analysis, primarily for mechanical problems
fidogate Fido-Internet gateway, provides Fido utilities
fobbit uses the Creative Labs USB VOIP Blaster on NetBSD, Linux, and Windows
ganc gnome?2 based algebraic calculator
gema general purpose text processing utility based on pattern matching
giw gtk widgets for scientific/instrumentation and visualization
gnochm CHM file viewer for Gnome?2, using a set of Python wrappers around libchm
gpmudmon | battery monitor for Linux PPC similar to Batmon but running as a Gnome applet
gpsbabel reads, writes, and manipulates GPS waypoints in a variety of formats
gwyddion multiplatform scanning probe microsope, data visualization and analysis tool
hardsid driver for the HardSID cards for Linux and other free operating systems
hatari Atari ST emulator for Linux, designed for running old ST games and demos
heme portable console hex editor for unix operating systems
hptalx program to communicate with an HP calculator, uses GTK for GUI
interest financial management system for personal investments
ipcop Linux firewall distro, geared towards home and SOHO users
jack-rack LADSPA effects rack for the JACK low latency audio API
judy general purpose dynamic array implemented as a C callable library
Ide disk editor for linux, originally written to help recover deleted files
lejos for lego robot programming in java for LEGO Mindstorms RCX and NXT bricks
Igeneral turn-based strategy game inspired by the classic Panzer General
libbt C implementation of the BitTorrent core protocols
liflines genealogy software
lirc supports receiving and sending IR signals of common IR remote controls
log4c for flexible logging to files and elsewhere in time-space critical environments
mfstools set of utilities for a TiVo
mjs console MP3 Jukebox System
mkcdrec CD-ROM recovery tool, makes a bootable (El Torito) disaster recovery image
continued ...

The open source projects used in this research. Page 1 of 2.



383

Project

Purpose

... continued

motif-pstree
mplayerplug-in
mpop

msmtp
multignometerm
nano

nap

newstar

noffle
nptltracetool
nvram-wakeup
oww
pam-mysql
pbbuttons
pidgin-hotkeys
pio

poptop
ppcboot
premake

pxlib

rcalc

rembowiz
rio500

rsyslog

rtnet
seti-applet
sf-xpaint
sonasound
sortmail
sphinx2
sphinx3
suparun

toxine

tulip

tuxnes

vacm
wmweatherplus
wx200d

xastir
xawdecode
xbae

xmp

yplot

ysmv7

zimg

(xps) dynamically displays Unix processes as a tree or forest

plugin for Mozilla that uses mplayer to play embedded media

POP3 client

SMTP client

version of gnome-terminal, with new features and extensions

GNU nano is a GPLed clone of the Pico text editor

text-based Napster client for Linux

transfers Usenet articles between local and remote servers using NNTP transport
news server optimized for low speed dial-up connections to the Internet
mechanism to unobtrusively trace the NPTL Library in dynamics

reads and writes the WakeUp time in the BIOS

one-wire weather, for Dallas Semiconductor / AAG 1-wire weather station kits
allows PAM aware applications to authenticate users through MySQL database
supports laptop functions, eg power management, hotkeys, battery supervisor
pidgin plugin for global hotkey assignment in list and message management
emulation of the board game The Settlers of Catan

PPTP server

Embedded PowerPC Bootloader Project, esp. for Embedded PowerPC boards
project configuration scripting tool

enables reading and writing of Paradox database and primary index files
symbolic calculator for the GNOME desktop environment

network based PC disk image management, based on Rembo Toolkit

utilities for Diamonds Rio 500 digital audio player under Linux

syslog support utilities

real-time network protocol stack for Linux extensions Xenomai and RTAI
displays the status of any seti@home client in a small GNOME panel applet
paint program for X, suitable for producing simple graphics

sonogram and waveform display program displays musical features

processes incoming email, classifying and processing accordingly

speech recognition system

real-time speech recognition system

(OBLISK) system for GNU/Linux to run binary packages on most systems
scriptable, interactive text Ul program using xine-lib

Linux 2.4.x kernel driver for the Tulip series of ethernet chips

emulator for the 8-bit NES that runs under Linux and FreeBSD

virtual camera - creates a virtual representation of recorded scenes

will download the National Weather Service METAR bulletins

data collector and server daemon for weather station hardware

real-time tracking of stations via radio/internet APRS data streams

XdTV allows you to watch, record and stream TV

Xbae set consists of the XbaeMatrix, Caption and Xbaelnput widgets

extended module player for Unix-like systems playing over 80 module formats
scientific graphics plotting package implemented as a Yorick interface to PLplot
ICQ client based on v7/v8 protocol version, no external libraries required
generates png / jpeg images from arbitrary formatted 2-D ascii or binary data

Table H.1: The open source projects used in this research. Page 2 of 2




384 APPENDIX H. DETAILS OF THE 89 PROJECTS

All code Stripped C code

No.of Size | No.of | Project Min Max | Size | No.of

Rel’s. Mb files | KLOC | KLOC | KLOC Mb files
acidblood 4 1.0 341 19 3 5 0.5 100
aqtwo-tng 7 31.2 2649 322 35 42 9.8 529
artoolkit 9 429 5127 256 20 28 8.3 1247
barcode 9 420.3 4980 28 1 4 0.6 126
beecrypt 4 7.4 967 2321 86 205 1.7 532
biew 8 | 1500.0 7842 499 48 54 | 14.5 2361
bitcollider 6 9.0 683 50 5 11 1.3 291
cipe-linux 12 45 961 70 4 7 2.0 397
dbacl 10 217.1 3013 190 12 23 43 287
diald 9 7.0 1662 82 8 10 45 313
drivel 6 5.7 499 31 1 8 1.0 115
dt3155a 4 1.5 309 20 4 4 0.6 114
dynamics 25 444 8778 878 20 47 | 23.6 3326
effectv 17 6.0 1579 175 3 14 34 857
etherape 88 1159 | 13858 618 1 17 | 17.3 2497
extace 8 15.4 489 75 6 13 2.2 432
felt 3 32.7 2895 380 84 100 | 10.6 1247
fidogate 35 249.5 | 38540 854 21 26 | 37.2 3238
fobbit 3 14 220 30 7 12 0.7 72
ganc 6 1.9 361 18 2 3 0.5 256
gema 4 1.7 304 32 6 7 0.7 85
giw 3 11.3 730 40 10 10 2.8 178
gnochm 14 15.3 1101 1 <1 <1 0.1 26
gpmudmon 10 2.0 627 16 <1 1 0.6 57
gpsbabel 8 119.7 | 11980 862 82 113 | 68.1 2996
gwyddion 29 153.9 | 23892 2486 3 130 | 94.6 8546
hardsid 10 1.5 324 10 1 2 0.5 25
hatari 9 19.4 2663 398 29 50 | 10.6 1709
heme 3 0.3 64 7 1 2 0.2 36
hptalx 4 6.0 286 29 6 6 2.2 105
interest 56 37.8 7132 709 9 27 | 204 3975
ipcop 22 203.2 | 24294 402 5 19 | 20.6 1801
jack-rack 7 45 730 51 4 7 22 302
judy 5 33.1 645 134 27 27 9.0 244
I1de 11 5.6 829 82 3 11 1.9 413
lejos 9 23.6 7270 77 3 12 53 588
Igeneral 11 443 4312 322 22 33 | 14.8 1274
libbt 7 6.1 796 54 5 8 1.3 261
lifelines 15 99.7 7495 767 24 62 | 19.3 3153
lirc 47 86.9 | 23619 1664 9 47 | 374 4562
log4c 8 53 1453 73 4 12 2.5 621
mfstools 9 2.7 723 59 2 9 1.7 204
mjs 9 1.8 521 38 4 5 1.0 300
mkedrec 24 1235 | 17306 1482 1 75 | 31.8 6319

Project sizes. Page 1 of 2



385

All code Stripped C code

No.of Size No.of | Project Min Max Size No.of

Rel’s. Mb files | KLOC | KLOC | KLOC Mb files
motif-pstree 3 4.7 854 31 8 8 1.0 288
mplayerplug-in 12 36.7 4340 68 1 2 4.6 405
mpop 37 26.0 3940 311 14 20 5.1 1368
msmtp 18 17.8 2686 195 12 19 7.2 823
multignometerm 17 46.4 7621 378 13 31 33.1 458
nano 38 42.6 3545 344 7 14 8.5 1138
nap 13 11.0 1024 232 15 19 5.3 544
newstar 10 9.9 1606 90 8 8 2.4 648
noffle 7 4.5 847 71 8 11 3.5 398
nptltracetool 2 8.1 967 44 5 12 3.1 463
nvram-wakeup 10 3.7 969 30 <1 6 2.6 117
oww 29 69.9 4812 515 9 24 14.7 2997
pam-mysql 13 14 415 22 <1 2 0.7 113
pbbuttons 10 13.7 2747 125 7 20 4.1 683
pidgin-hotkeys 8 14 467 12 1 5 04 57
pio 9 29.9 4245 272 17 30 12.8 1094
poptop 8 8.9 1222 51 4 6 1.8 268
ppcboot 9 89.5 11920 2321 7 200 49.4 6770
premake 4 35 689 56 8 13 1.6 324
pxlib 38 26.9 4760 78 1 7 3.5 658
rcalc 14 14.2 2726 61 2 5 1.8 587
rembowiz 10 7.1 1055 99 4 12 5.8 243
rio500 4 2.7 591 35 6 8 1.0 131
rsyslog 52 79.6 11730 974 11 29 25.7 3915
rtnet 9 32.7 3833 352 21 41 11.0 1418
seti-applet 9 14.4 1667 56 4 7 1.8 317
sf-xpaint 12 214 3114 487 27 64 12.8 1499
sonasound 31 31.3 3981 275 5 10 7.8 1738
sortmail 5 15 232 36 6 6 0.8 138
sphinx2 6 166.3 2380 1341 204 224 11.8 1021
sphinx3 6 262.4 3532 481 28 163 10.7 1123
suparun 10 51 675 11 1 2 0.4 127
toxine 6 7.0 938 142 10 25 3.7 446
tulip 10 3.0 409 66 5 6 19 130
tuxnes 4 3.9 330 80 13 18 2.5 198
vacm 9 119.9 6309 559 51 64 16.9 1933
wmweatherplus 12 41 1256 88 6 8 2.2 716
wx200d 11 2.5 463 22 1 4 0.6 173
xastir 140 931.2 48347 11899 47 111 476.8 16976
xawdecode 19 123.4 6221 742 20 57 40.8 2706
xbae 55 103.4 15900 1179 18 27 415 2835
xmp 9 30.1 4075 517 30 55 11.2 2238
yplot 5 2.2 389 6 1 1 0.2 14
ysmv7 8 13.7 946 166 11 22 49 416
zimg 47 48.7 2798 272 3 8 7.5 806
Grand Total 1405 | 57925 | 418422 41900 2023.4 | 117515

Table H.2: Information about project sizes. Page 2 of 2



386 APPENDIX H. DETAILS OF THE 89 PROJECTS



Appendix I

Density test results

The range of density parameters tested to determine a suitable set for clas-
sifying the data were all possible combinations of those listed in Table I.1.
These parameter sets are listed in Table 1.2, with their classification accuracy
on the split file dataset, as dd-bb-gg, where dd is the density, bb is the min-
imum block size and gg is the largest gap permitted. Of those tested, the
parameter set which achieves the highest accuracy over the 23 algorithms
(see Table 14.2, p.226) is 95-40-3, a minimum density of 95%, a minimum
block size of 40 tokens, and a maximum gap size of 3 tokens. These are
therefore the parameters used in this research. The ranks (from 1-80) are
summed for each component of the parameters to find their contribution to
the results, and are listed in Table 1.3. The components of the top perform-
ing combination 0.95-40-3 are top of their respective groups. The lower

densities, largest block size, and bigger gap are the worst for this data.

Minimum | Minimum | Maximum
Density block gap
60 10 3
65 20 10
70 40
75 80
80 160
85
90
95

Table I.1: Density test parameters

387



388 APPENDIX 1. DENSITY TEST RESULTS

Density set | Avg % correct || Density set | Avg % correct || Density set | Avg % correct
0.95-40-3 82.44 0.70-80-3 79.93 0.65-20-3 79.13
0.95-10-3 82.04 0.75-80-3 79.92 0.80-40-10 79.04
0.95-40-10 81.92 0.95-80-3 79.88 0.80-10-10 78.99
0.90-40-3 81.69 0.85-80-3 79.87 0.75-40-10 78.96
0.90-40-10 81.57 0.60-80-3 79.86 0.85-160-10 78.92
0.95-20-3 81.41 0.65-80-3 79.86 0.90-160-10 78.92
0.90-10-10 81.27 0.75-10-3 79.86 0.70-10-10 78.89
0.95-10-10 81.19 0.85-80-10 79.78 0.70-80-10 78.88
0.90-10-3 81.16 0.85-40-10 79.76 0.70-20-10 78.87
0.85-40-3 81.10 0.95-80-10 79.74 0.90-160-3 78.80
0.90-20-10 80.98 0.80-10-3 79.71 0.75-80-10 78.77
0.95-20-10 80.75 0.70-10-3 79.69 0.65-20-10 78.76
0.90-80-10 80.69 0.75-10-10 79.64 0.80-80-10 78.63
0.80-40-3 80.61 0.80-20-3 79.56 0.65-10-10 78.61
0.75-40-3 80.60 0.75-20-10 79.54 0.65-80-10 78.59
0.90-20-3 80.56 0.95-160-3 79.49 0.60-80-10 78.49
0.70-40-3 80.52 0.95-160-10 79.33 0.60-10-10 78.39
0.90-80-3 80.49 0.80-20-10 79.30 0.60-20-10 78.33
0.85-10-3 80.30 0.75-160-3 79.26 0.70-40-10 78.17
0.65-40-3 80.27 0.70-160-3 79.26 0.80-160-10 77.73
0.60-40-3 80.17 0.65-160-3 79.26 0.65-40-10 77.67
0.85-10-10 80.15 0.60-160-3 79.26 0.60-40-10 77.52
0.85-20-10 80.12 0.70-20-3 79.25 0.70-160-10 77.51
0.85-20-3 80.02 0.60-20-3 79.25 0.75-160-10 77.44
0.80-80-3 80.01 0.75-20-3 79.24 0.60-160-10 77.34
0.60-10-3 80.00 0.85-160-3 79.23 0.65-160-10 77.20
0.65-10-3 79.96 0.80-160-3 79.20

Table 1.2: Density test: mean classification rate for each parameter set over all
algorithms. The parameter set names show minimum density-minimum
block size-maximum gap size.

Density Block Gap

0.95 186 40 484 3 1221
0.9 207 10 528 10 2019
0.85 312 20 629
0.75 459 80 644
0.8 471 160 955

0.7 517
0.65 541
0.6 547

Table 1.3: Sum of ranks for each component of dd-bb-gg parameters



Appendix ]
SVM grid search results

The classification accuracies achieved by the Weka classifiers were com-
pared with those of support vector machines, one with a radial basis kernel
and one with a linear kernel. The libsvm! implementation used was that in
Chicken Scheme.? The data was splitinto 100 different training and test sets,
to echo the Weka experiments. The mean results of the best of these, with
the trigram-based “tris-singles” and “tris” feature sets, and a radial basis
kernel, are plotted over the grid search region, in Figures ].1 and J.2. The
maximum accuracy on this coarse grid search was 88.2% for “tris-singles”
and 86.8% for the “tris” set. These sets, which differ slightly from those
reported in Chapter 14 had results of 88.5% and 87.8% respectively with the
Rotation Forest algorithm. As the SVM did not outperform the Weka based
algorithms, and would not be expected to gain much in a finer-grained

search, the use of the SVMs was not pursued further.

1ht‘cp://www. csie.ntu.edu.tw/~cjlin/libsvm/
thtp ://wiki.call-cc.org/eggref/4/1libsvm

389



APPENDIX]. SVM GRID SEARCH RESULTS

390

* ,S9[3UIS-SII},, }9S DINJLIJ A} YIIM SUNI 3$9) (0T IOJ ULSW S}

:S)[Nsax Yoreas prid NAS :1°[ 23]

LLUsuLuUm

G400
24061200
GzLoziom
£L062.0@
GELDELO®
pL0-GEL00
SrL0FL0m
GL0spi0m
§6/0°5.00
9.065400
G8.09.0m
4006820m
GLL0-LL0m
840G.0m
GeL08i0B@
62068400
G6L'06400

8'0-56L00

5080800
18'0-508'00
Glg0-le0o
28051800
GZeozaom
£8'0-5Z800
GEBDER0D
Fa0-5E8°00
SPe0-F8 00
Ge0sra 0@
G580580m@
98'0-558°00
Gog0-9s 0@
180598 0m@
Gi80-.80m
88'0-G.80m
G8e'0-g80m

L0-3P5'6

CEPPSSEE

9lz4L491
80988E8

vOEVEL Y
2514602
9.58101
88ZFCS
rrlzaz

903161
90-318°€
90-3E9°2
5038571
G0-350°€
S0-301°8
402210000
LrlrZ0000
182880000
£959/6000°0
GZIESBL000
GZ906E00°0
Gz184000
GZ9slo0
GZleoo

Sza00

gzlo

SC0

ci0lEL
9EGE9
89428
#eESL

g0
L
4

z618

960F
8r0z

If

w0l
Clg
952
=14

2]

N @ o BN —

.
v

ar

8
gl
[43

Z

S0
S0

Z

A

TN

Gza00

SZ1E00




391

*,SI1},, 39S 9INJedJ A} YIIM SUNI }S9} T 10 UeaUW dY} :Synsa1 yoreas prid NAS ¢ [ 2InSig

S0L0L0E
L40s0L0m
S1L0°1400
24061400
szioeiom
££06z.0@
GELDELOM
#L0-GEL0D
SrL0FL0m
SL0spiom
8640600
94068400
§94°0940m
4406820m
Gi40-240m
840608
G8L08L0D
64°0-58.00
G6.°0°6400

80-66L00

5080800
lg'0-50800
Glg0-lg0o
2805800
GZe0-Zeom
£8'0-5280@
gegoEs0l@
¥8'0-5e8°00
SPe0-FE0E
Se0-sre 0@
G88'0-58 0@
98'0-558°00
G98'0-98 0@
48059808

CEPPESEE

L0-3¥5'6
90-316°1
90-318°€
90-3e8°L
G0-3e5')
Go-350°€
G0-301'9
402210000
Ll Fz0000
18288F0000
£959.60000
GZ1ESB100°0—
GZ906E00D

91244481
80988E8
FOEVEL Y
¢G14602
9458¥01
88ckes
[ T4t
ci0lEL
9EG59
89.2E
rBESL
c618

52184000

GZ9s1l00

SZlE0D

G900

960F
ar0z

Szlo

rzol
(4%
952
8zl
]

SZ0

G0

—

[=2]

[ S N )

I

4
¥

g
gl
43

S0

ST0

Szl

52800

GZlelo




392 APPENDIX]. SVM GRID SEARCH RESULTS



Appendix K

Supplementary results for
Chapter 14

This appendix reports on two sets of experiments which explore the effect on
classification of further feature combinations, and of classifier combination.
None of the combinations reported here improve on the results of simpler
models on the split file dataset reported in Chapter 14. Also in this appendix
is a listing of the DNSjava file MX_KXRecord, referenced in Chapter 14.

K.1 Feature sets - further combinations

Three-, four- or five-way feature set combinations
The top 5 singles sets, b, fc, ft, pdp and tris, were combined in groups of
3,4, and 5. The results in Table K.1 show that these combinations do not

Mean % Mean %
Feature set correct Feature set correct
fc+fb+tris+pdp-singles 91.70 fe+ft+fb+pdp-singles 91.40
fc+tris+pdp-singles 91.65 ft+tris+pdp-singles 91.36
fb+tris+pdp-singles 91.61 ft+fb+pdp-singles 91.20
fe+ft+fb+tris+pdp-singles 91.53 fc+ft+pdp-singles 91.12
fc+fb+pdp-singles 91.51 ft+fb+tris-singles 91.05
fe+ft+tris+pdp-singles 91.51 fe+ft+fb-+tris-singles 91.04
ft+fb+tris+pdp-singles 91.47 fc+ft+tris-singles 91.02
fc+fb+tris-singles 91.43 fe+ft+fb-singles 90.48

Table K.1: Mean classification of 3-, 4- and 5-way combinations of fb, fc, ft, pdp
and tris singles sets, over the 23 algorithms.

393



394 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14

Mean % Mean %
Feature set correct Feature set correct
all-fb+tris-singles 91.79 all-fb+all-pdp 91.03
all-fb+all-tris 91.58 all-fb+ft-singles 90.79
all-fb+pdp-singles 91.45 all-fb+all-fc 90.60
all-fb+fc-singles 91.27 all-fb+all-ft 90.32

Table K.2: Mean classification for selected feature sets in combination with the full
fb set over the 23 algorithms.

improve on the classification rate of the best of each group on its own.

The full Ferret basic (“fb”) set combined with other feature sets

The full “fb” set with the SMO algorithm has the best performance for
an individual feature set/algorithm combination. To explore the “fb” set’s
performance in combination with other sets, it was paired with each of the
full and singles features of the other four best sets: “tris”, “fc”, “ft” and
“pdp”. The results are shown in Table K.2. Small improvements over the
mean performance of 91.27% are found by adding “tris”, “tris-singles” or
“pdp-singles”. However, the best individual performance of fb/SMO of

94.29+1.89% is not improved on.

The full trigram (“tris”) set combined with other feature sets

The other full set which performs well is the “tris” set. This was also
combined with the better of the other sets, “fb”, “fc”, “ft” and “pdp”,
both as singles and full sets. The results are in Table K.3. None of these

combinations improve on the full “tris” set results (91.91%).

Mean % Mean %
Feature set correct Feature set correct
all-tris+fb-singles 91.85 all-tris+ft-singles 91.23
all-tris+fc-singles 91.62 all-tris+all-pdp 91.18
all-tris+pdp-singles 91.59 all-tris+all-fc 91.00
all-fb+all-tris 91.58 all-tris+all-ft 90.71

Table K.3: Mean classification for selected feature sets in combination with the full
“tris” set over the 23 algorithms.



K.2. HETEROGENOUS META-CLASSIFIERS 395
K.2 Heterogenous meta-classifiers

Heterogenous meta-classifiers combine a number of algorithms with the
aim of finding complementary information which will improve on clas-
sification accuracy. Previous experiments on earlier versions of this data
showed that the best combination of algorithms are those which do best
individually. This strategy was repeated with the current dataset. First,
the accuracy of the better performing algorithms on the better performing
feature sets are noted. Then the results of combining the top 3 algorithms
for each set with each of 5 meta-classifiers are listed. In general the results

are no better than for the best single algorithm.

How do the better base algorithms perform with the better feature sets?
Table K.4 shows the details of the classification accuracy of each of the 13
selected feature sets with the top 7 of the 11 selected algorithms over these
sets. The results are ranked by the mean over each set and each algorithm.

The best result for each algorithm is in bold text, and the best for each

-8 ? ?

a & =
E 1] 2 : 5
= Q = 2 a &0
& c% Ug) § E rg % 5 Mean
tris-singles 94.16 93.42 93.20 93.11 92.61 94.01 *93.78 93.36
fb+tris-singles 94.03 93.47 93.11 9312 | 9254 | 93.87 93.74 93.41
all-fb+tris-singles 94.25 *93.49 93.17 9298 | 92.66 | 93.68 93.65 93.41
tris 94.14 93.37 93.15 9295 | 93.05 | 93.96 93.13 93.39
fb *94.29 | 93.68 92.71 9327 | 91.84 | *94.17 | 93.00 93.28
all-fb+all-tris 94.15 93.24 93.30 9244 | 92.60 | 93.68 92.58 93.14
fb-singles 93.46 93.36 92.44 *9337 | 91.57 | 94.15 90.72 92.72
fc+fb-+tris-singles 93.14 93.04 *93.49 | 9256 | 93.35 | 91.30 91.65 92.65
fc+tris-singles 92.93 93.04 93.27 92,57 | 93.37 | 91.11 91.02 92.47
all-fb+fc-singles 92.66 92.67 | *9337 | 92.03 | 9333 | 91.38 91.73 92.45
pdp+tris-singles 92.80 93.23 92.90 92.69 | 92.60 | 91.04 91.28 92.36
all-singles 91.25 92.94 92.94 92.35 92.99 | 91.53 91.42 92.20
all-fb+pdp-singles 91.67 92.76 92.38 9218 | 9257 | 91.18 91.35 92.01
Mean 93.23 93.21 93.03 92.74 | 92.70 | 92.70 92.24 92.84

Table K.4: Classification rates of 13 top feature sets with 7 selected algorithms



396 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14

feature set is marked by an asterisk. SMO gives the best result with 6 of the

13 feature sets, but there is no clear “winner” among the feature sets.

Does combining algorithms improve performance?

The aim of this experiment was to discover whether combining algo-
rithms using a heterogeneous meta-classifier could improve these results.
The meta-classifiers Grading, Stacking, MultiScheme, majority vote and
mean vote were used to combine the algorithms. The results for a selection
of 4 feature sets are shown in Table K.5. In each case, 3 algorithms which
perform best with the set are combined, excluding those of similar type,
for example, SGD is not included if SMO is in the set, as both are based on
SVMs. The 3 sets are noted on the row labelled ‘Combination’. These are
SMO, Simple Logistic (SL), Rotation Forest (ROT), Random Forest (RAND)
and Functional Trees (FT). The best result with a single classifier is given
in the next row, followed by the results with heterogenous meta-classifiers
which combine the three algorithms selected for the feature set.

These results indicate that there is no room for improvement over the
single best classifier on any feature set by combining algorithms. As this
is also the case when combining feature sets, it seems that the limit of

classification accuracy has been reached for this data.

Feature set tris-singles fb all-fb-all-tris fe+tris

Combination | SMO, SL, ROT | SMO, SL, FT | SMO, SL, ROT | SMO, SL, RAND

Best result 94.16 94.29 94.15 93.37
Majority vote 94.14 94.05 93.96 93.65
Mean vote 93.93 94.14 94.20 93.52
Grading 94.01 93.98 93.96 93.50
MultiScheme 93.41 93.23 93.27 93.40
Stacking 93.36 93.47 93.10 92.82

Table K.5: Heterogeneous meta-classifier results for a selection of feature sets. The
highest accuracy obtained by a single classifier with each feature set
is given, with the mean results for each of the meta-classifiers below.
The algorithms combined are shown, SMO, SL (Simple Logistic), ROT
(Rotation Forest), RAND (Random Forest) or FT (functional tree)



K.2. HETEROGENOUS META-CLASSIFIERS 397

Package and import statements are as MXRecord and KXRecord, but removed here to fit to page
public class MX_KXRecord extends Record {
private short priority;
private Name target;
protected
MX_KXRecord() {}
public
MX_KXRecord(Name _name, short _type, short _dclass, int _ttl, int _priority,
Name _target)
{

super(-name, _type, _dclass, _ttl);
priority = (short) _priority;
target = _target;

i)rotected

MX_KXRecord(Name _name, short _type, short _dclass, int _ttl,
int length, DataByteInputStream in, Compression c)

throws IOException

super(-name, _type, _dclass, _ttl);
if (in == null)
return;
priority = (short) in.readUnsignedShort();

target = new Name(in, c);

i)rotected

MX_KXRecord(Name _name, short _type, short _dclass, int _ttl,
MyStringTokenizer st, Name origin)

throws IOException

super(-name, _type, _dclass, _ttl);
priority = Short.parseShort(st.nextToken());
target = new Name(st.nextToken(), origin);

i)ublic String
toString|() {
StringBulffer sb = toStringNoData();
if (target != null) {
sb.append(priority);
sb.append(" ");
sb.append(target);

}
return sb.toString();

}

public Name

getTarget() {
return target;

)

public short

getPriority() {
return priority;

}

void
rrToWire(DataByteOutputStream out, Compression c) throws IOException {
if (target == null)
return;
out.writeShort(priority);
target.toWire(out, null);
l/oid
rrToWireCanonical(DataByteOutputStream out) throws IOException {
if (target == null)
return;
out.writeShort(priority);
target.toWireCanonical(out);

1
Figure K.1: The new file MX_KXRecord, referenced in Section 14.2.2



398 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14



Appendix L

Less direct methods of filtering

This appendix explores the three less direct similarity measures for filtering
suggested in Section 15.1. The measures in this category are explained in
the next three sections, and each is illustrated with a small set of example
files taken from the dataset. These files were selected from two projects:
“hatari”, which has multi-way split files, and “gwyddion”, which has high
incidental similarity among the files (a mean similarity of 0.31 between all
pairs of files in one release, compared to Hatari’s 0.17).

Two files were chosen from the hatari project: dialog.c,' which is split
eleven ways, and gemdos.h, a three-way split.> The number of unique
trigrams per file in the two releases analysed for this project ranges from
none to nearly four thousand, with a mean of around three hundred and
thirty-five. There are 149 and 162 files in the two releases.

Three files were chosen from gwyddion: gwyutils.c,® and gwymodule-
file.h,* which are two-way splits, and gwypixmaplayer.c,” which is not
split. The file gwymodule-file.h is interesting because the code which has
been extracted from it appears in two other files, gwymodulenums.h and
main.c. The same code has been factored out of a number of other files to

gwymoduleenums.h as part of the same restructuring, however, this code

http://homepages.stca.herts.ac.uk/~gp2ag/xmls/dialog-8.xml, also see p-184
’http://homepages.stca.herts.ac.uk/~gp2ag/xmls/gemdos.xml, also see p183
Shttp: //homepages.stca.herts.ac.uk/~gp2ag/xmls/gwyutils-7.xml
“http://homepages.stca.herts.ac.uk/~gp2ag/xmls/gwymodule-file-10.xml
Shttp://homepages.stca.herts.ac.uk/~gp2ag/xmls/gwypixmaplayer-7.xml

399



400 APPENDIX L. LESS DIRECT METHODS OF FILTERING

has not been moved from main.c.

There are 279, 303 and 342 files in the next release to each of these
files respectively. The number of unique trigrams per file in these releases
ranges from 4 to 2,500, with one outlier of 3,500, and the mean number in

each release is around the same as the two hatari releases.

L.0.1 Uniquely shared trigrams (2a)

The trigrams uniquely shared by the candidate file and files in the next
release are found by analysing the trigram-file index for a comparison be-
tween files in two releases. Any files which uniquely share trigrams with
the candidate file are considered to be its targets.

There are advantages and disadvantages to this method of selecting
target files. On one hand, it cuts out incidentally similar files. On the other
hand, in projects with high incidental similarity, there may be few or no
unique trigrams among the files in a release, so that no target files will be
selected.

Table L.1 shows the results of the investigation. Candidate (in bold)
and target file names are in the second column of the table. The next
two columns show the number of unique trigrams each file has within the
release, and the number of these which are shared with the candidate file.

Files with fewer than five uniquely shared trigrams are excluded from
the table. This method selects the same true target files as the combination
conditions for gemdos.c. Two of the targets selected by combination con-
ditions for dialog.c are not true targets. These two files have few uniquely
shared trigrams: dlgDevice.c has 8, and dlgFileSelect.c has 2.

One of the two split files in the gwyddion project, gwyutils.c, is matched
to gwyenum.c, to which four functions are moved. However, the other split
file, gwymodule-file.h, has no target files selected because the code in the
target file is shared by another file in the system. No target files are selected
for the final file, gwypixmaplayer.c, which is as expected, because it is not
a split file. In the similarity combination and shared trigram change sets,

12 and 22 targets respectively are selected for this file, because of the high



401

Trigrams unique | Trigrams uniquely
among files in shared with the
Project Filename the same release candidate file
hatari src/dialog.c 212 198
src/gui-sdl/dlgDisc.c 311 286
src/gui-sdl/dlgScreen.c 234 228
src/gui-sdl/dlgMain.c 232 216
src/gui-sdl/dlgTosGem.c 178 172
src/gui-sdl/dlgAbout.c 162 143
src/gui-sdl/dlgKeyboard.c 128 123
src/gui-sdl/dlgSound.c 176 114
src/gui-sdl/dlgSystem.c 111 106
src/gui-sdl/dlgJoystick.c 85 79
src/gui-sdl/dlgMemory.c 147 77
src/gui-sdl/dlgDevice.c 73 8
gemdos.h 44 40
gemdos_defines.h 172 166
gemdos.c 2261 53
gwyddion | gwyutils.c 708 515
gwyenum.c 181 58
gwymodule-file.h 42 42
gwypixmaplayer 227 203

Table L.1: Target files found by uniquely shared trigrams for the test cases (<5, not
reported). Filenames are listed with the number of unique trigrams in
the file and the number of these shared with the candidate file.

level of incidental similarity in the project.

L.0.2 Weighted trigram count (2b)

One way to try to address the problem of target files not being selected by
uniquely shared trigram count (because the code is in more than one file) is
to use a weighted trigram count. As explained in Chapter 9, to compute this
value, each file is compared to all of the files in the next release. Trigrams
shared by the candidate and another file are weighted by the inverse of the
number of files in release n+1 which share the trigram, and are added to
the count.

Table L.2 shows the weighted trigram counts for the five example files.
The same target files are found as by the count of uniquely shared trigrams
for the files dialog, gemdos and gwyutils. Where a value is given as “<n”

in the table, it means that the remaining values are greater than zero and



402 APPENDIX L. LESS DIRECT METHODS OF FILTERING

True Other No. other
Candidate Targets files files
dialo 330-87 <36 50
gemdos 171, 67 <36 28
gwutils 111 32,<13 99
gwymodule-file 12 18,12, <3 12
gwypixmaplayer - 22,<13 29

Table L.2: Weighted trigram count for the example files

graduate between zero and the upper value. When the difference between
the values is more clear cut, the values are noted. For example, the weighted
counts for gwyutils are 111 (the true target), 32, 12.83,12.25,11.83,11.08.. . ..
The number of other files sharing trigrams with the candidate file is in the
last column. The correct target file for gwymodule-file.h is ranked second
equal under this measure, but the value is small (12), because little code is

moved between the files and it is shared by other files.

L.0.3 Trigrams shared with the candidate difference set (2c)

The candidate difference set is the name given to the set of trigrams which
are in the candidate file, but not in the amended file. The difference set for
each potential candidate file is compared to the trigrams in each of the files
in release n+1. Files containing significant numbers of these trigrams are

added to the target group.

Table L.3 shows the number of trigrams which true targets and other
files share with the difference set. There are a large number of files which
share difference set trigrams in both projects. The true targets for gemdos
and gwyutils share noticeably more trigrams with the difference set than
other files. There is one non-target file which shares more trigrams than do
some of the target files for dialog.c. As with the weighted trigram count, the
true target file for gwymodule-file is one of three with marginally higher

scores than the rest in the release.



403

True Other No. other
Candidate Targets files files
dialo 576-180 | 215, <100 125
gemdos 198, 70 <23 86
gwutils 206 <51 259
gwymodule-file 29 30,10, <4 125
gwypixmaplayer - <20 316

Table L.3: Trigrams shared by the example files with the candidate difference set

L.0.4 Discussion

None of these three less direct methods, which require more processing,
perform as well as the simpler methods in selecting target files for the more
difficult gwymodule-file.h. However, they do reduce the number of inci-
dentally similar files selected as targets for other files. Selection of target
files by uniquely shared trigrams can exclude true targets because of dupli-
cation in the code. This duplication may be due to incidental similarity or
to parallel subsystems. For example, the high incidental similarity of the
project gwyddion, or of “ppcboot”, which has around 70 subsystems for
different motherboards. Weighted similarity goes some way to overcoming
the exclusion problem where uniquely shared trigrams fail, but also intro-
duces target files which share candidate code with few others but are not
true targets. In general, it is also a less useful measure for projects with high
incidental similarity. Finding the number of trigrams shared with the can-
didate difference set does not improve on the results with uniquely shared

trigrams or weighted counts for the problem file tested here.



404 APPENDIX L. LESS DIRECT METHODS OF FILTERING



Appendix M

Extracts from the Lifelines

change log

This appendix contains edited entries from the Lifelines project change log.
Entries were initially selected by the keywords: factor, refactor, split, move,
remove, and while scanning the log visually, the words pull, spun and
combine were added. The log was also searched by filename to try to find
matches for split files found by filtering and not initially found in the log.
Those judged to relate to file splitting are listed, and each split given a
number. If the entry is matched by a candidate file, "+++’ is added to the
entry (usually before the date), if not, - - - is added. Other notes are in

square brackets.

Release 3
---  2007-05-19

*NEW src/liflines/lines_usage.c

1. Move show_usage to be shared by both llines and llexec.

Release 4
+++ 2006-09-16

* Changelog src/interp/interp.c src/interp/progerr.c

2. Move declaration of prog_var_error_zstr to correct module (progerr.c).
[* 3, 4, 5: three changes all to one file, so are one split]

* +++ 2006-09-04

405



406 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

* Changelog src/gedlib/messages.c src/liflines/interact.c
src/liflines/llinesi.h src/liflines/screen.c
src/liflines/screeni.h src/liflines/searchui.c

3. Move search menu & window painting into searchui.c
Affected: invoke_search_menu, invoke_fullscan_menu,
repaint_fullscan_menu, repaint_search_menu

* +++ 2006-09-02

* ChangeLog build/msvc6/11lines/1linesprj.dsp src/hdrs/screen.h
src/liflines/Makefile.am src/liflines/listui.c
src/liflines/llinesi.h src/liflines/screen.c

*NEW src/liflines/interact.c

*NEW src/liflines/screeni.h

*NEW src/liflines/searchui.c

Split interact calls into interact_screen_menu and
interact_choice_string, and renamed interact to interact_worker.

4. Moved interact_screen_menu, interact_choice_string,

interact_worker, translate_hdware_key, translate_control_key

to new file interact.c. Created new header screeni.h.

* 44+  2006-07-25
* ChangeLog build/msvc6/1lines/1llinesprj.dsp src/gedlib/messages.c
src/hdrs/screen.h src/liflines/Makefile.am src/liflines/screen.c

src/liflines/show.c src/liflines/listui.c src/liflines/listui.h

5. Move popup and browse list code out of screen.c into listui.c.

---  2006-07-24

* Changelog src/gedlib/messages.c src/hdrs/screen.h src/liflines/browse.c
src/liflines/brwsmenu.c src/liflines/dynmenu.c src/liflines/main.c
src/liflines/menuset.c src/liflines/screen.c win32/mycurses.c

6. Moved platform_postcurses_init from main.c into screen.c.

+++ 2006-06-04

* ChangelLog build/msvc6/11lines/1linesprj.dsp
po/POTFILES.in src/interp/Makefile.am

src/interp/interp.c src/interp/interpi.h src/interp/rassa.c
*NEW src/interp/progerr.c

7. Move lifelines report error routines to new src/interp/progerr.c.

---  2005-11-26

* ChangelLog src/interp/Makefile.am src/interp/more.c
*NEW src/interp/rptsort.c

8. Move sort & rsort implementations from end of more.c into new
file rptsort.c.

+++ 2005-11-15

* ChangeLog build/msvc6/dbverify/dbverifyCmd.dsp
build/msvc6/1lexec/1lexec.dsp build/msvc6/1lines/1linesprj.dsp
src/hdrs/11stdlib.h src/liflines/error.c src/stdlib/signals.c
src/tools/dbverify.c
*NEW src/stdlib/errlog.c [from error.c]
*NEW src/stdlib/llabort.c [from signals.c]

9. Factor out crashlog reporting into new file src/stdlib/errlog.c,



407

and implement crashlog for dbverify as well. Also implement
10. optional abort for dbverify (by factoring optional abort into
new file src/stdlib/llabort.c).

+++ 2005-10-05

* ChangeLog build/msvc6/1lexec/llexec.dsp build/msvc6/1lines/11linesprj.dsp
src/hdrs/liflines.h src/liflines/Makefile.am src/liflines/ask.c
src/liflines/llexec.c src/liflines/main.c

*NEW src/liflines/selectdb.c

Combine two copies of open_or_create_database code from
11. main.c &
12. llexec.c into one copy in new selectdb.c.

* ChangeLog build/msvc6/dbverify/dbverifyCmd.dsp
build/msvc6/1lexec/1lexec.dsp build/msvc6/1lines/1linesprj.dsp
src/hdrs/Makefile.am src/hdrs/gedcom.h

13. Move macros from gedcom.h to new gedcom_macros.h.

+++ 2005-10-01

* Changelog src/gedlib/gedcomi.h src/gedlib/init.c
build/msvc6/11lines/1linesprj.dsp
*NEW src/gedlib/llgettext.c

14. Pull gettext code out of init.c into new file llgettext.c.

+++ 2005-09-25

* ChangeLong build/msvc6/1lines/llinesprj.dsp src/gedlib/datei.c
src/gedlib/datei.h src/gedlib/dateparse.c
src/gedlib/dateprint.c src/gedlib/date.c

15. Split code for parsing dates, and code for printing dates,
into different files.

+++ * Changelog src/gedlib/datei.c src/gedlib/datei.h
src/hdrs/date.h src/interp/builtin.c

16. Move a bunch of date structures & enums from date.h to private datei.h.
Add accessors needed for this move (date_get_day, date_get_month, etc).

Release 5
+++ 2005-02-27
* ChangelLog src/gedlib/init.c src/hdrs/gedcom.h

17. Move dblist functions out of init.c into new dblist.c

---  2005-02-19

* build/msvc6/11lines/1linesprj.dsp src/gedlib/date.c
src/gedlib/editvtab.c src/gedlib/gengedc.c src/gedlib/indiseq.c
src/gedlib/init.c src/gedlib/keytonod.c src/gedlib/lloptions.c
src/gedlib/misc.c src/gedlib/names.c src/gedlib/node.c
src/gedlib/valtable.c src/gedlib/xlat.c src/hdrs/table.h
src/interp/alloc.c src/interp/builtin.c src/interp/interp.c
src/interp/pvalalloc.c src/interp/pvalue.c src/interp/symtab.c
src/liflines/import.c src/liflines/llexec.c src/liflines/main.c
src/liflines/screen.c src/liflines/valgdcom.c
src/stdlib/memalloc.c src/stdlib/proptbls.c src/stdlib/table.c
*NEW src/hdrs/hashtab.h



408 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

*NEW src/stdlib/hashtab.c

18. Move hash table into new hashtab.h (use it from table.c).

- 2005-02-06
* ChangelLog src/btree/btreei.h src/gedlib/gedcomi.h src/hdrs/btree.h

19. Move some btree internal calls to btreei.h.

* ChangelLog src/gedlib/gengedc.c src/gedlib/xlat.c
src/hdrs/table.h src/stdlib/table.c

20. Move gengedc.c local table_incr_item to table.c table_incr_int.
Fix next_table_ptr to use const key.

---  2005-02-03

* ChangelLog src/btree/btrec.c src/gedlib/gstrings.c src/gedlib/node.c
src/gedlib/spltjoin.c src/hdrs/gedcom.h src/interp/write.c
src/liflines/advedit.c src/liflines/browse.c src/tools/dbverify.c

21. Move normalize_indi from private browse.c to public spltjoin.c.

---  2005-01-30

22. Move SORTEL (indiseq element) structure from indiseq.h to indiseq.c.

+++ 2005-01-25

* ChangeLog build/msvc6/1lines/llinesprj.dsp src/btree/Makefile.am
src/gedlib/Makefile.am src/gedlib/gedcomi.h src/gedlib/indiseq.c

src/gedlib/intrface.c src/gedlib/keytonod.c src/gedlib/node.c

src/hdrs/ src/hdrs/btree.h src/hdrs/gedcom.h src/hdrs/pvalue.h

src/interp/builtin.c src/interp/more.c src/interp/pvalue.c

src/liflines/add.c src/stdlib/list.c

*NEW src/btree/btrec.c

*emptied src/btree/record.c

*NEW src/gedlib/record.c

23. Move record struct & all associated functions into new file record.c.
[from node.c]

+++ 2003-11-12

* .linesrc ChangelLog lines.cfg build/msvc6/1lines/llinesprj.dsp
src/gedlib/init.c src/hdrs/Makefile.am src/hdrs/mystring.h
src/liflines/llexec.c src/liflines/main.c src/stdlib/Makefile.am

src/stdlib/mystring.c src/stdlib/stdstrng.c src/tools/btedit.c
src/tools/dbverify.c
*NEW src/hdrs/mychar.h
*NEW src/stdlib/mychar_funcs.c
24. *NEW src/stdlib/mychar_tables.c

+++ 2003-10-07

* ChangelLog build/msvc6/11lines/1linesprj.dsp
src/gedlib/keytonod.c src/gedlib/node.c src/gedlib/nodeio.c
src/hdrs/Makefile.am src/hdrs/cache.h src/hdrs/gedcom.h
src/hdrs/standard.h src/stdlib/Makefile.am

25. Move two functions taking CACHE into keytonod.c statics.

Release 7



409

+++ 2003-07-01
* ChangelLog src/hdrs/interp.h src/hdrs/pvalue.h src/interp/interpi.h

Header file restructuring.
26. Move most of interp.h into interpi.h
27. Move pvalue-related stuff into pvalue.h

Release 9
+++ 2003-02-06

* ChangelLog build/msvc6/11lines/1linesprj.dsp
src/gedlib/indiseq.c src/gedlib/node.c src/hdrs/interp.h
src/interp/builtin.c src/interp/interpi.h src/interp/pvalue.c
src/stdlib/list.c src/stdlib/table.c

*NEW src/interp/pvalalloc.c

28. Move pvalue memory code into pvalalloc.c.

Release 10
2003-02-04

* ChangeLog build/msvc6/1lines/1linesprj.dsp
src/gedlib/Makefile.am src/gedlib/gedcomi.h src/gedlib/node.c
src/hdrs/gedcom.h src/hdrs/liflines.h src/interp/write.c
src/liflines/add.c src/liflines/edit.c

*NEW src/gedlib/nodeio.c

29.

+++ Factored out GEDCOM I/O code from node.c into nodeio.c.

* ChangelLog src/gedlib/nodeio.c src/liflines/add.c
src/liflines/edit.c

30.

+++ Move gedcom output routines from edit.c to nodeio.c.

[Note: Looks as if some has gone to nodeio.c, and some to replace.c.]

+++ 2002-11-25

* ChangelLog build/msvc6/1lines/1linesprj.dsp
src/hdrs/Makefile.am src/hdrs/standard.h src/hdrs/version.h
src/interp/builtin.c src/liflines/screen.c

*NEW src/hdrs/list.h

*NEW src/stdlib/list.c

*DELETED src/stdlib/double.c:

31. and moved list declarations from standard.h to list.h.

2002-10-11

* ChangelLog build/msvc6/1lines/1linesprj.dsp src/hdrs/Makefile.am
src/hdrs/feedback.h src/hdrs/gedcom.h src/hdrs/liflines.h
src/hdrs/win32/curses.h src/interp/alloc.c src/interp/builtin.c
src/liflines/add.c src/liflines/advedit.c src/liflines/ask.c
src/liflines/askprogram.c src/liflines/browse.c src/liflines/delete.c
src/liflines/export.c src/liflines/1linesi.h

32. src/liflines/merge.c src/liflines/newrecs.c src/liflines/screen.c

+++ NEW: src/hdrs/uiprompts.h: [from gedcom.h]

Convert some use of NODE to RECORD. Work on ui separation
* Changelog src/btree/traverse.c src/hdrs/btree.h

src/hdrs/impfeed.h src/hdrs/version.h src/interp/builtin.c
src/liflines/export.c src/liflines/import.c src/liflines/llinesi.h



410 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

src/liflines/loadsave.c src/liflines/newrecs.c src/liflines/screen.c:

33.
+++ Pull curses UI out of export.c (into loadsave.c).

---  2002-07-14

* ChangeLog build/msvc6/1lines/1linesprj.dsp hdrs/interp.h
hdrs/11stdlib.h interp/Makefile.am interp/alloc.c
interp/interp.c interp/lex.c interp/yacc.h interp/yacc.y
liflines/pedigree.c stdlib/path.c

NEW: interp/parse.c [NB this file is deleted 2002-07-18]
NEW: interp/parse.h:

34. Move more parse globals into parse context.

-—-  2002-07-07
* ChangelLog stdlib/llstrcmp.c stdlib/memalloc.c stdlib/strcvt.c:

35. Moved string widening code in strcmp into
new function makewide in strcvt.c.

---  2002-07-04
* ChangelLog gedlib/locales.c hdrs/Makefile.am:

36. Move language & country arrays from gedlib/locales.c into
hdrs/isolang.h.

Release 12
-—-  2002-07-02

* ChangelLog arch/vsnprintf.c build/msvc6/1lines/config.h
build/msvc6/11lines/1lines.rc build/msvc6/1lines/1linesprj.dsp
gedlib/Makefile.am gedlib/gengedc.c gedlib/indiseq.c
gedlib/lloptions.c gedlib/translat.c hdrs/Makefile.am
hdrs/bfs.h hdrs/feedback.h hdrs/gedcom.h hdrs/impfeed.h
hdrs/11nls.h hdrs/lloptions.h hdrs/metadata.h hdrs/warehouse.h
hdrs/win32/iconvshim.h liflines/main.c liflines/menuitem.c
liflines/pedigree.c stdlib/Makefile.am stdlib/bfs.c
stdlib/l1lstrcmp.c stdlib/strutf8.c

NEW: gedlib/locales.c

NEW: hdrs/icvt.h

NEW: stdlib/icvt.c

37. Moved locale code from translat.c to locales.c.

+++ 2002-06-27

* ChangeLog build/msvc6/11lines/1linesprj.dsp gedlib/charmaps.c
gedlib/init.c gedlib/names.c hdrs/llstdlib.h hdrs/mystring.h
interp/interp.c interp/rassa.c liflines/ask.c
liflines/askprogram.c liflines/export.c liflines/loadsave.c
liflines/main.c liflines/screen.c stdlib/Makefile.am
stdlib/mystring.c stdlib/path.c stdlib/stdstrng.c

NEW: stdlib/appendstr.c stdlib/sprintpic.c stdlib/stralloc.c
NEW: stdlib/strapp.c stdlib/strcvt.c stdlib/strutf8.c

NEW: stdlib/strwhite.c:

38. Split string functions by type.

---  2002-06-14

* ChangelLog configure.in gedlib/init.c hdrs/Makefile.am



411

hdrs/11stdlib.h hdrs/standard.h stdlib/Makefile.am
stdlib/double.c stdlib/memalloc.c
NEW: hdrs/llnls.h stdlib/llnls.c:

39. Move NLS stuff from standard.h into llnls.h.

Release 13
+++  2002-06-08

* ChangelLog Makefile.am gedlib/init.c gedlib/messages.c
hdrs/Makefile.am hdrs/gedcheck.h hdrs/gedcom.h hdrs/screen.h
liflines/Makefile.am liflines/import.c liflines/llinesi.h
liflines/main.c liflines/screen.c liflines/valgdcom.c
m4/Makefile.am po/POTFILES.in po/de.po po/el.po po/it.po
po/sv.po stdlib/double.c win32/msvc6/libintl/config.h
win32/msvc6/1ibintl/libintlvc6.dsp win32/msvc6/11lines/config.h
win32/msvc6/11lines/1lines.rc win32/msvc6/1lines/11linesprj.dsp
NEW: hdrs/impfeed.h liflines/loadsave.c:

40. Remove curses code from import.c via interface functions.
[to loadsave.c (& export.c?)]

+++ 2002-02-18

* ChangelLog gedlib/indiseq.c gedlib/intrface.c hdrs/Makefile.am
hdrs/interp.h hdrs/1lstdlib.h interp/Makefile.am
interp/builtin.c interp/date.c interp/eval.c interp/interp.c
interp/intrpseq.c interp/more.c interp/pvalue.c interp/rassa.c
liflines/Makefile.am liflines/browse.c liflines/main.c
liflines/screen.c liflines/show.c stdlib/double.c
win32/msvc6/11lines/1linesprj.dsp

NEW: hdrs/date.h:

41. Moved date function declarations out of interp.h into new date.h.

+++  2002-02-17

* ChangelLog gedlib/names.c hdrs/interp.h hdrs/11stdlib.h
hdrs/mystring.h hdrs/screen.h hdrs/table.h interp/Makefile.am
interp/alloc.c interp/builtin.c interp/date.c interp/eval.c
interp/heapused.c interp/interp.c interp/intrpseq.c
interp/more.c interp/pvalue.c interp/rassa.c interp/yacc.y
liflines/browse.c liflines/main.c liflines/screen.c
reports/exercise.ll stdlib/mystring.c stdlib/stdstrng.c
stdlib/table.c win32/mycurses.c win32/msvc6/1lines/llines.rc
win32/msvc6/1lines/1linesprj.dsp:

42. Spun off pvalmath.c & symtab.c from pvalue.c.

--- 2002-01-01

* Changelog hdrs/screen.h liflines/llinesi.h liflines/screen.c
liflines/show.c:

43. Renamed show_list to show_big_list, and moved to screen.c
(preparation for improving full list screen).

---  2001-12-31

* ChangeLog docs/Install.LifeLines.Windows.txt
docs/Run.LifeLines.Windows.txt gedlib/messages.c hdrs/interp.h
hdrs/11stdlib.h interp/builtin.c interp/date.c
stdlib/stdstrng.c:

44. Moved all month names into messages.c.



412 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

---  2001-12-24

* ChangelLog gedlib/messages.c liflines/show.c:

45. Moved remaining English strings in show.c into messages.c.

* ChangeLog gedlib/editmap.c gedlib/messages.c hdrs/gedcom.h
hdrs/interp.h hdrs/liflines.h interp/builtin.c interp/date.c
interp/eval.c interp/functab.c interp/interpi.h liflines/ask.c

liflines/screen.c reports/exercise.ll:

46. Moved some English strings from builtin.c to messages.c.

---  2001-11-20

* .linesrc Changelog lines.cfg docs/lifelines.sgml
gedlib/messages.c gedlib/node.c hdrs/cache.h hdrs/lloptions.h
interp/date.c liflines/export.c liflines/show.c
stdlib/1lloptions.c tools/dbverify.c:

47. (Internat.) Moved some indi strings ("born"...) into messages.c.
Release 14

++77 2001-11-08

48. Moved ui code from liflines/remove.c into liflines/delete.c,

and then moved non-ui remove.c to gedlib/.
%[looks like code has moved from liflines/delete.c to gedlib/remove.c]



Appendix N

Additional results 1: Chapter 16

In this appendix, detailed results of filtering the two projects PostgreSQL
and DNSjava to find files which have disappeared from the system are
provided. For each project, there are two tables where unmatched and
matched files are listed. Unmatched means files where there is no file with
a similarity of at least 0.05 in the next release, these files are considered
to have been deleted. Matched means files with a target file of at least
0.85 similarity in the next release, these files are considered to be renamed,
moved or both. Uncertain files fall between the two and are the files whose

classification is determined using the machine learning model.

N.1 PostgreSQL

In the PostgreSQL tables, the information is split into two sections, with
tiles from the backend subsystem studied by Zou [261] separated from the
rest. The first table (N.1) shows the matched files, with their similarity, and
the second table (N.2) lists unmatched files. Figure N.1 shows geqo_paths.c,
referred to in Chapter 16, not classified as merged. The target file, prune.c,
is not selected because the number of trigrams shared by the files falls from
231 to 119.

413



CHAPTER 16

APPENDIX N. ADDITIONAL RESULTS 1

414

"GQ’() 3SBI[ JE JO AJLIP[IWIIS B }IM 9SEBI[DI }XoU S} UI J[Tj B SI 919} YITYM 10§ s3[g T0)Sx81s0 Surreaddesi(q :1°N 9[qerl,

1 U qmysagesni/opnpur/ quysadesni/pamum/jrod/puaseq/ 4 s

1 o pXIm/Iopeo[UAp/Atod/puardeq/ JaprouAp/pXin/rod/pussoeq/ 4

1 ypxinn/mepeorudp/rod/puaspoeq/ TP/pXIn/At0d/pusieq/ (49

1 U qmisagesni/opnpur/ qmysadesni/pias/jrod/pussoeq/ 41

1 ypsouns/mspeouip/jrod/pussoeq/ ysojord-jr0d/psouns/yrod/puaspeq/ 4

1 U qmisagesni/opnpur/ qmysadesni/strejos-oreds/jrod/puaxoeq/ 4

1 Y qmisagesni/opnpur/ Y qmysadesni/ods/yrod/puaxpeq/ 41

1 ypsouns/apeouip/jrod/pusyoeq/ y'sojoxd-jrod/oos/irod/pusspeq/ 4

1 Y qrysagesni/opnpur/ Y qnysadesni/stre[os-9ggr/iiod/puapeq/ k44

1 Y qrysagesni/apnpui/ Y qmysadesni/xndy/rrod/puaspeq/ 0

1 ysojoxd-yrod/eydiexnuryiod/pusspeq/ ysojoxd-jrod/xn8p/rrod/pusseq/ 4t

1 Y psq/rapeopuip/iod/puaspeq/  [y-sojord-jrod/pastsp-Hsg/riod/puspeq/ k44

960 > xre/1apeo[uip/irod/puaydeq/ >'udy[p/xre/ir0d/puaspeq/ 0

960 > 1psq/1vpeouip/jrod/pusspeq/ JIapeo[uAp/ipsq/irod/puasdeq/ 4

S60 > xndy/repeorudp/rrod/puaxoeq/ >mapeojudp/xndy/jrod/pusspeq/ 4

60 > ypE/3oTRIEd/pUSNdR]/ o yype/dody/puasdeq/ 4

60 2 1psq/peouip/jrod/pusspeq/ >epeouip/xndp/jrod/puaspeq/ 4

€60 > 7038 /410d/puadeq/ >10318/fsouns/jrod/puaseq/ 4

6380 xnurf/peoruip/jrod/pussoeq/ 'sojoxd-jrod/xnurp/jrod/pusspeq/ 48

630 o xnur/repeouip/rod/pusxdeq/ JapeouAp/xnur/jrod/pusspeq/ e

£8°0 5'psq/1apeo[uip/1rod/pusreq/ 'Tp/PRAMRP FFASE/110d/pusideq/ <l

680 yreydre/repeoruip/rod/puaxoeq/ ysojoxd-jrod/eydreszod/puaxoeq/ 4

1 D3sAPIN/quu/STHN/pURdeq/ >3sa13n/x0321/pusieq/ 1T

1  dajsyxau/zapeoruip/rrod/pusaseq/ 'sojord-jr0d/daysyxeu/rzod/puaspeq/ 1T

1 > daysyxau/rapeorudp/yrod/puaypeq/ srapeo[uip/daysyxau/irod/pusspeq/ 11

1 yoreds-strejos/1apeouip/jrod/pusyoeq/ ysurejos-oreds/rapeouip/irod/puaypeq/ 11

1 y'98€rskejos/1apeo[uip/i10d/pusoeq/ y'se[os-9gel/1apeo[uip/10d/pusioeq/ 1t

1 J'souny/[eriony/ 2'$duny/apod-D/[eriomy/ 0 160 J"UOISI9A/3POdPRIP™/SpUuRWIWIOd/pudydeq/ J"UOISI9A/SpURUILIOd/puadeq/ 11

160 >xa[dwod/feriomy/ 5Xxa[dwod/apod-)/[erony/ 0 60 > dwdunsm/qui/spn/pussdeq/ > dununsm/xadai/puasdeq/ 11
160 J'preaq/jeriomny/ J'p1eaq/opod-D/[eLiony/ 7L

160 >adwa1/apodpeap-/spueuruod/pussoeq/ >admar/spuewruod/puaxdeq/ 0L

860 yr9gersiejos/irod/epnpur/ | ysirejos-gger/arod/epnpur/ 11 96°0 J'SpUIDXdpUI/SpuRWIWOd/puaydeq/ J'puyap/spuewruiod/puaxdeq/ 0L

60 yroreds suejos/prod/epnpur/  |ysirejos-oreds/jrod/epnpour/ 11 96’0 PpSrurpaxd/epoopesap/ped/reziuundo/pusayeq/ > 8rurpard/yyed/eziundo/puaspeq/ 01

€60 0'99] 9POU/POdPLIP™/I0JNIIXI/puaydeq/ 0'99] 9pOU/I0JNdaX3/puadeq/ 0L

1 [yodmar/opoopeap/spueunuod/puaydeq/ [yadoar/spueunuos/opnur/ 01 260 > dunyx/opoopeap-/yyed/reznundo/puaydeq/ > dunyx/yred/ziundo/pusspeq/ 01

60 ypsquado/repeoruip/rod/puaxoeq/ y'psq/repeoruip/rod/puaxoeq/ 4

60 rounyx/apoopeap-/rezrundo/epnpur/ yrounyx/rezrundo/epnpur/ 9 €60 > psquado/repeouip/jrod/pussoeq/ >psq/rapeouip/jrod/pussoeq/ 4

260 yrurm/1epeouip/yrod/puaxoeq/ '9g¢TsLre[os/1opeouAp/jrod/pusspeq/ 4

€60 > opsay/sajdurexa/jsay/ o-zopsay/sardurexa/ysay/ ¥ 160 yyso/mopeouip/jrod/pusyoeq/ yreyde/repeoruip/rod/puayoeq/ ¥

wrs UAeN LE ER wig e 9L ER

waysAsqns puaspeq jou

wysAsqns puaspeq




N.1. POSTGRESQL 415

backend subsystem not backend subsystem
Ref. | Filename Ref. | Filename
2 /backend/access/heap/stats.c 2 /include/catalog/pg-inheritproc.h
2 /backend/access/transam/transsup.c 2 /include/catalog/pg_ipl.h
2 /backend/lib/hasht.c 2 /include/catalog/pg_log.h
2 /backend/libpq/pqpacket.c 2 /include/catalog/pg_variable.h
2 /backend/utils/cache/rel.c 2 /include/lib/hasht.h
2 /backend/utils/mb/palloc.c 2 /include/storage/pagenum.h
2 /backend/utils/mb/sjistest.c
2 /backend/utils/mb/utftest.c 4 /bin/pg_version/pg_version.c
4 /include/access/funcindex.h
4 /backend/lib/fstack.c 4 /include/lib/fstack.h
4 /backend/libpq/be-dumpdata.c 4 /include/optimizer/internal.h
4 /backend/libpg/be-pgexec.c 4 /include/regex/cdefs.h
4 /backend/libpg/portal.c 4 /include/regex/regexp.h
4 /backend/libpg/portalbuf.c 4 /include/utils/lztext.h
4 /backend/nodes/freefuncs.c 4 /include/utils/module.h
4 /backend/optimizer/geqo/geqo_params.c 4 /include/utils/trace.h
4 /backend/optimizer/util/indexnode.c 4 /install-sh
4 /backend/port/hpux/fixade.h 4 /interfaces/odbc/acconfig.h
4 /backend/storage/lmgr/multi.c 4 /interfaces/odbc/install-sh
4 /backend/storage/lmgr/single.c 4 /utils/version.c
4 /backend/utils/adt/chunk.c 4 /win32/endian.h
4 /backend/utils/adt/filename.c 4 [win32/tcp.h
4 /backend/utils/init/enbl.c 4 /win32/un.h
4 /backend/utils/mmgr/oset.c
4 /backend/utils/mmgr/palloc.c 6 /[bin/psql/psqlHelp.h
6 /include/lib/qsort.h
6 /backend/utils/sort/lIselect.c 6 /include/optimizer/ordering.h
6 /backend/utils/sort/psort.c 6 /include/utils/Iselect.h
6 /include/utils/psort.h

10 /include/catalog/pg_parg.h

10 /backend/access/common/heapvalid.c 10 /include/optimizer/geqo_paths.h
10 /interfaces/libpq++/pgenv.h

10 /pl/plpgsql/gram.c

10 /pl/plpgsql/y.tab.h

11 /backend/port/linuxalpha/machine.h 11 /include/utils/oidcompos.h

11 /backend/utils/adt/oidint2.c 11 /include/version.h

11 /backend/utils/adt/oidint4.c 11 /interfaces/ecpg/test/Ptestl.c
11 /backend/utils/adt/oidname.c 11 /interfaces/ecpg/test/testl.c

12 /backend/lib/qsort.c 12 /include/catalog/pg_defaults.h
12 /backend/optimizer/prep/archive.c 12 /include/catalog/pg-demon.h
12 /backend/parser/sysfunc.c 12 /include/catalog/pg_hosts.h

12 /backend/port/univel/frontend-port-protos.h || 12 /include/catalog/pg-magic.h
12 /include/catalog/pg_server.h
12 /include/catalog/pg_time.h
12 /include/parser/sysfunc.h

Table N.2: PostgreSQL files which have disappeared from the system and for which
there is no file of at least 0.05 similarity in the next release



416 APPENDIX N. ADDITIONAL RESULTS 1: CHAPTER 16

'BIneflle:!Immet‘...r I /backend/optimi cO

Red file: /home/.../postgresgl-n+1/src/backend/optimizer/path/prune.c O
[Vellow file: No third file

[#include "postgres.n”

#include "nodes/pg list.h"

#include "nodes/relation.h"

#include "nodes/ ”

#include "untils/

#include "otils/elog.h"

#include "optimizer/internal.h"

#include "optimizer/paths.h"

#include "optimizer/pathnode.h”

#include "optimizer/ "

#include "optimizer/cost.h"

#include "optimizer/

static List # + rel, List * other rels):
* rel, Path * unorderedpath)

* rel list)
i
List *temp list = NIL:

if
temp list =
lcons (

RelOptInfo #) lfirst (
Inext ( :
}
return temp_list;
}
static List &
* rel, List * other_rels)
i
List #i = NIL:
List *
List * :
RelOptInfo *other rel = (RelOptInfo *) NULL:
foreach (i, other rels)
i

{RelOptInfo *) 1lfirst (i):

if (same (rel->relids, other rel->relids))

i

rel->pathlist = add pathlist (rel, rel->pathlist, other rel->pathlist);

}
else

{other_rel, NIL)

return

List *y = NIL:
Path *path = (Path *) NULL:
JoinPath *cheapest = (JoinPath %) NULL:
rel->size = 0;
foreach (y, rel->pathlist)
{
path = (Path *) 1first (y);
if (Ipath->p_ordering.ord.sortop)
break:
}
cheapest = (JoinPath *) , path) ;
if (IsA JoinPath (cheapest))
rel->size = compute joinrel_size (cheapest):
1
static
* rel, Path * unorderedpath)
1
Path *cheapest = set _cheapest (rel, rel->pathlist);
if ( - && rel able)
1
rel->unorderedpath = (Path *) NULL:
rel->pathlist = lremove (unorderedpath, rel->pathlist):
}
else
rel->unorderedpath = (Path *) unorderedpath:
return cheapest;

¥

Figure N.1: The disappearing file geqo_paths.c compared to prune.c, the most sim-
ilar file in the optimizer/path subdirectory, in both the same release
(blue file), and in the next release (red file). The trigrams shared by
the two files are reduced from 231 (in blue and purple) to 119 (purple),
making it unlikely that any text-based analysis will find this relation-
ship. Beagle’s combination of matching techniques finds this merge.



N.2. DNSJAVA 417

N.2 DNSjava

There are also two tables for DNSjava, and the files are split into two groups,
those before release 39, studied by Antoniol et al., and those from release
40 onwards. Otherwise the Tables N.3 and N.4 echo the PostgreSQL tables.

N.3 Reporting

As each project is run, a report is output detailing the unmatched files; the
matched files, and which file they are matched to; the uncertain files, the
similarity to the main target, and the main target; and lastly the number
of files which are thought to have changed directory, based on a threshold

which can be selected at run time (see example in Figure N.2).

Ref. | V'n. | File

2 56 forg/xbill/DNS/Verifier.java

2 56 Jorg/xbill/ DNS/security/CERTConverterjava
2 56 | /org/xbill/DNS/security/DHPubKey.java

2 56 Jorg/xbill/ DNS/security/DNSSEC Verifier.java
2 56 | /org/xbill/DNS/security/DSAPubKey.java

2 56 | Jorg/xbill/DNS/security/DSASignature.java

2 56 | /org/xbill/DNS/security/RSAPubKey.java

10 48 | /org/xbill/DNS/TypedObjectjava

12 46 /Jorg/xbill/DNS/utils/md5.java

18 40 forg/xbill/DNS/utils/StringValueTable.java

25 33 [org/xbill/Task/WorkerThread java
27 31 forg/xbill/ DNS/TypeMap.java

28 30 [org/xbill/DNS/BitString java

38 20 | /org/xbill/DNS/TypeClass.java

Table N.3: Unmatched disappearing DNSjava files

Ref. | From To No.files
45 dnsjava-13/DNS/utils/ | dnsjava-14/org/xbill/DNS/utils/ 8

45 dnsjava-13/DNS/ dnsjava-14/org/xbill/Task/ 1

45 dnsjava-13/DNS/ dnsjava-14/org/xbill/DNS/ 47
47 dnsjava-11/DNS/ dnsjava-12/DNS/utils/ 1

Figure N.2: Extract from an example report on the number of “disappearing” DNS-
java files which move from one directory to another



418 APPENDIX N. ADDITIONAL RESULTS 1: CHAPTER 16
Ref. | Rel. | File Renamed file Sim.
45 13 /DNS/CNAMERecord java Jorg/xbill/ DNS/CNAMERecord java 0.87
45 13 /DNS/NSRecord.java /org/xbill/ DNS/NSRecord java 0.87
45 13 /DNS/PTRRecord java /org/xbill/DNS/PTRRecord java 0.87
45 13 | /DNS/SimpleResolver.java Jorg/xbill/ DNS/SimpleResolver.java 0.89
45 13 /DNS/Credibilityjava /org/xbill/ DNS/Credibility.java 0.92
45 13 /DNS/NS_CNAME_PTRRecord forg/xbill/DNS/NS_CNAME_PTRRecord 0.93
java java
45 13 | /DNS/Opcodejava Jorg/xbill/DNS/Opcode.java 0.94
45 13 /DNS/Record.java Jorg/xbill/ DNS/Record.java 0.94
45 13 /DNS/HINFORecord java Jorg/xbill/ DNS/HINFORecord java 0.94
45 13 /DNS/UNKRecord.java Jorg/xbill/ DNS/UNKRecord.java 0.94
45 13 /DNS/TXTRecord java Jorg/xbill/ DNS/TXTRecord java 0.94
45 13 /DNS/DClass.java /forg/xbill/ DNS/DClass.java 0.94
45 13 /DNS/MXRecord java Jorg/xbill/ DNS/MXRecord java 0.95
45 13 | /DNS/Compression.java Jorg/xbill/ DNS/Compression.java 0.95
45 13 /DNS/ARecord java Jorg/xbill/DNS/ARecord java 0.95
45 13 /DNS/utils/StringValueTable.java | /org/xbill/DNS/utils/StringValueTable.java 0.95
45 13 /DNS/SRVRecord.java /org/xbill/DNS/SRVRecord java 0.95
45 13 | /DNS/TypeClass.java /org/xbill/ DNS/TypeClass.java 0.95
45 13 /DNS/Flags.java /org/xbill/ DNS/Flags.java 0.95
45 13 /DNS/CERTRecord java Jorg/xbill/ DNS/CERTRecord java 0.96
45 13 /DNS/Section.java Jorg/xbill/DNS/Section java 0.96
45 13 /DNS/OPTRecord java Jorg/xbill/ DNS/OPTRecord java 0.96
45 13 /DNS/Rcode java /org/xbill/ DNS/Rcode.java 0.96
45 13 /DNS/KEYRecord java Jorg/xbill/ DNS/KEYRecord java 0.96
45 13 /DNS/Address.java forg/xbill/DNS/Address.java 0.96
45 13 /DNS/NXTRecord java Jorg/xbill/DNS/NXTRecord java 0.96
45 13 /DNS/NameSet.java /org/xbill/ DNS/NameSet.java 0.96
45 13 /DNS/SOARecord java Jorg/xbill/DNS/SOARecord java 0.97
45 13 | /DNS/SetResponse.java Jorg/xbill/ DNS/SetResponse.java 0.97
45 13 /DNS/dns.java /org/xbill/DNS/dns java 0.97
45 13 /DNS/utils/basel6.java Jorg/xbill/DNS/utils/basel6.java 0.97
45 13 /DNS/utils/DataByteOutputStream| /org/xbill/DNS/utils/DataByteOutputStream| 0.97
Jjava java
45 13 /]DNS/utils/DataByteInputStream /org/xbill/DNS/utils/DataByteInputStream | 0.98
java java
45 13 /DNS/TSIGRecord java /Jorg/xbill/ DNS/TSIGRecord java 0.98
45 13 /DNS/TTL java Jorg/xbill/DNS/TTL java 0.98
45 13 /DNS/Master.java /forg/xbill/ DNS/Master.java 0.98
45 13 /DNS/TSIG java /org/xbill/DNS/TSIG java 0.98
45 13 /DNS/Header.java /org/xbill/DNS/Header.java 0.98
45 13 /DNS/SIGRecord java /org/xbill/DNS/SIGRecord java 0.98
45 13 | /DNS/Type.java Jorg/xbill/ DNS/Type.java 0.98
45 13 /DNS/utils/hmacSigner.java Jorg/xbill/DNS/utils/hmacSigner.java 0.98
45 13 | /DNS/Message.java /org/xbill/ DNS/Message.java 0.98
45 13 /DNS/Name.java /org/xbill/DNS/Name java 0.99
45 13 /DNS/FindServer.java Jorg/xbill/ DNS/FindServerjava 0.99
45 13 /DNS/Zone java /org/xbill/ DNS/Zone java 0.99
45 13 /DNS/utils/base64 java Jorg/xbill/DNS/utils/base64. java 0.99
45 13 | /DNS/utils/MyStringTokenizerjava /org/xbill/DNS/utils/MyStringTokenizerjaval 0.99
45 13 /DNS/Cache.java Jorg/xbill/DNS/Cache.java 0.99
45 13 /DNS/utils/md5.java /org/xbill/DNS/utils/md5 java 0.99
47 11 /DNS/MyStringTokenizerjava /DNS/utils/MyString Tokenizerjava 0.99

Table N.4: Disappearing DNSjava files with a file of at least 0.85 similarity in the

next release. All of these files are moved from one directory to another.




Appendix O

Additional results 2: Chapter 16

The dataset of disappearing files with two or more target files is imbal-
anced, with a ratio of 45:45:10 unrelated:renamed/moved:split files. In this
appendix, the results of classifying the data using over- and under-sampling
and cost-based classification are reported. Each of these methods aims to
improve classification of the minority class, the first two by artificially bal-
ancing the data, and the last by applying a penalty to the misclassification

of a member of the minority class.

O.1 Disappearing files: classifying imbalanced data

Table O.1 repeats Table 16.18 for reference, and shows the geometric means
of the top ten models, ranked by classification accuracy on this dataset.

Three of the feature sets in these top ten combinations are the larger ones:
“all-feats”, “fall” and “all-cats” (all, all Ferret, and all concatenated features,
respectively). However, the geometric means of classification accuracy for
these three sets are not as high as those of the smaller sets. The seven
other sets were used to investigate the different methods of dealing with
imbalanced data discussed in Chapter 4: over-sampling, under-sampling,
and cost-based algorithms.

The data was over-sampled using the SMOTE [39] algorithm with three

different random seeds, to bring the minority class to 258 instances, as the

419



420 APPENDIX O. ADDITIONAL RESULTS 2: CHAPTER 16

Feature set Algorithm | Unrelated | Renamed | Split | Geo.mean
fl+tris-singles ROT 0.929 0.885 0.729 0.843
all-fb+all-pdp SL 0.906 0.897 0.712 0.833
all-tris+all-fl ROT 0.922 0.904 0.661 0.820
all-tris+fc-singles | ROT 0.890 0.908 0.678 0.818
all-tris+all-fc ROT 0.898 0.893 0.678 0.816
tris ROT 0.906 0.877 0.661 0.807
fall-cats ROT 0.910 0.893 0.627 0.799
fall ROT 0.902 0.897 0.627 0.797
all-feats ROT 0.918 0.889 0.576 0.778
all-cats ROT 0.929 0.893 0.508 0.750
Abbreviations: ROT - Rotation Forest, SL - Simple Logistic

Table O.1: Geometric means of accuracy for the top 10 results from Table 16.15

majority classes have 255 and 261 instances. Each of the sets were run with
the nine algorithms listed in Table 16.17. Random Forest is one of the two
top-performing algorithms on this data and so was used in the comparison
reported in Table O.2. The results over the 100 sets on the 89 project dataset
are given in column 2. Columns 3-5 have results for the PostgreSQL and
DNSjava data. Column 3 has the classification accuracy using the model
trained on the imbalanced 89 project dataset, with the mean of the results
over the three SMOTE sets in column 4, and the difference between the
two in column 5. The mean difference between the two sets of results is
insignificant at approximately 0.1%. However, in the unseen data, in which
there are 14 examples of split disappearing files, on average one more of

these examples are correctly classified by the SMOTE sets. As the overall

Imbalanced PostgreSQL & DNSjava

Feature mean over

set 100 sets Imbal. | SMOTE | Diff.
all-tris+all-fl 86.40 85.30 85.00 -0.30
all-tris+all-fc 86.57 87.70 88.25 0.55
all-fb+all-pdp 85.38 85.25 86.07 0.82
all-fb+all-fc 85.19 88.50 88.50 0.00
all-fb+all-tris 85.43 89.30 88.52 -0.78
tris 85.53 86.70 86.07 -0.63
fall-cats 85.16 86.89 87.34 0.45
fl+tris-singles 84.29 86.07 86.89 0.82
fc+tris-singles 83.84 88.52 88.52 0.00

Table O.2: The effect on classification of balancing the dataset by over-sampling
with SMOTE. The mean classification rate over the 100 test sets for the
imbalanced set with Random Forest (25) is in column 2. The rate for the
unseen data is in column 3, with the mean over the 3 SMOTE sets in the
4th column, and the difference between them in the 5th column.



O.1. DISAPPEARING FILES: CLASSIFYING IMBALANCED DATA 421

accuracy is unchanged, this means that an instance from one of the other
classes will be misclassified instead.

The data was also under-sampled using the Weka SpreadSubSample
filter, so that the datasets consisted of 59 instances from each class, small
samples given the variation in the data. Classification on the unseen data
with the three sets tested was around 3% less accurate than with other sets,
and is therefore not reported in detail.

Two cost-based wrappers are provided in Weka 3.7.3, Cost Sensitive
and Meta Cost, for which the user provides the costs to be associated with
incorrect classification. Splits are under-represented in this data, therefore
costs were set to 1 for misclassifying each of the unrelated and renamed
classes, and to 2 for the split class. Table O.3 reports on the results of
applying costs to the Rotation Forest, Random Forest, Simple Logistic, and
Random Committee algorithms to the 89 project dataset. There are small
differences between classifying with, and without, the costs. For example,
the mean difference between Rotation Forest with costs, and without, is
around a quarter of a percent over the feature sets in the table, and between
the geometric means is 0.005.

Tests on the unseen data with the “all-tris+all-fl” (trigram and line count)
feature set, and costs of both 2 and 5, given in Table O.4, show that for these
feature set/algorithm combinations, introducing costs does not improve the
number of correctly classified members of the minority class.

Strategies for dealing with imbalance in the classes: over-sampling and
under-sampling the data, and using cost-based algorithms, do not give
significant changes in most of the tests reported. The Random Forest models
built using data over-sampled by the SMOTE algorithm tend to correctly
classify one more instance of the minority class. However, this effect is not
repeated in the better models, such as the “all-tris+all-fl”/SimpleLogistic
model, which already classifies 11 of the 14 instances correctly. In summary,
none of the strategies for dealing with the imbalance in the classes improves

on the better models built with the raw data.



422 APPENDIX O. ADDITIONAL RESULTS 2: CHAPTER 16

all-tris+all-fl
all-tris+all-fc
all-fb+all-tris
all-fb+all-pdp
all-fb+all-fc
fl+tris-singles
fe+tris-singles

tris
fall-cats

Meta| ‘Base’| Mean

- ROT | 88.13 | 87.22 | 87.31 | 87.13 | 86.41 | 87.17 | 86.47 | 87.20 | 86.60 | 87.07

CS | ROT | 88.37 | 87.60 | 87.51 | 87.50 | 86.70 | 87.34 | 86.66 | 87.73 | 86.56 | 87.33
MC | ROT | 88.19 | 8743 | 87.58 | 87.44 | 86.46 | 87.25 | 86.47 | 87.49 | 86.82 | 87.24
CS | RAN| 87.07 | 87.38 | 87.17 | 87.05 | 86.26 | 8597 | 86.50 | 86.61 | 86.34 | 86.71
MC | RAN| 86,57 | 87.07 | 86.54 | 86.97 | 85.73 | 85.44 | 8590 | 86.15 | 86.08 | 86.27
CS | RC 85.99 | 86.39 | 85.97 | 86.14 | 85.35 | 84.88 | 85.33 | 85.48 | 85.48 | 85.67
MC | RC 85.91 | 86.25 | 85.69 | 85.99 | 85.17 | 85.12 | 85.53 | 85.16 | 85.30 | 85.57
MC | SL 86.41 | 85.06 | 85.54 | 84.98 | 87.28 | 87.24 | 85.79 | 8391 | 82.66 | 8543
CS | SL 86.74 | 84.85 | 86.06 | 84.55 | 87.20 | 86.54 | 86.63 | 83.94 | 82.76 | 8547

- ROT | 0.82 0.81 0.82 0.80 0.83 0.80 0.79 0.84 0.84 0.82

CS | ROT | 0.80 0.83 0.83 0.82 0.82 0.83 0.82 0.83 0.81 0.82
MC | ROT | 0.82 0.84 0.83 0.83 0.80 0.82 0.79 0.81 0.80 0.82
CS | SL 0.80 0.82 0.82 0.82 0.81 0.77 0.82 0.75 0.80 0.80
MC | SL 0.81 0.80 0.80 0.80 0.81 0.74 0.80 0.77 0.80 0.79
CS | RAN| 0.76 0.82 0.81 0.81 0.80 0.82 0.78 0.80 0.74 0.79
MC | RAN| 0.76 0.81 0.81 0.81 0.82 0.79 0.75 0.81 0.73 0.78
CS | RC 0.72 0.80 0.80 0.81 0.76 0.79 0.77 0.74 0.70 0.77
MC | RC 0.72 0.79 0.80 0.81 0.75 0.79 0.75 0.75 0.68 0.77

Table O.3: Classification using Cost Sensitive (CS) and Meta Cost (MC) wrappers

with Rotation Forest (ROT), Random Forest (RAN), Random Committe
(RC) and Simple Logistic (SL). Mean classification accuracies over 100

sets at the top, and geometric means at the bottom.

Base Std. | MC-2 | CS-2 | MC-5 | CS-5
Simple Logistic 11 11 10 11 10
Rotation Forest 8 7 9 7 8
Random Forest 7 7 7 7 7
Random Committe 7 7 7 8 7

Table O.4: The number of minority class (disappearing and split) from the 14 ex-
amples in the unseen dataset correctly classified with the base algorithm
and the all-tris+all-fl feature set, with Cost Sensitive (CS) and Meta Cost
(MC) wrappers, with misclassification costs of 2 and 5.



Appendix P

Dig et al.: Struts results

This appendix gives the refactorings Dig et al. [64] expected to find in the
project Struts between release 1.1 and 1.2.4 on pages 425 and 426.! The list
on page 425 has been rearranged to group the impact of the changes at file
level, for comparison with the findings of the research in this dissertation.
The refactorings which were found by Dig et al.’s Refactoring Crawler are
ticked.

The changes to methods listed here mean that the following changes
were made at file level: RequestUtils was split three ways to ModuleUtils
and TagUtils, ResponseUltils is also split to TagUtils, and ActionMapping
is split to ActionConfig. Two of the split files, ActionMapping.java (left)
and ResponseUtils.java (right) and are shown in Figure P.1, the other file is

online at http://homepages.stca.herts.ac.uk/~gp2ag/xmls/RequestUtils.xml.

1http ://netfiles.uiuc.edu/dig/RefactoringCrawler

423



424 APPENDIX P. DIG ET AL.: STRUTS RESULTS

4

Comparison generated by analysis of the trigram report produced by the Ferret Copy- Blue file: struts/struts-1.2.src/sharelorglapache/struts util ResponseUtils java O
Detection Tool, (¢) Sehool of Computer Science, University of Hertfordshire, 2010. ‘Redﬁ]e:i:n | 12 4isrofsharelorg/apachelstrutstaglibTagUtilsjava X
‘\'e]lu-:. fille: fstruts/struts-1.2. 4/sreftestiorg/apache/struts/mock/MockPageContext java O
package org.apache struts.util;
import iz do. I0Esception;

impott jevax.sendet. jop. dsplxeeption;
import javex.sendet.jsp.lspfiriter

|Blueﬁle: Istruts/struts-1.2.4/src/share/org/apache/struts/action/Action)Mapping.java O mpoct. Joves sersiet. jop. Pugebentex:
import jevax.sendlet.jsp.tagext
|Redﬁ.le:' fstruts-1.2.4/src/sharelorg/apachelstrutsi class Besponselils {
= N - protected static MessageBesources messages =
|\e]]o‘-‘ file: No third file MessageResources. qettessageResources
[package org.zpache. struts.action; ("org.apache. struts.util. LocalStrings') ;

AR piblic static String filter (String value) |
import ong.spache. struts corfig. ActionCarfig;
lisport org.spache stmuts. config.
org.apache struts. config. ForwardConfig:
peblic class AtiorMapping extends AetioeCenfig [
public ExceptionConfig firdException(Class type) |
ExceptionConfiq eonfig = mll;

[] = zew chacfvalue.length()];
walue qeeChars (0, value lengeh(), content, 0);
tesult = rew Length + 500
for fint i = 0; i < content.length; i) |
switch (content[d]) {

while (tmue) { i
String rame = type. getName(); result.append(”
contig = findExceptionContig(nane) ; Eresk;
if {eorfig 1= rall) | a3
et (configh; cesult. append
1 Eresk;
contig = gettodulelanfi() . findBxeptionCondiq (rane) ; ease !
i€ feonfig 1= mall) | cesult. append ("o ") ;
retumm [cenfig) ; boeal ;
1 case '"'
type = type.getSupeeclass(): xjt_ eppend(” ot}
if ftype = mll) {
cxse
heeel; cesult. apperd ("a39:") ;
1 Fowiks
} defaalt:
worm (k) cesalt. sppendlcantentlil) -
1 ¥
pblic Actienforvard firdfomvmrd{String nane) )
ig corfig = {i i H Teturn ( toString()
i feontig = mall) | 1
corfig = getfodulelonfiq() . findPorwardlorfigirane) ; public static void write (PageContext pageContext, String text)
} theows Jsplxception |
cetum ((Aetioeorverd) canfig); Jspiicites writer = pageContext.geiut(
) oy
public Stringl] findfomvards() | writer.prirt(text) ;
Arraylist cesults = rew Arzaplist(): } catch (ICEsception ) {
Foomnikortiq fes(] = findlormedConigs() ; oo 2o e {pageContext, &)
for tixt 320 3 < fon lengih; 34) (messages. getMessage ("write io", &.toString()
resalts.add(fesli] getdame () )
1

1
piblic static oid writePrecious (Pagelontext pagelentext, Strirg text)
throws JspException |
Jspliciter writer = pageContext.getOut(
{ writer instanceof BodyContent)

retomn ((Strirg(]) results.tokroay(rew String[results.sise()]));
1
public Actiorforvard getlnputForward() {
if |getModuleCorfig() . getControllecCorfig() . getIrputForwacd(}) {
zeture (findPorvardigetleput())); writer = ((BodyContert) writer) .getEnclosingliriter() ;
}else [ try {
zetarn (rew ActicPommardlgetlrput())) ; writer print (text) ;
} | eatch (I0Exemption o) {
1 (pageContext, &)
} throw new Jspxception
(messages. getMessage ('write io', e.taString()

Figure P.1: One method moved from ActionMapping to ActionConfig (left) and
most of the code in the file ResponseUtils (right) moved to TagUtils
(right) between releases 1.1 and 1.2.4 of the project Struts



425

uondaoxgpuy-SyuodHuondy-3yuod-sinys-ayoede 310 ‘vondaoxgpuly-Surddejyuonoy-uonoe sinys-ayoede 310 ‘spopaNd N oM A
Syuopuonpy a1y 03 Surddejyuondy o[y w01y paAoOI

snoradIALIM S[IN el qridey sinns-aydede 310 ‘snoradifaam sipnasuodsay mn synns-ayoede 310 ‘SPOYISINPIAON N
1y s Sey quSeysinns-aypede 810 1oy s asuodsay Tn-synys-aydede 810 ‘SPOYISAPIAOIN

umsn3e] qrrdey sinns-ayoede 310 ‘93uamsinasuodsay un-sinis-aydede- 310 ‘SPOYIAPIAON A
s SeL 21y 03 s 2suodsay 21y WoIy PIAOIA

[unyxsrsmnSer-qidey sinns-ayoede-310 ‘Tupyysrsinnisonbay mun-synys-ayoede 810 ‘SPOYISAPIAOIN A
TaNapoduasin el qidersinns-ayoede 810 Ty napodus sinIsenbay N sinns-aydede 310 ‘SPOYISAPIAOIN A
sadessapuonOyIR3 s[N el qridey sinns-ayoede: 310 ‘sadessajyuonoyiad smnisanbay i sinys-ayoede-310 ‘SPOYISAPIAON A
Syuosmpoied sinn ey qrder sinns-ayoede-31o ‘Syuoysmpoiied smnisenbay nsinns-ayoede 310 ‘SPOYISIAPIAOIN A
uondooxgaaes sy e qrdey sinns-ayoede 310 ‘uondodxgases-sinnisonbay - sinns-ayoede 310 ‘SPOYISINPIAOIA A
TaNa3ed s el qrdeysinns-ayoede 310 ‘Tynaded-smnisenbay mn-sinns-ayoede 310 ‘SpoyIsA PO
juasard-sinnSer qrdersinns-ayoede- 1o ‘qussard-sinnisenbay mn-sinns-aypede 310 ‘SPOIINPIAOA
a3essawrsin ey qrdey sinns-ayodede-310 ‘08essawrsinnisonbay [ sinns-ayoede 310 ‘SPOYISINPIAOIA A
a8essaursinn ey qridey sinns-ayoede- 810 ‘08essawrsinnisonbay un-sinns-ayoede 310 ‘SPOYIINPIAOIN A
dnyoorsnnSer qideysinns-ayoede-31o ‘dnxoorsianisenbay [ sinns-ayoede 310 ‘SpoyIS N PIAOIA A
adoogyad sy Se1 qrieysinns-ayoede-310 ‘0dodgiad sinnisanbay un-sinns-ayoede 310 ‘SPOYISNPIAOIA A
dnyoorsnnSer qideysinns-ayoede-31o ‘dnxoorsinisenbay (- sinns-ayoede: 310 ‘SpoyIs N PIAOIA A
TINSurddepuonoyied-smnder ‘qidey sinns-ayoede 3o Ty n Surddejyuonoyiad s nisenbay mn-sinns-aydede 310 ‘SpoyISAPIAOIA
awrenSurddeuonoyied-smnnSer qider sinns-ayoede:Gro’oureNSurddepuonoyiad-sinnisenbay mn-sinns-aypede-310 ‘SPOIIAPIAOIA A
Tanamduwoosiyn ey qideysinys-ayoede 310 “Tynandwod sinisanbay mmn-sinys-ayoede-310 ‘SpOYISIAPIAOA
Tanemdwoo sinnder qrder sinns-aypede- 810 “Tynamdwod s nisenbay un-sinns-aypede: 810 ‘SPOYISAPIAOA
Surpoougrey i Nmdwoo sinn ey qr8ey sinns-ayoede- 310 ‘Tynamdwod sinnisenbay mn synns-ayoede 310 ‘SpoyISIAPIAON
s1ayourere ayndwod sy el qrdeysinns-aypede 310 ‘sroowere anduwoo s nisonbay mn-sinns-ayoede 310 ‘SpoyISAPIAOIN
sinnSer. 31y 03 s[unisanbay o[y woiy paAo

SIXIJALIINPOIARS S[NNIMPOIA TN sinas aydede 310 ‘SaxyaIJaMpoINIod s NIsanbay [ sinas-ayoede 310 ‘SpOYIAPIAON
SyuoHsmpoAed s NAMPOoIA TN snIs-aydede 310 “SyuoHanpoAIa8- s NIsenbay N sinns-aydede 310 ‘SPOIANPIAOIA A
SWENBNPOIAIRS S[ININPOA [ snas-aydede: 310 ‘SureNSMpPoAReS [ Isonbay [ sinns-aydede 310 ‘SPOYISIAPIAOIN N
QWENBNPOIAIRS S[IINIMNPOIA [N sinas-aydede- 310 ‘DureNDMpojARed s[Nisonbay mnsinns-ayoede: 310 ‘SPOYISIAPIAOIA N
S[MPOAIIRIRS S[I NN PO [ sins-aydede 310 ‘SMpojApds[Es s[NIsonbay M sinns-ayoede 310 ‘SPOYISIAPIAOIN N
SIMPOIAIIRIAS S[IINIMNPOIA N sinIys-aydede 310 ‘Ompojpdaes siNIsanbay mn sinas-ayoede 310 ‘SPOYISINPIAOIA N
S[INAMPO 3[Y 03 s|uNIsanbay 3y wosy pasoy



STRUTS RESULTS

APPENDIX P. DIG ET AL.

426

SyuoyomponSyuod sinys-aydede 3o ‘Syuoyuonesddy-Syuod-sinns-ayoede 310 ‘sosserHypaureusyy
anquyypadAyun saysinns-ayoede 310 ‘omnqruyypaddAyun sam-sinmns-oyoede 310 ‘sasse[ypaureusy

a8essapyuondy3a3-uondeoxgampo N sinys-aydede: 310 ‘roxrg3e8-uondedxgampoA T sinys-aydede 310 ‘SpoylpowEUSY

9NIAXIIB[OUO [ 'S sinns-aydede 310 ‘urroyrad m[onuo) N s snys-ayoede 310 ‘SpoyaNpaweUSy

2JMDAX UORIY[e3I0 J19s ) Terod say-ddeqam synns-ayoede 810 ‘wroyrad-uonoyeyo J1os ) Teyrod sam - ddeqom sinns-ayoede 810 ‘spoyiajypauwreusy
noaxa-uonPysSunjageo1as Terrod s ddeqam sinns-ayoede 8o ‘urroyrod-uonoysSumagreyro Jras ) Terrod sa[ny ddeqam synns-aypede 310 ‘spoyioNpaureusy
9JNdaXIIB[[ONUOHUONOY s3[1 sinys-aydede- 310 “uroyrad Ia[jonuoHyuono Y sa[1y sinns-aydede 310 ‘Spoyia\ paureuy

9ndaxa- uondys3unagnuaAiIes ) Terod safnddeqam synns-ayoede-S1o ‘urojrad-uonoysdunagnuaias Teyrod-say-ddeqam sinns-ayoede 810 ‘spoyiay pareusy
9ndaxa uonOyNUIAIas ) Tertod safn ddeqam synns-aydede- 310 urioyrad-uondy nusyas Teirod-saqy-ddeqam sinns-ayoede 810 ‘spoyiajy paureusy

andaxa uondyINoAe pymga[durg unys-say-ddeqam sinns-ayoede-81o ‘wroyrad-uondyinoLepyoymgardung unys'sa ddeqam-synns-aypede 310 ‘spoyajy pawreusy
Qndaxa uoNPYSPUURYDSSY [PuueydssI-sa[n-ddeqam sinns-ayoede-310 ‘woyrad uondyspuueydssy puueydsssafy-ddeqam sinns-ayoede 810 ‘spoyiay paureusy
Andaxa uonI Y PIMGINoAeT unys sa[ ddeqam synns-aypede 3o ‘urojrad-uonoyypymgnoLe T unys saddeqam synns-aypede 810 ‘spoyiajypaureuay]

ndaxa uondysdumagmoieT unys'say ddeqam-synns-aypede 810 “‘wroyrad-uonpysdunagmoLe T unys saddeqam synns-aypede 810 ‘spoyiajpaureuay]

9JNDAX UOTPYILLU0TOVIS] 189} sany ddeqam sinms-ayoede 310 “‘wrroyad - uonoyai uonoyisay 159y safyddeqam sinns-aydede 310 ‘spoyajy pauueuay

9INDIXI UOTP Y SJOI B0 39S Ter10 JuAp-sany ddeqamsnns-ayoede 810 “wrroyrad-uondysyo1 o 1195 resro Judp-safny ddeqom synns-ayoede 310 ‘spoyjoNpaureuay
9)NDAXI U020 109G Suer sary ddeqam synns-aypede 1o ‘urrojrad-uonoyareso 13095 uersamyddeqam sinns-aypede 810 ‘spoyiajpaureuay]

9JTDAXI U0V [PUURYD)}PI[G ouueyd say ddeqam sinns-aypede 810 “‘wroyad-uondyouuey)oseg puueyd-safy ddeqom synns-aypede 310 ‘spoyjoNpaureuay
9JTDIXI UOTI Y [E}I0 JIAILIY TepIo JuAp-sofnddeqom sinms-ayoede- 310 “wrojrad-uonoyelro Jaastnay Teyro Juip-say-ddeqam sinns-ayoede 310 ‘spoypaj pawueuy
9moaxa-uondya[durexgpremiof Terroyny sory ddegam synns-aypede Srowioyad-uonoyadurexgpremio errony say-ddegam synns-ayoede 310 ‘Spoyaj pawueuy
9IMIIXA U0 YAIOAUTIPH dd10AuTsa[1y ddeqam sinns-aypede-31o ‘wrojrad-uonoyeoroaurpg aotoaursafy-ddeqam synns-aydede 810 ‘spoyiajypaureuay
moaxa-uonpyarerdwarui(q -aerdusy sory ddeqom synns-ayoede 3o “wiroyrad-uonoyererdwar uk(-orerdurey say-ddeqam synns-ayoede 810 ‘spoyajNpawEUy
9IndaxXa IA[0U0)y s synjs-aydede 310 ‘uriograd Iajonuo)y safysynns-aydede 310 ‘SpoyIsA pauIeUSY
andaxarspuuey ) Puueydssrsa[y ddeqam synns-aypede-3io “wrrojrad sppuuey )y puueydssisaqy-ddeqam sinns-ayoede 810 ‘spoyiajypaureuay

yprmursiejapes Sey swrery runy-qridey synys-aypede 810 qprmurdreies-Sey swrery runy-qridey synys-aypede-31o ‘saijeuSigpoyia A paSuey D)
ySayuidrepes e swery runyqrSey synns-aydede-S1o ySayuidrejpes - Se swery Tuny qridey synns-aydede 310 ‘sarmjeudigpoyapasuey )
Syuoppremiog-Syuoypremio-Syuodsinys-aypede 810 ‘Syuo)premiog Syuoypremio Syuod-synns-aydede 310 ‘sarmjeudigpoypasuey)
JI0JEPI[EA}IUT'SIDINO0SIY 10jepI[eAsins-apede-810 “10jepIjeAjiursadmosay rojepijea-synns-aypede 310 ‘sarnjeudigpoypaypadueyd

TN pIemIoysmnisanbay mnsinys-aypede 810 ‘TN premioysmnisanbay mnsinys-aypede-31o ‘samjeudigpoyapaduey)

PIEMIOJUONDY PIEMIOJUOTDY “Uonde snys-aypede 810 “premiouondy  premIiojuondy uonde synys-ayoede 310 ‘sanjeudigpoyaypaduey )
uondeoxgaioysarpueuondaoxg-uonoe sinys-aydede 310 ‘uondedxgarostapueuondaoxg uonde synys-aydede 310 ‘samjeudigpoapaduey)
SI0LIFAALS UOTOY uonPe sinys-aydede 310 ‘srorrgases uonoy uonoe sinygs-aypede 310 ‘samjeudigpoyppaduey)
SuaTUIAPRIEPI[RA S D PRLT IojepIea sinys-aydede 810 pSuaTurRIepIfeA sy pRLT I0jepieasnys-aydede 810 ‘samjeudigpoyapadueyd
PSudTXeARIEPITRA SO DPIRLT T0jeprrea-sinys-aypede 10 SuaxejpIepeA s PRLI T0jepIireasinygs-aydede 310 ‘samjeudigpoyppaduey)
[rewgalepI[eA s} PRLT TojepIeasinys-aydede 310 ‘[rewgajepifea sy pRLI Tojepireasinns-aydede 310 ‘samjeudigpoyapadueyd
PIeDIPAIDRIEPI[EA SYIIYDPRLI T0epIeasinys-aydede 310 “predyipar)djepiiea sy pRLI Tojepieasinys-ayoede 3o ‘samyeudigpoyiaypadueyDd
JduryieoaepITEA S PRI T0jepieA-sinys-aydede 310 ‘03ueyieorJarepireasyoaydplRLI 10sepreasings-aydede 810 ‘samnjeudigpoyaa paduey)
Jdurya[qnodaiepiiea sy pRLIIojepieA-sinys-aydede 310 ‘03ueysiqnoaiepireasyoaydplRL 1osepreasings-aydede 310 ‘samnjeudigpoyaa paduey )
SuryiuarepIreA sy D PR 10l epIeA sinys-ayede 310 ‘eueyurajepiieasydayHpRLI Iojepiea-sinys-aypede 3o ‘samjeudigpoyiapadueyd
Sje(JalEpI[RA 'S PRLI T0jepIeAsinys-aypede 310 ‘arearepifea sypaydpaL] Toepifeasinys-aydede 1o ‘samjeudigpoyapasuey)
S[qno(arepIeA sy DPIRLI 10)epieA sings-aydede 810 ‘s[qnoareprieasyday)pRLI 1ojepiea-sinins-aypede 3o ‘samjeudigpoyiaypadueyd
JRO[JaIePI[RA SO DP[RL] T0jepI[eA sinys-aydede 310 ol aiepifea sydayDpaL] Tojepireasinys-aydede 310 ‘sarmjeudigpoyapasuey)
SuoareprfeasydayHplRLI 10jepIeAsns-aypede 310 ‘Suoarepifea sypaydpRL] Tojepifeasinys-aydede 310 ‘sarmjeudigpoya pasuey )
193a1upaiepI[EA S P[RL] T0jepIeAsinys-aydede- 310 “a8ajurajepieasydayHpRL tojepiea-snys-aydede 3o ‘sarnjeudigpoypagpadueyd
JI0UGajepI[RA"SYIYDP[ALI TojepI[eA-sinys-aydede 310 “I0ygeiepifeasydayDpRL tojepiea-sinns-aypede 310 ‘samjeusigpoyiagpadueyd
ajhgarepireasyoay)plRL1osepreasinygs-aypede 810 ‘914gajepiieasypaydpRLy tojepiea-sinns-aypede 810 ‘sarjeudigpoypagpadueyd
SSBIAPIEPI[EA SO PIALI T0jepI[eAsins-aydede-810 “[sejyP epI[eA sy DPRLI 1ojepifea-sinys-aydede 310 ‘sarnjeudigpoypagpaduey
JIparmbayarepirea sy paL I0jepreasings-aydede 310 ‘JrparmbayarepiieasypayHprar 1ojepreasinys-aydede 310 ‘sajeudigpoyay paduey D)
parmbayajeprea-syday)paLIojepieasinys-aydede 310 ‘parmbayaiepirea-sypayypary 1orepireasings-aypdede 310 ‘samjeudigpoyiapaduey)

SSE[JPIUTRUIY 10 SPOYRJAPIUTRUY ‘sarnjeuSIgpoyidApasueyd

>

R e e I e O T



Appendix Q

PyX: matched and unmatched
disappearing files

In this appendix the matched and unmatched files from the PyX project
are listed, in the same format as those for PostgreSQL and DNSjava in
Appendix N. As an example of a file which is matched to another with
similarity close to the threshold, the comparison between minimal.py and

simple.py is shown in Figure Q.1.

Blue file: /home/.../pyx-n+1/examples/axis/minimal.py X
Red file: No second file

from pyx import *

c = graph.axis.pathaxis(path.curve(0, 0, 3, 0, 1, 4, 4, 4),
graph.axis.linear (min=0, max=10))

c.writeEPSfile ("

c.writePDFfile ("

Figure Q.1: The disappearing file minimal.c matched to simple.py, similarity 0.89

427



428 APPENDIX Q. PYX: MATCHED AND UNMATCHED DISAPPEARING FILES

Ref. | File Match Sim.
Matched files
3 /pyx/lfs/createlfs.c /pyx/data/lfs/createlfs.c 1.00
4 /manual/palettename.c /manual/gradientname.c 0.94
5t /examples/axis/simple.c /examples/axis/minimal.c 0.89
5 /examples/bitmap/julia.c /gallery/misc/julia.c 1.00
5 /examples/graphs/arrows.c /gallery/graphs/arrows.c 1.00
5 /examples/graphs/errorbar.c /examples/graphstyles/errorbar.c 1.00
5 /examples/graphs/histogram.c | /examples/graphstyles/histogram.c | 0.93
5 /examples/graphs/inset.c /gallery/graphs/inset.c 1.00
5 /examples/graphs/integral.c /gallery/graphs/integral.c 1.00
5 /examples/graphs/link.c /examples/axis/link.c 0.92
5 /examples/graphs/mandel.c /gallery/graphs/mandel.c 1.00
5 /examples/graphs/manyaxes.c /gallery/graphs/manyaxes.c 1.00
5 /examples/graphs/partialfill.c /gallery/graphs/partialfill.c 1.00
5 /examples/graphs/piaxis.c /gallery/graphs/piaxis.c 1.00
5 /examples/graphs/symbolline.c | /gallery/graphs/symbolline.c 1.00
5 /examples/graphs/washboard.c | /gallery/graphs/washboard.c 1.00
5 /examples/misc/box.c /gallery/misc/box.c 1.00
5 /examples/misc/connect.c /gallery/misc/connect.c 0.91
5 /examples/misc/pattern.c /gallery/misc/pattern.c 1.00
5 /examples/misc/vector.c /gallery/misc/vector.c 1.00
5 /examples/path/circles.c /gallery/path/circles.c 0.96
5 /examples/path/sierpinski.c /gallery/path/sierpinski.c 1.00
5 /examples/path/tree.c /gallery/path/tree.c 1.00
5 /examples/splitgraphs/shift.c /gallery/graphs/shift.c 1.00
6 /examples/misc/bitmap.c /manual/bitmap.c 0.87
6 /examples/misc/latex.c /examples/text/texrunner.c 0.90
7 /examples/box.c /examples/misc/box.c 0.91
7 /examples/connect.c /examples/misc/connect.c 1.00
7 /examples/latex.c /examples/misc/latex.c 1.00
7 /examples/pattern.c /examples/misc/pattern.c 1.00
7 /examples/sierpinski.c /examples/path/sierpinski.c 1.00
7 /examples/tree.c /examples/path/tree.c 1.00
7 /examples/valign.c /examples/misc/valign.c 1.00
7 /examples/vector.c /examples/misc/vector.c 1.00
Unmatched files

NN ON U1 U1 U1 W W

pyx/pykpathsea/__init__.c
pyx/siteconfig.c
pyx/helper.c
pyx/tlstrip/__init__.c
pyx/tlstrip/fullfont.c
examples/examples.c
pyx/base.c

pyx/tex.c

Table Q.1: Matched and unmatched disappearing files: PyX project.

tSee Figure Q.1.




Appendix R

Comparison between Moss and
3CO

In Chapter 2, Moss’s [3] matching technique is discussed. As previously
noted, Moss” exact matching algorithm is unknown. However, looking Fig-
ure R.1, Moss appears to exclude header information from its calculations,
and to match code using relaxed parameters, on a “first come, first served”
basis, like a greedy parameterised clone detection tool, when used on this

code.

429



APPENDIX R. COMPARISON BETWEEN MOSS AND 3CO

430

"JO1I9, JO Surnydjeu [en3xa} aY} 0} S)NSAI JUIIPIP SIAIS unypriod[e Surydyews ,SSON ‘ODE Aq USAIS SI 31 INOJOD S}
Aq uonded ay3 ur pajou ‘o[l I9Y30 SUO pue |'SYIeq[[ed Usam}aq Yyoes a1e suostreduwod sSojA YL ([ MO[[oL) Y syoeqed 01
-uod pue (3[y par) ysyoeqrred-jorsudnid ‘(3[y anpq) ysyoeqred m ‘ysyoeqed usamiaq suostredwod SSON pue OO 1Y 2ndny

((e) ur 31y mo[RA) ¢ SSON (P) ((e) ur o1y pax) ¢ SSON (2) ((e) ur a1y anyq) T ssoI (q) 0D¢ (v)

R A "

e e g
T B D L

gD K

ey

s s e e p ey st Em,

TR T}

= = |
(3e) 1)
T s

t5)
TS s s

(1)

| 1S

(152) YY0RATRD S




Appendix S

Selected Features

The features selected by the Simple Logistic algorithm from the fc+tris-
singles feature set are listed in Table S.1, and those from the fl+tris-singles
set in Table S.2. There are five selections for each set: for split files, for
the three classes for disappearing files with 2 or more target files, and for
the disappearing files with one target. In the second table, the features
which are common to the two feature sets are highlighted with coloured
backgrounds.

The F1 and F2 columns in the table show the 2 (or 3) files compared.
The third column, headed “To’ shows the file in which the measure is taken
or the file to which the measure is proportional. For example, in Table S.2,
looking at the first two XML based features: the first takes the blocks of
code shared by files 1 and 2 and measures the mean number of lines in the
blocks in file 1; and the second feature is the ratio of the lines shared by files
1 and 2, to the number of lines in file 1.

Although around two-thirds of the features are proportional, a wide
range of features is selected. All of the block-based measures, laid out in
Table 13.8 (p.217), are represented in the fc+tris set except for the counts of
the blocks (item 1) and of the number of units in the blocks (item 2).

431



432 APPENDIXS. SELECTED FEATURES

2+
Spl | Dis
F1 | F2 | To | Pl | Description 0,1 0 1
Trigrams
1 2 — | Trigrams shared by files 1
1 3 — | Trigrams shared by files 1
1 (23| 1 v | Trigrams shared by 1 A (2 XOR 3) to total 1 1
11231 v | Trigrams unique to the file to total 1
2 1,3 2 v Trigrams unique to the file to total 1
1 2 1 v | Shared trigrams to total (containment)
1 3 1 v | Shared trigrams to total (containment) 1
1 3 3 v Shared trigrams to total (containment) 1 1
2 3 3 v’ | Shared trigrams to total (containment) 1
2 11,3 2 v | Trigrams shared by all 3 files to total 1 1
1 123]|1 v | Trigrams shared by other files to total 1
Sundries
File type (applies to C code) 1
Number of target files selected 1
XML block characters
1 - Number of characters in the file 1
3 - Number of characters in the file 1
1 2 1 v | Characters in largest shared block to total 1
1 2 1 v Mean shared characters in blocks to total 1
1 2 1 v' | Shared characters to total (containment) 1
1 2 1 v" | Characters in blocks > 40 characters to all characters 1 1
1 2 1 v' | Characters in blocks > 80 characters to all characters 1
1 2 1 - Characters in blocks > 3]—2 file size
1 2 1 v' | Characters in blocks > % file size to all characters 1
1 2 1 — | Characters in blocks > }1 file size
1 2 2 v Mean shared characters in blocks to total 1
1 2 2 - Mean shared characters in blocks 1
1 2 2 v | Shared characters to total (containment)
1 2 2 v' | Characters in blocks > 40 characters to all characters
1 2 2 v Characters in blocks > 640 characters to all characters 1
1 3 1 v | Characters in largest shared block to total 1
1 3 1 v' | Characters in blocks > 40 characters to all characters
1 3 1 v Characters in blocks > 80 characters to all characters 1
1 3 1 v' | Characters in blocks > 160 characters to all characters 1
1 3 1 v Characters in blocks > 640 characters to all characters 1
1 3 1 - Characters in blocks > 6%1 file size 1
1 3 1 - Characters in blocks > lé file size 1
1 3 3 v Mean shared characters in blocks to total 1
1 3 3 v' | Shared characters to spread 1
1 3 3 - Number of characters in shared blocks > 160 characters 1 1
1 3 3 v' | Characters in blocks > 40 characters to all characters
2 3 2 v | Shared characters to spread 1
2 3 2 v' | Characters in blocks > 320 characters to all characters 1
2 3 2 - Characters in blocks > }1 file size 1
2 3 3 — | Size of the largest shared block 1
2 3 3 v/ | Shared characters to spread 1
2 3 3 - Characters in blocks > % file size 1
2 3 3 v Characters in blocks > 3% to all characters 1
2 3 3 v" | Characters in blocks > % to all characters 1 1

Table S.1: fc+tris-singles features selected by Simple Logistic. The first 2 columns
show the files in the comparison, the next the base file for the measures,
which, if proportional, have a tick in the next column. The last 4 columns
show in which model the features are used: split, disappearing files with
2 or more targets, or 1 target.



433

2+ 1
Spl | Dis Dis
F1 F2 To | Pl | Description 0,1 0 1 2 0,1
Trigrams
2 — | Trigrams shared by files

— | Trigrams shared by files
Trigrams shared by 1 A (2 XOR 3) to total|

Trigrams unique to the file to total

Trigrams unique to the file to total
Shared trigrams to total (containment)

Shared trigrams to total (containment) I

Shared trigrams to total (containment)

e e el e e e
—_
N~
@
— W = NN R
NN N S RNIRN

Trigrams shared by other files to total

Sundries

— | File type (applies to C code)

— | Number of target files selected

XML blocks line-based

Mean shared lines in blocks
Shared lines to total (containment)

—_

Lines in blocks > 4 lines to all lines

AN

Lines in blocks > % to all lines 1

Lines in blocks > 31—2 file size .

Lines in blocks > 11—6 file size 1
Lines in blocks > 11—6 file size 1
Shared lines to spread 1
Lines in blocks > 2 lines to all lines 1
Lines in blocks > 8 lines to all lines 1

Lines in blocks > 11—6 file size 1
Lines in blocks > 4 lines to all lines I

Lines in blocks > 8 lines to all lines

IENENENY

Lines in blocks > 32 lines to all lines 1

AN

Lines in blocks > 11—6 to total lines 1

Lines in shared blocks to total 1
Lines in blocks > 32 lines to all lines 1

Lines in blocks > % file size

Shared lines to spread

Shared lines to total (containment) 1
Lines in blocks > 11—6 to total lines 1

WWW W WWW W W W WNNNNDN DN NN NN

NN N N R=EE R e e e e e e e e e e
W W W N WWE = = R RN PR R R =

ANENEN

Table S.2: fl+tris-singles features selected by Simple Logistic. The first 2 columns
show the files in the comparison, the next the base file for the measures,
which, if proportional, have a tick in the next column. The last 4 columns
show in which model the features are used: split, disappearing files with
2 or more targets, or 1 target. Features marked by a coloured background
appear in both this selection, and that from fc+tris-singles.



434 APPENDIXS. SELECTED FEATURES



Appendix T

Comparing related feature sets

The feature sets based on P-Duplo (pdp) and the line-based XML analysis (f1)
should be similar, as each looks at the similarity between lines of code. One
difference is that P-Duplo requires the whole line to match, whereas line-
based analysis requires only that trigrams in a line appear elsewhere in the

file. Also, the way that the lines are counted differs (see Chapters 6 and 11).

To some extent, the XML density analysis (fd) should find similar blocks
of code to Code Clone Finder (ccf) and Simian (sim), in that all find “gapped”
copies. The differences are that CCFinder and Simian exclude parts of the

code and that the minimum sizes of matching section of code vary.

Table T.1 gives the classification rates for each of these feature sets, with
the minimum and maximum for all feature sets in the last two columns. The
graphs in Figure T.1 show the classification rates for each of the 5 feature
sets, both for the singles (or block-singles) sets and for cat (or block-cats)
sets, as these sets all have features derived from matched blocks in the same

way, varying only in the method of comparing the files to find these blocks.

The graphs show that P-Duplo and line-based XML analysis give similar
results. The other three sets vary, with the density analysis being more like
the P-Duplo and line-based results than the CCFinder and Simian results.
These direct comparisons show that with these features the clone detection

tools are less suited to classifying restructured files than the other two tools.

435



436 APPENDIX T. COMPARING RELATED FEATURE SETS

pdp fl fd ccf sim Min | Max
Singles
Original split 89.43 | 87.92 87.39 | 81.05 | 86.33 7549 | 92.11
Refiltered 85.49 | 83.30 || 82.73 | 81.13 | 81.77 || 72.63 | 88.70

Disapp. 1 target 88.72 | 90.66 89.66 | 7521 | 82.52 72.33 | 93.89
Disapp. 2+ targets | 82.25 | 82.51 8251 | 71.67 | 76.79 68.43 | 86.02

Concatenations
Original split 85.55 | 84.83 || 84.31 | 78.75 | 83.14 || 75.49 | 92.11
Refiltered 78.58 | 78.66 78.43 | 76.69 | 76.57 72.63 | 88.70

Disapp. 2+ targets | 81.97 | 84.24 || 83.40 | 71.02 | 76.42 || 68.43 | 86.02

Table T.1: Comparison of classification accuracy of related feature sets

20 m pdp-singles

= fl-singles
m fd-singles

m ccf-singles

Original split Refiltered Disapp. 1 target Disapp. 2+ targets

(a) 3-way single file comparisons

20 m pdp-cats

m fl-cats

m fd-cats
m ccf-cats
M sim-cats

Original split Refiltered Disapp. 2+ targets

(b) Concatenated file comparisons

Figure T.1: Classification with related feature sets: P-Duplo and line-based; den-
sity, CCFinder and Simian. The features are block based: the top graph
based on single file, and the bottom on concatenated file, comparisons.



