
Extracting group relationships

within changing software using

text analysis

Pamela Dilys Green

School of Computer Science

A thesis submitted to the University of Hertfordshire in partial

fulfilment of the requirements of the degree of Doctor of Philosophy

March 2013

2

Abstract

This research looks at identifying and classifying changes in evolving software by

making simple textual comparisons between groups of source code files. The two

areas investigated are software origin analysis and collusion detection. Textual

comparison is attractive because it can be used in the same way for many different

programming languages.

The research includes the first major study using machine learning techniques

in the domain of software origin analysis, which looks at the movement of code in

an evolving system. The training set for this study, which focuses on restructured

files, is created by analysing 89 software systems. Novel features, which capture

abstract patterns in the comparisons between source code files, are used to build

models which classify restructured files from unseen systems with a mean accuracy

of over 90%. The unseen code is not only in C, the language of the training set, but

also in Java and Python, which helps to demonstrate the language independence

of the approach.

As well as generating features for the machine learning system, textual com-

parisons between groups of files are used in other ways throughout the system:

in filtering to find potentially restructured files, in ranking the possible destina-

tions of the code moved from the restructured files, and as the basis for a new file

comparison tool. This tool helps in the demanding task of manually labelling the

training data, is valuable to the end user of the system, and is applicable to other

file comparison tasks.

These same techniques are used to create a new text-based visualisation for use

in collusion detection, and to generate a measure which focuses on the unusual

similarity between submissions. This measure helps to overcome problems in

detecting collusion in data where files are of uneven size, where there is high

incidental similarity or where more than one programming language is used. The

visualisation highlights interesting similarities between files, making the task of

inspecting the texts easier for the user.

i

ii

Acknowledgements

I would like to thank my supervision team: Peter Lane, Austen Rainer and Bodo

Scholz. I am extremely grateful to Peter for his guidance, especially during the

difficult times. I hope that this work, which would not have been undertaken

without his help and advice, reflects well on Peter. I have very much appreciated

Austen’s conscientious attention to detail, which was invaluable in improving the

structure and coherence of this dissertation, and Bodo’s help in putting things in

perspective.

There are so many in the computer science department to thank for providing

help, support, and friendship: Dan, Steve, Min, Frank, Carl, Sue, Bob, Bruce,

Mike, Maria, Colin, Rene, Ian, Na, James, and David, to name a few; also to all the

friendly astronomers.

On the technical side, thank you to the computer science team, for all your

advice, and for fixing the computers when they sulked or died.

No one in the STRI would be able to function without our fantastic administra-

tive team, in particular Lorraine, who deals with every problem calmly, efficiently

and sympathetically. Thank you for everything.

My family and friends have been wonderful throughout, though I know they

all thought it was a crazy thing to do. Thank you for not saying so. Special thanks

to Todd, Joe, and Sam for their continual encouragement. Also to Mum, who

would have been so relieved to see me make it to the end.

The one person who deserves more thanks than anybody else is Dave, who

has unfailingly supported me in every way throughout the whole process, and

through the last 40-odd years – none odder than these last few.

iii

iv

Contents

1 Introduction . 1

1.1 Software origin analysis . 2

1.1.1 Context and problem 2

1.1.2 Overview of the approach taken in this research . . . 5

1.1.3 Description of the final system 5

1.1.4 Results . 10

1.1.5 Contributions . 11

1.2 Collusion detection . 13

1.2.1 Context and problem 13

1.2.2 Overview of the approach taken in this research . . . 14

1.2.3 Description of the system 15

1.2.4 Results . 16

1.2.5 Contributions . 16

1.3 Visualisation . 18

1.3.1 Visualisation for origin analysis 18

1.3.2 Visualisation for collusion detection 21

1.4 Summary of contributions . 22

1.5 Dissertation structure . 23

2 Detecting similarity in program code 25

2.1 Clone detection and plagiarism detection 25

2.2 Detecting similarity in code 27

2.3 Approaches to source-code plagiarism detection 31

2.4 Summary . 33

v

vi CONTENTS

3 Origin analysis . 39

3.1 Survey . 42

3.2 Approaches in detail . 47

3.3 Summary . 53

4 Machine learning . 55

4.1 Why use machine learning? 55

4.2 The machine learning process in outline 56

4.3 Creating new datasets for machine learning 58

4.3.1 Choosing features . 58

4.3.2 Creating a labelled dataset from raw data 59

4.4 Classifiers . 61

4.5 Machine learning in software engineering 62

4.6 Summary . 63

5 Visualisation . 65

5.1 Plagiarism detection file comparison 67

5.2 Other code comparison tools 70

5.3 Colour coding features in software evolution 72

5.4 Summary . 73

6 Ferret . 75

6.1 Background . 75

6.2 Program code . 76

6.3 Files to illustrate similarity tools 80

6.4 Similarity scores . 83

6.5 Ferret XML report . 85

6.6 Density analysis . 87

6.7 Ferret trigram-to-file index . 90

6.8 Summary . 91

7 Trigram analysis . 93

7.1 Similarity in program code . 94

7.1.1 Within-project similarity 94

7.1.2 Across-project similarity 95

7.1.3 Comparing similarity scores in text and code 95

CONTENTS vii

7.1.4 Stopping . 97

7.2 Collusion detection . 97

7.2.1 Example trigram-file index 98

7.2.2 Proportional trigram-based measures 100

7.2.3 Measures based on counting trigrams 102

7.2.4 Extending unique share counts 104

7.2.5 Making connections . 106

7.3 Source or destination of code in origin analysis 107

7.3.1 Split files . 108

7.3.2 Disappearing files . 110

7.3.3 Trigram-based measures 111

7.4 Summary . 112

8 Visualising file relationships . 113

8.1 Displaying student assignments 113

8.1.1 Unique trigrams . 114

8.1.2 Extending the standard Ferret display 115

8.1.3 Graduated similarity information 116

8.1.4 Groups . 117

8.2 Comparing one document with a group of others 117

8.2.1 Multiple blue-red-black displays 118

8.2.2 Displaying multi-file comparisons, 1-to-3 119

8.2.3 Scheme for colouring the text 125

8.2.4 Displaying multi-file comparisons 1-to-many 128

8.3 Summary . 128

9 Trigram analysis applied to student assignments 131

9.1 Data . 132

9.2 Method . 132

9.3 Results . 134

9.3.1 Proportional similarity measures 135

9.3.2 Count-based similarity measures 138

9.3.3 Analysis . 139

9.3.4 Showing similarity in a group context 143

viii CONTENTS

9.4 Discussion . 145

10 Overview of the classification system 147

11 File Comparison Tools . 151

11.1 Code Clone Finder (CCFinder) 155

11.2 Simian . 158

11.3 Duplo . 160

11.4 P-Duplo . 162

11.5 Unscrambling clones . 164

11.6 Summary . 167

12 Data Collection, Preprocessing, Filtering 169

12.1 Source code collection and organisation 169

12.1.1 Selection of projects from SourceForge 169

12.1.2 The selected data - 89 Projects 170

12.1.3 Preprocessing . 172

12.2 Terminology . 173

12.3 Filtering . 175

12.3.1 Information Gathering 175

12.3.2 Selecting Candidate Files 177

12.4 Experimental Data . 179

12.4.1 Split file dataset . 180

12.4.1.1 Split files . 180

12.4.1.2 Non-split files 185

12.4.1.3 Not classified 188

12.4.1.4 Dataset composition 188

12.4.2 Disappearing file dataset 191

12.4.2.1 Renamed, moved or merged files 192

12.4.2.2 Other classes of disappearing files 192

12.4.2.3 Dataset composition 192

12.5 Summary . 194

13 Feature Construction . 195

13.1 File combinations and comparisons 196

13.1.1 Comparing single files. 197

CONTENTS ix

13.1.2 Comparing the candidate and concatenated files . . . 198

13.2 Features . 204

13.2.1 Raw feature sets . 204

13.2.1.1 Ferret basics 205

13.2.1.2 Ferret trigrams 205

13.2.1.3 Simian, Code Clone Finder and P-Duplo . . . 208

13.2.2 Feature sets based on blocks 212

13.2.2.1 The candidate difference set 214

13.2.2.2 Measurements 215

13.2.2.3 Block-based features 217

13.2.3 Final feature sets . 218

13.3 Summary . 221

14 Classifying the split file dataset . 223

14.1 Building models to identify split files 224

14.1.1 Machine learning algorithms 224

14.1.2 Classifying split files 226

14.2 Tests on other projects . 233

14.2.1 PostgreSQL . 234

14.2.2 DNSjava . 239

14.2.3 Unseen data classified by trained models 246

14.3 Summary . 247

15 Exploring filtering criteria . 249

15.1 Similarity measures . 250

15.2 Target file selection . 252

15.2.1 Similarity score (1a) . 252

15.2.2 Containment (1c) . 253

15.2.3 Change-based filters (1b, 1e) 253

15.2.4 Combining similarity score conditions (1a, 1b) 254

15.2.5 Stratifying shared trigram conditions (1e) 254

15.2.6 Less direct methods (2a, 2b, 2c) 255

15.2.7 Discussion on selecting target files 255

x CONTENTS

15.3 Ordering target files . 256

15.3.1 Comparing ranking criteria 256

15.3.2 Discussion on ranking target files 259

15.4 Refining file selection . 260

15.4.1 Filter conditions summarised 263

15.5 Checking a change log to verify selection 264

15.6 Summary . 266

16 Classifying refiltered data . 269

16.1 Refiltered split file dataset composition 270

16.2 Classifying the refiltered split files 273

16.3 PostgreSQL & DNSjava split files 276

16.3.1 Refiltered data . 276

16.3.2 Classifying unseen refiltered split file candidates . . . 278

16.3.2.1 PostgreSQL . 278

16.3.2.2 DNSjava . 279

16.3.2.3 Overall . 279

16.3.3 Additional unseen data: Struts and PyX 280

16.3.3.1 Struts . 280

16.3.3.2 PyX . 281

16.4 Disappearing files . 283

16.4.1 Data . 283

16.4.2 Disappearing files with one target 284

16.4.3 Disappearing files with more than one target file . . . 286

16.5 PostgreSQL and DNSjava disappearing files 289

16.5.1 Candidates with one target file 289

16.5.2 Candidates with two or more target files 290

16.5.2.1 PostgreSQL . 293

16.5.2.2 DNSjava . 294

16.5.3 Additional unseen data: PyX 295

16.6 Selected models . 296

16.7 Selected features . 297

CONTENTS xi

16.8 Summary . 300

16.8.1 Split files . 300

16.8.2 Disappearing files . 300

16.8.3 Comparison to other approaches 301

16.8.4 Overview . 302

17 Discussion and evaluation . 303

17.1 Origin analysis . 303

17.1.1 Related work . 303

17.1.2 Machine Learning System 307

17.2 Collusion detection . 315

17.3 Visualisations . 317

17.3.1 Collusion detection . 317

17.3.2 File comparison with 3CO 317

17.4 Other tools . 319

17.4.1 Density analysis . 319

17.4.2 One-to-one matching of clone output 319

17.5 Summary . 320

18 Conclusions and further work . 321

18.1 Contributions to knowledge 321

18.2 Further work . 322

18.2.1 Origin analysis . 322

18.2.2 N-gram analysis . 323

18.2.3 File comparison with 3CO 325

18.3 Conclusion . 326

Bibliography . 327

A Similarity measures . 351

B Classifiers . 357

B.1 Ensembles . 357

B.2 Selected algorithms . 359

C Machine learning in software engineering 361

D Additional file comparison visualisations 367

D.1 Clone detection tools . 367

xii CONTENTS

D.2 Origin analysis tools . 369

E Ferret: example calculation . 371

F Density tool prototype . 373

G Similarity rankings for Chapter 9 379

H Details of the 89 projects . 381

I Density test results . 387

J SVM grid search results . 389

K Supplementary results for Chapter 14 393

K.1 Feature sets - further combinations 393

K.2 Heterogenous meta-classifiers 395

L Less direct methods of filtering . 399

L.0.1 Uniquely shared trigrams (2a) 400

L.0.2 Weighted trigram count (2b) 401

L.0.3 Trigrams shared with the candidate difference set (2c) 402

L.0.4 Discussion . 403

M Extracts from the Lifelines change log 405

N Additional results 1: Chapter 16 413

N.1 PostgreSQL . 413

N.2 DNSjava . 417

N.3 Reporting . 417

O Additional results 2: Chapter 16 . 419

O.1 Disappearing files: classifying imbalanced data 419

P Dig et al.: Struts results . 423

Q PyX: matched and unmatched disappearing files 427

R Comparison between Moss and 3CO 429

S Selected Features . 431

T Comparing related feature sets . 435

List of Figures

1.1 Group similarity example . 4

1.2 Origin analysis system . 9

1.3 Collusion detection system 17

1.4 3CO file comparison system 20

3.1 File restructurings . 41

4.1 Input to and output from a machine learning algorithm . . 56

4.2 The classification model labels each unseen instance 57

5.1 Showing file similarities . 66

5.2 Comparing the code in two files 67

5.3 Graphical displays of file similarity 69

5.4 Ribler and Abrams’s graphical displays 70

5.5 Windiff, Winmerge and KDiff3 71

5.6 Ball et al.’s line representation 72

5.7 Augur three-feature colour coding of one file 73

6.1 Ferret: ‘different’ sequences, with a similarity of 1. 76

6.2 Plot of trigram frequency across the projects 77

6.3 Ratio of trigrams to words in text or tokens in code 78

6.4 Diagram of the relationship between the three example files 80

6.5 Factorial and power code . 80

6.6 Original combination and permutation code 81

6.7 Amended combination and permutation code. 82

6.8 How similarity scores are affected by changes 83

xiii

xiv LIST OF FIGURES

6.9 An example of standard Ferret similarity information . . . 84

6.10 Ferret XML report for a comparison of fact.c and power.c . 86

6.11 Factorial and power code. 88

6.12 Ferret comparison between the files fact.c and fact-2.c. . . . 89

6.13 The impact on similarity of renamed tokens 92

7.1 Venn diagram: standard Ferret similarity score 93

7.2 Two files in the context of a group of files 100

7.3 Excluding trigrams from the similarity measure 101

7.4 A potential drawback of proportional measures 103

7.5 “Uniquely shared” trigrams 103

7.6 Trigrams shared by two in a small group 105

7.7 Illustration for weighted similarity calculation 105

7.8 Graph of weighted similarities in a set of files 106

7.9 Subgraphs of files connected by weighted similarity 107

7.10 An example of a differently connected group 107

7.11 Venn diagram: trigrams in the example split files 108

7.12 Venn diagram: existing target file 108

7.13 Venn diagram: multiway split file 109

7.14 Venn diagram: a renamed or moved file 109

7.15 Venn diagram: a merged file 110

7.16 Venn diagram: a disappearing file which has split 110

7.17 Venn diagrams: 2 candidate split examples 111

7.18 Venn diagrams: 2 more candidate split examples 111

8.1 Trigrams unique within the group highlighted 114

8.2 Amended file similarity display 115

8.3 Graded similarity colour scheme 116

8.4 Problems comparing many files to one with a two-way tool 118

8.5 Three target file colours and their combinations 119

8.6 3CO comparisons between 2 and 3 files 121

8.7 A candidate file compared with its target files 122

8.8 An extract from Figure 8.7, comparing a file to its targets . . 123

LIST OF FIGURES xv

8.9 Ferret and compact file comparisons 124

8.10 Tokens coloured to illustrate the scheme 127

8.11 A comparison with seven target files 127

8.12 A comparison with nine target files 129

9.1 File concatenation and comparison 132

9.2 An extract from the feedback based on unique trigrams . . 134

9.3 Contour maps of weighted similarity counts 136

9.4 Connections by weighted trigram count ≥ 85 137

9.5 Connections by weighted trigram count ≥ 50 139

9.6 Project 19 compared with project 54 and the provided code 140

9.7 Graded colour scheme, repeated 143

9.8 An extract from a comparison between projects 8 and 17 . . 144

9.9 An extract from a comparison between 5 files 146

10.1 Outline of the learning process 148

10.2 Learning system overview 149

10.3 Classification system overview 150

11.1 Combination and permutation code (repeated) 153

11.2 Amended combination and permutation code (repeated) . 154

11.3 CCFinder report on clones between the three example files 157

11.4 Simian parameter hierarchy 158

11.5 Simian report on clones between the three example files . . 159

11.6 Duplo report on clones between the three example files . . 161

11.7 Examples showing potential duplication in clone detection 164

11.8 Steps in unscrambling clones for one-to-one matching . . . 166

12.1 Source code collection and preprocessing 171

12.2 Comment block example from the biew project 173

12.3 Illustration of similarities using the example mini-project . 176

12.4 Information gathering and filtering 178

12.5 Example split files . 181

12.6 A simple split file example 182

xvi LIST OF FIGURES

12.7 An example of a file split three ways 183

12.8 An example of a multiway split file 184

12.9 Example non-split files selected as candidate split files . . . 185

12.10 An example of a non-split file 186

12.11 A more complex example of a non-split file 187

12.12 Number of targets in split file groups 189

12.13 Candidate split files by project, type and class 190

12.14 Classification of uncertain disappearing files 191

12.15 A disappearing file which has been renamed and edited . . 193

12.16 A disappearing file which has merged with an existing file 193

13.1 Pairwise comparisons between the three main files 197

13.2 Example concatenation and comparison 199

13.3 Three target files of similarity 0.3, two scenarios 199

13.4 A file with two sections split out to two existing files 200

13.5 File combination and comparison 202

13.6 Feature extraction . 203

13.7 Trigrams shared by two or three files 206

13.8 The files cnp-1.c and cnp-2-edit.c 210

13.9 Blocks shared by the main target file and the difference set . 215

13.10 Composition of the feature sets 219

14.1 Classification by paired feature sets 232

14.2 The PostgreSQL files parser.c, analyze.c, date.c 238

14.3 MXRecord.java: code destination 244

14.4 MXRecord and KXRecord compared 245

15.1 System overview, repeated here for reference 249

15.2 Target file order: by unique share and by shared change . . 257

15.3 Broadening target file selection: one example 260

15.4 Number of target files per group: various filter conditions . 262

15.5 Filter criteria . 263

16.1 Comparison between refiltered and original datasets 270

LIST OF FIGURES xvii

16.2 Refiltered split file dataset by project, type, and class 272

16.3 Classification by paired feature sets 275

16.4 Relationships between original and refiltered split datasets 276

16.5 A disappearing file of indeterminate class 277

16.6 Analysis of disappearing file targets 285

16.7 The merge between CacheResponse and ZoneResponse . . 295

16.8 Features selected by Simple Logistic 299

18.1 Figures 9.4, 9.9, G.2 repeated for reference 324

D.1 Clone tool outputs . 368

D.2 Beagle scatter plot and Ecode-wayf class evolution diagram 369

F.1 Density tool input screen . 374

F.2 Density tool output screen 375

F.3 Density tool screenshot . 376

F.4 Example of Ferret density analysis XML output 377

J.1 SVM grid search results “tris-singles” 390

J.2 SVM grid search results “tris” 391

K.1 The new file MX KXRecord, referenced in Section 14.2.2 . . 397

N.1 The disappearing PostgreSQL file geqo paths.c 416

N.2 DNSjava project report on directory changes 417

P.1 Split files from Struts . 424

Q.1 Minimal.c matched to simple.py, similarity 0.89 427

R.1 3CO and Moss file comparisons 430

T.1 Comparing related feature sets 436

xviii LIST OF FIGURES

List of Tables

2.1 Examples of parameterised code 28

2.2 Elements removed from code before plagiarism detection . 33

2.3 Approaches to source code plagiarism detection 37

3.1 Origin analysis and related work 46

3.2 Projects used for origin analysis by various research groups 52

6.1 Matched and unmatched code patterns in different units . . 87

6.2 Dense blocks . 89

6.3 Ferret trigram-file index for the three example files 90

6.4 Distribution of trigrams between the three example files . . 90

7.1 Example extracts from a trigram-file index 99

7.2 Different similarity measures based on trigram analysis . . 101

7.3 Shared trigram count report extract 102

8.1 File combinations and the colours associated with them . . 125

8.2 Token colouring by example 126

9.1 Comparing the similarities found by different measures . . 135

11.1 Snippets illustrating parameterised matching 155

11.2 CCFinder representation of tokens for the file fact.c 156

11.3 Duplo matrix showing the result of line-by-line matching . 160

11.4 P-Duplo matrix showing the result of line-by-line matching 163

12.1 Terminology . 174

xix

xx LIST OF TABLES

12.2 Size and similarity vectors for the example mini-project . . 176

12.3 Analysis of file type and classification of candidate split files 188

12.4 File type and classification of “uncertain” disappearing files 194

13.1 Keys and names of the feature sets 204

13.2 Basic Ferret output for the three example files 205

13.3 Trigram-based features for two and three file comparisons . 206

13.4 Raw features taken directly from the tools’ outputs 211

13.5 Clones in cnp-1.c and cnp-2-edit.c 212

13.6 Blocks from different analyses of the Ferret XML report . . 213

13.7 Difference sets and reverse difference sets explained 214

13.8 Features constructed from block sizes 217

13.9 Features built from the example blocks. 218

13.10 Feature sets, their content and names 222

14.1 Algorithms ranked by performance over all feature sets . . 225

14.2 The reduced set of 23 algorithms listed by group 226

14.3 The top 40 results . 228

14.4 Performance of each feature set over the 23 algorithms . . . 229

14.5 Keys and names of feature sources, repeated for reference . 229

14.6 Performance of each algorithm over all of the feature sets . 230

14.7 Performance of selected feature sets on multi-target files only 230

14.8 Performance of selected feature sets on .c files only 231

14.9 Split files in PostgreSQL, backend subsystem 235

14.10 Split files in PostgreSQL, other subsystems 236

14.11 Refactorings suggested by Antoniol et al.’s system 239

14.12 Restructured files found by Antoniol et al. 240

14.13 Split files in the DNSjava project, releases 1–39 241

14.14 Split files in the DNSjava project, releases 40–56 242

14.15 Analysis showing why some splits are missed by [6] 243

14.16 Model accuracy and recall on unseen data 246

15.1 Candidate file selection at a range of thresholds 252

15.2 Ordering target files by uniquely shared trigrams 258

LIST OF TABLES xxi

15.3 Refiltering target files: varying thresholds 261

15.4 The effect of altering target file selection criteria 261

15.5 Split files for the project Lifelines. 264

15.6 Lifelines change log entry matches 265

16.1 Comparison of refiltered and original dataset composition . 271

16.2 Refiltered candidate split files by project 271

16.3 The top 40 results on refiltered split files 273

16.4 Performance of the feature sets over the 11 algorithms . . . 274

16.5 The difference in mean accuray over 23 and 11 algorithms . 274

16.6 Performance of each algorithm over all of the feature sets . 275

16.7 Composition of the refiltered unseen data 277

16.8 Model accuracy and recall on unseen data 278

16.9 Split files found by Dig et al., Struts release 1.1 to 1.2.4 . . . 280

16.10 Classification of Struts candidate split files 281

16.11 Classification of PyX candidate split files 282

16.12 Disappearing files, one target, top 40 results 284

16.13 Performance of each algorithm over all feature sets 285

16.14 Performance of each feature set over the 11 algorithms . . . 285

16.15 Disappearing files, one target, top 40 results 286

16.16 Performance of each feature set over the 9 algorithms . . . 287

16.17 Performance of each algorithm over all feature sets 288

16.18 Geometric means for disappearing files 288

16.19 Disappearing PostgreSQL files with one target 289

16.20 Disappearing DNS files with one target 290

16.21 Three models and their classification 291

16.22 Disappearing DNS files with two or more targets 291

16.23 Disappearing PostgreSQL files with more than one target . 293

16.24 Classification of PyX disappearing files (1 target) 296

16.25 Classification of 22 PyX disappearing files (2+ targets) . . . 296

16.26 Summary of classification by selected models 297

16.27 Summary of classification on unseen data 302

xxii LIST OF TABLES

17.1 Proportion of files not classified by category. 313

17.2 Steps in classifying a new project with the models. 314

A.1 Similarity measures for sequences 352

A.2 Similarity measures for sets 353

A.3 Similarity measures for vectors. 354

B.1 Methods for introducing diversity in ensemble learners . . 358

C.1 Machine learning and data mining in software evolution . . 365

E.1 Factorial and power code . 371

E.2 Fact.c and power.c trigrams 372

G.1 Comparing the similarities found by different measures . . 379

H.1 The open source projects used in this research 383

H.2 Project size information . 385

I.1 Density test parameters . 387

I.2 Density test results . 388

I.3 Sum of ranks for each component of dd-bb-gg parameters 388

K.1 Performance of 3, 4, and 5-way combinations of feature sets 393

K.2 Performance of the full fb set in combination with other sets 394

K.3 Performance of the full “tris” set combined with other sets . 394

K.4 Performance of selected feature sets with selected algorithms 395

K.5 Heterogeneous meta-classifier results 396

L.1 Target files found by uniquely shared trigrams 401

L.2 Weighted trigram count target file selection 402

L.3 Trigrams shared with the candidate difference set 403

N.1 Matched disappearing PostgreSQL files 414

N.2 Unmatched disappearing PostgreSQL files 415

N.3 Unmatched disappearing DNSjava files 417

LIST OF TABLES xxiii

N.4 Disappearing DNSjava files with a match in the next release 418

O.1 Geometric means for disappearing files 420

O.2 Balancing the dataset with SMOTE 420

O.3 Cost-based classification . 422

O.4 Number of minority class examples correct 422

Q.1 Matched and unmatched disappearing files: PyX project. . 428

S.1 fc+tris-singles features selected by Simple Logistic 432

S.2 fl+tris-singles features selected by Simple Logistic 433

T.1 Comparison of classification accuracy of related feature sets 436

Chapter 1

Introduction

The aim of this research is to investigate the application of text analysis

techniques to software code, in particular in extracting group relationships

between evolving files. These techniques are applied in two areas: source

code collusion detection, and software origin analysis, where the history of

a software system is examined to trace code which has moved as the system

has evolved.

Text analysis is attractive because it is simple to apply and can be used in

the same way for many different programming languages. However, files

of program code generally have a certain amount of inherent similarity,

due to the constraints of the language and to programming idiom. This

similarity will tend to increase within a single software system, or in a

group of student submissions. Pairwise comparisons between files will

therefore find similarity which is not due to the transfer of code from one

file to another. Looking at similarities within a group of files can provide

context for pairwise comparisons, and clarify file interactions such as code

transfer, and is therefore helpful in analysing evolving source code.

The underlying thesis behind this research is that, in spite of the re-

stricted vocabulary in program source code, text analysis techniques can be

successfully used to find meaningful relationships within groups of files in

evolving software systems.

The main application of these techniques in this research is in software

1

2 CHAPTER 1. INTRODUCTION

origin analysis, where a machine learning system for identifying and classi-

fying restructured files is developed. In the other application, source code

collusion detection, the similarity between submissions is considered in the

context of the whole group. These same techniques are used to generate

visualisations which support the first two applications. The three applica-

tions, software origin analysis, collusion detection, and visualisation, are

discussed in the next three sections of this introduction.

The systems and tools described in this dissertation were coded by the

author in Racket1, with the exception of the third-party tools: Ferret, from

the University of Hertfordshire [146], and Weka from the University of

Waikato [247]. Three other third-party file comparison tools were explored

in building the origin analysis system, but do not form part of the final

system.

1.1 Software origin analysis

1.1.1 Context and problem

Software is increasingly becoming a part of everyday life [131] affecting

us both directly, in the computer systems we use for work and leisure,

and indirectly in the systems which provide us with our services. A soft-

ware system cannot be static, but must evolve over time in response to

the changing needs and wants of its users, to changes in its environment,

and to correct faults revealed in its use [17, 168, 237]. Changes made to a

system tend to increase its complexity [148]. It is therefore important to

restructure software code periodically, to make it simpler, and thus easier

to maintain [78].

Typically a software system is not developed by one person, but by a

team with fluid membership, and possibly in separate locations. Given

that many systems are poorly documented [40, 67], it can be difficult for a

developer to trace structural changes at a later stage [108, 245]. Maintainers

need to be able to trace the movement of code in a system, to keep track

1A dialect of Lisp, see http://racket-lang.org/

1.1. SOFTWARE ORIGIN ANALYSIS 3

of unresolved bugs, and to update regression tests to target code in its new

location. Software evolution researchers also want to ensure continuity in

their analysis of code as it moves within a system [6, 22, 68, 128, 231].

Developers, maintainers and researchers therefore need tools to help

them to understand structural changes [90, 130, 252]. The branch of software

evolution research called origin analysis looks at the history of a system to

try to discover where code has moved during its evolution [237, 261]. Origin

analysis is based on matching elements of the code in consecutive versions

of the software, and for this a suitable matching technique is required [127].

Matching techniques vary in their representations of the code, and in

the measures used to determine similarity. Among existing approaches to

origin analysis, the majority use techniques which require that the code is

parsed prior to matching, making them language dependent. For example,

in constructing an abstract syntax tree [77, 179], a control flow graph [8], or

in extracting methods or functions from the code [22, 64, 90, 130]. Text-based

approaches, which do not require parsing, are by implication more widely

applicable, and therefore more attractive. However, challenges remain in

successfully implementing a purely textual approach.

Several previous approaches base their comparisons on the source code

text, but use a single value to describe similarity in the code, information

which lacks depth. For example, Weißgerber and Diehl [245] use a clone

detection tool, Rainer et al. [194] use a fingerprinting technique [193] based

on n-gram analysis [32], and Antoniol et al. [6] use vector space analysis, to

provide a similarity value.

Unless pairs of entities are identical, one of the difficulties faced when

using a single similarity measure is finding the threshold which best sepa-

rates matched and unmatched pairs [6, 22, 64, 127, 262]. A further problem

is that the thresholds for one system are not guaranteed to work well with

other systems [22, 90, 130]. These problems are magnified when more than

one measure is used, as not only does a suitable threshold have to be found

for each measure, but also the best combination of measures must be deter-

4 CHAPTER 1. INTRODUCTION

mined. For example, S.Kim et al. [130],2 who combine eight measures from

different sources, find thresholds and combinations by exhaustive search,

but suggest machine learning as an alternative solution for the future, a

challenge which is taken up here.

Matching code is a difficult problem because of its inherent similarity,

in part due to the constraints and idioms of the programming language.

Added to this, within an evolving software system, files will also share sim-

ilar code because of the use of a limited range of variables and functions,

and because of copy-paste-edit practices. The goal is to find relationships

between pairs or groups of files which exist outside of this incidental simi-

larity.

To give an example, in Figure 1.1 there are 12 “files” which are the same

size for simplicity. Each file has one or more sections which appear in at least

one other file, and these are represented by coloured blocks. The highest

similarity, of two blocks, is between each pair of files in the subset a, b, d,

e, h and k. The similarity between file f and each of the other files, except

file l, is one block. However, because the orange blocks appear only in files

f and g, and the green blocks in only f and j, the similarity between these

pairs of files is more interesting than the similarity between files sharing

the blue or yellow blocks which appear in almost every file in the group.

2Initials are used to differentiate between S.Kim et al. [130] and M.Kim et al. [128]

Figure 1.1: This fabricated example shows 12 equally-sized “files” a–l. The colours
show parts of a file which occur in other files in the group. File f has one
section in common with each of the other files in the group, except l.
The interesting similarity is that between the orange and green sections.

1.1. SOFTWARE ORIGIN ANALYSIS 5

1.1.2 Overview of the approach taken in this research

The approach to software origin analysis presented in this dissertation dif-

fers from previous approaches in several ways. The main difference is

the use of machine learning algorithms to select suitable combinations of

features and their weights. This allows a broad range of features not previ-

ously considered for this application to be explored. These features, many

developed for this research by analysing the outputs from a set of comple-

mentary copy-detection tools, are based on simple text analysis. The tools

are used to compare not only pairs but also groups of files, which can help

to exclude the inherent similarity in code and give context to the pairwise

comparisons.

Another difference is that the examples used for training the machine

learning models are taken from a range of software projects3 which vary

both in application and in development style. This diversity is introduced

with the aim of producing models which can generalise across projects.

In fact, the resulting models, trained with examples in one language, are

able to generalise not only across projects, but also across other languages.

This is because the features used to characterise the examples are abstract

patterns taken from the simple textual relationships between files. This

striking result gives the system a valuable advantage over others.

1.1.3 Description of the final system

The software origin analysis system resulting from this research takes as

input the software releases to be analysed, and outputs information about

restructured files, and those related to them, in both textual and visual

forms. The system is outlined in Figure 1.2 (p.9), where the automated

part is enclosed by the bold line, and the original parts of the system are

shaded.4 Ferret [146], a copy-detection tool developed at the University of

Hertfordshire, is used to compare files throughout the system.

3The term project is used from here to mean a software system being analysed, to

differentiate from a system built for this research.
4Parts of the system which are original only in their detail are lightly shaded.

6 CHAPTER 1. INTRODUCTION

The user inputs the software to be analysed, with each release in a

separate, consecutively numbered directory. Source code files are selected

and each file is stripped of comments and placed in a new set of directories,

which have an identical structure to those of the original code.

The next step of the process is to gather information about the files.

The system stores the size of each file, and the similarity to each other file

in the same release, and in the next release. The information is stored for

each file over the lifetime of the project, with special values recorded for

releases where the file does not exist. The similarities are computed using

Ferret, which tokenises the code, and forms trigrams on which its analysis

is based.5 Details about Ferret are given in Chapter 6 and the system to this

point is explained in Sections 12.1–12.3.

Once information about the files and their similarities is stored, it is

initially used to filter the files in the project to find those belonging to two

categories. First, and trivially, files which cease to exist during the life of

the project, called disappearing files. Second, to find potentially split files,

meaning files from which code may have been moved to another file, rather

than files where code has been deleted or edited. This selection is more

difficult, and by ensuring that as many split files as possible are found,

some non-split files are inevitably also selected. The disappearing files and

potential split files are called candidate files. Further details can be found in

Section 12.4.

The second part of the filtering task is to find target files which are

possible destinations for the code moved from the candidate file. This part

of the filtering task combines several conditions based on the trigrams in the

files, and is explained in Chapter 15. These filter conditions aim to include

every target for each candidate, however, the cost of such recall is that other

files which are not targets may also be selected.

The next part of the process is to rank the target files according to the like-

lihood that the file is actually a target file, and by the amount of code moved

to the file. Previous text-based approaches to ranking targets [22, 245] use

5Trigrams are sequences of three consecutive items, e.g. words in text, or tokens in code.

1.1. SOFTWARE ORIGIN ANALYSIS 7

measures of the overall similarity between candidates and targets. In this

system, the parts of the code shared by the candidate file and only one

member of the target group, called uniquely shared trigrams, are also consid-

ered in ranking. For more information about group trigram analysis, see

Chapter 7, and about experiments in ranking techniques, see Section 15.3.

Once the target files are ranked, candidate groups are formed. For

a potential split file, this group consists of the candidate file, its revised

version in the next release, and selected target files. Code from disappearing

files with no targets is assumed to have been deleted, and files with an exact

or very close match among the targets is assumed to have been moved. The

remaining disappearing files, whose classification is uncertain, are grouped

with the most likely target files. Split file candidates can be classified as

split or not. Disappearing files with one target are either matched (that is

renamed, moved or merged) or not, those with two or more targets can also

be split. Models were trained for each of these classification tasks.

To provide data for training these models, candidate files and their tar-

gets were filtered from eighty-nine projects written in C (see Chapter 12).

A wide range of features (see Chapter 13) was generated for each candi-

date group, based on file comparisons made using Ferret and three other

copy-detection tools (see Chapter 11). Each tool compares file texts, but has

different and complementary methods of determining their similarity. Each

candidate file was manually classified to provide labels for the examples.

Experiments were run using Weka [247] to explore how different feature

sets performed with a range of algorithms in training models (see Chap-

ters 14 and 16). These experiments determined which models are most able

to generalise for each task, and these models are used in the final system.

The features selected for the final models are based solely on compar-

isons made by Ferret, between both pairs and groups of files. Pairwise

comparisons are used to create features describing patterns in the blocks

of code shared by the two files. Group comparisons generate features

based on the interaction between trigrams in the set of files in the candidate

group. These two sets of measures provide complementary information.

8 CHAPTER 1. INTRODUCTION

While trigrams can be scattered throughout the source code text, block-

based measures give an indication of their arrangement, and information

about the group interactions puts the pairwise comparisons into context.

The full set of features explored in building the machine learning mod-

els is detailed in Chapter 13, and of those selected for the final models in

Section 16.7. The machine learning algorithm which consistently performs

well with this data is Rotation Forest [203], as shown by the experiments

reported in Chapter 16, with test cases classified with around 90% accuracy.

The output from the system is in two forms: textual and visual. The

textual output lists the directly matched and unmatched files, and the au-

tomatic classification assigned by the models to the uncertain disappearing

files and to the potential split files. The visual output from the system is

produced using a tool developed as part of this research, see Section 1.3.1

and Chapter 8. This tool, called 3CO, generates an XML file displaying a

comparison between the text of a candidate file and all of its target files,

which helps the user to understand where code has moved to. This visual

output can also be used directly for manual assessment of the movement

of code in the project, especially where few restructured files are found in

the project under analysis.

Throughout the system, relationships between groups of files are found

using Ferret to analyse their textual similarity:

• in filtering target files, where for every potential split file in release n, and

each of its possible target files in release n+1, the relationship between

four files is analysed, that is each file in both releases;6

• in ranking the target files, where all of the files in the candidate group

are compared;

• in creating features, where files selected from the candidate group are

compared; and

• in generating 3CO visualisations, where all of the target files are com-

pared with the candidate.

6Or three files, where the target file does not exist in release n.

1.1. SOFTWARE ORIGIN ANALYSIS 9

Figure 1.2: Origin analysis system outline. The automated part of the system is
enclosed by the bold line, and contributions are shaded. Light shading
indicates parts which are original only in their detail.

10 CHAPTER 1. INTRODUCTION

1.1.4 Results

The final system was used to analyse four software projects not used in

training the models, three of which have been investigated by other software

origin analysis research groups. The examples extracted from the four

projects are also classified with around 90% accuracy. Details can be found

in Sections 16.3 and 16.5, and are summarised below.

The PostgreSQL “backend” subsystem written in C, which consists of 12

releases and around four and a half thousand files, is studied by Zou [261].

Zou’s system combines measures of the string similarity of function and pa-

rameter names with call analysis and complexity metrics, to find functions

which have been renamed, split or merged. All of the file level changes

reported by Zou are found by the machine learning system, although two

are not reliably classified. Additional restructured files are found by the

machine learning system, which may be assumed not to be mentioned by

Zou because of the different focus of the two studies.

Forty releases of the DNSjava project, including around three thousand

files, are studied by Antoniol et al. [6], who use vector space analysis on

identifiers in the code to find classes which have been renamed, split or

merged. All of the file level changes found by Antoniol’s system are found

by the machine learning system, although one is not classified correctly.

Two renamed classes found by Antoniol et al. are not found by the system,

because code is not moved from the file and the filename is unchanged.

However, seven further split files, one merged file, and one renamed file

(and class), are identified by the machine learning system and not reported

by Antoniol et al.

Dig et al. [64] study the changes between two releases in the Struts

project comprising a total of just under one thousand Java files. Their

approach combines the text comparison of method bodies to find candidate

refactorings, with call analysis to refine the search. The three file level

changes found by Dig et al.’s approach are found and correctly classified,

as are two others confirmed by another study of Struts by Wu et al. [250],

and two more confirmed by manual inspection.

1.1. SOFTWARE ORIGIN ANALYSIS 11

The last project, Pyx, is a Python project with over one thousand files

in twelve releases. Pyx was analysed for this study with the aid of a fairly

comprehensive change log, as no studies of this type appear to be available

with projects in languages other than C or Java.7 These results cannot be

compared with those of another research group, but around 88% of the

model classifications match the manually assigned classifications.

In summary, it seems reasonable to claim that the machine learning sys-

tem performs at least as well as the other systems, although because the

systems have a different focus, they cannot be compared directly. Never-

theless, it seems that several restructured files found by this system are not

mentioned by previous authors. The advantage of this machine learning

system is that the trained models apply across the projects and languages

tested, and theoretically to many more.

1.1.5 Contributions

The main contribution resulting from this research into using text analysis

in the field of origin analysis is the set of trained models for determining

the class of candidate restructured files. The individual parts of the system

which are original are shaded in Figure 1.2, and are detailed below, starting

at the top of the diagram.

The lightly shaded boxes differ from other approaches only in what is

stored and used for subsequent analysis. In this case, the information is

taken from file comparisons made by Ferret. For each pair of files in one

release and in consecutive releases, not only are proportional similarity

scores stored, but also the number of trigrams in each file and shared by the

files.

Target file filtering takes account of all of the stored information, looking

at the changes in each file and its relationship to the changes in the candidate

file, using both proportional and discrete measures. The filtering criteria

result from experiments undertaken as part of this research.

A novel measure derived from a Ferret comparison of the files in each

7Except for one in Smalltalk [60], for which the code is not available.

12 CHAPTER 1. INTRODUCTION

candidate group is used in ranking the target files. This is the number of

trigrams which each target file has uniquely in common with the trigrams

which are no longer part of the candidate file.

The features for the final system result from using new ways to analyse

the outputs from file comparisons made by Ferret. These features aim to

give a fuller picture of the amount and distribution of code shared by the

files in a candidate group than is available from a single similarity measure.

For details of the analysis of Ferret outputs see Chapters 6 and 7.

The machine learning models are trained with a large set of examples

derived from projects written in C. The projects cover a range of application

areas and development styles, with the aim of creating models which are

able to generalise across projects. As the features are based on patterns

in the trigrams shared by two or more files, the models are also able to

generalise across projects in the other languages tested, Java and Python,

and should work with many other languages and with evolving text files.

During this research, it was necessary to compare each candidate file

with its potential target files to understand the interaction between files in

the group. No suitable tool could be found to display these comparisons,

especially for groups containing a large number of files. The 3CO tool,

based on Ferret’s trigram analysis, was therefore developed for this task (see

Section 1.3.1). The ideas behind the display, which uses primary colours to

show which target files contain code from the candidate file, could also be

applied to any system which compares a group of files.

1.2. COLLUSION DETECTION 13

1.2 Collusion detection

1.2.1 Context and problem

Plagiarism in universities is reported to be on the increase [119, 177, 222].

A combination of strategies is generally used to deter such inappropriate

use of the work of others [174]. First, students are given guidance on

plagiarism and how to avoid it. Second, where possible, assignments are

designed to minimise the opportunity for copying. Last, it is important for

students to know that their work will be checked. The automatic detection

of similarities between submissions is crucial in helping tutors in this task.

A group of student programming submissions is also a type of evolving

software. Each submission in a group will be based on examples provided

during the course, which then evolves to suit each student’s work. If

students collude, then code will be transferred between them. As in origin

analysis, there is inherent similarity in programming submissions; in this

case, due to examples used in teaching, to template code, to the common

aim of the task, and possibly to use of a development tool, rather than to the

limited range of variable and function names present in a single software

project. The task in collusion detection is to find sections of code which

may have been passed from one student to another.

Unusual similarity, that is parts of the code shared by only two or

just a few students, is said to be an indicator of possible collusion [52, 110].

Although a tutor marking a small set of submissions can be expected to spot

unusual similarity, when there is a larger number of submissions, or where

marking is undertaken by a team, an automated approach is desirable.

Filtering by automatic means is one part of the task, the tutor must also

assess the similarity found, and for this a suitable visualisation is essential.

Twenty-nine approaches to source code collusion detection were sur-

veyed to provide a background to this work (see Section 2.3). The sur-

vey found that few of the approaches take account of unusual similar-

ity [3, 9, 34, 52, 115], only one specifically targets elements shared by few

files [199], and none directly measure them. It was also found that many

14 CHAPTER 1. INTRODUCTION

approaches can handle a variety of languages. However, very few are able

to analyse a mix of programming languages. There is an increasing em-

phasis on teaching web technologies, where several different programming

languages can be used in building a single project. It is therefore useful to

be able to combine files coded in different languages when measuring the

similarity between students’ work. Another common feature noted is that

similarity measures are generally proportional. While this is suitable for

comparing files of around the same size, the similarity of a small file to a

larger one will be understated by some proportional measures.

1.2.2 Overview of the approach taken in this research

The approach to collusion detection developed in this research aims to

tackle the difficulties outlined above in three ways, and so provide a more

suitable system for this type of data.

First, submissions may be written in more than one language. Analysing

the source code textually,8 without the use of parameterisation means that

no language-specific processing is required. Although lack of parameter-

isation may mean that well-disguised copies will not be detected, there is

evidence [120] that many students who copy others do so because they

lack either the time or the skill to undertake the task for themselves, and

consequently do not use clever disguises.

Second, submissions often have high levels of incidental similarity due

to auto-generated code, standard constructs, or examples used in teaching.

Measuring similarity which is unusual within the group aims to overcome

this problem.

Third, open-ended assignments can result in submissions of uneven

sizes. This is tackled by using a count-based measure rather than a propor-

tional measure to find the “amount” of unusual similarity.

8Here with a tokeniser for C-type languages, adequate for a range of other languages

1.2. COLLUSION DETECTION 15

1.2.3 Description of the system

The collusion detection system, which is the outcome of the research de-

scribed in Chapter 9, is outlined in Figure 1.3 (p.17). In the same way as for

the origin analysis system, automated parts are enclosed by bold lines, and

contributions are shaded.

Input to the system is a set of folders, one for each student. The contents

of each folder are concatenated to make one large file of source code, so that

there is one file to process for each student. Optionally, code provided by

the tutor, in the form of examples or exercises given during the course, or

template code given for the assignment, is also input. These concatenated

files are passed to Ferret for analysis. This system is based on the Ferret

trigram-to-file index, which records every trigram in the set of files along

with the numbers of the files in which each trigram appears (for details, see

Section 6.7). A number of measures can be determined by analysing this

index, for example, unusual similarity and uniqueness.

In Ferret’s normal use, the similarity between two files is computed

based on the proportion of shared trigrams to the total in the two files.

In this system, these trigrams are considered in the context of the rest of

the files in the group. Unusual similarity is calculated by counting the

trigrams shared by only the two files, and adding an inversely weighted

count of those shared by the two files and a few other files. This measure

overcomes the problems associated with inflated similarity due to auto-

generated code, or to the use of tutor-provided code. As a count-based

measure, it will also find sections of code which may not be found by a

proportional measure because they make up a small part of a large file. For

details, see Sections 7.2 and 9.3.

Uniqueness is a count of the number of trigrams unique to any one

file among the group. Identifying unique trigrams has two benefits, first,

to show unusual solutions to a problem or interesting extensions to the

required task, and second, if there is a suspicion that a student has copied

code from an external source, these trigrams provide useful search phrases.

Once similar pairs or groups of files are identified, a visual display of

16 CHAPTER 1. INTRODUCTION

the comparison between files selected by the tutor can help to understand

reasons for the similarity. Two techniques for displaying textual file com-

parisons are outlined in Section 1.3.

1.2.4 Results

This system was trialled with a set of submissions by students who were

developing community websites. It is difficult to draw strong conclusions

about the measures tested with only one set of submissions, however, the

weighted count-based measure of unusual similarity had advantages over

the other measures tested on this data. Details of the experiments can be

found in Chapter 9, where there are also examples of the visualisations.

1.2.5 Contributions

Several contributions result from this part of the research. First, the com-

prehensive survey of work in source-code plagiarism detection. Second,

the measure of unusual similarity which helps to identify sections of code

appearing in two or only a few submissions. Tied in with this analysis of

the trigrams in a group is the ability to find unique trigrams. An important

contribution is the colour-coded display (see Section 1.3.2) which high-

lights both the unusual similarity between files and the unique trigrams.

This makes it easier for a tutor to pinpoint areas of interest in a file than in

a traditional display, which typically only differentiates between the parts

of the files which are shared and the parts which are not.

1.2. COLLUSION DETECTION 17

Figure 1.3: Collusion detection system outline. The user inputs folders of student
code (1..n) and, optionally, tutor-provided code (P) for analysis. Auto-
mated parts are enclosed by bold lines, and contributions are shaded.

18 CHAPTER 1. INTRODUCTION

1.3 Visualisation

Visualisation of the relationship between files is important in both software

origin analysis and collusion detection. In origin analysis, it is invaluable

to be able to quickly understand the relationship between files, both in la-

belling training examples for building the system, and in displaying results

for the end user. In collusion detection, a tutor will want to check pairs or

groups of submissions which cause concern; having a display where the

interesting similarity between two files is highlighted will help in this task.

Visualisations developed for these two areas, both based on analysis of the

trigrams in a group of files, are described in the next two sections.

1.3.1 Visualisation for origin analysis

The ability to visualise the interaction between files in a project is bene-

ficial in origin analysis. In building the machine learning system for this

research, visualisation was important: in deciding whether files belonged

to a particular class when labelling the training data, and in deciding about

the selection and ranking of target files while exploring the behaviour of the

filtering criteria. It is also valuable for looking at the relationship between

files in other applications.

While these tasks are possible using existing tools which show compar-

isons between two, or at most three files, it is difficult when there are more

files to compare. What is required is a tool which can show a comparison

of one file to a group of other files without the need to align separate dis-

plays, or to scroll each display individually. To do this, the 3CO tool was

developed, based on analysis of the trigrams in a candidate group.

3CO can be used for other file comparison tasks, such as looking at

student files, where a file suspected of containing copied content will be

the file for comparison. The suggested applications are for source code

files, but as the tool is based on trigram analysis, it is equally suitable for

comparing files of natural language.

An outline of the 3CO tool is shown in Figure 1.4. To produce the

1.3. VISUALISATION 19

visualisations, the user provides a list of the files to be compared. The first

file in the list is the base file with which all the other files are compared. In

origin analysis, this is normally the candidate file, and the remaining files

are a ranked list of the target files. In collusion detection, the base file would

be a suspicious file, and the other files those which are most similar to it.

The system divides the target files into groups of three, each group is

then compared with the base file, using Ferret to provide a trigram-to-file

index. The idea is that each of the three files in a group is allocated a

primary colour. The text of the base file is coloured depending on which

other files the text appears in. For example, code in file 1 and not in files 2

or 3 is coloured blue. The circles to the right of the figure show the colours

for each file combination. Each token is a part of three trigrams, each of

which can be in none, one, two, or all three of the other files. The colour of

each token is determined by a vote between the files in which its trigrams

appear. Each group of three (or fewer) files is compared to the base file in

this way, with a new column added to the XML output file for each group,

until all of the files are included in the output.

The output file allows the user to zoom out to see an overview of the

arrangement of the base file contents in the other files, or to zoom in to see

details of the text. As the file contains all of the comparisons, no alignment

or separate scrolling is necessary. The example in Figure 1.4 shows six files

compared to the base file. A more detailed description of the 3CO tool is

provided in Section 8.2, with further examples, in detail and in overview.

20 CHAPTER 1. INTRODUCTION

Fi
gu

re
1.

4:
3C

O
fil

e
co

m
pa

ri
so

n
sy

st
em

.
Th

e
us

er
in

pu
ts

a
lis

t
of

fil
es

,
th

e
fir

st
of

w
hi

ch
is

th
e

(b
as

e)
fil

e
to

be
co

m
pa

re
d

w
it

h
th

e
re

m
ai

ni
ng

fil
es

.
Th

e
ou

tp
ut

is
an

X
M

L
fil

e
sh

ow
in

g
th

e
te

xt
of

th
e

ba
se

fil
e,

w
hi

ch
is

re
pe

at
ed

fo
r

ev
er

y
gr

ou
p

of
th

re
e

ot
he

r
fil

es
,c

ol
ou

re
d

to
sh

ow
w

hi
ch

of
th

e
th

re
e

fil
es

in
th

e
gr

ou
p

sh
ar

e
tr

ig
ra

m
s

w
it

h
th

e
ba

se
fil

e.

1.3. VISUALISATION 21

1.3.2 Visualisation for collusion detection

In collusion detection, the standard output of many tools includes a com-

parison between the source code text of two files, highlighting the parts of

the files common to both. While this is useful, it does not always identify

interesting similarity between the files. It would be helpful to understand

which parts of the file are shared by just the two files, or the two files and a

few others. Conversely, it is not very useful to find parts of the files which

are shared by not only these two files but by many others, or is code which

has been provided by the tutor. Several systems take this last point into ac-

count when computing similarity measures, but do not appear to consider

it when displaying the text.

In showing a comparison between two files, the colouring system pre-

sented in this research distinguishes between:

� trigrams appearing in only one file in the group (unique trigrams),

� trigrams shared by just the two files (uniquely shared trigrams),

� by the two files and up to two others,*

� by the two files and three to five others,*

� by the two files and more than five others,*

� and “greys out” the uninteresting trigrams, that is those in the provided

code, or not shared by the two files in question.

* These thresholds can be adapted for different group sizes.

Details are in Chapter 8 with a real-world example in Chapter 9.

The information needed to produce this visualisation is taken from the

Ferret trigram-to-file index, in a similar way to the 3CO tool. When two

files are compared, the tokens in each file are matched to the trigrams in

which they appear. The number of other files that each trigram appears in

is noted, as is its presence in the tutor-provided code. Each token is then

coloured based on a majority vote among the trigrams in which it appears.

Details are given in Section 8.1.

22 CHAPTER 1. INTRODUCTION

1.4 Summary of contributions

This work investigates the application of text analysis techniques to soft-

ware code, in particular in extracting group relationships between evolving

files. The techniques are used in collusion detection, software origin analy-

sis, and in visualisations to support both applications.

In summary, the contributions made by this research are:

• A major study of the application of text analysis and machine learning

techniques to software origin analysis, resulting in:

◦ Trained models for identifying restructured files which generalise

across projects and a range of programming languages.

◦ Development of the 3CO tool for displaying textual file comparisons.

◦ Criteria for filtering targets for restructured files.

◦ A novel method for ranking these target files.

◦ Construction of a set of features for input to the models, using several

new techniques for analysing the output of copy-detection tools.

◦ Marked-up datasets for studying origin analysis.

• An investigation to find collusion detection measures suitable for sets of

submissions of uneven size, with high incidental similarity, and using

more than one programming language, resulting in:

◦ A comprehensive survey of work in source-code plagiarism detection.

◦ Use of text-based group analysis to measure unusual similarity.

◦ Development of a colour-coded display to give group context to the

similarity between files.

• Design and prototype code for the systems described in Sections 1.2–1.4.

1.5. DISSERTATION STRUCTURE 23

1.5 Dissertation structure

This section gives an overview of the remaining chapters in the dissertation.

Chapters 2–6 give background to the research and reviews related studies.

Chapter 2 looks at methods for finding similarity in program code, and

surveys previous approaches to detecting collusion in source code.

Chapter 3 provides details of previous methods used for origin analysis.

Chapter 4 gives an overview of machine learning and focuses on the un-

certainties encountered in creating a set of features where the space

of possible features is not well constrained.

Chapter 5 outlines the use of visualisation in source code comparisons,

particularly by the tools reviewed in Chapters 2 and 3, and by tools

which use colour to highlight interesting features in software files.

Chapter 6 describes the trigram-based similarity detection tool Ferret, and

tools developed in this research to analyse its output to provide a

richer set of features than is directly available from Ferret.

Chapters 7 and 8 introduce ideas about finding and visualising relationships

between evolving files, based on analysing the trigrams in the source code,

which form the basis of the rest of this dissertation.

Chapter 7 explains how analysis of the distribution of trigrams in a set of

documents can be applied to collusion detection and to origin analysis.

Chapter 8 shows novel techniques for visualising the interaction between

files in a group context, for collusion detection and for origin analysis.

Collusion detection, and the main application, software origin analysis, are

covered in Chapters 9, and 10–16, respectively.

Chapter 9 applies the measures and visualisations described theoretically

in Chapter 7 and 8 to a set of student assignments.

24 CHAPTER 1. INTRODUCTION

Chapter 10 gives an overview of the machine learning system for classify-

ing restructured files, which comprises data collection, filtering, fea-

ture construction, and the training and testing of classification models.

Chapter 11 introduces the third-party file comparison tools used in feature

construction, describes an adaptation to one of the tools, and a method

for analysing output from the tools to suit their use in origin analysis.

Chapter 12 describes the collection, preprocessing and filtering of evolving

source code from an open source repository.

Chapter 13 details the features constructed for the machine learning sys-

tem, which are based on the output of the file-comparison tools intro-

duced in Chapters 6 and 11.

Chapter 14 presents the first of the machine learning experiments, where

models developed from the training data are used to classify files from

two projects studied by other origin analysis researchers [6, 261].

Chapter 15 explores a range of methods based on trigram analysis for im-

proving the filtering techniques described in Chapter 12.

Chapter 16 looks at the effect of the new filtering criteria on data selection,

and repeats the machine learning experiments with the refiltered data,

testing the new models on the two test projects used in Chapter 14,

and on two further projects.

The research is discussed and evaluated in Chapter 17, and Chapter 18

concludes the dissertation and suggests areas for future work.

Chapter 17 relates this research to that of others, evaluates the experimental

methodology and results, and discusses issues raised by the research.

Chapter 18 reviews the contributions to knowledge made by this work and

suggests ideas for future research.

Chapter 2

Detecting similarity in program

code

The theme of this dissertation is finding relationships within groups of

evolving source code files based on textual analysis. To accomplish this

task, one or more measures of similarity between the contents of the files

are required. Two of the main applications where finding similarity in

program code is important are plagiarism detection and clone detection.

Measures taken from these two areas have previously been used in origin

analysis [22, 130, 245].

In this chapter, first clone detection and plagiarism detection are com-

pared, and their application to origin analysis is explained. Next, the detec-

tion of similarity in source code is outlined in general terms, to give context

to the survey presented in Section 2.2. The survey analyses twenty-nine ap-

proaches to plagiarism detection as background to the collusion detection

application described in Chapter 9.

2.1 Clone detection and plagiarism detection

Clone detection and source code plagiarism detection are both concerned

with finding similarity in program code. In clone detection, the aim is to find

sections of similar code within a project or across a group of related projects

25

26 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

so that they can be abstracted, or be uniformly maintained. Four types of

code clone are generally recognised (see, for example, Roy et al. [204]). The

first three of the four types form a hierarchy: the simplest clones, known as

type-1, are textually identical, with the possible exception of white-space

and layout; type-2 allows for differences in identifier names, in typing

and in literal values; changes introduced by editing, such as additions,

deletions and altered statements, are acceptable for type-3 clones, which

are sometimes known as “gapped clones” because of the breaks between

fragments of similar code [19, 238]. Type-4 are semantic clones, which have

the same function, but use different structure, syntax, or both [87]. Changes

to code in origin analysis are more likely to be of types-1–3 than type-4.

The usual aim in plagiarism detection is to find similarity between

student programming assignments or between assignments and internet-

sourced code.1 Plagiarists sometimes attempt to disguise their plagiarism,

and the level at which this is done depends to some extent on their pro-

gramming ability. Joy and Luck [120] define two main types of plagiarism

disguise: lexical changes and structural changes. Faidhi and Robinson [71]

define six levels of disguise instead, three of which fall into each of Joy and

Luck’s categories [47]. Lexical changes, those to comments, white-space and

identifier names are simple. Structural changes require some knowledge

of the programming language used, and include changes such as replac-

ing one control structure with an equivalent one, reordering statements,

combining functions, or rewriting logical operators.

These disguises are similar to the clone types, lexical changes are like the

changes accepted by type-1 and type-2 clones. Simple structural changes

are those which would be found by tools which identify type-3 clones, with

the more complex structural changes being like type-4 clones.

Unlike clone detection, the focus in plagiarism detection is on inappro-

priate copying between authors, therefore within-project copying is not of

interest. Another difference between the approaches is the focus in the re-

1Similarity between two sources does not prove collusion or plagiarism, but indicates

areas for further investigation [52, pp.22–23]. However, “plagiarism detection” is used in

this section to describe this application of similarity detection.

2.2. DETECTING SIMILARITY IN CODE 27

porting of detected similarities. In general, the primary aim of plagiarism

detection tools is to provide a measure of similarity between each pair of

files compared, to highlight suspicious likeness, with the location of the

shared code of secondary importance. In contrast, clone detection tools

provide information about the location of matched sections of code, both

within and between files, but do not always provide a similarity measure.

Both of these approaches are useful in origin analysis. The more general

similarity measure can select files to, or from, which code may have moved,

while pinpointing similar sections of code helps to determine whether this

is the case.

2.2 Detecting similarity in code

The steps taken when looking for similarity in program code are broadly

the same whatever the application, and are outlined in this section, with

examples taken from the fields of both clone and plagiarism detection. The

steps generally consist of:

• preprocessing the code,

• transforming the processed code,

• changing the new representation into elements suitable for matching,

• matching these elements,

• post-processing the results, and

• displaying the results.

Preprocessing: In preprocessing, parts of the code considered unimpor-

tant in matching, such as white-space or headers, are removed. Comments

are normally removed in clone detection, whereas in plagiarism detec-

tion, duplicated comments are sometimes considered useful indicators of

copying, and therefore retained [31, 82]. Some clone detection tools ignore

repetitive structures, such as table initialisations or preprocessing directives,

because they are considered as unsuitable candidates for abstraction [125].

28 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

Code transformation: The simplest first transformation is tokenisation [114,

146, 189]. Other ways to represent code include abstract syntax trees [16,

77, 229], parse trees [89, 116, 221], call graphs [42] or program dependency

graphs [134, 151]. In plagiarism detection, where cross-language copying

is also considered, intermediate code, such as Register Transfer Language

(RTL) [9] or Common Interface Language (CIL) [122], is an alternative.

Meta-data, such as metrics, were often used in earlier similarity detection

tools when computing power was limited [7, 136, 165, 170].

After initial transformation, further changes may be made. For example,

parameterising identifiers, to allow code of similar structure to be matched.

In clone detection, the matched sections are candidates for abstraction. In

plagiarism detection, structurally similar code may have been copied and

disguised. Methods of parameterising include standardising synonymous

keywords [246]; replacing syntax tree nodes by their types [18]; or ignoring

differences in user-selected items, such as literals or modifiers [105]. Ta-

ble 2.1 shows a selection of other approaches to parameterising. The code

snippet transformed here is: ‘‘for (int i = 0; i < max; i ++)".

Method Ref. Original code: for (int i = 0 ; i <max ; i ++)

ignore keywords [52] i 0 i max i

unify identifiers [199] for (int $ = $; $ <$; $ ++)

unify identifiers [112] for (int IDName=IDName; IDName<IDName; IDName++)

unify identifiers, [42] FOR LPAR identifier ASSIGN SEMI identifier LT . . .
remove types

one-to-one or p-matching [12] for (int p1 = p2 ; p1 <p3 ; p1 ++)

just keywords, numbered [173] for1, int1

keyword=0, separator=6 [114] 6 0 2 0 2 6 2 0 2 6 2 0 2 6
identifier=2

replace literals with L, hex-H [99] for (int I = N ; I <I ; I ++)
(N and I are assumed
for number & identifier)

unify all alphanumeric strings [31] t (t t = t ; t <t ; t ++)

55 parameters eg R = for, [34] R A S N K N N J N N DD B
A = (, N = alphanumeric

Table 2.1: Examples of parameterising “for (int i = 0 ; i < max ; i ++)”

2.2. DETECTING SIMILARITY IN CODE 29

Another advantage to parameterising is the reduction of complexity in

matching. A disadvantage is that some interesting features of the code

may be lost. Some methods use relaxed parameters for filtering, and per-

form more computationally expensive fine-grained matching only on those

elements which match under the less constrained conditions [18, 34].

Elements for matching: The new representations of the code are usually

broken into smaller elements for matching. Exceptions are metric vectors,

which can be compared directly, and file sequences, when similarity is

computed using either an alignment or a compression algorithm.

Text and tokens may be divided into physical units such as lines, logical

units, such as statements, or sequential units, such as n-grams, which are n

adjacent characters or tokens. The units may be further transformed before

comparison. For example, by hashing [66, 199, 246] ; by fingerprinting [3,

160], reducing information by sampling; or by counting features to give

frequency vectors and therefore losing their order [81]. The transformed

code can be compared directly, such as line-by-line [5, 120], or by grouping

into bags [114], sets [146, 173, 253] or sequences [89]. Bags lose information

about order, as do sets, which also lose information about frequency.

Subtrees are either compared directly [16], or after further processing.

For example, Tairas and Gray [229] flatten parameterised nodes into a se-

quence; Jiang et al. [116] take a similar approach, forming a sequence before

matching with a suffix tree [239]; Belkhouche et al. [18] do the same with a

structure chart; and Noh et al. [181] and Wahler et al. [241] extract frequency

vectors of node types from an XML representation of the tree.

Liu et al. [151] compare the procedure level subgraphs of the program

dependence graph. Chilowicz et al. [42] create a new version of the call

graph where common sub-functions are extracted from the code, which

helps to match code which has been in- or out-lined to disguise copying.

Weighting techniques taken from information theory, and often used

in text retrieval, are used with vectors, to reflect the overall frequency

of terms within the files under scrutiny. For example, Cosma [52] uses

30 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

latent semantic analysis (LSA) in plagiarism detection, as do Marcus and

Maletic [163] in finding concept clones. Ji et al. [115] use weights in the

adaptive scoring applied in their local alignment of keyword sequences.

Matching non-identical elements requires some measure of their similarity

to be computed. The similarity measures referred to in this dissertation,

especially in Tables 2.3 (p.37) and 3.1 (p.46), are explained in Appendix A.

Post-processing is dictated by the application, the elements matched, and

the method by which they are matched. None is required when an immedi-

ate measure of similarity is produced. For example, the similarity between

two sets calculated with the Jaccard [113] or Dice [61] coefficient, or when

the distance between two attribute vectors is calculated.

In plagiarism detection, methods which match sections of code within

files, such as string tiling, alignment methods, or clone-based methods,

normally require post-processing to find a measure of similarity between

the files. Less post-processing is required in clone detection, but is used

in filtering clone classes [66, 125, 229], removing subsumed or insignificant

clones, or joining small clones to create larger gapped ones [11, 137].

Results: Roy et al. [204] categorise the output of clone detection tools into

three broad groups: a listing of the start and end points of each clone, a

graphical output, or a combination of the two.

Plagiarism detection tools typically provide ranked pairwise similarity

scores [31, 34, 41, 42, 115, 146, 175, 181], often with additional displays

mapping the similarities between a pair of files to the source code texts [41,

120, 146, 189]. Others provide graphical displays [52, 81, 114, 120, 173, 199,

253]. Examples of each type of output can be found either in Chapter 5 or

in Appendix D.

2.3. APPROACHES TO SOURCE-CODE PLAGIARISM DETECTION 31

2.3 Approaches to source-code plagiarism detection

In 2009, Roy et al. [204] surveyed clone detection tools available at that time.

Their survey contains detailed analysis of the methods used by around 50

clone detection tools. The reader is referred to this comprehensive survey

for background in clone detection.

Groups of plagiarism detection tools have been analysed previously.

For example, Hage et al. [99] compare the performance of Moss, JPlag,

Sim and Plaggie, in addition to Marble, developed by one of the authors.

Larger studies exist, such as a review of 11 tools by Lancaster [143] in his

2003 dissertation, and of 14 tools by Cosma [52] in her 2008 dissertation.

However, there appears not to be a recent large-scale survey of approaches

to plagiarism detection such as that by Roy et al. of clone detection tools.

In Table 2.3 (p.37), twenty-nine approaches to source-code plagiarism

detection are listed, in date order, from 1996 to 2011 [97]. The tools are

specifically aimed at source code plagiarism detection, and include only

two, GPlag [151] and Sim [89], of those surveyed by Roy et al.

In the first column, the authors and, where relevant, the names of the

tools (in bold text), are listed. During preprocessing, different parts of the

code are excluded by different tools, either explicitly, or as a consequence

of the transformation process, such as white-space (W) in tokenising, or

comments (C) in graph construction. Keys to what is excluded by each tool

are in column 4, with the meanings of these keys in Table 2.2, on page 33.

The column headed “TI” notes how the code is transformed initially.

Tk means the code is tokenised, the most popular method here, with 21 of

the 29 approaches choosing this method; IL that an intermediate language

is generated; Mt that metrics are calculated; Gr that the code is represented

by a graph; and Tr, a tree.

Brief descriptions of further transformation of the code are provided in

the sixth column. This often involves parameterising in one of the ways

already discussed in Section 2.2. Similarity measures are noted in column

8, these vary, depending to some extent on what is suitable for the elements

to be matched, which are shown in column 7. In some cases the researchers

32 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

compare several measures, and the one found to be most effective is listed

here. The next column shows how the results are reported and also, to fit

the page, remarks, which are in square brackets.

The column headed “Exc.” indicates whether the tool is able to exclude

template code (X) [2, 3, 189, 199] or whether common code is inversely

weighted in the calculation of similarity between two programs (*) [9, 34,

52, 115], making template code less important in the similarity calculations.

The last column shows whether files which share unusual similarities

are of particular interest. This last feature will not highlight plagiarism

where clever disguises are employed, however, it is of interest where the

plagiarist has too little time or skill to make sufficient alterations to their

submission. Many academics have found that unusual features, such as

identical spelling mistakes, peculiar layout, or errors, in a pair of assign-

ments have triggered their suspicion [52, p.191]. Hoad and Zobel [110, p.2]

state that ”In plagiarized assignments, it is common to find that some errors or

atypical usages have been copied verbatim.” Cosma supports this view, saying

that ”Suspicious files share similar source-code fragments which characterise them

as distinct from the rest of the files in the corpus. ” [52, p.23].

Of the 29 approaches analysed, only one, by Ribler and Abrams [199],

specifically targets unusual similarity between files. Moss [3, 210] also offers

the option to exclude code appearing in more than m documents, where m

is set by the user, and can exclude template code. However, the example

given in Appendix R shows that its matching technique will not pinpoint

unusual code in every file type. Full details of Moss’ matching techniques

are not publicly available, but from this example, the tool appears to exclude

header information, and to parameterise, so that while it would match

unusual structures, it appears that, in some cases, parts of the code with a

commonly occurring pattern are greedily matched. Four other approaches

emphasise less common features by weighting input vectors [52, 115], or by

using a weighted similarity measure [9, 34].

2.4. SUMMARY 33

2.4 Summary

In this chapter, methods for finding similarity in program code are de-

scribed. Clone detection and plagiarism detection are compared and their

use in origin analysis is discussed. The processes involved in comparing

source code are explained as a background to the survey of approaches to

source code plagiarism detection. In the survey, twenty-nine approaches

to source code plagiarism detection are analysed, in particular to find out

whether the approaches are language dependent and whether unusual sim-

ilarity is taken into account. Among these approaches, only Ferret [146]

and PlaGate [52] are able to analyse almost any mix of programming lan-

guages. This survey finds that although unusual similarity is said to be

an indicator of possible collusion, few of the approaches take this into ac-

count [3, 9, 34, 52, 115], with only one specifically targeting elements shared

by few files [199] and none directly measuring them. The approach to col-

lusion detection reported in Chapter 9 is based on finding these unusual

similarities between source code submissions.

Key Meaning Key Meaning Key Meaning

C Comments I Identifiers P Punctuation
C-1 Comments replaced K Macros S Single character identifiers

by single token L Literals U Unique terms
G Globals M Imports W White-space
H Headers N Numbers ? Possibly other, unknown

Table 2.2: Key to the elements removed from code during preprocessing by the
plagiarism detection tools analysed in Table 2.3, column 4.

34 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE
R

ep
or

ti
ng

A
ut

ho
r

R
ef

D
at

e
P.

R
.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

W
is

e
[2

46
]

96
C

,I
Tk

Sy
no

ny
m

un
ifi

ca
ti

on
,

H
as

he
d

n-
gr

am
s

R
un

ni
ng

K
ar

p-
R

ab
in

%
C

ov
er

ag
e

by
YA

P3
L

fu
nc

ti
on

s
re

ar
ra

ng
ed

w
he

re
n

re
du

ce
s

G
re

ed
y

St
ri

ng
Ti

lin
g

m
at

ch
ed

ti
le

s
by

ca
ll

se
qu

en
ce

it
er

at
iv

el
y

A
ik

en
[3

]
97

W
,?

Tk
To

ke
n

n-
gr

am
s,

W
in

no
w

ed
ha

sh
va

lu
es

M
at

ch
in

g
fin

ge
rp

ri
nt

s
Si

m
ila

ri
ty

as
%

,
X

*
M

os
s

[2
10

]
ha

sh
ed

to
gi

ve
fin

ge
rp

ri
nt

s
tr

ig
ge

r
m

or
e

de
ta

ile
d

no
.li

ne
s&

to
ke

ns
te

xt
m

at
ch

in
g

G
it

ch
el

l
[8

9]
99

C
-1

Tk
Pa

ra
m

et
er

is
ed

,
To

ke
n

st
ri

ng
s

N
or

m
al

is
ed

al
ig

nm
en

t
H

ig
h

sc
or

in
g

an
d

Ta
n

e.
g.

TK
N

-I
D

-I
,

O
ne

pr
og

ra
m

ag
ai

ns
t

id
s
=

,2
;,

,0
;g

ap
,-

2;
pa

ir
s

di
sp

la
ye

d
SI

M
TK

N
-F

O
R

m
od

ul
es

of
th

e
ot

he
r

ot
he

r
to

ke
ns
=

,1
;,

,-
2

Jo
y

an
d

Lu
ck

[1
20

]
99

-
-

1.
O

ri
gi

na
lc

od
e

Ea
ch

se
t

R
un

s
of

eq
ua

ll
in

es
,

Si
m

ila
r

fil
es

cl
us

te
re

d
Sh

er
lo

ck
C

,W
-

2.
Ex

cl
ud

in
g

C
,W

of
lin

es
m

ay
be

ga
pp

ed
,

by
K

oh
on

en
SO

FM
C

,W
Tk

3.
To

ke
ni

se
d

as
pr

op
’n

of
fil

e
si

ze
[S

in
ce

up
da

te
d]

R
ib

le
r&

A
br

am
s

[1
99

]
00

W
-

C
ha

ra
ct

er
n-

gr
am

s
H

as
he

d
n-

gr
am

s
M

at
ch

in
g

ha
sh

-v
al

ue
s

G
ra

ph
ic

al
di

sp
la

y
X

X
C

at
eg

or
ic

al
(o

pt
io

na
lly

fo
r

re
su

lt
s

pa
tt

er
ng

ra
m

pa
ra

m
et

er
is

ed
)

Jo
ne

s
[1

17
]

01
C

,W
Tk

C
ou

nt
s

of
lin

es
1.

C
od

e
at

tr
ib

ut
e

ve
ct

or
s

1.
Eu

cl
id

ea
n

di
st

an
ce

Pa
ir

w
is

e
si

m
ila

ri
ti

es
w

or
ds

,c
ha

rs
,l

en
gt

h,
2.

Er
ro

r
lo

g
at

t.
ve

ct
or

s
2.

C
om

pi
la

ti
on

lo
g

di
st

.
vo

ca
bu

la
ry

&
vo

lu
m

e
3.

Ex
ec

ut
io

n
lo

g
at

t.v
ec

s.
3.

Ex
ec

ut
io

n
lo

g
di

st
.

Pr
ec

he
lt

et
al

.
[1

89
]

02
C

,I
Tk

as
YA

P3
as

YA
P3

w
it

h
X

JP
la

g
L

ha
sh

in
g

op
ti

m
is

ed

Be
lk

ho
uc

he
[1

8]
04

C
,W

Tr
Pa

rt
it

io
ne

d
st

ru
ct

ur
e

Su
bg

ra
ph

ty
pe

se
qu

’s
.

L.
C

.s
ub

se
qu

en
ce

Pa
ir

w
is

e
%

M
at

ch
es

,
et

al
.

ch
ar

ta
nd

N
od

es
Su

bt
re

es
&

to
ke

n
ty

pe
s

ne
ar

-m
at

ch
es

,&
no

de
s

B
ra

ss
da

ta
di

ct
io

na
ry

Ty
pe

fr
eq

ue
nc

y
%

m
at

ch
ed

no
de

s,
ty

pe
s

[T
ie

re
d:

1.
su

bg
ra

ph
s,

Id
s

&
m

at
ch

ed
ty

pe
-i

d
pa

ir
s

2.
no

de
s,

3.
sy

m
bo

ls
]

Ta
bl

e
2.

3.
A

pp
ro

ac
he

s
to

pl
ag

ia
ri

sm
de

te
ct

io
n

C
on

ti
nu

ed
on

ne
xt

pa
ge

2.4. SUMMARY 35

R
ep

or
ti

ng
A

ut
ho

r
R

ef
D

at
e

P.
R

.
TI

Tr
an

sf
or

m
at

io
n

de
ta

il
El

em
en

ts
m

at
ch

ed
Si

m
ila

ri
ty

m
ea

su
re

[R
em

ar
ks

]
Ex

c.
D

is
.

C
he

n
et

al
.

[4
1]

04
-

Tk
To

ke
n

se
qu

en
ce

s
C

om
pr

es
se

d
fil

es
C

om
pr

es
si

on
di

st
an

ce
Fi

le
pa

ir
s

ra
nk

ed
SI

D
(C

m
)

1
-

C
m

(a
)−

C
m

(a
|b)

C
m

(a
b)

by
si

m
ila

ri
ty

La
nc

as
te

r
[1

44
]

05
-

Tk
1.

W
or

ds
‘W

or
d’

bi
gr

am
s

10
0
×

Ja
cc

ar
d

co
eff

’t
[T

es
tf

ra
m

ew
or

k
to

an
d

Te
tl

ow
2.

Pa
ra

m
et

er
is

ed
LC

S
20

0
×

T
ok

en
si

n
m

at
ch

ed
se

ct
io

ns
T

ot
al

to
ke

ns
in

fi
le

co
m

pa
re

3
m

ea
su

re
s

3.
U

np
ro

ce
ss

ed
C

om
pr

es
se

d
fil

es
10

0
×

C
m

(a
)+

C
m

(b
)

C
m

(a
b)
+

C
m

(b
a)
−

1
-fi

nd
s

bi
gr

am
s

be
st

]

M
ou

ss
ia

de
s

[1
73

]
05

C
Tk

In
de

xe
d

ke
yw

or
ds

e.
g.

K
ey

w
or

d
se

t
Ja

cc
ar

d
co

effi
ci

en
t

C
lu

st
er

ed
on

w
ei

gh
te

d
&

V
ak

al
i

{v
oi

d1
,i

nt
1,

in
t2

,f
or

1,
...
}

un
di

re
ct

ed
gr

ap
h

PD
et

ec
t

M
oz

go
vo

y
et

al
.

[1
75

]
05

W
Tk

To
ke

n
se

qu
en

ce
s

T
ok

en
si

n
m

at
ch

ed
se

ct
io

ns
T

ot
al

to
ke

ns
in

fi
le

Si
m

ila
ri

ty
m

at
ri

x
FD

PS
us

in
g

su
ffi

x
ar

ra
y

A
rw

in
&

[9
]

06
C

,W
IL

C
on

ve
rt

ed
to

R
TL

N
-g

ra
m

s
of

BM
25

R
el

at
iv

e
%

sc
or

e
*

*
Ta

ha
gh

og
hi

op
ti

m
is

ed
,

se
le

ct
ed

to
ke

ns
[I

nt
er

-l
in

gu
al

]
X

pl
ag

to
ke

ns
fil

te
re

d

La
ne

et
al

.
[1

46
]

06
W

Tk
To

ke
n

tr
ig

ra
m

s
Ja

cc
ar

d
co

effi
ci

en
t

Pa
ir

w
is

e
si

m
ila

ri
ti

es
Fe

rr
et

Li
u

et
al

.
[1

51
]

06
C

,I
G

r
Pr

oc
ed

ur
al

pr
og

ra
m

G
ra

ph
pa

ir
s,

fil
te

re
d

Su
bg

ra
ph

is
om

or
ph

is
m

C
ou

nt
s

of
ap

pr
ox

.
G

pl
ag

W
de

pe
nd

en
ce

gr
ap

hs
to

ex
cl

ud
e

sm
al

lu
ni

ts
m

at
ch

ed
pr

oc
ed

ur
es

(P
D

G
s)

an
d

un
lik

el
y

m
at

ch
es

M
er

lo
[1

70
]

06
C

,W
M

t
Fu

nc
ti

on
m

et
ri

cs
(b

ra
nc

h,
M

et
ri

c
ve

ct
or

s
C

lo
ne

cl
us

te
rs

ba
se

d
Pr

op
or

ti
on

of
fil

es
?

?
C

La
n

pa
ra

m
et

er
,e

tc
.c

ou
nt

s)
on

th
re

sh
ol

ds
co

ve
re

d
by

cl
on

es

N
oh

et
al

.
[1

81
]

06
C

,W
Tr

1.
X

M
L

tr
ee

to
6

se
ts

Fe
at

ur
e

m
at

ri
ce

s
C

om
pa

ri
so

n
de

pe
nd

s
Pa

ir
w

is
e

si
m

ila
ri

ti
es

EX
PD

ec
of

fe
at

ur
e

fr
eq

ue
nc

ie
s

on
th

e
fe

at
ur

es
2.

C
on

tr
ol

se
qu

en
ce

s
C

on
tr

ol
m

at
ri

x
Le

ve
ns

ht
ei

n
(w

ei
gh

te
d)

Ta
bl

e
2.

3.
A

pp
ro

ac
he

s
to

pl
ag

ia
ri

sm
de

te
ct

io
n

C
on

ti
nu

ed
on

ne
xt

pa
ge

36 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE
R

ep
or

ti
ng

A
ut

ho
r

R
ef

D
at

e
P.

R
.

TI
Tr

an
sf

or
m

at
io

n
de

ta
il

El
em

en
ts

m
at

ch
ed

Si
m

ila
ri

ty
m

ea
su

re
[R

em
ar

ks
]

Ex
c.

D
is

.

Bu
rr

ow
s

et
al

.
[3

4]
07

C
,W

Tk
Pa

ra
m

et
er

is
ed

to
1

of
To

ke
n

ty
pe

4-
gr

am
s

1.
BM

25
Pa

ir
w

is
e

si
m

ila
ri

ti
es

*
*

55
to

ke
n

ty
pe

s,
e.

g.
2.

St
ri

ng
al

ig
nm

en
t

in
tS

,r
et

ur
n

g,
(A

,=
K

on
be

st
m

at
ch

es
m

at
ch

1,
in

de
l-

2,
m

is
-3

A
ht

ia
in

en
et

al
.

[2
]

07
C

,I
Tk

as
JP

la
g

–
–

–
–

–
–

[a
s

JP
la

g
X

Pl
ag

gi
e

L
bu

to
pe

n
so

ur
ce

]

Fr
ei

re
et

al
.

[8
2]

07
U

Tk
1.

To
ke

n
ty

pe
co

un
ts

1.
To

ke
n

fr
eq

u.
ve

ct
or

s
C

os
in

e
di

st
an

ce
Pa

ir
w

is
e

si
m

ila
ri

ti
es

A
C

[8
1]

2.
To

ke
n

se
qu

en
ce

2.
C

om
pr

es
si

on
(C

m
)

C
m

(a
b)
−m

in
(C

m
(a

),C
m

(b
))

m
ax

(C
m

(a
),C

m
(b

))
Fi

le
cl

us
te

r
gr

ap
h

an
d

va
ri

an
ce

an
al

ys
is

R
el

at
iv

e
si

m
’y

hi
st

og
ra

m

Ji
et

al
.

[1
15

]
07

C
,W

Tk
St

at
ic

tr
ac

e
“k

ey
w

or
ds

”
Lo

ca
la

lig
nm

en
tw

it
h

D
ic

e
co

effi
ci

en
t

Si
m

ila
ri

ty
m

at
ri

x
*

*
e.

g.
IF

LE
BL

O
C

K
ST

A
R

T
sc

or
es

w
ei

gh
te

d
on

al
ig

ne
d

se
ct

io
n

R
ET

U
R

N
FU

N
C

C
A

LL
on

ke
yw

or
d

fr
eq

ue
nc

ie
s

to
fil

e
si

ze
s

C
os

m
a

[5
2]

08
C

,N
Tk

Te
rm

fr
eq

ue
nc

ie
s

Fi
le

le
ve

lt
er

m
C

os
in

e
si

m
ila

ri
ty

Si
m

ila
ri

ty
m

at
ri

x/
pl

ot
*

*
Pl

aG
at

e
P,

S,
ve

ct
or

s
re

su
lt

in
g

fr
om

U
la

te
nt

se
m

an
ti

c
an

al
ys

is

Ja
da

lla
[1

14
]

08
C

,W
Tk

Pa
ra

m
et

er
is

ed
,u

ni
fy

in
g

Ba
g

of
4-

gr
am

s
Ja

cc
ar

d
co

effi
ci

en
t

Pa
ir

w
is

e
si

m
ila

ri
ti

es
&

El
na

ga
r

id
en

ti
fie

rs
,s

ep
ar

at
or

s,
of

th
e

di
gi

ts
C

lu
st

er
s

si
m

ila
r

fil
es

PD
E4

Ja
va

ke
yw

or
ds

..
as

di
gi

ts
us

in
g

D
BS

C
A

N

C
hi

lo
w

ic
z

et
al

.
[4

2]
09

C
,I

Tk
Pa

ra
m

et
er

is
ed

,
To

ke
n

su
ffi

x
ar

ra
y

Ja
cc

ar
d

co
effi

ci
en

t
Pa

ir
w

is
e

fil
e

W
un

if
yi

ng
so

m
e

G
lo

ba
lc

al
lg

ra
ph

of
&

co
nt

ai
nm

en
tb

as
ed

si
m

ila
ri

ti
es

to
ke

n
ty

pe
s

su
bf

un
c’

ns
in

c.
sh

ar
ed

on
su

bf
un

ct
io

ns
si

m
,c

on
t1

,c
on

t2

X
io

ng
et

al
.

[2
53

]
09

C
,W

,
Tr

C
IL

to
A

ST
in

lin
ea

r
To

ke
n

4-
gr

am
s

Ja
cc

ar
d

co
effi

ci
en

t
C

lu
st

er
s

si
m

ila
r

fil
es

B
U

A
A

H
,G

re
pr

es
en

ta
ti

on
,

A
nt

iP
la

gi
ar

is
m

to
ke

ni
se

d

Ta
bl

e
2.

3.
A

pp
ro

ac
he

s
to

pl
ag

ia
ri

sm
de

te
ct

io
n

C
on

ti
nu

ed
on

ne
xt

pa
ge

2.4. SUMMARY 37

R
ep

or
ti

ng
A

ut
ho

r
R

ef
D

at
e

P.
R

.
TI

Tr
an

sf
or

m
at

io
n

de
ta

il
El

em
en

ts
m

at
ch

ed
Si

m
ila

ri
ty

m
ea

su
re

[R
em

ar
ks

]
Ex

c.
D

is
.

Br
ix

te
le

ta
l.

[3
1]

10
Tk

A
lp

ha
nu

m
er

ic
s

un
ifi

ed
C

ho
ic

e
e.

g.
C

ho
ic

e,
an

y
su

it
ab

le
Si

m
ila

ri
ty

m
at

ri
x

e.
g.

tt
=

t+
t;

lin
es

,f
un

ct
io

ns
m

ea
su

re
fo

r
se

qu
en

ce
s

[1
-t

o-
1

se
ct

io
n

m
at

ch
in

g
by

M
un

kr
es

al
go

ri
th

m
]

H
ag

e
et

al
.

[9
9]

10
C

,M
Tk

To
ke

ns
un

ifi
ed

by
ty

pe
Tr

an
sf

or
m

ed
lin

es
L.

C
.S

ub
st

ri
ng

(d
iff

)
Pa

ir
w

is
e

si
m

ila
ri

ti
es

M
ar

bl
e

S
O

pt
io

na
lf

un
ct

io
n

so
rt

Si
m

ila
ri

ty
=

10
0

-
ab

ov
e

th
re

sh
ol

d
sc

or
e

no
.d

if
fe

re
nt

lin
es

(f
1,

f2
)×

10
0

le
ng

th
f1
+

le
ng

th
f2

H
ua

ng
et

al
.

[1
12

]
10

C
,K

Tk
1.

Id
en

ti
fie

rs
un

ifi
ed

,
1.

W
in

no
w

ed
n-

gr
am

1.
D

ic
e.

(2
×L

C
Sq

(f
1,

f2
)

le
ng

(f
1+

f2
)

Pa
ir

w
is

e
si

m
ila

ri
ti

es
W

,?
co

nc
at

en
at

ed
in

to
st

ri
ng

ha
sh

va
lu

es
=

fin
ge

rp
ri

nt
2.
Σ

4 i=
1w

i.(
m

ea
ns

im
) i

Tr
2.

4
A

ST
no

de
ty

pe
se

ts
2.

N
od

es
pa

ir
ed

on
si

m
.

w
ei

gh
te

d
co

m
bi

na
ti

on
of

si
m

ila
ri

ti
es

1
&

2

Ju
ri

či
ć

[1
22

]
11

C
,W

IL
C

on
ve

rt
ed

to
C

om
m

on
M

ac
hi

ne
in

st
ru

ct
’n

st
ri

ng
1
−

Le
ve

ns
ht

ei
n

M
ax

im
um

fi
le

si
ze

Si
m

ila
ri

ty
m

at
ri

x
In

t.
La

ng
ua

ge
,fi

lt
er

ed
e.

g.
ld

c,
st

lo
c,

ad
d

to
ex

cl
ud

e
m

et
ad

at
a

&
lo

ca
ti

on
s

Ta
bl

e
2.

3:
A

pp
ro

ac
he

s
to

so
ur

ce
co

de
pl

ag
ia

ri
sm

de
te

ct
io

n.
A

ut
ho

r
an

d
to

ol
na

m
es

ar
e

lis
te

d
in

co
lu

m
n

1.
Pa

rt
s

of
th

e
co

de
re

m
ov

ed
du

ri
ng

pr
ep

ro
ce

ss
in

g
ar

e
in

co
lu

m
n

4,
co

m
m

en
ts

(C
)a

nd
w

hi
te

-s
pa

ce
(W

)a
re

m
os

tc
om

m
on

,a
s

th
es

e
ca

n
be

a
by

-p
ro

du
ct

of
tr

an
sf

or
m

at
io

n,
ot

he
r

ke
ys

ar
e

in
Ta

bl
e

2.
2.

Th
e

in
it

ia
lt

ra
ns

fo
rm

at
io

n
of

th
e

co
de

is
sh

ow
n

in
th

e
ne

xt
co

lu
m

n,
(T

I)
,w

he
re

T
k

m
ea

ns
th

at
th

e
co

de
is

to
ke

ni
se

d,
ot

he
r

ke
ys

ar
e:

G
r-

gr
ap

h,
Tr

-t
re

e,
M

t-
m

et
ri

cs
,

an
d

IL
-i

nt
er

m
ed

ia
te

la
ng

ua
ge

.
Br

ie
f

de
sc

ri
pt

io
ns

of
fu

rt
he

r
tr

an
sf

or
m

at
io

n,
el

em
en

ts
m

at
ch

ed
,a

nd
si

m
ila

ri
ty

m
ea

su
re

s
ar

e
in

co
lu

m
ns

6–
8.

C
ol

um
n

9
ha

s
re

po
rt

fo
rm

at
s

an
d

[s
el

ec
te

d
re

m
ar

ks
].

Th
e

la
st

2
co

lu
m

ns
sh

ow
w

he
th

er
th

e
to

ol
al

lo
w

s
ex

cl
us

io
n

of
te

m
pl

at
e

co
de

,a
nd

w
he

th
er

si
m

ila
ri

ty
be

tw
ee

n
fil

es
w

hi
ch

is
di

ss
im

ila
r

to
th

e
re

st
of

th
e

gr
ou

p
is

co
ns

id
er

ed
.[
X

-e
xp

lic
it

,*
-i

m
pl

ic
it

]

38 CHAPTER 2. DETECTING SIMILARITY IN PROGRAM CODE

Chapter 3

Origin analysis

In this chapter, origin analysis is introduced, along with a survey of related

approaches. Origin analysis is the study of the movement of code within

an evolving software system and is thus a motivating example for the

techniques proposed in this dissertation.

Software systems change over time in response to both internal and

external factors [17]. The changes generally result in increased complex-

ity [148], which may lead to restructuring to simplify the system. These

changes may occur under conditions such as time or cost constraint, leaving

documentation incomplete or absent [40, 67]. The missing documentation

and the often large amount of code make it difficult for subsequent devel-

opers to track changes in the system. This lack of knowledge can lead to

problems such as unexpected side-effects when changes are made to the

system [6], duplication of effort, or time taken in comprehension [51, 159].

It is important to be able to discover how code has been restructured,

both to avoid these problems, and for other reasons. For example, Anto-

niol et al. [6] give three reasons why software engineers find it useful to

know about changes caused by restructuring. First, those maintaining the

software will want to be able to trace the system functionality. Second,

those testing the system will want to refocus system tests appropriately.

Third, those studying software development will be affected by the appar-

ent discontinuity of program elements and want to understand the changes.

39

40 CHAPTER 3. ORIGIN ANALYSIS

Godfrey and Zou [90, p.1] support this last view by saying that “having an

accurate evolutionary history that takes structural changes into account is

also of aid to the research community”.

Analysis of the version history of a program, available in CVS or SVN

repositories, provides one means of recovering information about such

changes. Fowler defines refactoring as making small changes to the internal

structure of a program which do not change its external behaviour, and

says that a system can be restructured through a series of refactorings [78].

Murphy-Hill et al. [176, p.3] point out that there are four main methods

used to find refactorings in a system, each with strengths and weaknesses:

1. Watching programmers at work is expensive in terms of programmer

and researcher time, and may be limited in the data available over the

period of observation, but can provide detailed information.

2. Recording refactoring tool use is accurate when the tool is used in

refactoring, but not informative when the tool is not used.

3. Searching the change log for key words relating to refactoring, help-

ful when the log is complete and accurate, but this is often not the

case [187, 245].

4. Analysing source code history, either manually, which is very time-

consuming and not necessarily complete; or by automatic detection,

which although faster, limits the type of refactorings detected.

The term “origin analysis” was first used in a software evolution con-

text by Tu [236, 237], to describe the process of matching apparently new

program entities in a software system to those apparently disappearing

from the previous release. The term was later applied not only to complete

entities, but to code which moves as a result of splitting and merging [262].

Apart from the introduction of new functionality, new entities may

arise in a system from renaming or moving existing ones, or from splitting,

merging or recombining entities. Examples of each of these restructurings

(here files) are shown in Figure 3.1, where the original file(s) are shown on

41

Figure 3.1: File evolution: splits:(i)-(ii), merges:(iv)-(v), split and merge, or recom-

bination:(iii), rename:(vi), moves:(vii)

the left, and the result of restructuring is on the right of diagrams (i) to (v).

Diagrams (i) and (ii) show a file split into two or more parts, in diagrams

(iv) and (v) the process is reversed as the files merge. In diagram (iii), two

files are recombined, one section of each file is moved to the other file; in

effect each file has been split and then merged with the other partial file. In

Figure 3.1 (vi) a file is renamed, remaining in the same directory. Diagram

(vii) shows a file in directory y moving in three ways: up or down one or

more levels, e.g. to directory x or z; or into a new directory, e.g. directory a.

The processes may be combined. For example, a file may be split, have its

name changed, and move directory at the same time.

As noted by Murphy-Hill, and by other researchers (for example, [6, 60,

64]), manually tracing restructured files is very time-consuming, therefore

an automatic approach to the detection of these files is desirable.

42 CHAPTER 3. ORIGIN ANALYSIS

3.1 Survey

Table 3.1 (p. 46) provides information about selected work related to au-

tomatic origin analysis. The first three columns identify the author, paper

and date. The next column shows the programming language of the code

studied: Smalltalk, C/C++, or Java.

All of these approaches require the code to be parsed before entities, and

facts about them, are extracted. In many cases this is lightweight parsing,

for example, to extract method headers. The column headed A/C/M shows

whether full parsing is needed, either to build an abstract syntax tree, a

control flow graph or to compute metrics, all language specific processes.

The problem of tracing software evolution by comparing consecutive

versions of a program is tackled in various ways by the different research

groups. Five other variables are noted in the table:

• the granularity of the entities compared,

• the amount of activity between versions,

• the complexity of the matching task,

• the representation of the code,

• and the method used to match these representations.

Granularity of entities: Kim and Notkin [127] state that versions are

matched at different granularities depending on the task. For example, file-

level matching is useful in program understanding, while more fine-grained

units are matched for more precise tasks. The columns headed Entity and

Detail show the entities matched, Package, Class/File or Method/Function

and whether detailed differences are found, such as those between sig-

natures, parameters, or variables. When more than one entity is listed,

comparisons are usually made in detail at the lower level, and higher levels

are computed from an aggregation of information about the lower level en-

tities they contain. For example, the Weißgerber group [22, 91, 245] combine

method level changes to find class and package level changes.

3.1. SURVEY 43

Granularity between versions: Murphy-Hill et al. point out that working

at coarser intervals between versions, between releases, rather than trans-

actions, can mean that details of refactoring activities go undetected. While

this loss of fine detail is a problem if programmer behaviour is of interest, it

is of less concern where the aim is to track structural changes to program el-

ements. The column labelled “Int’val” shows the interval between versions:

Release or Commit/Transaction level. The majority of those surveyed work

at release level. Transaction level analysis has the advantage of reducing

the number of possible matches, and of changes between consecutive ver-

sions, while the disadvantage is the increase in the volume of changes to be

analysed in any time frame.

Matching complexity: There are two main approaches to matching pro-

gram entities between versions. The simplest looks for renamed or moved

entities, matching those whose names have disappeared from one version

to those with new names in the following version, e.g. [64, 179, 237, 252].

In this task, if version n+1 has t new entities, then each disappearing entity

from version n has t+1 possible “destinations” (t entities and deletion).

The more complex approach also considers split and merged enti-

ties [6, 90], when possibilities for matching increase exponentially. The

set of candidate entities is larger, as it will include not only those which

have disappeared, but also those whose changes indicate that they may

have split or merged. The target set of entities includes not only new en-

tities, but also all existing entities. Each disappearing entity can be split

into any (reasonable) number of sections, which can be placed in any of the

target entities, making the number of possible combinations of destinations

for each candidate 2t where t is the total number of entities in version n+1.

In practice, this number would be Σk
1
(t
k
)

where k is the maximum number of

likely splits.1 The value of k is further limited to two for approaches which

consider only two-way splits or merges, such as that of Antoniol et al. [6].

The column labelled S/C shows whether the approach is simple, match-

1The maximum found during this research was an 18-way split.

44 CHAPTER 3. ORIGIN ANALYSIS

ing whole entities, or complex, matching split and merged entities as well.

The difference between the two is blurred, in that if methods are matched

one-to-one, this is a simple approach. However, a method moved to a

new file is a split at file level, unless all of the methods in a file are moved

together, when it is a file renaming.

Code representation: The elements, or representations of the entity, which

are matched are listed in the last but one column, with a brief description

of the technique or similarity measure in the last column. Most approaches

initially match by name, reasoning that an entity with the same full name as

one in the previous version is the same (if edited) entity. Once the matched

entities are filtered out, matches between the remaining items are often

based, at least in part, on string similarity; 9 of the 15 examples [22, 90, 91,

128, 130, 179, 237, 245, 250], match method header elements like this.

Matching is also based on comparing metrics [90, 130, 237], text [6, 22, 77,

130, 245], incoming or outgoing calls [64, 90, 130, 237, 252, 250], graphs [8],

or trees [22, 77, 179]. Many approaches combine two or more techniques

for comparing code, or use a simple method to filter possible matches and

a more precise method to refine the search (e.g. [22, 64, 252]).

Matching technique: As discussed in Chapter 2, the representation of the

code guides the matching techniques and similarity measures chosen for

the task. Each group’s approach to matching is described in Section 3.2.

3.1. SURVEY 45

A
ut

ho
rs

R
ef

D
at

e
La

ng
.

Pa
rs

e
A
/C
/M

En
ti

ty
D

et
ai

l
In

t’v
al

S/
C

M
at

ch
Te

ch
ni

qu
e
/

Si
m

ila
ri

ty
m

ea
su

re

D
eM

ey
er

et
al

.
[6

0]
00

S
Y

M
C

,M
-

R
S

M
et

ri
cs

M
at

ch
to

he
ur

is
ti

c
co

m
bi

na
ti

on
s

Tu
&

G
od

fr
ey

[2
37

]
02

C
Y

M
M

-
R

S
M

et
ri

cs
Eu

cl
id

ea
n

ve
ct

or
di

st
an

ce
N

am
e

LC
Sq

(l
on

ge
st

co
m

m
on

su
bs

eq
ue

nc
e)

C
al

ls
M

at
ch

ca
lle

rs
an

d
ca

lle
es

A
nt

on
io

le
ta

l.
[6

]
04

J
Y

-
C

-
R

C
Bo

dy
C

os
in

e
be

tw
ee

n
tf

-i
df

ve
ct

or
s

of
id

en
ti

fie
rs

A
pi

w
at

ta
na

po
ng

[8
]

04
J

Y
C

C
,M

-
R

S
Ex

te
nd

ed
Pr

op
or

ti
on

of
no

de
s

et
al

.
C

FG
in

ha
m

m
oc

k
gr

ap
h

[7
3]

Z
ou

&
G

od
fr

ey
[9

0]
05

C
Y

M
M

-
R

C
M

et
ri

cs
Su

m
of

no
rm

al
is

ed
di

st
an

ce
s

[2
62

]
Pa

ra
m

et
er

s
D

ic
e

co
effi

ci
en

to
n

LC
Sq

[2
61

]
N

am
e

D
ic

e
co

effi
ci

en
to

n
LC

Sq
C

al
ls

D
ic

e
co

effi
ci

en
t

S.
K

im
et

al
.

[1
30

]
05

C
Y

M
M

-
C

S
Bo

dy
di
ff

[6
3]

,C
C

Fi
nd

er
[1

24
],

M
os

s[
3]

N
am

e
LC

SC
,I

SC
(i

nt
er

se
ct

in
g

ba
g

of
w

or
ds

)
C

al
ls

LC
SC

,I
SC

M
et

ri
cs

N
or

m
al

is
ed

di
st

an
ce

s
M

et
ho

d
he

ad
er

LC
SC

,I
SC

G
ör

g
&

[9
1]

05
J

Y
-

C
,M

Y
C

S
M

et
ho

d
he

ad
er

Eq
ua

lit
y

of
na

m
es

or
ty

pe
s

of
el

em
en

ts
W

ei
ßg

er
be

r

N
ea

m
ti

u
et

al
.

[1
79

]
05

C
Y

A
M

Y
R

S
Fu

nc
’n

-l
ev

el
A

ST
O

ne
-t

o-
on

e
na

m
e

an
d

ty
pe

m
at

ch
in

g

W
ei

ßg
er

be
r

[2
45

]
06

J
Y

-
P,

C
,M

Y
C

S
M

et
ho

d
he

ad
er

C
ha

ng
es

(f
or

de
te

ct
io

n)
&

D
ie

hl
Bo

dy
C

C
Fi

nd
er

(f
or

ra
nk

in
g)

Ta
bl

e
3.

1.
O

ri
gi

n
an

al
ys

is
an

d
re

la
te

d
w

or
k

C
on

ti
nu

ed
on

ne
xt

pa
ge

46 CHAPTER 3. ORIGIN ANALYSIS
A

ut
ho

rs
R

ef
D

at
e

La
ng

.
Pa

rs
e

A
/C
/M

En
ti

ty
D

et
ai

l
In

t’v
al

S/
C

M
at

ch
Te

ch
ni

qu
e
/

Si
m

ila
ri

ty
m

ea
su

re

D
ig

et
al

.
[6

4]
06

J
Y

A
P,

C
,M

Y
R

S
M

et
ho

d
bo

dy
H

as
he

d
bi

gr
am

s
(f

or
ca

nd
id

at
es

)[
32

,1
93

]
C

al
ls

M
ea

n
of

di
re

ct
ed

si
m

ila
ri

ti
es

X
in

g
&

St
ro

ul
ia

[2
51

]
06

J
Y

A
P,

C
,M

Y
R

S
N

am
e

D
ic

e
co

effi
ci

en
to

fc
ha

ra
ct

er
bi

gr
am

s
[2

52
]

En
ti

ty
co

nt
en

ts
,

N
or

m
al

is
ed

in
te

rs
ec

ti
on

of
eq

ua
li

te
m

s
ca

lls
an

d
us

es

M
.K

im
et

al
.

[1
28

]
07

J
Y

-
P,

C
,M

Y
R

S
M

et
ho

d
he

ad
er

LC
Sq

(n
am

es
sp

lit
on

ca
ps

)

Fl
ur

ie
ta

l.
[7

7]
07

J
Y

A
P,

C
,M

Y
C

S
A

ST
Tr

ee
ed

it
di

st
an

ce
ad

ap
te

d
fr

om
[3

8]
Le

av
es

D
ic

e
co

effi
ci

en
to

fc
ha

ra
ct

er
bi

gr
am

s

W
u

et
al

.
[2

50
]

10
J

Y
-

P,
C

,M
Y

R
C

M
et

ho
d

he
ad

er
Le

v’
n.

D
is

t,
LC

Sq
(n

am
es

sp
lit

on
ca

ps
)

C
al

ls
R

at
io

of
co

m
m

on
to

to
ta

l,
kn

ow
n

m
at

ch
es

Bi
eg

el
et

al
.

[2
2]

11
J

Y
A

P,
C

,M
Y

C
S

M
et

ho
d

he
ad

er
C

ha
ng

es
(f

or
de

te
ct

io
n)

Bo
dy

C
C

FX
/A

ST
/B

ig
ra

m
s

(f
or

ra
nk

in
g)

Ta
bl

e
3.

1:
O

ri
gi

n
an

al
ys

is
an

d
re

la
te

d
w

or
k

K
ey

.
La

ng
:S

-S
m

al
lt

al
k,

C
-C
/C
+
+

,J
-J

av
a

A
/C
/M

:n
ee

d
to

co
ns

tr
uc

tA
ST

,C
FG

or
to

ca
lc

ul
at

e
M

et
ri

cs
En

ti
ty

:P
-P

ac
ka

ge
,C

-C
la

ss
/F

ile
,M

-M
et

ho
d/

Fu
nc

ti
on

D
et

ai
l:

Y-
de

ta
ile

d
di
ff

er
en

ce
s

fo
un

d
(e

.g
.i

n
si

gn
at

ur
es

,v
ar

ia
bl

es
)

In
te

rv
al

:R
-R

el
ea

se
,C

-C
om

m
it

S/
C

:S
-S

im
pl

e,
C

-C
om

pl
ex

3.2. APPROACHES IN DETAIL 47

3.2 Approaches in detail

In this section, each of the approaches listed in Table 3.1 is described in

more detail, for later comparison with the approach used in this research.

Tu and Godfrey [237] introduced the tool Beagle, which used three

matching algorithms to find renamed and moved functions in a system,

and so to reason about files and subsystems. Matching was first based on

the Euclidean distance between vectors of five complexity metrics [135].

The top five matches were then ranked based both on textual similarity of

the function names and on call dependency analysis.

Zou and Godfrey [90, 261, 262] extended Beagle, both to alter the match-

ing techniques and to add a declaration matcher. Parameter names in a

function’s declaration are concatenated alphabetically. The Dice coefficient

is used to compute similarity between these parameter strings, as well as

between function names, and the sets of callers and callees of two functions.

However, the user must select a combination of the four matchers and their

thresholds to define a match.

Zou and Godfrey also reason about other restructurings. They consider

three patterns of two- or multi-way splits or merges: (clone introduction or

elimination, service extraction or consolidation, and pipeline expansion or

contraction) based on the manual analysis of call relations between func-

tions. For example, in clone extraction, incoming calls to an extracted clone

should be the union of the calls to the original functions, while the outgoing

calls of the functions and the extracted clone should be much the same.

Basing their ideas on those of Zou and Godfrey, S.Kim et al. [130] look for

renamed functions automatically. Their approach has several differences.

First, to the similarity metrics, where adapted features based on function

names, calls, complexity metrics and signatures are combined with the

similarity measures of three tools which match the source code text: the

strict line-based matching of diff [63], the more flexible clone detection tool

Code Clone Finder (CCFinder) [125], and the plagiarism detection tool,

Moss [210]. Second, they create an oracle set of matches agreed on by a

minimum of seven of their panel of ten judges, but reinforce the point made

48 CHAPTER 3. ORIGIN ANALYSIS

by Walenstein et al. [242] that people’s opinions vary. The oracle sets consist

of approximately 85% of the Apache and 91% of the Subversion examples.

Each metric is weighted depending on its accuracy in predicting whether

the oracle pairs match. The best combination of metrics combines diff,

names, signatures, and complexity metrics. The dominant factors overall

are diff, outgoing calls, and function names, while individually CCFinder

and complexity metrics are least significant. In addition, the weights from

a subset of the examples in the oracle set from one project are applied to the

rest of the examples in the project, and to the whole of the other project’s

oracle set, with 97% and 86% success respectively. However, 9–15% of the

possible pairs are not agreed on by sufficient judges to be included, meaning

that the set excludes the examples which are more difficult to categorise.

In work pre-dating that of Tu and Godfrey, DeMeyer et al. [60], also use

metrics to find refactorings. Rather than complexity metrics [130, 237, 261],

these are count-based metrics, such as the number of class variables, or the

depth of the inheritance tree. The metrics are not used directly as a similarity

measure, but rather heuristics about combinations of changes to the metrics

are used to identify class or method refactoring. For example, split methods

are assumed to have reduced numbers of statements, lines and messages

sent. To find factored out code, they look for similar reductions in other

methods. However, although the search space is reduced, the suggested

destinations for the code must be browsed manually to determine the exact

location. Of the possible splits or merges they found at class level, 96 of the

101 cases found in their three test systems were false positives, although 19

did belong to other classes of refactoring.

Görg & Weißgerber [91] collect names of classes, and information about

methods, before and after a transaction.2 From this information, a subset

of possible refactorings are found: rename, hide/unhide, or move methods,

add or remove parameter, and move class. This approach is limited in that

to match two entities only one element can have changed. For example, a

renamed method will not be detected if the parameters have also changed.

2A group of commits performed within a set time frame and so presumed to be related.

3.2. APPROACHES IN DETAIL 49

Weißgerber and Diehl [245] build on the approach described in [91].

Local refactorings are found in a similar way. For structural refactorings,

where entities move, or classes are renamed, candidate pairs are found from

the whole system. Candidate pairs are compared using CCFinder [125], to

find identical bodies, non-identical clones or unmatched code.

Extending this research, Beigel et al. repeat the work in [245], both with

the original filter criteria and with a relaxed filter to give more candidate

refactorings. They investigate three similarity measures for comparing

entity bodies to rank potential targets: text-based - the Jaccard coefficient of

(token) bigrams [32], token-based - CCFinder, and AST-based - JCCD [21].

The outputs from CCFinder and JCCD are used to compute Weißgerber’s

CloneFraction metric [244], which is the proportion of the tokens in the

code covered by clones, to the total number of tokens. They found that the

three measures overlap in 50-60% of cases, with each having its strengths

and weaknesses for the task. Text-based comparison was marginally more

effective than the other two methods in ranking the candidates in this study.

Dig et al. [64] also take a two stage approach, first performing a text-

based analysis by comparing two entity bodies based on token bigrams.

The containment of each entity in the other is used to measure similarity.

Second, they perform semantic analysis based on the calls and references

between two entities. The similarity between two entities is the mean of

their directed similarities, that is the ratio of the common edges to their

total.

Control flow graphs (CFGs) are compared by Apiwattanapong et al. [8]

to match changed interfaces, classes and methods. They introduce an en-

hanced CFG to include features found in object-oriented code, such as types.

Before matching entities, their graphs are simplified to become a series of

minimal hammock nodes [73].3 If one simplified graph is sufficiently simi-

lar to another, the graphs are expanded for detailed matching.

Two groups use abstract syntax trees as the basis for matching the en-

tities. Neamtiu et al. [179] aim to find changes to types and variables in

3Hammock nodes are induced subgraphs with a single entry and a single dummy exit.

50 CHAPTER 3. ORIGIN ANALYSIS

a system. They match functions by name, then traverse the AST from top

to bottom, noting the identifiers and types which have changed between

versions. The calls to and from already matched functions are used to infer

matches between functions which have changed their names.

A bottom-up approach to matching ASTs is taken by Fluri et al. [77],

who categorise changes which occur between commits. The leaves of the

tree are matched first, and must have the same label, meaning that they

represent the same type of operation. To match, the string similarity of the

leaf values, based on character bigrams, must exceed a threshold. Second,

the inner nodes of the tree are matched, by comparing the nodes in their

subtrees. To match, their Dice coefficient must reach a threshold, which

varies depending on the size of the tree.

Xing and Stroulia [252] use their tool UMLDiff [251] to extract a model of

the system where nodes are packages, classes, interfaces, fields or methods,

and the edges are labelled with their dependencies. Similarity between

nodes is assessed in two ways. First, using the Dice coefficient of character

bigrams of node names. Identically named nodes are stored to allow a

recursive search for entities with similar names and structures. Measure-

ment of structural similarity is based on “relevant facts” for the entity. For

example, the classes and interfaces in a package, or the parameters, fields

and calls of a method. The structural similarity between two entities is the

normalised intersection of identical or previously matched relevant facts.

M.Kim et al. [128] base their work on matching method headers between

program versions. Non-identical methods are matched on the longest com-

mon subsequences among tokens in the method headers, where names are

split on capital letters (assuming camelCase style). Unmatched items are

taken to be deletions. General descriptions of sets of matched pairs are

formed by replacing parts of their names by wildcards. A rule is formed if

the support for a set is above a threshold. Exceptions to the rules are also

noted, as they may be changes which have been missed. This approach is

reported to be robust to combined rename and move operations, but can

fail when method headers have little textual similarity or when unrelated

3.2. APPROACHES IN DETAIL 51

methods have similar names.

Wu et al. [250] build on the work of M.Kim et al., using call dependencies

as well as method headers in matching. Their approach handles one-to-

many and many-to-one changes, providing rules which cover groups of

changes, along with exceptions to these rules. In the same way as Xing

and Stroulia, they start with a set of matched entities, and recursively

add new matches based on those previously found. Two complementary

matches are performed on the tokenised header sequence: textual difference

is calculated using the Levenshtein distance, and textual similarity with the

longest common subsequence. Call dependency similarity is the ratio of

shared calls to or from already matched entities, to the total of such calls.

This value is used to rank the potential matches.

In general, text-based comparisons of the entity bodies are made in

conjunction with other similarity measures. S.Kim et al., Weißgerber and

Diehl, and Biegel et al. use the similarity between method bodies to rank the

target files found by coarser matching. Conversely, Dig et al. find potential

matches by comparing method bodies and then refine on call relations.

Antoniol et al. are the only group of those listed in Table 3.1, to use text-

based analysis on its own, although they suggest that their results may have

been improved by adding further matches to their identifier-based system,

such as matching class names, or finding clones in the text.

Antoniol et al. [6] use identifier names to investigate class level refactor-

ings, specifically class merge, split, rename, move and recombination. They

note that this analysis is applicable at other granularites, such as method

level. Their approach uses an information retrieval method known as vector

space modelling. Vectors of the weighted frequency (tf-idf [206]) of identi-

fiers in the program code are compared. When a class (A) is split into two

parts (A’ and B) with no other changes to the text, the sum of the vectors for

A’ and B will be the same as the vector for A. With editing, the two vectors

should still be close in vector space, and the cosine between them be high.

Similar reasoning is applied to renaming, merging and recombination.

Rainer et al. [194] proposed that trigram analysis of source code text

52 CHAPTER 3. ORIGIN ANALYSIS

Compared by Author Ref. Software projects

M.Kim et al. S.Kim et al. [130] jEdit and ArgoUML
Weißgerber and Diehl [245] jEdit and Tomcat
Xing and Stroulia [251] JFreeChart

Wu et al. M.Kim et al. [128] JHotDraw, jEdit and JFreeChart
Schafer et al. [208] JHotDraw and Struts
Dagenais and Robillard [56, 55] eclipse.jdt.debug.ui, Mylyn and JBossIDE

Table 3.2: Projects used by M.Kim et al. and Wu et al. to compare their work with
others

could be used to characterise aspects of the evolution of a software system.

Their study looks at changes to an individual file through its lifetime, at

patterns of change across a release, and at files which split and merge.

They studied two (C) projects, measuring similarity between files based on

the trigrams present in the code. Apart from the requirement for a lexical

analyser, this approach is language-independent. To find split files, they

find the similarity between files in consecutive releases. Potential source

and target split file pairs are those which have different names, and have a

similarity to each other which is greater than the mean plus one standard

deviation of all pairs. They find 433 such candidates in nearly 8,000 pairs,

and find example split files, but do not go on to categorise all of the pairs,

as this requires visual inspection of each candidate pair. They discovered

that these criteria also select renamed or moved files, and although they do

not report any such examples, merged files would also be selected.

M.Kim and Notkin [127, p.59] noted the absence of benchmarks in

matching program code elements. Researchers typically check the changes

found by inspecting the code themselves. However, S.Kim et al. [130] use

a panel of judges to provide classification, and two of the groups surveyed

compare their results to those of previous research groups. These groups

are listed in Table 3.2 together with the projects they analysed.

3.3. SUMMARY 53

3.3 Summary

Sixteen approaches to origin analysis and closely related work are reviewed

in this chapter. Each one, except for that of Rainer et al., requires that

the code be parsed before analysis, making them language dependent.

The majority look for restructuring at the method or function level, only

Antoniol et al. and Rainer et al. study systems solely at class or file level.

There are differences in the granularity of the analyses: four of the

approaches analyse changes at commit or transaction level, while the others

work at release level. Most of the approaches match only whole entities,

in other words, those which are renamed or moved, rather than matching

more complex types of restructurings, such as splits.

Four of the methods use one feature of the code in matching, while the

rest combine a number of different measures of similarity. These combina-

tions differ in their application: in some cases the features are used together,

and in others they are applied in two passes, with a finer-grained match

applied to the result of a preliminary coarser-grained match.

Third-party similarity detection tools are used in three of the approaches,

each one uses Code Clone Finder [125], with one [130] also using diff [63]

and Moss [3], and one also using JCCD [21]. Apart from Biegel et al.’s use of

the CloneFraction metric [244], these methods use measures taken directly

from the similarity detection tools.

Although many approaches use thorough searches to find threshold val-

ues for similarity measures, or a fairly complex set of rules to make decisions

about what to match, none of the approaches uses machine learning.

The approach to origin analysis taken in this research is described in

Chapters 10, and subsequent chapters. In outline, the approach is based on

that of Rainer et al. [194] in the use of n-gram analysis on source code text

for comparing files, a method also used by Dig et al. [64]. It also combines

elements from other approaches:

• text-based comparisons at file (class) level [6, 194]

• considering splits and merges [6, 90]

54 CHAPTER 3. ORIGIN ANALYSIS

• ranking targets based on comparison of source code text [22, 91, 245]

• use of third-party file comparison tools [22, 130, 245]

• combination of similarity measures [90, 130, 237, 250]

Several aspects of this research differ from previous approaches:

• development of a range of descriptive measures based on clone and

plagiarism detection tool output

• comparison between varied file groups

• the use of machine learning to find a suitable set of features

• the use of a range of projects with the aim of generalising

• experiments to test applicability across both projects and languages

Note on the use of the terms candidate and target:

Some origin analysis research groups (e.g. [6, 250, 261]), use the term

target to mean the entity which has been restructured (old), and candidate

to describe potential matches (new). Other groups (e.g. [128, 130]) use the

word candidate to describe possible matched pairs or rules (old→ new).

In this dissertation, as in [22, 245], candidate means an entity which

may have been restructured, in other words, the source of code which has

moved, and target means the destination of the code.

Chapter 4

Machine learning

This chapter gives an overview of machine learning, and explains its use in

this research. The uncertainties involved in creating a feature set for novel

data are the main focus of the chapter.

4.1 Why use machine learning?

Machine learning has developed from ideas taken from statistics, artificial

intelligence, information theory, data management, psychology and neuro-

science, among others [104, 164, 171]. Samuel described machine learning

as “a field of study that gives computers the ability to learn without being explicitly

programmed.” [207].

Within the space of computer applications there are some tasks which

can be defined as a precise set of instructions for a computer. There is

another set of tasks which are too complicated to be explicitly defined, but

which can be approximated using machine learning [24, 172]. Broadly, three

main groups of tasks fall into this second category [104, 172, 180]:

1. those which are best described by giving labelled examples, such as

machine vision tasks,

2. very large datasets containing interesting, but difficult to find, rela-

tionships, for example, astronomical or genomic data, and

55

56 CHAPTER 4. MACHINE LEARNING

3. machines which need to adapt their behaviour according to their

environment, such as robots in the field.

The task in this research falls into the first category. Finding a set of text-

based features to characterise a file belonging to one category of restructured

file is very difficult because of the large number of variables. These variables

include the quantity of code moved between files, the size of the enclosing

files, the multiplicity of target files, the amount of editing, both in the code

which has moved and in the files involved in the move, the distribution

of the transferred code in the target file(s), the inherent similarity between

files in a project, and the variation in style between projects.

4.2 The machine learning process in outline

The input to a machine learning system is a set of examples from the do-

main of interest. These examples, the training set, take the form of feature

vectors. The aim is for the machine learning algorithm to adapt in response

to the provided data, to create a useful model (also called the output func-

tion, or hypothesis) [24, 171] (see Figure 4.1). Although machine learning

algorithms learn by fitting to the examples they are given, they also need

to generalise to the population from which the examples are taken, and not

overfit to the training data, for example, by rote learning.

Machine learning tasks can be divided into two main categories, super-

vised and unsupervised learning; other categories include semi-supervised

Figure 4.1: Examples (1...n) in the form of feature vectors (x1...xn), with or without
labels [y], are input to the machine learning algorithm, to create a model

4.2. THE MACHINE LEARNING PROCESS IN OUTLINE 57

learning [256] and reinforcement learning [228]. In unsupervised learning,

the aim is to find patterns in the data. For example, by clustering, which

means partitioning the data into a number of groups where the members are

related to each other under some criteria; or by association mining, which

looks for relationships between features, especially those which occur fre-

quently.

Supervised learning, based on labelled data, aims to find links between

the input and expected output. There are two main tasks in supervised

learning: regression and classification. When the data labels are numeric,

and usually continuous, the regression function aims to predict the numeric

value of new examples. When the labels are nominal, the task is classifica-

tion. In this case, the feature values are used to create a model which aims

to separate the data into the labelled categories.

A number of steps are recognised in the process of creating a model [27,

72, 161], which, in outline, can be thought of as:

• understanding the domain,

• gathering the data,

• creating, selecting or combining the features,

• cleaning and preparing the data,

• allocating labels, where appropriate,

• choosing learning algorithms, and

• building and refining the model.

In broad terms, the resulting model is either interpreted to discover

facts about relationships in the input data, or, as in this research, is used to

predict the outcome for previously unseen data (see Figure 4.2).

Figure 4.2: The classification model labels each unseen instance

58 CHAPTER 4. MACHINE LEARNING

4.3 Creating new datasets for machine learning

There are two parts in this section, the first explores the difficulty of deciding

on a set of features when creating a dataset in a new domain, and the second

outlines the steps taken in creating a labelled dataset from raw data.

4.3.1 Choosing features

Features describe the characteristics of each instance and therefore the

choice of which features to use has a major role in the outcome of the

learning task. Datasets collected by a third party and available ‘off-the-

shelf’, for example the UCI sets [79], will have a ready-made set of features.

Other datasets are made by selecting information from one or more exist-

ing databases [27], when the features will be determined by the information

available. However, when features are not available, they must be gener-

ated. Guyon and Elisseeff [98, p.2] state that “Finding a good data represen-

tation is very domain specific and related to available measurements.” When no

such measurements exist, then information must be collected and analysed

to create the dataset.

It is not always obvious what information to collect. Ciesielski et al.

say that “There are few guidelines for choosing feature sets. Generally the only

way to determine whether a particular set of features will be useful is by trial

and error” [44, p.1]. Pachet and Roy, in their work on audio analysis, state

that “In machine learning research, it is typically assumed that features naturally

arise from the problem definition. However good feature sets may not be directly

available, motivating the need for techniques to generate features from the raw

representation of objects ...” [184, p.1]. They go on to explain their use of

evolutionary methods to build a set of features taken from representations

which exploit domain knowledge.

In some circumstances, there may be limitations to the information that

can be recorded. For example, because of the instruments available, or

because of practical, financial or moral restrictions [141]. Without these

limitations, the range of options can be vast. For example, as shown in

4.3. CREATING NEW DATASETS FOR MACHINE LEARNING 59

Chapter 2, when matching source code, there is a wide range of tools, of

ways in which the code can be represented, of elements to be matched, and

of similarity measures. Any combination can be used to provide informa-

tion, which can then be analysed in various ways. Leather et al. support

this view, in talking about creating features for compiler optimisation, they

highlight the difficulty of selecting suitable features from a potentially infi-

nite set [147, p.1].

Ludmila Kuncheva recommends a large set of features, stating that “If

the data set is not given, an experiment is planned and a data set is collected. The

relevant features have to be nominated and measured. The feature set should be as

large as possible, containing even features that may not seem too relevant at this

stage. They might be relevant in combination with other features.” [141, pp.1–

2]. This idea is echoed by Guyon, who says that ”Although dimensionality

reduction is often summoned when speaking about complex data, it is sometimes

better to increase the dimensionality. This happens when the problem is very

complex and first order interactions are not enough to derive good results” [98].

In general, domain knowledge and the available tools will guide the

initial measurements taken. Once this set of measurements is collected,

additional features can be created, either by further analysing the data

manually, or by some method of automatic feature construction. For ex-

ample, evolutionary methods, such as those surveyed by Espejo et al. [70,

pp.5–6], or pattern-mining methods as discussed by Bringmann et al. [30].

4.3.2 Creating a labelled dataset from raw data

In some datasets the items of interest occur infrequently, however, it may

be possible to filter to remove those instances which are unlikely to belong

to the category of interest. For example, in looking for restructured files,

those which are exactly the same from one release to the next have clearly

not been restructured. There is normally a trade-off between precision and

recall in filtering. With relaxed criteria, all relevant instances should be

selected, at the cost of selecting many irrelevant ones. If the criteria are

too strict, then irrelevant instances have less chance of being selected, but

60 CHAPTER 4. MACHINE LEARNING

relevant instances may be missed.

Preparation is an important step in modelling data, as poor quality in-

put will not lead to good models [104, 191]. Once a dataset is selected and

features created, it is cleaned to deal with unusual or erroneous items [27].

Data prepared by others may have missing values which cannot be cor-

rected, these can be treated as a new category where a feature has nominal

values, but are more usually estimated, or the example is discarded [152].

Outliers, or unusual values, may be errors in measurement or data entry,

when they should be corrected. True outliers are either omitted, which

means information loss, or they are handled by a classifier whose outcome

will not be unduly biased by their presence (e.g. a decision tree). In classi-

fication tasks, duplicate instances are normally removed, while in pattern

mining, duplicates can show support for the patterns and be left in the set.

Where labels are not already available for a classification task, manual

labelling is required, a task which is generally recognised as very time-

consuming [25, 213] and requiring considerable effort, either on the part

of the researchers or volunteers. For example, in software engineering

research, Hindle et al. [108] manually classify 2000 commits using the Ex-

tended Swanson Classification scheme, and Buse and Weimer [35] asked

120 people to categorise 100 code snippets by assessing “readability”.

Once the data is labelled, another concern is the balance of the classes [140].

When the training set is imbalanced, learning algorithms can overlook the

minority class. For example, if a dataset is split 99:1, then a prediction

of the majority class for every instance gives 99% accuracy without find-

ing any of the probably more interesting minority class. A set in which the

classes are balanced is preferable. Two methods for arriving at an artificially

balanced dataset, when one class is significantly smaller than another, are

under-sampling and over-sampling [46, 107].

Under-sampling means making a selection from the majority class to

match the size of the minority class. This strategy will generally be repeated

for a number of partitions of the majority class to ensure good coverage of

the instances. Otherwise, the minority class can be over-sampled to produce

4.4. CLASSIFIERS 61

new examples, using an over-sampling technique such as SMOTE [39]. This

involves selecting a random data point and one of its n nearest neighbours,

then creating a new instance from a random point between the two. This is

repeated until the minority class is the same size as the majority class. As

in under-sampling, over-sampling may be repeated with different random

seeds. Alternatives to balancing the classes include adjusting the learning

algorithm [45, 249], active learning [69], or cost-sensitive learning [215].

4.4 Classifiers

Choosing a suitable classifier is an iterative process. Pyle [191] says that

“ Building any model should be a continuous process incorporating several feed-

back loops and considerable interaction among the components.” This iteration

involves the data, possibly adding more where the problem turns out to

be more complex than first thought; the features, refining them by addi-

tion or reduction; and the algorithms, in choosing from the large range of

possibilities, and tuning the selected algorithm where appropriate.

The choice of algorithm will be influenced by several factors. For ex-

ample, data which includes nominal features cannot be handled by some

classifiers: support vector machines [111] work with numeric values be-

tween 0 and 1, whereas a decision tree can deal with a mixture of numeric

and nominal values. If transparency is important, then tree-based algo-

rithms, such as C4.5 [192], or rule-based algorithms, such as RIPPER [48],

will give results which the user can interpret. If the dataset is very large,

either because of the number of instances or the number of features, then the

time taken by slower algorithms, such as neural networks [205] or stacked

classifiers [248], may be a problem. When such factors are unimportant,

one approach is to try a variety of classifiers to find a suitable one. In this

case, it is useful to have a tool which supports a range of algorithms, such

as the open source machine learning toolkit, Weka [247].

Weka has a large number of tools, to understand the data, to preprocess

it, to run experiments, and to compare the results. The preprocessing

62 CHAPTER 4. MACHINE LEARNING

filters automate tasks such as representational changes, e.g. discretization

or normalisation. Feature selection algorithms are provided, as well as

clustering and association algorithms. The large selection of classification

algorithms are grouped by type: trees, rules, nearest neighbour, Bayesian,

functions, and meta-classifiers.

There are two main sources of error in any classifier, bias and variance.

Bias results from the (in)ability of an algorithm to fit a problem, and variance

results from the under-representation of a problem by the training set. Bias

can be seen as underfitting and variance as overfitting [141]. There is a

trade-off between the two. However, by creating an ensemble of classifiers

based on an algorithm with low bias, variance may be reduced [247]. A brief

explanation of classifier ensembles is provided in Appendix B, along with

the algorithms which have proved most useful in this research: Rotation

Forest [203], Random Forest [29] and Simple Logistic [145, 227].

4.5 Machine learning in software engineering

Machine learning has not been used in origin analysis before, although, as

discussed in Chapter 3, S.Kim et al. [130] use a statistical approach, along

with exhaustive search, to combine measures in their system. A brief review

of the development of machine learning in the more general area of software

engineering can be found in Appendix C. Also included in this appendix

is a review of a selection of software engineering applications which use

machine learning, in particular those related to software evolution, which

aims to ascertain whether there are pointers to suitable features, matching

techniques, or machine learning algorithms.

Among the applications surveyed, those with some relevance to this

research are two which use a combination of a large number of features,

mostly based on analysis of changes to terms in source code text, by Aver-

sano et al. [10] and S.Kim et al. [129]. Shivaji et al. [218] base their work

on [129] and explore the effect of feature selection on classification. Also

Zimmermann et al. [258] test defect prediction models built on one project

4.6. SUMMARY 63

on another project, finding a low success rate of 3.4%.

Although the examples reviewed form a subset of the work in this area,

making it difficult to draw conclusions about commonly-used techniques,

it is clear that a wide variety of algorithms are applied in classification. In

around half of the classification tasks, a number of different algorithms are

applied to the data to find that best suited to the task. Also, a large majority

of the classification tasks use a broad range of features taken from more

than one source.

Ideally, a set of features should be easy to extract, while providing good

discrimination between classes. However, a more complex set of features

may improve performance, at the cost of the time and effort in construction.

4.6 Summary

This chapter has introduced machine learning and outlined the steps in-

volved in categorising data. It focused on some of the questions which

have to be addressed when creating a new dataset for which there appears

to be limited guidance in the literature. The main message is that where

there is uncertainty about the features, one strategy is to create a large

number from which a good subset may be found.

In the absence of previous use of machine learning in origin analysis,

a survey of a selection of machine learning applications to software engi-

neering classification problems was undertaken, aiming to find pointers to

suitable algorithms or features. Although no clear direction is found, this

exercise has shown that one strategy is to use relevant features from a range

of sources, and a selection of machine learning algorithms, and to test the

alternatives experimentally.

64 CHAPTER 4. MACHINE LEARNING

Chapter 5

Visualisation

This chapter gives a brief introduction to the ways that source code com-

parison tools display information. It is not intended as a full overview of

information visualisation, nor does it explore techniques used in the wider

field of software engineering. Instead it focuses on two aspects relevant to

this research: the use of colour in providing information to the user, and

methods for showing interactions between files in a group.

The benefits of visualisations in imparting information are well under-

stood. Stephen Few states that “One of the great strengths of data visualization

is our ability to process visual information much more rapidly than verbal in-

formation. Data visualization is effective because it shifts the balance between

perception and cognition to take fuller advantage of the brain’s abilities” [74,

Sect.6.11]. Colour is usually an important component of visualisation be-

cause it helps to provide separation between different elements (see for

example, Figure 5.5a), and because colour-coding can convey extra layers

of information [224] (see for example, Figure 5.3d).

Visualisation is of interest in two areas of this research. First, because

of the need for an “at-a-glance” comparison of a group of files in origin

analysis. This comparison is used to label candidate restructured files for

input to a machine learning system, a task which proved both difficult and

time-consuming with other methods tried. Second, to express the different

“types” of similarity between files in collusion detection. For example, to

65

66 CHAPTER 5. VISUALISATION

show whether the code identified as common to two files also occurs in

many other files, in a few files, or in just the two. Both of these applications

display the similarity between files by colour coding the text; first, of one

file to a group of others, and second, of two files in the context of a group.

Examples from a variety of code comparison tools are shown in this

chapter to give context to the visualisations developed in this research. The

majority of these comparison tools are from the field of plagiarism detection.

The other group of tools sampled add colour to text to provide the user with

additional information (see Section 5.3). The illustrations are taken from

the publications referenced, unless stated otherwise.

(a) AC’s sorted pairwise similarities [82] (b) Ferret’s sorted pairwise similarities [146]

(c) Brixtel et al.’s similarity heatmap [31] (d) Juricic’s similarity matrix [122]

Figure 5.1: Showing file similarities

5.1. PLAGIARISM DETECTION FILE COMPARISON 67

5.1 Plagiarism detection file comparison

The most common way to provide initial information about the similarity

between files in plagiarism detection is as a list or matrix of file similarities.

Two examples of sorted pairwise similarity lists are shown in Figures 5.1a,

for AC [82] and 5.1b, for Ferret [146].1

Two matrices are those of Juricic [122] in Figure 5.1d (p.66), and of Brixtel

et al. [31] in Figure 5.1c (p.66) which has heatmap colouring (red - similar,

green - dissimilar). The colour in the left-hand matrix allows the user to

quickly focus on the areas of interest, which are in red and orange, whereas

in the right-hand diagram, the user must scan the numbers to find the range

before locating the higher values.

1Locally produced screenshot

(a) JPlag [189] (b) Sherlock [120]

(c) SID [41] (d) Ferret [146]

Figure 5.2: Comparing code, side-by-side (a–c), or one above the other (d)

68 CHAPTER 5. VISUALISATION

Many of the tools provide adjacent views of the code in the pairs of

similar files, and these are normally accessed by selecting a pair from the

similarity report. Four examples are shown in Figure 5.2. Each of these

tools uses colour to convey information to the user. JPlag [189]2 and SID [41]

colour match sections of code, JPlag giving the text a different colour for

each section, and SID changing the background colour. Sherlock [120]3 has

two views of the code, original code (at the top), or a tokenised version (at

the bottom), and colours the matching sections in a profile view to the left

of the text windows. Ferret highlights the matching trigrams in blue and

allows the user to select trigrams from the right-hand window to move the

texts to the first occurrence of the trigram.4

Graphical displays giving an overview of similarity between pairs of

files in the group are provided by some of the tools surveyed, examples

of which are in Figure 5.3. Sherlock uses a circular network graph, see

Figure 5.3a.5 The nodes around the circle represent the files and the edges

show files with a similarity above the selected threshold. Plagate [52] shows

the similarities between files as a box-and-whisker plot. Each vertical line

shows the similarities between a file (on the x-axis) and the rest of the

group. The black line is the median value and the box covers the inter-

quartile range (IQR). Outliers between 1.5–3.0 times the IQR are shown by

a circle and those outside of this range by an asterisk, both are labelled with

the file number. AC displays clusters, also with a user-selected threshold,

see Figure 5.3c. It also shows, for each file, the distribution of similarities

to the other files in the set, using a compressed form of histogram which

relies on colour coding instead of area. Purple means that few files are at

this distance from the file, red that many are, with frequencies between the

two extremes following the rainbow colour sequence. An example of the

histograms are in Figure 5.3d, where one line (p6d66) has been selected for

expansion into a traditional histogram.

2http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/demo jplag.html
3http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/demo sherlock.html
4Locally produced screenshot
5http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/demo sherlock.html

5.1. PLAGIARISM DETECTION FILE COMPARISON 69

(a) Sherlock’s graph [120] (b) Cosma’s box and whisker plot [52]

(c) AC’s clusters [82] (d) AC’s histograms [82]

Figure 5.3: Graphical displays of file similarity

Ribler and Abrams take a different approach, which gives a detailed

look at the similarity of one file in the context of the group. The categorical

patterngram in Figure 5.4a has the sequence of n-grams in one file along the

x-axis. The number of other files in the group which contain each n-gram

are plotted in red for the values 1–9. If the n-gram is unique to the file being

analysed, it is plotted at y = 1 and shown in blue. If in 10 or more files, it is

considered uninteresting, plotted at y= 10, and shown in green. Figure 5.4a

shows a file which shares a suspicious sequence of code with one other file,

indicated by the dense sequence of red lines at n = 2.

To show which files contain the n-grams, another graph, the composite

categorical patterngram, is constructed, see Figure 5.4b. This graph is based

on one file, with the n-grams it contains plotted for each of the files in the

comparison group. This time, the y-axis is labelled with the file numbers

70 CHAPTER 5. VISUALISATION

(a) Categorical patterngram (b) Composite categorical patterngram

Figure 5.4: Ribler and Abrams’s graphical displays [199]

and the presence of the n-gram in a file marked by a coloured point. The

point is green if the n-gram is in 10 or more files and red if in fewer.

The composite patterngram highlights with which files the base file shares

significant sections. Figure 5.4b is based on the same file, number 45, as

Figure 5.4a, and shows that most of the code shared by few is in file 46,

where the large amount of common code indicates collusion.

Ribler and Abrams’ tool does not appear to give a measure of similarity

between files but gives a pointer to areas in the files which deserve further

attention. Their method is the closest to that developed in this dissertation.

The measure for collusion detection is based on the unusual similarities

between files in the context of a group, and the visualisation colour codes

the text of the two files under investigation, depending on the number of

other files which contain the code they share.

5.2 Other code comparison tools

There are a large number of other graphical tools for comparing code. A

small selection of relevant tools are described in this section. Windiff,6

see Figure 5.5a, compares two files, and shows the lines which appear in

both files on a white background. Lines which differ are repeated with

6http://msdn.microsoft.com/en-us/library/aa242739(v=VS.60).aspx

5.2. OTHER CODE COMPARISON TOOLS 71

(a) Windiff (b) Winmerge

(c) KDiff3 - merge screen

Figure 5.5: Windiff, Winmerge and KDiff3

the line from one file on a red background and from the other, a yellow

background. Winmerge,7 see Figure 5.5b, is similar, but presents the two

files side-by-side, highlighting differences between them by colouring the

background.

KDiff3,8 shown in Figure 5.5c is one of the few tools available which

compare three files. The upper part of the screen colours the differences

between the three files in red. Lines which match in all three files are shown

in black text, if in two files they are purple (1, 2), green (1, 3) or blue (2, 3)

7http://winmerge.org/
8http://kdiff3.sourceforge.net/doc/index.html

72 CHAPTER 5. VISUALISATION

Figure 5.6: Ball et al.’s line representation [14]

depending on which pair has the similar code. The lower part of the screen

shows what will happen when the files are merged.

There do not appear to be any tools which make text-based comparisons

between more than three files.

5.3 Colour coding features in software evolution

The field of software evolution visualisation is large, and visualisations

are often very sophisticated. Starting points for further information are the

surveys by Storey et al. [225] and Caserta [37], or Voinea’s dissertation [240].

Some tools depict information about an evolving system, such as 3DSoft-

Vis [200]. Other tools give information about one version of a system. Two

examples of single version tools are shown here. These tools are chosen

because they colour the source-code text to display facts about the sys-

tem, which is how the visualisations developed in this research provide

information to the user.

Figure 5.6 [14] shows Ball et al.’s “line representation” where the code

in a file is coloured to represent one aspect of the file’s development. For

example, the developers, the version, or as here, the age (where green means

5.4. SUMMARY 73

Figure 5.7: Augur three-feature colour coding of one file [86]

old code and red new code).

Augur, a tool developed by Froelich and Dourish [86], also colours

features of the code. This tool uses different sets of colours to show different

sets of features. In the example in Figure 5.7, three features are highlighted.

The code is coloured to show its age, there are also two other colour sets

applied on the left margin, the left-hand set showing the author and the

middle set showing elements of the code, such as comments and methods.

Displays of similarity between files, taken from three clone detection

tools, are available in Appendix D. This appendix also shows graphical

displays from two tools from the field of origin analysis, where colour is

used to add information about the movement of code in a system.

5.4 Summary

This chapter has reviewed tools which are relevant to the visualisations

developed in Chapter 8 to support the applications described in Chap-

ters 9 and 10. It looked at the output of source code comparison tools,

in particular, comparisons between pairs of files, between groups of files,

and of pairs of files in a group context. The use of colour was also consid-

74 CHAPTER 5. VISUALISATION

ered, both for highlighting important parts of a display, and for providing

additional information to the user when applied to text.

The majority of the plagiarism detection tools surveyed provide infor-

mation about the similarity between files in one of three forms: pairwise

similarity based on a single similarity measure (see Figure 5.1), group in-

teraction based on a single similarity measure (see Figure 5.3), or pairwise

text comparisons (see Figure 5.2). Ribler and Abrams provide information

about the interaction between the files in a group at n-gram level, but do

not appear to map this to the text of the file. In general, file comparison

tools do not show comparisons between the text of more than three files.

Chapter 6

Ferret

The primary similarity detection tool used in this research is Ferret, de-

veloped at the University of Hertfordshire [155]. Ferret is an obvious first

choice for the file comparison tasks, both because it is efficient and because

it is an in-house tool. Ferret detects matching token trigrams wherever they

occur, and is therefore useful for finding similarity between files even when

copied sections are subject to replacement or rearrangement [157, 158].

In this chapter, Ferret is introduced, and its use with program code is

discussed. Example files are then provided for illustrating Ferret and the

other similarity detection tools used in this research. Next, the outputs from

Ferret are described. During this research, features for machine learning

were created by finding new ways to analyse these outputs. The analyses

are described in the last three sections of this chapter.

6.1 Background

Ferret was originally developed by the UH Plagiarism Detection Group to

measure similarity between text files [155, 157].1 The similarity measure

is based on trigrams – sets of three consecutive words. For example, the

phrase “sequences of three consecutive words” produces the three trigrams:

“sequences of three”, “of three consecutive” and “three consecutive words”.

1http://homepages.stca.herts.ac.uk/˜comqpcl/ferret.html

75

76 CHAPTER 6. FERRET

Ferret accepts as input a list of files for comparison. Processing effi-

ciency is achieved by making a single pass through each file, during which

an inverted index is constructed. The file identifier is recorded once against

each trigram it contains, using a table to which new trigrams are added as

they are encountered. The resulting trigram to file index is used to calculate

the similarity between two documents using the Jaccard coefficient, also

known as the resemblance measure [162, p.299].

Jaccard coefficient =
| Intersection of the distinct trigrams |
| Union of the distinct trigrams |

This measure has a value between 0 and 1; 0 means there are no matching

trigrams and therefore no matched text, while a score of 1 shows that all of

the trigrams in one text also occur in the other. Although, in theory, this

does not necessarily mean that the two texts are identical, because trigram

frequency is not measured; in practice, two texts with a similarity score of

1 are unlikely to be different. One way in which exact repetitions of every

trigram can occur in two non-identical sequences is illustrated in Figure 6.1.

In the sequences x and y, the blocks labelled ‘a’–‘d’ represent words.

Figure 6.1: Sequences x and y are two sequences with a similarity score of 1. The
same 4 trigrams, shown below the sequences, are repeated in the files.

6.2 Program code

Ferret has also been adapted for use with program code, with lexical tokens

used in place of words.2 Variations in white-space and layout are ignored,

2Currently with a tokeniser for C-type languages

6.2. PROGRAM CODE 77

because the code is tokenised. A study by Rainer et al. shows that although

some language specific trigrams, such as “) } ; ” or “ i = 1 ”, occur

often, the frequency of trigrams in program code follows a similar Zipfian,

or negative exponential, distribution to that observed in trigrams of words

in a natural language sequence [156]. Rainer et al. obtained this distribu-

tion [194, Fig.1] by analysing the files in every snapshot in their code base,

taken from the SAC (Single Assignment C)3 project, and repeated here on

the left of Figure 6.2.

To look at the trigram distribution over a broader selection of code,

the files in the last release of each of the eighty-nine projects studied for

this research (see Chapter 12) were analysed. This code base consists of

7,449 files, a similar number to the 7,819 files analysed by Rainer et al.

There is a difference in the number of trigrams, the multiple projects have

2,749,150 trigrams, nearly four times as many as the 722,425 in the Rainer

et al. study. The Zipfian distribution is based on plotting the frequency of

the trigram against its rank, 1 for the most frequently occurring, 2 for the

next most frequent, and so on. The right-hand graph in Figure 6.2 shows a

distribution of similar shape to that of Rainer et al. There is one difference

which reflects the data: analysing one project across a number of releases

3http://www.sac-home.org/

Figure 6.2: On the left, the first 10,000 trigrams of 0.72m trigrams, ranked by fre-
quency, from Rainer et al. [194, Fig.1]. On the right, the first 10,000 of
2.75m trigrams in the 89 projects. Frequency is plotted against rank.

78 CHAPTER 6. FERRET

inevitably produces more frequently occurring trigrams than analysing one

release of each of a number of projects.

Rainer et al. state that this type of trigram distribution in code indicates

that Ferret should be as effective in matching program texts as it is in

matching document texts because the majority of the trigrams appear in

few files [194]. However, the trigram distribution is only part of the story.

What is also interesting is the ratio of tokens to trigrams in code against the

ratio of words to trigrams in text.

To compare the two, the code in one release of each of the projects used

in this research was analysed, along with fifty books from the Gutenberg

project. In addition, figures were taken from an analysis of corpora previ-

ously undertaken by Lyon et al. [157].

The books from the Gutenberg project comprise twenty books by Charles

Dickens, and thirty other books, each with different authors. Each of the

books had the preamble and the licence at the end removed. The books

were analysed to find the number of trigrams to the number of words in

Figure 6.3: The ratio of trigrams to words/tokens in the books, corpora or projects
against the number of words (books and corpora) or tokens (projects).

6.2. PROGRAM CODE 79

each one. The source code was also analysed to find the trigram to token

ratio in one release in each project.

These ratios are plotted in Figure 6.3 together with data on three of the

five corpora analysed by Lyon et al.: TV News corpus (335 documents), the

Federalist Papers (81 documents) and one of the three from the Wall Street

Journal corpora (whose size is not reported).4

Unsurprisingly, the graph shows that, for each group, there is a slight

trend for the ratio of trigrams to words/tokens to decrease as the number

of words/tokens in the documents increases. The distinction between text

and code is clear. For example, at 100,000 words or tokens, there are about

90% as many trigrams as words in the books, around 75% as many trigrams

as words in the corpora, but, on average, in the project code the ratio of

trigrams to tokens is just 25%.

‘Singleton trigram’ is the name used by Lyon et al. to describe a trigram

which occurs in only one document in a set. There is less variation between

text and code in the ratio of singleton trigrams to the total trigrams in the

sets. Lyon et al. report ratios of 85–87% on the three corpora plotted, and

for the larger corpora 82% and 77%, while the mean ratio of singletons to

the total trigrams in the project code is just over 80%.

However, because of the small proportion of trigrams to tokens com-

pared to the trigrams to words, the ratio of singleton trigrams varies be-

tween text and code. Over the three corpora, the ratio of singleton trigrams

to the total number of words in a document is around 61%. This figure

is close to the 66% of singleton trigrams to words in the set of 20 Dickens

books (2.2m singleton trigrams to 3.3m words). In contrast, in the projects,

the mean ratio of singleton trigrams to total tokens is just under 20%, with

a range of 2–45%.

These figures indicate that although in general there are sufficient sin-

gleton trigrams to make it possible to match a file in one release to the correct

one in another release, the task will be more difficult for source code files

4The fourth and fifth sets are not shown because they have 4.5m and 38.5m words, which

squashes the rest of the data points on the graph. Their ratios are 0.54 and 0.37 respectively.

80 CHAPTER 6. FERRET

than for files of text, and especially difficult in projects with few singleton

trigrams. The problem may be compounded when the section of code to be

matched is small, has been edited, or both. Similarly, it is harder to detect

duplication or copying between files of code than between files of text.

6.3 Files to illustrate similarity tools

Four example files are used to illustrate both Ferret and the other similarity

detection tools applied in this research (see Chapter 11). The first file,

cnp-1.c, listed in Figure 6.6, is for calculating the number of combinations

and permutations which can be made from a subset of items taken from

a set of a given size. Two other files are the amended version of cnp-1.c,

called cnp-2.c, and a new file, fact.c, formed when the first file is split

by moving the factorial function, see Figure 6.4. These two files are shown

in Figure 6.7. A small file, power.c, on the right of Figure 6.5, is used for

illustration where larger files would produce unwieldy output.

Figure 6.4: The relationship between the 3 example C files, cnp-1, cnp-2 and fact.c

//fact.c // power.c

long factorial (int n) long power (int base, int n)
{ {

long result = 1; long result = 1;
int i; int i;
for (i = 1; i ≤ n; i++) for (i = 1; i ≤ n; i++)

result *= i; result *= base;
return (result); return (result);

} }

Figure 6.5: Code for fact.c and power.c.

6.3. FILES TO ILLUSTRATE SIMILARITY TOOLS 81

// cnp-1.c

#include <stdio.h>

long factorial (int n);
long combinations (int n, int k;
long permutations (int n, int k);

int main()
{

int setsize, subsetsize;
printf (“Set size? ”);
scanf (“%d”, &setsize);
printf (“Subset size? ”);
scanf (“%d”, &subsetsize);
if (setsize < 0 { subsetsize < 0 { setsize < subsetsize)
{

printf (“Mission impossible\n”);
return (1);

}
printf (“%ld combinations and %ld permutations of %d items

taken from %d \n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);

return (0);
}

long factorial (int n)
{

long result = 1;
int i;
for (i = 1; i ≤ n; i++)

result *= i;
return (result);

}

long combinations (int n, int k)
{

return (factorial(n) / (factorial(k) * factorial(n-k)));
}

long permutations (int n, int k)
{

return (factorial(n) / factorial(n-k));
}

Figure 6.6: Original code for finding combinations and permutations of a subset of
items, cnp-1.c. This file, and the two files which result from splitting it,
cnp-2.c and fact.c, shown in Figure 6.7 are used as a running example.

82 CHAPTER 6. FERRET

// cnp-2.c

#include <stdio.h>
#include “fact.c”

long combinations (int n, int k);
long permutations (int n, int k);

int main()
{

int setsize, subsetsize;
printf (“Set size? ”);
scanf (“%d”, &setsize);
printf (“Subset size? ”);
scanf (“%d”, &subsetsize);
if (setsize < 0 { subsetsize < 0 { setsize < subsetsize)
{

printf (“Mission impossible\n”);
return (1);

}
printf (“%ld combinations and %ld permutations of %d items

taken from %d\n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);

return (0);
}

long combinations (int n, int k)
{

return (factorial(n) / (factorial(k) * factorial(n-k)));
}

long permutations (int n, int k)
{

return (factorial(n) / factorial(n-k));
}

// fact.c

long factorial (int n)
{

long result = 1;
int i;
for (i = 1; i ≤ n; i++)

result *= i;
return (result);

}

Figure 6.7: Amended code for finding combinations and permutations of a subset
of items, split into 2 files - cnp-2.c (top) and fact.c (below).

6.4. SIMILARITY SCORES 83

6.4 Similarity scores

As already explained, Ferret provides the Jaccard coefficient, or similarity

score, for two files.5 Broadly, five factors affect this similarity score:

• the amount of matching code,

• the size of each document,

• repetitions of trigrams in the documents and whether they are in the

5An example similarity score calculation can be found in Appendix E.

(a) Twenty of the sixty to-
kens in each file are
the same, making the
similarity 18

98 = 0.18.

(b) More matched code in
files of the same size
as Fig.6.8a. Similarity
is 33

83 = .40.

(c) The same matched
code as Fig. 6.8a in
smaller files. Similar-
ity is 18

28 = 0.64.

(d) Repeated trigrams in
the unmatched code
in the two files. Simi-
larity is 18

90 = 0.20.

(e) The matched code is
scattered through the
second file. Similarity
is 12

104 = 0.115.

(f) The matched code is
edited in the second
file. Similarity is 9

107 =
0.085.

Figure 6.8: The effect of changes to the amount of matched code, to file size, to
trigram repetitions and to layout in the matched code. Darker coloured
blocks with letters show matched code, and blank pale blocks represent
tokens in unmatched and unique trigrams.

84 CHAPTER 6. FERRET

matched portions of code,

• whether the matched code is contiguous or scattered,

• and whether there is editing within the “matched” sections of code.

The effect on similarity scores of each of these factors is illustrated in

Table 6.8. In the diagrams, matched code is shown in colour with a letter

or number to identify the token. Unmarked ‘tokens’ are assumed to be

unique. Figure 6.8a is the example against which the others are compared.

It is clear that either more matched code, Figure 6.8b, or smaller containing

files, Figure 6.8c, increase the similarity score. Figures 6.8d, 6.8e and 6.8f

show files of the same size as those in Figure 6.8a with the same number

of matching tokens. Figure 6.8d depicts files with repeated trigrams in the

unmatched code, thus reducing the total number of trigrams and increasing

the similarity score. Likewise, if the matched code contains repeated tri-

grams, the similarity score is reduced. In Figure 6.8e the code in the second

file is scattered and in Figure 6.8f the code is edited; in each case the number

of shared trigrams, and therefore the similarity score, is reduced.

The basic output from Ferret is a set of comparisons, one for each pair

of files, listing the name of file 1, the name of file 2, the number of distinct

trigrams common to the two files, the number of distinct trigrams in file 1, in

file 2, the similarity measurement and containment of each file in the other.

The containment of file A in file B is calculated by dividing the number of

trigrams appearing in both files A and B by the number in file A (|A
∩

B|
|A|).

An example of this output is given in Figure 6.9.

common file 1 file 2 simil- cont’t cont’t
file 1 file 2 trigrams trigrams trigrams arity 1 in 2 2 in 1

../rel-n/filea ../rel-n+1/filea 1335 1453 1512 0.8190 0.9188 0.8829

...

../rel-n/filea ../rel-n+1/filez 46 1453 173 0.0291 0.0317 0.2659

../rel-n/fileb ../rel-n+1/filea 182 290 1512 0.1125 0.6276 0.1204

...

../rel-n/fileb ../rel-n+1/filez 0 290 173 0 0 0

...

Figure 6.9: Ferret output for files in consecutive releases of a project

6.5. FERRET XML REPORT 85

Similarity score and containment are rapidly calculated measures be-

tween two files. There is a trade-off between the speed of calculation and

the amount of detail provided about the similarity between files.

Other outputs are available from Ferret: a report of the trigram to file

(trigram-file) index (see Table 6.3, p.90) listing the trigrams and the files

in which they occur; reports for each comparison between a pair of files

highlighting the duplicated trigrams in the files, either in PDF or XML

format (see Figure 6.10, p.86).

The rest of this chapter describes methods developed in this research

to analyse the XML output and the trigram-file index to obtain further

information about the distribution of matched and unmatched trigrams and

the relationship between the files in the group presented for comparison.

6.5 Ferret XML report

The XML report produced by Ferret shows matched and unmatched

trigram sequences related to the source code (or text). The example in

Figure 6.10 is the report for a comparison between fact.c and power.c. In

the header section, the number of matched trigrams and the similarity score

for the pair of files is shown. For each document, the number of trigrams

and the containment of the file in the other file are given, along with the

source text, which is separated into sequences of tokens (or words) for

which the trigrams appear in the other file (tagged “copied”), and the rest

(tagged “normal”).

More information about the similarity between files can be recovered

by analysing the XML file to find patterns in the alternating sequences of

matched and unmatched trigrams in the code. The sizes of contiguous

blocks of code containing shared trigrams can be found, giving an idea of

the presence or absence of interesting similarity.

The sizes of these blocks of code can be expressed in terms of tokens,

characters, or lines of code, which are approximated here by deducting one

from the total number of new line characters in a sequence. The patterns

86 CHAPTER 6. FERRET

taken from the example XML file in Figure 6.10 are shown in Table 6.1.

Looking at the last copied section in the file fact.c, which is:

;
return (result);
}

there are seven tokens which are: ; return (result) ; }
These tokens consist of 1 + 6 + 1 + 6 + 1 + 1 + 1 = 17 characters.

There are 3 newline characters, so the estimated number of lines is 3-1=2,

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="uhferret.xsl" ?>
<uhferret>
<common-trigrams>29</common-trigrams>
<similarity>0.659091</similarity>
<document> <source>C:\...\power.c</source>
<num-trigrams>38</num-trigrams>
<containment>0.828571</containment>
<text>
<block text="normal"><![CDATA[long power (int base,]]></block>
<block text="copied"><![CDATA[int n)
{

long result = 1;
int i;
for (i = 1; i <= n; i++)
result *=]]></block>

<block text="normal"><![CDATA[base]]></block>
<block text="copied"><![CDATA[;

return (result);
}]]></block>
</text>
</document>

<document> <source>C:\...\fact.c</source>
<num-trigrams>35</num-trigrams>
<containment>0.763158</containment>
<text>
<block text="normal"><![CDATA[long factorial (]]></block>
<block text="copied"><![CDATA[int n)
{
long result = 1;
int i;
for (i = 1; i <= n; i++)
result *=]]></block>

<block text="normal"><![CDATA[i]]></block>
<block text="copied"><![CDATA[;
return (result);

}]]></block>
</text>
</document>
</uhferret>

Figure 6.10: Ferret XML report for a comparison between fact.c and power.c.

6.6. DENSITY ANALYSIS 87

which is a reasonable approximation, as the first semi-colon in the sequence

is only a small part of a line.

power.c fact.c
n c n c n c n c

Tokens 6 27 1 7 3 27 1 7
Characters 18 49 4 17 14 49 1 17
Lines 0 4 0 2 0 4 0 2

Table 6.1: The pattern of matched (c) and unmatched (n) code between power.c
and fact.c, shown in three different units: tokens, lines and characters.

6.6 Density analysis

Analysing the Ferret XML report as described in Section 6.5 finds contiguous

blocks of code, or identical copies in the code, like type-1 clones. When code

has been edited between releases, for example, by replacing identifiers, or

by a copy-paste-edit sequence, then the blocks of matched code will be

“gappy”, like those found in type-2 or type-3 clones [204, 238]. The idea

behind density analysis is to find these gapped blocks by matching blocks

of code which are nearly contiguous.

The alternating matched and unmatched blocks in the Ferret XML report

can be analysed to discover these larger blocks of densely matched tokens,

where most, but not all, of the tokens match. To illustrate, a contrived ex-

ample is shown in Figure 6.11. The original factorial file, fact.c, is amended

to become fact-2.c, in which the function name is changed from “factorial”

to “fact”, “n” to “num”, and “result” to “res”. These are the type of changes

which may be made in a simple attempt to disguise plagiarism, or in the

renaming of identifiers to suit a new location. The result of comparing the

two files with Ferret is shown in Figure 6.12, where matched trigrams are

highlighted in bold blue text.

The matched and unmatched tokens can be represented in shorthand as

a pattern of blocks of copied and non-copied tokens as follows:

(n 5)(c 3)(n 1)(c 14)(n 1)(c 4)(n 1)(c 5)(n 1)(c 3).

88 CHAPTER 6. FERRET

This means that 5 unmatched tokens are followed by 3 matched tokens,

then 1 unmatched, 14 matched, and so on.

The method developed for density analysis uses a top-down algorithm,

which is described in detail in a technical report [96, pp.8-14], or briefly

at http://homepages.stca.herts.ac.uk/˜gp2ag/density_analysis_overview.html,

with diagrams. The copy patterns used in this explanation are based on

tokens but can also be expressed in lines or characters.

In brief, the tool finds dense blocks based on three main parameters:

minimum density, minimum block size and maximum gap size. Density is

calculated by dividing the number of matched tokens by the total number

of tokens in the sequence. In the example above, the first unmatched block

of 5 tokens would be excluded from the pattern, leaving 33 tokens, of

which 29 are matched, a density of 29
33 = 0.88. To avoid selecting blocks

with few tokens, which are likely to be incidentally similar rather than the

product of moved or copied code, a minimum block size is specified by the

number of matched tokens it contains. Maximum gap size is the maximum

number of consecutive unmatched tokens permitted within a dense block.

For example, a sequence such as ((c 200)(n 100)(c 200)) has a density of

0.8, however, this is likely to be considered as two separate copied blocks

rather than one edited block. The maximum gap ensures that sequences of

this type are split into two blocks. There are two other parameters used in

this analysis. The first allows a choice of unit: tokens (or words in text),

characters or lines. The second allows a choice of block selection criterion,

which can be based on the highest density, on the most copied tokens, or on

//fact.c // fact-2.c

long factorial (int n) long fact (int num)
{ {

long result = 1; long res = 1;
int i; int i;
for (i = 1; i ≤ num; i++) for (i = 1; i ≤ n; i++)

result *= i; res *= i;
return (result); return (res);

} }

Figure 6.11: Code for fact.c and an amended version fact-2.c.

6.6. DENSITY ANALYSIS 89

Block Copied/Non-copied Copied Total Will be selected
Name Pattern tokens tokens Density because most ...

a ((c 9)(n 1)(c 10)(n 1)(c 9) 27 30 0.90 dense
b ((90)(20)(80)(20)(90)) 260 300 0.87 copied tokens
c ((80)(20)(50)(20)(30)(10)(60)(10)(30)) 250 310 0.81 tokens overall

Table 6.2: Three dense blocks illustrate the selection criteria.

the largest total number of tokens, in a block. For example, given the three

blocks, a, b and c, in Table 6.2, the most dense is block a, the block with the

most copied tokens is block b, and block c has the highest total number of

tokens.

This method of analysis is used in two ways, first, in finding dense

blocks of similar code between files, which are analysed to provide features

for the machine learning experiments (see Chapter 14). Second, the idea has

been developed to provide a prototype stand-alone visualisation tool which

Figure 6.12: Ferret comparison between the files fact.c and fact-2.c.

90 CHAPTER 6. FERRET

.
stdio . h FILES:[0 1] ; int main FILES:[0 1] % ld combs FILES:[0 1]
. h > FILES:[0 1] ; int i FILES:[0 2] % ld perms FILES:[0 1]
. c ” FILES:[1] ; printf (FILES:[0 1] d ” , FILES:[0 1]
h > # FILES:[1] ; scanf (FILES:[0 1] d \n ” FILES:[0 1]

h > long FILES:[0] ; if (FILES:[0 1] d items taken FILES:[0 1]
> # include FILES:[1] ; return (FILES:[0 1 2] & setsize) FILES:[0 1]
> long fact FILES:[0] ; } long FILES:[0 1] & subsize) FILES:[0 1]
.
int n) FILES:[0 1 2] main () FILES:[0 1] ld perms of FILES:[0 1]

int n , FILES:[0 1] { long result FILES:[0 2] and % ld FILES:[0 1]
.

Table 6.3: Extract from the Ferret trigram-file index for cnp-1.c [0], cnp-2.c [1] and
fact.c [2]. The trigrams are listed with the files in which they appear. For
example, “h > #” is only in file 1, while “int n)” is in all 3 files.

can be used to find and display dense blocks from any Ferret XML file [92].

It highlights areas where there are gapped matches in the text, which may be

the result of obscured plagiarism or a copy-paste-edit operation on the code.

It is especially useful where the files being compared are large, providing

easy access to the interesting parts of the file. Details of this prototype

can be found in Appendix F, (or at http://homepages.stca.herts.ac.uk/˜gp2ag/

density.html).

6.7 Ferret trigram-to-file index

Apart from the pairwise comparisons, Ferret also provides access to its

trigram-file index. Table 6.3 shows an extract from the trigram-file index

output by Ferret when the three files cnp-1.c (file 0), cnp-2.c (file 1) and

fact.c (file 2) are compared. The trigrams are shown together with the files

Key Present in No.of trigrams

[0] cnp-1.c only 3
[1] cnp-2.c only 9
[2] fact.c only 0
[0 1] cnp-1.c and cnp-2.c 141
[0 2] cnp-1.c and fact.c 29
[1 2] cnp-2.c and fact.c 0
[0 1 2] all 3 files 6

Table 6.4: Trigrams shared by different combinations of the 3 example files

6.8. SUMMARY 91

in which they appear. For example, the trigram “ h > # ” appears only in

the file cnp-2.c, shown in the report as “FILES:[1]”, whereas “ int n) ” is in

all three files, “FILES:[0 1 2]”. These examples are highlighted in the table.

The trigram-file index can be analysed to find out how many trigrams

are shared by different combinations of files. The distribution of trigrams

between the files can give an indication of their relationship. For example,

when a file is split without further edits, such as when cnp-1.c is split to

become cnp-2.c and fact.c, the expectation is that most of the trigrams in

cnp-1.c will be shared with one or other of cnp-2.c and fact.c. It is possible

that each file may have a few trigrams which occur only in that file as the

code is normally disturbed by a split. In a simple split, it is unlikely that

there will be many trigrams shared by the amended and new files which

are not also shared by the original file.

Analysis of the trigram-file index, shown in Table 6.4, supports this

expectation; the majority of the trigrams, 170 out of 188, are shared either

by cnp-1.c and cnp-2.c “FILES:[0 1]” or cnp-1.c and fact.c “FILES:[0 2]”.

6.8 Summary

The copy detection tool Ferret was introduced in this chapter. Factors which

impact on the similarity score between files were identified. A comparison

between files of natural language text related by topic or by author, and

files of source code text related because they belong to the same project,

showed that trigrams in source code occur more frequently in a set of files

than trigrams in text. This makes the task of matching files across releases

difficult, in that multiple files share the same trigrams and there are fewer

singleton trigrams.

All reductions used in comparing code, such as the transformations

considered in Section 2.2, result in some loss of the information in the

original code. Reducing code to a set of trigrams means that location and

frequency information is lost. However, because the matched trigrams are

subsequently mapped back to the code, and output as an XML report, this

92 CHAPTER 6. FERRET

information can be recovered to some extent.

Ferret is moderately robust to identifier renaming (see Figure 6.13).

However, by analysing the density in the sections of code, copied and not

copied, in the XML report, blocks of code with replacements can be found.

An early prototype tool based on this analysis was also introduced.

Ideas for analysing another output of the Ferret tool, the trigram-file

index, were also outlined, and these ideas are developed in the next two

chapters.

Figure 6.13: The impact on similarity of renamed tokens. In this example three of
the twenty tokens are renamed, bringing the similarity from 1 to 0.5.
At 0.85 density, the whole block would be identified as a gapped copy.

Chapter 7

Trigram analysis

As described in Chapter 6, Ferret normally uses the trigram-file index to

calculate similarity scores for pairs of documents in a set. The similarity

measure between two files is the ratio of the number of trigrams they share,

to the number they contain in total, |A
∩

B|
|A∪B| in Figure 7.1.

This chapter considers alternative ways to analyse the trigram-file index

to identify relationships between files. For example, between one file and

the rest of the set; between pairs of files in the context of the whole set; or

between a small group in the context of the whole set of files.

There is inherent similarity in program code because of the constraints

of the language and because of idiomatic style [16, 33]. This similarity may

be increased when documents are drawn from a related set, such as files

from the same project, or from a set of student assignments [52]. When

comparing files, this background similarity can obscure more interesting

specific similarities.

Figure 7.1: The Venn diagram represents the trigrams in the files A and B.

93

94 CHAPTER 7. TRIGRAM ANALYSIS

In the next section, similarity in program code is discussed and com-

pared to similarity in natural language text. Measures which discount

background similarity and target specific relationships between files can

be derived from the trigram-file index. These measures differ depending

on the application; those for collusion detection and for software origin

analysis are described in Sections 7.2 and 7.3 respectively.

7.1 Similarity in program code

In any group of documents there are elements which occur frequently. For

example, articles and prepositions will appear in most English language

texts. If the documents are on the same subject, topic-related words may also

be repeated [23, 59]. In program code, keywords, idioms such as “for (i=0;

i<n; i++)” , and common constructs, such as “#include <stdio.h>” in C,

will appear in many files. Other causes of similarity between documents

within and across projects are considered in the next two sections.

7.1.1 Within-project similarity

In software origin analysis, the interest is in code which has moved between

files. For example, code from files which have disappeared from the system

may have moved to one or more files in the next release. Similarity measures

offer one way to try to find out where this code has gone. Within a project,

background similarity between files can be high because:

• there are common function calls in the project,

• there is an “in-house” style, or

• a copy-paste-edit sequence has been used to create new code [33, 204].

When a file has simply been renamed, the location of the new file will be

evident because the two files have a similarity of, or close to, one. However,

where the file has been edited, split, or merged with another file, there

may be a number of files with similarities of the same order as the true

destination file(s).

7.1. SIMILARITY IN PROGRAM CODE 95

7.1.2 Across-project similarity

Investigating similar code in programming assignments differs from inves-

tigating similar text in essay-based assignments. There is likely to be more

duplication in code-based assignments [52, 83, 99, 174], because of:

1. code typically provided by the tutor and therefore likely to be in most

submissions, such as code used in exercises and examples during the

course, or template code provided as part of the assignment; or

2. the constraints of the task, which may lead to similar code, or the

requirement for the students to use a development tool which auto-

matically produces code (e.g. Microsoft Visual Studio(TM)).

When comparing assignments using the usual proportional measures,

similarity between the files may be high in a number of situations where

copying has not taken place. This is particularly so when two students

have done little independent work. For example, if they have used in-class

examples and not developed the ideas, they will share much of their code

with other students who do the same. Similarity will also be increased

when there is automatically generated code, which will be common to all,

or most, of the submissions. This code will have a greater impact on the

similarity between small files than between larger ones, if the similarity

measure does not take account of frequency of occurrence, or on the larger

files when frequency is accounted for.

7.1.3 Comparing similarity scores in text and code

In this section, the similarity between program code files is compared to

that of files of text of approximately the same size, to establish whether

there is a difference between the two.

Analysis of random selections of 10,000 words from books in the Guten-

berg Project by Lyon et al. [154] showed the highest Ferret similarity score

between texts belonging to the same book to be 0.03, and between texts

from different books, 0.002.

96 CHAPTER 7. TRIGRAM ANALYSIS

In the projects selected for origin analysis (see Chapter 12), the mean line

count per file is 260, and the mean token count per line is 7, making mean file

size around 1820 tokens. To find a measure of similarity in natural language

text to compare to within-project similarity and inter-project similarity, 21

Dickens books, and 84 books1, by different authors were selected, also from

the Gutenberg project. The books have a mean of nearly 11 words per line,

so that 170 lines is approximately equivalent to 1820 words.

Chunks were taken from the books by selecting a random start point and

a random number of lines between 10 and 330. The chunks were selected

in the following groups:

1. 1 from each of the mixed set of 84 books

2. 1 from each of the 21 Dickens books, and

3. 84 non-overlapping chunks from one book, Bleak House.

The resulting chunks ranged in size between 41 to 3184 words, with

a mean of 1816. Mean similarity between the mixed chunks was 0.0013,

that between the Dickens chunks was 0.0025, and between the Bleak House

chunks, 0.003. The figures for separate books are similar to those of Lyon

et al., but those from the same book are very different. The range for pairs

of Bleak House chunks is 0.0–0.0135, and for the set of complete Dickens

books, which contain a mean of 117,000 words is 0.000004–0.0667. The

maximum similarity value for the chunks of 10,000 words of Lyon et al.,

0.03, lies between these two maximum values, indicating that document

size is likely to be a factor in similarity. It therefore seems reasonable to

compare 0.003, the within-book similarity for chunks of comparable size to

the files, to the within-project similarity in code.

The mean within-project similarity of the 89 projects collected for this

work, based on the most recent release of each project, is 0.034, more than

10 times that for the within-book chunks of a similar size to the project files.

It is therefore likely to be more difficult to separate relevant similarity from

incidental similarity in files of code than in files of text.

1The mean number of files per release in the projects is 84.

7.2. COLLUSION DETECTION 97

7.1.4 Stopping

In comparing natural language documents, stop-lists are sometimes used

to exclude common words, such as ”the” or ”a” in English texts, from

calculations of similarity between documents [20]. Han and Kamber [103]

state that beside these common words, stop words may also be context

dependent, so that words which occur frequently in the set of documents

to be compared are added to the list of excluded words.

The same principle can be applied to program code. Several collusion

detection tools, such as JPlag [189], Moss [3], and Plaggie [2] allow the user

to provide template code for exclusion from the similarity calculations.

This idea is extended here, so that all frequently occurring elements

within the set of documents are also excluded from the similarity mea-

sures, leaving only the less common elements accounted for. Ribler and

Abrams’ [199] use a similar method, highlighting elements in the code

which are unusual within the group, as shown in their graphs in Fig-

ures 5.4a and 5.4b (p.70). The application of these measures to collusion

detection and to origin analysis is discussed in the next two sections.

7.2 Collusion detection

Joy and Luck [120] highlight two reasons for one student to copy another’s

work: they are either unable to understand how to do the work, or are

unwilling to take the time to do so. In both cases, it might be assumed

that the ability or time needed to disguise the copied work is lacking. As

discussed in Chapter 2, unusual elements shared by two or more student

submissions trigger suspicion of inappropriate collusion.

Finding code which is unusual in the group, but which is present in two,

or a small group, of assignments can thus provide clues to inappropriate

collusion. The review of 29 approaches to source-code plagiarism detection

in Section 2.3 showed that the majority of the approaches focus on overall

file similarity, and not on unusual shared elements. In particular, none of

these approaches directly measure the unusual similarities between files.

98 CHAPTER 7. TRIGRAM ANALYSIS

Two reasons for code appearing in many files among a group of student

assignments were identified in Section 7.1.2: code provided for the course,

and code produced due to the constraints of the task. Either one or both

of these elements can be discounted by analysing the trigram-file index.

Provided code can be added to the set of documents presented for compar-

ison, allowing the trigrams in the code to be identified, and excluded from

similarity measures if required. To exclude commonly occurring code, the

number of documents in which each trigram occurs is taken into account.

7.2.1 Example trigram-file index

Table 7.1 gives an excerpt from a made-up trigram-file index to help explain

the analysis. Thirty-one files are compared, file [0] is the code provided for

the course, and files [1–30] are the student assignments. Trigrams are listed

on the left of the table and the files in which the trigrams occur are on the

right. Several interesting relationships between files are exemplified here.

The top three lines, section A, show a set of trigrams which are only

in one file. These trigrams represent code which is not shared by other

students and can be seen as an indication of the student’s individual effort.

The next four lines, section B, show trigrams shared by just two students,

numbers 12 and 24, indicating possible collusion. The trigrams in section D

also appear in the code of students 12 and 24, but are shared by a few other

students as well. It is possible that this is the result of collusion among a

small group, or that the two students, 12 and 24, have copied from other

students. There is evidence, from membership of the small groups of files

sharing the trigrams in sections C, D, and E, that student 19 is working

with students 12 and 24. Of the thirteen trigrams for student 19, six are

in the provided code and therefore unlikely to be cause for concern. The

remaining seven are shared with student 24, and five by both 12 and 24.

The six trigrams in section F are in the provided code [file 0], unsur-

prisingly, more assignments include these trigrams. The three trigrams in

section G also appear in a large number of files, although not in the provided

code. Sharing these trigrams will not usually indicate collusion.

7.2. COLLUSION DETECTION 99

Trigram Files
.....

A. unique identifier = -1 FILES:[17]
} unique identifier = FILES:[17]
else } unique identifier FILES:[17]

B. char* id123 , FILES:[12 24]
void func234 (FILES:[12 24]
; shiftleft (FILES:[12 24]
if (xyz FILES:[12 24]

C. ; struct abc FILES:[19 24]

D.] ; struct FILES:[12 19 24]
* list) FILES:[12 17 19 24]
char timestr [FILES:[2 12 19 24]
nodedata) ; FILES:[2 12 19 24]
timestr [50 FILES:[1 12 14 24]

E.) , frame FILES:[13 19 20 24]
int a = FILES:[3 8 12 16 17 19 20 22 24 25 27 29]

F. int y = FILES:[0 4 6 7 9 13 16 17 19 20 22 24 27 29]
= 1 ; FILES:[0 1 3 5 6 7 8 10 12 14 15 17 18 19 20 21 23 24 25 26 27 28 29 30]
printf (“ FILES:[0 1 3 4 6 7 9 10 12 14 15 17 19 20 23 24 25 27 28 29 30]
= (” FILES:[0 1 3 5 9 12 13 17 19 24]
static void { FILES:[0 2 3 4 5 6 7 8 11 13 14 15 17 19 22 24 25 26 28 30]
(i = FILES:[0 1 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19

21 22 23 24 26 27 28 29 30]

G. a = b FILES:[1 2 4 5 6 7 9 11 12 13 16 17 18 20 22 23 25 26 27 29 30]
d > f FILES:[1 2 3 4 5 6 7 9 11 12 13 15 16 17 18 21 23 24 25 27 28 29]
g == h FILES:[2 3 4 6 7 8 9 10 13 14 15 17 20 21 22 23 24 25 26 28 30]
.....

Table 7.1: Example extracts from a trigram-file index showing trigrams and the files
where they occur. For example, the trigram “if (xyz” is in just two
files, numbered 12 and 24, while the trigram “(i =” is in the majority of
the 31 files. The letters A–G are not part of the report, but section labels.

This example shows how the trigram-file index can provide useful in-

formation about the interaction between the files presented for analysis.

In the next three sections, measurements based on the trigram-file index

are discussed. First, amendments to the standard proportional similarity

measure are considered. Then two count-based measures are described:

one counts the trigrams shared by only two files within the group, and the

other extends this to count the trigrams shared by small groups of files.

100 CHAPTER 7. TRIGRAM ANALYSIS

7.2.2 Proportional trigram-based measures

Three variations on proportional measures which exclude commonly oc-

curring trigrams are considered here. Instead of comparing the whole of

the two files, elements are excluded from the comparison when calculating

their similarity. These elements are:

1. trigrams in code provided as part of the course (P),

2. trigrams in code shared by the majority of other students (O), and

3. both of these sets of trigrams.

In Figure 7.2 the files A and B are represented in red and blue, as in

Figure 7.1, also shown are the trigrams in the provided code (P) and in the

other files in the group (O). Measure 1, which excludes the trigrams in the

provided code, shown in Figure 7.3a, is

|(A∩B)\P|
|(A∪B)\P|

and measure 2
|(A∩B)\O|
|(A∪B)\O|

excludes commonly occurring code, i.e. that which occurs in other students’
work, shown in Figure 7.3b. Combining the two previous exclusions gives
measure 3

|(A∩B)\(P∪O)|
|(A∪B)\(P∪O)|

which will generally be the same as that which excludes other students’

code, unless one student has used provided code which others have not,

Figure 7.2: Venn diagram representing the trigrams in the files A and B, with those
in the provided code (P) and those in other students’ files (O).

7.2. COLLUSION DETECTION 101

Ferret Provided Code shared by
Files similarity score code excludes others excluded

12 and 24 15
21 = 0.71 11

15 = 0.73 4
4 = 1

17 and 24 11
24 = 0.46 5

15 = 0.33 0
3 = 0

Table 7.2: Different similarity measures based on trigram analysis

for example, by using alternative or advanced ideas introduced during the

course which are not essential to the completion of the assignment.

To illustrate the measures, imagine that the trigrams in Table 7.1 are the

only trigrams in the set. Three similarity measures, calculated for files 12

and 24, and for files 17 and 24, are shown in Table 7.2. The first of these

measures is the standard Ferret score, the second excludes trigrams which

are in the provided code, and the third excludes trigrams shared by any

file other than the two of interest. As expected, those for files 12 and 24 are

high, but as the common trigrams are removed, the similarity between the

two files increases. Scores for the files 17 and 24 change as the method of

calculation changes, from 0.46, through 0.33 to zero. Although the example

is drawn from a very small subset of the trigrams in the set of documents,

it shows that by removing the commonly occurring trigrams, the more

interesting similarity between documents is clarified. An empirical study

of a set of assignments is described in Chapter 9.

(a) Excluding provided code, (A
∩

B)\P
(A
∪

B)\P (b) or code shared by others, (A
∩

B)\O
(A
∪

B)\O

Figure 7.3: Venn diagrams representing the trigrams in the files A and B, with those
in the provided code (P) or those in other students’ files (O).

102 CHAPTER 7. TRIGRAM ANALYSIS

Analysis of the trigram-file index gives the number of trigrams shared

by different combinations of documents, as in the extract in Table 7.3. For

example, at the top left of the table, document 12 has 35 unique trigrams,

while document 5 has 7,902. Below this, the uniquely shared trigrams are

shown, such as documents 12 and 24 which share 586 trigrams not in any

of the other documents in the group. It is from this analysis that measures

are calculated.

7.2.3 Measures based on counting trigrams

When a portion of a large document is copied to another document, the

proportion of copied trigrams to the total may be small. This means that,

although significant, copying may be missed. In Figure 7.4, file B is com-

pared with two other files, A and C. The similarity score between files A

and B is 100
300 = 0.33, and between files B and C is 200

1000 = 0.2. File B is more

likely to be derived from file C than file A, but the similarity score between

files A and B is higher than that between files B and C.

No. of No. of Document No. of No. of Document
docs trigrams identifiers docs trigrams identifiers

1 35 (12) 4 5 (0 6 10 20)
1 165 (24) 4 10 (2 12 14 24)
1 720 (19) 4 25 (12 21 24 29)

... 4 37 (12 16 21 24)
1 7407 (17) ...
1 7902 (5) 5 18 (1 12 19 21 24)

... 5 24 (5 12 19 24 30)
2 50 (12 19) ...
2 154 (19 24) 6 48 (0 6 13 18 23 29)
2 586 (12 24) ...

... 10 30 (0 1 3 6 7 9 11 13 17 21)
3 13 (6 12 24) ...
3 16 (12 14 24) 15 22 (0 2 4 6 7 9 11 15 17 20 23 26 27 28 30)
3 42 (12 21 24) ...
3 65 (12 16 24) 20 69 (0 2 4 5 7 8 10 12 14 15
3 72 (12 24 30) 17 19 21 23 24 25 27 28 29 30)
3 88 (12 21 24) 20 71 (0 1 2 3 6 7 9 11 12 13
3 240 (12 19 24) 14 16 17 18 19 20 22 24 26 28)

Table 7.3: The triples in this extract show the number of trigrams shared by a group
of documents. For example, the top left triple shows that document 12
has 35 unique trigrams; and the top right, that 4 documents, 0, 6, 10, and
20, share 5 trigrams which are not in other documents.

7.2. COLLUSION DETECTION 103

(a) |A|=|B|=200, |A∩B|=100 (b) |C| = 1000, |B| = 200, |C∩B| = 200

Figure 7.4: File B has 200 trigrams and is compared to two other files, A and C. File
A also has 200 trigrams and the 2 files share 100 trigrams. File C has
1000 trigrams and contains file B.

One option which overcomes the potential drawbacks of proportional

measures where file sizes differ is to count the number of trigrams uniquely

shared by each pair of files, |(A∩B)\(P∪O)| in Figure 7.5. This count gives

an idea of the amount of code shared by only the two documents.

Counting trigrams is useful in other respects: for giving a measure of

individual effort, for measuring engagement with tasks set during a course,

and for measuring group co-operation.

Trigrams which occur in only one document give an idea of its “unique-

ness”. This may be seen as a measure of individual effort. Alternatively, if

(a) Little unusual similarity (b) Much unusual similarity

Figure 7.5: Files A and B share the same number of trigrams. On the left, the
majority appear in other files in the group, while on the right, there are
a large number of “uniquely shared trigrams”, |(A∩B)\(P∪O)|.

104 CHAPTER 7. TRIGRAM ANALYSIS

there is suspicion that code has been sourced from the internet, the unique

trigrams can be used as search terms.

If the students’ work is regularly committed to a repository, then a mea-

sure of each student’s engagement with exercises set during the course can

be found by counting trigrams shared with the provided code. For example,

A
∩

P or B
∩

P in Figure 7.5. It may be difficult to determine the number

of trigrams which should be shared, as the provided code will probably

need to be edited to complete the exercises. However, assuming some of

the students are doing the exercises, a baseline level should be apparent,

and students falling behind with the set work can then be identified.

7.2.4 Extending unique share counts

The similarity measure discussed in Section 7.2.3 focuses on uniquely shared

trigrams. Collusion is not always between just two people, but may also

be among a group. For example, in the excerpt in Table 7.1, students 12

and 24 not only uniquely share 3 trigrams, but also share 5 other trigrams

with one or two others (section D). This may be because of group collusion

or because the pair working together have had help from others in parts of

their work, but is less likely to be due to incidental similarity.

The count of trigrams shared by just two students can be extended to

include the trigrams shared by the two and by a small group of others. In

Figure 7.6, the area shared by the two files A and B, and by other files except

for the provided code, ((A
∩

B
∩

O)\P), is shown split into sections. Some

of these trigrams will be shared by files A, B, and just one of the other files.

The other file can be any one of the rest of the group. In the top left part

of the diagram, three such groups are shown. These groups are formed by

A, B, and each of the files labelled i (green), ii (pink) and iii (cyan). In the

lower left section, three groups of four files which include files A and B are

shown in the same way.
One way to compute this extended count of shared trigrams is to weight

the trigrams shared by A, B, and n others according to the number of files
containing the trigrams. Illustrated in Figure 7.7, the two files, A and B,
uniquely share 100 trigrams, share 60 with any one of the other files, and

7.2. COLLUSION DETECTION 105

Figure 7.6: Two files may share trigrams uniquely, or may share trigrams which
are shared with few other files. This diagram illustrates the files A and
B, and examples of the way they may share trigrams with one other file
at the top, or two other files at the bottom.

240 with any two others. If the shared trigrams are weighted by 1
n+1 , the

weighted similarity count is:(
100 ∗ 1

1

)
+
(
60 ∗ 1

2

)
+
(
240 ∗ 1

3

)
= 100 + 30 + 80 = 210.

In this example, groups of up to four files are taken into account, however,

the method allows for calculation of any maximum group size.

Figure 7.7: Files A and B uniquely share 100 trigrams, share 60 which are also
shared with one other member of the group, and 240 with two others.

106 CHAPTER 7. TRIGRAM ANALYSIS

7.2.5 Making connections

Several of the plagiarism detection tools reviewed in Chapter 2 produce

graphs of clusters of similar files, for example, those shown in Figure 5.3

(p.69). In common with other similarity measures, the weighted trigram

counts between each pair of documents can be used to construct a similarity

graph for a set of files. Figure 7.8 shows a graph for a small example set of

six files [1–6]. The lengths of the connections are inversely proportional to

the weighted similarity between the file pairs, marked on the graph edges.

By setting a threshold value below which connections are removed,

groups within the set can be found. For this example, connections of less

than the mean weight, 160, are removed, leaving the three subgraphs shown

in Figure 7.9. File 2 is unrelated to the other files in the set, files 1 and 5 are

related, and files 3, 4 and 6 form a totally connected group. Relationships

between the files indicate possible collusion between the authors.

Different structures will indicate different types of co-operation in a

group. For example, the group shown in Figure 7.10, where file x is at the

centre of the four files, labelled a–d. Here, file x could result either from a

student having had help from a number of others (a, b, c and d), or from

student x providing help to the others in the group in different aspects of the

work. Connections between the “satellites” may mean that the connected

Figure 7.8: An example graph for a set of six files. The connection lengths are
inversely proportional to the weighted similarity between the files.

7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 107

Figure 7.9: Connections ≤ the mean weight, 160, are removed from the graph in
Fig. 7.8 leaving 3 subgraphs, showing that files 3, 4 and 6, and files 1
and 5 are related. File 2 is not especially similar to other files in the set.

students have given or received help in the same area, or that one student

has passed code taken from the source to another student.

Figure 7.10: A group centred on one document implies that the file at the centre is
either the source, or the recipient, of code in the other files.

7.3 The source or destination of code in origin analysis

When tracing the source or destination of code which has moved in a

restructured software system, a file which has been subject to change is

compared to all files in the next release to find target files from, or to which,

code has been moved. This comparison can be efficiently undertaken using

Ferret. However, as discussed in Section 7.1, similarity between files does

not necessarily mean that code has been moved from one file to the other.

108 CHAPTER 7. TRIGRAM ANALYSIS

Figure 7.11: A Venn diagram of the trigrams shared by a file which is split, Sn, its
amended form, Sn+1, and a new target file, T. This diagram corresponds
to the split file example cnp-1.c (Sn), cnp-2.c (Sn+1) and fact.c (T).

7.3.1 Split files

The Venn diagrams in Figures 7.11–7.13 show the distribution of trigrams in

three example file groups, where a file is split into new, existing, or multiple

files. The circles in these diagrams are placed to represent the approximate

overlap between the files: one in release n, Sn, in red, from which code has

been moved, the revised version of this file in release n+1, Sn+1, in blue,

and a number of target files, labelled T[m], also in release n+1, selected as

possible recipients of the code because of their similarity to the original file.

Figure 7.11 is the simple split file example, cnp-1.c, its revised form

cnp-2.c, and the new file fact.c (see pp. 81–82). The trigram analysis is

Figure 7.12: A split file where the extracted code is placed in an existing target file.
The trigrams from Sn are also mostly in either of the files Sn+1 or T, but
file T has more trigrams unique among this set of files than Fig. 7.11.

7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 109

Figure 7.13: A more complex split, where the code moved from Sn has been put in
target files 1, 2 and 3. Targets 4 and 5 are selected as likely recipients
of the extracted code because of their incidental similarity to Sn.

in Table 6.4 (p.90). Most of the trigrams from file Sn are either in Sn+1 or

T. A few trigrams are unique to the two larger files, the result of minor

adjustments to the code, and background similarity means that six trigrams

are shared by all three files. Figure 7.12 shows another file, from which code

is moved to an existing file. This is similar to the simple split in Figure 7.11,

but the target file T has more trigrams unique among this set of files.

A multiway split is depicted in Figure 7.13. The target files, labelled 1–5,

are selected because they are similar to Sn. Of these targets, files 1–3 are

the real targets, and files 4 and 5 are incidentally similar. File 4 shares code

with files 1, 3 and Sn, but the code shared with Sn is covered by files 1 and

3. File 5 shares code with Sn, and is why it has been selected as a possible

target, but the code is also shared with file Sn+1, so has not been moved.

Figure 7.14: The file Dn has been renamed or moved to become file T.

110 CHAPTER 7. TRIGRAM ANALYSIS

Figure 7.15: The file Dn has merged with the file Tn to create the larger file Tn+1.

7.3.2 Disappearing files

Figures 7.14–7.16 depict three possible destinations for a file which has

disappeared. Each of the disappearing files is labelled Dn and shown in

red. The target files are labelled T[m]. In the first diagram, 7.14, the file has

been renamed or moved, so that there is another file in the system which is

either identical, or, as in this case, very similar.

Figure 7.15 shows that the file Dn has been merged with the file Tn to

produce Tn+1, which contains the code from each of the files. In this case,

some of the trigrams are shared by the two original files, but this is not a

precondition of merging. The last diagram, 7.16, shows a disappearing file

which has split, with the code going to the target files T1 and T2. This is

similar to the simple split file except that the name of both files has changed.

Figure 7.16: This disappearing file, Dn, has split to become files T1 and T2. This is
like the simple split in Figure 7.11, but both files have new names.

7.3. SOURCE OR DESTINATION OF CODE IN ORIGIN ANALYSIS 111

Figure 7.17: The diagram on the left is similar to Figure 7.11. The files on the right
are the same size, but the target file trigrams are a subset of those in
the amended file, making the similarity (Sn

∩
T)\Sn+1

(Sn
∪

T)\Sn+1
= 0.

Other splitting configurations are not shown here.

7.3.3 Trigram-based measures

The file similarity measures suggested for collusion detection in Sections 7.2.2

and 7.2.3 exclude common code from the calculations. The same idea can

be used when measuring similarity between files for origin analysis.

The left-hand diagrams in Figures 7.17 and 7.18 are similar to those in

Figures 7.11 (split to a new file) and 7.12 (split to an existing file) respectively.

In the right-hand diagram in each figure, the files are similar to those on

the left, but do not represent split files, as the trigrams shared by Sn and T

overlap those of Sn+1. The trigrams in the group can be analysed to produce

various measures. For example: (Sn
∩

T)\Sn+1
(Sn
∪

T)\Sn+1
which excludes the trigrams

Figure 7.18: The left-hand diagram repeats Fig. 7.12. On the right, the target and
amended files overlap. Here (Sn

∩
T)\Sn+1

(Sn
∪

T)\Sn+1
will also be close to zero.

112 CHAPTER 7. TRIGRAM ANALYSIS

in the revised version of file Sn from the similarity measure between the

original and target files. In the examples, the measure will be zero for

non-split files and thus provide useful separation from split files. For real

examples, the distinction may be less clear, but should still be valuable.

The measure Sn
∩

[(Sn+1
∪

T)\(Sn+1
∩

T)]
Sn\(Sn+1

∩
T) excludes commonly occurring code,

i.e. that which occurs in all three files. This measure will be high if most of

the code is in only one other file, as the left-hand diagrams of Figures 7.17

and 7.18, and lower if the files are related as the right-hand diagrams.

Another example is the proportion of trigrams unique to a file to the

total in the file, such as Sn\(Sn+1
∪

T)
Sn

. The meaning of this measure depends

on the file in question. For the candidate split file, Sn, a high proportion of

unique trigrams indicates deletion from the file, or heavy editing. For Sn+1,

the amended version of the file, it means there is edited or additional code

in the file. If the target file has more than a few unique trigrams, this may

mean that the file already existed, or that other code was added to the file.

These, and other proportional measures are used as features for the

classification of restructured files by machine learning, and are described

in full in Chapter 13. Trigram counts, such as the number of trigrams in

the candidate file which are shared with one other file, or the sum of the

trigrams in the amended and target files, are also used as features in the

machine learning task. The number of trigrams shared by the candidate file

and each of the target files is used in ranking target files to select the most

likely recipients of the code removed from a candidate file (see Chapter 15).

7.4 Summary

This chapter has covered techniques for identifying interactions between

files in a set from the distribution of trigrams. Alternatives to the standard

Ferret similarity measure were introduced and their application to collusion

detection discussed. Also, features which describe various relationships

between files were suggested for use in origin analysis.

Chapter 8

Visualising file relationships

The use of trigram analysis to display information about the interaction

between files in the context of a group is explored in this chapter. As

explained in Chapter 5, file comparison tools do not generally provide text-

based comparisons which show how the code shared by two files relates to

the code found in the rest of the files in the group. Also, there do not appear

to be any tools which relate the text in one file to that in more than two others.

As part of this research, the trigram-file index was analysed to create text-

based displays of comparisons between one or more files in the context of

a group. The next section looks at a selection of displays based on trigram

analysis, used to show the interaction between student assignments. The

following section describes a method for showing the relationship between

one file and many others, which has proved invaluable in origin analysis in

this research.

8.1 Displaying student assignments

Three ways of highlighting aspects of a file in relation to a group are in-

cluded here. First, to show the text unique to one file. Second, to extend the

standard Ferret display which shows text shared by two files. The exten-

sions take two forms: one adds a distinction between shared and uniquely

shared code; and the other further extends this idea to show other cate-

113

114 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

gories, such as code shared by the two documents and by few others in the

group. The examples given here suggest particular colours for highlighting,

but font colour and style can be adjusted to suit the user’s preferences.

8.1.1 Unique trigrams

Figure 8.1 shows two extracts from a document with the elements unique

within the comparison group highlighted in black. The top part is typical of

a “function” introduced in class and amended to suit the student’s project.

The lower part is typical of independently written (or sourced) “code”.

Picking out the unique parts of a student project may be useful if there

is doubt about whether the code has been produced by the student or

sourced from a third party, or to see what interesting ideas the student

has implemented. This display may also be useful in comparing other

documents, such as contracts, where it is often important to be able to

pinpoint differences in the texts, rather than their similarity.

Figure 8.1: An example file with trigrams unique within the comparison group
highlighted in black. The upper part of the diagram shows “code”
mostly used by other students, the lower part shows an independently
written function. Commonly occurring “code” fragments are in cyan.

8.1. DISPLAYING STUDENT ASSIGNMENTS 115

8.1.2 Extending the standard Ferret display

The standard Ferret display, see the top half of Figure 8.2, shows the text

covered by trigrams common to two files in blue, with the rest in black.

The lower part of this diagram shows a simple extension to the colour

scheme where code which is “uniquely shared” by the two files is coloured

red to highlight possible collaboration between the two students. Each

token appears in three trigrams, if two or three of these are uniquely shared

between the two files then the token is coloured red.

Figure 8.2: An example of the revised colouring. This passage is repeated, the
upper version is standard Ferret display. In the lower version, parts of
the text which are uniquely shared by the two files are in red.

116 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

8.1.3 Graduated similarity information

The black-blue-red colour scheme can be extended to add information about

trigrams shared by only a few others in the group. The idea is to display

not only the “uniquely shared” code but also evidence of possible group

collaboration. Following the idea of the weighted trigram count, parts of

the code shared by the two students and by few others are highlighted as

shown in Figure 8.3. Assume that a group of files, including file A and file

B, are compared. The text of file A is coloured to reflect its similarity to file

B within the context of the group. Where text is:

• black it is unique to file A;

• red it is “uniquely shared” with file B;

• dark orange it is shared by file B and up to 2 other files;

• paler orange it is present in files A and B and 3–5 other files;

• blue it is in files A and B as well as many other files; and

• pale blue it is either provided for the course, or is not in file B; in other

words, parts of the file of no interest when checking for collusion.

Figure 9.8, on page 144, shows this colour scheme applied to a pair of

files from the set of student projects analysed in the next chapter. The size

of the subgroups is arbitrary, and it is possible that a larger group warrants

larger subgroups. However, Burrows [34, p.14] states that “Our test data

and anecdotal evidence indicates that students generally do not work in very large

groups”, and this is taken into account.

Figure 8.3: One way to colour the code in a file (A) compared with another (B). The
colours and gradations can be altered to suit the user’s needs.

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 117

8.1.4 Groups

A method for displaying the relationship between one file and a number of

other files is explained in Section 8.2. Although developed for visualising

the relationships between files in origin analysis, it is also useful for other file

comparison tasks. In collusion detection, it can provide information about

which file contains what code in a group of similar files. This is particularly

useful where one student is thought to be either the main developer, or

the main recipient of the code, as in Figure 7.10 (p.107), when their file can

be used as the base against which the other files are compared. Figure 9.9

(p.146) gives an example of this visualisation applied to student code.

8.2 Comparing one document with a group of others

A large part of the work involved in creating marked-up datasets for origin

analysis is in manually comparing groups of files to try to understand

their interaction. Most file comparison tools only show the similarities (or

differences) between pairs of files, although some tools, including KDiff3

(see Figure 5.5c, p.71), allow for three files to be viewed together. Although

comparison between one file and a group of others can be accomplished by

arranging pairwise comparisons alongside each other, as in Figure 8.4, it is

inefficient. Not only must each comparison be selected and arranged on

the screen separately, but also to view the comparisons side-by-side, each

one must be scrolled separately, tasks which are awkward with a few target

files, and which become more difficult as the number of files increases.

What is required is a tool which can show the relationships between

one file and any number of other files. The development of such a tool is

explained in this section. The ideas are illustrated using one file from the

split file dataset, which is introduced in Chapter 12. This file (fa.c) is large,

having nearly 1800 lines, and has been split to produce three files. Two

different ways of displaying this information are described here.

118 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

Figure 8.4: In looking at how one file relates to a set of others based on 2-way file
comparison, the user must align each window on the screen, and scroll
through them individually. Here callbacks.h is compared with each of
ui callbacks.h, plugin slot callbacks.h and control callbacks.h.

8.2.1 Multiple blue-red-black displays

The first idea was to apply the colouring technique described in Section 8.1.2

(blue shared, red uniquely shared, otherwise black) several times to com-

parisons between the candidate file and each of the potential target files,

then to view the results side-by-side to help determine the destination of

code from a split file, or the sources of a merged file.

On the left of Figure 8.7 (p.122), three versions of the example file are

shown side-by-side. The first is compared with the amended file in the next

release, the second and third versions are compared to the two target files.

The mostly red coloured text shows that the amended version of the file

has retained code from the first and last parts of the file. The most similar

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 119

target file contains most of the rest of the first half of the code. The other

target file contains the remaining code from the second half of the file, as

well as a small section from the middle of the part marked by dashed lines.

This marked section is shown in more detail in Figure 8.8 (p.123). This

figure shows that the small function ‘validate-reply’ is in the third file while

the remainder of the code in this section is in the second file. Using red

to colour those trigrams uniquely shared by the two files gives a clearer

picture of code destination than having all common code the same colour.

8.2.2 Displaying comparisons between one file and three others

Although the three comparisons shown on the left of Figure 8.7 are effective

in identifying the destinations of a file, it would be more convenient to

have this information in one column rather than three. A three-way colour

Figure 8.5: Each target file is assigned a primary colour. The base file text is shown
and coloured according to which of the target files its trigrams are in.

120 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

scheme is developed here to show which of the target files share code with

the file of interest, and so condense the information into one column.

The idea is to colour the base file code which is “uniquely shared” with

the first file blue, with the second file red, and the third, yellow. If the code

appears in two files, the standard mixes of primary colours, purple, green,

and orange are used. If in all three files, then it is black, and if the code does

not appear in any of the three files, the tokens are coloured pale cyan. The

scheme is outlined on the left of Figure 8.5 and the colour mixes shown on

the right.

To accustom the reader to the colour scheme, simple example compar-

isons are provided in Figure 8.6. On the left, a file which has apparently

disappeared from the system is the base file. It is compared with the most

similar file in the next release. The text is coloured blue where the trigrams

appear in the other file, and cyan otherwise. The file on the right is com-

pared with two other files. Where text is in the first file, in this case the new

version of the base file, it is coloured blue. Text which appears in the other

file, resulting from a split, is coloured red, and text in both files is purple.

The larger example file, fa.c, which is split three ways, is shown using

this colour scheme to the right of Figures 8.7 and 8.8, where the blue, red,

and yellow sections match the red parts of the comparisons on the left of

the figure.

The pairwise comparisons between callbacks and three other files, first

seen in Figure 8.4, are repeated in Figure 8.9 along with the equivalent

group comparison, demonstrating its compactness. The group comparison

overcomes the problems with multiple pairwise comparisons: it is fast, does

not have to be organised on the screen and the comparisons scroll together.

Also, by zooming out, a quick overview of large comparisons is possible.

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 121

Figure 8.6: In each comparison, the base file text is coloured blue if it appears in
the 1st target file, red for the 2nd, and cyan if neither. The left-hand file is
compared with a very similar file, where 2 lines have been edited. On
the right, the file sscr.h is split, forming the new file winio.h. Trigrams
in the amended sscr.h are blue, in winio.h red, and purple if in both.

122 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

Figure 8.7: On the left, the candidate file is compared with each of three target files.
Looking at the mostly red coloured code, it is clear that the majority of
the file has been placed in one or other of the target files. On the right
the same file is compared with the same 3 target files. Here code in the
first file is coloured blue, in the second, red, and in the third, yellow.

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 123

Figure 8.8: Extracts from the file comparisons in Figure 8.7, expanding the section
marked by dashed lines. In this section, most of the code from the
base (candidate) file has moved to the second file, with one function,
‘validate-reply’, in the third file. On the left are a set of three compar-
isons, one for each target file. The comparison on the right echoes the
three on the left in compact form. Yellow code is the same as the red in
the third file, and red code, the same as the red code in the second file
on the left.

124 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

(a
)F

er
re

tc
om

pa
ri

so
ns

be
tw

ee
n

ca
llb

ac
ks

.h
an

d
th

re
e

ot
he

r
fil

es
(b

)C
om

pa
ct

co
m

pa
ri

so
n

Fi
gu

re
8.

9:
3C

O
an

d
Fe

rr
et

co
m

pa
ri

so
ns

be
tw

ee
n

ca
llb

ac
ks

.h
an

d
ui

ca
llb

ac
ks

.h
,p

lu
gi

n
sl

ot
ca

llb
ac

ks
.h

an
d

co
nt

ro
l

ca
llb

ac
ks

.h
.,

de
m

on
-

st
ra

ti
ng

th
e

co
m

pa
ct

ne
ss

of
th

e
th

re
e

co
lo

ur
ap

pr
oa

ch
ag

ai
ns

tt
he

pa
ir

w
is

e
co

m
pa

ri
so

ns
us

ed
by

m
an

y
fil

e
co

m
pa

ri
so

n
to

ol
s.

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 125

8.2.3 Scheme for colouring the text

The scheme for colouring the tokens in the base file is described next, with

the aid of an example. As the target files are represented by primary colours,

the maximum number of target files which can be displayed in one group

is three. The example therefore has three target files.

Each trigram in the base file can appear in any of the eight combinations

of the target files. The colours allocated to these combinations are listed in

Table 8.1. Each token in the file is a member of three trigrams, except for

the first and last two tokens in the file. Given that there are eight possible

groups of files that each trigram can appear in, and that each token is in 3

trigrams, a token can be in one of 120 possible combinations of file groups.

The formula, where n is the number of choices, i.e. file combinations, and r

is the number of places, i.e. trigrams, is:

 n + r − 1

r

 = (n + r − 1)!
r! (n − 1)!

=
10!

3! 7!
=

10 × 9 × 8
3 × 2

= 120.

There are 8 combinations where all of the trigram file memberships are the

same, for example, [(1 3) (1 3) (1 3)]; 56 combinations where two are of one

file membership and one of another, for example, [(2) (2) (1 2 3)]; and also

56 combinations where there are three different file membership groups, for

example, [() (2) (1 2)]. The tokens are coloured as follows:

• If there is a majority file combination, use its colour.

For example, in the group [(1 2)(3)(1 2)], (1 2) is the majority combination, so colour

purple, a mix of red and blue, the colours of files 1 and 2.

• Otherwise find the most common file in the combinations. If one file is

in the majority, colour to match.

For example, [(1 2)(2 3)(1 2 3)] - file 2 is in the majority - colour red.

One file Primary colour Two files Secondary mix Other Colour

(1) blue (1 2) purple (1 2 3) black
(2) red (1 3) green () pale cyan
(3) yellow (2 3) orange

Table 8.1: File combinations and the colours associated with them

126 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

• If two files share the majority, colour with the secondary colour which

combines the two primaries representing the files.

For example, [(1 2)(3)(2 3)], the majority is shared by files 2 and 3, so colour orange, a

mix of red and yellow.

• Otherwise, colour brown, the tertiary mix. (e.g. [(1 2 3)(2 3)(1)])

To give an idea of the number of tokens belonging to trigrams of the

same or different types, a random sample of 10 files, each with three target

files, taken from the split file dataset (see Chapter 12) were analysed. In

these files, ranging from 700 to 12,000 tokens, 64% of the tokens belong to

trigrams with the same file set, 32% have 2 sets, and only 4% have 3.

As an example, these rules are applied to the data in Table 8.2, which

is based on a sequence of 15 tokens, labelled a–o. The trigrams are listed

on the left, and the files in which they occur in the next column. The

tokens are listed in the third column and the sets of files which the trigrams

are part of are in column four. The first column of the ‘Token colouring’

section shows the majority file group, where there is one; the next column,

the majority file(s) where there is no majority; and the last column is the

colour for the token. The file groups are chosen to exemplify the different

Token Colouring

Trigram Files Tkn Sets of containing files Majority Majority Colour
groups files

a b c (0 2 3) a [(0 2 3)] (0 2 3) n/a Orange
b c d (0 1) b [(0 2 3) (0 1)] n/a 1 2 3 Brown
c d e (0 1 2) c [(0 2 3) (0 1) (0 1 2)] n/a 1 2 Purple
d e f (0 2 3) d [(0 1) (0 1 2) (0 2 3)] n/a 1 2 Purple
e f g (0 2) e [(0 1 2) (0 2 3) (0 2)] n/a 2 Red
f g h (0 2 3) f [(0 2 3) (0 2) (0 2 3)] (0 2 3) n/a Orange
g h i (0 3) g [(0 2) (0 2 3) (0 3)] n/a 2 3 Orange
h i j (0 1 3) h [(0 2 3) (0 3) (0 1 3)] n/a 3 Yellow
i j k (0 1 2) i [(0 3) (0 1 3) (0 1 2)] n/a 1 3 Green
j k l (0 1 2 3) j [(0 1 3) (0 1 2) (0 1 2 3)] n/a 1 Blue
k l m (0 1 2 3) k [(0 1 2) (0 1 2 3) (0 1 2 3)] (0 1 2 3) n/a Black
l m n (0) l [(0 1 2 3) (0 1 2 3) (0)] (0 1 2 3) n/a Black
m n o (0) m [(0 1 2 3) (0) (0)] (0) n/a Pale

n [(0) (0)] (0) n/a Pale
o [(0)] (0) n/a Pale

Table 8.2: Example of the token colouring scheme described in Section 8.2.3. Tri-
grams, the files they are in, the tokens in the base file, and the set of files
that the trigrams they belong to are in. Note that file 0 is the base file.

8.2. COMPARING ONE DOCUMENT WITH A GROUP OF OTHERS 127

Figure 8.10: Colouring scheme applied to the tokens from Table 8.2

colouring patterns, see Figure 8.10; real examples are shown elsewhere,

such as Figures 8.11 and 8.12. However, the figure shows that the sequence

”a b c d e f” appears in file 2 as the letters are coloured red, purple, orange

or brown, that ”f g h i” is in file 3, coloured yellow, orange or green, and

that ”c d” and ”i j” are in file 1, being blue, green or purple. The sequence

”k l” is in all three files and ”m n o” in none of the files.

Figure 8.11: A large file split 7 ways, compressed to fit the page. This example is
unusual in being a well-defined split with little incidental similarity.

128 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

8.2.4 Displaying comparisons between one file and many others

The colouring scheme is well-suited to groups of three target files, if more

files and therefore more colours were added, there would be insufficient

separation between colour mixes. However, this does not mean that the

visualisation is limited to a comparison between the base file and three

others. By repeating the base file and comparing it with each group of three

target files, information about the similarities between any number of target

files can be displayed.

Figures 8.11 and 8.12 show multiple comparison examples. The file in

Figure 8.11, from the PostgreSQL project, is split seven ways, and therefore

displayed 3 times. This file contains around 2,000 lines and is compressed

to fit the page. Most of the code from the first half of the base file is in the

files in the first column, with two small sections going to the “red” file in

the second column. Most of the rest of the code moves to the second “red”

and “blue” files, with some going to the second “yellow” file and one small

function to the seventh file, shown in blue in the third column.

In Figure 8.12, the file callbacks.h, from the jack-rack project, has nine tar-

get files. Callbacks.h appears to be split into three new files, ui callbacks.h,

plugin slot callbacks.h and control callbacks.h, which are respectively the

“blue”, “red” and “yellow” files in the first column. The top two lines are

not in any of the files, but otherwise the code is in blocks in one or other of

the three files. The other target files are incidentally similar.

This tool is named 3CO,1 further examples of its use are available at

http://homepages.stca.herts.ac.uk/˜gp2ag/trigram-analysis-examples.htm.

8.3 Summary

In this chapter, methods for displaying different aspects of the interactions

between the files in a group were described. In particular, a novel method

for displaying a comparison between one file and a number of others in a

convenient and reasonably compact manner, based on colouring text.

13CO is for COCOCO, which in turn stands for COmmon COde COlouring

8.3. SUMMARY 129

Fi
gu

re
8.

12
:A

n
ex

am
pl

e
of

a
fil

e
w

it
h

9
ta

rg
et

fil
es

.T
he

3
m

os
ts

im
ila

r
fil

es
ar

e
co

m
pa

re
d

w
it

h
th

e
ba

se
fil

e
in

th
e

le
ft

-h
an

d
co

lu
m

n,
th

e
ba

se
fil

e
is

th
en

re
pe

at
ed

an
d

co
m

pa
re

d
w

it
h

th
e

ne
xt

3
fil

es
in

th
e

m
id

dl
e

co
lu

m
n,

w
it

h
th

e
la

st
3

in
th

e
ri

gh
t-

ha
nd

co
lu

m
n.

130 CHAPTER 8. VISUALISING FILE RELATIONSHIPS

Chapter 9

Trigram analysis applied to
student assignments

Trigram-based measures of unusual similarity for use in collusion detection

were introduced in Chapter 7, and Chapter 8 showed a way to highlight

interesting parts of the code, such as unique trigrams, or those shared by

just the two files, in a comparison between files in the context of a group.

The application of these techniques to a set of student projects is reported

in this chapter. The group in the study were taking the ‘Web Scripting

and Content Creation’ course, during which they were asked to develop a

community website using ASP.NET and VB.NET. Unique trigram counts

were used in generating reports for feedback. At the end of the course, the

highest ranked file pairs identified by each of the set of collusion measures

were compared.

The students were expected to commit their code to an online repository

regularly, and staff had access to the code for analysis. Use of a repository

meant that staff could both review progress and provide feedback to stu-

dents. The twin aims were to encourage a steady development pattern and

to discourage contract cheating. Trigram analysis was used in the feedback,

to measure originality, and in the monitoring, to measure similarity.

131

132 CHAPTER 9. STUDENT ASSIGNMENTS

9.1 Data

Sixty-two students were initially registered on the course. Their projects

were developed using Visual Studio(TM), which produces a large amount

of auto-generated code. The files were filtered, so that only those expected

to contain the student’s own code were selected for analysis. These were

.ascx, .css and .master files, with scripts from .aspx files, and classes from

.vb files. Although filtering is not necessary for the trigram analysis, except

to exclude image files, other analysis of the code made it necessary here.1

9.2 Method

Each student’s code was concatenated into one large file to simplify com-

parisons between their work, as shown on the left-hand side of Figure 9.1.

This concatenation technique is used by others in plagiarism detection and

1Information in this report is anonymised and has UH Ethics Approval 1011-129

Figure 9.1: The selected files are concatenated to form one file for each student
(shown on the left). Provided code is also placed in one file. This file
and those of student code are presented to Ferret to obtain information
about the distribution of trigrams in the files.

9.2. METHOD 133

in clone detection. For example, Lancaster and Tetlow [144], and Kamiya et

al [125], who also add file delimiters. The concatenation introduces new tri-

grams at the file margins and these vary depending on file order. However,

this is a small price for making the rest of the process more straightforward.

Ferret currently has a tokeniser for C-type languages, but in this work is

used for other languages and appears to be effective with the varied code. A

C-type tokeniser will give a slightly different token set to a language-specific

tokeniser. For example, “not equals” in Visual Basic, “<>”, is treated as two

tokens, “<” and “>”, instead of one.

The code provided for the course, in the form of examples or exercises,

was also concatenated into one file. This file, and all of the student files were

compared by Ferret to provide a trigram-file index and similarity scores.

Feedback The students’ projects were downloaded weekly for analysis

throughout the course. The primary purpose was to provide feedback

to staff and students, showing progress in terms of the amount of code

produced, and its individuality. An anonymised report was posted every

week showing the “top 30” students in each of these respects. The amount

of code was measured in non-blank lines. Individuality was measured by

counting the unique trigrams in a project. An excerpt of a weekly report

is shown in Figure 9.2. Each student was allocated a flag, known only to

them and to staff. Twenty flags are shown for the student with the largest

number of unique trigrams, the number of flags for the remaining students

is proportional to this baseline figure.2

Collusion detection At the end of the course, the files of student code and

of provided code were compared to check for inappropriate collusion. The

four proportional similarity measures were applied to the projects. These

measures are the standard Ferret similarity score, those with trigrams in the

provided code, in common code, or in both, excluded. Counts of shared

2This work was undertaken with Steve Bennett, the course tutor, who set up the reposito-

ries, and whose ideas included monitoring development patterns and providing anonymous

feedback. The implementation of these ideas and use of trigram analysis were mine.

134 CHAPTER 9. STUDENT ASSIGNMENTS

Figure 9.2: An extract from the weekly feedback to students charting their progress.
Twenty flags are shown for the student with the most individual tri-
grams to date, the rest of the flags are allocated proportionally.

trigrams were also computed, those uniquely shared by two files, and the

weighted count of trigrams shared by up to two, four, and six others.

9.3 Results

The pairs of files found to be similar by the different methods are reported,

compared and analysed in this section. As the course was closely moni-

tored, inappropriate collusion was not expected, and generally this was the

case. However, a number of features make this set of projects a good test

for the measures. The projects range from 400 to 7,000 lines of filtered code.

There is high incidental similarity, both because of the development tool

and because many of the ideas introduced in class were incorporated into

the projects as they were developed. There is also some unusual similarity,

where a few students trying out more advanced ideas have found similar

ways of dealing with technical problems.

9.3. RESULTS 135

9.3.1 Proportional similarity measures

Table 9.1 shows the pairs of files with the 20 highest scores under each

measure. In the first column, file pairs are listed. In the next 4 columns,

there is a tick under each measure where the similarity between the pair is

ranked 1–20. As expected, the measures which exclude common code, in

columns 4 and 5, mostly agree. However, only four of the fifty-five selected

pairings score high under all four proportional measures. These pairings

are (3, 15), (3, 25), (24, 40) and (57, 60). The last two columns in the table

relate to count-based measures, which are discussed in the next section.3

3Table G.1 in the Appendix shows the numbered rankings.

Ratios Counts Ratios Counts

Proj- Fer Ex. Ex. Ex. Wt. Wt. Proj- Fer Ex. Ex. Ex. Wt. Wt.
ret P O PO 2 4 ects ret P O PO 2 4

3, 7 X X 19, 27 X X
3, 15 X X X X X 19, 36 X
3, 20 X X 19, 43 X X
3, 25 X X X X X X 19, 46 X
3, 56 X 19, 54 X
4, 44 X 21, 28 X X
5, 13 X X 22, 61 X
5, 52 X X 23, 41 X X X X
7, 15 X 24, 30 X X X X X
7, 25 X X X X 24, 40 X X X X X X
8, 17 X X X X X 26, 52 X
8, 23 X 27, 28 X X X
8, 25 X 27, 53 X
8, 63 X X X 27, 61 X
10, 29 X 29, 42 X X
10, 42 X X 29, 58 X
10, 58 X X X 30, 40 X X X X
13, 49 X X 32, 33 X X X
13, 52 X 34, 53 X
13, 56 X 36, 43 X
14, 22 41, 58 X
14, 53 X 42, 58 X X
14, 61 X 43, 46 X X
15, 25 X X X 47, 48 X X X X
15, 56 X X 49, 52 X X
17, 34 X 51, 63 X X X
17, 63 X X 53, 61 X

57, 60 X X X X X X

Table 9.1: Top 20 similarities by various measures. Proportional measures are stan-
dard Ferret, and those excluding: provided code (P), shared by others
(O), and both (PO). Count-based measures are uniquely shared trigrams
(Wt.2) and the weighted count for groups of up to 4 members (Wt.4).
Pairs of projects with the top 20 scores under one or more measures are
in columns 1&8, the remaining columns show for which measure(s).

136 CHAPTER 9. STUDENT ASSIGNMENTS

(a) Max in group = 2

(b) Max in group = 4 (c) Scale

Figure 9.3: Weighted trigram counts: the contour maps depict weighted trigram
counts of groups of 2, and up to 4, files sharing the trigrams.

9.3. RESULTS 137

Figure 9.4: Connections between files with a weighted trigram count of at least
85, calculated for a maximum of 4 files. The connections are inversely
proportional to the weighted trigram count. The graph in the top right
corner of the figure repeats Figure 9.3b; and has the similarities between
members of the groups marked by circles which echo the node colours.

138 CHAPTER 9. STUDENT ASSIGNMENTS

9.3.2 Count-based similarity measures

The weighted count of trigrams shared by two files and few others varies

depending on the maximum number of other files accounted for. The

maximum group sizes for the graphs in Figure 9.3 are two (9.3a) and four

(9.3b). These graphs are contour maps of the weighted similarity counts

between pairs of project files. The student identifiers are shown on both

axes and run from 1-64.4 Where the similarity between two files is higher

than the “background” level indicated by the scale, the graph shows the

level of similarity as a coloured spot. The size and colour of the spot reflects

the magnitude of the similarity measure. When the group size is two, the

count is of uniquely shared trigrams. When there are four in the group,

then trigrams shared by the pair and by up to two others are included in

the count. For this set of projects, the similarity rankings were unchanged

in groups larger than four, and are therefore not reported.

Graph 9.3a shows that few pairs of students uniquely share more than

60 trigrams. Looking at the second graph, 9.3b, groups emerge, such as the

four students 3, 7, 15 and 25, or the group of three, 8, 17 and 63. Most of

the larger points in Figure 9.3b are also present in Figure 9.3a. However,

the notable exceptions are the group 3, 7, 15 and 25, indicating that these

students are likely to have worked together as a group.

To better show the connections, Figure 9.4 depicts the group similarities

as an undirected graph, with the projects as the nodes, and the weighted

trigram count between them as the edge weights.5 Connections of less than

an arbitrary weight of 85 are removed, as are the resultant unconnected

nodes. This leaves four pairs of files and four groups. The group formed

by 24, 30 and 40 is fully connected, the others partially so. In this diagram,

the distance between the nodes is inversely proportional to the weight of

the connection. The graph in the top right corner of the figure repeats

Figure 9.3b, with the similarities between members of the groups circled.

In Figure 9.5, weighted counts of 50 or more are shown, however, for

42 students had extra, unused, accounts (11&39) retained to preserve the numbering.
5Graph produced with the aid of Graphviz http://www.graphviz.org/

9.3. RESULTS 139

clarity, the connections here are not proportional.5 It is interesting to see

the projects which are connected to many others, numbers 5 and 52. This

connectedness may be because the students have worked with a number

of others, whether as helper or recipient of help. In fact, in this case, these

two students produced well-developed projects and were active in helping

others overcome technical difficulties through the class discussion forum.

9.3.3 Analysis

In this section, the top twenty pairs under each similarity measure are

compared, and reasons for the different rankings discussed.

Standard Ferret The standard Ferret measure finds ten similar pairs of

projects not found by other measures, seven of these are between projects

53 and/or 61 and others (14, 22, 27 and 34), two are between project 19

and others (46 and 54), and one between 36 and 43. The reason for the

relatively high similarity scores between these pairs is that these students

did not develop their projects much beyond the ideas provided in class.

This means that the majority of each file is based on provided code, making

Figure 9.5: Connections between files with at least 50 weighted trigrams shared by
a maximum of 4 files, (connection length not proportional to similarity).

140 CHAPTER 9. STUDENT ASSIGNMENTS

the files similar to others using the same parts of the code.

As an example of this similarity, Figure 9.6 shows a section of code from

project 19, compared to project 54 and to the provided code. Code shared

by project 54 is coloured blue, that shared with the provided code is red, if

shared by all three, it is purple, and if the code appears only in project 19,

it is pale cyan. It is clear from this diagram, where most of the code is in

purple, that the majority of the code shared by the two projects is provided

code, in other words, that the students have probably not colluded.

Provided code excluded Column 3 of Table 9.1 shows the top 20 most

similar pairs of projects measured by excluding the provided code. The

top ranked similarities which do not occur under other measures are due

Figure 9.6: A section of the 3-way comparison of project 19 with project 54 and the
provided code. Code shared by the 2 projects is in blue, by project 19
and provided code is red, by all 3 is purple, otherwise is pale turquoise.

9.3. RESULTS 141

to common code which is not part of the provided code. The similar code

in the five pairs ranked in the top 20 by this measure but not by other

measures also occurs in other files. This is likely to be because examples

given in class were included in many of the students’ code, but were not

part of the provided code. These student’s files were among the smaller

ones, so that this code had a greater impact on their similarity scores.

Code shared by others excluded, with and without provided code The

column headed “Ex.O” in Table 9.1 shows similarities calculated by exclud-

ing code shared by others, and the column headed “Ex.PO” that excluding

both that shared by others and by the provided code. As already men-

tioned, these measures are almost the same because provided code is likely

to be used by many students, therefore excluding code shared by others

excludes all or most of the provided code. The higher ranked similarities

which are not picked by other measures all have project 19 as one half of

the pair. These pairs are also more similar than most because they are small

files containing code based on the provided code, with parts amended in

similar ways, which can happen when two students sit together in class and

receive help from their tutor. The other four pairs, 3 and 20, 17 and 34, 21

and 28 and 43 and 46 are also not large files. They either share incidentally

similar fragments, such as the same font or colour, or have not renamed

automatically named elements, such as “TextBox4.Text”. The fragments

add up to make the proportional similarity higher than that in large files

which share more significant amounts of code.

Weighted trigram count, group size 2 The uniquely shared trigram count,

in Figure 9.3a, shows only those pairs sharing at least 60 such trigrams. The

main pair here is 8 and 17. An extract of a comparison between these two

projects is shown in of Figure 9.8 (p144). The code shown belongs to project

8, in the middle column code not shared by the two projects is black; if

shared by the two projects, but also by others, it is coloured blue; and if

shared by just the two projects, it is red. There are two sizable functions

coloured red, in this case the two students were trying an idea suggested in

142 CHAPTER 9. STUDENT ASSIGNMENTS

class, and had found an unusual solution to the problem.

Five pairs, 5 and 13, 5 and 52, 8 and 63, 13 and 49, and 51 and 63 show

up under this measure and not the previous ones. The students involved

in these pairings all did very well on the course, and the similarity between

them is mostly due to their finding similar solutions to difficult problems.

For example, students 8 and 63 have found the same solutions to problems

related to handling different image types, and to a problem with coding for

a Mac; whereas the trigrams shared by 51 and 63 appear to be because they

have both explored the more advanced ideas introduced in class. Third-

party code, such as that for dealing with differences in browser display, is

properly attributed in these students’ files.

Weighted trigram count, group size 4 The similarities found by the

weighted trigram count for a group of up to four include all of those agreed

on by the four proportional measures, as well as pairs not found by any of

the other measures.

Four groups who may possibly have worked together on some of their

code are discovered by the weighted trigram count. These are numbers 3,

7, 15 and 25; 24, 30 and 40; 8, 17 and 63, with 51; and 5, 13, 49 and 56.

The first group, who appear to have incorporated each other’s code,

had low final scores. The second group has used similar code to handle

discussion groups, user profiling and the display of ratings. The code they

share may be the result of admissable cooperation, or of independently

finding the same solution to these problems.

The similarity between students 8 and 17, 8 and 63, and 51 and 63,

members of the third group, has already been discussed. Features shared

by 17 and 63 have some overlap with project 8, but mostly appear to be the

result of cooperation on handling rss feeds.

The code shared by the fourth group is more fragmented and gives no

reason for concern, as it is not likely to be the result of copying. The students

in the second, third and fourth groups produced good projects.

9.3. RESULTS 143

9.3.4 Showing similarity in a group context

Methods for visualising the interaction between files in the context of a

group were described in Section 8.1.3. Examples from the study are shown

in this section.

Graded colouring The scheme for graded colouring, introduced in Sec-

tion 8.1.3, is repeated in Figure 9.7 for reference. Figure 9.8 (p.144) is an

extract from project 8 compared with project 17, coloured using three dif-

ferent schemes. The left-hand column shows the code coloured by Ferret in

normal use. The code shared by the two files is coloured blue, otherwise it is

black. This does not provide information about the nature of the similarity

between the projects.

By analysing the trigrams, more information can be shown. In the mid-

dle column, the trigrams uniquely shared by the two projects are coloured

red. On the right, the idea is developed to provide additional information.

The code is coloured black only if it is unique within the group. Red

code is, again, that uniquely shared with the other project. Shades of orange

show those trigrams which are shared by the two, but which are also shared

by few others. Here, dark orange is used to show one or two others sharing,

and pale orange for three, four or five others sharing. Bright blue means

that the code is shared by the two projects but by at least six others, and pale

blue means that either the code is not shared or is provided for the course,

and is therefore uninteresting whether it is shared by 8 and 17 or not.

Figure 9.7: One way to colour the code in a file (A) compared with another (B).
The colours and gradations can be altered to suit the user’s needs. First
shown in Figure 8.3, and repeated here for the reader’s convenience.

144 CHAPTER 9. STUDENT ASSIGNMENTS

Figure 9.8: An extract from a comparison between projects 8 and 17. Standard
Ferret colouring, where shared trigrams are in blue, and are otherwise
black, is on the left. In the middle the trigrams uniquely shared by the
two projects are in red. On the right, the excerpt is coloured according
to the scheme in Figure 9.7. The red code is two sizable functions
uniquely shared by the projects, and the orange shows smaller sections
which are shared by the two files but also by a few others in the group.

9.4. DISCUSSION 145

3CO colouring The 3CO colouring scheme was introduced as a way to

depict the source or destination of files which have moved during system

restructuring. As already shown in Figure 9.6, the scheme can also be used

to display the interaction between a file and others which are found to be

similar within the group.

Extracts from the five-way comparison between projects 63, 8, 17, 51 and

the provided code are illustrated in Figure 9.9. The base file here is project

63. The colours in the first column are blue for 8, red for 17 and yellow for

51. Text in the second column is coloured blue where trigrams match the

provided code. By looking at areas which are coloured in the first column

and not in the second column, parts of the code which are shared by one

or more of the projects and which are not part of the provided code can be

identified. Here these are the blue and yellow sections in the first column.

As shown in Chapter 8, this visualisation scales for any number of projects.

9.4 Discussion

Each of the four proportional similarity measures has drawbacks for the

style of project investigated here. These drawbacks are likely to apply to

other cases where file sizes differ, where a significant amount of code is

provided or where code is auto-generated.

Counting trigrams which occur in one pair of assignments, but not

in others, appears to offer a reasonable measure of pairwise cooperation,

however, counting those which are shared by 2 students and up to 2 others

finds several groups not found by the other measures.

It should be noted that these students were aware that their code was

monitored and were given feedback on the “most original” projects on a

weekly basis. This probably had two effects, first, of encouraging individual

development and second, of reducing the amount of collaboration between

students. Most of the similarity between projects in this course appears to

be due to cooperation in solving difficult tasks, rather than in inappropriate

collusion. Incidentally, the feedback generated greater interest in the course

146 CHAPTER 9. STUDENT ASSIGNMENTS

than previously experienced.

The graduated visualisation pinpoints the areas of similar files which

warrant investigation, especially helpful for large files with high levels of

incidental similarity. Parts of the file which are unique to one student are

also highlighted, useful in understanding the novelty of the work, or per-

haps where outside sources have been used. No other approach has been

found which offers the detail displayed by this source code visualisation.

Although the display is based on trigram analysis, other units of compari-

son, such as clones, could be used as a basis for colouring the code.

Figure 9.9: An extract from a 5-way comparison between projects 63, 8, 17, 51 and
the provided code. The code, from project 63, is coloured blue where
shared with project 8, red with 17, yellow with 51, and blue in column
2 for the provided code. Green code is that shared with 8 and 51, and
black with 8, 17 and 51. The blue and yellow sections in column 1 do not
correspond to the provided code, so are areas for further investigation.

Chapter 10

Overview of the classification

system

This part of the dissertation is about the second, and main, practical appli-

cation of the ideas introduced in Chapter 1. This is an investigation into the

use of text analysis and machine learning techniques in analysing software

projects. In particular, to find and match files which have been restructured

between releases of a project. This chapter outlines the system for finding

candidate restructured files, and for classifying these candidates.

Many descriptions of the machine learning, or knowledge discovery,

process exist. The steps described by different authors vary, however, the

underlying process is similar and usually involves iteration at one or more

points (see, for example, Bramer [27], Fayyad et al. [72], Mannila [161], and

Pyle [191]). These steps are outlined below, followed by an explanation of

the organisation of the chapters relating to the machine learning system.

The steps in the system developed for this research are depicted in

Figure 10.1, and are broadly:

• data collection and preprocessing,

• filtering,

• feature construction and data labelling,

• feature selection,

• and model production and selection.

147

148 CHAPTER 10. OVERVIEW OF THE CLASSIFICATION SYSTEM

Data collection In spite of the widespread availability of open source

software, there is a lack of marked-up datasets in the field of software

evolution which are suitable for use directly in data-mining studies [49, 127].

For this research, datasets were created from source code collected from an

open source software repository. A range of projects was selected so that a

variety of development styles is represented in the datasets.

Preprocessing In preprocessing, the files under investigation, in this case

mostly C code files, are selected from each project. Comments and blank

lines are removed from the selected files because movement of code is the

focus when trying to find restructured files.

Filtering The aim of filtering in this system is twofold: first, to select from

the large number of files in the projects the comparatively small number of

files which could belong to the category of interest; and second, to find files

which are related to them. As many software projects are large, the filtering

process needs to be efficient. The similarity measures used for filtering in

this system are produced by Ferret, as it runs in approximately linear time.

Each file in a release is compared to every other file in that release and to

all of the files in the next release. Similarity scores and file sizes are stored

so that files of different types can be selected based on this information.

Manual classification To label filtered files, a file and those related to it

are inspected, initially with the aid of the 3CO tool (see Chapter 8), and

when classification is unclear from this, by inspecting the text of the files.

Figure 10.1: Outline of the learning process, indicating steps which can be iterative.

149

Feature construction The development of machine-learning models from

labelled examples assumes the existence of an adequate set of descriptive

features or measurements of the data, from which distinctions between

classes may be derived. As discussed in Chapter 3, there is no previous

work on machine learning in origin analysis, and little work comparing

the utility of different similarity measures in matching restructured entities.

There is therefore little guidance on suitable features for the task. One

observation from the origin analysis survey (see page 46) is that the majority

of approaches combine similarity measures from two or more sources when

comparing code.

The features in this system are based on the similarity between two or

more files in a group, measured using four similarity detection tools with

complementary methods. Features are constructed directly from the tools’

outputs, and by analysing these outputs to give more detailed information.

One of the recommendations for building features when there are no

restrictions, and no obvious choices, is to create a large set which can then

be reduced. This is the approach taken here, but rather than selection from

the whole set, selection is based on limiting the sources of the features, to

simplify the generation of features for new data.

Refining the model In refining the model, the filtering, feature construc-

tion, feature selection, model selection and production phases are iterated.

The aim is to maximise the correct classification of the training examples,

Figure 10.2: An overview of the system used to build a model for classifying re-
structured files. The processes are on the top row, and the inputs to
and outputs from each step are on the bottom row.

150 CHAPTER 10. OVERVIEW OF THE CLASSIFICATION SYSTEM

while maintaining the ability of the model to generalise. The top row of

Figure 10.2 repeats the processes of Figure 10.1, while the bottom row shows

the outputs of each step, which act as input to subsequent steps.

Classifying new data When classifying data from new projects, see Fig-

ure 10.3, data collection, preparation and filtering are the same. Feature

construction differs in that only the subset of features required for input to

the particular model needs to be generated. The final step is classification

of the filtered files by using these features as input to the learned model.

Organisation of this part of the dissertation There are six further chapters

in this part of the dissertation. As already explained, Ferret is the main file

comparison tool used in this application, the other comparison tools are

described in Chapter 11. The remaining chapters have two purposes, to

explain how the datasets are created, and to report experimental results.

Data collection, preprocessing and filtering are described in Chapter 12,

and feature construction is explained in Chapter 13. Three chapters describe

the experimental part of this research. The classification system is tested

and the results compared with the work of two other research groups in

Chapter 14. Some weakness in filtering is identified from this study. Ex-

periments aimed at improving the filtering are described in Chapter 15.

The system is retested using datasets resulting from the adjusted filtering

techniques and the results are reported in Chapter 16.

Figure 10.3: Overview of the system for classifying new data. Processes are on the
top row, and inputs to and outputs from each step on the bottom row.

Chapter 11

File Comparison Tools

As explained in Chapter 10, features for the machine learning system are

created by comparing files with a set of four complementary similarity

detection tools. One of these tools is Ferret, already described in Chapter 6.

The purpose of this chapter is to introduce the other three tools.

Each tool has strengths and weaknesses in detecting code which has

moved between files. By combining tools, gaps in one tool are plugged

by another. For example, a tool which matches blocks of identical lines of

code will overcome the problem of matching incidentally similar snippets of

code, but will not match code with small edits, such as renamed identifiers;

and a tool which parameterises identifiers will match such code, but may

also match similar structures in the code which are not from the same source.

As noted in Chapter 6, Ferret is very efficient and thus suitable for

filtering to find candidate files from large datasets. Its strength is in match-

ing small sections of code, making it moderately robust to many forms of

editing. However, incidental matches, due to common constructs in the lan-

guage or to programming style, are also detected. Repetition of trigrams is

not accounted for, therefore quantifying the ‘amount’ of copying is difficult.

As discussed in Chapter 2, clone detection tools provide complementary

information to that given by plagiarism detection tools such as Ferret. The

stand-alone clone detection tools used in this research were chosen from

the University of Alabama Clone Detection website [182], which lists both

151

152 CHAPTER 11. FILE COMPARISON TOOLS

a range of clone-related literature and a variety of clone-detection tools.

Duplo detects blocks of strictly matched lines of code and is useful for

finding identical sections of code in the files, information not directly avail-

able from Ferret. However, this means that small edits, such as parameter

renaming, will prevent the detection of otherwise matched code.

Code Clone Finder (CCFinder), is a mature and widely used token-

based clone-detection tool.1 It parameterises identifiers, so that they can

be matched without having the same name, either on an any-to-any or a

one-to-one basis. While this overcomes the drawbacks of the matching pro-

cess used by Ferret and Duplo, CCFinder has its own disadvantages when

used for tracking restructured files. These disadvantages are twofold: first,

CCFinder disregards code such as preprocessing directives and initiali-

sations, making the tool less informative for the typical header file; and

second, because of the parameterisation, similar code structures, such as

idiomatic code, may render the matching too general.

Simian falls between Duplo and CCFinder in that it matches lines of

code which are first tokenised, and can be parameterised using a range of

options. This tool was chosen to reduce the amount of code which is ignored

by CCFinder, while having choices in the sensitivity of the matching.

Three tools were developed during this research to alter or analyse the

output from the third-party tools. These three tools helped in constructing

features for machine learning. The first, P-Duplo, uses a similar method to

Duplo but produces output in a form more easily analysed for this appli-

cation. The second, a clone ‘unscrambler’, analyses the output from clone

detection tools to provide information about duplication on a one-to-one

basis, more useful for this application than the all-to-all matches output by

the tools. The third, explained in Chapter 6, is the density analysis tool,

which acts on Ferret’s XML output to discover blocks of mostly copied code,

which are possibly the result of copying and editing.

CCFinder, Simian and Duplo are described in Sections 11.1–11.3. P-

Duplo and the Unscrambling tool are explained in Sections 11.4, and 11.5.

1708 citations logged by Google Scholar at 20.1.13, & used in origin analysis [22, 130, 245]

153

The example file, and the two files resulting from its split, first shown in

Chapter 6, are repeated in Figures 11.1 and 11.2, as they are used to illustrate

features of the other three file comparison tools. On the left of Figure 11.1,

line numbers, or the number of the first token in the line, have been added

for reference.

CC SM DP PD

1 // cnp-1.c

1 2 1 #include <stdio.h>
2
3 2 long factorial (int n);
4 3 3 long combinations (int n, int k;
5 4 4 long permutations (int n, int k);
6

0 7 5 5 int main()
6 8 6 {
7 9 6 7 int setsize, subsetsize;
12 10 7 8 printf (“Set size? ”);
18 11 8 9 scanf (“%d”, &setsize);
27 12 9 10 printf (“Subset size? ”);
33 13 10 11 scanf (“%d”, &subsetsize);
42 14 11 12 if (setsize < 0 { subsetsize < 0 { setsize < subsetsize)
57 15 13 {
58 16 12 14 printf (“Mission impossible\n”);
64 17 13 15 return (1);
67 18 16 }
68 19 14 17 printf (“%ld combinations and %ld permutations of %d items

taken from %d \n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);

85 20 15 18 return (0);
98 21 19 }

23
99 24 28 20 long factorial (int n)
107 25 21 {
108 26 29 22 long result = 1;
113 27 30 23 int i;
116 28 31 24 for (i = 1; i ≤ n; i++)
130 29 32 25 result *= i;
135 30 33 26 return (result);
139 31 27 }

32
141 33 32 28 long combinations (int n, int k)
152 34 29 {
153 35 33 30 return (factorial(n) / (factorial(k) * factorial(n-k)));
166 36 31 }

37
168 38 34 32 long permutations (int n, int k)
179 39 33 {
180 40 35 34 return (factorial(n) / factorial(n-k));
196 41 35 }

Figure 11.1: Code for finding combinations and permutations of a subset of items
- cnp-1.c. The first 4 columns show the number of the first CCFinder
token in each line, and the Simian, Duplo and P-Duplo line numbers.
Line 19 (14 or 17) is spread over 3 lines to fit the page.

154 CHAPTER 11. FILE COMPARISON TOOLS

// cnp-2.c

#include <stdio.h>
#include “fact.c”

long combinations (int n, int k);
long permutations (int n, int k);

int main()
{

int setsize, subsetsize;
printf (“Set size? ”);
scanf (“%d”, &setsize);
printf (“Subset size? ”);
scanf (“%d”, &subsetsize);
if (setsize < 0 { subsetsize < 0 { setsize < subsetsize)
{

printf (“Mission impossible\n”);
return (1);

}
printf (“%ld combinations and %ld permutations of %d items

taken from %d\n”, combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);

return (0);
}

long combinations (int n, int k)
{

return (factorial(n) / (factorial(k) * factorial(n-k)));
}

long permutations (int n, int k)
{

return (factorial(n) / factorial(n-k));
}

// fact.c

long factorial (int n)
{

long result = 1;
int i;
for (i = 1; i ≤ n; i++)

result *= i;
return (result);

}

Figure 11.2: The amended code for finding combinations and permutations of a
subset of items, split into 2 files - cnp-2.c (top) and fact.c (below).

11.1. CODE CLONE FINDER (CCFINDER) 155

11.1 Code Clone Finder (CCFinder)

CCFinder [124, 125] is a token-based code clone detector. As one of the aims

of the tool is to recommend practical code abstractions, a number of reduc-

tions and transformations are performed on the code before matching. The

reductions include filtering out parts of the file which are considered to be

uninteresting, such as comments; or parts which may produce false clones

because of their repetitious structure, such as declarations, preprocessing di-

rectives and initialisations. The code is transformed using language-specific

rules to produce a sequence of tokens consisting of keywords, identifiers,

literals and special characters. CCFinder offers flexibility in the size of clone

detected and in the type of matching performed.

Clone size is determined by specifying the minimum number of tokens

in a sequence and the minimum number of token types. The tokens and

token types for the file fact.c are shown in Table 11.2. Token types include

identifiers (such as i - shown as id-i), typed literals (1 - l int-1), one for each

operator (≤ - op-le), and for each delimiter (; - suffix:semicolon).

When a file is moved or renamed, identifiers may be given new names

or types. One reason for using CCFinder is that it offers a choice in matching

types, constants, and identifiers. To illustrate, consider the code snippets

in Table 11.1. Snippet 2 is the same as snippet 1, except that the identifiers

are directly replaced: d for a, and e, f, u, v, w and 7 for b, c, x, y, z and 10,

respectively. Snippet 3 has the same operators and identifiers as snippet 1,

but the assignments are different; where a is used in snippet 1, either a or

1. First example 2. Direct replacement 3. Different assignments, 4. Different operators
of identifiers same operators

int a, b, c; int d, e, f; int a, b, c; int a, b, c;
int x = a + b; int u = d + e; int x = c + b; int x = a - b;
int y = a - c; int v = d - f; int y = a - b; int y = a * c;
int z = 10 + c - b; int w = 7 + f - e; int z = 4 + a - c; int z = 10 - c * b;

Table 11.1: Code snippets to illustrate one-to-one or p-matching, and any-to-any
matching. Snippets 1 and 2 match under p-matching, snippets 1, 2 and
3 with any-to-any matching. Snippet 4 does not match in either case.

156 CHAPTER 11. FILE COMPARISON TOOLS

b are used in snippet 2; likewise b and c replace b; and b and a replace c.

Snippet 4 has the same identifiers as snippet 1, but with different operators.

One-to-one parameter matching, or p-matching [13], only matches snip-

pet 1 and snippet 2. With more relaxed any-to-any identifier matching, snip-

pets 1, 2 and 3 are matched. Snippet 4 does not match because operators

are not parameterised. P-matching is used in this application.

Command-line outputs include a list of clone pairs which detail the two

files in which the clone occurs, the start and end token numbers in each file,

and the number of tokens in the clone. Figure 11.3 shows the output from

1.1.0 0 (def block
1.1.0 4 r int
1.6.5 9 id—factorial
1.10.f 0 c func
1.10.f 1 (paren
1.11.10 3 r int
1.15.14 1 id—n
1.16.15 1)paren long factorial (int n)
2.1.18 1 (brace {
3.3.1d 4 r int
3.a.24 6 id—result
3.11.2b 1 op assign
3.13.2d 1 l int—1
3.14.2e 1 suffix:semicolon long result = 1;
4.3.33 3 r int
4.8.38 1 id—i
4.9.39 1 suffix:semicolon int i;
5.3.3e 3 r for
5.7.42 0 c loop
5.7.42 1 (paren
5.8.43 1 id—i
5.a.45 1 op assign
5.c.47 1 l int—1
5.d.48 1 suffix:semicolon
5.f.4a 1 id—i
5.11.4c 2 op le
5.14.4f 1 id—n
5.15.50 1 suffix:semicolon
5.17.52 1 id—i
5.18.53 2 op increment
5.1a.55 1)paren for (i = 1; i ≤ n; i++)
6.5.5c 0 (brace
6.5.5c 6 id—result
6.c.63 2 op mul assign
6.f.66 1 id—i
6.10.67 1 suffix:semicolon result *= i;
7.3.6c 0)brace
7.3.6c 6 r return
7.b.74 6 id—result
7.12.7b 1 suffix:semicolon return (result);
8.1.7e 1)brace
8.2.7f 0)def block }
a.1.83 0 eof

Table 11.2: CCFinder token types for fact.c. Columns 1–3 show the token’s source
code location, its type identifer, and its CCFinder representation. Line
breaks are shown, with the program text in column 4.

11.1. CODE CLONE FINDER (CCFINDER) 157

a comparison between the three example files, with the parameters:

• minimum tokens in a clone, 10,

• minimum token types in a clone, 2, and

• matching, any-to-any.

Three large clones, marked by asterisks, contain the other smaller clones.

Two are between the files cnp-1.c (file 1) and cnp-2.c (file 2), tokens 0–99 in

both files, and tokens 141–207 in file 1, and 99–165 in file 2. The remaining

clone is between cnp-1.c and fact.c (file 3), tokens 99–141 in file 1, and 0–42

in file 3. The first column in Figure 11.1, giving CCFinder token numbers,

shows that these are the expected spans for the blocks of matched code, for

example, the factorial function is covered by tokens 99–140 in file 1.

version: ccfx 10.2.7
format: pair_diploid
option: -b 10
option: -s 2
option: -u -
option: -t 2
option: -w f-g+w-
.....
option: -preprocessed_file_postfix.cpp.2_0_0_2.default.ccfxprep
preprocess_script: cpp
source_files {
1 cnp-1.c 208
2 cnp-2.c 166
3 fact.c 43
}
source_file_remarks { }
clone_pairs {
2 1.0-99 2.0-99 *
10 1.12-27 2.27-42
10 1.27-42 2.12-27
5 1.72-82 2.80-90
5 1.80-90 2.72-82
27 1.141-207 2.99-165 *
26 1.142-152 2.137-147
26 1.179-189 2.100-110
1 1.99-141 3.0-42 *

2 2.0-99 1.0-99
10 2.12-27 1.27-42
10 2.27-42 1.12-27
5 2.72-82 1.80-90
5 2.80-90 1.72-82
27 2.99-165 1.141-207
26 2.100-110 1.179-189
26 2.137-147 1.142-152

1 3.0-42 1.99-141
}
clone_set_remarks { }

Figure 11.3: CCFinder clone report for a comparison between the files cnp-1.c, cnp-
2.c and fact.c. Parameters and filenames are at the top. Clone pairs
are in the lower section, once for each file. Asterisks have been added
to show the clones which are not subsumed by another.

158 CHAPTER 11. FILE COMPARISON TOOLS

11.2 Simian

Simian [105] has a variety of parameterisation options and although, like

CCFinder, it disregards some parts of the code, it is less vigorous in this

respect. Simian is not an open source tool, nor are its methods documented

in detail, so little can be said of its workings.

What is known is that Simian ignores white-space, comments, imports,

includes and package declarations. It tokenises the code to allow a number

of optional parameters for relaxed matching. Parameters specify which

differences between source code elements are ignored; those investigated

in this research are shown in hierarchical form in Figure 11.4. For example,

if differences between strings are ignored, then string case is irrelevant.

The default setting ignores modifier differences. After experimenting with

various combinations of options and their effect on classification, literals

and identifiers are also parameterised in this research. Matching is based

on the hashed values of significant lines of the transformed code. Significant

lines exclude blank lines and, for example, those with a single brace.

The user is able to specify the minimum number of lines in a clone. The

tool outputs a list of all matches, both within file and between files, which

can be parsed to find the start and end line numbers for each inter-file clone.

Simian’s comparison between the three example files is given in Figure 11.5.

Each block is described by the number of significant duplicate lines and the

line number at the start and end of the block. Optionally, the duplicate code

can be printed, as it has been here. Simian finds the same three blocks as

CCFinder in this code.

Figure 11.4: Simian parameter hierarchy, the most general parameters at the top

11.2. SIMIAN 159

Similarity Analyser 2.2.24 -
http://www.redhillconsulting.com.au/products/simian/index.html
Copyright (c) 2003-08 RedHill Consulting Pty. Ltd. All rights reserved.
Simian is not free unless used solely for non-commercial or evaluation purposes.
{failOnDuplication=true, ignoreCharacterCase=true, ignoreCurlyBraces=true,
ignoreIdentifiers=true, ignoreModifiers=true, ignoreStringCase=true,
reportDuplicateText=true, threshold=2}

Found 4 duplicate lines in the following files:
Between lines 24 and 31 in /home/.../cnp-2.c
Between lines 33 and 40 in /home/.../cnp-1.c
long combinations (int n, int k){
return (factorial(n) / (factorial(k) * factorial(n-k)));

}

long permutations (int n, int k)
{
return (factorial(n) / factorial(n-k));

===
Found 6 duplicate lines in the following files:
Between lines 1 and 7 in /home/.../fact.c
Between lines 24 and 30 in /home/.../cnp-1.c
long factorial (int n){
long result = 1;
int i;
for (i = 1; i <= n; i++)
result *= i;

return (result);
===
Found 14 duplicate lines in the following files:
Between lines 4 and 21 in /home/.../cnp-2.c
Between lines 4 and 21 in /home/.../cnp-1.c
long combinations (int n, int k);
long permutations (int n, int k);

int main()
{
int setsize, subsetsize;
printf ("Set size? ");
scanf ("%d", &setsize);
printf ("Subset size? ");
scanf ("%d", &subsetsize);
if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)
{
printf ("Mission impossible\n");
return (1);

}
printf ("%ld combinations and %ld permutations of %d items taken from %d\n",
combinations (setsize, subsetsize), permutations (setsize, subsetsize),

subsetsize, setsize);
return (0);

===
Found 48 duplicate lines in 6 blocks in 3 files
Processed a total of 49 significant (86 raw) lines in 3 files

Figure 11.5: Simian comparison between cnp-1.c, cnp-2.c and fact.c. Default pa-
rameters are used, except that the minimum number of lines required
for a clone is 2 instead of 6, and the clone contents are printed.

160 CHAPTER 11. FILE COMPARISON TOOLS

11.3 Duplo

Duplo [5] is an open source command-line tool similar to ‘Duploc’ [65, 66],

which matches hashed lines of code to detect clones. Duplo differs from

the other tools in that only exact matches are identified. Blocks of matched

code in the files are determined by two parameters: the minimum number

of characters in a line, and of consecutive matched lines in the block.

White-space, comments, and, optionally, preprocessing directives are

removed, so that a line such as ”a = b + c; /∗ some comment ∗/” becomes

”a=b+c;”. Lines with fewer than the minimum characters specified are

ignored. Each line is hashed with the MD5 algorithm [201] before matching.

A matrix is coded to show whether each pair of lines in the files match, 1

for a match, or 0 for a mismatch. The matrix is then scanned diagonally,

from top left, to find contiguous matches, and those of at least the minimum

number of lines are reported. The matrix in Table 11.3 shows the comparison

between the files fact.c and power.c (code in Figure 6.5, p.80), with both

parameters set at 2. The sequence of three matched lines is highlighted.

The report in Figure 11.6 is for a comparison between the three example

files. Three matched blocks are found, two between cnp-1.c and cnp-2.c, the

first starting at line 3 in each file, and the second on line 32 in cnp-1.c and

line 23 in cnp-2.c, and one block between cnp-1.c (starting at line 28) and

fact.c (at line 0). Following the information about matched blocks are details

lo
ng

fa
ct

or
ia

l(
in

tn
)

lo
ng

re
su

lt
=

1;

in
ti

;

fo
r(

i=
1;

i≤
n;

i+
+

)

re
su

lt
*=

i;

re
tu

rn
(r

es
ul

t)
;

longpower(intbase,intn) 0 0 0 0 0 0
longresult=1; 0 1 0 0 0 0
inti; 0 0 1 0 0 0
for(i=1;i≤n;i++) 0 0 0 1 0 0
result*=base; 0 0 0 0 0 0
return(result); 0 0 0 0 0 1

Table 11.3: A Duplo matrix resulting from matching lines in power.c and fact.c.
Matches are indicated by a 1. Sequences of 1s running down diagonally
left to right, such as those highlighted, are consecutive copied lines.

11.3. DUPLO 161

of the parameters used for the comparison, and a summary of the results,

giving the number of lines in the files and in the duplicated blocks. The line

count excludes those with fewer than the minimum number of characters

specified, in this example, where the minimum is two, lines with single

braces are ignored. Duplo finds the same copied blocks in the example

code as Simian and CCFinder, because the example code is not edited.

/home/.../cnp-2.c(3)
/home/.../cnp-1.c(3)

long combinations (int n, int k);
long permutations (int n, int k);
int main()
int setsize, subsetsize;
printf ("Set size? ");
scanf ("%d", &setsize);
printf ("Subset size? ");
scanf ("%d", &subsetsize);
if (setsize < 0 || subsetsize < 0 || setsize < subsetsize)
printf ("Mission impossible\n");
return (1);

printf ("%ld combinations and %ld permutations of %d items taken
from %d\n", combinations (setsize, subsetsize),
permutations (setsize, subsetsize), subsetsize, setsize);

return (0);

/home/.../cnp-2.c(23)
/home/.../cnp-1.c(32)

long combinations (int n, int k)
return (factorial(n) / (factorial(k) * factorial(n-k)));
long permutations (int n, int k)
return (factorial(n) / factorial(n-k));

/home/.../fact.c(0)
/home/.../cnp-1.c(28)

long factorial (int n)
long result = 1;
int i;
for (i = 1; i <= n; i++)
result *= i;

return (result);

Configuration:
Number of files: 3
Minimal block size: 2
Minimal characters in line: 2
Ignore preprocessor directives: 0
Ignore same filenames: 0

Results:
Lines of code: 52
Duplicate lines of code: 24
Total 3 duplicate block(s) found.

Time: 0.062 seconds

Figure 11.6: Output from Duplo for a comparison between the files cnp-1.c, cnp-
2.c and fact.c. The two cnp files share 18 lines of code with at least 2
characters, in 2 blocks of at least 2 lines. The files cnp-1.c and fact.c
share 6 lines of code in 1 block, making a total of 24 lines in 3 blocks.

162 CHAPTER 11. FILE COMPARISON TOOLS

11.4 P-Duplo

P-Duplo was developed for this research because it is difficult to determine

the exact length of the clones detected by Duplo, information needed for

removing repeats in the clone pairings, as explained in Section 11.5. P-

Duplo uses a modified version of Duplo’s method. P-Duplo is implemented

in Racket,2 while Duplo is written in C.

Duplo detects matches between lines of code by:

1. Removing comments and white-space from each line in the file.

2. Ignoring lines with fewer than the minimum required characters.

3. Storing the MD5 hash values of the resulting strings.

4. Comparing the hash values between pairs of files.

5. Recording matching hash values, 1 for a match, 0 otherwise.

6. Scanning diagonally for sequences of at least the minimum size.

P-Duplo works in a similar way, with the following changes:

1. Removing white-space (comments are already removed here).

2. Hashing each line with the built-in Racket function “string-hash”.

3. Storing the hash value and the number of characters in the line.

4. Comparing - as Duplo.

5. Recording a match with the number of characters in the line,

or 0 for a non-matching pair, see Table 11.4.

6. Scanning the matrix to find sequences of at least the minimum

number of lines with at least the minimum number of characters.

The benefit of P-Duplo, apart from finding the exact length of a block, in-

cluding lines with fewer than the minimum characters, is that once the hash

values and number of characters in the line are stored, any combination of

line and block sizes can be found from the stored information without re-

running steps 1–5. The line numbers are consecutive, unlike those output

by Duplo, see, for example, the gap between lines 15 and 28 in Figure 11.1,

2http://racket-lang.org/

11.4. P-DUPLO 163

lo
ng

fa
ct

or
ia

l(
in

tn
)

{ lo
ng

re
su

lt
=

1;

in
ti

;

fo
r(

i=
1;

i≤
n;

i+
+

)

re
su

lt
*=

i;

re
tu

rn
(r

es
ul

t)
;

}

longpower(intbase,intn) 0 0 0 0 0 0 0 0
{ 0 1 0 0 0 0 0 0
longresult=1; 0 0 13 0 0 0 0 0
inti; 0 0 0 5 0 0 0 0
for(i=1;i≤n;i++) 0 0 0 0 17 0 0 0
result*=base; 0 0 0 0 0 0 0 0
return(result); 0 0 0 0 0 0 15 0
} 0 0 0 0 0 0 0 1

Table 11.4: P-Duplo matrix resulting from matching lines in power.c and fact.c.
Matches are indicated by the number of characters in the line. Diagonal
sequences of numbers ≥ 1, such as those highlighted, show consecutive
copied lines and can be matched to the given criteria.

making it possible to understand the relationship between the blocks. How-

ever, the design is specific to this application where comments and blank

lines are removed from the code prior to processing.

The P-Duplo matrix in figure 11.4 shows a line-by-line comparison be-

tween the two files power.c and fact.c, the same files compared in Table 11.3.

There are two differences: every line, regardless of length, is compared and

where a match is found, is recorded by entering the number of characters

in the line rather than a “1”. In scanning the matrix, instead of looking for

“1”s in the grid, the number of characters in the line must be at least the

minimum required.

The results may differ slightly from those of Duplo, in that lines with

fewer than the minimum characters, ignored by Duplo, must match for a

sequence to be recognised by P-Duplo, even though they are not part of

the line count for the block. However, in this example, when looking for

sequences of at least 2 lines of at least 3 characters, the same block will be

found by both tools.

long result = 1;
int i;
for (i=1; i<=n; i++)

164 CHAPTER 11. FILE COMPARISON TOOLS

11.5 Unscrambling clones

While clone detection tools offer a variety of flexible matching techniques,

they have one drawback when used to find the amount of code shared by

two files. The drawback is that every match between the files which fulfils

the criteria of the provided parameters is reported. There can be more code

contained in the clones in total than exists in the file. For example, the

clones found by CCFinder between cnp-1.c and cnp-2.c total 244 tokens,

while the files contain 208 and 166 tokens respectively (see Figure 11.3.

There are three reasons for this, which are illustrated in Figure 11.7,

where the shaded areas represent copied blocks, and identical blocks are

given the same shape and shade. The height of the block relates to the size

of the clone, but widths vary only to help distinguish between the blocks.

Figure 11.7: Example duplicated blocks in two files. Each block is labelled with a
letter, and with start and end numbers. Identical blocks have the same
shading and width; for example, block a (file 1) and block r (file 2).
Block heights are proportional to their length.

11.5. UNSCRAMBLING CLONES 165

First, when there are multiple copies of the same block of code, each of

the blocks in one file is matched to each of the blocks in the other file. For

example, if there are 3 copies of a block in one file, such as d, f and h in file 1,

and 2 copies in the other, such as q and t in file 2, there will be 6 reported

matches of 11 lines, a total of 66 lines; whereas the correspondence between

the files is 2 blocks in one file matching 2 in the other, that is 22 lines.

Second, two clones can overlap, so that the overlapping code is counted

twice, such as the lines 80–90 in file 1, which are matched as part of block a

to r, as well as block c to o.

Third, one clone can be subsumed by another. Consider the block n

which is matched to block b. As block a is matched to block r, the clones b

and s which are subsumed by blocks a and r, do not need to be accounted

for. As block n is matched to block b and has no other match, it should not

be considered as part of the correspondence between the files.

Clone detection tools match clones on a many-to-many basis. One-to-

one matching is likely to be more useful in matching restructured files. The

duplication in clone tool outputs can be made to approximate one-to-one

matching by an unscrambling technique described in full in a technical

report [94]. The three step unscrambling process is illustrated in Figure 11.8

and described briefly here.

First, subsumed clones are removed, in the example, blocks b and h

in file 1, and blocks q and s in file 2, are subsumed by blocks a, g, p

and r respectively. Blocks whose only match is a subsumed block, such

as block n in file 2, matched to block b, are also removed. Figure 11.8b

shows the matching blocks after removal of the subsumed blocks and their

dependants.

Second, unmatched multiple copies are removed. The strategy used

here is to match the multiple blocks in the order that they appear in the file.

This means that block d is matched to block t. Block f is unmatched and

therefore removed. The remaining blocks are shown in Figure 11.8c.

Third, where blocks overlap, the strategy is to remove the overlapping

code from the smaller of the two blocks. The overlapping code is also

166 CHAPTER 11. FILE COMPARISON TOOLS

removed from its partner in the other file. In the example, lines 80-90 in

block c, which overlap block a are removed. The same eleven lines are also

removed from block o which is the block paired with c, see Figure 11.8d.

Once the three steps are complete, the blocks remaining in each file

match, the amount of copied code in the two files is the same, and none of

the matching code is counted more than once.

(a) Original clones (b) Subsumed clones removed

(c) Unmatched multiples removed (d) Overlapping removed

Figure 11.8: Steps in unscrambling clones for one-to-one matching.

11.6. SUMMARY 167

11.6 Summary

In this chapter, the third-party tools Code Clone Finder, Duplo and Simian

were introduced along with P-Duplo, an adaptation of the method used by

Duplo more suited to origin analysis. Each of these tools uses a represen-

tation of the code based on tokens or text, rather than more complex trans-

formations, such as abstract syntax trees or program dependency graphs.

The tools were described and compared, highlighting their benefits and

drawbacks in matching code for origin analysis. The tools provide comple-

mentary information about matched code, with the weakness in each one

generally covered by the strengths of the others.

The “over-stated” clones reported by the clone detection tools are iden-

tified as a problem for matching code in origin analysis. The Unscrambling

tool, developed to give a set of blocks which are matched one-to-one, was

described in this chapter. As noted in Chapter 6, the Ferret XML report

can be analysed to produce information about blocks of code covered by

matching trigrams, both directly, and by using the density analysis tool.

The raw output from the tools, and the blocks from each of the tools are

used as the basis for feature construction, which is described in Chapter 13.

168 CHAPTER 11. FILE COMPARISON TOOLS

Chapter 12

Data Collection, Preprocessing

and Filtering

.

This chapter describes the data collection, preprocessing and filtering

steps outlined in Chapter 10, and is in four main parts. The first describes the

source code collection and preparation. Next, terminology used in this and

subsequent chapters is introduced. The filtering process is then explained,

followed by a description of the resulting datasets and their labelling.

12.1 Source code collection and organisation

The source code for this study was drawn from the open source repository

SourceForge [183]. About three hundred projects were initially selected and

downloaded. The selection process is explained in Section 12.1.1. These

projects were examined and unsuitable ones rejected, resulting in a final

set of eighty-nine projects, which are described in Section 12.1.2. Prior to

filtering, the data is organised and preprocessed as detailed in Section 12.1.3.

12.1.1 Selection of projects from SourceForge

SourceForge.net lists a large number of open source projects (more than

280,000 in May 2012). It offers a range of selection criteria, such as program-

169

170 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

ming languages used, development status, operating systems supported

and topic. The criteria used to select projects for this task were:

• Programming language: C

• Operating system: Linux

• Development status: Production/Stable or Mature

When the projects were selected (2006), the concurrent versioning system,

CVS, was more commonly used than Subversion [57, p.4]. To allow projects

to be downloaded with a single script, only those using CVS were consid-

ered. Prior to downloading, manual filtering, using the Eclipse workbench1

to inspect the files, excluded projects with few C code files, with fewer than

three releases, or those which had been removed from the repository.

Versioning systems record every change committed, but to reduce the

amount of material stored and processed, and to build a system which

should generalise to software systems where only stable releases are avail-

able, only versions tagged by the developers as significant were down-

loaded for analysis. Although the authors of different projects determine

these intervals in different ways, this subset of revisions provides a rea-

sonable granularity for study. Downloading was automated with a bash

script based on the tags. Several of the projects were subsequently found

to be incorrectly ordered or to contain branches, which was resolved by

downloading the affected projects manually, release by release.

Figure 12.1 outlines the steps in data collection and preparation. The top

half of the diagram shows the organisation of the code, with each project

in a separate directory. Within the projects, each release goes to a separate,

consecutively numbered, directory.

12.1.2 The selected data - 89 Projects

Details of the 89 projects selected are provided in two tables in Appendix H.

Table H.1, on pages 382–383, shows the project names and purposes, and

Table H.2, which follows on pages 384–385, shows the project sizes and the

1http://www.eclipse.org/

12.1. SOURCE CODE COLLECTION AND ORGANISATION 171

amount of code in the source code files. As C code is used in this study,

there is a natural bias towards scientific, engineering or technical projects.

Figure 12.1: Source code collection and preprocessing. Each project is downloaded
and stored in its own directory (labelled a...z) with each release in a
separate subdirectory (labelled 1...n). C code files are selected and
comments stripped from each file, and layout is standardised. The
prepared code is stored using the same structure as the raw code.

172 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

The projects vary in size and growth rate. Some of the projects, possibly

those established before joining Sourceforge, change little between releases,

while others show rapid growth. The two extremes are exemplified by the

projects ‘giw’, which remains almost the same size, 10 KLOC, throughout

the 3 releases, whereas ‘xastir’ grows from 47 to 111 KLOC over 140 releases.

The granularity of releases varies from those tagged at every change, to

those only tagged when the project is deemed stable after major changes.

The C code in individual releases varies from just over 100 lines of code

(LOC) to over 200 KLOC, in 2 to 752 files. The number of releases per project

ranges from 3 to 140, with a mean of 16. There are 11,210 distinct C code

files, with a total of approximately 117,500 files in the 1,405 releases.

12.1.3 Preprocessing

The bottom half of Figure 12.1 shows the steps in preparing the code for

comparison. First, all of the C source code files (‘.c’ and ‘.h’) were selected

from the projects. Then comments were removed from the files. This is

particularly important in projects where large identical comment blocks,

such as those detailing licences, are placed at the head of each file, because

the similarity between the files will be distorted by the comments in text-

based comparisons. For example, two files from the biew project, illustrated

in Figure 12.2, share the same comment block, highlighted in red. The files,

ref.c and codeguid.h, have little code in common, but because of the shared

comments have a fairly high similarity score of around 0.33. Without the

comments their similarity is 0.02.

Removing such comment blocks is useful in this context, however, it is

less clear whether the removal of all comments is the best strategy overall.

On the one hand, similar comments may point to similarity between files,

but on the other hand, it is possible that unrelated comments have elements

in common, such as the author’s name or the use of standard wording for

standard tasks. However, as noted in Chapters 2 and 3, few of the ap-

proaches to clone detection, plagiarism detection or origin analysis include

comments in their file comparisons. It therefore seems reasonable to do the

12.2. TERMINOLOGY 173

Figure 12.2: The files refs.c and codeguid.h from the biew project. The shared
comments, which are coloured red, are about one-third of the size of
the files. Without the comment block, the files have little in common.

same. As some of the tools used to compare the files do so on a line-by-line

basis, pretty-printing is used to standardise the layout.2

12.2 Terminology

The terms used when discussing file selection are shown in Table 12.1.

A candidate file is a file which matches the filtering criteria and is therefore

possibly an example of the type of file sought. An amended file is a candidate

file in the next release. In the same way as many others (e.g. [22, 90, 128,

130, 179], the approach in this research first matches by name, forming two

groups of files: those which are matched by files of the same name in the

following release, and those which are not, known as disappearing files. The

words similarity, similarity score or similarity coefficient mean the Jaccard

2Gnu Indent with the options -gnu -bli0 -di0 -i0 -ip0 -nhnl, removing indentations and

ignoring breaks within a line, combined with the removal of leading spaces and blank lines

174 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Term Notation Description

Candidate file f n
a Any file a in release n, matching the filter criteria

Amended file f n+1
a Revised version of the candidate file in release n+1

New file f n+1
b • @ f n

b A file in release n+1 not in release n

Disappearing file f n
a • @ f n+1

a A file in release n not in release n+1
i.e. a renamed, moved or deleted file

Similarity Sim(f 1, f 2) Jaccard coefficient of similarity between
files f1 and f2, based on token trigrams

| f 1trigrams
∩

f 2trigrams|
| f 1trigrams

∪
f 2trigrams|

Consecutive- Sim(f n
x , f n+1

y) Similarity between 2 files in consecutive releases
similarity

Self-similarity Sim(f n
a , f n+1

a) Consecutive similarity of files of the same name

Same-similarity Sim(f n
x , f n

y) Similarity between files in the same release

Similar file f n+1
x ,Sim(f n

a , f n+1
x) >Min-sim File x • Sim(f n

candidate , f n+1
x) ≥

minimum similarity threshold

Table 12.1: Terminology

coefficient of similarity between two files based on token trigrams in the

files. Similarities between different groups of files are given special names

which are explained in Section 12.3.1.

Two other terms used are target file and candidate group. A target file is a

file related to the candidate file by similarity and proximity. For example,

a candidate split file’s targets are files in the next release similar to the

candidate file, which may therefore be recipients of the code removed from

the candidate. The targets for a disappearing file are the file or files in the

next release which are similar enough to the file to be the possible new

location(s) of the file. A candidate group consists of the candidate file, the

amended version of this file, where it exists, and the target file or files. There

can be one or more target files in a group, and they can be any mix of new

files similar to the candidate, and existing files which have become more

similar to the candidate than they were in the previous release.

12.3. FILTERING 175

12.3 Filtering

There are two steps in filtering the code to find potentially interesting files.

The first step is to gather information about the relationships between files

throughout a project, and the second step is to combine aspects of this

information to find files of different types. The information gathering step

is described in Section 12.3.1 and the filtering in Section 12.3.2.

12.3.1 Information Gathering

Once the source code is collected and prepared, the files in each release are

compared to all of the other files in the same release, and all of the files in

the next release. There are two aims in comparing the files. First, to find

files with changes between releases which indicate possible membership of

the category of interest; and second, to find other files which may be related

to the change in the candidate file.

Ferret is used for comparing files in the filtering stage because of its rel-

atively fast processing time [194]. There are a large number of comparisons

made during the filtering stage. For this group of projects, with an average

of 16 releases per project and 84 files per release, an estimated 14 million

comparisons between pairs of files are made.3

Vectors of file sizes, in bytes, and of similarities between the files in each

project are stored for use in filtering. The three types of similarity calculated

are: self-similarity, of each file to the file of the same name in the next release;

consecutive-similarity, of each file to every other file in the next release; and

same-similarity, of each file to every other file in the same release.

An example mini-project is used to illustrate the three types of similarity.

This mini-project has 3 releases and 2 original files, a and b. File b is split

between releases 1 and 2 to form file c. Table 12.2 lists example similarities

and file sizes. The similarities are marked in Figure 12.3, except those

between files a and c, as they would make the diagram too cluttered.

Self-similarity shows whether a file has changed between releases. Cons-

3(Estimate: 89 ∗ [([(84 ∗ 83)/2] ∗ 16) + (84 ∗ 84 ∗ 15)] = 14, 383, 824)

176 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Figure 12.3: The example mini-project with self-, same- and consecutive-
similarities shown, except those between files a and c.

ecutive-similarity is used to find similarities between the file of interest and

files in the next or previous releases. Comparisons between same-similarity

and consecutive-similarity are used to detect the changes to similarity be-

tween releases. The vectors include information for every release or pair of

releases. Where a file does not exist in a release, its size is set to 0 and its

similarities to -1.

Size in bytes a <3000, 3000, 3100> b <6000, 4000, 4200 > c <0, 2400, 2400>

Self-similarity a <1.0, 0.95> b <0.5, 0.96 > c <-1, 1.0>

Same-similarity a-b <0.07, 0.02, 0.03> b-c <-1, 0.15, 0.13> a-c <-1, 0.02, 0.01>

Consecutive- a-b <0.02, 0.01> b-c <0.35, 0.15> a-c <n/a here>

similarity b-a <0.07, 0.02> c-b <0.13> c-a <n/a here>

Table 12.2: Size and similarity vectors for the mini-project. Same-similarity is be-
tween files in the same release, self similarity between a file in one
release and the same file in the next release, and consecutive-similarity
is that between files in consecutive releases, excluding self-similarities.

12.3. FILTERING 177

In the example, file a is unchanged between releases 1 and 2, and there-

fore has a self-similarity of 1.0, it has minor edits before release 3, when the

similarity between releases is 0.95. File b splits after release 1, resulting in a

smaller file b, and the new and similar file c. File b has self-similarity of 0.5,

and a consecutive-similarity with file c of 0.35. As file c does not exist in

release 1, the value -1 is used in place of similarity scores between this file

and other files.

12.3.2 Selecting Candidate Files

The stored vectors are scanned to find possible examples of the required

type of file. Different filtering criteria are used for each application.

The main filter for renamed or moved files is size, to find files which

exist in release n, but not in the next release, n+1. Consecutive-similarity

provides a second filter, finding target files in release n+1 which are similar

to the file which has disappeared.

Split file filters are based on size and similarity. A split file is expected

to become smaller, and the self-similarity to be lower than it would be after

edits such as within-file abstraction. In addition, one or more target files,

those which now contain the extracted code, will increase their similarity

to the old file.

Merged files can be viewed as the reverse of split files, and by scanning

the releases in reverse order, a merged file will appear to be a split file. They

can also be filtered by looking for files which have increased in size and

have become more similar to a file from the previous release, which may

either have disappeared or have become smaller. However, the view taken

in this study is that for code from one file to be merged with another file,

it must have originated somewhere in the system. As such, a merge can

only happen if a file in the previous release has either split or disappeared,

so that looking for merged files repeats the work of finding the other two

types of restructuring.

Other aspects of file evolution can also be found. From size alone,

growing, shrinking, static and new files can be pinpointed. Other changes

178 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

to files can be traced from self-similarity.

The groups formed with each category of candidate file differ. Split file

candidate groups consist of the candidate file, from release n, the amended

file from release n+1, and one or more target files, also in release n+1: either

new files whose similarity exceeds the minimum threshold, or existing files

which have increased their similarity to the candidate file by at least the

Figure 12.4: Information gathering and filtering

12.4. EXPERIMENTAL DATA 179

minimum margin between releases n and n+1.

Disappearing files encompass moved, renamed or deleted files, files

which merge with others, or files which are split, where both newly created

files are renamed. Groups related to these files consist of any files in the next

release with a similarity to the disappearing file which is above a chosen

threshold.

Figure 12.4 gives an overview of the filtering processes for split and dis-

appearing files and their targets. Disappearing files are found by scanning

the file size vectors. Target files are found by looking at consecutive- and

same-similarities. If there are no similar files, then the file is assumed to

have been deleted. If the most similar file is a close match (similarity>0.85),

then the file is assumed to have been moved or renamed. Disappearing files

which belong to neither of these two categories are called the uncertain set.

The target files for the uncertain set are sorted according to the chosen

criteria and grouped with the disappearing file for further investigation.

Candidate split files are selected based on size and self-similarity. Target

files are selected using the filter criteria based on consecutive- and same-

similarity. If there are no target files, the file is assumed to have been edited

but not split. Otherwise, the target files are sorted and grouped with the

candidate split file and its amended version for further investigation.

12.4 Experimental Data

Two different datasets were extracted from the 89 project source code

database: candidate split files, described in Section 12.4.1; and disappear-

ing files, described in Section 12.4.2. For each set, both theoretical and real

examples are provided to give an idea of the range of relationships between

files in each of the classes. Also provided are examples where classification

is difficult. In the text, the real examples are mostly based on small files,

and headers are sometimes removed, to fit the page. Full versions of the

files and larger file examples are available online.4 These examples are

4http://homepages.stca.herts.ac.uk/˜gp2ag/trigram-analysis-examples.htm

180 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

produced by the 3CO tool, see page 117, Chapter 8.

For each of these datasets, the class of the candidate files was decided

by visual inspection of all files in the comparison group. Much of the

file classification was undertaken prior to the development of 3CO, which

would have streamlined the process.

To put the choice of filtering thresholds in context, the mean consecutive-

similarity across all projects in this study is around 0.04. This figure excludes

self-similarity, where the mean is 0.95.

12.4.1 Split file dataset

Candidate split files for this experiment were selected by filtering to find

files with a reduction in size of at least 10% and no more than 0.9 self-

similarity. Target files were selected if their consecutive-similarity was at

least 0.1, and, for existing files, an increase in similarity of at least 10%. Two

classes were assigned to the set of candidate split files, either split or not.

There were a few files for which classification was not clear, and these were

excluded from the dataset.

12.4.1.1 Split files

Split files vary in their complexity. Three example split files are shown

as block diagrams in Figure 12.5. The first of these, 12.5a, a simple split,

will generally only apply to .h files, as it is usually difficult to split a .c file

without the need to include at least some of the original code in both the

resulting files. The second block diagram, 12.5b, shows a file from which

some code has been deleted, some added and some edited. One section of

code has also been moved to an existing file. The last diagram, 12.5c, shows

a file split three ways, one part forming a new file and one part added to an

existing file. There is also another file in the system which has been edited

and has incidentally become more similar to the candidate file. This file is

therefore selected as a target file, although the code from the split file has

not been moved to it.

Three examples taken from the dataset illustrate a simple two-way split,

12.4. EXPERIMENTAL DATA 181

a three-way split and a multi-way split. The simple split file example is

in Figure 12.6.5 Code which remains in the amended version of the file

diagram.h is coloured blue, and code going to globals.h is red.

A slightly more complex example is shown in Figure 12.7, which is laid

out in two columns to fit the page.6 This file, gemdos.h, has been split

into three parts and some of the code has been edited or deleted. The code

remaining in the new version of the file is coloured blue. Code which goes

to the new file gemdos defines.h is red, and that going to the existing file

gemdos.c is yellow. Edited code is not matched in the other files and is

therefore coloured cyan.

There is a wide range of patterns in the candidate groups, which are

mostly more complex than these two examples. Even simple splits vary:

the amount of code moved can be very small relative to file size, for example

5http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/diagram.xml
6http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/gemdos.xml

(a) A simple split file (b) A more complex split

(c) A three way split with an unrelated
file selected as a target file

Figure 12.5: Example split files

182 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Figure 12.6: An example of a simple split file. This shows the file diagram.h from
the etherape project. It is split, with some of the code going to globals.h
(coloured red), and most of the rest remaining in diagram.h (blue).

15 of 970 lines; or can be a large proportion, such as 1067 out of 1080 trigrams.

There may be multiple target files, for example, one of the candidate files in

the set is split into 11 of its 13 target files.7 This large file (over 1000 lines) is

shown in Figure 12.8, the parts of the file moved to some of the target files

is more scattered than in the previous examples. The text of the candidate

file is repeated five times as there are thirteen target files. The first of these

is the amended version of the candidate file in the next release. The rest of

the files are new ones created as a result of the split, or existing files which

are similar enough to the candidate file to be considered as targets. Vertical

bars have been added to the right of the text to highlight the file to which

7http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/dialog-8.xml

12.4. EXPERIMENTAL DATA 183

Figure 12.7: This file is gemdos.h from the hatari project which is split 3 ways, with
some editing. The blue code appears in the file in the next release. That
coloured red is in the new file gemdos defines.h and the yellow has
moved to the existing file, gemdos.c. The cyan code has been edited.

each section of the code has moved. For example, the first part of the code

is found in the amended file (blue, first column); the next section of code

has been moved to the fourth of the thirteen other target files (red, second

column); and the next section has been moved to the ninth of the targets

(blue, fourth column). The last two target files (yellow, column 4 and the

blue, column 5) are not true targets as they are only incidentally similar to

the candidate file.

184 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Figure 12.8: The file dialog.c from the hatari project, has over 1000 lines and there-
fore laid out in two columns to fit the page. The file is split into 11 of
the 13 target files. Coloured bars added to the right of the text show
which of the target files contains each section of code.

12.4. EXPERIMENTAL DATA 185

12.4.1.2 Non-split files

Not all of the selected candidate files turn out to be split. Block diagrams of

examples of such files are shown in Figure 12.9. There are two conditions

for a file to be selected. First, it must reduce in size, and this is represented

by the block of deleted code common to each example. Second, there must

either be a similar file introduced to the system, or a file which has become

more similar to the potential candidate than it was in the previous release.

This can occur when an existing file is edited, either by adding code which

is incidentally similar to the candidate (Figure 12.9c), or by removing code

which is not. A new file may be similar to the candidate either incidentally

(Figure 12.9a), or because a section of the candidate file has been used in a

copy-paste-edit operation when creating the new file (Figure 12.9b).

An example of a non-split candidate, inglossarydlg.h from the interest

project, is shown in Figure 12.10. Here the file has been edited, thus be-

coming smaller. The two files which share code with the file do so because

of in-project similarities. Apart from the edited code in cyan, all of the

remaining code is coloured blue or a mix of colours which contain blue.

(a) New file is incidentally similar to
candidate file

(b) Part of the candidate file is copy-
paste-edited to create the new file
making the two files similar

(c) Existing file altered, making it
more similar to the candidate file

Figure 12.9: Example non-split files selected as candidate split files. In each case,
the file becomes smaller, fulfilling part of the selection criteria.

186 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Figure 12.10: An example of a non-split file, interest/src/inglossarydlg.h, selected
as a split candidate because it has reduced in size, and two files in
the system are similar enough to be possible target files. However,
code in the target files is also in the revised version of the candidate.

The green code is also shared by the existing file inchartcfg.h, as is the black

code which also appears in the new file widgets/innumentry.h.

In the example in Figure 12.11, ac1d.c from the xmp project, a first look

at the red and orange coloured code might appear to be a split to the “red”

file. In fact, the code occurs commonly throughout the project, which can

be seen from the other columns where the code is coloured black meaning

it is in each of the three files in that column. The amount of common code

is also magnified here because a few lines are repeated (see e.g. the boxed

code in the lower right corner of the figure).

12.4. EXPERIMENTAL DATA 187

Fi
gu

re
12

.1
1:

T
hi

s
is

an
ed

it
ed

fil
e

w
hi

ch
ha

s
no

tb
ee

n
sp

lit
.

Lo
ok

in
g

at
th

e
fir

st
co

lu
m

n
of

th
e

.x
m

lfi
le

,t
he

fil
e

m
ig

ht
ap

pe
ar

to
be

sp
lit

to
th

e
“r

ed
”

fil
e.

H
ow

ev
er

,t
he

re
ar

e
tw

o
th

in
gs

w
hi

ch
pr

om
pt

fu
rt

he
r

ch
ec

ki
ng

.
Fi

rs
t,

th
e

re
d/

or
an

ge
co

de
is

re
pe

ti
ti

ve
(s

ee
in

se
rt

),
an

d
se

co
nd

,t
he

re
ar

e
17

ot
he

r
fil

es
in

w
hi

ch
al

lo
r

m
os

to
ft

he
co

de
ap

pe
ar

s,
in

di
ca

ti
ng

in
ci

de
nt

al
si

m
ila

ri
ty

.

188 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

File type .c .h Total

Split 130 64 194
Not 146 47 193

Total 276 111 387

Table 12.3: Analysis of file type and classification of candidate split files

12.4.1.3 Not classified

In discussing her work with the project PostgreSQL, Zou states that “Cases

of structural changes can be so complicated that they are hard to detect even by

manual examination.” [261, p.23]. This is also true for some of the examples

taken from the 89 projects, where not all of the files selected by filtering

could be classified with confidence; these examples were excluded from the

dataset. The file config MUSENKI.h is one such example.8 This is difficult

to classify by manual comparison of the files in the candidate group. The

code colouring shows several small groups of lines which appear in only

one of the target files. However, the overlaps between blocks of code in

different files make the relationship between them confusing.

This example contains many of the features which made it difficult to

classify files. The factors include having a large number of target files,

having high incidental similarity, and the code which has been edited or

removed is scattered throughout the candidate file. Also excluded from the

dataset are files of examples or tests, and duplicated files.

12.4.1.4 Dataset composition

Table 12.3 shows the composition of the resulting dataset. Of the 387 in-

stances, 194 are classed as split (130 .c and 64 .h); and 193 are negative

examples (146 .c and 47 .h); so that the dataset is nearly balanced. File sizes

vary from 5 to 9377 lines and there are between 1 and 19 target files in the

comparison groups. An analysis of the number of target files in the groups

is shown in Figure 12.12. More than half of the candidates have only one

target file, approximately a quarter have two, few have more than eight.

8http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/config_MUSENKI.xml

12.4. EXPERIMENTAL DATA 189

Figure 12.12: Analysis of the number of targets in the split file candidate groups

The x-axis of the graph in Figure 12.13 is labelled with the projects for

which filtering selects candidate split files. The bars show the total for each

project, with the composition represented by colours. Files classified as

split are in red, as non-split in blue, and the unused files are in grey. In each

case, the .h files are shown in a paler shade than the .c files. Fifty-five of

the 89 projects have candidate split files and of these, the majority, 41, have

fewer than 7 candidates.

190 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

Fi
gu

re
12

.1
3:

T
he

nu
m

be
r

of
ca

nd
id

at
e

fil
es

sh
ow

n
by

pr
oj

ec
t,

w
it

h
sp

lit
fil

es
in

re
d,

no
n-

sp
lit

in
bl

ue
an

d
un

cl
as

si
fie

d
fil

es
in

gr
ey

.
In

ea
ch

ca
se

.c
fil

es
ar

e
re

pr
es

en
te

d
by

a
da

rk
er

co
lo

ur
th

an
.h

fil
es

.

12.4. EXPERIMENTAL DATA 191

12.4.2 Disappearing file dataset

The disappearing files were found by scanning file size vectors. Possible

destinations for the code from disappearing files were selected based on

similarity. Files with an identical target file are assumed to be renamed

or moved files. Manual classification of a test subset of disappearing files

found that files with a high similarity to their main target file, all of those

above 0.788 and most above 0.55, had been renamed or moved; and that

files with low similarity, all of those below 0.0925 and most below 0.15, were

incidentally similar, see Figure 12.14. Adding a margin to these figures to

allow for unusual cases, files with a target similarity of at least 0.85 are

automatically considered to be moved or renamed files. Those with a

similarity of 0.05 or less are considered to be incidentally similar. The

remaining set of disappearing files (the uncertain set) were those to which

machine learning was applied. The files were partitioned into two groups:

those with just one target file and those with more. When there are at least

two target files, one of three classes are assigned to the disappearing files.

Figure 12.14: Classification of the test set of disappearing files. The y-axis shows
the range of similarity between the file and the most similar file to
it in the system. The x-axis shows the number of files in the range.
Classifications are shown by the colours in the bars.

192 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

One class is split, another is rename, which includes moves and merges,

and the last is that no related file is found. The group with only one target

file cannot be split and therefore has only two possible classes.

12.4.2.1 Renamed, moved or merged files

Two examples are shown in this section. One from gwyddion, libgwypro-

cess.h, on the left of Figure 12.15 has been moved and edited. The new file

gwyprocess.h, on the right, has the same code, with five new lines.

The other file, on the left of Figure 12.16 is sysexits.h, a file which

disappears from the fidogate system. The file is compared to fidogate.h,

an existing file, and the only target. All of the code from sysexits.h is also

in fidogate.h. There are two possible reasons for this, either the files have

merged, or the code was already in fidogate.h, and sysexits.h is deleted to

remove the duplication from the system. The file on the right is fidogate.h in

the next release, and it is compared to sysexits.h (in blue) and to fidogate.h

in the previous release (in red), showing their merge.

12.4.2.2 Other classes of disappearing files

Disappearing files which have split, or are incidentally similar to their

targets, are like those discussed in the section on split files. Examples of

disappearing files which have split,9 and one which is incidentally similar

to the target files10 are available online.

12.4.2.3 Dataset composition

Apart from 997 files moved to new directories in the project “mkcdrec”,

there are 1,893 files which disappear from the projects. Of these, 525

are matched by other files in the system, 322 identically. Among the 525

matched files, 21 are ambiguous because two or more of the most closely

matched files are identical, 11 otherwise the matches are the same as made

9http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/player.xml&/protos-7.xml
10http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/indatedlg.xml
1116 with 2 identical targets, 4 with 3, and 1 with 7

12.4. EXPERIMENTAL DATA 193

Figure 12.15: The file on the left, gwyddion/libgwyprocess.h, has disappeared. Its
code, along with 5 new lines is in the new file gwyprocess.h, shown
on the right. Two other files, responsible for the green, purple and
black code, are incidentally similar to the disappearing file.

Figure 12.16: On the left, the file sysexits.h is compared with fidogate.h, which
shares all of the code. On the right, fidogate.h is the base file, code
in its previous version is red, and sysexits code is blue, showing a
merge with no overlapping code.

194 CHAPTER 12. DATA COLLECTION, PREPROCESSING, FILTERING

by visual inspection. Another 443 are unmatched, leaving 925 for which

the destination of the code is uncertain.

Note that the “uncertain” dataset reported in Table 12.4 is the result

of filtering with the improved filter criteria described in Chapter 15. The

number of disappearing files is unchanged whatever filter is used. Matched

files also remain the same here. The differences between the original and

new filtering criteria mean that more marginal target files are selected, so

that more of the files (142 .c files and 38 .h files) fall into the uncertain rather

than the unmatched category.

As with the split files, some of the files selected by filtering are excluded.

Most of these are examples or tests, with a few files which could not be

classified with confidence. Of the remaining 752 files, 177 have 1 target file,

575 have more; 478 are .c files and 274 are .h. These are mostly unrelated

and renamed files, 360 (47.9%) and 333 (44.3%) respectively, with only 59

(7.8%) split files. There are up to 99 target files in a candidate group.

12.5 Summary

In this chapter, the collection, selection and preprocessing of files is de-

scribed along with their filtering to find two different sets of candidate

groups. The composition of these datasets by project, file type and class are

described. In the next chapter, the features constructed for these datasets as

input for machine learning are explained. These features are derived from

comparison of the files by the tools described in Chapters 6 and 11.

2 or more target files 1 target file Totals

File type .c .h Total .c .h Total .c .h Total

Unrelated 158 97 255 73 32 105 231 129 360
Renamed 175 86 261 28 44 72 203 130 333
Split 44 15 59 - - - 44 15 59
Unclassified 116 21 137 24 12 36 140 33 173

Total 493 219 712 125 88 213 618 307 925

Table 12.4: File type and classification of “uncertain” disappearing files

Chapter 13

Feature Construction

This chapter explains how the features for classifying evolving files are

constructed. These features are used to build machine learning models

which aim to classify candidate split files as positive or negative examples,

and to classify disappearing files as split, renamed, or deleted.

Feature construction is a two-stage process in this research. In the

first stage, pairs or combinations of files are selected from those in the

candidate group. Second, features are constructed by comparing the pairs

or combinations of files generated in the first stage.

The main idea is to build sets of features based on each comparison tool,

and investigate the predictive power of the sets, both individually and in

combination. The goal is to find a set of features which is simple to compute

while providing good discrimination between the classes.

The two tasks, classifying split and deleted files, are related in that

both look at the movement of code from one file to another, and consider

how the group of files is related. Assessing split files is possibly the more

difficult task because it is uncertain whether the code removed from the file

is significant, whereas a file which disappears is automatically of interest.

The features were originally developed to classify split files, and expla-

nations in this chapter generally refer to split files. However, because the

task of classifying a disappearing file as renamed, split or deleted is similar,

the features are also used to classify disappearing files.

195

196 CHAPTER 13. FEATURE CONSTRUCTION

When deciding whether a file is split, questions asked about the rela-

tionship between files, and the code they contain, include:

• Are blocks of code missing from the candidate file in the next release?

• Are the blocks large enough to be interesting?

• Do these blocks appear in other files?

• How similar are the associated files?

• What proportion of the files are matched?

• How is the matched code distributed within one file?

• How is the matched code distributed among the group of files?

The features constructed for this data aim to answer such questions

about the files in a group and their interaction, and so provide suitable

information for the file classification tasks.

There are two parts to the chapter. Section 13.1 looks at the way that

files in a candidate group are selected and combined ready for comparison.

Section 13.2 describes the features constructed from the results of comparing

the files using the tools described in Chapter 11.

13.1 File combinations and comparisons

Two candidate groups were introduced in Chapter 12. Split file groups

consist of a candidate split file, an amended version of this file in the next

release, and a group of target files. Disappearing file groups are just the

disappearing file and a group of target files.

The files in a group are compared in two ways. Either pairwise com-

parisons between selected single files, described in Section 13.1.1, or com-

parisons between the candidate file and various combinations of the other

files in the group, explained in Section 13.1.2.

13.1. FILE COMBINATIONS AND COMPARISONS 197

13.1.1 Comparing single files.

The three single files compared pairwise are the candidate file, the amended

version of the file and the ‘main’ target file, or, for disappearing file groups,

the two main targets. The ‘main’ target file is the one selected under some

similarity measure as most likely to contain the majority of the code re-

moved from the candidate file. A straightforward approach is taken to

selecting target files in the experiment reported in Chapter 14. Potential tar-

get files are ranked by the change in similarity of the target file, from release

n to n+1, to the candidate file in release n [Sim(Cn,Tn+1) − Sim(Cn,Tn)].

This selection has a bias towards choosing new files over existing files.

Based on earlier findings [93], if a file has been restructured and there is a

similar new file in the system, it is likely to result from the restructuring.

Figure 13.1 illustrates the selection of the main target file by change in

similarity score. The example candidate group has four target files, shown

on the left of the diagram. Of these, two are new, and two are existing

files. These files are shown with two similarity values, chosen to illustrate

the selection criteria. The similarity values are labelled “similarity up from

x to y”, where x = Sim(Cn,Tn), (same-similarity); and y = Sim(Cn,Tn+1),

Figure 13.1: The target file with the largest increase in similarity to the candidate
file is selected as the main target file. Pairwise comparisons are then
made between the candidate, amended and main target file.

198 CHAPTER 13. FEATURE CONSTRUCTION

(consecutive-similarity). When a file does not exist in release n, it is assigned

a similarity value of -1, assuring the selection of new files over existing files.

This is just one possible strategy, which could be altered; for example, by

reducing the bias, or by removing it altogether.1

The selected target file, the candidate file and the amended file are then

compared to each other. Comparisons between the three files as a group

are explained in Sections 13.2.1.2 and 13.2.2.1, and are not depicted here.

13.1.2 Comparing the candidate and concatenated files

The other approach to file comparison looks at the candidate file and various

groups of files taken from the amended and target files. Each group of files

is concatenated to make one file, which is compared to the candidate. Five

combinations are considered below, with the target files which would be

selected from the example set, files a–d in Figure 13.1, noted in brackets:

A The amended file and the main target file (a),

B the amended file and all target files (a, b, c and d),

C the two files among the group most similar to the candidate (a and c),

D the amended file and all new target files (a and b), and

E the amended file and the target file most similar to the candidate file (c).

One example of a comparison between the candidate file and a concatena-

tion is shown in Figure 13.2. All of the new target files and the amended file

are combined (concatenation D); the file resulting from the concatenation

is compared to the candidate file. At the end of this Section, on page 202,

Figure 13.5 illustrates all of the concatenations and comparisons.

There are two reasons for combining the files. First, comparisons be-

tween the candidate file and the concatenations can provide useful infor-

mation. For example, if a file is simply split to produce an amended file and

one or more new files, a high proportion of the original file’s code is likely

to appear in a concatenation of the new and amended files.
1Other similarity measures can be used for selection, alternatives are explored in Chap. 15.

13.1. FILE COMBINATIONS AND COMPARISONS 199

Figure 13.2: An example concatenation, that of all the new target files with the
amended file, and its comparison to the candidate file.

Two examples are shown in Venn diagram form in Figure 13.3. On the

left is the file fa.c, introduced on page 122, which is split three ways. The

similarity between each of the three targets and the candidate file is around

0.3. The similarity between the candidate file and the concatenation of the

three files resulting from the split is 0.666. The containment of the candidate

file trigrams in the concatenation is 0.89, a high value reflecting the fact that

most of the candidate file code appears in one of the three files.

A contrary example is pictured on the right of Figure 13.3. Imagine

that instead of being split, a file has been edited, so that, as in the previous

example, the amended file has a similarity of 0.3 to the candidate. The two

target files for this candidate also have similarities of around 0.3. However,

Figure 13.3: In each diagram, the amended file (A, in blue) and two target files (T1,
T2, in yellow and green) have a similarity to the candidate file (C, red)
of around 0.3. The file on the left is split, the one on the right is not.

200 CHAPTER 13. FEATURE CONSTRUCTION

most of the code common to the candidate and target files is a subset of that

shared by the amended and candidate files. In this case, the containment

of the candidate in the concatenation is about the same as the containment

of the candidate in the amended file.

Another example, in Figure 13.4, shows a file split into three. One part

forms the amended file, the others are placed in existing files. Although

the similarity between the candidate file and a concatenation of the two

target files with the amended file will not be as high as the fa.c example, the

containment of the candidate file in the concatenated file should be high.

The second reason for combining files is that as the number of target

files in the groups varies, the concatenations provide a standard number

of comparisons of the set of target files, regardless of their number, while

including all members of the group in at least one comparison.

The combinations were chosen with two aims. First to select combina-

tions of files which are more likely to be the targets of the code removed

from the candidate file, such as groups A (amended and main target files),

C (the two files with the highest similarity) and E (the target file with the

highest similarity and the amended file). Two of the groups, A and E, pair

the amended file with one target file. These two groups are aimed at simple

splits where code is moved from one file to another, such as cnp-1.c where

some of the code is moved to the new file fact.c. Group C is similar, but

Figure 13.4: A file with two sections split out to two existing files. A concatenation
of the resulting files should contain the majority of the code from the
original candidate file.

13.1. FILE COMBINATIONS AND COMPARISONS 201

allows for two recipients, like the example in Figure 13.4.

The second aim is to include as many of the true targets as possible for

a multiway split. Group B, where the amended file is concatenated with

all potential target files, is motivated by the fact that a file may be split into

more than two target files, and that it may not always be the most similar

files which are the true targets. Group D is similar, but is based on the

assumption that new files are likely to be true target files.

There is a disadvantage to this approach. With just one or two target

files, the groupings cause some duplication of features when the feature

sets are combined. For example, if there is just one new target file, then all

concatenations are the same, and consist of the amended file and the target

file. With a single existing target file, all except concatenation D are the

same, being the amended file and target file. D will simply be the amended

file, thus repeating the single file comparison between the candidate and

amended files. This duplication is a cost of including all target files in the

combinations, and may sometimes affect classification. For example, where

random subsets of features are selected in creating classifiers.

Figure 13.5 shows the file groups, with the same four target files as

Figures 13.1 and 13.2. Target file selections are shown in the second column

of the diagram. As in Figure 13.1, the file with the largest change in similarity

is selected as the main target. This means that the new file (a) is chosen,

although the similarity of the existing file (c) is higher. To balance this

method of selection, two of the groups, C and E, look instead for files with

the highest similarity to the candidate file, regardless of previous similarity;

in this case file (c) with a similarity of 0.8 is chosen ahead of file (a) at 0.5.

The lower part of the third column in Figure 13.5 shows the file combi-

nations. Each file group is concatenated into a single file. The last column

shows the pairs of files passed to the similarity tools for comparison. There

are eight file pairs, three pairwise combinations of the candidate, amended

and main target files, with the other pairs made up of the candidate file and

each of the five concatenations. The information output by the tools is used

to construct features which are explained in the next section.

202 CHAPTER 13. FEATURE CONSTRUCTION

Fi
gu

re
13

.5
:F

ile
co

m
bi

na
ti

on
an

d
co

m
pa

ri
so

n,
th

e
ex

am
pl

e
ca

nd
id

at
e

gr
ou

p
ha

s
4

ta
rg

et
fil

es
,2

ne
w

an
d

2
ex

is
ti

ng
.T

hi
s

di
ag

ra
m

sh
ow

s
th

e
se

le
ct

io
n

of
th

e
m

ai
n

ta
rg

et
fil

e
an

d
th

e
si

ng
le

fil
e

co
m

pa
ri

so
ns

at
th

e
to

p.
It

al
so

sh
ow

s
th

e
cr

it
er

ia
fo

r
fil

e
se

le
ct

io
n

fo
r

th
e

co
nc

at
en

at
ed

fil
es

w
hi

ch
ar

e
th

en
co

m
pa

re
d

to
th

e
ca

nd
id

at
e.

13.1. FILE COMBINATIONS AND COMPARISONS 203

Fi
gu

re
13

.6
:F

ea
tu

re
s

ar
e

co
ns

tr
uc

te
d

by
co

m
pa

ri
ng

th
e

ca
nd

id
at

e
fil

e
gr

ou
ps

w
it

h
ea

ch
of

th
e

to
ol

s
an

d
an

al
ys

in
g

th
e

ou
tp

ut
.

Th
e

m
ea

ni
ng

s
of

th
e

ab
br

ev
ia

te
d

fe
at

ur
e

gr
ou

p
na

m
es

,s
uc

h
as

FB
or

SR
,a

re
lis

te
d

in
Ta

bl
e

13
.1

.

204 CHAPTER 13. FEATURE CONSTRUCTION

13.2 Features

As noted in Chapter 4, the choice of features is important in machine learn-

ing. It can be difficult to make a suitable selection when the possibilities are

not well constrained. In general, for restructured files, the features should

aim to describe the relationships between the contents of the selected files.

In practice, as discussed in Section 12.4.1.1, file sizes, the amount of code

moved, and the complexity of its distribution vary widely, making the

choice of descriptive features difficult.

The second stage in feature construction is explained in this section and

illustrated in Figure 13.6. The eight file pairs described in the previous

section are compared using the four tools Ferret, P-Duplo, CCFinder and

Simian. The outputs from the tools are analysed to provide twelve sets of

features, represented in the diagram by keys, which are listed in Table 13.1.

There are two groups of features, raw and block-based. Raw fea-

tures, described in Section 13.2.1 are taken directly from the output of each

tool. Block-based features, explained in Section 13.2.2, are constructed by

analysing the clones or matched blocks reported by each of the tools.

13.2.1 Raw feature sets

Among the five raw sets of features, four sets are derived from the statistics

reported by each of the four tools. The fifth set comes from the Ferret

trigram-file index; a little analysis is needed to construct this set, but as the

seven other feature sets have much in common, being based on blocks or

clones, the trigram features are grouped with the four raw sets.

Key Raw features Key Block-based features

FB Ferret Basics FC, FT, FL Ferret XML Blocks
(measured in characters, tokens, lines)

Tris Ferret Trigrams FD Ferret Dense Blocks
PR P-Duplo Raw PB P-Duplo Blocks
CR CCFinder Raw CB CCFinder Blocks
SR Simian Raw SB Simian Blocks

Table 13.1: Keys and names of the feature sets

13.2. FEATURES 205

Raw features are included because they are simple to collect and be-

cause several of the approaches to origin analysis reviewed in Chapter 3

use measures taken directly from similarity detection tools. Also, in earlier

experiments [95], 2 of the 32 features chosen by a selection algorithm (cor-

related feature subset selection [101]) from a set of over 2,000 were based

on the direct output from a clone detection tool. These 2 features are ratios

of the code in all of the clones to the total in a file. As previously discussed

(Section 11.5, p. 164), the amount of code in these clones can be greater

than that in the file, because of the many-to-many matching used in clone

detection. It is possible that a large number of such clones indicates a file

ripe for code abstraction, which increases its chance of being split.

13.2.1.1 Ferret basics

Features constructed from the raw output from Ferret are called Ferret

basics. The example of Ferret’s default output in Table 13.2 lists file names,

the number of trigrams in each file and shared by the files, similarity score,

and containment of each file in the other. All of these measurements are

used directly as features. The proportion of trigrams in the non-candidate

files to the candidate file is also calculated, as is the ratio is of the target file

trigrams to those in the amended file.

13.2.1.2 Ferret trigrams

The Ferret trigram-file index, an example of which can be seen in Figure 6.3

on page 90, lists all of the trigrams in the files, and shows which files

contain each trigram. This index is analysed to create the features listed in

common file 1 file 2 simil- cont’t cont’t
file 1 file 2 trigrams trigrams trigrams arity 1 in 2 2 in 1

cnp-1.c cnp-2.c 142 179 151 0.755319 0.793296 0.940397
cnp-1.c fact.c 35 179 35 0.195531 0.195531 1.000000
cnp-2.c fact.c 2 151 35 0.016393 0.019868 0.085714

Table 13.2: Basic Ferret output for the three example files (cont’t - containment)

206 CHAPTER 13. FEATURE CONSTRUCTION

Figure 13.7: The features in Table 13.3 are based on these Venn diagrams, repre-
senting comparisons between the candidate and a concatenation (left),
and between the candidate, amended and main target files (right).

Table 13.3, where A, B, and C refer to the files shown in the Venn diagrams

in Figure 13.7. In concatenation comparisons, file A is the candidate file

and file B the concatenated file. File A is also the candidate file in three-way

comparisons, while file B is the amended file, and file C the main target file.

Nine features are constructed from the comparisons between the can-

didate file and each of the concatenated files. These features include the

number of trigrams unique to each file; the proportion of these to the total

in the file; and the proportion of shared trigrams to the total in each file.

Trigrams in

Features 2 files 3 files

In one file A, B A, B, C

In amended and target files B
∪

C

Shared by all A
∩

B A
∩

B
∩

C

Shared by two of three A
∩

B\C, A
∩

C\B, B
∩

C\A
Shared by candidate and one other file (A

∩
(B
∪

C))\(B∩C)

Cand. trigrams not shared by one file (A\(B∪C))
∪

(A
∩

B
∩

C)

Unique to one file A\B, B\A A\(B∪C), B\(A∪C), B\(A∪C)

Unique proportions A\B
A , B\A

B
A\(B∪C)

A , B\(A∪C)
B , C\(A∪B)

C

Shared proportions A
∩

B
A , A

∩
B

B
A
∩

B
A , A

∩
B

B , A
∩

C
A , A

∩
C

C , B
∩

C
B , B

∩
C

C

Shared by all to each file A
∩

B
∩

C
A , A

∩
B
∩

C
B , A

∩
B
∩

C
C

Proportion of candidate shared by one file (A
∩

(B
∪

C))\(B∩C)
A

Proportion of candidate shared by any file A
∩

(B
∪

C)
A

Table 13.3: Trigram-based features for comparisons between the two and three
files. A, B and C refer to the files shown in Figure 13.7.

13.2. FEATURES 207

The remaining three features repeat information found in the Ferret basic

set: the shared trigrams and the trigrams in each file. However, because

this research explores the comparative classification rates of the different

feature sets, the features are also included in this set.

The three-way comparison between the candidate, amended and main

target files provides twenty-four features which mostly represent relation-

ships between the three files. The features in the set are split into two types:

counts of trigrams in various combinations of files and the proportions of

these counts to the total in one or more files in the combination.

The counts include the numbers of trigrams in each file, unique to one

file in the group, shared by each pair of files, and shared by all three files.

Other count-based features are the sum of the trigrams in the amended and

target files, the number of trigrams shared by the candidate and just one

other file, and this figure subtracted from the total in the candidate file.

Proportional features relate the counts to the total of one of the files

compared. For example, the number of trigrams shared by the candidate

file and just one of the other two files to the number of trigrams in the

candidate file. For a simple split, with little incidentally similar code, this

figure should be close to one. In general, the proportion should be high for

two-way splits, although it will be reduced by editing or by code common

to the three files.

Some of the proportional features echo the basic Ferret features. For

example, the proportion of trigrams from the candidate file which appear

in either of the other two files is the same as the containment of the candidate

file in the concatenation of the amended and target files. Most features, such

as the proportion of a file covered by the trigrams which are unique to that

file, are not calculated elsewhere.

208 CHAPTER 13. FEATURE CONSTRUCTION

13.2.1.3 Simian, Code Clone Finder and P-Duplo

The features constructed from the clones reported by each of the clone-

detection tools are:

• the number of clones of 5 minimum sizes,

• proportions of lines/tokens in the above to the size of file 1, and

• proportions to the size of file 2.

Both file sizes and the amount of code moved vary, making it difficult to

choose one clone size to fit all situations. A range of minimum clone sizes

are set, the specification of which depends on the tool. P-Duplo and Simian

are based on line counts and the values chosen for the five minimum clone

sizes are 2, 4, 8, 16 and 32 lines.

CCFinder clones are based on tokens instead of lines. Analysis of all of

the C code files in the most recent release of each of the 89 projects used in

this research shows that the average number of tokens per line is around

7 (mean 6.95, median 10, and mode 7). The CCFinder clones are therefore

selected using minimum sizes of 14, 28, 56, 112 and 224 tokens.

An edited version of the file cnp-2.c, cnp-2-edit.c, is introduced here.

This file is the same as cnp-2.c except that the variable names “combina-

tions” and “permutations” are changed to “combs” and “perms”. The code

is shown with cnp-1.c in Figure 13.8 (p. 210). The files are compared to

provide examples to show how clone and block sizes are derived from each

of the tools.

P-Duplo The raw features from P-Duplo are taken from a summary of the

clones. In each file there is one clone of 13 lines (5–17).

Lines in file 1: 36
Lines in file 2: 28
Clones: ((5 17)(5 17))

13.2. FEATURES 209

Simian The raw Simian features are taken from the summary statistics

reported by the tool. An extract from the Simian report for a comparison

between the files cnp-1.c and cnp-2-edit.c is shown below.

Found 36 duplicate lines in 4 blocks in 2 files
Processed a total of 43 significant (64 raw) lines in 2 files

Simian records the number of duplicate blocks and duplicate lines, which

are counted twice, once for each file. Simian disregards ‘includes’, and

lines with one character, therefore records fewer total lines than P-Duplo.

However in its ‘raw’ count, these lines are included.

With parameterised identifiers, Simian finds two clones in each file, 18

significant lines in total. The first spans lines 3 to 20 in both files, the second,

lines 28 to 36 in file 1, and lines 20 to 28 in file 2. The first clone is counted

as 14 lines long and the second as 4 lines, as lines with a single brace are

not counted. This differs from P-Duplo in that lines with altered identifier

names are matched, but single character lines are not counted.

CCFinder The extract from the CCFinder report below is also for a com-

parison between the files cnp-1.c and cnp-2-edit.c.

source_files {
1 cnp-1.c 208
2 cnp-2-edit.c 166
}
clone_pairs {
1 1.0-99 2.0-99 1 2.0-99 1.0-99
8 1.12-27 2.27-42 8 2.12-27 1.27-42
8 1.27-42 2.12-27 8 2.27-42 1.12-27
2 1.74-92 2.74-92 2 2.74-92 1.74-92
15 1.141-207 2.99-165 15 2.99-165 1.141-207
}

This report first gives the number of CCFinder tokens for each file. This

number differs from the number of actual tokens, because of the exclusions

and transformations which occur during preprocessing by the tool. The

location and size of each clone is reported and these are totalled. The total

number of tokens in the clones reported here is 100+16+16+19+67 = 218;

whereas the unscrambled clones, that is the first and last of the clones,

contain 100 + 67 = 167 tokens.

210 CHAPTER 13. FEATURE CONSTRUCTION

CCFinder allows the minimum token types for a clone to be specified;

this is aimed at users wanting to exclude small repeated structures in the

code but is not used in this research where all matches may be interesting.

The “raw” features are listed in Table 13.4. In addition to those described

in Sections 13.2.1.1–13.2.1.3, the total units in each of the single files and the

five concatenated files measured by each of CCFinder, Simian and P-Duplo,

as well as the number of characters, tokens and lines in the file are included;

as are the type of file (.c or .h), and the number of target files.

1. #include <stdio.h>
2. long factorial (int n);
3. long combinations (int n, int k);
4. long permutations (int n, int k);
5. int main()
6. {
7. int setsize, subsetsize;
8. printf ("Set size? ");
9. scanf ("%d", &setsize);
10. printf ("Subset size? ");
11. scanf ("%d", &subsetsize);
12. if (setsize < 0 || subsetsize

< 0 || setsize < subsetsize)
13. {
14. printf ("Mission impossible\n");
15. return (1);
16. }
17. printf ("%ld combinations and %ld

permutations of %d items
taken from %d\n",

18. combinations (setsize, subsetsize),
permutations (setsize, subsetsize),

subsetsize, setsize);
19. return (0);
20. }
21. long factorial (int n)
22. {
23. long result = 1;
24. int i;
25. for (i = 1; i <= n; i++)
26. result *= i;
27. return (result);
28. }
29. long combinations (int n, int k)
30. {
31. return (factorial(n) /

(factorial(k) * factorial(n-k)));
32. }
33. long permutations (int n, int k)
34. {
35. return (factorial(n) /

factorial(n-k));
36. }

The file cnp-1.c

1. #include <stdio.h>
2. #include "fact.c"
3. long combs (int n, int k);
4. long perms (int n, int k);
5. int main()
6. {
7. int setsize, subsetsize;
8. printf ("Set size? ");
9. scanf ("%d", &setsize);
10. printf ("Subset size? ");
11. scanf ("%d", &subsetsize);
12. if (setsize < 0 || subsetsize

< 0 || setsize < subsetsize)
13. {
14. printf ("Mission impossible\n");
15. return (1);
16. }
17. printf ("%ld combinations and %ld

permutations of %d items
taken from %d\n",

18. combs (setsize, subsetsize),
perms (setsize, subsetsize),

subsetsize, setsize);
19. return (0);
20. }
21. long combs (int n, int k)
22. {
23. return (factorial(n) /

(factorial(k) * factorial(n-k)));
24. }
25. long perms (int n, int k)
26. {
27. return (factorial(n) /

factorial(n-k));
28. }

The file cnp-2-edit.c.

Figure 13.8: Files used to provide examples of the blocks or clones found by the
tools. Cnp-2-edit.c is an edited version of the original cnp-2.c, with
the variable names “combinations” and “permutations” changed.

13.2. FEATURES 211

Tool Measure No. Total

Ferret Similarity score (simscore) 1
Number of trigrams in each file, and those common to both files 3
Proportion of trigrams in other file to those in the original file 1
Containment of each file in the other 2

Total 7 56

Ferret Trigrams unique to each file 2
Trigrams Trigrams shared by the 2 files 1
Two files - Total trigrams in each file 2
used for Proportion of trigrams in only one file to the total in that file 2
cand-concat Proportion of shared trigrams to the number in each file 2
comparison Total 9 45

Ferret Trigrams unique to each file 3
Trigrams Trigrams shared by just 2 files 3
Three Trigrams shared by all 3 files 1
Files Total trigrams in each file 3
- Sum of trigrams in amended and target files 1
used for Trigrams shared by the candidate and just one of the other files 1
3 main Trigrams in the candidate file not shared by just one of the other files 1
files Proportion of trigrams shared by one other file to total in candidate file 1

Proportion of trigrams shared by any other file to total in candidate file 1
Proportion of trigrams unique to each file to the total in the file 3
Proportion of trigrams shared by two files to totals in each file 6
Proportion of the shared trigrams to totals in each file 3

Total 27 27

All sets (7) Total units in single files 3 × 7 21
CCFX,Sim,PDp Units in concatenated files 5 × 7 35
FC, FT, FL, FD Total 56 56

P-Duplo The number of clones of min m lines of min n characters
For (m n) of (2 2)(4 3)(8 4)(16 5)(32 6) 5
Proportion of lines in the above to file 1 size 5
Proportion of lines in the above to file 2 size 5

Total 15 120

CCFX The number of clones of min m tokens, m is 14, 28, 56, 112, 224 5
Proportion of tokens in the above to file 1 size 5
Proportion of tokens in the above to file 2 size 5

Total 15 120

Simian The number of clones of min m lines
For m = 2, 4, 8, 16 and 32 5
Proportion of tokens in the above to file 1 size 5
Proportion of tokens in the above to file 2 size 5

Total 15 120
Sundries File type (.c or .h) 1

Number of files in target group 1 2

Grand Total 546

Table 13.4: Raw features taken directly from the tools’ outputs. All of the features,
except the sundries and trigram-based ones, are constructed for the 8
file pairs. Column 3 shows the number of features for each pair of files,
and column 4, for all relevant pairs.

212 CHAPTER 13. FEATURE CONSTRUCTION

13.2.2 Feature sets based on blocks

The other seven feature sets, based on either the blocks from the Ferret XML

and density analyses,2 or the clones found by CCFinder, Simian or P-Duplo,

are similar to each other. Features are constructed by analysing the number

of blocks (or clones), their sizes, and relationship to the containing file size.

The word block is used here to describe matched sections of code.

The two Ferret analyses result in a list of block sizes. The clone-detection

tools provide information about matching blocks of code as a list of start

and end points from which their sizes are calculated. As described in

Chapter 11, for the purposes of this research, the clones are post-processed

to approximate one-to-one matching (unscrambled).

As an example, Table 13.5 shows the results of comparing the two files,

cnp-1.c (file 1) and cnp-2-edit.c (file 2), using each of the clone-detection

tools. The tool and the unit used to measure clones are in the first two

columns of the table. The unscrambled clone pairs are in the third column,

where each clone is represented by a start and end (token or line) number

(start end), and each clone pair is a file 1 clone paired with a file 2 clone ((f1-

start f1-end)(f2-start f2-end)). The clones for files 1 and 2 are separated, as

in columns 4 and 5. Any contiguous blocks are merged, such as the blocks

(0 99) and (100 165) found in file 2 by CCFinder. The length of each block is

2The results of classification tests to find suitable parameters for density analysis on the

data used in this research are listed in Appendix I.

Tool Unit Clones File 1 File 2 File 1 File 2
file1 file2 blocks blocks block block
((start end)(start end)) lengths lengs

CCFX Token (((0 99)(0 99)) ((0 99)(142 207)) ((0 99)(100 165)) (100 66) (166)
((142 207)(100 165)))

Simian Line (((3 19)(3 19)) ((3 19)(29 35)) ((3 19)(21 27)) (17 7) (17 7)
((29 35)(21 27)))

PDuplo Line (((5 17)(5 17))) ((5 17)) ((5 17)) (13) (13)

Table 13.5: Clones reported by the three tools when cnp-1.c (file 1) and cnp-2-edit.c
(file 2) are compared. The clones are listed in column 3, with those in
each file shown in columns 4 and 5. Contiguous clones are merged,
and the lengths of the resulting blocks listed in the last column.

13.2. FEATURES 213

then calculated, giving the list of block sizes in the last two columns.

As this is a small example, the results for the tools are not dissimilar. The

main difference between CCFinder, which works with tokens, and the other

tools, which are line-based, is one of scale. Other differences are caused by

features of the matching algorithms. For example, Simian breaks the blocks

in file 2 on the “insignificant” line (}) between the two sections, but would

otherwise have one block in file 2 like the other tools.

As described in Chapter 6, analysis of the Ferret XML report produces

a list of block sizes, which can be recorded in terms of tokens, lines or

characters. A density analysis of the same report produces a list of dense

blocks, usually in tokens, but optionally, either of the other two units.

The results of analysing the Ferret XML report are in Table 13.6. The

upper part of the table shows the sizes of the matched blocks in each of the

units. More tokens are found than by CCFinder, partly because CCFinder

does not account for includes and declarations, and partly because the min-

imum block size specified for CCFinder comparisons was 14 tokens, which

approximates to 2 lines, whereas Ferret, because it works with token tri-

grams, finds matches of three or more consecutive tokens. The number of

lines found by the Ferret analysis falls between those found by P-Duplo and

Simian, because P-Duplo ignores lines of fewer than the minimum specified

characters, and Simian matches code in which the identifiers are changed,

and therefore matches more lines. Character counts can differentiate be-

tween short statements, such as “ i = 1 ” and longer, and therefore more un-

Ferret File 1 block File 2 block
Analysis Unit lengths Total lengths Total

XML: Tokens (7 6 9 110 6 18 3 3 4 32 24) 222 (7 9 110 6 18 32 24) 206

Lines (13 2 3 3) 21 (13 2 3 3) 21

Chars (17 11 16 284 21 58 6 8 7 68 49) 545 (17 16 284 21 58 68 49) 513

Density:
Parameters: Tokens (166 66) 232 (221) 221
0.9, 50, 10

Table 13.6: Blocks resulting from different analyses of the Ferret XML report of the
comparison between the files cnp-1.c and cnp-2-edit.c.

214 CHAPTER 13. FEATURE CONSTRUCTION

usual sequences, such as “ some.long.and.not.so.common.identifier= 2.975 ”.

The lower part of the table shows the results of density analysis with

density 0.9, minimum block size 50, and minimum gap 10. Density analysis

provides a means of matching edited code, which is reflected in the results,

where more tokens are “matched” than by straightforward matching.

13.2.2.1 The candidate difference set

Trigram analysis provides information about the relationship between the

candidate, amended and main target files. To find similar information from

the three clone detection tools, a further set of blocks taken from the output

of each of the tools is analysed. These blocks are those shared by the main

target file and the candidate difference set (defined in Table 13.7), like the

examples in Figure 13.9.

The blocks in the candidate file shared by its amended version are:

((20 30)(50 90)(130 150)(180 220))

which means that the blocks in the difference set are:

((0 19)(31 49)(91 129)(151 179))

The blocks shared by the candidate and main target files are:

((10 60)(70 120)(140 220))

Therefore blocks shared by the main target file and the difference set are:

((10 19)(31 49)(91 120)(151 199))

As CCFinder, Simian, P-Duplo, their difference sets, and the XML anal-

Term Notation Description

A file f n
a A file a in release n

Amended (revised) file f n+1
a Revised version of file a in release n+1

An The set of trigrams in a file a, release n, f n
a

An+1 The set of trigrams in the revised version of file a, f n+1
a

Difference set An\An+1 Trigrams which disappear from the file in the revised version
Reverse difference set An+1\An New trigrams in the revised file

Table 13.7: Difference sets and reverse difference sets explained in terms of tri-
grams, also apply to tokens or lines (as Figure 13.9)

13.2. FEATURES 215

Figure 13.9: In the first representation of the candidate file, blocks shared by the
amended file are labelled. In the second, the difference set is shown.
The third labels blocks shared by the main target file, and the last,
blocks shared by the main target file and the difference set.

yses each produce a list of block sizes, features can be constructed in the

same way. Given the block sizes and the file size, there are a number of

ways to present the information, which are discussed in the next section.

13.2.2.2 Measurements

Standard machine learning algorithms require feature vectors of uniform

length. This requirement can be a challenge when the amount of informa-

tion to be represented varies between instances. In the split file dataset,

the number of blocks in a file varies from one to over a thousand, with

maximum block sizes ranging from 2 to around 5,000 lines. This section

considers how to present the data in a uniform but meaningful way.

Descriptive statistics summarise such information with measurements

based on central tendency (mean, median and mode), dispersion (standard

deviation, variance and range) and distribution, which can be given in

terms of frequencies.

To construct a frequency distribution it is useful to know two things

about the data: the range of values of the variable under consideration and

the sample size. For this data, the number of blocks and their sizes are

216 CHAPTER 13. FEATURE CONSTRUCTION

unknown a priori. There is no standard method of selecting the number

of bins in a frequency distribution, although if the sample size is known

there are several suggested guidelines, such as Sturges formula, ⌈1+ log2n⌉,
where n is the sample size [226].

In the absence of this information, the important thing is to choose

sufficient bins to provide some separation between different sized blocks,

while not selecting too many, as each extra bin means another set of features

(7 × 32 = 224 features here). The spacing between intervals is normally

equidistant. For example, evenly distributed intervals might be chosen at

5, 10, 15, ... lines per block. For this data, the importance of blocks of a

particular size is unknown, though it can be estimated that the data is likely

to be skewed, with more small blocks due to incidental similarity. The

intervals chosen are evenly distributed intervals on the log2 scale: powers

of two, from 2 to 32.

It is not only the absolute size of the blocks which can be important, but

also the size of the blocks relative to the size of the file. Therefore another

set of intervals was selected based on file size. Powers of two are employed

again, with the bin intervals set at 1
64 to 1

4 of file size.

Another choice is whether to count the members of each bin or to report

the cumulative counts of these blocks. Here the number of blocks is accu-

mulated as the block size decreases. A further choice is how to represent

the blocks. This can be a simple count of the blocks or, more expressively, a

count of the units within the qualifying blocks.

Measurements can be absolute, or relative to file size. In the context of

one file, the only difference between these measures is the scale. However,

each type of measure has a role in describing the features of files in general.

In characterising a block of copied code, absolute units give the true size

of a block, and relative units determine the importance of a block in the

file. For example, a block of 25 tokens is a large chunk of a file containing

50 tokens, but is possibly less interesting as part of a file of 5,000 tokens,

where this similarity could occur incidentally. However, a block of 20 lines

is likely to be significant in any file, even if it is a small part of a very large

13.2. FEATURES 217

file. The ratio of block size to the total copied lines or tokens in a file may

indicate whether all or most of the copied code is in one chunk.

13.2.2.3 Block-based features

Table 13.8 shows the measures chosen for the block-based features. The

idea was to include both general descriptive and frequency-based features.

Eight features (1-8), describe the blocks in a general way. Four feature

sets divide the blocks into five groups, giving cumulative measures; one set

(9) gives the total units in blocks of at least 2, 4, 8, 16 and 32 lines (or 14–224

tokens, or 40–640 characters); another set (11) uses fractions of file size for

the interval values, 1
64 – 1

4 . Both sets are also represented as a proportion of

file size. Each feature is constructed for both files in a comparison.

To provide an example of the measurements described in Table 13.8,

imagine a file of 800 units in which there are 20 blocks. The first block starts

at unit 201 and the last ends at unit 700, a spread of 500 units. The sorted

block sizes are: (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 8, 9, 12, 15, 22, 30, 50, 175). The

measurements based on these blocks are listed in Table 13.9.

Ref. Measure No.

1 Number of blocks 2
2 Number of units in the blocks 2
3 Proportion of (2) to total 2
4 Mean block size 2
5 Proportion of (4) to total 2
6 Largest block size 2
7 Proportion of (6) to total 2
8 Proportion of copied lines to spread 2
9 Cumulative frequency of units in blocks ≥m lines or 7m tokens 10

m=2, 4, 8, 16, 32
10 Proportion of (9) to total 10
11 Cumulative frequency of units in blocks ≥ (file size / n) 10

n = 4, 8, 16, 32, 64
12 Proportion of (11) to total 10

Total 56

Grand total = 56 x 7 sets x 8 comparisons = 3136
+ 28 x 3 difference sets = 84 3220

Table 13.8: Features constructed from block sizes. Each measurement is for both
of the files in the comparison, except for difference set measures.

218 CHAPTER 13. FEATURE CONSTRUCTION

13.2.3 Final feature sets

The proportions of the different subsets within the full feature set are de-

picted in Figure 13.10. This diagram shows both the relative sizes of the

single and concatenated features, and the Ferret- and non-Ferret-based fea-

tures in the full set. The proportions of concatenated and single features

apply to each subset of features. The non-Ferret features are split evenly

between the three other tools. These sets incorporate the raw features which

account for around a sixth of the set. The Ferret features are constructed

in a different way, so that the raw feature sets are separated from block-

based features, and these are about one-eighth of the total number. The

block-based feature sets echo those of the three other tools.

The feature sets are listed in Table 13.10. The abbreviated names are

hyphenated strings, which for features derived from Code Clone Finder,

P-Duplo and Simian generally follow the pattern:

Source - Raw/block/both - Single/concatenated/both

ccf - raw - singles

pdp - blocks - cats

sim - -

The first part of the name shows which tool is used to measure the similarity

between files; the second part, whether the measures are direct from the

Block size list: 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 8, 9, 12, 15, 22, 30, 50, 175 Start 201, end 700.

Ref. Measure No.

1 Number of blocks 20
2 Number of units in the blocks 360
3 Proportion of (2) to total units in file 0.45
4 Mean block size 18
5 Proportion of (4) to total 0.0225
6 Largest block size 175
7 Proportion of (6) to total 0.219
8 Proportion of copied units to spread 360

500 = 0.72
9 Number of units in blocks ≥m lines

m=2, 4, 8, 16, 32 400, 340, 321, 277, 225
10 Proportion of (9) to total 0.5, 0.425, 0.4, 0.35, 0.28
11 Number of units in blocks ≥ (file size / n)

n = 64, 32, 16, 8, 4 292, 255, 225, 175, 0
12 Proportion of (11) to total 0.365, 0.32, 0.28, 0.22, 0

Table 13.9: Features built from the example blocks.

13.2. FEATURES 219

tool (raw), or result from analysis of the blocks (blocks), or both (); and the

last part, whether the comparison is between the candidate, amended and

main target files (singles), or the candidate and a concatenation of the target

files (cats) or both (). For example, the set of features built from the blocks

found by Simian when comparing the candidate file with a concatenation

of files is called “sim-blocks-cats”, and those built from the raw output of

CCFinder with single file comparisons is called “ccf-raw-singles”. When

both raw and block-based features are included in a set, neither raw or

blocks are stated, for example, pdp-cats means all P-Duplo-based features

from comparisons between the candidate file and each concatenated file.

The pattern for Ferret-based features is different, as each set is treated

separately, so that its source is either raw or block-based and no distinction

is necessary. The trigram and basic similarity information is “raw”, all

Figure 13.10: Feature set composition, shown proportionally. For example, just
under half of the features are from analysis of Ferret outputs, the rest
are derived equally from the other three tools.

220 CHAPTER 13. FEATURE CONSTRUCTION

other sets are based on blocks. However, there is another dimension to

these features: different units are used to measure the blocks, thus “fc”,

“ft”, “fl” and “fd” are used to indicate characters, tokens, lines and dense

blocks, measured in tokens in this dataset. Features taken from Ferret’s

basic output are labelled “fb” and from trigram-based features, “tris”. Sets

labelled “fall” include all of the Ferret features in that category and “not-

fall” are all non-Ferret features.

Combining all the sources, there is one set of features for each group of

concatenated files, making five in all. For example, the feature set “cat-am-

n-alikest” contains all features which are based on the comparison between

the candidate file, and the concatenation of the amended file and the target

file having the highest similarity to the candidate file.

There are fifty-four feature sets, seven based on each of CCFinder, Simian

and PDuplo, and four which combine these, a total of twenty-five; three

based on each of the six Ferret sources, and three which combine these, a

total of twenty-one; there are five sets of the different concatenation combi-

nations, one set combines all features based on pairwise file comparisons,

one set combines all features based on comparisons with concatenated files,

and one set combines all features.

Guidance on a suitable approach to feature construction varies. On

the one hand the advice is to include as many features as possible. For

example, Guyon and Elisseeff say, in stressing the importance of not losing

information when deciding on features, “We argue that it is always better

to err on the side of being too inclusive rather than risking to discard useful

information.” [98, p.4]. On the other hand, the advice is to keep in mind

the ratio between the numbers of features and the number of instances

available. For example, Mark Hall recommends that “You should normally

have at least twice the number of instances as attributes.” [102].

Both of these requirements are taken into account. The full set of features

is large, meaning that there is variety in the information available. However,

the aim is to find a subset of these features, preferably from one source to

make it simple to compute, so that the final set of features should be smaller.

13.3. SUMMARY 221

13.3 Summary

The steps taken to construct features were explained in this chapter. First,

the selection of target files, the file combinations and their comparison are

described. Then basic features constructed from the results of comparing

the files with each of the four tools were detailed. Finally, different ap-

proaches to describing a set of matched blocks in a file were considered,

and the set of features listed.

The final set of 3,766 features comprises 546 taken fairly directly from

the tools’ outputs and from the Ferret trigram-file index, and 3,220 block-

based features. The features are grouped into 54 subsets, which are listed

in Table 13.10. Experiments to find the more useful feature subsets are

described in the next chapter.

222 CHAPTER 13. FEATURE CONSTRUCTION
To

ol
Si

ng
le

s
C

on
ca

te
na

ti
on

s
A

ll
N

o.

R
aw

Bl
oc

ks
R

aw
+

Bl
oc

ks
R

aw
Bl

oc
ks

R
aw
+

Bl
oc

ks

C
C

Fi
nd

er
cc

f-
ra

w
-s

in
gl

es
cc

f-
bl

oc
ks

-s
in

gl
es

cc
f-

si
ng

le
s

cc
f-

ra
w

-c
at

s
cc

f-
bl

oc
ks

-c
at

s
cc

f-
ca

ts
cc

f
7

PD
up

lo
pd

p-
ra

w
-s

in
gl

es
pd

p-
bl

oc
ks

-s
in

gl
es

pd
p-

si
ng

le
s

pd
p-

ra
w

-c
at

s
pd

p-
bl

oc
ks

-c
at

s
pd

p-
ca

ts
pd

p
7

Si
m

ia
n

si
m

-r
aw

-s
in

gl
es

si
m

-b
lo

ck
s-

si
ng

le
s

si
m

-s
in

gl
es

si
m

-r
aw

-c
at

s
si

m
-b

lo
ck

s-
ca

ts
si

m
-c

at
ss

im
7

A
ll

of
th

e
ab

ov
e

13
-s

ub
-1

2-
bl

oc
ks

no
t-

fa
ll-

si
ng

le
s

no
t-

fa
ll-

ca
ts

no
t-

fa
ll

4
(n

ot
Fe

rr
et

)

Fe
rr

et
Ba

si
c

fb
-s

in
gl

es
fb

-c
at

s
fb

3
Tr

ig
ra

m
s

tr
is

-s
in

gl
es

tr
is

-c
at

s
tr

is
3

To
ke

ns
ft

-s
in

gl
es

ft
-c

at
s

ft
3

Li
ne

s
fl-

si
ng

le
s

fl-
ca

ts
fl

3
C

ha
ra

ct
er

s
fc

-s
in

gl
es

fc
-c

at
s

ft
3

D
en

se
bl

oc
ks

fd
-s

in
gl

es
fd

-c
at

s
fd

3

A
ll

Fe
rr

et
fa

ll-
si

ng
le

s
fa

ll-
ca

ts
fa

ll
3

C
on

ca
te

na
ti

on
s

ca
t-

xx
x†

5

Ev
er

yt
hi

ng
al

l-
si

ng
le

s
al

l-
ca

ts
al

l-
fe

at
s

3

To
ta

l
54

Ta
bl

e
13

.1
0:

Fe
at

ur
e

se
ts

,a
nd

th
e

na
m

es
us

ed
fo

r
th

em
in

th
e

re
su

lt
ta

bl
es

.T
he

se
ts

ar
e

ba
se

d
on

th
e

to
ol

s
us

ed
to

pr
od

uc
e

th
em

,
th

e
fil

es
us

ed
in

th
e

co
m

pa
ri

so
ns

,o
r

th
e

gr
ou

ps
of

co
nc

at
en

at
en

at
ed

fil
es

.†
W

he
re

“x
xx

”
is

th
e

sh
or

th
an

d
na

m
e

fo
r

th
e

fil
e

co
m

bi
na

ti
on

de
sc

ri
be

d
in

C
ha

pt
er

13
.

Chapter 14

Experimental results - Part 1:

Classifying the split file dataset

The origin analysis experiments are presented in this chapter and the two

that follow. The first of two sections in this chapter reports on experiments

to test classification of the split file dataset introduced in Chapter 12. Each

of the feature sets described in Chapter 13 was used to build models with a

range of learning algorithms, with the aim of selecting those most suitable

for use with this data.

In the second section, the results of applying selected models to can-

didate files from two unseen projects, PostgreSQL and DNSjava, are re-

ported. The results are compared with those of other origin analysis re-

search groups. Although classification of the dataset is very good, problems

in filtering are identified from this comparison.

Chapter 15 describes investigations into alternative filtering criteria

which aim to improve the following aspects of this approach: candidate

file selection, target file selection, and target file ordering.

The data is refiltered based on the outcome of these investigations, and

experiments with the revised data, and with disappearing files are reported

in Chapter 16.

223

224 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.1 Building models to identify split files

The 89 project dataset was described in Chapter 12. Filtering these projects

for split files results in a set of 387 candidates. The experiments described

in Section 14.1.2 compare the classification of these candidates by a range of

algorithms with each of the 54 feature sets described in Chapter 13. Further

experiments explore the effect of combining feature sets and combining

classifiers.

Unless stated otherwise, in the experiments reported in this chapter and

in Chapter 16, each of the feature sets was used to classify the data with

each of the chosen algorithms. The generalisation of each combination of

feature set and algorithm was tested by training with 100 different random

selections of 66% of the data, leaving 34% of the instances for testing. The

performances recorded are the mean percentage of the results over the 100

test sets for each combination.

14.1.1 Machine learning algorithms

The machine learning algorithms used in this research are provided by the

Weka [247] machine-learning toolkit (v.3.7.3). At the start of this research,

a broad selection of these algorithms were chosen by excluding from those

available any unsuitable for these datasets. The resulting set is shown in Ta-

ble 14.1. There are three main reasons for the exclusions: algorithms which

are extremely slow to run with feature sets of this size, such as MultiLay-

erPerceptron and NBtree; those unsuitable for numeric attributes, such as

PRISM and ID3; and those unsuitable for binary classed data, such as Mul-

tiClassClassifier. This initial set of algorithms also excludes heterogenous

meta-classifiers (Grading, MultiScheme, Stacking and Voting), because the

choice of base classifiers for combination by the meta-classifiers was dic-

tated by the results from the initial tests. Decisions about further reducing

the set of algorithms used in the experiments, and how they are configured,

are based on the results of earlier investigations using similar data.

First, previous experiments in this research have shown that for most of

14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 225

Rank Algorithm Rank Algorithm Rank Algorithm

1 F SimpleLogistic 16 M Class’nViaRegression 31 M MultiBoostAB
2 T LMT 17 M AdaBoostM1 32 L IB1
3 M RotationForest 18 T ADTree 33 L LWL
4 T RandomForest 19 M RandomSubSpace 34 R NNge
5 T FT 20 T LADTree 35 T RandomTree
6 F SMO 21 R PART 36 R DecisionStump
7 M Decorate 22 T J48 37 M RBFNetwork
8 F SGD 23 R JRip 38 R ConjunctiveRule
9 M Rand’Comm’ee 24 B BayesNet 39 V VFI
10 M Bagging 25 T SimpleCart 40 F Logistic
11 M LogitBoost 26 B BFTree 41 R OneR
12 R FURIA 27 L IB5 42 B NaiveBayes
13 M RealAdaBoost 28 R Ridor 43 V HyperPipes
14 F SPegasos 29 T REPTree
15 M Dagging 30 R DecisionTable

Table 14.1: Algorithms ranked by accuracy over all feature sets. Weka provides the
algorithms and each algorithm’s type (assigned by Weka) is noted by the
key: Bayesian, Function, Lazy, Meta, Rule, Tree, and V miscellaneous.

the algorithms tested, the default settings give results which are at least as

good as the alternatives tested. Therefore, default settings are used with the

following exceptions. IBk was tested with 3, 5, 7, 11, 15 and 21 neighbours,

and 5 selected as the best performer; RandomForest has 25, rather than 10

trees, as this number gave a good balance between performance and speed

in earlier experiments on similar data.

Second, in earlier experiments, each feature set was run with each of

the 43 algorithms listed in Table 14.1. The results from each of 3 sets of ex-

periments were averaged over all runs for each feature set. The algorithms

were ranked for each experiment: 1 for the highest accuracy, 2 for the next,

and so on. The ranks in Table 14.1 are the mean of these 3 results. The

reduced algorithm set, shown in Table 14.2 was selected by taking 19 of the

top 20 algorithms,1 and adding the best of the simple rule-based (PART),

tree-type (J48), Bayesian (BayesNet) and lazy (IB5) algorithms.

Third, in addition to the Weka based classifiers, grid-searches were run

on support vector machines (SVMs), with both a radial basis function and

a linear kernel.2 The SVMs did not outperform the Weka algorithms in the

early experiments, and so are not included in experiments reported here.3

1Not LMT, as results on this data are similar to Simple Logistic, which is faster [227].
2Using Chicken Scheme libsvm implementation: http://wiki.call-cc.org/eggref/4/libsvm
3Graphs of the results of two of the grid searches can be found in Appendix J

226 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Functions Trees Rules Meta
SGD* ADTree* FURIA AdaBoostM1 ... continued
SimpleLogistic FT PART Bagging LogitBoost
SMO J48 ClassificationViaRegression RandomCommittee
SPegasos* LADTree Lazy Dagging RandomSubSpace

RandomForest IB5 Decorate RealAdaBoost*
Bayes continued ... RotationForest
BayesNet

Table 14.2: The reduced set of 23 algorithms, used in the reported experiments,
are listed by Weka’s groupings. Those marked with an asterisk are not
suitable for the multiclassed dataset of disappearing files.

14.1.2 Classifying split files

Experiments undertaken to discover which set(s) of features and which

learning algorithms combine to give good classification rates for split files

are reported here. Given a number of good combinations, selection can be

guided by the cost of computing the features. It is more useful for the feature

set to be simple to compute than for the model to be built quickly, because

model-building is a one-off cost, while features have to be constructed for

each new dataset to which a model is applied.

The first experiment was to find results for the individual models. These

results were analysed to determine the better performing algorithms and

feature sets overall. The next experiment investigated the effect of combin-

ing some of the better performing feature sets. A third experiment looked

at the effect on classification of combining the better performing algorithms

with heterogenous meta-classifiers.4

In a two-class problem, classification of an individual falls into one of

four categories. Positive instances, in this case, split file examples, can be

classified correctly, true positives (TP), or incorrectly, false negatives (FN).

Negative examples can also be correctly (TN) or incorrectly (FP) classified.

4The difference in performance between many of the classifiers cannot be considered sig-

nificant. However, to make discussion simpler, if one model has a higher mean classification

accuracy over 100 train/test partitions than another, it is described as ‘better’.

14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 227

There are a number of standard measures used to describe the results of

classification. Those reported in this chapter and Chapter 16 are:

• Success rate, or % correct or accuracy = TP+TN
TP+FN+TN+FP

The proportion of correct instances in the dataset.

• Precision (of positive instances) = TP
TP+FP

The proportion of instances identified as positive which are correct.

• Recall (of positive instances) = TP
TP+FN

The proportion of positive instances which are identified as such.

• F-measure = 2×TP
(2×TP)+FN+FP

The harmonic mean of precision and recall 2 × precision×recall
precision+recall .

• Geometric mean =
√

(TP
TP+FN × TN

TN+FP for two classes, and similarly,
n√acc1 × acc2 × ... × accn for more classes, where acc is the ratio of the

correctly classified to the total instances of the class. This is a useful

measure for imbalanced datasets.

228 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Experiment 1. Applying the algorithms to each of the feature sets

Each of the algorithms listed in Table 14.2 was applied to each of the

feature sets listed in Table 13.10. The top 40 (an arbitrary choice) of the 1242

results, ranked by mean % correct classification, are listed in Table 14.3. The

top 8 results are obtained with the SVM-based algorithms, SMO [106, 126,

188], SGD and SPegasos [214]. The top 17 results are based on 4 closely

related feature sets: the basic Ferret (fb), and trigram-based (tris) features,

both full (including concatenations) and singles sets in each case.

Mean % Std. Mean Mean Mean F-
Feature set Algorithm correct Dev. prec’n recall measure

1 fb SMO 94.29 1.89 0.940 0.947 0.943
2 fb SGD 94.17 1.99 0.938 0.947 0.942
3 tris-singles SMO 94.16 1.56 0.929 0.957 0.942
4 tris SMO 94.15 1.73 0.939 0.945 0.941
5 fb-singles SGD 94.15 1.88 0.939 0.946 0.942
6 tris-singles SGD 94.01 1.82 0.937 0.945 0.940
7 tris SGD 93.96 1.94 0.937 0.944 0.939
8 fb-singles SPegasos 93.84 2.21 0.934 0.945 0.939
9 tris-singles Dagging 93.78 1.90 0.906 0.978 0.940

10 fb SimpleLogistic 93.68 2.03 0.930 0.946 0.937
11 fb-singles SMO 93.46 2.03 0.913 0.962 0.936
12 tris-singles SimpleLogistic 93.42 1.93 0.926 0.945 0.935
13 tris-singles SPegasos 93.40 2.14 0.931 0.939 0.934
14 tris SimpleLogistic 93.37 1.74 0.926 0.943 0.934
15 fb-singles FT 93.37 1.88 0.919 0.953 0.935
16 tris RotationForest 93.36 1.80 0.939 0.928 0.933
17 fb-singles SimpleLogistic 93.36 1.91 0.921 0.950 0.935
18 fall-singles RandomForest 93.33 1.99 0.921 0.949 0.934
19 fb FT 93.27 2.19 0.928 0.939 0.933
20 tris-singles RotationForest 93.20 1.96 0.930 0.936 0.932
21 tris Dagging 93.12 1.78 0.907 0.962 0.933
22 tris-singles FT 93.11 1.92 0.920 0.946 0.932
23 fall-singles RotationForest 93.10 1.84 0.927 0.937 0.931
24 tris RandomForest 93.05 1.89 0.935 0.926 0.930
25 fall RotationForest 93.04 1.79 0.931 0.931 0.930
26 fb Dagging 93.00 1.90 0.909 0.957 0.932
27 all-singles RandomForest 92.99 1.93 0.926 0.936 0.930
28 tris FT 92.95 2.06 0.922 0.938 0.929
29 all-singles RotationForest 92.94 2.35 0.932 0.927 0.929
30 all-singles SimpleLogistic 92.79 2.20 0.918 0.941 0.929
31 fb RotationForest 92.71 1.86 0.932 0.923 0.927
32 all-feats RotationForest 92.71 2.19 0.931 0.924 0.927
33 fall SimpleLogistic 92.66 1.92 0.916 0.941 0.928
34 fall-singles SimpleLogistic 92.64 2.01 0.914 0.942 0.927
35 tris-singles BayesNet 92.63 2.13 0.934 0.918 0.925
36 tris-singles RandomForest 92.61 1.92 0.927 0.925 0.926
37 all-feats SimpleLogistic 92.54 2.11 0.917 0.936 0.926
38 tris-singles ClassificationViaRegr’n 92.53 2.02 0.913 0.941 0.926
39 fall-singles Rand’Comm’ee 92.46 1.90 0.903 0.953 0.927
40 fb SPegasos 92.44 2.38 0.927 0.925 0.924

Table 14.3: The top 40 results for split file classification sorted by mean % correct.

14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 229

Which feature set gives the best classification over the set of algorithms?

Table 14.4 shows the mean classification rate for each feature set over all

23 algorithms. Looking at the top performing sets, those in the left-hand

column, 11 of the 18 are Ferret-based. Of the other seven, three combine

the three other tools (“not-fall” - all non-Ferret features, “not-fall-singles” -

all non-Ferret single file comparisons, and “13-sub-12-blocks-singles” - all

non-Ferret block features based on the difference set), three are based on

P-Duplo, and the other set combines all of the features. However, none of

the smaller non-Ferret feature sets achieve an accuracy above 89.85%.

Two groups of feature sets are noticeably worse than others: the CCFinder

based features and those based on concatenations. Reasons for these poor

performances are explored after the next section.

Mean % Mean % Mean %
Feature set correct Feature set correct Feature set correct

tris-singles 92.11 fl 87.96 cat-all 84.21
tris 91.91 fl-singles 87.92 fc-cats 84.18
fb-singles 91.27 fd 87.66 sim-blocks-cats 83.14
fb 91.27 fb-cats 87.41 sim-cats 82.89
all-singles 91.21 fd-singles 87.39 cat-2alikest 82.88
fall-singles 90.89 pdp-raw-singles 87.26 cat-am+alikest 82.24
all-feats 90.88 tris-cats 87.09 cat-am+main 82.12
fall 90.69 sim 86.37 cat-am+news 81.60
13-sub-12-block-singles 89.85 sim-blocks-singles 86.33 sim-raw-singles 81.05
fc-singles 89.79 sim-singles 86.27 ccf-blocks-singles 81.05
pdp 89.73 all-cats 85.63 ccf 80.94
pdp-blocks-singles 89.43 pdp-blocks-cats 85.55 ccf-singles 80.88
not-fall-singles 89.31 pdp-cats 85.46 ccf-raw-singles 79.64
pdp-singles 89.30 fall-cats 85.32 pdp-raw-cats 79.09
fc 89.21 not-fall-cats 85.17 ccf-blocks-cats 78.75
not-fall 89.18 fl-cats 84.83 ccf-cats 78.57
ft-singles 88.77 ft-cats 84.59 sim-raw-cats 78.13
ft 88.72 fd-cats 84.31 ccf-raw-cats 75.49

Table 14.4: Mean classification rate for each feature set over all of the 23 algorithms.

Key Name Key Name Key Name

fb Ferret basics fl Ferret blocks in lines pdp P-Duplo
tris Ferret trigrams fd Ferret dense blocks ccf CCFinder
fc Ferret blocks in characters fall All Ferret features sim Simian
ft Ferret blocks in trigrams not-fall All non-Ferret features

Table 14.5: Keys and names of feature sources, repeated for reference

230 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Which algorithm gives the best classification over all of the feature sets?

Table 14.6 shows the mean classification rate for each algorithm over all

of the feature sets. Although the SVM-based algorithms perform well with

selected feature sets, Simple Logistic performs best overall. This is possibly

because the algorithm incorporates feature selection. The reduced set of

algorithms used in the experiments reported in Chapter 16 are selected

from these results: the top 8 algorithms (in the left-hand column) and 3

algorithms which appear more than once in the top 40 individual results in

Table 14.3: SGD, Dagging and SPegasos.

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct

SimpleLogistic 90.14 Bagging 88.41 RandomSubSpace 87.32
RotationForest 89.98 SGD 88.14 SPegasos 87.18
RandomForest 89.75 Dagging 88.11 LADTree 86.89
FT 89.34 AdaBoostM1 88.07 PART 85.80
SMO 89.27 RealAdaBoost 87.95 IB5 85.63
RandomCommittee 88.90 FURIA 87.90 J48 85.62
Decorate 88.72 Class’nViaRegr’n 87.66 BayesNet 84.74
LogitBoost 88.48 ADTree 87.40

Table 14.6: Mean classification rate for each algorithm over all of the feature sets.

Concatenation based feature sets

Feature sets based on concatenations on their own do not perform as well

as the “singles” sets, and although 4 of the 10 top-performing sets include

both sources, mixed sets do not outperform singles sets from the same

source. As concatenations are partly aimed at dealing with multi-target

cases, features based on these comparisons may better classify candidates

with more than one target file. In this dataset, 176 of the 387 files have more

than one target. The two top singles sets, “tris-singles” and “fb-singles”

were compared to the related sets of concatenated features, “tris-cats” and

Multi-target
Feature set Full set file set Change

fb-singles 91.27 91.17 -0.10
fb-cats 87.41 89.45 2.04
tris-singles 92.11 91.60 -0.51
tris-cats 86.93 88.87 1.94

Table 14.7: Mean classification rate over the 23 algorithms, multi-target files only.

14.1. BUILDING MODELS TO IDENTIFY SPLIT FILES 231

“fb-cats”, on the multi-target files only. The results in Table 14.7, show that

although the “cats” features improve on this subset of files and the singles

sets are slightly worse, the singles sets still outperform the concatenated

sets. The difference in performance between datasets is not significant

(under the corrected paired two-tailed t-test, with 95% confidence) on the

cats features tested, but each algorithm’s accuracy improves by 0.05–5.11%.

Code Clone Finder based feature sets

The feature sets based on CCFinder (ccf) do not perform well on their

own, all 6 sets are in the bottom 9 results. CCFinder excludes much of the

information found in header files, of which there are 111 in the dataset, and

this may be the reason for the poor performance overall. To test this, the

.c files were separated and classified using the 2 top ccf sets, “ccf-blocks-

singles” and “ccf-singles”, and the 2 top singles sets, “tris-singles” and

“fb-singles”. The results are compared to those on the full set in Table 14.8.

The change in classification rate between the full and .c file sets is telling,

with a marked improvement for the ccf-based feature sets, while the other

features do not do so well. However, the ccf sets still do not outperform the

other two sets. The minimum improvement in classification for either of the

two ccf sets for one algorithm is 3.5%. Based on the t-test (as above), 15 of

the 23 algorithms have significantly improved results on the “ccf-singles”

set, and 14 of the 23 on the “ccf-block-singles” set.

These results show that .h files are classified less successfully than .c files

by CCFinder features, while the reverse is true for the other two algorithms

tested. CCFinder’s lower accuracy for .c files may be because parts of .c

files are also excluded by CCFinder, or because the matching is too general.

Feature set Full set .c file set Change

tris-singles 92.11 90.82 -1.29
fb-singles 91.27 89.95 -1.32
ccf-blocks-singles 81.05 87.52 6.47
ccf-singles 80.88 87.42 6.54

Table 14.8: Mean classification rate over the 23 algorithms on .c files only.

232 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Experiment 2. Does combining feature sets improve performance?

The nine singles sets, “fb, fc, fd, fl, ft, ccf, pdp, sim and tris”, were com-

bined pairwise and run with the 23 algorithms, to find out whether features

built on different comparisons complement each other. The mean classifica-

tion accuracy of the paired sets over the algorithms are shown graphically

in Figure 14.1. The x-axis shows one of the sets in the combination, and

the column colour shows the other one of the pair. Where the two labels

correspond, the mean classification for the single set is shown. Adding an-

other set to the “tris-singles” set does not improve its overall performance of

92.11%. Combining the “pdp” with either “fc” or “ft” singles sets improves

individual set results by at least 1%. Apart from this, the single sets are only

noticeably improved by adding a better set, i.e. one to the left in the graph,

where the sets are ranked by overall performance.

Further combinations of feature sets Combinations of three, four and

five singles feature sets, also of combining the full fb and full tris features

sets with singles sets are reported in Section K.1 in the appendix. These

experiments show no improvement over the best results reported here.

Figure 14.1: Split file classification with single feature sets and their pairwise com-
binations. X-axis labels show one of the pair, and the column colour
the other. Where these are the same, the single set result is plotted.

14.2. TESTS ON OTHER PROJECTS 233

Combining algorithms Experiments where algorithms were combined

with heterogenous meta-classifiers are reported in Section K.2. As with the

feature sets, combining algorithms shows no improvement over the best

results reported so far. This lack of improvement indicates that the limit of

classification accuracy for this data has been approached.

14.2 Tests on other projects

To test the generality of the approach, a selection of the models giving the

highest classification rate on the split file dataset from the 89 projects were

tested by applying them to unseen data. Two studies, by Zou [261], and

by Antoniol et al. [6], provide information about split files found in their

origin analysis research.

Zou uses Beagle, a tool with a range of matching techniques (details

p.47), to investigate the project PostgreSQL. Although the prime purpose

is to trace the movement and restructuring of functions, Zou also uses this

information to reason about changes to files.

Antoniol et al. look at restructuring at the class level. They use a text-

matching technique, comparing the cosines between weighted frequency

vectors of the identifiers in each class of the DNSjava project (details p.51).

The files in each of the PostgreSQL and DNSjava projects were collected

and filtered to find sets of candidate split files. The models described in

Sections 14.1.2 are used to classify these candidate files, and the results are

compared with those of Zou and of Antoniol et al.

In this second part of the chapter, there are three sections. In the first

two, the two projects, PostgreSQL and DNSjava are introduced. Lastly,

the classifications output by the better performing classifiers reported in

Section 14.1.2 are compared. Although the classification of the files in the

dataset is very good (accuracy 99%), the comparison with previous results

shows that some candidate and target files are missed in the filtering stage

of the system.

234 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.2.1 PostgreSQL

Zou’s study covers 12 releases of PostgreSQL5, looking at C code in the

‘backend’ subsystem [90, 261]. Zou reports on two groups of operations

which include six file level splits, and also notes two other restructurings

where code is moved from one file to one or more others.

• Between versions 6.2 and 6.3, in the subsystem parser [261, p.77]:

◦ analyze.c is split to 7 new files: analyze.c, parse agg.c parse clause.c,

parse expr.c, parse func.c, parse oper.c, and parse target.c;

◦ catalog utils.c is deleted and split into 4 files: parse func.c , parse oper.c,

parse agg.c and parse type.c; and

◦ parser.c is split, but details not given, except that the function parse agg

from parser.c forms part of the new file parse agg.c.

• Between versions 6.5.3 and 7.0, in the subsystem utils/adt [261, p.82]:

◦ dt.c is deleted and the functions placed in: datetime.c and time.c;

◦ datetime.c functions are all moved to: date.c and nabstime.c ; and

◦ date.c functions are moved to the file: nabstime.c

• Between versions 7.1 and 7.1.3, in access/nbtree [261, p.84]:

◦ nbtcompare.c: 2 functions are moved to float.c, and 1 function to each

of varlena.c and nabstime.c.

• Between versions 6.4.2 and 6.5 [261, p.99]:

◦ geqo eval.c and geqo path.c are merged with [unspecified] files in the

optimizer/geqo subsystem.

Candidate split files The backend subsystem explored by Zou is con-

tained in the ‘src’ directory along with eight other folders. The complete

‘src’ directory was used in the experiments reported here.6

Table 14.9 shows the 28 candidate split files selected by filtering the back-

end subsystem. Of the nine split files identified by Zou, analyze.c, parser.c

and date.c are among the filtered split files. Three others, catalog utils.c,

5http://www.postgresql.org, releases 6.2 to 7.2
6‘backend’ files are separated from the rest

14.2. TESTS ON OTHER PROJECTS 235

dt.c and geqo paths.c, are deleted on splitting and so are part of the dis-

appearing file set (see Chapter 16). The remaining three files, datetime.c,

nbtcompare.c and geqo eval.c are not selected.

Columns 3–5 in the table give the file name and path (postgresql/sr-

c/backend/...). The second column has the version number, and the first,

the reference number used to give consecutive numbering in this research.

The column headed MC gives the manual classification, 1 means split, 0

not. Where Zou identifies a file as split, there is a ”Yes” in the next column.

The last column gives detail about the splits found by inspecting the code.

Table 14.10 (p.236) lists the 45 candidate split files from the include and

interfaces directories and the classification assigned to them by inspection.

The 3CO visualisations in Figure 14.2 (p.238) show interesting features

Ref Vn. src/backend/... file MC Zou Comment

12 6.2 parser analyze.c 1 Yes 5-way, but missing 2 sections
12 6.2 parser parser.c 1 Yes 3-way
12 6.2 port hpux port-protos.h 0
12 6.2 utils init postinit.c 1 2-way
11 6.3.2 utils error excabort.c 0
10 6.4.2 libpq pqcomm.c 1 Among many edited functions,

one small function, pq getstr
& a heavily edited function,
pq getint, go to libpq/pqformat.c

10 6.4.2 nodes outfuncs.c 0
10 6.4.2 optimizer plan planmain.c 1 2-way
8 6.5.1 utils cache rel.c 0
6 6.5.3 optimizer path joinrels.c 1 Yes, but heavily edited
6 6.5.3 port random.c 0
6 6.5.3 port srandom.c 0
6 6.5.3 storage file fd.c 1 2-way
6 6.5.3 storage ipc shmem.c 1 3 heavily edited functions to

sinval.c, TransactionIdIsInProgress,
GetSnapshotDat, GetXmaxRecent

6 6.5.3 storage page itemptr.c 0
6 6.5.3 utils adt date.c 1 Yes Almost all code to nabstime.c
6 6.5.3 utils cache rel.c 0
6 6.5.3 utils cache syscache.c 1 TypeDefaultRetrieve moved to

lsyscache.c as get typedefault
4 7.0.3 catalog indexing.c 0
4 7.0.3 commands vacuum.c 1 2-way
4 7.0.3 executor execTuples.c 1 2-way
4 7.0.3 executor nodeAppend.c 0
4 7.0.3 executor nodeMaterial.c 0
4 7.0.3 executor nodeSeqscan.c 0
4 7.0.3 regex regfree.c 0
4 7.0.3 utils adt regproc.c 0
4 7.0.3 utils cache fcache.c 0?
2 7.1.3 utils adt regproc.c 0

Table 14.9: Columns 2–5 identify 28 possibly split files selected by filtering from the
backend subsystem of PostgreSQL. The next two show files identified
as split by manual classification and those noted by Zou. Inspection of
the source code and 3CO provides the detail in the last column.

236 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

among three candidate split files and their target files. They also show up

some problems with the selection and ordering of the target files.

Parser.c, shown in Figure 14.2a, is split three-ways. The largest block

of code, around half of the original file, has moved to parser expr.c, but

this is the second target file here, while parser agg.c, to which less code is

moved, is selected as the main target file. Parse agg.c is more similar than

Ref Vrsn. postgresql/src/... file MC Comment

11 6.3.2 include port irix5.h 0
11 6.3.2 include port linux.h 0
11 6.3.2 include storage s lock.h 1 2-way
10 6.4.2 include port aix.h 0
8 6.5.1 include utils datetime.h 0
6 6.5.3 include executor functions.h 0
6 6.5.3 include executor nodeAgg.h 0
6 6.5.3 include executor nodeAppend.h 0
6 6.5.3 include executor nodeHash.h 0
6 6.5.3 include executor nodeMaterial.h 0
6 6.5.3 include executor nodeMergejoin.h 0
6 6.5.3 include executor nodeNestloop.h 0
6 6.5.3 include executor nodeResult.h 0
6 6.5.3 include executor nodeSeqscan.h 0
6 6.5.3 include executor nodeSort.h 0
6 6.5.3 include executor nodeUnique.h 0
6 6.5.3 include optimizer joininfo.h 0
6 6.5.3 include optimizer planmain.h 0
6 6.5.3 include optimizer restrictinfo.h 0
6 6.5.3 include optimizer var.h 0
6 6.5.3 include storage fd.h 1 2-way
6 6.5.3 include utils inval.h 0
4 7.0.3 include executor functions.h 0
4 7.0.3 include libpq pqsignal.h 1 2-way
4 7.0.3 include nodes nodeFuncs.h 0
4 7.0.3 include optimizer joininfo.h 0
4 7.0.3 include optimizer planner.h 0
4 7.0.3 include parser analyze.h 0
4 7.0.3 include port bsdi.h 0
4 7.0.3 include port hpux.h 0
4 7.0.3 include port sco.h 0
4 7.0.3 include port univel.h 0
4 7.0.3 include port unixware.h 0
4 7.0.3 include rewrite rewriteSupport.h 0
4 7.0.3 include tcop pquery.h 0
4 7.0.3 include utils dynamic loader.h 0
4 7.0.3 include utils inval.h 0
4 7.0.3 include c.h 1 2-way
2 7.1.3 include commands view.h 0
2 7.1.3 include utils elog.h 0
2 7.1.3 include postgres fe.h 0

11 6.3.2 interfaces libpq fe-exec.c 1 2-way
11 6.3.2 interfaces libpq libpq-fe.h 1 2-way
11 6.3.2 interfaces odbc psqlodbc.c 0
10 6.4.2 interfaces ecpg/preproc extern.h 1 2-way

Table 14.10: Columns 2–5 identify 45 candidate split files selected by filtering from
the include and interfaces subsystems of PostgreSQL. The next column
shows files identified as split (1) or not (0) by manual classification.
Inspection of the source code provides the detail in the last column.

14.2. TESTS ON OTHER PROJECTS 237

parse.c to parse expr.c, although they share considerably less code, because

parse agg.c contains fewer trigrams than parse expr.c, thus inflating the

similarity score, and the code moved to parse expr.c contains 5 switch

structures making it repetitive, thus reducing the similarity score.

Analyze.c is a seven-way split, shown in Figure 14.2b. In filtering,

two target files are missed as their similarity to analyze.c is below 0.1, the

threshold, suggesting that either a lower threshold or alternative selection

criteria may be better. The similarity of parse agg.c (second yellow file) to

analyze.c is 0.099, and of parse oper.c (third blue file) just 0.033, as one 5

line function is moved to the file, which has 425 lines. The files share 520

and 190 trigrams with analyze.c, and their containment is 0.612 and 0.193

respectively. Shared trigrams or containment may improve file selection.

Date.c is also recognised as a split file, the 3CO trigram analysis (see

Figure 14.2c) shows that almost all of the code has been moved to nabstime.c.

This is supported by Zou’s explanation that all but one of the functions

from date.c moved to the file nabstime.c, while much of the new file date.c

consists of functions moved from datetime.c [261, p.83].

Datetime.c, another file from this group, is not selected by filtering

because it becomes four times its original size in the new release.

Nbtcompare.c has three target files, float.c, varlena.c and nabstime.c,

not selected by filtering because their similarity to nbtcompare.c is below

the similarity threshold of 0.1, at 0.027, 0.050, and 0.022 respectively.

Geqo eval.c has a similar problem, but here the similarity of the target

file, optimizer/joinrels.c, reduces from 0.584 to 0.333.

Dt.c, catalog utils.c, and geqo paths.c also identified by Zou as split,

ceased to exist at the time of splitting, and are therefore disappearing files.

In summary, three of the six PostgreSQL files noted as split (and not

deleted) by Zou are selected in filtering and correctly classified. The three

remaining files are not selected, either because the candidate increases in

size, or because the target files fall outside the filter criteria. Nine fur-

ther files in the backend subsystem are found to be split and are correctly

classified, as are the seven files in the other subsystems.

238 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

(a) Parser.c≈ 400 lines (b) Analyze.c ≈ 2000 lines (c) Date.c ≈ 875 lines

Figure 14.2: Three PostgreSQL split files and their targets

(a) Distribution of code from the file parser.c in 3 files in the
next version. That in the revised version of parser.c is blue, red in
parser agg.c and yellow in parser expr.c.

(b) Analyze.c is split 7 ways, the majority of the code is fairly
evenly split between 5 target files, with less in the 2nd yellow file and
just one function in the 3rd blue file. (First seen in Fig.8.11)

(c) Most code from date.c is only in the target file nabstime.c
(red), a little also remains in date.c (purple) and there is a little editing.

14.2. TESTS ON OTHER PROJECTS 239

14.2.2 DNSjava

Antoniol et al. [6] study 40 versions, 0.1 to 1.4.3, of the project DNSjava.2

They construct weighted frequency vectors of the identifier names in each

class. The cosines between vectors are used to reason about the relationship

between files in consecutive releases. Two of their categories of refactoring,

class extraction (or factoring out, where the original file retains its name)

and class split (where new names are given to both parts of the file) are

equivalent to split files when a file is assumed to equate to a class. Generally,

a split file will mean a split class, but a renamed file may not mean a renamed

class, nor will a renamed class necessarily mean that a file is renamed. The

refactorings suggested by their method are listed in Table 14.11, the first five

columns of which are taken from [6, Table 2]. In four cases, more than one

2http://www.dnsjava.org

Type of Classes Classes Cos- Verified
Refactoring Rel.s involved in involved in ine by code
Performed release n release n+1 inspect’n

Factor out 2–3 dns dns, Type 0.76 Split

Replacement 3–4 dnsServer jnamed 0.71 Rename

Replacement 4–5 CountedDataInputStream DataByteInputStream 0.32 Rename
Split 4–5 CountedDataInputStream DataByteInputStream, 0.24 X

DataByteOutputStream †

Replacement 7–8 Resolver SimpleResolver ‡ 0.79 **Split**

Replacement 7–8 FindResolver FindServer 0.31 Rename
Split 7–8 FindResolver ExtendedResolver, 0.31 X

FindServer

Merge 7–8 FindResolver, Resolver SimpleResolver 0.75 X

Replacement 11–12 CacheElement Element 0.85 Rename
Merge 11–12 CacheElement, IO Element 0.77 X

Merge 12–13 CacheResponse SetResponse, 0.88 Merge
ZoneResponse

Replacement 32–33 AXFREnumeration AXFRIterator 0.9 Rename
Merge 32–33 AXFREnumeration AXFRIterator, 0.88 X

Enumerator

Table 14.11: Refactorings suggested by Antoniol et al.’s system, see [6, Table 2],
here sorted by release and name. Their code inspection showed only
1 of the 3 suggested splits, 1 of 4 merges, and 5 of 6 renames to
be so. ‡Resolver was deemed **split** to SimpleResolver and Ex-
tendedResolver. Also †CountedDataOutputStream was renamed to
DataByteOutputStream, not found by vector analysis.

240 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

refactoring was suggested. Antoniol et al. inspected the code to find the

correct class of refactoring, which is shown in the last column of the table. In

one case, marked by asterisks, a new classification was allocated: Resolver

was split to become Resolver, SimpleResolver and ExtendedResolver. A

further refactoring, not found by their system but during inspection, was

CountedDataOutputStream, renamed to DataByteOutputStream.

There is a difference between the systems: Antoniol et al. compare

classes, while this research compares files. CacheElement and AXFRIterator

are renamed within the files Cache.java and Zone.java respectively, and not

picked up by the file-based system because they do not involve other files.

Antoniol et al. find four renamed files, and four suggested merges,

only one of which, CacheResponse and ZoneResponse merging to become

SetResponse, proved to be correct. Therefore a total of six files are found

which equate to the disappearing files of the research reported in this dis-

sertation. Table 14.12 lists these disappearing files and the two split files

found by Antoniol et al.

Candidate split files In addition to the forty releases (1–40) studied by

Antoniol et al. 17 further releases (41–57) are analysed here. Table 14.13

shows the six candidate split files selected by filtering DNSjava releases

1–40, all of which are classified as split on inspection. Among these six are

those found by Antoniol, dns (release 2) and Resolver (release 7). Table 14.14

lists the 55 candidate split files selected from releases 40–57. Although

Antoniol et al. analyse releases 1–40, changes to files in release 40 can only

Ref. Rel. File Target(s) Detail

56 2 dns Type 2-way split
51 7 Resolver SimpleResolver

ExtendedResolver 3-way split

55 3 dnsServer jnamed Rename
54 4 CountedDataByteInputStream DataByteInputStream Rename
54 4 CountedDataByteOutputStream DataByteOutputStream Rename
51 7 FindResolver FindServer Rename
46 12 CacheResponse }
46 12 ZoneResponse } SetResponse Merge

Table 14.12: The 2 split and 6 disappearing files found by Antoniol et al.

14.2. TESTS ON OTHER PROJECTS 241

be found with information for release 41, these candidates are therefore in

Table 14.14. Of the 55 files listed, 7 are identified by inspection as split. The

tables are laid out like the those for PostgreSQL. The 2 highlighted files are

those which are mostly labelled incorrectly: KeyBase, where the target files

are incorrectly ranked, by 90% of the models; and UNKRecord, where the

main target file is not selected, by all of the models tested.

The comments in Table 14.13 differentiate between split and extract

operations. Split means that part of the code is moved to another file. Extract

means that a superclass is created, and code is moved from the original file

to the superclass file. For example, in Figure 14.3 the file MXRecord is

shown with its text coloured by 3CO. Most of the code, in red, has gone to

the first target file, MX KXRecord, suggesting that method stubs are left in

the original file. KXRecord appears to share the method headers, except for

the names, as the code is coloured black, showing that it is in all three files.

These suggestions are supported by inspection of the amended version of

the file, see Figure 14.4, which shows that a new class MX KXRecord, see

Figure K.1 (p.397), has been created to extend Record. MXRecord and the

newly created KXRecord extend MX KXRecord, see Figure 14.4.

4SimpleResolver has 734 of Resolver’s 750 trigrams, which evolves from class to interface.

ExtendedResolver implements Resolver, but seems not to result from a split as suggested.

*dnsjava/. . .
†dnsjava/org

Ref. Vn. /xbill/DNS/. . . File MC Ant. Comment

56 2 * dns.java 1 Yes 3-way, to Type & Rcode, edited

52 6 * Zone.java 1 Split to Master, extract to NameSet
which Zone now extends

51 7 * Resolver.java 1 Yes To SimpleResolver 4

41 17 † MXRecord.java 1 Extract to MX KXRecord
which MXRecord now extends

27 31 †security/ DNSSECVerifier.java 1 2-way split to DNSSEC

26 32 † dns.java 1 2-way split to Lookup, bitty

Table 14.13: Columns 2–3 identify 6 possibly split files selected by filtering DNS-
java, releases 1–39. Manual classification is in the column labelled
MC, those found by Antoniol et al. are in the column labelled Ant.,
and inspection of the text provides the detail in the last column.

242 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Ref. Vn. dnsjava/org/xbill/DNS/. . . MC Comment

18 40 DClass.java 0
18 40 KEYRecord.java 1 Extract to Keybase which

it now extends
18 40 Section.java 0
18 40 SIGRecord.java 1 Split to FormattedTime & extract

to SIGBase, which it now extends
17 41 A6Record.java 0
17 41 AAAARecord.java 0
17 41 ARecord.java 0
17 41 CERTRecord.java 0
17 41 CNAMERecord.java 0
17 41 DNAMERecord.java 0
17 41 DNSKEYRecord.java 0
17 41 DSRecord.java 0
17 41 HINFORecord.java 0
17 41 KEYBase.java 0
17 41 KEYRecord.java 0
17 41 KXRecord.java 0
17 41 LOCRecord.java 0
17 41 MXRecord.java 0
17 41 NAPTRRecord.java 0
17 41 NSECRecord.java 0
17 41 NSRecord.java 0
17 41 NXTRecord.java 0
17 41 OPTRecord.java 0
17 41 PTRRecord.java 0
17 41 RPRecord.java 0
17 41 RRSIGRecord.java 0
17 41 SIGBase.java 0
17 41 SIGRecord.java 0
17 41 SOARecord.java 0
17 41 SRVRecord.java 0
17 41 TKEYRecord.java 0
17 41 TSIGRecord.java 0
17 41 TXTRecord.java 0
17 41 UNKRecord.java 1 Extract, but main target not selected
14 44 KEYBase.java 1 2-way split, but to 3rd target
12 46 FindServer.java 1 Extract to ResolverConfig
11 47 AFSDBRecord.java 0
11 47 ARecord.java 0
11 47 CNAMERecord.java 0
11 47 DNAMERecord.java 0
11 47 MBRecord.java 0
11 47 MDRecord.java 0
11 47 MFRecord.java 0
11 47 MGRecord.java 0
11 47 MRRecord.java 0
11 47 NSAP PTRRecord.java 0
11 47 NSRecord.java 0
11 47 PTRRecord.java 0
11 47 RRSIGRecord.java 0
11 47 SIGRecord.java 0
11 47 SimpleResolver.java 0
11 47 SingleCompressedNameBase.java 0
9 49 AAAARecord.java 0
8 50 TXTRecord.java 1 Split and extract to TXTBase
4 54 NSECRecord.java 1 Split to TypeBitmap

Table 14.14: Columns 2–3 identify 55 possibly split files selected by filtering DNS-
java, in releases 40–56 Manual classification is in column 4, and in-
spection of the text provides the detail in the last column.

14.2. TESTS ON OTHER PROJECTS 243

In summary, Antoniol et al. found two split files in releases 1–40, both

are correctly classified here, as are the four other split files found in these

releases. Seven others are found in releases 41–57, two of which are incor-

rectly classified because of problems in filtering.

The file MXRecord shows one reason why Antoniol et al. did not find all

of the split files found here. Table 14.15 shows the unweighted frequency of

each of the identifiers in the 3 relevant files. For a split to be identified, the

cosine between the summed vectors for the amended version of MXRecord

and the new MX KXRecord should be above the threshold set for the project.

Identifiers conforming to the expected pattern are ticked. Among the others

is “ab”, renamed to become “sb”, and many of the identifiers, such as

“ name”, which appear the same number of times in each file.

Old Amended New col.3+col.4
MXRecord MXRecord’ MX KXRecord ≈col.2 ?

MXRecord 3 3 X
out 6 6 X
priority 7 8 X
Record 1 1 X
rrToWire 1 1 X
rrToWireCanonical 1 1 X
target 11 12 X
Type.MX 3 3 X
ab 5 }
sb 5 }
dclass 6 6 6 x
name 6 6 6 x
priority 3 2 2 x
target 2 2 2 x
ttl 6 6 6 x
type 6 x

c 3 2 3 x
in 4 2 4 x
length 1 2 1 x
MX KXRecord 1 4 x
origin 2 2 2 x
st 3 2 3 x

Table 14.15: Identifiers in MXRecord and the 2 files resulting from extraction, in-
dicating why Antoniol’s analysis would not find this extraction. The
sum of identifier frequencies in columns 3 and 4 should be approxi-
mately the same as the figure in column 2, but more than half are not.

244 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

Figure 14.3: The file MXRecord showing the relationship of its code with possible
destination files. Code in the amended version of the original file is
coloured blue (or green, purple or black, if also in the other potential
destination files). Red code is only in the first selected target file.

14.2. TESTS ON OTHER PROJECTS 245

Figure 14.4: Ferret comparison between the amended version of MXRecord.java
and the new file KXRecord.java showing their use of MX KXRecord

246 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

14.2.3 Unseen data classified by trained models

The model which best classifies the 89 project dataset is the fb/SMO com-

bination. When this model is used to classify the filtered PostgreSQL and

DNSjava files, the classification accuracy is reduced: 84.7% over the two

projects (87.5% on PostgreSQL and 80% on DNSjava) and recall of 78.1%

(73.7% and 84.6%). Simple Logistic is the algorithm which performs best

overall on the 89 project dataset, and is best with both the “fb” and “tris-

singles” (the best set overall) feature sets on the unseen data. To find out

whether other feature sets produce better models, all of the sets which per-

form at least as well overall as the “fb” (Ferret basic) set were used to build

models with Simple Logistic. Classification of the unseen data with these

models is shown in Table 14.16 in terms of accuracy and recall, where the

top two models have an overall accuracy of 99.2% and a recall of 93.7% (19

of 19 PostgreSQL, and 11 of 13 DNSjava split files) on the unseen data.

Simple Logistic Overall PostgreSQL DNSjava

Feature set Accuracy Recall Accuracy Recall Accuracy Recall

fc+tris-singles 0.992 0.937 1.000 1.000 0.983 0.846
fc+fb+pdp-singles 0.992 0.937 1.000 1.000 0.983 0.846
tris-singles 0.978 0.906 0.973 0.947 0.983 0.846
all-fc+all-tris 0.978 0.906 0.973 0.947 0.983 0.846
fb-singles 0.970 0.906 0.960 0.947 0.983 0.846
fb+tris-singles 0.970 0.906 0.960 0.947 0.983 0.846
fb 0.955 0.781 0.945 0.789 0.967 0.769
all-fb+tris-singles 0.955 0.781 0.945 0.789 0.967 0.769
tris 0.940 0.750 0.918 0.737 0.967 0.769
all-fb+fc-singles 0.933 0.687 0.918 0.684 0.950 0.692
fc+fb+tris+pdp 0.909 0.875 0.945 0.895 0.867 0.846
fc+ft+fb+tris+pdp 0.909 0.875 0.945 0.895 0.867 0.846
pdp+tris-singles 0.879 0.906 0.945 0.947 0.800 0.846
all-tris+fc-singles 0.864 0.937 0.932 1.000 0.783 0.846
att-sel-all-feats 0.864 0.969 0.945 1.000 0.767 0.923
fc+tris+pdp 0.864 0.906 0.960 0.947 0.750 0.846
fb+tris+pdp 0.864 0.875 0.960 0.895 0.750 0.846
all-tris+pdp-singles 0.857 0.812 0.918 0.789 0.783 0.846
all-fb+pdp-singles 0.848 0.812 0.945 0.842 0.733 0.769

Table 14.16: The accuracy and recall of PostgreSQL and DNSjava candidate split
files with models built with the Simple Logistic algorithm and a variety
of feature sets. The figures are shown separately for the two test sets
and the feature sets are sorted by descending total accuracy, and,
where a place is tied, by the size of the feature set, smallest first.

14.3. SUMMARY 247

14.3 Summary

In this chapter, the effect of combining feature sets and algorithms to create

models for classifying candidate split files was explored. Investigations into

improving the classification rate by combining algorithms with heteroge-

nous meta-classifiers and by combining feature sets were reported. Little is

gained by combining algorithms, which implies that the better performing

algorithms are able to correctly classify the same instances, and that one

classifier is sufficient. Combining the feature sets generally only improves

on the performance of the less good performers.

A number of models were tested on the unseen data. The classification

rate of the model which performs best on the 89 project dataset, fb/SMO,

drops on the unseen data, achieving only 84.7% classification accuracy

(against 94.3%), with recall of 78.1%, implying overfitting.

Each of the models built using the best overall classification algorithm,

Simple Logistic, with the top performing feature sets give better results

than the fb/SMO model on the unseen data. The best of these, fc+tris-

singles/Simple Logistic, classifies with an accuracy of 99.2% (against 93.0%

on the 89 project set) and recall of 93.7%.

In the backend subsystem of the project PostgreSQL, Zou identifies nine

split files. Of these, three are disappearing split files. Of the remaining six,

three are selected by filtering and classified as split. The remaining three

files are not selected either because the candidate file has become larger as

a result of recombination, the target file has been recombined and become

less similar than in the previous release, or the target file has too low a

similarity score. Nine other files in the backend subsystem are identified

as split by code inspection and correctly classified. In the include and

interfaces subsystems, a further seven split files are identified among the

filtered files, all of which are also correctly classified.

Zou’s system, by operating at function level, is able to detect more subtle

changes, such as recombination, and moves of single functions from one

file to another, which are not always picked up at the file level. Zou reports

fewer splits at file level, but the focus of her study is at function level and

248 CHAPTER 14. CLASSIFYING THE SPLIT FILE DATASET

therefore has a different perspective.

Antoniol et al. identify two split files in the project DNSjava. Both are

detected by this system, along with four others not found by Antoniol, all

six of which are correctly classified by the majority of the models. Seven

other files are identified in the releases not studied by Antoniol, of which

five are confirmed as split. Two files are misclassified: one because its target

file is not selected, and the other because its target file is incorrectly ranked

second to an incidentally similar file, meaning that the features created for

the singles sets are based on the wrong file.

Antoniol et al. recognise that their system is vulnerable to identifier

renaming. The file MXRecord exemplifies this shortcoming, as well as

showing that unless a split is fairly “clean”, the thresholds on the cosine

between vectors will cause problems. The analysis in Table 14.15 does not

weight the identifiers as the tf-idf approach used by Antoniol et al. does,

but gives an idea of the problem.

The results of classifying the candidate split files from the two unseen

projects with the models built on the 89 project dataset are good. However,

comparing the results with those of Zou and Antoniol et al. highlights prob-

lems in the selection of the candidate files and the selection and ordering of

target files, most of which are addressed in the next chapter.

Chapter 15

Exploring filtering criteria

In the previous chapter, four main problems were identified in finding split

files in the unseen projects. Each problem has its root in the filtering stage.

First, the amount of code moved to a target file can be too small to qualify

under the filter conditions. Second, if the target files are ordered incorrectly,

feature construction is affected, making classification difficult. Third, other

changes to a target file reduce its similarity to the candidate file, so that it is

not selected. Fourth, a split file may not be selected as a potential candidate

because more code is added than is removed during restructuring, making

the file larger than in the previous release. The third and fourth problems

are caused by the granularity of the data, in that several changes can be

applied to a file between releases. They can be seen as the same problem

affecting the candidate and target files respectively.

The first and second of the four problems are explored in this chapter.

Figure 15.1: System overview, repeated here for reference

249

250 CHAPTER 15. EXPLORING FILTERING CRITERIA

Different conditions for filtering and ordering target files are considered,

to discover how they affect file selection. Candidate disappearing files are

simple to identify, but the same problems exist in selecting their targets as

for split files. Finding the correct set of target files and putting them in the

right order is important for matching renamed, moved or split files.

In this chapter, a range of similarity measures based on trigram analysis

are considered first. Sections 15.2–15.4 cover three sets of investigations:

selecting target files, ordering the selected targets, and refining the selection

based on knowledge gained from the previous experiments. Next, the split

files found by the new filtering criteria are compared to the information

given in the change log of a well-documented project. A summary follows.

15.1 Similarity measures

As noted in Chapters 3 and 13, any reasonable measure of similarity can be

used to look for target files. There are a number of ways that the similarity

between files can be expressed based on trigrams, and include those:

1. taken fairly directly from Ferret, and first described in Chapter 6:

(a) similarity score, Sim(Cn,Fn+1),

where Cn is the candidate file and Fn+1 is a potential target file,

(b) change in similarity score, [Sim(Cn,Fn+1)] − [Sim(Cn,Fn)],

(c) the containment of one file in another |Cn
∩Fn+1|
|Cn| or |Cn

∩Fn+1|
|Fn+1| ,

where C is the set of trigrams in the file C, and F in F,

(d) the number of shared trigrams, |Cn
∩Fn+1|, or

(e) change in the number of shared trigrams, |Cn
∩Fn+1| − |Cn

∩Fn|.

2. computed less directly from information about the trigrams in a group

of files, as discussed in Chapter 7:

(a) the number of trigrams uniquely shared with the candidate file∣∣∣∣[Cn
∩F in+1] \ [

∪m
j=1 F jn+1]

∣∣∣∣
where j , i, m=number of files in release n+1,

15.1. SIMILARITY MEASURES 251

(b) the weighted trigram count,
∑

i
1

ci−1

where i is a trigram ∈ Cn
∪

[
∪m

j=1 F jn+1]

ci is the no. of files sharing trigram i (and c ≤ given maximium)

(weighted trigram counts are explained on page 104), or

(c) the number of trigrams shared with the candidate difference set,

[Cn\Cn+1]
∩Fn+1, (unsuitable for disappearing files as @Cn+1).

There are two tasks in finding target files: selecting the right target files,

and ordering the selected files. The first task combines the two opposing

aims of selecting all true target files, and not over-selecting incidentally sim-

ilar files. This opposition leads to the standard trade-off between precision

and recall, and makes it difficult to find the right balance when choosing

thresholds for target file selection.

The second task is to rank target files according to how likely they are

to be the new location of code moved from the candidate file. As explained

in Chapter 13, this is an important requirement for feature construction.

The three sets of investigations reported in this chapter look at split files.

Similar methods can be used to find and sort targets for disappearing files.

Experimenting with all of the data would be the ideal. However, some

of the tasks, such as judging the most suitable order for target files, are

labour-intensive. Therefore an arbitrary subset of six projects, with around

70 positive examples of split files, was used in these investigations.

The first set of investigations considers each of the proposed filtering

conditions, and the effect of different parameters, on file selection. The aim

is to reduce thresholds for target file selection to the point where few, and

preferably no, split file examples are excluded from the set of candidates,

while not including too many negative examples, and making target sets too

large. The second set looks at the selected split files, examining differences

between the ordering of target files by different similarity measures.

Finally, the criteria explored in the two previous investigations are com-

bined to refine the method for selecting and ordering target files. The chosen

method is applied to the best-documented project from the test set, and the

results compared to information found in its change log.

252 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.2 Target file selection

In this section, target file selection is investigated, using various similarity

measures and thresholds. Similarity score is a simple measure to explore

because the values are stored during the information gathering phase of

filtering, and the threshold is easy to vary. The first experiment in this set

aims to find a baseline number of candidate files by looking at the effect on

target file selection of a range of similarity thresholds. Other measures are

more difficult to explore as thoroughly because there are more variables to

consider. The results of filtering with these other measures are related to

those from the similarity score investigation. Labels relating to the measures

listed in Section 15.1 are noted in the headings of the following sections.

15.2.1 Similarity score (1a)

In early experiments [93], similarity score was used to select target files. A

threshold value of 0.1 was chosen from 0.05, 0.075, 0.1, 0.15 and 0.2. The two

higher values excluded too many split files from the candidate set, because

no target files were matched to them. With the similarity scores 0.05 and

0.075, there were too many target files, given the time-consuming method

of hand-checking candidate groups prior to the development of 3CO.

In this investigation, lower similarity scores were used to filter the tar-

get files: 0.1, 0.083, 0.066, 0.05, and 0.033. The number of candidates are

recorded in Table 15.1, along with the number of positive examples of split

Threshold Number of Mean Increase in New candidates
value candidates targets candidates which are split

0.100 209 9.5 – –
0.083 251 10.5 42 4
0.066 315 13.5 64 3
0.050 351 26 36 3
0.033 370 69 19 0

Table 15.1: The effect of different similarity score thresholds on candidate and target
file selection. Column 2 shows the number of candidates selected, with
target file set size in column 3. Additional candidate files are noted in
column 4, and the number of these which are split in column 5.

15.2. TARGET FILE SELECTION 253

files added at each level, and the mean size of the target file sets.

The results show that among these thresholds, 0.05 selects the maximum

number of split files as candidates in this dataset. The lower value of 0.033

finds 19 more candidates, none of which are split files.

15.2.2 Containment (1c)

To find target files based on shared trigrams, the threshold can either be a

discrete value, or a proportion of file size. Given the range of file sizes, the

proportional measure containment was chosen, and various values tested

to find a reasonable set to compare with the similarity score set.

At 0.25 of the smallest file size, 351 candidate files are selected, exactly

the same number as with a similarity value of 0.05. Each set has 16 can-

didates which do not appear in the other set. None of the 16 selected by

containment are split files, whereas 2 selected by similarity score are split.

The mean number of target files per candidate selected by this method is

also 26. Based on this test, similarity score seems to be a marginally more

useful filter than containment.

15.2.3 Change-based filters (1b, 1e)

Filtering by containment or similarity score alone results in large target file

sets. Any file which is similar to a candidate file will be selected as a target

under each of the two measures. However, if this similarity is unchanged

or is reduced, the file is unlikely to be a true target, unless the code removed

from the candidate file was already in the target file, as is sometimes the

case when files are merged. The aim of using change-based filters is to

exclude incidentally similar, but otherwise unrelated, target files.

Initially the two change-based measures (changes to similarity and to

shared trigrams) were explored using just one selection condition. How-

ever, to include all of the split files found by the similarity threshold of 0.05,

the change-based thresholds have to be lowered to the point where the tar-

get file sets become larger (mean files per set >40), making these measures

unsuitable for use on their own.

254 CHAPTER 15. EXPLORING FILTERING CRITERIA

Other strategies for including change-based filters were therefore tested:

pairing similarity score with change in similarity, and stratifying the changes

in shared trigrams, depending on the ratio of the change to overall file size.

Finding parameters for these two groups was an iterative process. Thresh-

olds were estimated for each change measure, candidate files selected, and

the resulting sets compared to that reported in Section 15.2.1. The filter

thresholds were then adjusted to include the missing split files.

15.2.4 Combining similarity score conditions (1a, 1b)

For a file to qualify under the combined similarity conditions, it must both

have a similarity to the candidate file of at least 0.05, the base score estab-

lished for this dataset, and the similarity of the target file to the candidate

must be larger than the similarity of the file in release n. To select files

where the code already exists in the target file but is extracted from the split

file, targets with a high similarity to the candidate are selected, regardless of

change in similarity. The set of parameters chosen after iteration were:

• similarity between files is at least 0.05 and increases by at least 10%,

• or similarity is greater than 0.5, regardless of change.

These parameters result in a set of 263 candidates which include all but

one of the positive candidates found with a similarity of 0.05 and above.

The mean number of target files is 6.6. The similarity of the target for the

missed split file changes by less than 10% and it is therefore not selected.

15.2.5 Stratifying shared trigram conditions (1e)

A range of options was explored to find conditions based on the change

in the trigrams shared by the target file in releases n and n+1, and the

candidate. In the end, the increased numbers of shared trigrams were

stratified, depending on the size of the smaller of the two files compared.

The idea is that a small increase in shared trigrams may be more significant

in a small file than a large one. The conditions are an increase of at least:

• 10 shared trigrams, and at least 30% of the smaller of the file sizes, or

15.2. TARGET FILE SELECTION 255

• 20 shared trigrams, and at least 20% of the smaller file size, or

• 50 shared trigrams, and at least 10% of the smaller file size, or

• 100 shared trigrams.

This results in a set of 271 candidates with a mean of 13 target files. One

of the split files is also missing from this set, it has a similarity of 0.065 to

the target file, and the two files share 201 trigrams. However, the two files,

which contain 1445 and 1843 trigrams, share 151 trigrams in release n, so

there are 50 new shared trigrams, which is less than 10% of either file size.

15.2.6 Less direct methods (2a, 2b, 2c)

Similarity, shared trigrams, and containment measures are either stored, or

can be calculated from measures stored during the information gathering

process described in Section 12.3.1. More work is required to compute

the three less direct measures (uniquely shared trigram counts, weighted

trigram counts, and trigrams shared with the candidate difference set),

making them less attractive as a first filter, unless the gain is substantial.

Each of the measures in this category was tested on a small set of files taken

from the dataset, and the results reported in Appendix L. The tests show that

although these measures reduce the number of incidentally similar target

files, they do not select true targets as well as the more direct methods.

15.2.7 Discussion on selecting target files

None of the three less direct measures, which require more processing,

perform as well as the simpler methods in selecting target files for the

more difficult of the files tested. However, they do reduce the number of

incidentally similar files selected as targets for other files.

Similarity score or containment result in large target file sets, as do the

change in similarity or the change in shared trigrams. However, smaller tar-

get file sets result from either combining similarity and change in similarity

measures, or stratifying the conditions for changes to shared trigrams.

One positive candidate file is excluded by the proposed filter conditions

256 CHAPTER 15. EXPLORING FILTERING CRITERIA

for both the similarity combination, and the shared trigrams. Target file sets

are reduced to a mean of 13 in the shared trigram change set, and to less than

7 in the similarity score combination set. The set of candidate files is also

smaller, as it contains fewer negative examples. The selection of true target

files is also a little better with the similarity combination. Investigations

into target file ordering are therefore based on this set.

15.3 Ordering target files

The features constructed for this research are based on comparisons between

the candidate file and different selections from the group of target files (see

Chapter 13). The more successful feature sets contain features based on the

three-way comparison between the two versions of the candidate file, and

the main target file. When there is more than one target file, it is important

that they are ranked correctly, so that the main target file is that most likely

to contain the majority of the code removed from the candidate file.

15.3.1 Comparing ranking criteria

The set of target files selected by similarity combination (Section 15.2.4) was

used to explore the effect of different measures on target file ranking. Any

of the measures discussed for selecting target files can also be used to rank

the files. Three of these ranking criteria are compared in this section:

• change in similarity score,

• change in shared trigrams, and

• the number of trigrams uniquely shared with the candidate file.

Method

The two change-based measures are found from stored information. To

find the number of unique trigrams, the candidate file, amended file and all

of the selected target files are compared by Ferret to produce a trigram-file

index. The trigrams uniquely shared by each target file and the candidate

file are counted, and the files ranked by this count.

15.3. ORDERING TARGET FILES 257

To assess target file order, the 3CO comparisons between each candi-

date and its targets were examined. Files considered to be true targets were

ranked by eye according to the code shared with the parts of the candi-

date file not covered by the amended file, and their order by each method

noted. As an example, Figure 15.2 shows a file whose targets are ordered

by uniquely shared trigrams on the left, and by change in shared trigrams

on the right. As a reminder, code in the amended file is blue, the file se-

lected as the first (main) target, red, and the second target file, yellow. The

true target file, which contains the code not in the amended file, is selected

first by uniquely shared trigrams (on the left), and second by the change in

shared trigrams. It is easy to see why: the “red” (or first) file on the right has

a large number of trigrams shared with the candidate file, however, most

of these trigrams (in purple) are also shared by the amended file.

Figure 15.2: Target files ordered by uniquely shared trigrams (left) or by change in
shared trigrams (right). The interesting section is coloured red on the
left, and yellow on the right, showing this target is ranked first by one
method and second by the other. The green or purple section is shared
by the second, or first target respectively, and the amended file.

258 CHAPTER 15. EXPLORING FILTERING CRITERIA

Results

Using the test subset, the three methods of ordering target files are com-

pared in Table 15.2: ordering by uniquely shared trigrams, by change in

shared trigrams, and by change in similarity. The first three columns report

on the number of rankings which are the same under all measures, showing

the number of target files, the number of “true” targets and the number of

times the rankings agree. For example, the figures to the left of the asterisk

in column 4 mean that there are two instances where there are two target

Total True Count Ordered by Ordered by Ordered by Count
targets targets matched uniques shared similarity unmatched

1 1 24
2 1 4 1 1 2 1
2 1 2 2 4
3 1 3 1 1 2 1
4 1 2 1 1 4 1
5 1 1 3 1
6 1 2
7 1 2
8 1 1 1 4 4 1
11 1 2 2 1
17 1 1
21 $ 1 18 4 1
23 1 2 2 1
44 1 1

2 1, 2 2 *
3 1, 2 1, 2 1, 6 1
4 1, 2 1
5 1, 2 1
14 1, 2 1 1, 2 1, 2 1, 6 1
14 1, 2 2, 7 2, 6 1
26 1, 2 5, 2 1, 2 1

23 1, 2, 3 .. 4, 2, 10 .. 7, 5, 9 .. 1
24 £ 1, 2, 3, 4 1, 2, 12, 7 1, 2, 4, 3 1

6 1, 2, 3 .. 1
17 1, 2, 3, 4, 5 1, 6, 4, 2, 3 1, 2, 4, 5, 3 1

Totals 46 19

Table 15.2: Comparison of target file order by uniquely shared trigrams, changes to
shared trigrams, and to similarity. The first column shows the number
of targets selected. The next two give information about the files whose
targets are ranked the same by each method. Columns 5–8 show those
with different rankings. Symbols in column 4 are referenced in the text.

15.3. ORDERING TARGET FILES 259

files, with the files correctly ranked first and second by all methods.

The last four columns show the rankings which disagree. The fifth

column has the order of true targets under uniquely shared trigrams, the

next column, under change in shared trigrams, and the next, under change

in similarity. The last column gives a count of the occurrences.

For example, the figures to the right of the $ in column 4 mean that

there is one instance where the uniquely shared trigrams rank the single

true target first, but other methods rank it differently, at positions 18 and

4. Another example, indicated by the £ in column 4, shows a set of 4 true

targets from a pool of 24. Under uniquely shared trigrams these are ordered

as expected, but under change in shared trigrams or similarity these targets

are in positions 1, 2, 12 and 7; and 1, 2, 4 and 3 respectively.

The target files in this set are placed in the “correct” order when ranked

by uniquely shared trigrams. The other methods rank target files in the

same order in 46 of the 65 cases, of the other 19, 6 are ranked the same by

change to shared trigrams and not by similarity, while 2 are ranked the same

and 2 nearly the same, by change in similarity, and not by shared trigrams.

15.3.2 Discussion on ranking target files

Using the set of candidate file groups selected by similarity, the target files

were ranked by uniquely shared trigrams, change in shared trigrams and

change in similarity. Ordering by uniquely shared trigrams outperforms

the other methods for this data, giving the “correct” order in every case.

One problem identified while determining target file order is that some

candidate files have blocks of code which are unmatched by any of the

selected target files, even when the file is apparently split. An example is

shown on the left of Figure 15.3, where two blocks of code appear to have

moved to another file, but two other blocks are unmatched (mostly cyan).

On the right of the figure, the wider selection of target files includes the file

which contains the missing code. The next section explores ways to balance

the inclusion of such targets while not including too many unwanted files.

260 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.4 Refining file selection

The idea in refining target file selection is to increase recall. This is achieved

by relaxing the selection criteria to generate a larger initial set of files, then

refiltering to exclude files which are unlikely to be true targets.

If a file does not share trigrams with the difference set it is not normally

a true target, and can be discarded from the set of target files. As previously

explained, extra time and space are required to make the comparisons

required to select files which share trigrams with the candidate difference

set from all of the files in release n+1. However, it is simpler to select such

files from a smaller set of target files chosen by other criteria.

As a test, the threshold for selection on file similarity, regardless of

change, was altered from 0.5 to 0.25. This increases the number of candi-

dates from 263 to 266 and mean targets from 6.6 to 8.4. Files were then

Figure 15.3: On the left, target files are selected by similarity combination (Sec-
tion 15.2.4). Two sections of the candidate file are not matched by
a target file. On the right, additional targets are selected by adding
shared trigram conditions. The code is matched by the 1st (red) file.

15.4. REFINING FILE SELECTION 261

Trigram shared Number of Mean number Positive splits
with difference set candidiates target files selected?

no filter 266 8.4 all known
= 0 227 7.2 all known
<5 189 5.7 all known
<10 161 5.2 all known
<20 137 4.8 all known

Table 15.3: Changes to the number of candidate and target files made by removing
target files with few trigrams shared with the candidate difference set

removed from the target set if they shared fewer than n trigrams with the

difference set. The results for different values of n are in Table 15.3.

In the subset of projects used in these investigations, only irrelevant

files are removed, as there is no reduction in the number of positive split

file examples and their true targets. There are two cases in the remaining

projects where split files will not be matched if target files with fewer than

20 trigrams in common with the difference set are removed.

To explore whether the blocks which are not matched by a target file can

be found in target files selected under lower thresholds, several variations

to the filter conditions were tested. These are listed in Table 15.4. In each

case, target files are removed if they have fewer than twenty trigrams in

common with the difference set. The similarity combination has the form

[(sim ≥ a) ∧ (sim ≥ (prev × b))]
∨ [sim ≥ c] Shared Gaps New Candidate Positive Mean

a b c added? filled splits files examples targets

0.05 0.05 0.25 n 0 3 137 69 4.8
0.05 0.025 0.25 n 0 3 137 69 4.8
0.05 0.01 0.25 n 0 3 158 69 6.4
0.05 0.05 0.1 n 2 7 154 73 5.9
- - - y(1,2) 4 5 146 71 14.8
0.05 0.05 0.1 y(1) 7 7 166 73 10.8
0.05 0.05 0.1 y(1,2) 9 9 166 75 14.2

(1) means changes to shared trigrams added, (2) means 0.5 containment of smallest file added

Table 15.4: The effect of altering target file selection criteria. Extra shared trigram
criteria are noted in Column 4. The next 2 columns show whether newly
selected target files cover the gaps found in 22 files, and additional split
files detected. The last 3 columns give the total candidate files, those
identified as split, and the mean number of target files.

262 CHAPTER 15. EXPLORING FILTERING CRITERIA

[(sim ≥ a) ∧ (sim ≥ (previous × b))] ∨ [sim ≥ c], a combination like that in

Section 15.2.4. The values for a, b and c are shown in the first three columns.

In the last three tests, the shared trigram change filters (see Section 15.2.5)

are added to the criteria. Two tests also have containment of >0.5 added.

Twenty-two split files have sections not matched by the target files

selected, gaps are filled in two of these files by changing the similarity (c) to

0.1, and in seven files by adding the shared trigram change filter conditions.

The shared trigram and containment conditions on their own fill gaps in four

files, and adding the shared change conditions to the similarity conditions

finds nine gap-fillers. Three new files are identified as split by changing

similarity (c) from 0.5 to 0.25 and four more by changing this parameter to

0.1. A further two are identified by adding the containment condition.

Although the mean number of target files per group is high (14.2) in the

last group in Table 15.4, 99 of the groups contain fewer than 5 files, 125 fewer

than 10 and only 25 have more than 20, most of these being in the project

ppcboot, which has a large number of parallel subsystems. The number of

target files per group is plotted in Figure 15.4.

Figure 15.4: Target files selected by the conditions on the bottom row, Table 15.4

15.4. REFINING FILE SELECTION 263

15.4.1 Filter conditions summarised

This section provides a summary of the filter conditions.

• Potential split files are selected if the file reduces in size:

◦ by at least 5%, or

◦ at least 200 bytes.

• Target files are selected for either split or disappearing files under any of

the following conditions (stated as formulae in Figure 15.5):

◦ similarity is at least 0.05 and is increased by at least 5%

◦ similarity is at least 0.1

◦ shared trigram change ≥ a and ≥ b of the smaller file’s trigrams

where a, b are either 10, 30% or 20, 20% or 50, 30%

◦ shared trigram change ≥ 100

◦ shared trigrams ≥ 50% of the smaller file size

• For split files, the resulting targets are removed if they do not share at

least 20 trigrams with the candidate difference set.

• The remaining targets for split files are sorted by the number of trigrams

uniquely shared with the candidate file, or in the case of a tie, the number

of trigrams shared with the difference set.

• The disappearing file targets are sorted by unique trigrams, or in the case

of a tie, by similarity score.

⋆ [Sim(Cn,Fn+1) ≥ 0.05]
∧

[(Sim(Cn, Fn+1) − Sim(Cn, Fn)) ≥ (0.05 × Sim(Cn,Fn))]

⋆ Sim(Cn, Fn+1) ≥ 0.1

⋆ [[(|Cn
∩Fn+1| − |Cn

∩Fn|]) ≥ a]
∧

[(|Cn
∩Fn+1| − |Cn

∩Fn|) ≥ (b ×Min(|Cn|, |Fn+1|))]]
where (a, b) ∈ {(10, 0.3), (20, 0.2), (50, 0.1), (100, 0)}

⋆ [|Cn
∩Fn+1| ≥ (0.5 ×Min(|Cn|, |Fn+1|))]]

Figure 15.5: Filter criteria, C, F are the set of trigrams in the files C, F

264 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.5 Checking a change log to verify selection

To validate the selection of candidate and target files, the change log of

one of the projects, “Lifelines”, was searched to find entries relating to split

files. Change logs are often incomplete, Chen et al. [40] found that changes

omitted from the change logs of three well-established open source projects

ranged from 4% to 78%, with a mean of 22%. Parnin discovered that only 7

of 55 refactorings they found in the project Cecil were noted in the change

log [187]. However, Lifelines appears to be fairly well-documented. Of

the 44 candidates, 11 are not split. Only 5 of the 33 split files are not

documented, shown by the explanatory notes in Table 15.5, meaning that a

Rel. Dir. File Change log reference (see Appendix M).

4 hdrs gedcom.h 13
4 interp interp.c 2
4 liflines screen.c 3, 4, 5
4 liflines llexec.c 12
4 stdlib signals.c 10
4 liflines main.c 11
4 hdrs date.h 15, 16
4 gedlib init.c 14
4 liflines error.c 7, 9
5 gedlib node.c 23
5 stdlib mystring.c 24
5 hdrs cache.h 25
5 gedlib init.c 17
6 liflines llexec.c —- nearly 1

2 to ui cli.c, little to screen.c
7 hdrs interp.h 26, 27
9 gedlib node.c 29
9 interp pvalue.c 28
9 liflines edit.c 30
9 liflines newrecs.c —- ask for record to ask.c
10 gedlib translat.c —- more than 1

2 to charmaps.c
10 hdrs gedcom.h 32
10 liflines llinesi.h 43
10 hdrs standard.h 31
10 liflines export.c 33
12 stdlib stdstrng.c 38
12 hdrs mystring.h 38
12 liflines newrecs.c —- nvaldiff to nodeutls.c
12 stdlib mystring.c 38
13 interp pvalue.c 42
13 hdrs interp.h 41
13 liflines import.c 40
14 liflines delete.c 48
14 gedlib valid.c —- strings moved to messages.c

Table 15.5: Lifelines split files, identified by release number, directory and name.
Column 4 gives the number(s) assigned to the change log extract in
Appendix M, or details of the split when no entry is found in the log.

15.5. CHECKING A CHANGE LOG TO VERIFY SELECTION 265

high proportion, 85%, of the split files found by the system are documented.

The log was searched for the words ‘(re)move’, ‘split’, ‘(re)factor’, and

scanned visually for other indications of refactoring. The log was also

searched to match the names of files classified as split by inspection of the

candidate files, but not found by these terms. The edited log entries are

shown in Appendix M, with the split operations numbered from 1–48. Of

these 48 log entries, 31 are matched by files found by filtering, and 17 are

not matched, for which there are four reasons.

First, some changes involve removal of code introduced in the same

release as the change, meaning that the file is unchanged from one release to

the next. Second, some candidate files have not reduced in size, as although

code has been removed, other code has been added. As previously noted,

this is a feature of working at release level. Third, the target file’s similarity

to the candidate file can fall between releases despite having code moved to

it, because of other changes to the file. Lastly, although files are selected as

potential candidates, the amount of code moved to the target file is so small

that it does not fulfil any of the filter criteria. Table 15.6 lists the Lifelines

log entries, noting whether they are matched, or if not, why not.

No. Matched? No. Matched? No. Matched?

1 Within release 17 X 33 X
2 X 18 Candidate grows 34 Within release
3 X 19 Candidate grows 35 Candidate grows
4 X 20 Candidate grows 36 Within release
5 X 21 Within release 37 Candidate grows
6 Target similarity falls 22 Candidate grows 38 X
7 X 23 X 39 Candidate grows
8 Change too small 24 X 40 X
9 X 25 X 41 X

10 X 26 X 42 X
11 X 27 X 43 X
12 X 28 X 44 Within release
13 X 29 X 45 Within release
14 X 30 X 46 Within release
15 X 31 X 47 Within release
16 X 32 X 48 X

Table 15.6: Lifelines: of the 48 change log entries relating to splits, 31 are matched
by candidates, and 17 are not; either because a split file has become
larger, the target similarity score falls, the change is too small, or the
change is made within the release.

266 CHAPTER 15. EXPLORING FILTERING CRITERIA

15.6 Summary

With a perfect filtering strategy, there would be no need for the classifica-

tion part of the system, as every candidate selected would be a split file,

and every target file a true target. However, it is unlikely that any filtering

strategy will achieve this perfect precision and recall. There is a natural

conflict in selecting all split files, while not selecting non-split candidates;

and in selecting all true target files, while not selecting too many targets

for each candidate file. Filtering is nevertheless important, both in reduc-

ing the number of candidate files, and in selecting target files. It keeps

the negative examples to a reasonable level, helping to balance the dataset

for machine learning; as well as reducing the burden of manual classifica-

tion. The experiments reported in Chapter 14 identified four problems in

filtering:

1. too little code moved to qualify under the original conditions,

2. incorrect target file ordering,

3. other changes to the target file, making it less similar, and

4. candidate files are not selected because they increase in size.

The investigations reported in this chapter seek to address problems 1

and 2. By widening the selection criteria, problem 1 should be resolved in

the majority of cases, although movement of small amounts of code may

only be detected with even lower thresholds. The decision to favour recall

against precision, or vice versa, can be made when running the system,

depending on requirements. This type of decision occurs in many domains,

for example, the detection of craters on Mars, where a minimum size of

5 pixels is used to reduce the number of false positives detected [223].

Problem 2 seems to be resolved by ordering target files by unique trigrams,

as each of the test cases appears to be ranked correctly.

In addition, problem 3 will be partially resolved by the change in filtering

conditions. If the similarity between a true target file and the candidate file

is reduced, because code other than that moved from the candidate file

has also been moved to the file, then the conditions based on the change in

15.6. SUMMARY 267

shared trigrams may select the target file. A different approach to candidate

file selection is required to overcome problem 4, and has still to be explored.

The size of a file’s difference set may offer a solution to this problem.

The chosen filter conditions combine similarity, change in similarity,

change to shared trigrams, and containment, so that target files selected by

any of these conditions are added to the set. Re-filtering then removes files

which share few trigrams with the candidate difference set, as these files

are unlikely to be true targets. The remaining target files are sorted on the

number of trigrams uniquely shared with the candidate file.

The difference set for a disappearing file is the file itself, therefore sec-

ondary filtering using the difference set is not possible. However, the target

files can be selected and ordered in the same way apart from this. The next

chapter reports on machine learning experiments with the refiltered data.

268 CHAPTER 15. EXPLORING FILTERING CRITERIA

Chapter 16

Experimental results - Part 2:

Classifying refiltered data

This chapter consists of five main parts. The first compares the refiltered

split file dataset with the original set. The second reports on experiments in

classifying the refiltered split file dataset, where the accuracy is over 90%.

The third part gives the results of applying the top performing models to the

two unseen projects, with additional test sets from the Java project Struts,

and the Python project PyX. In the fourth part, which is about classifying

the disappearing file datasets, the candidates are divided into two groups.

Candidates with only one target file are classified with 95% accuracy, and

the more challenging group with at least two targets, which is a three class

problem, is 88% correct. The last part of the chapter gives the results of

using these models to classify the equivalent datasets from the PostgreSQL

and DNSjava projects, with PyX providing an additional test set.

The experiments in this chapter are run in a similar way to those re-

ported in Chapter 14, in that each feature set/algorithm combination is run

over 100 different random splits. Although all of the feature sets from Chap-

ter 14, including the combined ones, are used in the experiments, a smaller

selection of algorithms is applied to these sets.

269

270 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.1 Refiltered split file dataset composition

This part of the chapter covers the composition of the refiltered split file

dataset and compares it with the original set. The refiltered split file dataset

comprises 810 instances, of which 414 are negative, and 396 are positive,

more than twice the number of files selected by the previous filtering con-

ditions. The types and classes of the files are shown in Table 16.1 with those

of the original set. Only the negative header file category is reduced. All of

the positive instances from the original set are included in the refiltered set,

except for two, both small header files. In one case, a small 3 line struct is

moved, and in the other, 2 lines are moved; neither qualify under the new

requirement that at least 20 trigrams belonging to the difference set should

be moved between the files.

The pie chart on the left of Figure 16.1 shows the number of target files

in the candidate groups. Although there are proportionally fewer files with

a small number of target files in the refiltered set than in the original set (on

the right), there are around one and a half times as many files with one or

two targets because the set is larger. Less than 10% of the files have 19 or

more targets, although 16 files have more than 50 targets.

Figure 16.1: The number of target files in refiltered split file candidate groups (left),
with the same information for the original set, repeating Fig. 12.12

16.1. REFILTERED SPLIT FILE DATASET COMPOSITION 271

Refiltered set Original set

File type .c .h Total File type .c .h Total

Split 285 111 396 Split 130 64 194
Not 386 28 414 Not 146 47 193

Total 671 139 810 Total 276 111 387

Table 16.1: File type and classification of candidate split files

Table 16.2 shows the number of candidate files per project: the refiltered

and original sets, and the change. Candidate files are selected for 67 projects,

rather than 55. The majority of projects have 10 or fewer candidates, 17

projects have between 11 and 42. Exceptionally, Gwyddion, the second

largest project, with 6.5 times the mean number of files, which includes a

high level of incidental similarity, has 191 candidates. Figure 16.2 shows the

distribution of candidate files, their type and class in the same way as the

original set (Figure 12.13, p.190). Overall, the new filter conditions select

more positive candidate split files, and fewer of the more certain negative

candidates. The cost is the increased number of target files, but this should

mean that the correct targets are more likely to be among those selected.

Project Or. Re. ∆ Project Or. Re. ∆ Project Or. Re. ∆

acidblood 4 6 2 jack-rack 0 1 1 premake 6 23 17
aqtwo-tng 0 3 3 lde 2 7 5 pxlib 0 1 1
artoolkit 0 5 5 lejos 0 1 1 rcalc 5 6 1
beecrypt 4 3 -1 lgeneral 0 3 3 rsyslog 13 35 22
biew 4 3 -1 libbt 0 1 1 rtnet 7 15 8
cipe-linux 0 0 0 lifelines 22 42 20 seti-applet 1 3 2
dbacl 2 4 2 lirc 13 13 0 sf-xpaint 0 3 3
diald 2 3 1 logc 1 3 2 sonasound 5 8 3
drivel 1 3 2 mfstools 1 1 0 sphinxthree 11 15 4
dta 0 0 0 mjs 3 7 4 sphinxtwo 1 4 3
dynamics 9 22 13 mkcdrec 0 2 2 toxine 0 3 3
effectv 36 39 3 mpop 1 4 3 tulip 0 1 1
etherape 15 28 13 msmtp 3 0 -3 tuxnes 3 5 2
extace 1 2 1 nano 7 9 2 wmweather+ 2 3 1
felt 0 3 3 nap 8 10 2 wxd 2 3 1
fidogate 6 7 1 noffle 2 5 3 xastir 3 32 29
ganc 2 3 1 nvram-wakeup 1 2 1 xawdecode 4 15 11
gpsbabel 2 25 23 oww 2 5 3 xbae 1 17 16
gwyddion 83 191 108 pam-mysql 1 1 0 xmp 6 16 10
hatari 16 27 11 pbbuttons 4 4 0 ysmv 2 5 3
hptalx 1 1 0 pidgin-hotkeys 0 1 1 zimg 2 3 1
interest 22 42 20 pio 5 7 2
ipcop 3 7 4 ppcboot 24 38 14

Total 387 810 423

Table 16.2: Candidate split files by project: original set, refiltered set, and difference

272 CHAPTER 16. CLASSIFYING REFILTERED DATA

Fi
gu

re
16

.2
:R

efi
lt

er
ed

sp
lit

fil
e

da
ta

se
tb

y
pr

oj
ec

t,
ty

pe
,a

nd
cl

as
s

16.2. CLASSIFYING THE REFILTERED SPLIT FILES 273

16.2 Classifying the refiltered split files

Each of the 11 algorithms listed in Table 16.6 (p.275) was applied to each

of the feature sets explored in Chapter 14. The top 40 results, ranked by

mean % correct classification, are listed in Table 16.3. The “best” mean

classification accuracy on the test partitions for this set is around 4% lower

than on the original set, 90% rather than 94%. However, the refiltered set

includes more marginal examples, both positive and negative, than the

original set, and also excludes some of the more certain negative examples.

In this context, marginal means that little code is moved between the files.

Mean % Std. Mean Mean Mean F-
Feature set Algorithm correct Dev. prec’n recall measure

1 fc+ft+tris+pdp-singles RotationForest 90.32 1.79 0.90 0.92 0.91
2 fc+tris+pdp-singles LogitBoost 90.26 1.78 0.90 0.91 0.91
3 all-tris+all-fc SimpleLogistic 90.23 1.56 0.88 0.93 0.91
4 fc+ft+fb+tris+pdp-s’s RotationForest 90.22 1.57 0.90 0.91 0.91
5 all-singles LogitBoost 90.17 1.57 0.90 0.91 0.90
6 fc+fb+tris+pdp-singles LogitBoost 90.15 1.81 0.90 0.91 0.90
7 fc+tris-singles RotationForest 90.07 1.40 0.89 0.92 0.90
8 fc+ft+tris+pdp-singles LogitBoost 90.04 1.72 0.90 0.91 0.90
9 fc+tris+pdp-singles RotationForest 90.02 1.63 0.89 0.91 0.90
10 ft+fb+tris+pdp-singles RotationForest 89.99 1.85 0.90 0.91 0.90
11 fc+ft+fb+tris+pdp-s’s LogitBoost 89.99 1.89 0.90 0.91 0.90
12 fc+fb+tris+pdp-singles RotationForest 89.93 1.65 0.89 0.91 0.90
13 all-feats LogitBoost 89.91 1.45 0.90 0.91 0.90
14 fall SimpleLogistic 89.90 1.49 0.88 0.93 0.90
15 fc+fb+tris-singles RotationForest 89.89 1.66 0.89 0.92 0.90
16 tris-singles RotationForest 89.83 1.63 0.89 0.92 0.90
17 fb+tris+pdp-singles RotationForest 89.80 1.60 0.89 0.91 0.90
18 fc+ft+tris-singles RotationForest 89.79 1.63 0.89 0.92 0.90
19 fc+tris+pdp-singles RandomForest 89.73 1.52 0.88 0.93 0.90
20 all-singles RotationForest 89.73 1.71 0.89 0.91 0.90
21 all-tris+all-fd SimpleLogistic 89.73 1.42 0.88 0.92 0.90
22 fc+tris-singles SimpleLogistic 89.71 1.57 0.88 0.93 0.90
23 tris RotationForest 89.71 1.51 0.89 0.91 0.90
24 pdp+tris-singles RotationForest 89.71 1.54 0.89 0.91 0.90
25 fc+ft+tris-singles SimpleLogistic 89.70 1.58 0.88 0.93 0.90
26 ft+tris+pdp-singles RotationForest 89.69 1.65 0.89 0.91 0.90
27 fc+fb+tris+pdp-singles RandomForest 89.69 1.46 0.88 0.92 0.90
28 all-feats SimpleLogistic 89.68 1.43 0.88 0.92 0.90
29 all-tris+fc-singles RotationForest 89.67 1.61 0.89 0.91 0.90
30 fc+tris+pdp-singles SimpleLogistic 89.67 1.52 0.88 0.93 0.90
31 all-tris+fb-singles RotationForest 89.67 1.71 0.89 0.91 0.90
32 all-tris+ft-singles RotationForest 89.67 1.83 0.89 0.91 0.90
33 fc+ft+tris+pdp-singles RandomForest 89.67 1.70 0.88 0.93 0.90
34 all-tris+all-pdp LogitBoost 89.65 1.57 0.89 0.91 0.90
35 all-tris+pdp-singles RotationForest 89.65 1.65 0.89 0.91 0.90
36 fc+ft+fb+tris-singles SimpleLogistic 89.64 1.57 0.88 0.93 0.90
37 all-feats RotationForest 89.63 1.62 0.89 0.91 0.90
38 all-tris+pdp-singles LogitBoost 89.61 1.55 0.89 0.91 0.90
39 fc+ft+fb+tris-singles RotationForest 89.60 1.55 0.89 0.92 0.90
40 fl+tris-singles RotationForest 89.60 1.71 0.89 0.91 0.90

Table 16.3: Classifying refiltered split files: top 40 results, sorted by mean % correct.

274 CHAPTER 16. CLASSIFYING REFILTERED DATA

Mean % Mean % Mean %
Feature set correct Feature set correct Feature set correct

fc+tris+pdp-singles 88.70 ft+fb+pdp-singles 86.66 ft 83.82
fc+fb+tris+pdp-singles 88.68 all-fb+all-pdp 86.38 fd+ccf-singles 83.69
fc+tris-singles 88.54 all-fb+fc-singles 86.27 fb+ccf-singles 83.66
all-tris+fc-singles 88.49 ft+pdp-singles 86.25 fl-singles 83.30
fc+ft+tris+pdp-singles 88.48 fd+pdp-singles 86.08 fl 82.85
fc+fb+tris-singles 88.45 fc+sim-singles 85.91 sim+ccf-singles 82.80
fc+ft+fb+tris+pdp-s’s 88.44 fb+fc-singles 85.72 fd-singles 82.73
pdp+tris-singles 88.27 fc+ft+fb-singles 85.64 fb-singles 82.72
fb+tris+pdp-singles 88.24 all-fb+all-fc 85.63 fd 82.44
all-tris+pdp-singles 88.23 fl+pdp-singles 85.56 sim-blocks-singles 81.77
fc+ft+fb+tris-singles 88.20 ccf+pdp-singles 85.56 sim-singles 81.72
fc+ft+tris-singles 88.17 all-fb+ft-singles 85.56 sim 81.44
ft+fb+tris+pdp-singles 88.09 fc+ccf-singles 85.53 ccf-blocks-singles 81.13
fl+tris-singles 88.08 pdp-blocks-singles 85.49 ccf-singles 81.11
all-singles 88.06 pdp-singles 85.46 all-cats 80.93
ft+tris+pdp-singles 88.05 sim+pdp-singles 85.45 ccf 80.73
ft+fb+tris-singles 87.91 not-fall-singles 85.44 fb-cats 80.59
all-tris+ft-singles 87.85 fc+fl-singles 85.29 fall-cats 80.56
ft+tris-singles 87.84 not-fall 85.27 pdp-raw-singles 80.10
all-tris+all-fc 87.77 fc+ft-singles 85.15 fc-cats 79.70
all-feats 87.72 all-fb+ccf-singles 85.07 not-fall-cats 79.50
fd+tris-singles 87.68 13-sub-12-blocks-s’s 85.04 tris-cats 79.49
all-tris+fb-singles 87.59 pdp 85.01 ft-cats 78.99
fb+tris-singles 87.59 ft+sim-singles 84.97 cat-2alikest 78.96
all-fb+tris-singles 87.56 fc-singles 84.95 fl-cats 78.66
fall-singles 87.54 fb+fd-singles 84.84 pdp-cats 78.64
tris 87.51 all-fb+all-ft 84.82 pdp-blocks-cats 78.58
all-fb+all-tris 87.46 fc+fd-singles 84.79 fd-cats 78.43
tris-singles 87.45 fc 84.77 ccf-raw-singles 77.10
all-tris+all-pdp 87.43 fb+ft-singles 84.77 cat-am+news 77.08
sim+tris-singles 87.33 fb+fl-singles 84.75 cat-all 76.97
fc+fb+pdp-singles 87.22 ft+ccf-singles 84.56 ccf-cats 76.82
all-tris+all-fl 87.21 fb 84.45 ccf-blocks-cats 76.69
all-fb+pdp-singles 87.15 fd+sim-singles 84.36 sim-blocks-cats 76.57
fc+ft+fb+pdp-singles 87.08 fb+sim-singles 84.32 sim-cats 76.56
all-tris+all-ft 87.00 ft+fl-singles 84.29 cat-am+main 76.00
ccf+tris-singles 86.93 fd+fl-singles 84.23 cat-am+alikest 75.25
fc+pdp-singles 86.87 fl+ccf-singles 84.16 pdp-raw-cats 73.53
fall 86.86 all-fb+all-ccf 84.06 sim-raw-cats 72.74
fc+ft+pdp-singles 86.78 ft-singles 84.03 sim-raw-singles 72.66
fb+pdp-singles 86.72 fl+sim-singles 84.02 ccf-raw-cats 72.63
all-tris+all-fd 86.67 ft+fd-singles 83.95

Table 16.4: Mean classification rates for the feature sets over the 11 algorithms

Mean accuracy

Feature set 23 algorithms 11 algorithms Difference

tris-singles 92.11 93.02 0.99
fb+tris-singles 91.89 92.86 1.06
tris 91.91 92.83 1.00
fb-singles 91.27 92.34 1.17
pdp+tris-singles 91.44 92.05 0.67
all-singles 91.21 92.02 0.88

Mean difference 0.96

Table 16.5: Selected feature sets and their mean accuracy on the original dataset.
Means are given over the 23 algorithms used with the original set and
the 11 algorithms used with the refiltered set. The mean increase using
the reduced set of algorithms over these feature sets is around 1%.

16.2. CLASSIFYING THE REFILTERED SPLIT FILES 275

Figure 16.3: Split file classification with single feature sets and their pairwise com-
binations. X-axis labels show one of the pair, and the column colour
the other. Where these are the same, the single set result is plotted.

Feature sets Table 16.4 shows mean classification rates for the feature sets

over the 11 algorithms. These rates are not directly comparable with those

for the original dataset, where 23 algorithms are averaged. To give an indi-

cation of the difference, Table 16.5 lists a selection of the better algorithms

on the original dataset, giving the mean accuracy over the original 23 algo-

rithms, and the 11 used here. Over this sample, the mean difference ≈ 1%.

Figure 16.3 shows results for paired singles sets as before (see p.232). In

contrast, here all of the single sets are improved by adding another set. The

best combination being Ferret trigram- and character-based features.

Algorithms Table 16.6 gives the mean results for each algorithm over all

feature sets. As with the original set, combining models based on different

algorithms does not improve the accuracy of the better models.

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct

RotationForest 85.84 Decorate 83.90 LogitBoost 83.25
SimpleLogistic 85.29 RandomCommittee 83.83 SPegasos 82.30
RandomForest 84.80 FT 83.69 Dagging 81.35
SMO 84.08 SGD 83.52

Table 16.6: Mean classification rate for each algorithm over all of the feature sets.

276 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3 PostgreSQL & DNSjava split files

The results of classifying the refiltered split file data from the two unseen

projects, PostgreSQL and DNSjava, are reported in this section. First the

refiltered datasets are described, then classification results are presented.

16.3.1 Refiltered data

Figure 16.4 shows the relationship between the original and refiltered

datasets. The DNSjava set is smaller, with half of the original negative

examples removed from the set, and only 8 new ones. PostgreSQL has 42 of

the original negative examples replaced by 135 new ones. The composition

of the PostgreSQL and DNSjava datasets is summarised in Table 16.7.

There are 49 instances in the refiltered DNSjava set: 17 positive exam-

ples, 31 negatives and one indeterminate example, which is therefore not

Figure 16.4: The relationship between original and refiltered DNSjava and Post-
greSQL datasets. Original sets are in the middle, with split examples
in red, and non-split examples in blue. The composition of the re-
filtered sets are shown on the right, with new instances cross-hatched.
Examples from the original sets not in the refiltered sets are to the left.

16.3. POSTGRESQL & DNSJAVA SPLIT FILES 277

Refiltered set Original set

PostgreSQL DNSjava PostgreSQL DNSjava

Total split 53 17 19 13
Not split 147 31 54 48
Indeterminate 7 1 - -

Total 207 49 73 61

Table 16.7: The composition of the refiltered PostgreSQL and DNSjava datasets

labelled. The positive examples include the 13 previously found; of the 4

additional examples, 3 have little code moved between files.

The refiltered PostgreSQL dataset comprises 207 instances, of which 147

are not split, 7 are indeterminate, and 53 are split files. These files include

the 19 found previously; of the other 34 examples, 12 are marginal. An

example of a file of indeterminate classification is shown in Figure 16.51

where 7 target files have the same similarity score, 8 of which share the

same code with the disappearing file, and there are no unique trigrams

in the group. It is difficult to judge whether the file is renamed or just

incidentally similar to the target files, half of which are new.

1also at http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/port-protos-11.xml

Figure 16.5: The disappearing PostgreSQL file port-protos.h and 9 of its 12 target
files. The file cannot be classified, as 8 targets share the same code
with port-protos.h, and 7 have the same similarity to the file, 0.745.

278 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3.2 Classifying unseen refiltered split file candidates

The models which best classify the 89 project refiltered set were used to clas-

sify the unseen data. Their accuracy and recall is listed in Table 16.8, sorted

by overall accuracy. Also included in the table are other models which

perform well on the unseen data. Combining groups of the better models

(top 3, 5, 7, or 10 based on accuracy on the training data) by voting, either

by majority or by mean probability, does not improve on the classification

of the “fc+tris”/Rotation Forest model.

16.3.2.1 PostgreSQL

The three PostgreSQL files listed by Zou [261], analyze.c, parser.c and date.c,

correctly classified by the original models, are correctly classified again.

The other split file listed, datetime.c, is also now found and correctly clas-

sified. The new filter criteria also select all seven of the target files for

analyze.c, unlike the original criteria. The two other files Zou reports are:

geqo eval.c, where eight functions are moved to joinrels.c, which is also

correctly matched and classified; and nbtcompare.c, where four functions

are moved to three other files. However, only one of the three qualifies

as a target, the others have too few additional trigrams (12 and 22, ≈ 3%),

Overall PostgreSQL DNSjava

Rk. Feature set Alg’m. Acc’y Recall Acc’y Recall Acc’y Recall

7 fc+tris ROT 0.944 0.873 0.950 0.906 0.917 0.824
46 fl+tris SL 0.927 0.803 0.920 0.774 0.958 0.941
22 fc+tris SL 0.923 0.803 0.935 0.811 0.896 0.824
4 fc+ft+fb+tris+pdp ROT 0.919 0.831 0.920 0.849 0.917 0.824
3 all-tris+all-fc SL 0.915 0.746 0.920 0.774 0.896 0.706
9 fc+tris+pdp ROT 0.915 0.845 0.915 0.868 0.917 0.824
40 fl+tris ROT 0.915 0.845 0.920 0.849 0.896 0.882
1 fc+ft+tris+pdp ROT 0.915 0.803 0.910 0.811 0.938 0.824
6 fc+fb+tris+pdp LB 0.915 0.803 0.905 0.792 0.958 0.882
8 fc+ft+tris+pdp LB 0.903 0.761 0.905 0.774 0.896 0.765
5 all-singles LB 0.891 0.775 0.890 0.792 0.896 0.765
10 fb+ft+tris+pdp ROT 0.891 0.817 0.885 0.811 0.917 0.882
2 fc+tris+pdp LB 0.891 0.775 0.885 0.774 0.917 0.824

Table 16.8: Classification accuracy and recall of selected models on PostgreSQL
and DNSjava candidate split files, sorted by total accuracy. The column
headed ‘Rk.’ shows the model’s rank in Table 16.4. ROT - Rotation
Forest, SL - Simple Logistic, LB - Logit Boost, RAND - Random Forest.

16.3. POSTGRESQL & DNSJAVA SPLIT FILES 279

consequently only one-third of the models tested classify the file as split.

In summary, there are 32 positive split file instances in the backend

subsystem and 21 in other subsystems. The “fc+tris”/Rotation Forest model

misclassifies 5 of these 53, and 5 of the 147 negative instances.

16.3.2.2 DNSjava

All of the DNSjava files found by the original filter conditions and cor-

rectly classified by the models are correctly classified after refiltering. UN-

KRecord.java and KEYBase.java were incorrectly classified by the original

models. The KEYBase main target was ranked third, making classification

difficult; the new ranking orders the target files correctly. The UNKRecord

main target was not selected previously, but the new filtering both selects

and orders the targets correctly. Both files are now correctly classified.

Four additional split candidates are found by refiltering, three of which

are marginal examples: 2 lines, 4 lines (2 edited), or a few lines (all edited) are

moved. The new models classify the thirteen original split file candidates

and the one new non-marginal example accurately. However, the marginal

examples are incorrectly classified by the majority of models tested.

In summary, both of the split files found by Antoniol et al. [6] are found

and correctly classified by the “fc+tris”/Rotation Forest model. Nine other

split files are found in the releases studied by Antoniol, of which seven are

correctly classified. In the remaining releases, eight split files are found, all

but one of which are correctly classified, as are all of the negative examples.

16.3.2.3 Overall

The best of the models on the unseen data, “fc+tris”/Rotation Forest, has an

overall accuracy of 94.4% and recall of 87.3% (48 of 53 PostgreSQL, and 14 of

17 DNSjava) on the unseen data. The same feature set is in third place, with

the Simple Logistic algorithm, the same combination which best classified

the original unseen datasets. The reasons for misclassification varies: either

little code (<3 lines) is moved, the code is heavily edited, or, as in the

nbtcompare.c example, target files are not selected.

280 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.3.3 Additional unseen data: Struts and PyX

The models were also tested on two further projects: the Java project Struts,

which has previously been analysed by several other origin analysis re-

search groups [64, 208, 250], and the Python project PyX, which was anal-

ysed manually with reference to the change log.

16.3.3.1 Struts

Dig et al.’s [64] approach (see p.49), which first matches method bodies

textually, then refines by call analysis, was tested on a pair of releases taken

from each of three Java projects : Eclipse.UI (2.1.3–3.0), JHotDraw (5.2–

5.3) and Struts (1.1–1.2.4).2 Among the changes considered in their study,

those found and reported are: renamed classes and methods, pulled up

and moved methods, and changes to method signatures. Of these, moved

and pulled up methods relate to split files. JHotDraw does not include any

such changes; of the other two, Struts was chosen to provide a further test

for Java files here. Dig et al.’s results for Struts are given in Appendix P,

and show that the three files listed in Table 16.9 were split between releases

1.1 and 1.2.4.

Other than test and example files, which are not reported by other

researchers, 14 candidate split files are found by filtering, and these are

listed in Table 16.10. The models built with the “fc+tris-singles” or “fl+tris-

singles” feature sets with Simple Logistic or Rotation Forest algorithms

assign the same class to all of the files as the manual classification. Among

these files are the three in Table 16.9, RequestUtils, ResponseUtils and Ac-

tionMapping, all of which are correctly classified. Four other files, Dy-

2Results are published at http://netfiles.uiuc.edu/dig/RefactoringCrawler

File Split to

RequestUtils ModuleUtils and TagUtils
ResponseUtils TagUtils
ActionMapping ActionConfig

Table 16.9: Split files found by Dig et al., Struts release 1.1 to 1.2.4

16.3. POSTGRESQL & DNSJAVA SPLIT FILES 281

Candidate split files MC Cl’n

/src/share/org/apache/struts/action/ActionMapping.java * 1 1
/src/share/org/apache/struts/util/RequestUtils.java * 1 1
/src/share/org/apache/struts/util/ResponseUtils.java * 1 1
/contrib/struts-faces/src/java/org/apache/struts/faces/taglib/FormTag.java 1 1
/src/share/org/apache/struts/tiles/DefinitionsUtil.java 1 1
/src/share/org/apache/struts/validator/DynaValidatorActionForm.java 1 1
/src/share/org/apache/struts/validator/ValidatorActionForm.java 1 1
/src/share/org/apache/struts/action/Action.java 0 0
/src/share/org/apache/struts/action/ActionServlet.java 0 0
/src/share/org/apache/struts/config/ConfigHelper.java 0 0
/src/share/org/apache/struts/taglib/html/MessagesTag.java 0 0
/src/share/org/apache/struts/taglib/logic/MessagesPresentTag.java 0 0
/src/tiles-documentation/org/apache/struts/webapp/tiles/rssChannel/Channels.java 0 0
/src/tiles-documentation/org/apache/struts/webapp/tiles/rssChannel/ 0 0

RssChannelsAction.java

Table 16.10: Classification of Struts candidate split files. MC is manual classifi-
cation, Cl’n is class assigned by the fc+tris-singles/Rotation Forest or
fc+tris-singles/Simple Logistic models.

naValidatorActionForm, ValidatorActionForm, DefinitionsUtil and Form-

Tag are also split. The first two are confirmed by Wu et al. [250],3 (for

details see p.51). Four methods are removed from DefinitionsUtil, these

methods are already present in other files, one in ReloadableDefinitions-

Factory, and three in TilesUtilImpl. Five methods are removed from con-

trib/.../ struts/faces/taglib/FormTag, all of which are already present in the

file src/.../struts/taglib/FormTag. Neither of these two files are reported by

Wu et al. or Dig et al. The changes between these two releases were also

tested by Schafer et al. [208], but these results are no longer available online.

16.3.3.2 PyX

The approaches to origin analysis surveyed in Chapter 3 are tested on C,

Java or Smalltalk code. The Smalltalk code used by DeMeyer et al. [60]

is no longer available online. Without relevant data from previous re-

search, to test projects in other languages, they must be well-documented,

so that the results can be assessed. Many projects in other languages were

inspected with the aim of finding one with reasonable documentation, in-

cluding around 40 projects in Python. PyX4 is a Python graphics package

3Whose results are available at www.ptidej.net/downloads/experiments/icse10b
4http://pyx.sourceforge.net/index.html

282 CHAPTER 16. CLASSIFYING REFILTERED DATA

Ref. Vn. Candidate split files MC Doc. Class’n

3 0.10 /examples/axis/log.py 0 - 1 *
3 0.10 /setup.py 0 - 0
5 0.8 /examples/axis/rating.py 0 - 0
5 0.8 /pyx/box.py 0 - 0
5 0.8 /pyx/pattern.py 0 - 0
5 0.8 /pyx/pdfwriter.py 0 - 0
5 0.8 /pyx/text.py 0 - 0
6 0.7 /pyx/graph/axis/axis.py 0 - 0
6 0.7 /pyx/graph/graph.py 0 - 0
6 0.7 /pyx/text.py 0 - 0
8 0.5 /pyx/mathtree.py 0 - 0
9 0.5 /pyx/graph.py 0 - 0
9 0.5 /pyx/t1strip/ init .py 0 - 0
10 0.4 /pyx/data.py 0 - 0
3 0.10 /pyx/pdfwriter.py 1 Y 1
3 0.10 /pyx/pswriter.py 1 Y 1
5 0.8 /examples/bargraphs/compare.py 1 Y 1
5 0.8 /pyx/path.py 1 Y 1
5 0.8 /pyx/type1font.py 1 Y 1
6 0.7 /pyx/canvas.py 1 Y 1
6 0.7 /pyx/dvifile.py 1 N 1
7 0.6 /pyx/deco.py 1 Y 1
9 0.4 /pyx/canvas.py 1 Y 1
9 0.4 /pyx/helper.py 1 Y 1
9 0.4 /pyx/text.py 1 Y 1
10 0.3 /pyx/canvas.py 1 N 1
10 0.3 /pyx/graph.py 1 N 0 *

Table 16.11: Classification of PyX candidate split files. MC is manual classification;
Doc: Y if in log, N if not; Class’n is class assigned by the models built
with fc+tris-singles or fl+tris-singles feature sets and Rotation Forest
or Simple Logistic algorithms.

for creating PostScript and PDF files. This project is the best documented

among those considered, and was therefore selected as an additional test of

the classification system.

There are 27 candidate split files, which are listed in Table 16.11, with

their manual classification, whether the code movement is documented

in the Change Log, and the system’s classification.5 Moves which are

not logged are assigned their manual classification only after confirmation

by detailed code inspection. All but two (which are asterisked) of the

candidates are correctly classified, a precision of 93%.

5The three “canvas.py” split files can be viewed at

http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/canvas-0.3.xml(/0.4.xml/0.7.xml)

16.4. DISAPPEARING FILES 283

16.4 Disappearing files

This section reports on classifying the 89 project disappearing file dataset,

introduced in Chapter 12. As already noted, a disappearing file for which

there is no similar file in the system is assumed to have been deleted. When

there is a close match between a disappearing file and a new file in the

next release, it is assumed to have been moved (different directory, same

name), renamed (same directory, different name) or both (different name

and directory). It is less clear what has happened to the uncertain set,

the files whose similarity falls between the two conservative thresholds,

0.05 and 0.85, and these are the files to which machine learning is applied.

The datasets are described in Section 16.4.1 and their classification in Sec-

tion 16.4.2. The experiments are similar to those for classifying split files

reported in Section 16.2.

16.4.1 Data

Three classes are assigned to the uncertain set of candidate files:

1. There is no meaningful relationship between the disappearing file and

any of the target files (class 0),

2. the file is renamed, moved, or merged with another (class 1), or

3. the file is split, forming new files or merging with existing files (class 2).

The candidates are divided into two groups: those with one target file

and those with more. A disappearing file with only one target file cannot

be split, it is also impossible to create a full set of features, as comparisons

can only be made between the disappearing file and the target file. There

are 177 files with one target and 575 with two or more. Of the 177 files, 105

are unrelated to their target, and 72 are renamed or merged, a ratio of 59:41.

The set with more than one target is less balanced, with 255 unrelated, 261

renamed or merged, and 59 split files, a ratio of approximately 45:45:10.

Figure 16.6 (p.285) shows the target files per candidate. Approximately

85% of the files have 12 or fewer targets, and 4% have 50 or more files.

284 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.4.2 Classifying disappearing files with one target file

The eleven algorithms applied to the split file dataset were also used to

classify the disappearing files with one target file (see Table 16.13). As

shown in Table 16.12, the model with the highest mean classification rate,

95.06%, is the “fb-singles” set with the SGD algorithm. The mean accuracies

of the feature sets over all of the algorithms are listed in Table 16.14.

Feature set Mean % Std. Mean Mean Mean F-
(all sets are singles) Algorithm correct Dev. prec’n recall measure

1 fb SGD 95.06 2.36 0.950 0.969 0.959
2 fc+sim FT 94.94 2.41 0.949 0.968 0.958
3 fb RotationForest 94.89 2.68 0.954 0.962 0.957
4 fb+tris SMO 94.84 2.52 0.946 0.969 0.957
5 fb+tris SGD 94.79 2.62 0.950 0.964 0.957
6 fc+fb+tris+pdp RandomForest 94.79 2.30 0.947 0.968 0.957
7 fc+fb+tris RandomForest 94.64 2.29 0.946 0.966 0.955
8 tris SGD 94.61 2.57 0.952 0.958 0.955
9 tris SMO 94.51 2.42 0.944 0.966 0.954
10 fc+sim LogitBoost 94.50 2.44 0.948 0.962 0.954
11 fc+fb+pdp RotationForest 94.49 2.38 0.948 0.962 0.954
12 fc+sim RotationForest 94.47 2.74 0.951 0.958 0.954
13 fb+pdp SMO 94.44 2.40 0.941 0.969 0.954
14 fc+fb+tris RotationForest 94.42 2.66 0.952 0.956 0.953
15 fb+fc RotationForest 94.41 2.40 0.951 0.956 0.953
16 fb+fc RandomForest 94.40 2.62 0.948 0.960 0.953
17 fc+tris+pdp RandomForest 94.39 2.51 0.943 0.965 0.953
18 fc+sim Decorate 94.38 2.49 0.939 0.970 0.954
19 fb+pdp RotationForest 94.38 2.67 0.952 0.955 0.953
20 fc+sim SimpleLogistic 94.38 2.62 0.939 0.969 0.954
21 fc+ft+fb+tris+pdp RandomForest 94.37 2.40 0.942 0.966 0.953
22 fb+tris RotationForest 94.37 3.20 0.948 0.960 0.953
23 fc+fb+tris+pdp RotationForest 94.37 2.45 0.945 0.963 0.953
24 fb SMO 94.36 2.52 0.936 0.972 0.954
25 fb+fd RotationForest 94.36 2.94 0.949 0.959 0.953
26 fc+fb+pdp LogitBoost 94.35 2.68 0.947 0.960 0.953
27 fc+fb+tris SMO 94.34 2.58 0.941 0.968 0.953
28 fc+pdp RotationForest 94.32 2.30 0.949 0.957 0.952
29 fc+fb+pdp Decorate 94.31 2.50 0.940 0.968 0.953
30 fb+fc RandomComm’ee 94.31 2.40 0.940 0.967 0.953
31 fc+tris RandomForest 94.30 2.31 0.945 0.962 0.953
32 fc+fb+pdp RandomForest 94.29 2.61 0.944 0.962 0.953
33 fc+pdp SimpleLogistic 94.28 2.44 0.942 0.965 0.953
34 fc+sim RandomForest 94.28 2.42 0.938 0.969 0.953
35 fc LogitBoost 94.27 2.63 0.945 0.962 0.952
36 fc+ft+fb+pdp LogitBoost 94.27 2.68 0.945 0.961 0.952
37 fc RandomForest 94.26 2.47 0.944 0.962 0.952
38 fc+ft+fb LogitBoost 94.24 2.69 0.944 0.961 0.952
39 fb SimpleLogistic 94.23 2.83 0.941 0.965 0.952
40 fc+ft+fb+tris RotationForest 94.22 2.57 0.948 0.957 0.952

Table 16.12: Classifying disappearing files with one target file: the top 40 results,
sorted by mean % correct.

16.4. DISAPPEARING FILES 285

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct

RotationForest 91.63 SimpleLogistic 91.07 Dagging 89.75
RandomForest 91.41 SMO 90.78 SGD 89.68
LogitBoost 91.30 RandomCommittee 90.76 SPegasos 89.05
Decorate 91.08 FT 90.74

Table 16.13: Mean classification rate for each algorithm over all feature sets on the
disappearing files with one target file

Feature set Mean % Feature Mean % Feature Mean %
(all singles sets) correct set correct set correct

fc+fb+tris 93.89 fc+fd 93.04 fb+sim 91.32
fc+sim 93.89 ft+fb+tris 93.03 fl+pdp 90.89
fb+fc 93.82 fc+ccf 92.95 fl 90.66
fb+tris 93.74 ft+fb+tris+pdp 92.95 fd+fl 90.59
tris 93.74 fb+fd 92.86 fd+pdp 90.57
fc+tris 93.72 ft+tris 92.85 fl+sim 90.54
fc+ft+fb+tris 93.65 fb+ft 92.81 fl+ccf 90.28
fc+ft+fb+tris+pdp 93.64 pdp+tris 92.76 fd+sim 89.98
fc+fb+tris+pdp 93.63 ft+tris+pdp 92.68 fd 89.66
fb 93.62 fb+pdp 92.68 fd+ccf 88.98
fc 93.62 ft+fb+pdp 92.68 pdp-blocks 88.72
fc+fb+pdp 93.59 fd+tris 92.66 pdp 88.60
fc+ft+fb+pdp 93.55 ccf+tris 92.64 ccf+pdp 87.87
fc+ft+fb 93.54 sim+tris 92.40 pdp-raw 87.86
fc+tris+pdp 93.53 fl+tris 92.36 sim+pdp 87.23
fc+ft+tris+pdp 93.50 fb+ccf 92.16 not-fall 86.71
fc+pdp 93.49 fb+fl 92.15 sim-blocks 82.52
fc+ft+tris 93.49 ft+sim 92.08 sim+ccf 82.26
fc+ft 93.43 ft+pdp 92.07 sim 82.07
fc+ft+pdp 93.35 ft 92.07 ccf-blocks 75.21
fb+tris+pdp 93.16 ft+fd 91.85 ccf 75.19
fc+fl 93.08 ft+fl 91.78 sim-raw 74.51
all 93.06 ft+ccf 91.34 ccf-raw 72.33
fall 93.05

Table 16.14: Mean classification rate for each feature set over the 11 algorithms on
the disappearing files with one target file

Figure 16.6: Analysis of the number of target files for the set of disappearing files

286 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.4.3 Disappearing files with more than one target file

As disappearing files with more than one target have three classes, two of

the algorithms used previously, SGD and SPegasos, cannot be used with

this dataset. Otherwise the experimental process is the same as before.

The top 40 results of classifying these disappearing files are listed in

Table 16.15, sorted by mean % accuracy. It is noticeable that only one of the

top 20 combinations (no.8) is based solely on comparisons between single

files. This is in contrast to the results for classifying split files, where only 4

of the top 20 combinations include concatenated file comparisons.

Mean % Std. Mean Mean Mean F-
Feature set Algorithm correct Dev. prec’n recall measure

1 all-tris+all-fl RotationForest 88.13 1.93 0.90 0.92 0.91
2 fall RotationForest 87.75 1.72 0.90 0.92 0.91
3 all-feats RotationForest 87.71 2.05 0.90 0.92 0.91
4 all-tris+fc-singles RotationForest 87.57 1.90 0.90 0.90 0.90
5 all-fb+all-pdp SimpleLogistic 87.50 2.02 0.90 0.92 0.91
6 all-tris+all-fc RotationForest 87.31 1.89 0.90 0.90 0.90
7 tris RotationForest 87.22 2.13 0.90 0.89 0.89
8 fl+tris-singles RotationForest 87.20 2.04 0.88 0.92 0.90
9 all-cats RotationForest 87.18 2.16 0.90 0.92 0.91

10 fall-cats RotationForest 87.17 1.91 0.90 0.91 0.91
11 all-fb+tris-singles RotationForest 87.14 2.02 0.90 0.90 0.90
12 all-fb+all-tris RotationForest 87.13 1.92 0.90 0.90 0.90
13 all-tris+pdp-singles RotationForest 87.08 1.95 0.89 0.90 0.90
14 tris RandomForest 87.08 1.81 0.89 0.91 0.90
15 all-tris+all-pdp RotationForest 87.06 2.04 0.89 0.91 0.90
16 all-tris+fc-singles RandomForest 87.00 1.84 0.89 0.92 0.90
17 all-tris+pdp-singles RandomForest 86.99 1.80 0.88 0.91 0.90
18 all-tris+all-pdp SimpleLogistic 86.93 2.05 0.89 0.92 0.90
19 all-tris+all-fl LogitBoost 86.87 2.09 0.89 0.91 0.90
20 all-tris+all-pdp LogitBoost 86.86 2.05 0.89 0.91 0.90
21 fc+fb+tris+pdp-singles RotationForest 86.84 2.19 0.88 0.91 0.90
22 all-fb+all-tris RandomForest 86.81 1.91 0.89 0.91 0.90
23 all-feats LogitBoost 86.80 2.18 0.89 0.91 0.90
24 pdp+tris-singles RotationForest 86.78 1.94 0.88 0.91 0.89
25 fc+tris+pdp-singles RotationForest 86.76 1.96 0.88 0.91 0.89
26 fall LogitBoost 86.73 1.99 0.89 0.91 0.90
27 all-feats RandomForest 86.72 1.90 0.90 0.92 0.91
28 all-fb+tris-singles RandomForest 86.70 1.75 0.89 0.91 0.90
29 all-fb+pdp-singles SimpleLogistic 86.67 2.07 0.90 0.91 0.90
30 all-fb+pdp-singles RotationForest 86.66 1.99 0.89 0.90 0.90
31 fc+tris-singles RotationForest 86.60 1.92 0.88 0.91 0.89
32 all-tris+ft-singles RotationForest 86.59 1.90 0.89 0.90 0.89
33 all-tris+all-fc RandomForest 86.57 1.91 0.89 0.92 0.90
34 all-fb+all-pdp FT 86.56 2.09 0.90 0.90 0.90
35 all-fb+pdp-singles RandomForest 86.54 1.86 0.88 0.92 0.90
36 fc+ft+tris-singles RotationForest 86.53 2.14 0.88 0.91 0.89
37 all-tris+all-pdp FT 86.52 2.13 0.89 0.91 0.90
38 fc+ft+fb+tris+pdp-singles RotationForest 86.52 2.20 0.88 0.91 0.89
39 all-tris+all-ft RotationForest 86.50 2.03 0.88 0.90 0.89
40 all-fb+all-fc RotationForest 86.47 1.95 0.90 0.90 0.90

Table 16.15: Classifying disappearing files with at least two target files: the top 40
results, sorted by mean % correct.

16.4. DISAPPEARING FILES 287

A similar pattern can be seen in Table 16.16, where the feature sets are

ranked by classification accuracy over the 9 algorithms. None of the sets in

the top 20 are based solely on single file comparisons. Also noticeable is that

two of the sets (“all-cats” and “fall-cats”) are based only on concatenated

file comparisons, whereas for split files, the 22 concatenation sets are in

the bottom 27 of the 116 sets. For both split and disappearing files, the

CCFinder and Simian sets perform poorly, as do the raw P-Duplo sets.

As this dataset is imbalanced, it is useful to assess the performance of the

models using the geometric mean, as discussed in Chapter 14. The geomet-

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct

all-tris+all-fl 86.02 fc+fb+tris-singles 83.84 pdp-singles 82.08
all-tris+all-pdp 85.78 fc+tris-singles 83.84 pdp-cats 82.05
all-tris+fc-singles 85.74 fb+tris+pdp-singles 83.81 fc+fd-singles 82.04
all-feats 85.63 ft+tris+pdp-singles 83.77 ft-singles 82.02
all-tris+all-fc 85.61 pdp+tris-singles 83.75 fl+ccf-singles 81.98
tris 85.53 cat-am+alikest 83.68 pdp-blocks-cats 81.97
all-tris+pdp-singles 85.48 fc+fb+pdp-singles 83.63 fc+sim-singles 81.91
all-fb+all-tris 85.43 fc+ft+fb+tris-s’s 83.56 fb+fd-singles 81.78
all-fb+all-pdp 85.38 fc+ft+tris-singles 83.50 cat-all 81.75
fall 85.33 fd 83.48 ft+sim-singles 81.74
all-fb+tris-singles 85.30 fd-cats 83.40 cat-am+main 81.65
all-tris+ft-singles 85.26 ft+fb+tris-singles 83.39 ft+fd-singles 81.63
all-fb+pdp-singles 85.23 fc+pdp-singles 83.37 fl+sim-singles 81.62
all-fb+all-fc 85.19 fc+ft+fb+pdp-s’s 83.36 ft+ccf-singles 81.61
fall-cats 85.16 fc+ft+pdp-singles 83.35 sim+pdp-singles 81.36
all-fb+fc-singles 85.00 ft+tris-singles 83.27 fb+ccf-singles 81.29
all-cats 84.96 not-fall-cats 83.27 ccf+pdp-singles 81.21
all-tris+all-ft 84.75 not-fall 83.25 fd-singles 81.21
fb 84.71 fall-singles 83.21 fd+ccf-singles 81.18
all-fb+ft-singles 84.70 all-singles 83.17 fd+sim-singles 81.01
fc 84.63 fl+pdp-singles 83.14 fb+sim-singles 80.94
fl 84.62 ft+fb+pdp-singles 83.13 cat-am+news 80.75
fb-cats 84.59 fb+fl-singles 83.11 not-fall-singles 80.74
all-tris+all-fd 84.44 ft+pdp-singles 83.07 pdp-raw-singles 79.61
fc+fb+tris+pdp-singles 84.36 fc+fl-singles 83.04 pdp-raw-cats 79.61
all-fb+all-ft 84.31 sim+tris-singles 82.83 sim 77.67
fl+tris-singles 84.29 fb+fc-singles 82.82 sim+ccf-singles 77.43
tris-cats 84.29 fd+tris-singles 82.78 sim-blocks-singles 76.79
fc-cats 84.28 ccf+tris-singles 82.77 sim-singles 76.67
fl-cats 84.24 ft+fl-singles 82.73 sim-blocks-cats 76.42
fc+tris+pdp-singles 84.24 fb+pdp-singles 82.67 sim-cats 76.41
pdp 84.20 fc+ft+fb-singles 82.59 ccf 73.14
fc+ft+fb+tris+pdp-s’s 84.03 fc+ft-singles 82.57 sim-raw-cats 72.69
fc+ft+tris+pdp-singles 84.02 fl-singles 82.51 ccf-blocks-singles 71.67
all-fb+all-ccf 83.99 fc-singles 82.50 ccf-singles 71.54
ft 83.97 fb-singles 82.42 ccf-cats 71.25
all-tris+fb-singles 83.95 fd+fl-singles 82.41 sim-raw-singles 71.05
fb+tris-singles 83.91 cat-2alikest 82.35 ccf-blocks-cats 71.02
all-fb+ccf-singles 83.91 pdp-blocks-singles 82.25 ccf-raw-singles 68.78
ft-cats 83.86 fb+ft-singles 82.23 ccf-raw-cats 68.43
ft+fb+tris+pdp-singles 83.84 fc+ccf-singles 82.15
tris-singles 83.84 fd+pdp-singles 82.13

Table 16.16: Mean classification rate of disappearing files with at least two target
files for each feature set over the 9 algorithms.

288 CHAPTER 16. CLASSIFYING REFILTERED DATA

Mean % Mean % Mean %
Algorithm correct Algorithm correct Algorithm correct

RotationForest 83.71 SimpleLogistic 81.98 SMO 80.50
RandomForest 83.42 Decorate 81.96 FT 80.29
RandomCommittee 82.58 LogitBoost 81.96 Dagging 78.97

Table 16.17: Mean classification rate for each algorithm over all feature sets on the
disappearing files with at least two target files

ric mean of accuracies is not available directly from the Weka experimenter

which was used to run the experiments; to calculate it, accuracy values

were taken from individual 10-fold cross-validated runs. In Table 16.18,

the accuracy on each class of each of the top ten models from Table 16.15 is

noted along with their geometric mean. Under this measure, the singles set

“fl+tris-singles” is most accurate.

Strategies for dealing with imbalance in the classes are reported in Ap-

pendix O. These strategies are: over-sampling and under-sampling the

data, and use of cost-based algorithms. In most of the tests reported there

are no significant changes. Models built using data over-sampled by the

SMOTE algorithm tend to increase the correct classification of the minor-

ity class by one instance on the Random Forest models tested. However,

this effect is not repeated in the better models, such as the “all-tris+all-

fl”/SimpleLogistic model, which already classifies 11 of the 14 instances

correctly. Consequently, tests on the unseen data are reported for models

built without adjustment for the imbalance.

Feature set Algorithm Unrelated Renamed Split Geo.mean

fl+tris-singles ROT 0.929 0.885 0.729 0.843
all-fb+all-pdp SL 0.906 0.897 0.712 0.833
all-tris+all-fl ROT 0.922 0.904 0.661 0.820
all-tris+fc-singles ROT 0.890 0.908 0.678 0.818
all-tris+all-fc ROT 0.898 0.893 0.678 0.816
tris ROT 0.906 0.877 0.661 0.807
fall-cats ROT 0.910 0.893 0.627 0.799
fall ROT 0.902 0.897 0.627 0.797
all-feats ROT 0.918 0.889 0.576 0.778
all-cats ROT 0.929 0.893 0.508 0.750

Abbreviations: ROT - Rotation Forest, SL - Simple Logistic

Table 16.18: Geometric means of accuracy for the top 10 results from Table 16.15

16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 289

16.5 PostgreSQL and DNSjava disappearing files

Disappearing files from the two unseen projects were classified using the

models built from the refiltered 89 project datasets. Lists of the matched

and unmatched files for these projects can be found in Appendix N. The

results for candidates with one target from the uncertain set are reported in

the next section, and those with two or more in Section 16.5.2.

16.5.1 Candidates with one target file

Nineteen of the PostgreSQL disappearing files have only one target, and

are listed in Table 16.19, with those in the backend subsystem at the top. All

of these files are correctly classified by the ten top-performing models on

the 89 project dataset, except for the “fc+sim”/FT model which misclassifies

one positive example.

The five DNSjava disappearing files listed in Table 16.20 have one tar-

get; three are renamed, one unrelated, and one, KeyConverter, is difficult to

classify, for several reasons. Although some of the functionality from Key-

Converter is merged with the file DNSSEC, the code is edited and scattered.

Ref. Vn. Path File MC Model

10 6.4.2 backend access common heapvalid.c 0 0
6 6.5.3 backend optimizer path mergeutils.c 0 0
6 6.5.3 backend utils sort psort.c 0 0
4 7.0.3 backend libpq be-pqexec.c 0 0
4 7.0.3 backend port hpux fixade.h 0 0
4 7.0.3 backend storage lmgr multi.c 0 0
2 7.1.3 backend access transam transsup.c 0 0
2 7.1.3 backend storage buffer s lock.c 1 1
2 7.1.3 backend utils mb utftest.c 0 0

12 6.2 include catalog pg defaults.h 0 0
12 6.2 include catalog pg magic.h 0 0
12 6.2 include catalog pg user.h 1 1
10 6.4.2 pl plpgsql src scan.c 1 1
6 6.5.3 include lib qsort.h 0 0
4 7.0.3 include port solaris i386.h 1 1
4 7.0.3 include regex cdefs.h 0 0
4 7.0.3 include utils module.h 0 0
2 7.1.3 include catalog pg inheritproc.h 0 0
2 7.1.3 include storage multilev.h 0 0

Table 16.19: Disappearing PostGreSQL files with one target and their classifica-
tions determined both by inspection and by the fb-singles/SGD model.
Every file is correctly classified by the fb-singles/SGD model.

290 CHAPTER 16. CLASSIFYING REFILTERED DATA

Ref. Vn. Path File MC Model Notes

46 12 DNS CacheResponse.java* 1 1
46 12 DNS ZoneResponse.java* 1 1

12 48 org xbill DNS utils hmacSigner.java 1 1 Edited
2 56 org xbill DNS security KEYConverter.java 1? 0 Merged?
2 56 org xbill DNS security SIG0Signer.java 0 0

Table 16.20: Disappearing DNSjava files with one target and their classifications
determined both by inspection and by the fb-singles/SGD model. Files
from the versions 1–39 are at the top of the table, the rest at the bottom.

It is also a small part of the code in the new version of DNSSEC which is

more than four times larger than in the previous release.

16.5.2 Candidates with two or more target files

PostgreSQL has 106 uncertain disappearing files with two or more targets,

and DNSjava has 23. Six of the PostgreSQL files are indeterminate, these

are small header files with a large number of similar files in the system. This

leaves 100 files, of which 57 are unrelated to their targets, 30 are renamed

or merged, and 13 are split. The DNSjava files consist of 8 unrelated files,

13 renamed or merged files, 1 split file, and 1 indeterminate file. The two

split and renamed PostgreSQL files identified by Zou, catalog utils.c and

dt.c, are asterisked in Table 16.23. However, the target file for geqo paths.c

(the other asterisked file) is not selected because their shared trigrams are

reduced from 231 to 119, (see Figure N.1, p.416).

Over one hundred models were tested with this data, including those se-

lected using the results from the 89 project dataset, those based on datasets

balanced by under- and over-sampling, and cost-based classifiers. The

model built using the combination which best classifies the 89 project

dataset, (“all-tris+all-fc”/Rotation Forest) correctly classifies 108 of 122 in-

stances (88.5%) and 8 of the 14 instances in the minority class. Of those

tested, three models based on the 89 project dataset, with no adjustment

for the imbalance, give the best classification of the unseen data. Although

the Simple Logistic algorithm is ranked fourth overall in classifying the 89

16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 291

Model Feature set Algorithm Classn. Splits

‘Best’ all-tris-all-fl Rotation Forest 108/122 8/14

A all-tris+all-fl Simple Logistic 110/122 11/14
B all-tris+all-fc Simple Logistic 110/122 8/14
C fc+tris-singles Simple Logistic 111/122 9/14

D ‘Best’singles set fl+tris-singles Rotation Forest 109/122 10/14

Table 16.21: The ‘best’ model over the 89 project dataset and the four models, A,
B, C, and D, and their classification of the PostgreSQL and DNSjava
disappearing files with at least two targets.

project dataset, each of these models use this algorithm, with the feature

sets “all-tris+all-fl” (model A), “all-tris+all-fc” (B) and “fc+tris-singles” (C).

A fourth model, D, “fl+tris-singles”/Rotation Forest, gives the best classifi-

cation on the 89 project data among the singles sets. The classifications of

the four models are shown in Tables 16.21–16.23. These models correctly

classify 110, 110, 111 and 109 instances out of 122, respectively, with 11, 8, 9

and 10 of the 14 split files correctly classified.

Model
Ref. Vn. Path File MC A B C D

55 3 dnsServer.java* 1
54 4 DNS utils CountedDataInputStream.java* 1
54 4 DNS utils CountedDataOutputStream.java* 1 0 0 0 0
51 7 DNS FindResolver.java* 1
47 11 DNS IO.java 1 2
45 13 DNS DNSSEC.java 1
45 13 DNS EDNS.java 1
45 13 DNS ExtendedResolver.java 1
45 13 DNS Resolver.java 1
45 13 DNS ResolverListener.java 1
45 13 DNS RRset.java 1
45 13 DNS WorkerThread.java 2
38 20 org xbill DNS EDNS.java 0
32 26 org xbill DNS TypeClassMap.java 0 1
24 34 org xbill DNS utils MyStringTokenizer.java 0

17 41 org xbill DNS utils DataByteInputStream.java 0
17 41 org xbill DNS utils DataByteOutputStream.java 0
17 41 org xbill DNS MX KXRecord.java 1? 0 0 0 0
17 41 org xbill DNS NS CNAME PTRRecord.java 0
11 47 org xbill DNS dns.java 0
11 47 org xbill DNS FindServer.java 0
11 47 org xbill DNS Inet6Address.java 1

Table 16.22: Disappearing DNSjava files with two or more targets and their classi-
fications, determined both by inspection and by the four models. In
the last 3 columns, the incorrect class is noted against instances which
are misclassified by the models.

292 CHAPTER 16. CLASSIFYING REFILTERED DATA

Three instances are misclassified by every one of the models tested,

those shaded grey in Tables 16.22 (DNSjava), and 16.23 (PostgreSQL). A

question mark indicates files which are difficult to classify manually.

Model
Ref. Vn. Path File MC A B C D

12 6.2 backend commands purge.c 0
12 6.2 backend lib qsort.c 0
12 6.2 backend optimizer prep archive.c 0
12 6.2 backend parser catalog utils.c* 2
12 6.2 backend parser dbcommands.c 1
12 6.2 backend parser parse query.c 2
12 6.2 backend parser sysfunc.c 0
12 6.2 backend port aix dlfcn.h 1
12 6.2 backend port aix port-protos.h 1
12 6.2 backend port alpha port.c 1
12 6.2 backend port hpux port.c 2 0 0 0
12 6.2 backend port i386 solaris port.c 2 1 1
12 6.2 backend port i386 solaris port-protos.h 1 0 0
12 6.2 backend port irix5 port.c 0 1
12 6.2 backend port sco port.c 1
12 6.2 backend port sparc solaris port.c 2 0
12 6.2 backend port svr4 port.c 2
12 6.2 backend port ultrix4 port.c 0
12 6.2 backend port ultrix4 port-protos.h 0
12 6.2 backend port ultrix4 strdup.c 0 1
12 6.2 backend port univel port.c 2
12 6.2 backend port univel port-protos.h 0
12 6.2 backend tcop variable.c 1
11 6.3.1 backend optimizer util internal.c 1? 0 0 0 0
11 6.3.1 backend regex utils.c (4 line edit) 2 1 1 1 1
11 6.3.1 backend regex wstrcmp.c 1
11 6.3.1 backend utils adt oidint2.c 0
11 6.3.1 backend utils adt oidint4.c 0
11 6.3.1 backend utils adt oidname.c 0
10 6.4.2 backend libpq pqcomprim.c 1? 2
10 6.4.2 backend optimizer geqo geqo paths.c* 0
10 6.4.2 backend optimizer path joinutils.c 1
10 6.4.2 backend optimizer util clauseinfo.c 1 2
6 6.5.3 backend optimizer geqo minspantree.c 0
6 6.5.3 backend optimizer path hashutils.c 0
6 6.5.3 backend optimizer path prune.c 0
6 6.5.3 backend optimizer util keys.c 0
6 6.5.3 backend optimizer util ordering.c 0
6 6.5.3 backend utils adt dt.c* 2
4 7.0.3 backend lib fstack.c 0
4 7.0.3 backend optimizer geqo geqo params.c 0
4 7.0.3 backend optimizer util indexnode.c 0
4 7.0.3 backend port dynloader solaris i386.h 1
4 7.0.3 backend port dynloader solaris sparc.h 1
4 7.0.3 backend port hpux port-protos.h 0
4 7.0.3 backend rewrite locks.c 1? 0 0 0 0
4 7.0.3 backend storage lmgr single.c 0
4 7.0.3 backend utils adt filename.c 0
4 7.0.3 backend utils adt lztext.c 0
4 7.0.3 backend utils init enbl.c 0
4 7.0.3 backend utils mb variable.c 1
4 7.0.3 backend utils misc trace.c 0
4 7.0.3 backend utils mmgr oset.c 0
4 7.0.3 backend utils mmgr palloc.c 1? 0 0 0 0
2 7.1.3 backend access nbtree nbtscan.c 0
2 7.1.3 backend lib hasht.c 0
2 7.1.3 backend libpq pqpacket.c 0
2 7.1.3 backend storage ipc spin.c 1 2 2

Continued on next page

16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 293

cont’d. Model
Ref. Vn. Path File MC A B C D

2 7.1.3 backend utils cache rel.c 0
2 7.1.3 backend utils mb common.c 1
2 7.1.3 backend utils mb liketest.c 1 0 0
2 7.1.3 backend utils mb palloc.c 0
2 7.1.3 backend utils mb sjistest.c 0

6 6.5.3 bin psql psql.c 2 0 0 0 0
4 7.0.3 bin pg version pg version.c 0

12 6.2 include commands purge.h 0?
12 6.2 include parser catalog utils.h 2
12 6.2 include parser dbcommands.h 1
12 6.2 include parser parse query.h 2
12 6.2 include parser parse state.h 1
12 6.2 include port BSD44 derived.h 1
12 6.2 include tcop variable.h 1
11 6.3.1 include regex pg wchar.h 1
10 6.4.2 include executor nodeTee.h 0
10 6.4.2 include optimizer clauseinfo.h 1
10 6.4.2 include optimizer geqo paths.h 0
6 6.5.3 include optimizer keys.h 0
6 6.5.3 include optimizer ordering.h 0
6 6.5.3 include utils dt.h 2
6 6.5.3 include utils rel2.h 0
4 7.0.3 include optimizer internal.h 0
4 7.0.3 include port alpha.h 0
4 7.0.3 include port bsd.h 1
4 7.0.3 include port solaris sparc.h 1 0
4 7.0.3 include rewrite locks.h 0
4 7.0.3 include utils fcache2.h 0
4 7.0.3 include utils lztext.h 0
4 7.0.3 include utils mcxt.h 0
4 7.0.3 include utils trace.h 0
2 7.1.3 include access giststrat.h 0
2 7.1.3 include access rtstrat.h 0
2 7.1.3 include lib hasht.h 0

11 6.3.1 interfaces libpq fe-connect.h 0
6 6.5.3 interfaces ecpg lib ecpglib.c 2
6 6.5.3 lextest lextest.c 0

10 6.4.2 pl plpgsql src gram.c 1 2
4 7.0.3 test examples testlo2.c 1
4 7.0.3 utils version.c 0
4 7.0.3 win32 endian.h 0

Table 16.23: Disappearing PostgreSQL files with more than one target. The manual
classification is in the column labelled ‘MC’. In the last 4 columns, the
incorrect class is noted against instances which are misclassified.

16.5.2.1 PostgreSQL

Zou notes the following file moves:

• 6.2 to 6.3.2 [261, p.77]:

• tcop/aclchk.c to catalog/aclchk.c

• tcop/variable.c to commands/variable.c

• parser/dbcommands.c to commands/dbcommands.c

• 6.4.2 to 6.5 [261, p.80]:

294 CHAPTER 16. CLASSIFYING REFILTERED DATA

• commands/defind.c to commands/indexcmds

• optimizer/joinutils.c to optimizer/pathkeys.c

• optimizer/clauseinfo.c to optimizer/restrictinfo.c

The files aclchk.c and defind.c are automatically matched to their new

destinations because the similarities are 0.94 and 0.96 respectively. The

other four files are matched to the correct targets and correctly classified by

all of the models tested. Their similarities are 0.70, 0.82, 0.40 and 0.80.

16.5.2.2 DNSjava

In release 13 of the DNSjava project, forty-nine files are moved from /DNS to

/org/xbill/DNS, and in release 11, one file is moved from /DNS to /DNS/utils.

These files have a similarity of at least 0.85 and bear the same file name as

each other. Files with no qualifying targets in the next release are assumed to

be deleted. These sets of files are listed in appendix N, in Tables N.3 and N.4.

Files falling between the two similarity values 0.05 and 0.85 are listed

in Tables 16.20 and 16.22. Of these 27 disappearing files, 5 are part of the

large-scale move of files in the directory /DNS to the new subdirectory

/org/xbill/DNS, and 1 is split, all are correctly classified.

Six files are identified by Antoniol et al. as renamed or merged, and are

asterisked in the two tables. The merge of CacheResponse and ZoneRe-

sponse is captured, see Figure 16.7, as both of these files are renamed to the

same target, SetResponse. Both dnsServer and FindResolver are success-

fully identified as renamed files. The files CountedDataInputStream and

CountedDataOutputStream are successfully matched with their destination

files as the first target file, but because the ‘Output’ file is heavily edited,

it is not classified as renamed. This file was not found by Antoniol et al.’s

system either, and the ‘Input’ file caused difficulties because it appeared to

have split to become DataByteInputStream and DataByteOutputStream. In

this system classification of the ‘Input’ file is indefinite, in that around a half

of the models tested correctly classify the file, and the majority of models

have low probabilities one way or the other.

16.5. POSTGRESQL AND DNSJAVA DISAPPEARING FILES 295

Figure 16.7: The merge of the two DNSjava files CacheResponse (in blue) and
ZoneResponse (in red) into SetResponse. The file SetResponse is the
base file and is shown in two columns to fit the page.

16.5.3 Additional unseen data: PyX

There are twenty-five uncertain disappearing files in the PyX releases anal-

ysed. The three files with only one target are listed in Table 16.24, all

are correctly classified. Those with at least two target files are listed in

Table 16.25. In both tables, ‘MC’ means the manual classification, ‘Doc.’

shows whether the change is documented in the log: Y/N, or Y? where the

wording appears to support the classification, but not clearly. All of the

296 CHAPTER 16. CLASSIFYING REFILTERED DATA

Ref. Vn. Disappearing files (one target) MC Doc. Class’n

8 0.3 /manual/tex2.py 0 - 0
3 0.10 /examples/bargraphs/months.py 1 - 1
12 0.1 /pyx/datafile.py 1 Y 1

Table 16.24: Classification of PyX disappearing files with one target file.
Class’n is the class assigned by the fb/SGD model.

Model
Ref. Vn. Disappearing files (two plus targets) MC Doc. A B C D

2 0.11 /faq/tipa.py 0 -
5 0.8 /examples/bargraphs/addontop.py 0 -
5 0.8 /examples/bargraphs/multisubaxis.py 0 -
5 0.8 /pyx/mathtree.py 0 -
6 0.7 /contrib/dvips.py 0 -
6 0.7 /pyx/prolog.py 0 Y
7 0.6 /newbox.py 0 -
8 0.5 /manual/tex1.py 0 -
2 0.11 /gallery/graphs/mandel.py 1 N
3 0.10 /pyx/font/afm.py 1 Y?
5 0.8 /examples/path/springs.py 1 N 0 0
6 0.7 /examples/misc/valign.py 1 N
7 0.6 /examples/circles.py 1 N
7 0.6 /examples/graphs/bar.py 1 N 0
8 0.5 /pyx/data.py 1 Y 0 0 0 0
9 0.4 /pyx/attrlist.py 1 Y
3 0.10 /pyx/dvifile.py 2 Y
3 0.10 /pyx/font/encoding.py 2 Y? 1 1 1 1
3 0.10 /pyx/font/t1font.py 2 Y? 1 1
3 0.10 /pyx/type1font.py 2 Y? 1
8 0.5 /pyx/graph.py 2 Y
8 0.5 /pyx/timeaxis.py 2 N 1 1 1 1

Table 16.25: Classification of PyX disappearing files with at least two target files.

unrelated files are correctly classified, but the renamed and split files are

less successfully classified, an overall accuracy of 77-82%. Matched and

unmatched files are listed in Appendix Q.

16.6 Selected models

In Table 16.26, the classifications of eight models are listed. The models are

based on the two simplest feature sets with a mean classification accuracy

of over 90% on the 89 project split file dataset: fc+tris-singles and all-

tris+all-fc; and the top performing feature set, and the top performing

singles feature set on the 89 project disappearing file (2 or more targets)

dataset: fl+tris-singles and all-tris+all-fl. Each feature set is tested with

the Simple Logistic and Rotation Forest algorithms. The table shows the

16.7. SELECTED FEATURES 297

Disappearing files: Split files
(2 or more targets)

Mean Unseen Mean Unseen Grand
Feature set Algo. on tests data Total on tests data Total Total

fc+tris-singles ROT 165 123 288 243 272 515 803
all-tris+all-fc SL 164 128 292 244 265 509 801
fl+tris-singles ROT 167 127 294 242 264 506 800
all-tris+all-fc ROT 167 124 291 241 266 507 798
all-tris+all-fl ROT 169 125 294 242 262 504 798
all-tris+all-fl SL 166 127 293 242 263 505 798
fc+tris-singles SL 159 128 287 242 267 509 796
fl+tris-singles SL 161 123 284 242 268 510 794

Out of 192 144 336 270 289 559 895
Max.% 88.0 88.9 87.5 90.4 94.1 92.1 89.7

Table 16.26: Summary of the classification by models based on fl+tris and fc+tris,
singles and complete feature sets. Results are for the mean of the 89
project test sets and the unseen data: PostgreSQL, DNSjava, Struts and
Pyx. Results are ranked by the total for split and disappearing files.

mean classification accuracy over the 100 test sets on the 89 project datasets

and the classification of data from all four unseen projects, for each of the

split and disappearing files (with 2 or more target files), and the models

are ranked by the total. The simpler singles sets give the best performance

when combined with the Rotation Forest algorithm. The fc+tris set, which

combines trigrams and character-level analysis of their distribution, is best

overall and on the split files, while the fl+tris set (trigrams and line-level

analysis) is best for the disappearing files. Both of these models give the

same results on the disappearing files with one target as the best (fb/SGD)

model.

16.7 Selected features

The two models discussed above use the Rotation Forest algorithm. This is

a ‘black-box” algorithm, in that it is not easy to understand which features

are important in classification. To give an idea of important features, those

selected by the Simple Logistic algorithm are presented in Figure 16.8.

This figure shows the selected features in terms of the relationships be-

tween files and how their similarity measure is represented. There are five

diagrams for each feature set: those for classifying split files, for disappear-

298 CHAPTER 16. CLASSIFYING REFILTERED DATA

ing files with one target file, and one for each class for disappearing files with

two or more targets (labelled Dis.0–2). Two features are not shown in the

diagram: the number of target files in a group, and the type of file. Detailed

lists of the selected features are provided in Appendix S. In Figure 16.8 the

large numbers 1–3 represent the 3 files in a single file comparison:

1. the candidate file,

2. the amended file (or most similar target for disappearing files), and

3. the main target file (second similar target for disappearing files).

Examples from the top-left group (split files, fc+tris-singles) help to explain

the layout. Many of the features relate the similarity between two files to

one of the two. For example, 4 features are selected which relate the code

shared by files 1 and 3 to file 1, denoted by the blue 4, and 3 to file 3, by the

yellow 3. Features accounting for three files are shown on the edge of the

circle opposite the file to which they are proportional. For example, the red

1 on the outer circle means that there is 1 feature which relates some aspect

of the 3 files to the size of file 2. Quantitative features (in boxes) include

code shared by files 1 and 3, shown by the green 1; a measure of the code

in file 3, by the yellow 1. Further explanations are provided in the key.

In general, more features are selected for the fc+tris set than for the

fl+tris set, but the patterns are broadly similar. This does not mean that the

features selected are the same. For example, for both sets the disappearing

and renamed files (Dis.1) have two features relating the similarity between

files 1 and 3 to file 1. One of these features is the same in both sets (the

lines/characters in blocks of at least 32 lines/640 characters), and one in each

set is different: lines in blocks of at least one-sixteenth of file size, and

characters in the largest block to file size.

As might be expected, the relationship between the two target files is less

important for disappearing files than the relationship between the amended

and target files for classifying candidate split files. At least one feature which

takes account of the interaction between all three files is selected for split

files and disappearing files in classes 0 and 1. It is less clear why features

which involve all three files are not selected for the disappearing split files.

16.7. SELECTED FEATURES 299

Features which are the same for both sets are highlighted in Table S.2 in

Appendix S. For each class of file, approximately even numbers of trigram-

based and block-based features are selected. The containment of the target

file (or second target file) in the candidate file is the feature selected more

than any other.

Figure 16.8: File relationships represented by features selected from the sets fc+tris-
singles and fl+tris-singles, by the Simple Logistic algorithm. The 5 di-
agrams for each set are: split files, disappearing files with 1 target, and
the 3 classes for those with 2 or more targets (Dis.0–2). Relationships
between files are shown with the number of features of this type noted
in the circles. The key to the relationships describes files as “amended
and target”, for disappearing files, these are the 1st and 2nd targets.

300 CHAPTER 16. CLASSIFYING REFILTERED DATA

16.8 Summary

16.8.1 Split files

The effect of the revised filter criteria on the split file dataset has been

explored in this chapter; with the revised criteria, twice the number of

candidate files are selected, and include all except for two of the previous

positive examples. Although there are more ‘marginal’ candidates and

fewer definite negative examples, the refiltered data is classified with over

90% accuracy.

The model which best classifies the 89 project dataset, “fc+ft+tris+pdp-

singles”/Rotation Forest, classifies candidates from the unseen projects Post-

greSQL and DNSjava with 91.5% accuracy, and these candidates are classi-

fied with 94.4% accuracy by the “fc+tris”/SimpleLogistic model. This same

model correctly classifies all of the candidates found in the Struts project

(release 1.1) and 93% of those in the PyX project.

The effect of the revised filtering criteria on the candidate split files

selected from the two main unseen projects differs between the projects. In

both, filtering is able to screen out at least half of the previously selected

negative examples. The PostgreSQL system includes sets of files which have

the same function for different operating systems, meaning that target files

are found in many cases where the files are unrelated except by function,

and this accounts for the large increase in negative candidates. In contrast,

DNSjava, with no parallel subsystems, has fewer new negative examples.

16.8.2 Disappearing files

The uncertain set of disappearing files is partitioned into two: files with

one target, which are classified with 95% accuracy, and those with two or

more target files, with 88% accuracy.

The ‘best’ model for classifying the disappearing files with one target

from the 89 project dataset is that based on Ferret basic features using the

SGD algorithm. This model, along with many others, is able to correctly

classify all of the examples from the unseen data except for one, which is

16.8. SUMMARY 301

also difficult to classify manually.

For the files with two or more targets, the ‘best’ model based on ac-

curacy is “all-tris+all-fl”/Rotation Forest (88.13% accuracy, 81.97% geomet-

ric mean), with “fl+tris-singles”/Rotation Forest having the best geometric

mean (84.3%) of those tested. Strategies for improving classification in

imbalanced data did not improve classification in the tests.

Results are reported for four models: “all-tris+all-fl”/Simple Logistic

(A), “all-tris+all-fc”/Simple Logistic (B), “fc+tris-singles”/Simple Logistic

(C) and “fl+tris-singles”/Rotation Forest (D), are based on the original,

rather than manipulated, data. The models correctly classify 90.2%, 90.2%,

91.0% and 89.3% of the examples respectively, with 78.6%, 57.1%, 64.3% and

71.4% of the minority class, split files, correctly classified.

16.8.3 Comparison to other approaches

Antoniol et al. find two split classes in releases 1–40 of DNSjava. My system

finds eleven split files in these releases, correctly classified except for two

marginal examples. Antoniol et al. did not find the additional split files for

reasons already discussed. They find two classes which are renamed, but

which do not move files, and so not identified by my approach. Antoniol

et al. find one merged file, also found by my approach, as are the four

renamed files, and although two of these are not reliably classified, their

target files are correctly identified. Antoniol et al. also had problems with

one of these files, only finding its correct classification by inspection of the

code. My approach finds one file not found by Antoniol which is both

split and renamed. It also finds ten renamed files, all of which are correctly

classified by the majority of models, and two which are possibly renamed,

for which classification is mixed.

Zou’s work is at function level, and although file level changes are re-

ported, it is unlikely that every change to functions which results in file

restructuring is mentioned, given the additional restructured files found

in the PostgreSQL project by my system. As already discussed in Sec-

tion 16.3.2.1, comparison with the available results shows vulnerabilities in

302 CHAPTER 16. CLASSIFYING REFILTERED DATA

my approach: first, that a target file will not be selected if other changes

to the file mask the relevant changes; and second, that text analysis is not

always sufficient to decide between a number of textually similar possibil-

ities.

All of the changes to the Struts project found by Dig et al. are found

and correctly classified by the system, as are two others supported by the

findings of Wu et al. The PyX project is manually classified with help from

the change log, and therefore cannot be compared with other results.

16.8.4 Overview

The revised filter criteria exclude at least half of the negative examples

selected by the original filters, and select approximately twice as many

positive examples overall, although the changes vary between projects.

The system is trained with C code, the test data comprises four projects:

one C, two Java, and one Python. As shown in Table 16.27, every category

in each of the projects is classified with at least 77% accuracy, with the mean

across all restructured files selected from the unseen projects of over 91%.

The two models, fc+tris-singles/Rotation Forest or fl+tris-singles/Rotation

Forest, are among the top three models overall, and have the benefit of sim-

ply constructed feature sets, as all the features are derived from analysis of

Ferret’s outputs and do not need the concatenated files.

Project Language Split files Disappearing files
1 target 2+ targets

n. acc. n. acc. n. acc.

89 projects C 810 90% 177 95% 575 88%

PostgreSQL C 200 95% 19 100% 100 90-91%
DNSjava Java 48 91.7% 5 80% 23 87-91%
Struts Java 14 100% - - - -
PyX Python 27 93% 3 100% 22 77-82%

Table 16.27: Summary of the classification results for PostgreSQL, DNSjava, Struts
and Pyx by the best model tested in each case. The number of instances
and accuracy are shown for each group.

Chapter 17

Discussion and evaluation

The main part of this project explored the use of machine learning tech-

niques in the field of software evolution, using features generated from

comparisons between source code texts. There are several challenges in

creating a new dataset for machine learning, among which are developing

a suitable filtering technique, selecting a means of generating information

about the data, creating features from this information, and manual clas-

sification of the instances. Features were created by comparing both pairs

and groups of files, and looking at the size, distribution and interaction

of blocks of matched code in the files. Techniques used in creating these

features were also applied to collusion detection, and to visualising textual

relationships between files. This chapter is in four sections: in the first sec-

tion origin analysis is discussed and evaluated, the three following sections

cover collusion detection, the visualisations, and other tools.

17.1 Origin analysis

17.1.1 Related work

The approach to origin analysis in this research has its roots in that taken by

Rainer et al. [194] in the use of trigram analysis to filter the files in a system

to find unusually similar pairs. However, the ideas are developed in many

ways: in the different filtering techniques; in the novel set of features;

303

304 CHAPTER 17. DISCUSSION AND EVALUATION

in exploring the use of complementary approaches to file comparison; in

classifying potential matches using machine learning; and in providing the

3CO file comparison tool for the visual inspection of groups of files.

There is also similarity to Antoniol et al.’s approach [6] where text-

based measures are used to analyse a system at class level. Antoniol et al.’s

approach is one of two (with Zou [261]) of those surveyed which consider

the relationship between more than two entities at a time. Antoniol et al.

take account of the interactions between vectors from three classes when

trying to find split or merged files, and from four classes for recombined

files. Their view is that splits, merges or recombinations between more

than the minimum number of classes are unlikely. However, multi-way

splits occur in many of the 93 projects studied in this research, showing the

importance of considering this possibility when working at file level. For

example, one fifth of the splits found in the projects ‘Lifelines’ and ‘Hatari’

are multi-way, as are nearly one half of those in the project ‘Etherape’.

Antoniol et al. report that their approach is vulnerable to renaming.

The example in Chapter 14 (p. 243) shows this vulnerability, and another

problem, that files must be split fairly “cleanly” to qualify as candidates

under the cosine similarity measure. In my work, the first of these problems

is reduced by the use of trigram analysis, which is moderately tolerant to

renaming; and the second by training the models using a range of features,

and examples from projects of varying development styles.

DeMeyer et al. [60] also work partly at class level, using heuristics based

on the changes to the metrics of each class to suggest possible refactorings.

However, the user must browse the code to find out whether refactoring

has taken place, and to discover the other class(es) involved. DeMeyer et

al. found a high proportion (≈96%) of false positives in their work. This

is partly because they consider the changes to only one file, making it

impractical to filter out files with no obvious targets.

In common with others [237, 250, 252, 261], S.Kim et al. [130] combine

a small set of features from different sources. Unusually, they include mea-

sures of text similarity from three third-party tools. These measures are

17.1. ORIGIN ANALYSIS 305

based on strict matching (diff), parameterised matching (CCFinder) and

n-gram matching (Moss), a similar combination of tools to that used in

this research, respectively the P-Duplo, CCFinder and Simian, and Ferret

tools. S.Kim et al.’s features are weighted according to each one’s accuracy

in predicting matches in a set of method pairs determined by their expert

panel. Their approach is the closest to machine learning among the sur-

veyed work, and they suggest using machine learning methods in future

searches for suitable feature combinations and threshold values.

In the same way as many others (e.g. [22, 90, 128, 130, 179, 250]), the

approach in this research first matches by name, forming two groups of files:

those matched or unmatched by files of the same name in the following

release. Matching entities are not normally considered for change, whereas

in this research, changes to matched files are taken into account in looking

for split files. Once candidates are established, potential target files are

selected based on their similarity to the candidate file, whether the files are

new or already exist.

Many of the approaches surveyed match names or method headers

textually (e.g. [128, 179, 194]). Only Dig et al. [64], compare the text of the

method bodies as an initial filter, whilst others (e.g. [22, 130, 245]) use the

text similarity of entity bodies as a second filter. In my work, both the first

coarse-grained, and the second fine-grained filters use textual similarity

based on trigram analysis of the full text of the files.

Several of the approaches use n-grams to match elements in the code [22,

64, 77, 130, 252]. Biegel et al.’s [22] finding, that ranking targets by simi-

larity measured using token bigrams is not only faster, but marginally

outperforms both CCFinder and an AST-based similarity tool, supports the

use of n-gram based similarity measures in this task.

Tools which parameterise, such as CCFinder, Simian and Moss, do not

seem to be the best way to match code for origin analysis. The reasons

relating to file comparison are pointed out in Section 14.1.2. However,

both S.Kim et al. and Biegel et al. also found CCFinder to be less useful

than other features in comparing methods in Java code. While the header

306 CHAPTER 17. DISCUSSION AND EVALUATION

information which is ignored by CCFinder will not be an issue for functions

or methods, the relaxed matching allowed by parameterising may be the

cause. Although parameterising helps to match edited code, it can also

allow matches between standard forms, such as accessors, which are present

in many files.

In general, method or function level approaches, especially those which

consider split or merged entities, should find most of the same restructur-

ings as found by my approach. They will also find within-file changes,

such as method renaming, but do not find changes to the code which falls

outside the methods/functions, while my approach will find movement of

code from any part of many types of file.

There are four main differences between my approach and those detailed

in the review of origin analysis in Chapter 3. First, machine learning is used

to classify the candidate files, based on a training set derived from a large

number of open source projects. Second, the novel features derived from

the similarity detection tools used to compare the source code. Third,

comparisons between entities are normally made pairwise; whereas here,

group comparisons are used to create some of the more predictive features,

and are also used in ranking target files. Lastly, the models built using

source code in one language are successfully tested on systems written in

other languages.

The task of determining whether code taken from one file should be

matched to that in one or more other files is very difficult, given the wide

variation in file sizes, the amount of code moved, the extent to which it is

edited, the way the code is distributed in both the source and target files,

and the inherent similarity within a project. Rather than using a pre-defined

set of rules to work out whether files should be matched, this system uses

machine learning to discover, among a large number of features, patterns

which apply to a collection of projects, with the aim of creating a model

which will be generally applicable.

Working at file level with text-based analysis allows the approach to be

used on most other programming languages and on text. The approach is

17.1. ORIGIN ANALYSIS 307

not restricted to files containing methods, functions or classes. Although

the models built for this study are based on C code, they work well on the

Java and Python projects tested.

The experiments show that Ferret-based features provide sufficient in-

formation for good classification. Ferret is used in primary and secondary

filtering and in target file ranking. The supporting tool 3CO is also based on

Ferret. This means that apart from a machine learning tool such as Weka,

Ferret is the only third-party tool needed to classify the restructured files.

In discussing matching techniques for multi-version analysis, M.Kim et

al. suggest hybrid matching as a good way forward. However, they also

caution that “combining results from multiple matchers will require tremendous

efforts because (1) not every matching tool is available for public use or applicable to

popular programming languages and (2) different matchers use different program

representations” [127, p.5]. By applying different techniques to the various

outputs of the trigram analysis tool Ferret, some degree of pseudo-hybrid

matching, applicable to a wide range of languages, is gained without the

need for other matching tools, thus partly addressing Kim’s concerns.

17.1.2 Machine Learning System

Two of the main challenges in creating the machine learning datasets for this

application are how best to filter the very large amount of data to identify

the items of interest, and what features might best characterise the data to

allow discrimination between the classes.

There is a natural trade-off between precision and recall in filtering. The

aim here was for good recall, while keeping a reasonable balance between

the classes for machine learning.

Feature construction presents many challenges: which tools to use to

compare files, and what features to create from among the almost limitless

number of potential features available from analysing the output of these

tools. Without prior knowledge of suitable features these decisions are

difficult. To explore the possibilities, a large pool of features was created

using a set of complementary comparison algorithms, and a wide range of

308 CHAPTER 17. DISCUSSION AND EVALUATION

measures. Features were grouped into smaller sets based on their source,

and compared so that a suitable subset could be chosen.

In the rest of this section, each step in the origin analysis system is dis-

cussed. These steps are: data collection, preprocessing, information gather-

ing, filtering, manual classification, feature construction, feature selection,

and model selection.

Data collection The projects chosen for training the models were all writ-

ten in C. As the features used in this system characterise the distribution of

matched text in the evolving files, theoretically the projects could have been

written in any one, or a mixture, of most programming languages. Given

that the models built with C code perform well on projects in two other

languages, it is possible that either strategy would have worked as well.

Preprocessing Relevant source code files (e.g. ‘.c’ and ‘.h’) were selected

from the stored versions and prepared by removing comments. Comment

removal is the only part of the system where language specific processing is

necessary. To assist with Duplo and Simian’s line-by-line matching, pretty-

printing was originally used, to standardise the code layout. As Duplo

and Simian features are not used in the final models, pretty-printing is not

necessary.

Information gathering The next step is to compare the files in each release,

both within the release, and with files in adjacent releases, and to store the

results. The information was stored in hash tables, written to file for reuse.

Racket’s hash tables are limited in size, therefore using a database for storage

may be a better strategy. Once stored, the results of comparing the files are

used to filter for candidate restructured files.

Filtering An initial filter for finding potential split files in this system is

a reduction in file size. This reduction was found not to be a feature of all

split files, as other within-release changes may result in a larger file. One

17.1. ORIGIN ANALYSIS 309

solution to this problem is to consider the number and distribution of the

trigrams in each file’s difference set, however, this remains as future work.

Target file selection is also an important part in the process. The investi-

gation reported in Chapter 15 explored criteria and thresholds for target file

selection in the test subset of the data. One of the aims of this research was

to remove predetermined thresholds. However, as the simple filter criteria

first applied were inadequate, new criteria were found by experimenting

with a subset of the data, and in balancing precision with recall, the criteria

turned out to be fairly complex. Simplifying these conditions is possibly

an area for further work. Although the thresholds which suit the test set fit

most of the remaining data, there are cases which fall outside the parame-

ters. The main problem is that target files are not selected when the number

of shared trigrams does not increase sufficiently between releases, because

of other changes. As with the candidate files, the changes to the target

file may offer a solution, the interesting trigrams in this case are the new

trigrams in the file, in other words, the reverse difference set (see p.214).

Target file order is important for matching files in general [22], and for

feature construction in this system. Initially, the target files were sorted on

their change in similarity to the candidate file. The experiments reported

in Chapter 15 showed that this strategy was not as successful as sorting by

unique trigram count for the target files in the test set of split file candidate

groups. The order is mainly judged using 3CO, which is also based on

trigram distribution, and so may be subject to bias. However, files previ-

ously misclassified because of incorrect target file ordering were correctly

classified after reordering their targets by unique trigram count.

Manual classification Manual classification of the candidate files was

very time-consuming prior to the development of 3CO. The tool usually

provides sufficient information for classification. Otherwise, the number of

files which need to be inspected is normally reduced by its use.

Given that manual labelling is subjective, independently labelled train-

ing data would have been of benefit, but availability was limited. The

310 CHAPTER 17. DISCUSSION AND EVALUATION

unseen data is partly labelled by other research groups, but the same sub-

jectivity is present in labelling the examples not reported by these groups.

Several files were excluded because they could not be classified, a par-

ticular problem for projects with parallel subsystems, like the example in

Figure 16.5. This file highlights a weakness in using text analysis alone, and

is a case where call analysis [64, 250, 261] should provide a solution.

Feature construction Advice on feature construction varies. For exam-

ple, Guyon and Elisseeff [98] suggest creating a large number of features

to include as much information as possible, while Hall [102] recommends

that there should be at least twice the number of instances as features. The

approach taken in this research considers both of these requirements: by

constructing a large set of features to give variety, but comparing classifi-

cation by reasonably sized subsets of these features. The final models were

built with sets of 200 features, well under half the number of instances in

the datasets.

At the start of this project, Ferret, Duplo, Simian and CCFinder were

selected as complementary tools for comparing files. As the work pro-

gressed, P-Duplo was developed using the ideas behind Duplo, to better fit

the requirements of the task. The idea that the Ferret XML report could be

analysed to provide additional information was also a later development.

To some extent, the XML analyses have similarities to the other tools.1 The

line-based analysis has much in common with P-Duplo, and density analy-

sis finds the gapped copies which are the main reason for using both Simian

and CCFinder. With hindsight, it would have been sufficient to explore the

range of features available from analysing the outputs from Ferret.

Features are based on comparison between the three main files or the

candidate file and various combinations of the other files in the group.

Comparisons of concatenated files were used as a solution to the problem

of representing multiple targets, and as a way to measure how much of a

candidate file is covered by combinations of its targets. There is a compu-

1Comparison between the predictive accuracy of these sets can be found in Appendix T

17.1. ORIGIN ANALYSIS 311

tational cost in generating these features, as the files must be concatenated,

and additional groups of features generated.

Although the difference between the top performing feature sets for

each task is not significant, the “top 20” feature sets for split files are mostly

based only on features generated from comparisons between single files

(“singles” features), while only one of the 20 for disappearing files with

two or more targets has only singles features. It is possible that ordering

targets by unique trigrams is less suitable for disappearing files than for

split files, so that files other than the first two of the ordered targets must be

considered. However, as there are singles sets which perform well on the

data, the ordering problem may only affect a few cases. Investigating the

order of disappearing file targets remains as further work.

Feature selection Standard solutions to finding a good subset of features

from a large set include the use of a feature selection algorithm or a ma-

chine learning algorithm which incorporates feature selection. However,

in this research, one important factor in choosing a feature set was the

ease of extracting the features from new data. The features are derived

from comparisons made by four tools, and there is further complexity in

constructing the concatenated files. The ideal is a small feature set, taken

from simple comparisons between files, based on the output of one tool.

The combination of trigram and block based features (“fc+tris-singles” or

“fl+tris-singles”) derived from Ferret fits these requirements. As noted in

Chapter 16, both of these feature sets give good results on split and on dis-

appearing files, although the former is better with split files and the latter

with disappearing files. The trigram based features take account of inter-

actions between the three ‘main’ files with no sense of the arrangement or

frequency of the trigrams, while the measures of the sizes of the matched

blocks, either in characters (fc) or in lines (fl), give a fairly precise analysis

of the arrangement of matched parts of a file and their significance.

In the simpler tasks of classifying the original split file dataset and the

disappearing files with one target, one feature set is sufficient for classifica-

312 CHAPTER 17. DISCUSSION AND EVALUATION

tion. However, for the more challenging tasks of classifying the refiltered

split file set and the disappearing files with more than one target, classifi-

cation is improved by using complementary feature sets.

Model selection It is not possible to find out which classifier will be

the best for all new data, but by training classifiers with one portion of the

available data and testing with another portion, an estimate of the predictive

accuracy of each classifier can be found [27, p.79–80].

Here the training data was split 100 times, with two-thirds of the data

used for training and one-third for testing. The “best” models were selected

on their mean classification accuracy over the 100 test sets. Results demon-

strated that these models were not necessarily the best on the unseen data.

Tests on unseen data were used to decide on the “best” models overall.

Various strategies for improving classification were tested during this

research. These strategies included exploring algorithm parameters, com-

bining algorithms with heterogenous meta-classifiers, and for imbalanced

data, under- and over-sampling and use of cost-sensitive classifiers. In gen-

eral, these strategies did not improve classification accuracy on this data.

Although a subset of the possible combinations of feature sets were

investigated, given the large number of sets, a full exploration was not

undertaken, and may be an area for further work.

Results Classification of the candidate split files reported in Chapter 14

was around 94% for the 89 project dataset and, using models built on

this data, 99% on the unseen data. However, comparison with the results

from other research groups on this data highlighted weaknesses in the

filtering process: not all candidate files were selected, not all target files

were selected, and target files were ranked incorrectly.

Extensive experiments in filtering, reported in Chapter 15, found strate-

gies for correcting many of the identified problems. The new set of candi-

date split file groups selected by refiltering from the 89 projects are classified

with a mean accuracy of 90%. Candidates from the four unseen projects are

classified with a mean accuracy of over 94%.

17.1. ORIGIN ANALYSIS 313

Files which disappear from the system are initially matched to their

targets by similarity score. Those with identical or nearly identical files in

the next release are classified as renamed, and those with no similar file as

deleted. The remaining files, the “uncertain set” fall into two groups, those

with one target file and those with more. The former group is classified

with a mean accuracy of 95%, and 96% on the unseen data. The latter group

with mean accuracy of 88% and around 89% on the unseen data.

These percentages are not directly comparable with those of other re-

search groups. The two approaches which compare files [6] or classes [60]

directly do not provide estimates of their accuracy. Unless the system anal-

ysed is fully documented, or there are other means of tracing all of the

changes, it is not possible to know what percentage of changes have been

found. Approaches which provide percentages use varied bases. For exam-

ple, S.Kim et al. [130] give the percentage of matches between disappearing

and new methods made by their system to those in their oracle sets as 87.8–

91.1%. However, the oracle sets contain 85-91% of the examples judged,

and it can be assumed that the pairs left out are the more challenging ones

to classify, as the panel does not agree on these pairs. As another example,

Dig et al. [64] report 100% precision and 86% recall on the Struts project,

using entries in the change log to give the expected results. The results of

Wu et al. [250] show that not all of the changes are logged.

The figures presented in my work are also based on a subset of the

candidates. On the one hand, examples whose classification is unclear are

omitted. This means that 14% of the split file candidates from the 89 projects

Split Disappearing
Cand- Not % not Directly Not % not
idates included included classified Uncertain included included

89 projects 944 134 14.2 1965 925 173 6.0

PostgreSQL 207 7 3.4 81 125 6 2.9
DNSjava 49 1 2.0 65 28 1 1.1
Struts 14 0 0.0 – – –
PyX 27 0 0.0 44 25 0 0.0

Table 17.1: Proportion of total candidate split and disappearing files not classified.

314 CHAPTER 17. DISCUSSION AND EVALUATION

are excluded, although more than 97% of the unseen data is retained. Other

figures are shown in Table 17.1. On the other hand, the results given for the

disappearing files include only the uncertain set. The remaining examples

are directly classified as matched or unmatched. Although nearly 19%

of the uncertain disappearing files from the 89 project dataset cannot be

classified with confidence, this represents only 6% of all disappearing files.

The directly matched files also affect the overall classification rate of the

disappearing files. For example, in the Pyx project there are 34 renamed

files and 8 unmatched files. While it is almost certain that all of the renamed

files are correctly matched, the unmatched files may not be matched because

their targets have been missed. Assuming all of these files to be correctly

classified, the percentage of correctly matched files would rise to 93%.

Analysing new projects with the models Table 17.2 gives the steps re-

quired to classify a new project with the models. Most of the steps are a

subset of those used in building the models. The difference is that should

filtering a new project result in few candidate files, then the simplest way

to find out what has happened to the code is to view the 3CO files for

the candidate groups. With more files, automatic analysis is required and

features must be constructed so that the files can be classified using the

models. Each step runs automatically, except when manual downloading

is necessary at step 1, and at step 7a, where inspection is required.

1 Store the data in consecutively numbered directories.

2 Select file types (e.g. not makefiles, images, binaries)

3 Prepare as necessary, i.e. remove comments

4 Compare the files using Ferret and store the information

5 Filter to find the type of files required (e.g. split, disappearing) and their targets.

6 Process file groups to produce 3CO XML files.

7a *If not many candidates, then 3CO files should provide sufficient information quickly.

7b If more candidates, use automatic analysis, extract the features to create a machine learning file.

8 Run through the appropriate model to classify.

Table 17.2: Steps in classifying a new project with the models.

17.2. COLLUSION DETECTION 315

17.2 Collusion detection

Twenty-nine approaches to source-code plagiarism were analysed in Chap-

ter 2. Although many people involved in marking assignments recognise

that unusual similarity between students’ work prompts suspicion of col-

lusion between students [52], the survey found that few approaches take

account of unusual similarity and none measure it directly.

Another observation from the survey is that twenty-one of the ap-

proaches initially tokenise the code. Tokenising requires a suitable lexer, but

means that the method is otherwise language-independent. A lexer for one

language can be used to tokenise other languages in a reasonable manner,

as is shown by use of a C-type lexer for Visual Basic and ASP in the ap-

plication reported in in Chapter 9. However, eighteen of these approaches

parameterise the tokenised code, meaning that a language-specific lexer is

required to identify keywords.

Tools which change the code to graph, tree or metric representations are

tied to one language. Those which convert the code into an intermediate

language aim for language independence, but are restricted to the languages

supported. Among the approaches listed in Table 2.3, few will be able to

analyse almost any mix of languages. Those which can are Ferret [146] and

PlaGate [52].

Proportional measures will sometimes rank small amounts of similarity

between two small files above significant similarity between two larger

files. This was found to be a feature of measures based on Ferret where

similarity is computed using the presence of trigrams in a file, regardless of

their frequency. Where there is a large amount of repetitive code, measures

which match sections of code in a file each time they occur, such as [99, 115],

may exaggerate this problem. It is important to be aware of what collusion

detection tools are measuring and therefore what is being reported.

Almost all of the similarity measures used by the approaches surveyed

are proportional to the size of one or both of the files compared. Although

proportional measures are likely to perform well with files of similar sizes,

there can be a problem when file sizes differ. Count-based measures find

316 CHAPTER 17. DISCUSSION AND EVALUATION

similarity which may be missed by proportional measures, especially where

files are large. However, care must be taken in what is counted, otherwise

pairs of large files will have more in common than pairs of small files,

because of the inherent similarity in program code. By computing similarity

based on less common trigrams, the focus is only on unusual similarity.

A number of methods used to disguise plagiarism are reported by

Jones [117, p.2]. These are changes to comments, white-space, identifiers

and data-types; reordering code within statements, moving blocks of code,

adding redundant statements, and exchanging one type of control structure

with another. Many of the approaches surveyed are naturally concerned

with detecting similarity in the face of these disguises. Strategies such as

parameterising and attribute counting lead to a loss of textual information.

However, there is a place for approaches which preserve more information,

such as those of Liu [151], Cosma [52] and Ferret [146].

The approach to collusion detection presented in Chapters 7 and 9 is

language independent, is based on recognising unusual similarity between

pairs of assignments, preserves much of the textual information, and does

not rely on proportional measures. Despite an increase in web technology

courses,2 where several programming languages may be used in building a

project, there appears to be no other reported work in source code collusion

detection where files in more than one language are analysed together.

Although the method is not robust to systematic identifier renaming, it

will find unusual shared code which has not been well disguised. This type

of similarity is likely to be found naturally by someone marking a small

group of moderately sized assignments. However, as the size and number

of assignments increases, and particularly when marking is distributed

among several tutors, unusual similarity is unlikely to be found without

automatic analysis. A full evaluation of this approach would need further

tests on groups of different sizes and with different styles of assignment.

2158 courses with a web technology content are listed on the UCAS site for 2013,

(36 specifically for web technology, and 9 for multimedia web production)

17.3. VISUALISATIONS 317

17.3 Visualisations

17.3.1 Collusion detection

In Chapter 5, the outputs of a selection of collusion detection tool file com-

parisons were shown. A large number of such tools were examined during

the course of this research and only that of Ribler and Abrams [199] was

found to show details of the similarity between two files in the context of

the group. However, a display of this type is useful in three ways, first in

highlighting the more unusual elements shared by two students, second in

highlighting the elements unique to one student, and last in showing which

parts of the code are of less interest. The adaptation of the Ferret display,

based on the analysis of two files in the context of the group, provides all

of this information, and also allows the user to see the relevant text.

The visualisation adds group context to the comparison between two

files. The more interesting sections of the file are highlighted, which helps

in assessing the nature of the similarity between the files. The tool has not

yet been applied to other groups of submissions, or by other users, therefore

it is difficult to evaluate its usefulness.

17.3.2 File comparison with 3CO

There does not appear to be a tool available which can display comparisons

between more than three files at once. This makes comparing files in origin

analysis very difficult. As shown throughout this dissertation, the relatively

compact display of 3CO has proved invaluable in understanding interac-

tions between a group of files, and in speeding up manual classification of

the large number of file groups in this research. It also has a place in other

file comparison tasks, such as collusion detection, as shown in Chapter 9.

Without this tool, much of the work in this research would not have

been possible. For example, it would have been unthinkable to undertake

the very large number of file comparisons in the filtering experiments.

The XMLs are produced in reasonable time, the average over a set of 400

files with a mean of 8 target files each, is 1 second per file, under Ubuntu

318 CHAPTER 17. DISCUSSION AND EVALUATION

on a machine with 2.9GB memory and a 2.4 GHz processor. The analysis is

not yet integrated into Ferret but works externally, analysing the trigram-

file index, the trigrams, and related white-space, then mapping back to the

original code. It should be considerably faster if integrated into Ferret.

There are a couple of negative points about the display. First, because the

colour of each token is based on the files each of its three trigrams appear in,

heavily edited sections of code may not be coloured as expected, and if there

are high levels of incidental similarity the code can appear very fragmented.

These conditions occur infrequently, and alternative techniques could be

adopted when they do. For example, for gapped copying, a “darker” colour

scheme where tokens for which only one of the three trigrams belongs to

a file are coloured to match that file, giving a similar result to a standard

Ferret comparison between two files for the gapped copy region.

Second, from my limited observation of people’s understanding of the

tool, the majority easily grasp how it works. However, for some it takes a

little more work to get a “feel” for it. A more subtle colour scheme using

intermediate hues [224] would provide more information, but would need

tuning to an individual monitor, and the finer differences in colour may

be difficult to perceive, and less easily understood. As already noted, the

colour scheme can be adjusted to cater for colour blindness. For example,

using underlining or shaded backgrounds in place of one or more colours.

Set against the benefits of the tool is the fact that by focusing on the

base file, information about the target files, which is available in pairwise

comparisons, is lost. One way to overcome this drawback, and to make

3CO suitable for more general use, would be to provide the option to select

alternate views. For example, to show a pairwise comparison between the

base file and any of the target files, or to select a new base file from among

the group displayed. Also, in origin analysis, the ability to select a file to

view its evolution would be helpful, in other words, a new display with the

file compared with itself in the previous, next or both versions.

17.4. OTHER TOOLS 319

17.4 Other tools

17.4.1 Density analysis

The density analysis technique used to measure “gapped” blocks and to

create features performs as expected. However, as a top down approach it

can be slow when the files being analysed are large and have high levels

of incidental similarity (i.e. there are many segments), and therefore may

benefit from a different approach. Bottom-up approaches were considered,

but not fully explored [94, p.8]. The density tool is an early prototype based

on the density analysis. The following additions would make the tool more

generally useful:

• profiles of each file with block positions highlighted and selectable,

• links from blocks in one file to the closest match(es) in the other file, and

• a more functional front end, so that the user has only to choose the files

and the parameters, rather than, as in the present version, providing the

result of a previous Ferret comparison in the form of an XML file.

17.4.2 One-to-one matching of clone output

It is difficult to assess how the Unscrambling tool performs because the

only comparisons between tools are the relative merits of the feature sets,

for which there are too many other variables. On test data it performs as

expected. Although useful for files where there may be a large number of

many-to-many clones, this analysis is perhaps less useful in smaller entities,

such as methods, because there are unlikely to be enough clones in smaller

entities for it to be worthwhile. There are limitations in the approach

taken to matching multiple copies, where a greedy first-come first-matched

approach is adopted. This could be altered, perhaps by considering the

surrounding code.

320 CHAPTER 17. DISCUSSION AND EVALUATION

17.5 Summary

This chapter has discussed the similarities and differences between this

research and other research in software origin analysis and collusion de-

tection. Also discussed are the difficulties encountered, their solutions or

suggested future solutions, and the limitations of the approaches.

There were a number of difficulties to overcome in this research. One

of the major problems is matching code in the face of high levels of inher-

ent similarity. For collusion detection this was tackled by looking instead

at the unusual similarities between files, an approach also used in origin

analysis, along with a range of other features looking at various aspects of

the relationships between pairs and groups of files.

Another difficulty was the need to label the training data and some of the

test data for machine learning. Manual classification was extremely time-

consuming prior to the development of the 3CO tool. However, this tool

enabled a more in-depth study than would otherwise have been possible.

Filtering in origin analysis is also difficult, because of the range of in-

teractions between a candidate file and its potential targets. Experiments

to find suitable criteria for filtering were mostly successful, but two areas

remain unresolved. Split files which have become larger are not selected,

and neither are target files which have become less similar to the candidate

file than in the previous release. As discussed, both of these problems may

be overcome by taking account of the difference sets.

As a purely textual approach, the collusion measure is limited in that it

will not detect well-disguised copying, but does mean that multi-language

projects can be processed. The measure is also useful when file sizes vary,

there is auto-generated code, or there is group collusion. In very large files,

the density tool could also be used to identify the blocks of duplicate code.

Potential improvements to the visualisations are discussed in this chap-

ter, the main improvement to both of these, and to the density tool, is to

incorporate them with Ferret.

The next chapter considers further application of the techniques and

tools developed, and the contributions made by this research.

Chapter 18

Conclusions and further work

In this chapter, the contributions to knowledge made in this dissertation are

reviewed and their application to other problems discussed.

18.1 Contributions to knowledge

The contributions are:

• Application of machine learning and text analysis techniques to the

field of software origin analysis, developing models from one set of

projects which have been successfully applied to four other projects,

three of which help to demonstrate the language independence of the

approach.

• Techniques for measuring relationships between files in a group,

based on trigram analysis of the source code text, and the devel-

opment of a novel set of features based on this analysis.

• A method for visualising the similarity of one file to a set of others by

colour coding the file text based on trigram analysis.

• A survey of approaches to source code plagiarism detection.

• A novel similarity measure for use in collusion detection.

321

322 CHAPTER 18. CONCLUSIONS AND FURTHER WORK

• A method for colouring text to provide information about pairwise

comparisons between files in a group, giving contextual detail not

found elsewhere in the field of source code collusion detection.

• Techniques for providing information about the distribution in one

file of the trigrams shared with another file, both as sequences and, by

developing a flexible density analysis algorithm, as “gapped” blocks.

• A new method for ranking potential matches between entities in ori-

gin analysis, by finding “uniquely shared” trigrams.

• A technique for converting the many-to-many results of clone detec-

tion tools to match the clones on a one-to-one basis.

18.2 Further work

This section discusses ways in which the techniques developed in this dis-

sertation might be of benefit in other applications. Three areas are consid-

ered: origin analysis, n-gram analysis, and visualising file comparisons.

18.2.1 Origin analysis

Methods used in creating the machine learning models for origin analysis

could be applied to other projects, either as a whole or individually. The

models built to classify both split and disappearing files should apply to

other projects, certainly those written in C, and based on the test data, also

to those in Java and Python. In principle there is no reason why the models

should not work with many other programming languages, or with text,

however this would need to be tested.

The method of ranking target files by the number of unique trigrams they

share with the candidate file could be applied to other entities, and therefore

used in other origin analysis research, and potentially in matching other

documents. A version of this method is applied in the weighted trigram

count used in the collusion detection application described in Chapter 9.

18.2. FURTHER WORK 323

Individually, other techniques which have been used in this approach

and which could be applied to work both inside and outside the field of

software origin analysis are: building features based on group compar-

isons, using complementary measurements to improve generalisation, and

analysing similarity detection tool output to create a broad set of features.

18.2.2 N-gram analysis

The techniques described in this dissertation for analysing the trigram-file

index and XML output from Ferret can be applied to any n-gram analysis

tool which creates an inverted index, and maps the analysis back to the

source. However, the future application of these techniques are discussed

in terms of additions to the Ferret tool.

Ferret is a well-established copy detection tool. In practical terms, it

is simple to use, is very fast, can be used for both text and code, and is

a standalone tool, which is important where confidentiality is required.

When presented with a set of documents, it provides a similarity measure

for each pair. The user can select any of these file pairs to view their text, in

which the shared trigrams are highlighted. The techniques developed for

analysing other outputs available from Ferret are broadly:

• Analysis of the trigram-file index to

◦ find groups of related files,

◦ find the relative “importance” of the shared trigrams, based on the

number of files which contain them, and

◦ produce measures based on less frequently occurring trigrams.

• Analysis of the XML output to

◦ find out about the distribution of the shared trigrams in the texts.

The results of these analyses could be used to add features to Ferret to

provide a wider range of information for the user. For example:

1. Integrating other code colourings into the present text comparisons,

324 CHAPTER 18. CONCLUSIONS AND FURTHER WORK

Figure 18.1: Figures 9.4, 9.9: (i) uniquely shared code in red and (ii) code shared
by groups in shades of orange to red, and F.2 repeated for reference

such as those shown in the middle and on the right of Figure 9.8, and

repeated to either side of Figure 18.1.

2. Adding alternative similarity measures to the table of pairwise simi-

larity scores, with the option to sort on these measures.

3. Providing statistical information about blocks found by density anal-

ysis in the pairwise reports, such as that at the top left of Figure F.2

18.2. FURTHER WORK 325

(also at the bottom of Figure 18.1); and giving the full results of the

analysis as a click-through screen, based on that shown in Figure F.2,

with the amendments recommended in Section 17.4.1.

4. Producing graphical displays of group interactions based on the cho-

sen measure, such as that shown in Figure 9.4 and at the top of Fig-

ure 18.1.

5. Identifying unique trigrams among a group to enable use of these

trigrams as search terms in cases where their source is uncertain.

These features would also be suitable for application to other collusion

detection tools. However, approaches which make comparisons on a purely

pairwise basis would not be able to adopt the first two, or the last, of these

suggestions.

Also, as discussed in Chapters 6 and 17, the density analysis tool is

an early prototype. There are a number of alterations and improvements

suggested in Section 17.4.1 which would help in developing this tool for

more general use.

18.2.3 File comparison with 3CO

The ability to view relationships between files based on the trigrams they

contain has saved time in the task of manually classifying files. It is also

shown to be useful in quickly understanding the interaction between one file

and a group of others where inappropriate code duplication is suspected.

This way of displaying files should be useful in other origin analy-

sis tasks, as the same technique will work with smaller entities, such as

methods. The visualisation is also helpful in understanding the interaction

between entities where there are numerous potential matches.

The idea of combining primary colours to show the elements from one

file present in up to three others can also be applied to comparisons based

on other units, such as lines or sequences. To use the technique with n-

grams where n,3, the voting mechanism for choosing the colour of a token

would need to be adapted.

326 CHAPTER 18. CONCLUSIONS AND FURTHER WORK

18.3 Conclusion

In this chapter, the contributions made by this work have been reviewed,

and applications for the techniques developed have been suggested as po-

tential avenues for further work.

The aim of this work was to investigate the identification and classifi-

cation of changes to evolving software code. In particular, to extract group

relationships between evolving files using text analysis, and to use machine

learning to classify files based on these relationships.

The application of these techniques to origin analysis has been success-

ful. Previous approaches to origin analysis rely on predetermined rules in

selecting matches between software entities. The approach taken in this

work tackles this difficult problem by allowing machine learning to find

patterns which best describe the problem in data from a range of sources.

Also, because the approach is text-based, it should be applicable to most

programming languages and to text.

A subset of the techniques were applied to collusion detection and

have provided a useful similarity measure which overcomes many of the

problems identified in detecting collusion in groups of unevenly sized files

with high incidental similarity, and consisting of a mix of languages.

The visualisations created to support each of these applications are also

based on text analysis and the relationships among files in a group. Further

work is needed to assess the worth of the collusion detection visualisation.

The 3CO tool has proved particularly useful in this work and could prove

to be more generally applicable in file comparison tasks.

Bibliography

[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API patterns as

partial orders from source code: from usage scenarios to specifications. In

ESEC-FSE ’07: Proceedings of the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering, pages 25–34, New York, NY, USA, 2007. ACM.

[2] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: GPL-

licensed source code plagiarism detection engine for Java exercises. In

M. Wiggberg A. Berglund, editor, 6th Baltic Sea Conference on Computing

Education Research, pages 141–142. Uppsala University, Sweden, 2007.

[3] Alex Aiken. Moss system for detecting software plagiarism. http://theory

.stanford.edu/aiken/moss/, 1997.

[4] Stephen F. Altschul, Warren Gish, Webb C. Miller, Eugene W. Myers, and

David J. Lipman. Basic local alignment search tool. Journal of molecular

biology, 215(3):403–410, October 1990.

[5] Christian M. Ammann. Duplo - code clone detection tool. Sourceforge

project, 2005. http://sourceforge.net/projects/duplo/.

[6] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic

approach to identify class evolution discontinuities. In IWPSE ’04: Proceed-

ings of the 7th International Workshop on Principles of Software Evolution, pages

31–40, Washington, DC, USA, 2004. IEEE Computer Society.

[7] Giuliano Antoniol, Umberto Villano, Massimiliano Di Penta, Gerardo

Casazza, and Ettore Merlo. Identifying clones in the linux kernel. In SCAM

’01: Proceedings of the 1st IEEE International Workshop on Source Code Analysis

and Manipulation, pages 92–99. IEEE Computer Society, 2001.

327

328 BIBLIOGRAPHY

[8] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A

differencing algorithm for object-oriented programs. International Conference

on Automated Software Engineering, 0:2–13, 2004.

[9] Christian Arwin and Seyed M. M. Tahaghoghi. Plagiarism detection across

programming languages. In Vladimir Estivill-Castro and Gillian Dobbie,

editors, ACSC, volume 48 of CRPIT, pages 277–286. Australian Computer

Society, 2006.

[10] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from

bug-introducing changes to prevent fault prone code. In IWPSE ’07: 9th

International Workshop on Principles of Software Evolution, pages 19–26, New

York, NY, USA, 2007. ACM.

[11] Brenda S. Baker. On finding duplication and near-duplication in large soft-

ware systems. In WCRE, pages 86–95, 1995.

[12] Brenda S. Baker. Parameterized pattern matching: Algorithms and applica-

tions. Journal of Computer and System Sciences, 52(1):28–42, 1996.

[13] Brenda S. Baker. Parameterized duplication in strings: Algorithms and an

application to software maintenance. SIAM Journal on Computing, 26(5):1343–

1362, 1997.

[14] Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE

Computer, 29(4):33–43, 1996.

[15] Victor R. Basili and Lionel C. Briand, editors. 13th Working Conference on

Reverse Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy. IEEE

Computer Society, 2006.

[16] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo

Sant’Anna, and Lorraine Bier. Clone detection using abstract syntax trees.

In ICSM ’98: Proceedings of the 14th IEEE International Conference on Software

Maintenance, pages 368–377, 1998.

[17] Laszlo A. Belady and M. M. Lehman. A model of large program develop-

ment. IBM Systems Journal, 15(3):225–252, 1976.

[18] Boumediene Belkhouche, Anastasia Nix, and Johnette Hassell. Plagiarism

detection in software designs. In Seong-Moo Yoo and Letha H. Etzkorn,

editors, ACM Southeast Regional Conference, pages 207–211. ACM, 2004.

BIBLIOGRAPHY 329

[19] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore

Merlo. Comparison and evaluation of clone detection tools. IEEE Transactions

on Software Engineering, 33(9):577–591, 2007.

[20] Houda Benbrahim and Max Bramer. Text and hypertext categorization. In

Max Bramer, editor, Artificial Intelligence: An International Perspective, volume

5640 of Lecture Notes in Computer Science, pages 11–38. Springer, 2009.

[21] Benjamin Biegel and Stephan Diehl. JCCD: a flexible and extensible API

for implementing custom code clone detectors. In Charles Pecheur, Jamie

Andrews, and Elisabetta Di Nitto, editors, ASE, pages 167–168. ACM, 2010.

[22] Benjamin Biegel, Quinten David Soetens, Willi Hornig, Stephan Diehl, and

Serge Demeyer. Comparison of similarity metrics for refactoring detection.

In Arie van Deursen, Tao Xie, and Thomas Zimmermann, editors, MSR,

pages 53–62. IEEE, 2011.

[23] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet alloca-

tion. Journal of Machine Learning Research, 3:993–1022, 2003.

[24] Avrim Blum. Machine learning theory (essay). http://www.cs.cmu.edu/

∼avrim/, 2007.

[25] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with

co-training. In COLT: Proceedings of the Workshop on Computational Learning

Theory, Morgan Kaufmann Publishers, pages 92–100, 1998.

[26] Salah Bouktif, Balazs Kegl, and Houari Sahraoui. Combining software qual-

ity predictive models: An evolutionary approach. In ICSM ’02: Proceedings

of the International Conference on Software Maintenance, pages 385–392, Wash-

ington, DC, USA, 2002. IEEE Computer Society.

[27] Max Bramer. Principles of Data Mining. Springer, 2007.

[28] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[29] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[30] Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-

based classification: A unifying perspective. CoRR, abs/1111.6191, 2011.

[31] Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain

Robbes. Language-independent clone detection applied to plagiarism de-

tection. In SCAM’10:Proceedings of 10th IEEE International Workshop on Source

Code Analysis and Manipulation, pages 77–86. IEEE Computer Society, 2010.

330 BIBLIOGRAPHY

[32] Andrei Z. Broder. On the resemblance and containment of documents. In

SEQUENCES ’97: Proceedings of the Compression and Complexity of Sequences

1997, page 21, Washington, DC, USA, 1997. IEEE Computer Society.

[33] Steven Burrows. Source Code Authorship Attribution. PhD thesis, School

of Computer Science and Information Technology, College of Science, En-

gineering and Health, RMIT University, Melbourne, Victoria, Australia.,

November 2010.

[34] Steven Burrows, Seyed M. M. Tahaghoghi, and Justin Zobel. Efficient pla-

giarism detection for large code repositories. Software Practice and Experience,

37(2):151–175, 2007.

[35] Raymond P. L. Buse and Westley Weimer. A metric for software readability.

In Barbara G. Ryder and Andreas Zeller, editors, ISSTA, pages 121–130.

ACM, 2008.

[36] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes.

Ensemble selection from libraries of models, 2004.

[37] Pierre Caserta and Olivier Zendra. Visualization of the static aspects of

software: A survey. IEEE Trans. Vis. Comput. Graph., 17(7):913–933, 2011.

[38] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-

nifer Widom. Change detection in hierarchically structured information. In

H. V. Jagadish and Inderpal Singh Mumick, editors, SIGMOD Conference,

pages 493–504. ACM Press, 1996.

[39] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip

Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Ar-

tif. Intell. Res. (JAIR), 16:321–357, 2002.

[40] Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and Gillian Z. Heller.

Open-source change logs. Empirical Software Engineering., 9(3):197–210, 2004.

[41] Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker. Shared

information and program plagiarism detection. IEEE Transactions on Infor-

mation Theory, 50(7):1545–1551, 2004.

[42] Michel Chilowicz, Étienne Duris, and Gilles Roussel. Finding similarities

in source code through factorization. Electronic Notes in Theoretical Computer

Science, 238(5):47–62, 2009.

BIBLIOGRAPHY 331

[43] Kenneth Ward Church and Jonathan Isaac Helfman. Dotplot: A program

for exploring self-similarity in millions of lines of text and code. Computing

Science and Statistics, 24:58, 1993.

[44] Victor Ciesielski, Brian T. Lam, and Minh Luan Nguyen. Comparison of

evolutionary and conventional feature extraction methods for malt classifi-

cation. In IEEE Congress on Evolutionary Computation, pages 1–7. IEEE, 2012.

[45] David A. Cieslak and Nitesh V. Chawla. Learning decision trees for un-

balanced data. In Walter Daelemans, Bart Goethals, and Katharina Morik,

editors, ECML/PKDD (1), volume 5211 of Lecture Notes in Computer Science,

pages 241–256. Springer, 2008.

[46] Daoud Clarke, Peter Lane, and Paul Hender. Developing robust models for

favourability analysis. In Proceedings of the 2nd Workshop on Computational

Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011), pages 44–52,

Portland, Oregon, June 2011. Association for Computational Linguistics.

[47] Paul Clough. Old and new challenges in automatic plagiarism detection. In

National Plagiarism Advisory Service, 2003; http://ir.shef.ac.uk/cloughie/index.html,

pages 391–407, 2003.

[48] William W. Cohen. Fast effective rule induction. In ICML, pages 115–123,

1995.

[49] Stephen Cook, Keiichi Nakata, and Paul Wernick. European laboratory for

software evolution (else): Vision statement. In Automated Software Engi-

neering Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International

Conference on, pages 92–95. IEEE, 2008.

[50] James R. Cordy and Chanchal K. Roy. The NiCad clone detector. In Susan E.

Sim and Filippo Ricca, editors, ICPC, pages 219–220. IEEE Computer Society,

2011.

[51] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and

Rainer Koschke. A systematic survey of program comprehension through

dynamic analysis. IEEE Trans. on Software Engineering, 35(5):684–702, 2009.

[52] Georgina Cosma. An approach to source-code plagiarism detection and inves-

tigation using Latent Semantic Analysis. PhD thesis, University of Warwick,

2008.

[53] UCL Crest SBSE Group. Search Based Software Engineering Repository.

http://crestweb.cs.ucl.ac.uk/resources/sbse repository/repository.html.

332 BIBLIOGRAPHY

[54] Davor Cubranic and Gail C. Murphy. Automatic bug triage using text cat-

egorization. In SEKE ’04: Proceedings of the 16th International Conference on

Software Engineering & Knowledge Engineering, pages 92–97, 2004.

[55] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive

changes for framework evolution. In Schäfer et al. [209], pages 481–490.

[56] Barthélémy Dagenais and Martin P. Robillard. Semdiff: Analysis and recom-

mendation support for API evolution. In Fickas et al. [75], pages 599–602.

[57] Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger.

Analysing software repositories to understand software evolution. In Mens

and Demeyer [167], pages 37–67.

[58] Neil Davey, Paul Barson, Simon Field, and Ray Frank. The development of

a software clone detector. International Journal of Applied Software Technology,

1(3/4):219–236, 1995.

[59] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.

Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.

Journal of the American Society of Information Science, 41(6):391–407, 1990.

[60] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refac-

torings via change metrics. In OOPSLA ’00: Proceedings of the 15th ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 166–177, New York, NY, USA, 2000. ACM.

[61] Lee R. Dice. Measures of the amount of ecologic association between species.

Ecology, 26(3):297–302, 1945.

[62] Thomas G. Dietterich. Ensemble learning. In M.A. Arbib, editor, The Hand-

book of Brain Theory and Neural Networks, Second edition. The MIT Press, Cam-

bridge, MA, 2002.

[63] Diff - The linux diff utility:. http://www.gnu.org/software/diffutils/.

[64] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Auto-

mated detection of refactorings in evolving components. In Dave Thomas,

editor, ECOOP, volume 4067 of Lecture Notes in Computer Science, pages 404–

428. Springer, 2006.

[65] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On the effec-

tiveness of clone detection by string matching: Research articles. Journal of

Software Maintenance and Evolution, 18(1):37–58, 2006.

BIBLIOGRAPHY 333

[66] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language inde-

pendent approach for detecting duplicated code. In Hongji Yang and Lee

White, editors, ICSM ’99: Proceedings of the 15th IEEE International Conference

on Software Maintenance, pages 109–118. IEEE, 1999.

[67] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding program

comprehension by static and dynamic feature analysis. In ICSM ’01: Proceed-

ings of the 17th IEEE International Conference on Software Maintenance, pages

602–611, 2001.

[68] Emelie Engström, Mats Skoglund, and Per Runeson. Empirical evaluations

of regression test selection techniques: a systematic review. In H. Dieter

Rombach, Sebastian G. Elbaum, and Jürgen Münch, editors, ESEM, pages

22–31. ACM, 2008.

[69] Seyda Ertekin, Jian Huang, Léon Bottou, and C. Lee Giles. Learning on the

border: active learning in imbalanced data classification. In Mário J. Silva,

Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness,

Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors, CIKM,

pages 127–136. ACM, 2007.

[70] Pedro G. Espejo, Sebastián Ventura, and Francisco Herrera. A survey on the

application of genetic programming to classification. IEEE Transactions on

Systems, Man, and Cybernetics, Part C, 40(2):121–144, 2010.

[71] Jinan A. W. Faidhi and Stuart K. Robinson. An empirical approach for

detecting program similarity within a university programming environment.

Computers and Education, 11(1):11–19, 1987.

[72] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From

data mining to knowledge discovery in databases. AI Magazine, 17(3):37–54,

1996.

[73] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program de-

pendence graph and its use in optimization. In Manfred Paul and Bernard

Robinet, editors, Symposium on Programming, volume 167 of Lecture Notes in

Computer Science, pages 125–132. Springer, 1984.

[74] Stephen Few. Data Visualization for Human Perception. The Interaction Design

Foundation, Aarhus, Denmark, 2010.

334 BIBLIOGRAPHY

[75] Stephen Fickas, Joanne M. Atlee, and Paola Inverardi, editors. 31st In-

ternational Conference on Software Engineering, ICSE 2009, May 16-24, 2009,

Vancouver, Canada, Proceedings. IEEE, 2009.

[76] Beat Fluri, Emanuel Giger, and Harald Gall. Discovering patterns of change

types. In Automated Software Engineering, pages 463–466. IEEE, 2008.

[77] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change

distilling:tree differencing for fine-grained source code change extraction.

IEEE Transactions on Software Engineering, 33(11):725–743, 2007.

[78] Martin Fowler. Refactoring: Improving the design of existing code. Addison-

Wesley, Reading, MA, USA., 1999.

[79] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[80] Eibe Frank, Geoffrey Holmes, Richard Kirkby, and Mark Hall. Racing com-

mittees for large datasets. In DS’02: Proceedings of the 5th Int’l. Conference on

Discovery Science, pages 153–164, London, UK, 2002. Springer-Verlag.

[81] Manuel Freire. Visualizing program similarity in the AC plagiarism detection

system. In Proceedings of Advanced Visual Interfaces (AVI), pages 404–407, New

York, USA, May 2008. ACM Press.

[82] Manuel Freire, Manuel Cebrián, and Emilio del Rosal. AC: An integrated

source code plagiarism detection environment. CoRR, abs/cs/0703136, 2007.

[83] Manuel Freire, Manuel Cebrian, and Emilio del Rosal. Uncovering plagia-

rism networks. arXiv:cs/0703136v7 [cs.IT], 2007, revised 2011.

[84] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. In EuroCOLT ’95: Proceedings

of the 2nd European Conference on Computational Learning Theory, pages 23–37,

London, UK, 1995. Springer-Verlag.

[85] Jerome Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:

a statistical view of boosting, 1998.

[86] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in a visual

tool for distributed software development teams. In ICSE, pages 387–396.

IEEE Computer Society, 2004.

[87] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of seman-

tic clones. In Schäfer et al. [209], pages 321–330.

BIBLIOGRAPHY 335

[88] Tudor Gı̂rba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and Raţiu

Daniel. Using concept analysis to detect co-change patterns. In IWPSE ’07:

9th International Workshop on Principles of Software Evolution, pages 83–89,

New York, NY, USA, 2007. ACM.

[89] David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in

computer programs. In Jane Prey and Robert E. Noonan, editors, SIGCSE,

pages 266–270. ACM, 1999.

[90] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging

and splitting of source code entities. IEEE Transactions on Software Engineering,

31(2):166–181, 2005.

[91] Carsten Görg and Peter Weißgerber. Detecting and visualizing refactorings

from software archives. In IWPC ’05: Proceedings of the 13th IEEE Int’l.

Workshop on Program Comprehension, pages 205–214. IEEE Computer Society,

2005.

[92] Pam Green. Ferret density analysis tool. http://homepages.feis.herts.ac.uk/

∼gp2ag/density.html, 2010.

[93] Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Building

classifiers to identify split files. In Petra Perner, editor, MLDM Posters, pages

1–8. IBaI Publishing, 2009.

[94] Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz.

Analysing Ferret XML reports to estimate the density of copied code. Tech-

nical Report 501, University of Hertfordshire, College Lane, Hatfield, Herts

AL10 9AB, UK, April 2010.

[95] Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Selecting

features in origin analysis. In Max Bramer, Miltos Petridis, and Adrian

Hopgood, editors, SGAI Conference, pages 379–392. Springer, 2010.

[96] Pam Green, Peter C. R. Lane, Austen Rainer, and Sven-Bodo Scholz. Un-

scrambling code clones for one-to-one matching of duplicated code. Tech-

nical Report 502, University of Hertfordshire, College Lane, Hatfield, Herts

AL10 9AB, UK, April 2010.

[97] Pam Green, Peter C. R. Lane, Austen Rainer, Sven-Bodo Scholz, and

Steve Bennett. Same difference: Detecting collusion by finding unusual

336 BIBLIOGRAPHY

shared elements. In Proceedings of the 5th International Plagiarism Con-

ference, Newcastle-upon-Tyne, UK, July 2012. iParadigms, iParadigms.

http://archive.plagiarismadvice.org//conference-programme.

[98] Isabelle Guyon and Andre Elisseeff. Feature extraction: Foundations and ap-

plications, volume 978-3540354871 of Studies in fuzziness and soft computing,

chapter An Introduction to Feature Extraction. Springer-Verlag, New York,

Secaucus, NJ, USA, August 2006.

[99] Jurriaan Hage, Peter Rademaker, and Nike van Vugt. A comparison of plagia-

rism detection tools. Technical Report UU-CS-2010-015, Utrecht University,

June 2010. Further information from http://www.cs.uu.nl/docs/ vakken/a-

pa/10plagiarismdetection.pdf.

[100] Maria Halkidi, Diomidis Spinellis, George Tsatsaronis, and Michalis Vazir-

giannis. Data mining in software engineering. Intelligent Data Analysis,

15(3):413–441, 2011.

[101] Mark A. Hall. Correlation-based Feature Subset Selection for Machine Learning.

PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[102] Mark A. Hall. Weka forum advice. http://comments.gmane.org/gmane

.comp.ai.weka/10582, August 2007.

[103] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

[104] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data

Mining. MIT Press, Cambridge, MA, 2001.

[105] Simon Harris. Simian. http://www.redhillconsulting.com.au/products/

simian. Copyright (c) 2003-08 RedHill Consulting Pty. Ltd.

[106] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In

NIPS ’97: Proceedings of the 1997 conference on Advances in neural information

processing systems 10, pages 507–513, Cambridge, MA, USA, 1998. MIT Press.

[107] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. Knowl-

edge and Data Engineering, IEEE Transactions on, 21(9):1263–1284, Sept. 2009.

[108] Abram Hindle, Daniel M. Germán, Michael W. Godfrey, and Richard C.

Holt. Automatic classification of large changes into maintenance categories.

In ICPC ’09: IEEE 17th International Conference on Program Comprehension,

pages 30–39. IEEE Computer Society, 2009.

BIBLIOGRAPHY 337

[109] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[110] Timothy C. Hoad and Justin Zobel. Methods for identifying versioned and

plagiarized documents. Journal of the American Society for Information Science

and Technology, 54(3):203–215, 2003.

[111] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to

support vector classification, 2000.

[112] Liuliu Huang, Shumin Shi, and Heyan Huang. A new method for code

similarity detection. In Progress in Informatics and Computing (PIC), 2010

IEEE International Conference on, volume 2, pages 1015–1018, dec. 2010.

[113] Paul Jaccard. Étude comparative de la distribution florale dans une portion

des alpes et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles,

37:547–579, 1901.

[114] Ameera Jadalla and Ashraf Elnagar. PDE4Java: Plagiarism detection engine

for Java source code: a clustering approach. IJBIDM, 3(2):121–135, 2008.

[115] Jeong-Hoon Ji, Soo-Hyun Park, Gyun Woo, and Hwan-Gue Cho. Source

code similarity detection using adaptive local alignment of keywords. In

David S. Munro, Hong Shen, Quan Z. Sheng, Henry Detmold, Katrina E.

Falkner, Cruz Izu, Paul D. Coddington, Bradley Alexander, and Si-Qing

Zheng, editors, PDCAT, pages 179–180. IEEE Computer Society, 2007.

[116] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.

DECKARD: Scalable and accurate tree-based detection of code clones. In

ICSE ’07: Proceedings of the 29th International Conference on Software Engineer-

ing, pages 96–105, Washington, DC, USA, 2007. IEEE Computer Society.

[117] Edward L. Jones. Metrics based plagiarism monitoring. Journal of Computing

Sciences in Colleges, 16(4):253–261, 2001.

[118] Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic

model of information retrieval: development and comparative experiments -

parts 1 and 2. Information Processing and Management, 36(6):779–808, 809–840,

2000.

[119] Mike Joy, Georgina Cosma, Jane Yau, and Jane Sinclair. Source code plagia-

rism - a student perspective. IEEE Trans. Education, 54(1):125–132, 2011.

338 BIBLIOGRAPHY

[120] Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE

Transactions on Education, 42(1):129–133, 1999.

[121] Elmar Jüergens, Florian Deissenboeck, and Benjamin Hummel. CloneDetec-

tive - a workbench for clone detection research. In Fickas et al. [75], pages

603–606.

[122] Vedran Juricic. Detecting source code similarity using low-level languages.

In Information Technology Interfaces (ITI), Proceedings of the ITI 2011 33rd Inter-

national Conference on, pages 597 –602, June 2011.

[123] Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and

taxonomy of approaches for mining software repositories in the context of

software evolution. Journal of Software Maintenance, 19(2):77–131, 2007.

[124] Toshihiro Kamiya. AIST CCFinder official site. http://www.ccfinder.net/in-

dex.html.

[125] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a mul-

tilinguistic token-based code clone detection system for large scale source

code. IEEE Transactions on Software Engineering, 28(7):654–670, 2002.

[126] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-

provements to Platt’s SMO algorithm for SVM classifier design. Neural

Computation, 13(3):637–649, 2001.

[127] Miryung Kim and David Notkin. Program element matching for multi-

version program analyses. In MSR ’06: Proceedings of the 2006 International

Workshop on Mining Software Repositories, pages 58–64, New York, NY, USA,

2006. ACM.

[128] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference

of structural changes for matching across program versions. In ICSE ’07:

Proceedings of the 29th International Conference on Software Engineering, pages

333–343, Washington, DC, USA, 2007. IEEE Computer Society.

[129] Sunghun Kim, E. James Whitehead Jr., and Yi Zhang 0001. Classifying

software changes: Clean or buggy? IEEE Transactions on Software Engineering,

34(2):181–196, 2008.

[130] Sunghun Kim, Kai Pan, and E. James Whitehead Jr. When functions change

their names: Automatic detection of origin relationships. In WCRE ’05:

Proceedings of the 12th Working Conference on Reverse Engineering, pages 143–

152, Pittsburgh, PA, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 339

[131] Rob Kitchin and Martin Dodge. Code/Space: Software and Everyday Life. MIT

Press, Cambridge MA, 2011.

[132] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combin-

ing classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(3):226–239, 1998.

[133] Patrick Knab, Martin Pinzger, and Abraham Bernstein. Predicting defect

densities in source code files with decision tree learners. In MSR ’06: Pro-

ceedings of the 2006 International Workshop on Mining Software Repositories,

New York, NY, USA, May 2006. ACM Press, ACM Press.

[134] Raghavan Komondoor and Susan Horwitz. Using slicing to identify dupli-

cation in source code. Lecture Notes in Computer Science, 2126:40–56, 2001.

[135] Kostas Kontogiannis. Evaluation experiments on the detection of program-

ming patterns using software metrics. In WCRE ’97: Proceedings of the 4th

Working Conference on Reverse Engineering, pages 44–, 1997.

[136] Kostas A. Kontogiannis, Renato De Mori, Ettore Merlo, M. Galler, and Mor-

ris Bernstein. Pattern matching for clone and concept detection. Reverse

engineering, pages 77–108, 1996.

[137] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using

abstract syntax suffix trees. In Basili and Briand [15], pages 253–262.

[138] Yasemin Kösker, Burak Turhan, and Ayse Basar Bener. An expert system for

determining candidate software classes for refactoring. Expert Systems with

Applications, 36(6):10000–10003, 2009.

[139] Jens Krinke. Identifying similar code with program dependence graphs. In

Proc. Eighth Working Conference on Reverse Engineering, pages 301–309, 2001.

[140] Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced

training sets: One-sided selection. In Douglas H. Fisher, editor, ICML, pages

179–186. Morgan Kaufmann, 1997.

[141] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley-Interscience, 2004.

[142] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals. Pre-

dicting the severity of a reported bug. In Jim Whitehead and Thomas Zim-

mermann, editors, MSR, pages 1–10. IEEE, 2010.

340 BIBLIOGRAPHY

[143] Thomas Lancaster. Effective and Efficient Plagiarism Detection. PhD thesis,

Birmingham City University, Birmingham, UK, 2003.

[144] Thomas Lancaster and Mark Tetlow. Does automated anti-plagiarism have

to be complex? Evaluating more appropriate software metrics for finding

collusion. In Ascilite 2005, pages 361–370, Brisbane, Australia, 2005. Ascilite

2005.

[145] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine

Learning, 59(1-2):161–205, 2005.

[146] Peter C. R. Lane, Caroline M. Lyon, and James A. Malcolm. Demonstration

of the Ferret plagiarism detector. In 2nd Int’l. Plagiarism Conference, 2006.

[147] Hugh Leather, Edwin V. Bonilla, and Michael F. P. O’Boyle. Automatic

feature generation for machine learning based optimizing compilation. In

CGO, pages 81–91. IEEE Computer Society, 2009.

[148] M. M. Lehman. Laws of software evolution revisited. In Carlo Montangero,

editor, EWSPT, volume 1149 of Lecture Notes in Computer Science, pages 108–

124. Springer, 1996.

[149] Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting im-

plicit programming rules and detecting violations in large software code. In

ESEC/FSE-13: Proceedings of the 10th European software engineering conference

held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering, pages 306–315, New York, NY, USA, 2005. ACM.

[150] Christian Lindig. Mining patterns and violations using concept analysis.

http://www.st.cs.uni-sb.de/lindig/papers, 2007.

[151] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: detection of

software plagiarism by program dependence graph analysis. In Tina Eliassi-

Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD,

pages 872–881. ACM, 2006.

[152] Wei Zhong Liu, Allan P. White, Simon G. Thompson, and Max A. Bramer.

Techniques for dealing with missing values in classification. In Xiaohui Liu,

Paul R. Cohen, and Michael R. Berthold, editors, IDA, volume 1280 of Lecture

Notes in Computer Science, pages 527–536. Springer, 1997.

[153] V. Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding com-

mon error patterns by mining software revision histories. In 13th ACM

BIBLIOGRAPHY 341

SIGSOFT International Symposium on the Foundations of Software Engineering,

pages 296–305. ACM Press, 2005.

[154] Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. Experiments in

electronic plagiarism detection. Technical Report 388, University of Hert-

fordshire, 2003. http://hdl.handle.net/2299/1774.

[155] Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. A theoretical basis

to the automated detection of copying between texts, and its practical im-

plementation in the Ferret plagiarism and collusion detector. In JISC(UK)

Conference on Plagiarism: Prevention, Practice and Policies Conference, 2004.

[156] Caroline M. Lyon, Ruth Barrett, and James A. Malcolm. Plagiarism is easy,

but also easy to detect. Plagiary: Cross-disciplinary studies in plagiarism, fabri-

cation and falsification, 1:1–10, 2006.

[157] Caroline M. Lyon, James A. Malcolm, and Bob Dickerson. Detecting short

passages of similar text in large document collections. In Proceedings of Con-

ference on Empirical Methods in Natural Language Processing. SIGDAT, Special

Interest Group of the ACL, 2001.

[158] James A. Malcolm and Peter C. R. Lane. An approach to detecting article

spinning. In 3rd International Conference on Plagiarism, 2008.

[159] Jonathan I. Maletic and Andrian Marcus. Supporting program comprehen-

sion using semantic and structural information. In ICSE ’01: Proceedings

of the 23rd International Conference on Software Engineering, pages 103–112,

Washington, DC, USA, 2001. IEEE Computer Society.

[160] Udi Manber. Finding similar files in a large file system. In USENIX Winter,

pages 1–10, 1994.

[161] Heikki Mannila. Data mining: Machine learning, statistics, and databases.

In Per Svensson and James C. French, editors, SSDBM, pages 2–9. IEEE

Computer Society, 1996.

[162] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Nat-

ural Language Processing. The MIT Press, Cambridge, MA, USA, 2001.

[163] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept

clones in source code. In ASE, pages 107–114. IEEE Computer Society, 2001.

[164] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman

& Hall/CRC, 1st edition, 2009.

342 BIBLIOGRAPHY

[165] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the au-

tomatic detection of function clones in a software system using metrics. In

ICSM, pages 244–253, 1996.

[166] Prem Melville and Raymond J. Mooney. Constructing diverse classifier

ensembles using artificial training examples. In Georg Gottlob and Toby

Walsh, editors, IJCAI, pages 505–512. Morgan Kaufmann, 2003.

[167] Tom Mens and Serge Demeyer, editors. Software Evolution. Springer, 2008.

[168] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans-

actions on Software Engineering, 30(2):126–139, 2004.

[169] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters,

and Burak Turhan. The PROMISE repository of empirical software engineer-

ing data. http://promisedata.googlecode.com, June 2012.

[170] Ettore Merlo. Detection of plagiarism in university projects using metrics-

based spectral similarity. In Rainer Koschke, Ettore Merlo, and Andrew

Walenstein, editors, Duplication, Redundancy, and Similarity in Software, vol-

ume 06301 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,

2006.

[171] Thomas M. Mitchell. Machine Learning. McGraw-Hill Higher Education,

1997.

[172] Tom M. Mitchell. The discipline of machine learning. Machine Learning

CMU-ML-06-108, Carnegie Mellon University, July 2006.

[173] Lefteris Moussiades and Athena Vakali. PDetect: A clustering approach for

detecting plagiarism in source code datasets. The Computer Journal, 48(6):651–

661, 2005.

[174] Maxim Mozgovoy. Enhancing Computer-Aided Plagiarism Detection. PhD

thesis, Department of Computer Science, University of Joensuu, University

of Joensuu, P.O.Box 111, FIN-80101 Joensuu, Finland, November 2007.

[175] Maxim Mozgovoy, Kimmo Fredriksson, Daniel R. White, Mike Joy, and

Erkki Sutinen. Fast plagiarism detection system. In Mariano P. Consens and

Gonzalo Navarro, editors, SPIRE, volume 3772 of Lecture Notes in Computer

Science, pages 267–270. Springer, 2005.

BIBLIOGRAPHY 343

[176] Emerson Murphy-Hill, Andrew P. Black, Danny Dig, and Chris Parnin.

Gathering refactoring data: a comparison of four methods. In Proceedings of

the 2nd Workshop on Refactoring Tools, WRT ’08, pages 7:1–7:5, New York, NY,

USA, 2008. ACM.

[177] Sandra Nadelson. Academic misconduct by university students: Faculty

perceptions and responses. Plagiary: Cross Disciplinary Studies in Plagiarism,

Fabrication, and Falsification, 2(2), 2007.

[178] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to

predict component failures. In ICSE ’06: Proceeding of the 28th Int’l. Conference

on Software Engineering, pages 452–461, New York, NY, USA, 2006. ACM.

[179] Iulian Neamtiu, Jeffrey S. Foster, and Michael W. Hicks. Understanding

source code evolution using abstract syntax tree matching. In MSR. ACM,

2005.

[180] Nils J. Nilsson. Introduction to machine learning: An early draft proposed

textbook. http://robotics.stanford.edu/people/nilsson/mlbook.html, 1998.

[181] Seo-Young Noh, Sangwoo Kim, and Cheonyoung Jung. A lightweight pro-

gram similarity detection model using XML and Levenshtein distance. In

Hamid R. Arabnia, editor, FECS, pages 3–9. CSREA Press, 2006.

[182] University of Alabama. Code clones literature. http://students.cis.uab.edu/

tairasr/clones/literature/#standalone.

[183] Sourceforge open source software repository. http://sourceforge.net/, 1998.

[184] François Pachet and Pierre Roy. Analytical features: A knowledge-based

approach to audio feature generation. EURASIP J. Audio, Speech and Music

Processing, 2009, 2009.

[185] Frank Padberg, Thomas Ragg, and Ralf Schoknecht. Using machine learning

for estimating the defect content after an inspection. IEEE Transactions on

Software Engineering, 30(1):17–28, 2004.

[186] Kai Pan, Sunghun Kim, and Jr. E. James Whitehead. Bug classification

using program slicing metrics. In SCAM ’06: Proceedings of the Sixth IEEE

International Workshop on Source Code Analysis and Manipulation, pages 31–42,

Washington, DC, USA, 2006. IEEE Computer Society.

[187] Chris Parnin and Carsten Görg. Improving change descriptions with change

contexts. In Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey,

editors, MSR, pages 51–60. ACM, 2008.

344 BIBLIOGRAPHY

[188] J. Platt. Fast Training of Support Vector Machines using Sequential Minimal Op-

timization, chapter Advances in Kernel Methods - Support Vector Learning.

MIT Press, Cambridge, MA, USA, 1999. pp. 185–208.

[189] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms

among a set of programs with JPlag. The Journal of Universal Computer Science,

8(11):1016–1038, 2002.

[190] NASA Metrics Data Program. NASA software metrics dataset. http://mdp.

ivv.nasa.gov.

[191] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[192] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[193] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report

TR-15-81, Center for Research in Computing Technology, Harvard Univer-

sity, 1981.

[194] Austen W. Rainer, Peter C. R. Lane, James A. Malcolm, and Sven-Bodo

Scholz. Using n-grams to rapidly characterise the evolution of software

code. In The 4th International ERCIM Workshop on Software Evolution and

Evolvability, 2008.

[195] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-

sensitive inference of function precedence protocols. In ICSE ’07: Proceedings

of the 29th International Conference on Software Engineering, pages 240–250,

Washington, DC, USA, 2007. IEEE Computer Society.

[196] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Static

specification inference using predicate mining. SIGPLAN Notices, 42(6):123–

134, 2007.

[197] Jacek Ratzinger, Thomas Sigmund, Peter Vorburger, and Harald Gall. Mining

software evolution to predict refactoring. Empirical Software Engineering and

Measurement, International Symposium on, 0:354–363, 2007.

[198] Evandro N. Regolin, Gustavo A. de Souza, Aurora R. T. Pozo, and Silvia R.

Vergilio. Exploring machine learning techniques for software size estimation.

In SCCC ’03: Proceedings of the 23rd International Conference of the Chilean Com-

puter Science Society, page 130, Washington, DC, USA, 2003. IEEE Computer

Society.

BIBLIOGRAPHY 345

[199] Randy L. Ribler and Marc Abrams. Using visualization to detect plagiarism

in computer science classes. In INFOVIS, pages 173–178, 2000.

[200] Claudio Riva. Visualizing software release histories with 3DSoftVis. In ICSE,

page 789, 2000.

[201] Roland Rivest. The MD5 Message-Digest algorithm. http://tools.ietf.org/pdf/

rfc1321.pdf, April 1992.

[202] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-

Beaulieu, and Mike Gatford. Okapi at TREC-3. In TREC, pages 109–126,

1994.

[203] Juan J. Rodriguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation

Forest: A new classifier ensemble method. IEEE Transactions Pattern Analysis

and Machine Intelligence, 28(10):1619–1630, 2006.

[204] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. Comparison

and evaluation of code clone detection techniques and tools: A qualitative

approach. Science of Computer Programming, 74(7):470–495, 2009.

[205] David E. Rumelhart and James L. McClelland. Parallel distributed processing,

2 vols. MIT Press, 1986. Explorations in the microstructure of cognition;

Vol.1: Foundations; Vol.2: Psychological and biological models.

[206] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513–523, 1988.

[207] Arthur L. Samuel. Informal quote. Reported by Andrew Y. Ng, In The Moti-

vation and Applications of Machine Learning, Video Lecture from the Stan-

ford Engineering Everywhere Series., May 2009. http://videolectures.net/

stanfordcs229f08 ng lec01/.

[208] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage

changes from instantiation code. In Schäfer et al. [209], pages 471–480.

[209] Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors. 30th Inter-

national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May

10-18, 2008. ACM, 2008.

[210] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local

algorithms for document fingerprinting. In SIGMOD ’03: Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data, pages

76–85, New York, NY, USA, 2003. ACM.

346 BIBLIOGRAPHY

[211] Alexander K. Seewald. How to make stacking better and faster while also

taking care of an unknown weakness. In ICML ’02: Proceedings of the 19th

International Conference on Machine Learning, pages 554–561, San Francisco,

CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[212] Alexander K. Seewald and Johannes Fürnkranz. An evaluation of grad-

ing classifiers. In IDA ’01: Proceedings of the 4th International Conference

on Advances in Intelligent Data Analysis, pages 115–124, London, UK, 2001.

Springer-Verlag.

[213] Burr Settles. Active learning literature survey. Computer Sciences Technical

Report 1648, University of Wisconsin–Madison, 2009.

[214] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal

estimated sub-gradient solver for SVM. In Zoubin Ghahramani, editor,

ICML, volume 227 of ACM International Conference Proceeding Series, pages

807–814. ACM, 2007.

[215] Victor S. Sheng and Charles X. Ling. Cost-sensitive learning. In John

Wang, editor, Encyclopedia of Data Warehousing and Mining, pages 339–345.

IGI Global, 2009.

[216] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. An empirical study on

evolution of API documentation. In Dimitra Giannakopoulou and Fernando

Orejas, editors, FASE, volume 6603 of Lecture Notes in Computer Science, pages

416–431. Springer, 2011.

[217] Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan Matwin. Mining

the maintenance history of a legacy software system. In ICSM ’03: Proceedings

of the International Conference on Software Maintenance, page 95, Washington,

DC, USA, 2003. IEEE Computer Society.

[218] Shivkumar Shivaji, E. James Whitehead Jr., Ram Akella, and Sunghun Kim.

Reducing features to improve bug prediction. In ASE, pages 600–604. IEEE

Computer Society, 2009.

[219] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do

changes induce fixes? In MSR ’05: Proceedings of the 2005 International

Workshop on Mining Software Repositories, pages 1–5, New York, NY, USA,

2005. ACM.

[220] Temple F. Smith and Michael S. Waterman. Identification of common molec-

ular subsequences. Journal of Molecular Biology, 147:195–197, 1981.

BIBLIOGRAPHY 347

[221] Jeong Woo Son, Seong-Bae Park, and Se-Young Park. Program plagiarism

detection using parse tree kernels. In Qiang Yang and Geoffrey I. Webb,

editors, PRICAI, volume 4099 of Lecture Notes in Computer Science, pages

1000–1004. Springer, 2006.

[222] Dejan Sraka and Branko Kaucic. Source code plagiarism. In Vesna Luzar-

Stiffler, Iva Jarec, and Zoran Bekic, editors, ITI, pages 461–466. IEEE, 2009.

[223] Tomasz F. Stepinski, Michael P. Mendenhall, and Brian D. Bue. Machine

cataloging of impact craters on mars. Icarus, 203(1):77–87, 2009.

[224] Maureen Stone. Choosing colors for data visualization. Business In-

telligence Network http://72.251.211.178/articles/b-eye/choosing_

colors.pdf, January 2006. Accessed January 2012.

[225] Margaret-Anne D. Storey, Davor Cubranic, and Daniel M. Germán. On the

use of visualization to support awareness of human activities in software

development: a survey and a framework. In Thomas L. Naps and Wim De

Pauw, editors, SOFTVIS, pages 193–202. ACM, 2005.

[226] Herbert A. Sturges. The Choice of a Class Interval. Journal of the American

Statistical Association, 21(153):65–66, Mar 1926.

[227] Marc Sumner, Eibe Frank, and Mark A. Hall. Speeding up logistic model tree

induction. In 9th European Conference on Principles and Practice of Knowledge

Discovery in Databases, Porto, Portugal, pages 675–683. Springer, 2005.

[228] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-

duction. IEEE Transactions on Neural Networks, 9(5):1054–1054, 1998.

[229] Robert Tairas and JeffGray. Phoenix-based clone detection using suffix trees.

In ACM Southeast Regional Conference, pages 679–684, 2006.

[230] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment:

bugs or bad comments?*/. In SOSP ’07: Proceedings of 21st ACM SIGOPS

Symposium on Operating Systems Principles, pages 145–158, New York, NY,

USA, 2007. ACM.

[231] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How

do software engineers understand code changes?: an exploratory study in

industry. In Will Tracz, Martin P. Robillard, and Tevfik Bultan, editors,

SIGSOFT FSE, page 51. ACM, 2012.

348 BIBLIOGRAPHY

[232] Suresh Thummalapenta and Tao Xie. NEGWeb: Static defect detection via

searching billions of lines of open source code. Technical Report TR-2007-24,

North Carolina State University Department of Computer Science, Raleigh,

NC, August 2007.

[233] Suresh Thummalapenta and Tao Xie. Alattin: mining alternative patterns for

defect detection. ASE ’11: Proceedings of the 26th IEEE International Conference

on Automated Software Engineering, 18(3-4):293–323, 2011.

[234] Kai Ming Ting and Ian H. Witten. Stacking bagged and dagged models.

In Proc. 14th International Conference on Machine Learning, pages 367–375.

Morgan Kaufmann, 1997.

[235] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. Journal

of Artificial Intelligence Research, 10:271–289, 1999.

[236] Qiang Tu. On navigation and analysis of software architecture evolution.

Master’s thesis, Mathematics and Computer Science, University of Waterloo,

Ontario, Canada, 2002.

[237] Qiang Tu and Michael W. Godfrey. An integrated approach for studying

architectural evolution. In IWPC ’02: Proceedings of the 10th Int’l. Workshop on

Program Comprehension, pages 127–136. IEEE Computer Society, 2002.

[238] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. On

detection of gapped code clones using gap locations. In APSEC ’02: Pro-

ceedings of the Ninth Asia-Pacific Software Engineering Conference, page 327,

Washington, DC, USA, 2002. IEEE Computer Society.

[239] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–

260, 1995.

[240] Stefan-Lucian Voinea. Software Evolution Visualization. PhD thesis, Technische

Universitat Eindhoven, 2007.

[241] Vera Wahler, Dietmar Seipel, Jürgen Wolff von Gudenberg, and Gregor Fis-

cher. Clone detection in source code by frequent itemset techniques. In

SCAM, pages 128–135, 2004.

[242] Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakho-

tia. Problems creating task-relevant clone detection reference data. Reverse

Engineering, Working Conference on, 0:285, 2003.

BIBLIOGRAPHY 349

[243] Geoffrey I. Webb. Multiboosting: A technique for combining boosting and

wagging. Machine Learning, 40(2):159–196, 2000.

[244] Peter Weißgerber. Automatic Refactoring Detection in Version Archives. PhD

thesis, Universitat Trier, 2009.

[245] Peter Weißgerber and Stephan Diehl. Identifying refactorings from source-

code changes. In ASE ’06: Proceedings of the 21st IEEE/ACM International

Conference on Automated Software Engineering, pages 231–240, Washington,

DC, USA, 2006. IEEE Computer Society.

[246] Michael J. Wise. Yap3: improved detection of similarities in computer pro-

gram and other texts. In John Impagliazzo, Elizabeth S. Adams, and Karl J.

Klee, editors, SIGCSE, pages 130–134. ACM, 1996.

[247] Ian H. Witten and Eibe Frank. Data mining: Practical machine learning tools

and techniques with Java implementations. Morgan Kaufman, San Francisco,

CA, USA, 2000. http://www.cs.waikato.ac.nz/ml/weka.

[248] David H. Wolpert. Stacked generalization. Neural Netw., 5(2):241–259, 1992.

[249] Gang Wu and Edward Y. Chang. Aligning boundary in kernel space for

learning imbalanced dataset. In ICDM, pages 265–272. IEEE Computer So-

ciety, 2004.

[250] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura:

a hybrid approach to identify framework evolution. In Jeff Kramer, Judith

Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors, ICSE ’10:

Proceedings of the 32nd International Conference on Software Engineering, pages

325–334. ACM, 2010.

[251] Zhenchang Xing and Eleni Stroulia. UMLDiff: an algorithm for object-

oriented design differencing. In David F. Redmiles, Thomas Ellman, and

Andrea Zisman, editors, ASE ’05: Proceedings of the 20th IEEE/ACM Int’l.

Conference on Automated Software Engineering, pages 54–65. ACM, 2005.

[252] Zhenchang Xing and Eleni Stroulia. Refactoring detection based on UMLDiff

change-facts queries. In Basili and Briand [15], pages 263–274.

[253] Hao Xiong, Haihua Yan, Zhoujun Li, and Hu Li. BUAA AntiPlagiarism:

A system to detect plagiarism for C source code. In International Conference

on Computational Intelligence and Software Engineering, CISE 2009., pages 1–5,

2009.

350 BIBLIOGRAPHY

[254] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.

Predicting source code changes by mining change history. IEEE Transactions

on Software Engineering, 30(9):574–586, 2004.

[255] Du Zhang and Jeffrey J. P. Tsai. Machine Learning Applications In Software

Engineering (Series on Software Engineering and Knowledge Engineering). World

Scientific Publishing Co., Inc., River Edge, NJ, USA, 2005.

[256] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report

1530, University of Wisconsin-Madison, December 2007.

[257] Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E. James White-

head Jr. Mining version archives for co-changed lines. In Stephan Diehl,

Harald Gall, and Ahmed E. Hassan, editors, MSR, pages 72–75. ACM, 2006.

[258] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger,

and Brendan Murphy. Cross-project defect prediction: a large scale experi-

ment on data vs. domain vs. process. In Hans van Vliet and Valérie Issarny,

editors, ESEC/SIGSOFT FSE, pages 91–100. ACM, 2009.

[259] Thomas Zimmermann, Nachiappan Nagappan, and Andreas Zeller. Pre-

dicting bugs from history. In Mens and Demeyer [167], pages 69–88.

[260] Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas

Zeller. Mining version histories to guide software changes. In ICSE ’04:

Proceedings of the 26th International Conference on Software Engineering, pages

563–572, Washington, DC, USA, 2004. IEEE Computer Society.

[261] Lijie Zou. Toward an improved understanding of software change. Master’s

thesis, Computer Science, Waterloo University, Ontario, 2003.

[262] Lijie Zou and Michael W. Godfrey. Detecting merging and splitting using

origin analysis. In Arie van Deursen, Eleni Stroulia, and Margaret-Anne D.

Storey, editors, WCRE, pages 146–154. IEEE Computer Society, 2003.

Appendix A

Similarity measures

In Chapter 2, methods for matching program code were discussed. This

appendix describes measures for computing the similarity of program code

elements. The measures are not exhaustive, but are selected because they are

mentioned in this dissertation, especially in the surveys in Chapters 2 and 3.

Measures on sequences can be applied to any type of element, such as

letters in a string, tokens in code, or words in a sentence. The example

measures in Table A.1 are based on the strings ‘nearest’ and ‘measure’.

The longest common substring (LCS) is the longest unbroken sequence

of elements shared by two sequences. The longest common subsequence

(LCSq. here, to differentiate) is the longest shared sequence which can be

obtained by deleting intervening elements.

The Hamming distance is the number of differences between sequences

of the same length. For two sequences s and t, the elements s1 and t1, s2

and t2, ... , sn and tn, are compared. The Hamming distance is the total

number of these pairs in which the elements differ.

The Levenshtein edit distance is computed by adding 1 for each change,

delete or insert operation performed to obtain a match between the two

sequences. Weighted versions of this distance, termed local alignment, are

also common, especially in string alignment, such as DNA sequencing,

and is also used to match source code. For example, Burrows et al. [34]

351

352 APPENDIX A. SIMILARITY MEASURES

Measure Description Example S/D

Longest common The longest consecutive sequence nearest
substring of elements shared by the sequences. measure

ea or re S 2

Longest common The longest sequence shared by nearest
subsequence the sequences which can be obtained measure

by deleting intervening elements. e a r e S 4

Hamming The number of differences between two nearest
distance sequences of the same length. measure

1001111 D 5

Levenshtein The edit distance between two sequences. nea--rest
distance (number of deletes, inserts, and changes) measure--

1 change (n/m)
+ 4 inserts (-) D 5

Sequence A weighted edit distance nea--rest
alignment For example, measure--

change = -1, 1 change = -1
insert/delete = 0, 4 inserts = 0
match = 1. 4 matches = +4 – 3

Table A.1: Similarity(S) or distance(D) measures, based on ‘nearest’ and ‘measure’

score matches as 1, inserts or deletes -2, and mismatches (changes) -3; or

Gitchell and Tran [89], allocate lower penalties to mismatched identifiers

than to other tokens, reasoning that identifier renaming is a likely disguise in

plagiarism. The deliberately simple example in Table A.1 scores mismatches

as -1, matches +1, and inserts or deletes 0. Alignment is usually performed

by considering a matrix of possible alignments produced by combining the

available operations [220], or an optimised method, e.g. BLAST [4].

S.Kim et al. [130] also use the measure LCSC, longest common subse-

quence count. Their LCSC similarity between two strings is defined as the

mean of the proportion of the longest common subsequence to each of the

sequence lengths, 1
2

[
LCSCAB
|A| +

LCSCAB
|B|
]
.

Compression distance measures, of which several variants exist, are also

used on sequences. The idea is that the more similar two files are, the

smaller will be the distance between the size of one compressed file and

the compression of a concatenation of the two files. Three variants are

reproduced here, where Cm means the size of the compressed file.

353

1. Freire et al.’s normalised compression distance [82]
Cm(ab) - min{Cm(a), Cm(b)}

max{Cm(a), Cm(b)}

2. Chen et al.’s conditional compression distance using their compres-

sion algorithm, TokenCompress [41]

1 − Cm(a)−Cm(a—b)
Cm(ab)

3. Lancaster and Tetlow’s compression based similarity measure [144]

100 × Cm(a)+Cm(b)
Cm(ab)+Cm(ba) − 1

Measures on sets or bags which are commonly used by the approaches

discussed in this dissertation are the Jaccard and Dice coefficients. The Dice

coefficient is twice the size of the set intersection divided by the sum of the

set sizes. The Jaccard coefficient is the size of the set intersection divided by

the size of the set union. Containment, a related measure, is the proportion

of a set which is shared by another. S.Kim et al. also use the measure ISC,

the intersecting ‘set’ count on the bag of letters which form a string. They

define ISC similarity as the mean of the proportion of the bag intersection

to each of the bag lengths.

Measure Description Example S/D

Sets Dice coefficient Set intersection size divided by {a, e, r, s, n, t}
the sum of the two set sizes {a, e, r, s, m, u}
2|A∩B|
|A|+|B|

2×4
6+6 S 0.67

Jaccard coefficient Set intersection size divided by {a, e, r, s, n, t}
the size of the set union {a, e, r, s, m, u}
|A∩B|
|A∪B|

4
8 S 0.5

Jaccard distance 1 minus the Jaccard coefficient 1 − 1
2 D 0.5

1 − |A
∩

B|
|A∪B| or |A

∪
B|−|A∩B|
|A∪B|

Containment (A in B) The amount of A in B {a, e, r, s, n, t}
|A∩B|
|A| {a, e, r, s, m, u}

4
6 S 0.67

Bags Intersecting ‘set’ The mean of the ratios {a, e, e, r, s, n, t}
count (ISC [130]) of intersection to file size {a, e, e, r, s, m, u}

1
2

[|A∩B|
|A| +

|A∩B|
|B|
]

5
7 S 0.71

Table A.2: Similarity (S) and distance (D) measures for sets, with examples based
on the sets, e.g. {a, e, n, r, s, t} or bags, e.g. {a, e, e, n, r, s, t}

354 APPENDIX A. SIMILARITY MEASURES

Measure Description Example

Manhattan distance Sum of the differences (a, e, i, l, m, r, s, t, u)
between pairs (1, 0, 2, 1, 1, 1, 1, 0, 0)

(1, 2, 0, 0, 1, 1, 1, 0, 1)
Σi|ai − bi| 0+2+2+1+0+0+0+0+1 6

Euclidean distance Root of the sum of squared (a, e, i, l, m, r, s, t, u)
differences between pairs (1, 0, 2, 1, 1, 1, 1, 0, 0)

(1, 2, 0, 0, 1, 1, 1, 0, 1)√
Σi(ai − bi)2

√
(0 + 4 + 4 + 1 + 0 + 0 + 0 + 0 + 1)

√
10

Cosine similarity The cosine between (a, e, i, l, m, r, s, t, u)
two vectors (1, 0, 2, 1, 1, 1, 1, 0, 0)

(1, 2, 0, 0, 1, 1, 1, 0, 1)
Σi(ai×bi)√
Σia2

i ×
√
Σib2

i

1+0+0+0+1+1+1+0+0√
(1+4+1+1+1+1)×

√
(1+4+1+1+1+1)

4
9

a.b for normalised vectors

Table A.3: Similarity measures for vectors. The examples are based on the (un-
weighted) frequency of the letters in the words ‘similar’ and ‘measure’.

Measures on frequency vectors of features in the code, such as words [6],

tokens [82], n-grams [9], keywords [58], tree nodes [116], and metrics [136,

170], are also used to measure similarity. Table A.3 shows 3 examples of

similarity measures on vectors, based on the frequency of the letters in the

words ‘similar’ and ‘measure’. A simple distance measure for 2 vectors

is the Manhattan or City Block distance, which is the sum of the absolute

differences between each pair of elements in the vectors. Another measure

is the Euclidean distance, the root of the sum of the squared differences

between the pairs of elements. The cosine measure has a value between 0,

dissimilar, and 1, identical, when the terms in the vectors are positive [6].

Weighting is used in some vector similarity measures, reflecting the

relative frequency with which each term appears in the document set, the

query document and the document to which it is compared. Burrows et

al. [34] and Arwin and Tahaghoghi [9] test several such measures, both

finding the BM25 ranking function [118, 202] most effective in plagiarism

detection in the tests.

Measures on trees: As previously discussed, trees are often transformed

into sequences or vectors. However, two approaches match trees more

355

directly. Baxter et al. [16] first try to find isomorphic subtrees, and then

similar subtrees, using a similarity measure which is like the Jaccard coeffi-

cient, where the shared nodes in two trees are divided by the total number of

nodes. Chawathe’s minimum conforming edit script [38] is based on an idea

like the weighted edit distance for sequences, but the operations are insert,

delete, move, update and align. Fluri et al.’s minimal tree edit script [77], is

an adaptation of Chawathe’s algorithm, to make it more suitable for code.

Measures on graphs: Graphs are matched in similar ways to trees, either

matching subgraphs directly, or by transforming the graphs into another

representation. Krinke [139] matches program dependency subgraphs for

clone detection, as do Liu et al. [151] to detect plagiarism. Gabel et al. [87]

transform a program dependency graph into vectors for matching.

356 APPENDIX A. SIMILARITY MEASURES

Appendix B

Classifiers

This appendix provides further information about classifier ensembles, in

particular those with the best results for the datasets in this research. The

motivation for combining classifiers is explained, along with methods of

combining them, and the ways in which diversity is introduced into classi-

fier ensembles are analysed.

B.1 Ensembles

Dietterich [62, p.3] states that “Learning algorithms that output only a single

hypothesis suffer from three problems that can be partly overcome by ensemble

methods: the statistical problem, the computational problem, and the represen-

tational problem.” These problems are caused respectively by difficulty in

selecting which of many equally suitable hypotheses are appropriate; diffi-

culty in finding the best hypothesis where local minima exist; and the lack

of a suitable function within the hypothesis space. In each case, a com-

bination of hypotheses can improve the outcome of the learning system.

Kuncheva [141] notes that although an ensemble may not improve on the

performance of a single classifier, experiments with ensembles have proved

their worth.

There are several ways to combine the classifiers in an ensemble. The

simplest is a vote-based system, using, for example, majority, weighted or

357

358 APPENDIX B. CLASSIFIERS

Algorithm Reference Data Features Parameters Classifiers

AdaBoost [84] X
Bagging [28] X
Dagging [234] X
Decorate [166] X
EnsembleSelection [36] X
Grading [212] X
LogitBoost [85] X
MultiBoostAB [243] X
RacedIncrementalLogitBoost [80] X
Random Forest [29] X X
RandomCommittee – X
RandomSubSpace [109] X
Rotation Forest [203] X X
Stacking [211, 235, 248] X
Voting [132, 141] X

Table B.1: Methods for introducing diversity in ensemble learners.

thresholded votes [132, 141]. These may be applied to absolute or probable

classifications from the ensemble members. Another way to combine the

classifiers is to use a learning algorithm to combine the outcomes of the

individual classifiers to best effect, for example, by Stacking [211, 235, 248].

The learning algorithms may combine the outputs from all of the classifiers,

or select one or more which are most effective in the region of the newly

presented instance by Grading [212].

Without diversity among the classifiers in an ensemble, there is un-

likely to be any advantage over a single classifier. Diversity can be in-

troduced in several ways: by combining a selection of different classifiers

(heterogenous), or, when building ensembles from one type of classifier (ho-

mogenous), the training data, the features or the parameters can be varied.

Table B.1 notes the aspect(s) varied in 15 classifier ensemble algorithms.

Other meta-learners provided by Weka fall into two main groups; those

which seek to optimise in some respect and those which manipulate data.

The first group aim to optimise either a specific measure, for example f-

measure; or take account of a user-defined cost function which can be

useful, for example, in medical diagnosis, where it is important not to miss

a positive case. The second group allows data to be used with classifiers

which would not otherwise be suitable, for example, multiclass problems

can be structured to use binary class classifiers.

B.2. SELECTED ALGORITHMS 359

B.2 Selected algorithms

Three classifiers have proved more successful than others in this research:

Rotation Forest [203], Random Forest [29] and Simple Logistic [145, 227].

Random Forest [29] uses bagged data sets to build an ensemble of ran-

dom decision trees, which are combined by voting. Bagging [28] creates

varied datasets, usually of the same size as the full dataset, by randomly

sampling with replacement. Random Trees are constructed by considering

a random selection of features at each node.

The Rotation Forest [203] algorithm randomly selects a subset of the

features, performing Principal Component Analysis (PCA) to give linear

combinations of the selected features rotated around the original axes. The

principal components are then used to build a tree and the process repeated

to create a forest.

Simple Logistic [227] models are built step by step. At each step, Log-

itBoost is used to optimise a simple logistic regression function for each

of the features, and the feature giving the smallest squared error is added.

To reduce complexity and prevent overfitting of the models, features are

added only if the performance on unseen examples in cross-validation is

improved. This method naturally results in feature selection.

360 APPENDIX B. CLASSIFIERS

Appendix C

Machine learning in software

engineering

Machine learning appears not to have been used in origin analysis before,

although, as discussed in Chapter 3, S.Kim et al. [130] use a statistical ap-

proach, along with exhaustive search, to combine measures in their system.

This section provides a brief review of the development of machine learning

in the more general area of software engineering. A selection of software

engineering applications using machine learning, in particular those related

to software evolution, are analysed in Table C.1 with the aim of ascertain-

ing whether there are pointers to suitable features, matching techniques, or

machine learning algorithms for use with software code.

In 2005, Zhang and Tsai published a survey on the use of machine learn-

ing in software engineering [255] covering the period from the mid-1980s

to 2002. This survey shows that most applications at the time were aimed

at predicting either aspects of development, such as cost and productiv-

ity; maintenance effort; or aspects of quality, such as defect prediction or

testability. These areas of research were in large part due to the public

availability of the NASA software defect and effort datasets [190], which

are now available at the Promise repository [169], along with other datasets

contributed by researchers in the field.

Automated search in software engineering, known as search-based soft-

361

362APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING

ware engineering (SBSE), is a growing area of research. This encompasses

applications using evolutionary methods of machine learning in many areas

of software engineering. A list of SBSE applications are held at the reposi-

tory maintained by the research group at University College London [53].

Open source software repositories have become accessible in recent

years, providing a large amount of data for analysis. Kagdi et al. [123] sur-

veyed work in mining software repositories to discover patterns in evolving

software (up to August 2006). Their survey identifies ten areas of research,

in many of which machine learning techniques have been used [p.15].

The 2011 survey by Halkidi et al. [100] places software engineering tasks

which use data mining and machine learning into six categories: require-

ments elicitation and tracing, development analysis, testing, debugging,

maintenance, and software reuse, showing that machine learning is now

used widely in software engineering.

Table C.1, on page 365, analyses a selection of work in the area. The

selection includes applications concerned with changes to code, but mainly

focuses on classification tasks, particularly those using multiple versions of

evolving software. These examples are based on static analysis of code, or

of associated artefacts. There also exists a large body of work, not included

here, based on dynamic analysis, especially in the areas of testing and usage

patterns.

The first three columns in the table identify the paper by author, refer-

ence and date. The upper part of the table shows work based on evolving

software, a C in the fourth column means that the intervals between ver-

sions studied are either commit or transaction level, R means release level.

Work based on a single version of a project is in the lower part of the table

and is marked “-”. The entries are sorted by date within the upper and

lower parts of the table.

Halkidi et al. [100] categorises machine learning and data mining tasks

in software engineering into: classification(C), clustering(G) and pattern

mining(P). The research in the table has been labelled with these categories

in the column headed “C/G/P”. Brief descriptions of the algorithm(s), the

363

features, and the purpose of the investigation are provided in columns 5-7.

Change related tasks include predicting future refactorings from the

change history of a project [197], categorising change types, finding patterns

of change types by clustering [76, 216], and finding co-change patterns [88,

217, 254, 257, 260]. Another popular class of applications mines patterns in

software to find exceptions, and so to alert the user to inconsistencies when

making changes [1, 149, 150, 153, 195, 196, 232, 233]. Many classification

tasks relate to predicting defects. For example, predicting post-inspection

defects [185], or defect density [133], investigating whether a module’s

complexity metrics can be used to predict post-release defects [178, 186],

assessing a bug’s severity from its report wording [54, 142], and classifying

bug-introducing changes [10, 129, 218, 219, 259].

In summary, in around half of the classification tasks shown, a number

of different algorithms are applied to the data to find that best suited to the

task. Also, the large majority of approaches to classification surveyed use a

broad range of features taken from more than one source.

364APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING
A

ut
ho

r
R

ef
.

Y
r.

C
/R

A
lg

or
it

hm
C
/G
/P

Fe
at

ur
es

Pu
rp

os
e

Bo
uk

ti
fe

ta
l.

[2
6]

02
R

D
T

(C
4.

5)
,A

da
Bo

os
t,

G
A

C
O

-O
so

ft
w

ar
e

m
et

ri
cs

Pr
ed

ic
tt

he
st

ab
ili

ty
of

cl
as

se
s

Yi
ng

et
al

.
[2

54
]

04
C

Fr
eq

ue
nt

pa
tt

er
n

m
in

in
g

P
Fi

le
s

in
a

tr
an

sa
ct

io
n

Fi
nd

co
-c

ha
ng

in
g

fil
es

,
es

p.
w

it
ho

ut
ob

vi
ou

s
lin

k

K
na

b
et

al
.

[1
33

]
06

R
D

T
(J

48
)

C
C

ou
nt

s
of

LO
C

,v
ar

ia
bl

es
,

Pr
ed

ic
td

ef
ec

td
en

si
ty

in
fil

es
ca

lls
,r

ef
er

en
ce

s,
fu

nc
ti

on
s

Pa
n

et
al

.
[1

86
]

06
C

Ba
ye

s
N

et
w

or
k

C
Sl

ic
e-

ba
se

d
m

et
ri

cs
an

d
C

om
pa

re
m

et
ri

cs
in

bu
gg

y
fil

e
st

an
da

rd
so

ft
w

ar
e

m
et

ri
cs

&
fu

nc
ti

on
pr

ed
ic

ti
on

Z
im

m
er

m
an

n
et

al
.

[2
57

]
06

C
Fr

eq
ue

nt
it

em
se

tm
in

in
g

P
In

di
vi

du
al

lin
es

of
co

de
Fi

nd
co

-c
ha

ng
ed

lin
e

gr
ou

ps
w

hi
ch

ch
an

ge
co

-c
ha

ng
ed

lin
es

A
ve

rs
an

o
et

al
.

[1
0]

07
C

SV
M

,C
4.

5,
K

N
N

(1
0)

,
C

Ve
ct

or
of

tf
-i

df
of

ch
an

ge
s

to
Pr

ed
ic

tb
ug

-i
nt

ro
du

ci
ng

A
da

Bo
os

t,
Si

m
pl

eL
og

is
ti

c
al

ph
an

um
er

ic
s

in
so

ur
ce

te
xt

ch
an

ge
s

G
ı̂r

ba
et

al
.

[8
8]

07
C

,R
Fo

rm
al

co
nc

ep
ta

na
ly

si
s

P
C

ha
ng

e
in

so
ft

w
ar

e
m

et
ri

cs
Fi

nd
co

-c
ha

ng
e

pa
tt

er
ns

(e
g

co
m

pl
ex

it
y,

no
.m

et
ho

ds
)

R
at

zi
ng

er
et

al
.

[1
97

]
07

C
J4

8,
LM

T,
JR

ip
,N

ng
e

C
N

um
er

ou
s,

m
ix

ed
so

ur
ce

s
Pr

ed
ic

tr
ef

ac
to

ri
ng

ac
ti

vi
ty

fr
om

pa
st

Bu
se

an
d

W
ei

m
er

[3
5]

08
R

Se
ve

ra
li

nc
.

C
Te

xt
-b

as
ed

e.
g.

lin
e

le
ng

th
,

D
ev

el
op

a
re

ad
ab

ili
ty

m
et

ri
c,

Ba
ye

s,
V

FI
,N

N
id

en
ti

fie
r

fr
eq

ue
nc

y,
br

an
ch

es
re

la
te

to
bu

gs
,c

ha
ng

es

Fl
ur

ie
ta

l.
[7

6]
08

C
C

lu
st

er
in

g
on

G
C

ha
ng

e
ty

pe
s

e.
g.

st
at

em
en

t
Fi

nd
ch

an
ge

pa
tt

er
ns

,
co

si
ne

di
st

an
ce

in
se

rt
,p

ar
am

et
er

de
le

te
lin

k
to

de
ve

lo
pm

en
ta

ct
iv

it
ie

s

S.
K

im
et

al
.

[1
29

]
08

C
SV

M
(W

ek
a)

C
N

um
er

ou
s,

m
ix

ed
so

ur
ce

s
Fi

nd
bu

g-
in

tr
od

uc
in

g
ch

an
ge

s

Sh
iv

aj
ie

ta
l.

[2
18

]
09

C
SV

M
,N

ai
ve

Ba
ye

s,
J4

8,
JR

ip
C

N
um

er
ou

s,
m

ix
ed

so
ur

ce
s

U
si

ng
fe

at
ur

e
se

le
ct

io
n

to
im

pr
ov

e
(b

as
ed

on
[1

29
])

bu
g

pr
ed

ic
ti

on
fr

om
ch

an
ge

s

Ta
bl

e
C

.1
.

M
ac

hi
ne

le
ar

ni
ng

an
d

da
ta

m
in

in
g

in
so

ft
w

ar
e

en
gi

ne
er

in
g

ta
sk

s
C

on
ti

nu
ed

on
ne

xt
pa

ge

365

A
ut

ho
r

R
ef

.
Y

r.
C
/R

A
lg

or
it

hm
C
/G
/P

Fe
at

ur
es

Pu
rp

os
e

H
in

dl
e

et
al

.
[1

08
]

09
C

J4
8,

N
B,

K
st

ar
,

C
M

et
ad

at
a:

w
or

ds
in

co
m

m
it

C
at

eg
or

is
e

ch
an

ge
s

SM
O

,I
Bk

,J
R

ip
m

es
sa

ge
s,

au
th

or
s,

fil
e

ty
pe

s
eg

pe
rf

ec
ti

ve
,c

or
re

ct
iv

e

K
os

ke
r

et
al

.
[1

38
]

09
R

W
ei

gh
te

d
N

aı̈
ve

Ba
ye

s
C

O
bj

ec
t-

or
ie

nt
ed

so
ft

w
ar

e
m

et
ri

cs
Fi

nd
cl

as
se

s
su

it
ab

le
fo

r
re

fa
ct

or
in

g

Z
im

m
er

m
an

n
et

al
.

[2
58

]
09

R
Lo

gi
st

ic
re

gr
es

si
on

,
C

M
et

ri
cs

fo
r

de
fe

ct
pr

ed
ic

ti
on

,
In

ve
st

ig
at

e
cr

os
s-

pr
oj

ec
t

de
ci

si
on

tr
ee

ot
he

r
fo

r
pr

oj
ec

ts
im

ila
ri

ty
de

fe
ct

pr
ed

ic
ti

on

Sh
ie

ta
l.

[2
16

]
11

C
C

lu
st

er
in

g
-h

eu
ri

st
ic

ru
le

s
G

W
or

ds
fr

om
m

od
ifi

ed
C

at
eg

or
is

e
ty

pe
s

of
ch

an
ge

lin
es

in
A

PI
do

cs

R
eg

ol
in

et
al

.
[1

98
]

03
-

G
P

an
d

N
N

C
Fu

nc
ti

on
po

in
ts

an
d

Es
ti

m
at

e
th

e
nu

m
be

r
co

m
po

ne
nt

si
ze

s
of

lin
es

of
co

de

Sh
ir

ab
ad

et
al

.
[2

17
]

03
-

D
ec

is
io

n
tr

ee
C

Ba
g

of
w

or
ds

,s
ha

re
d

Fi
nd

co
-u

pd
at

ed
fil

es
ca

lls
,r

ef
er

en
ce

s

N
ag

ap
pa

n
et

al
.

[1
78

]
06

-
R

eg
re

ss
io

n
on

PC
A

C
M

et
ri

cs
Pr

ed
ic

tp
os

t-
re

le
as

e
fa

ilu
re

of
m

od
ul

es

Ta
n

et
al

.
[2

30
]

07
-

R
ul

e
m

in
in

g,
cl

us
te

ri
ng

,
C

G
P

N
LP

on
co

m
m

en
ts

,
Ti

e
co

m
m

en
ts

to
co

de
,

de
ci

si
on

tr
ee

to
pi

c-
gr

ou
ps

fin
d

ru
le

s
an

d
ex

ce
pt

io
ns

La
m

ka
nfi

et
al

.
[1

42
]

10
-

N
aı̈

ve
Ba

ye
s

C
W

or
ds

in
bu

g
re

po
rt

s
Pr

ed
ic

tb
ug

se
ve

ri
ty

fr
om

re
po

rt
co

nt
en

t

Ta
bl

e
C

.1
:A

se
le

ct
io

n
of

so
ft

w
ar

e
ev

ol
ut

io
n

re
la

te
d

ta
sk

s
in

w
hi

ch
m

ac
hi

ne
an

d
da

ta
m

in
in

g
ar

e
us

ed
.

C
ol

um
n

4
sh

ow
s

in
te

rv
al

s
be

tw
ee

n
so

ur
ce

co
de

ve
rs

io
ns

,c
om

m
it

le
ve

l(
C

)o
r

re
le

as
e

le
ve

l(
R

),
or

fr
om

a
si

ng
le

ve
rs

io
n

(-
).

A
br

ie
fd

es
cr

ip
ti

on
of

th
e

al
go

ri
th

m
(s

),
fe

at
ur

es
,a

nd
pu

rp
os

e
of

th
e

ta
sk

ar
e

in
co

lu
m

ns
5,

7
&

8.
C

ol
um

n
6

(C
/G
/P

)s
ho

w
s

w
he

th
er

th
e

ta
sk

is
on

e
of

cl
as

si
fic

at
io

n
(C

),
cl

us
te

ri
ng

(G
)o

r
pa

tt
er

n
m

in
in

g
(P

).

366APPENDIX C. MACHINE LEARNING IN SOFTWARE ENGINEERING

Appendix D

Additional file comparison

visualisations

This appendix supplements Chapter 5, showing visualisations produced by

a selection of other tools referenced in this dissertation. First, the similarity

between files output by three clone detection tools, in particular, Code

Clone Finder which is used in creating features for the machine learning

application described in Chapter 10. Second, examples of visualisations of

the movement of code in a system found by other origin analysis tools.

D.1 Clone detection tools

Clone detection tools are not set up to find relative similarity between files

but rather to find fragments of code which recur throughout a file or a

system. Their initial reporting therefore differs from plagiarism detection

tool output. Rather than the similarity between files, the tools report on

clone classes. A small sample of their outputs are displayed in Figure D.1,

the two on the left giving information about more than two files, one as a

list and one graphically.

Figures D.1a and D.1b show clone classes reported by NiCad [50] and

CloneDetective [121] respectively. NiCad provides HTML output and

shows the location and content of clone classes. CloneDetective shows

367

368APPENDIX D. ADDITIONAL FILE COMPARISON VISUALISATIONS

the clone coverage in files in the left-hand panel (as a percentage of the file,

in this example), the bottom panel shows the location of the clone(s) in the

files and the central panel shows the clone code in one of the selected files.

Figures D.1c and D.1d show two of the available Code Clone Finder

(CCFinder) output screens [125].1 On the left is the scatter plot or dot-

plot [43]. A dotplot is a matrix with the matched elements on each axis, a

dot indicates a match between the elements, so that sequences of matching

elements show on the plot as a line. The dotplot is another method of dis-

playing the similarities between pairs of files in a group. In the CCFinder

scatter plot shown, 15 files are compared, with lines showing the bound-

aries between files. The right-hand figure shows the code comparison

screen, with code from the selected clone highlighted.

1Locally produced screenshot

(a) NiCad clone class [50] (b) CloneDetective in Visual Studio [121]

(c) CCFinder scatter plot (d) CCFinder code comparison [125]

Figure D.1: Clone tool outputs

D.2. ORIGIN ANALYSIS TOOLS 369

D.2 Origin analysis tools

(a) Beagle scatter plot [261] (b) Ecode–wayf refactoring chart [244]

Figure D.2: Beagle scatter plot (left), where the dashes represent functions, the

colours of which show whether they have been moved, merged or

split. Weißgerber’s Ecode–wayf (right) which shows the evolution of

a class, colouring the connectors to show types of refactoring.

Two examples of origin analysis tools which colour-code changes to

software entities are included here. The University of Waterloo’s tool Bea-

gle [261] has a scatter plot to show the changes to functions between versions

(Figure D.2a). The dashes on the plot are coloured to show whether they

have been moved, renamed, split or merged. Weißgerber and Schafer’s

Ecode–wayf [244] hierarchy graph in Figure D.2b, shows the evolution of a

Java class, with the connectors coloured to indicate the type of refactoring

undertaken between transactions.

370APPENDIX D. ADDITIONAL FILE COMPARISON VISUALISATIONS

Appendix E

Ferret: example calculation

To illustrate how Ferret computes a similarity score, the files fact.c and

power.c, shown together in Table E.1, are compared. The trigrams for the

two files are presented in Table E.2. There are 36 trigrams in total in fact.c,

one of these, “= 1 ;”, labelled 10, is duplicated, making 35 distinct trigrams

in the file. Power.c has 39 trigrams, with one duplicate, making 38 distinct

trigrams. The files share 29 trigrams, so that 6 in fact.c and 9 in power.c

are not shared. There are therefore 29 + 6 + 9 = 44 distinct trigrams in the

two files. The Jaccard coefficient, or similarity score, for the two files is
29
44 = 0.659.

//fact.c // power.c

long factorial (int n) long power (int base, int n)
{ {

long result = 1; long result = 1;
int i; int i;
for (i = 1; i ≤ n; i++) for (i = 1; i ≤ n; i++)

result *= i; result *= base;
return (result); return (result);

} }

Table E.1: Code for fact.c and power.c.

371

372 APPENDIX E. FERRET: EXAMPLE CALCULATION

1 long factorial (13 int i ; 24 ; i ++
2 factorial (int 14 i ; for 25 i ++)
3 (int n 15 ; for (26 ++) result
4 int n) 16 for (i 27) result *=
5 n) { 17 (i = 28 result *= i
6) { long 18 i = 1 29 *= i ;
7 { long result 10 = 1 ; 30 i ; return
8 long result = 19 1 ; i 31 ; return (
9 result = 1 20 ; i ≤ 32 return (result
10 = 1 ; 21 i ≤ n 33 (result)
11 1 ; int 22 ≤ n ; 34 result) ;
12 ; int i 23 n ; i 35) ; }

i long power (11 1 ; int 23 n ; i
ii power (int 12 ; int i 24 ; i ++
iii (int base 13 int i ; 25 i ++)
iv int base , 14 i ; for 26 ++) result
v base , int 15 ; for (27) result *=
vi , int n 16 for (i vii result *= base
4 int n) 17 (i = viii *= base ;
5 n) { 18 i = 1 ix base ; return
6) { long 10 = 1 ; 31 ; return (
7 { long result 19 1 ; i 32 return (result
8 long result = 20 ; i ≤ 33 (result)
9 result = 1 21 i ≤ n 34 result) ;
10 = 1 ; 22 ≤ n ; 35) ; }

Table E.2: The 35 distinct trigrams in fact.c (top) and 38 in power.c. In each file
“= 1 ;”, no. 10, is duplicated. Power.c trigrams matching those in
fact.c have the same numbers, the remaining 9 trigrams have Roman
numerals.

Appendix F

Density tool prototype

This appendix shows the input and output screens of the density tool in-

troduced in Section 6.6.1. The input screen, see Figure F.1, allows the user

to choose the input XML file (previously output from a Ferret comparison

between two files), the density, the minimum number of matched units in a

dense block, the gap size, whether to base the calculations on tokens, words,

or characters and how to prioritise the blocks - by density, matched units,

or total units. Output from the tool is in two forms: either the interface

exemplified in Figures F.2 and F.3, or the XML output shown in Figure F.4.

In Figure F.2 the dense blocks have been found in the comparison be-

tween two very large text files (a quarter, and a third of a million words)

taken from the database of source and suspicious documents created for

the PAN’09 (Plagiarism ANalysis 2009) competition.2 In the upper part of

the screen, statistics for the two files, such as size in words, the number

of blocks found, and the matched and unmatched words, are displayed

on either side. In this example there are 71 blocks in file 1 and 25 in file

2. The parameters chosen for the analysis are shown in the centre. In the

lower part of the screen, the blocks and their individual statistics, location,

density, number of words, both matched and unmatched, are displayed on

1A prototype of the tool is available from http://homepages.stca.herts.ac.uk/˜gp2ag/

density.html
2http://www.uni-weimar.de/medien/webis/research/workshopseries/pan-09/competition.

html\#corpus

373

374 APPENDIX F. DENSITY TOOL PROTOTYPE

either side. The centre panel shows the text in the block selected from one of

the side panels, with matched trigrams highlighted in blue text against the

unmatched text in grey. Figure F.3 shows detail from a similar comparison

between two other files.

Figure F.4 shows the XML output containing information about the

dense blocks found in two other large files from the PAN’09 collection. This

example has been chosen because the output is short and therefore fits into

a screenshot. In this case, the files have around a quarter of a million words

each and share over 9200 trigrams, however, there is only one small dense

block of 37 words. The matched trigrams are highlighted in bold purple

text, with unmatched text in grey.

Figure F.1: Density tool input screen, which allows the user to choose the minimum
block density; the minimum number of matched units in a dense block,
e.g. 25 (or can be expressed as a proportion of file size, e.g. 0.1); the
maximum number of consecutive unmatched units in the block; choice
of unit; and how to sort the blocks.

375

Fi
gu

re
F.

2:
D

en
si

ty
to

ol
ou

tp
ut

sc
re

en

376 APPENDIX F. DENSITY TOOL PROTOTYPE

Figure F.3: The density analysis tool screen and detail from it, clockwise from top
left: file details; parameters used; a list of the dense blocks found in file
2; and text from the selected block, with matched trigrams in blue. File
2 statistics and the file 1 block list mirror those of the other file.

377

Figure F.4: Example of the XML file output by the Ferret density analysis tool. This
shows the results of analysing a comparison between two very large
text files, where only one small block of 2 lines is found.

378 APPENDIX F. DENSITY TOOL PROTOTYPE

Appendix G

File pair ranks from Chapter 9

Ratios Counts Ratios Counts

Fer Ex. Ex. Ex. Wt. Wt. Fer Ex. Ex. Ex. Wt. Wt.
ret P O PO 2 4 ret P O PO 2 4

3, 7 17 19 19, 27 5 5
3, 15 3 3 17 19 13 19, 36 3
3, 20 18 16 19, 43 1 1
3, 25 2 4 11 8 11 7 19, 46 8
3, 56 20 19, 54 1
4, 44 20 21, 28 14 14
5, 13 8 9 22, 61 7
5, 52 4 2 23, 41 20 17 9 14
7, 15 19 24, 30 16 6 3 6 5
7, 25 12 16 13 11 24, 40 6 11 8 6 10 10
8, 17 14 2 2 1 1 26, 52 19
8, 23 16 27, 28 20 10 9
8, 25 18 27, 53 17
8, 63 20 5 4 27, 61 11
10, 29 9 29, 42 18 13
10, 42 16 7 29, 58 8
10, 58 2 13 9 30, 40 19 15 11 16
13, 49 7 8 32, 33 4 3 6
13, 52 14 34, 53 13
13, 56 18 36, 43 15
14, 22 41, 58 19
14, 53 14 42, 58 6 12
14, 61 10 43, 46 10 7
15, 25 5 5 12 47, 48 12 10 12 18
15, 56 4 1 49, 52 17 20
17, 34 15 51, 63 18 2 3
17, 63 15 15 53, 61 12

57, 60 9 15 7 4 13 17

Table G.1: The top 20 similarities determined by the different measures shown in
Table 9.1. Column 1 gives the pairs of student projects which have high
similarity scores under one or more measures, the remaining columns
indicate for which measure(s) this is so, ranked from 1–20, top down.

379

380 APPENDIX G. SIMILARITY RANKINGS FOR CHAPTER 9

Appendix H

Details of the 89 projects

The eighty-nine projects from which the split and disappearing file datasets

were collected are introduced in Chapter 12. The tables in this appendix

give details of these projects. The first, Table H.1, shows the project names

and purposes, while Table H.2 shows statistics relating to the size of the

projects, which are, ordered by column:

1. The number of releases in the project.

2. The size in Mb of all of the code in the project.

3. The total number of files in the project.

4. The amount of C code in KLOC in the project.

5. The minimum number of KLOC of C code,

6. and the maximum in one release.

7. The size of the stripped C code in the project in Mb.,

8. and the number of C code files.

381

382 APPENDIX H. DETAILS OF THE 89 PROJECTS

Project Purpose

acidblood an IRC robot
aqtwo-tng Action Quake2 variant
artoolkit captures images from video sources, optically tracks markers in the images
barcode barcode printer
beecrypt cryptography libraries
biew file viewer with built-in editor for binary, hexadecimal and disassembler modes
bitcollider generates bitprints and metadata tags from files for Bitzi metadata project
cipe-linux encrypts IP over UDP tunneling, can be used to build a range of VPN solutions
dbacl general purpose digramic Bayesian text classifier
diald link management tool able to control dial-on-demand network connections
drivel GNOME client for working with blogs
dt3155a version 1.8 of the Linux DT3155 device driver, for kernels 2.2, 2.4 and 2.6
dynamics scalable, dynamical, and hierarchical mobile IP software for Linux
effectv real-time video effector
etherape graphical network monitor like etherman, displaying network activity graphically
extace 3D audio visualization tool
felt finite element analysis, primarily for mechanical problems
fidogate Fido-Internet gateway, provides Fido utilities
fobbit uses the Creative Labs USB VOIP Blaster on NetBSD, Linux, and Windows
ganc gnome2 based algebraic calculator
gema general purpose text processing utility based on pattern matching
giw gtk widgets for scientific/instrumentation and visualization
gnochm CHM file viewer for Gnome2, using a set of Python wrappers around libchm
gpmudmon battery monitor for Linux PPC similar to Batmon but running as a Gnome applet
gpsbabel reads, writes, and manipulates GPS waypoints in a variety of formats
gwyddion multiplatform scanning probe microsope, data visualization and analysis tool
hardsid driver for the HardSID cards for Linux and other free operating systems
hatari Atari ST emulator for Linux, designed for running old ST games and demos
heme portable console hex editor for unix operating systems
hptalx program to communicate with an HP calculator, uses GTK for GUI
interest financial management system for personal investments
ipcop Linux firewall distro, geared towards home and SOHO users
jack-rack LADSPA effects rack for the JACK low latency audio API
judy general purpose dynamic array implemented as a C callable library
lde disk editor for linux, originally written to help recover deleted files
lejos for lego robot programming in java for LEGO Mindstorms RCX and NXT bricks
lgeneral turn-based strategy game inspired by the classic Panzer General
libbt C implementation of the BitTorrent core protocols
liflines genealogy software
lirc supports receiving and sending IR signals of common IR remote controls
log4c for flexible logging to files and elsewhere in time-space critical environments
mfstools set of utilities for a TiVo
mjs console MP3 Jukebox System
mkcdrec CD-ROM recovery tool, makes a bootable (El Torito) disaster recovery image

continued ...

The open source projects used in this research. Page 1 of 2.

383

Project Purpose

... continued

motif-pstree (xps) dynamically displays Unix processes as a tree or forest
mplayerplug-in plugin for Mozilla that uses mplayer to play embedded media
mpop POP3 client
msmtp SMTP client
multignometerm version of gnome-terminal, with new features and extensions
nano GNU nano is a GPLed clone of the Pico text editor
nap text-based Napster client for Linux
newstar transfers Usenet articles between local and remote servers using NNTP transport
noffle news server optimized for low speed dial-up connections to the Internet
nptltracetool mechanism to unobtrusively trace the NPTL Library in dynamics
nvram-wakeup reads and writes the WakeUp time in the BIOS
oww one-wire weather, for Dallas Semiconductor / AAG 1-wire weather station kits
pam-mysql allows PAM aware applications to authenticate users through MySQL database
pbbuttons supports laptop functions, eg power management, hotkeys, battery supervisor
pidgin-hotkeys pidgin plugin for global hotkey assignment in list and message management
pio emulation of the board game The Settlers of Catan
poptop PPTP server
ppcboot Embedded PowerPC Bootloader Project, esp. for Embedded PowerPC boards
premake project configuration scripting tool
pxlib enables reading and writing of Paradox database and primary index files
rcalc symbolic calculator for the GNOME desktop environment
rembowiz network based PC disk image management, based on Rembo Toolkit
rio500 utilities for Diamonds Rio 500 digital audio player under Linux
rsyslog syslog support utilities
rtnet real-time network protocol stack for Linux extensions Xenomai and RTAI
seti-applet displays the status of any seti@home client in a small GNOME panel applet
sf-xpaint paint program for X, suitable for producing simple graphics
sonasound sonogram and waveform display program displays musical features
sortmail processes incoming email, classifying and processing accordingly
sphinx2 speech recognition system
sphinx3 real-time speech recognition system
suparun (OBLISK) system for GNU/Linux to run binary packages on most systems
toxine scriptable, interactive text UI program using xine-lib
tulip Linux 2.4.x kernel driver for the Tulip series of ethernet chips
tuxnes emulator for the 8-bit NES that runs under Linux and FreeBSD
vacm virtual camera - creates a virtual representation of recorded scenes
wmweatherplus will download the National Weather Service METAR bulletins
wx200d data collector and server daemon for weather station hardware
xastir real-time tracking of stations via radio/internet APRS data streams
xawdecode XdTV allows you to watch, record and stream TV
xbae Xbae set consists of the XbaeMatrix, Caption and XbaeInput widgets
xmp extended module player for Unix-like systems playing over 80 module formats
yplot scientific graphics plotting package implemented as a Yorick interface to PLplot
ysmv7 ICQ client based on v7/v8 protocol version, no external libraries required
zimg generates png / jpeg images from arbitrary formatted 2-D ascii or binary data

Table H.1: The open source projects used in this research. Page 2 of 2

384 APPENDIX H. DETAILS OF THE 89 PROJECTS

All code Stripped C code

No.of Size No.of Project Min Max Size No.of
Rel’s. Mb files KLOC KLOC KLOC Mb files

acidblood 4 1.0 341 19 3 5 0.5 100
aqtwo-tng 7 31.2 2649 322 35 42 9.8 529
artoolkit 9 42.9 5127 256 20 28 8.3 1247
barcode 9 420.3 4980 28 1 4 0.6 126
beecrypt 4 7.4 967 2321 86 205 1.7 532
biew 8 1500.0 7842 499 48 54 14.5 2361
bitcollider 6 9.0 683 50 5 11 1.3 291
cipe-linux 12 4.5 961 70 4 7 2.0 397
dbacl 10 217.1 3013 190 12 23 4.3 287
diald 9 7.0 1662 82 8 10 4.5 313
drivel 6 5.7 499 31 1 8 1.0 115
dt3155a 4 1.5 309 20 4 4 0.6 114
dynamics 25 44.4 8778 878 20 47 23.6 3326
effectv 17 6.0 1579 175 3 14 3.4 857
etherape 88 115.9 13858 618 1 17 17.3 2497
extace 8 15.4 489 75 6 13 2.2 432
felt 3 32.7 2895 380 84 100 10.6 1247
fidogate 35 249.5 38540 854 21 26 37.2 3238
fobbit 3 1.4 220 30 7 12 0.7 72
ganc 6 1.9 361 18 2 3 0.5 256
gema 4 1.7 304 32 6 7 0.7 85
giw 3 11.3 730 40 10 10 2.8 178
gnochm 14 15.3 1101 1 <1 <1 0.1 26
gpmudmon 10 2.0 627 16 <1 1 0.6 57
gpsbabel 8 119.7 11980 862 82 113 68.1 2996
gwyddion 29 153.9 23892 2486 3 130 94.6 8546
hardsid 10 1.5 324 10 1 2 0.5 25
hatari 9 19.4 2663 398 29 50 10.6 1709
heme 3 0.3 64 7 1 2 0.2 36
hptalx 4 6.0 286 29 6 6 2.2 105
interest 56 37.8 7132 709 9 27 20.4 3975
ipcop 22 203.2 24294 402 5 19 20.6 1801
jack-rack 7 4.5 730 51 4 7 2.2 302
judy 5 33.1 645 134 27 27 9.0 244
lde 11 5.6 829 82 3 11 1.9 413
lejos 9 23.6 7270 77 3 12 5.3 588
lgeneral 11 44.3 4312 322 22 33 14.8 1274
libbt 7 6.1 796 54 5 8 1.3 261
lifelines 15 99.7 7495 767 24 62 19.3 3153
lirc 47 86.9 23619 1664 9 47 37.4 4562
log4c 8 5.3 1453 73 4 12 2.5 621
mfstools 9 2.7 723 59 2 9 1.7 204
mjs 9 1.8 521 38 4 5 1.0 300
mkcdrec 24 123.5 17306 1482 1 75 31.8 6319

Project sizes. Page 1 of 2

385

All code Stripped C code

No.of Size No.of Project Min Max Size No.of
Rel’s. Mb files KLOC KLOC KLOC Mb files

motif-pstree 3 4.7 854 31 8 8 1.0 288
mplayerplug-in 12 36.7 4340 68 1 2 4.6 405
mpop 37 26.0 3940 311 14 20 5.1 1368
msmtp 18 17.8 2686 195 12 19 7.2 823
multignometerm 17 46.4 7621 378 13 31 33.1 458
nano 38 42.6 3545 344 7 14 8.5 1138
nap 13 11.0 1024 232 15 19 5.3 544
newstar 10 9.9 1606 90 8 8 2.4 648
noffle 7 4.5 847 71 8 11 3.5 398
nptltracetool 2 8.1 967 44 5 12 3.1 463
nvram-wakeup 10 3.7 969 30 <1 6 2.6 117
oww 29 69.9 4812 515 9 24 14.7 2997
pam-mysql 13 1.4 415 22 <1 2 0.7 113
pbbuttons 10 13.7 2747 125 7 20 4.1 683
pidgin-hotkeys 8 1.4 467 12 1 5 0.4 57
pio 9 29.9 4245 272 17 30 12.8 1094
poptop 8 8.9 1222 51 4 6 1.8 268
ppcboot 9 89.5 11920 2321 7 200 49.4 6770
premake 4 3.5 689 56 8 13 1.6 324
pxlib 38 26.9 4760 78 1 7 3.5 658
rcalc 14 14.2 2726 61 2 5 1.8 587
rembowiz 10 7.1 1055 99 4 12 5.8 243
rio500 4 2.7 591 35 6 8 1.0 131
rsyslog 52 79.6 11730 974 11 29 25.7 3915
rtnet 9 32.7 3833 352 21 41 11.0 1418
seti-applet 9 14.4 1667 56 4 7 1.8 317
sf-xpaint 12 21.4 3114 487 27 64 12.8 1499
sonasound 31 31.3 3981 275 5 10 7.8 1738
sortmail 5 1.5 232 36 6 6 0.8 138
sphinx2 6 166.3 2380 1341 204 224 11.8 1021
sphinx3 6 262.4 3532 481 28 163 10.7 1123
suparun 10 5.1 675 11 1 2 0.4 127
toxine 6 7.0 938 142 10 25 3.7 446
tulip 10 3.0 409 66 5 6 1.9 130
tuxnes 4 3.9 330 80 13 18 2.5 198
vacm 9 119.9 6309 559 51 64 16.9 1933
wmweatherplus 12 4.1 1256 88 6 8 2.2 716
wx200d 11 2.5 463 22 1 4 0.6 173
xastir 140 931.2 48347 11899 47 111 476.8 16976
xawdecode 19 123.4 6221 742 20 57 40.8 2706
xbae 55 103.4 15900 1179 18 27 41.5 2835
xmp 9 30.1 4075 517 30 55 11.2 2238
yplot 5 2.2 389 6 1 1 0.2 14
ysmv7 8 13.7 946 166 11 22 4.9 416
zimg 47 48.7 2798 272 3 8 7.5 806

Grand Total 1405 5792.5 418422 41900 2023.4 117515

Table H.2: Information about project sizes. Page 2 of 2

386 APPENDIX H. DETAILS OF THE 89 PROJECTS

Appendix I

Density test results

The range of density parameters tested to determine a suitable set for clas-

sifying the data were all possible combinations of those listed in Table I.1.

These parameter sets are listed in Table I.2, with their classification accuracy

on the split file dataset, as dd-bb-gg, where dd is the density, bb is the min-

imum block size and gg is the largest gap permitted. Of those tested, the

parameter set which achieves the highest accuracy over the 23 algorithms

(see Table 14.2, p.226) is 95-40-3, a minimum density of 95%, a minimum

block size of 40 tokens, and a maximum gap size of 3 tokens. These are

therefore the parameters used in this research. The ranks (from 1–80) are

summed for each component of the parameters to find their contribution to

the results, and are listed in Table I.3. The components of the top perform-

ing combination 0.95-40-3 are top of their respective groups. The lower

densities, largest block size, and bigger gap are the worst for this data.

Minimum Minimum Maximum
Density block gap

60 10 3
65 20 10
70 40
75 80
80 160
85
90
95

Table I.1: Density test parameters

387

388 APPENDIX I. DENSITY TEST RESULTS

Density set Avg % correct Density set Avg % correct Density set Avg % correct

0.95-40-3 82.44 0.70-80-3 79.93 0.65-20-3 79.13
0.95-10-3 82.04 0.75-80-3 79.92 0.80-40-10 79.04
0.95-40-10 81.92 0.95-80-3 79.88 0.80-10-10 78.99
0.90-40-3 81.69 0.85-80-3 79.87 0.75-40-10 78.96
0.90-40-10 81.57 0.60-80-3 79.86 0.85-160-10 78.92
0.95-20-3 81.41 0.65-80-3 79.86 0.90-160-10 78.92
0.90-10-10 81.27 0.75-10-3 79.86 0.70-10-10 78.89
0.95-10-10 81.19 0.85-80-10 79.78 0.70-80-10 78.88
0.90-10-3 81.16 0.85-40-10 79.76 0.70-20-10 78.87
0.85-40-3 81.10 0.95-80-10 79.74 0.90-160-3 78.80
0.90-20-10 80.98 0.80-10-3 79.71 0.75-80-10 78.77
0.95-20-10 80.75 0.70-10-3 79.69 0.65-20-10 78.76
0.90-80-10 80.69 0.75-10-10 79.64 0.80-80-10 78.63
0.80-40-3 80.61 0.80-20-3 79.56 0.65-10-10 78.61
0.75-40-3 80.60 0.75-20-10 79.54 0.65-80-10 78.59
0.90-20-3 80.56 0.95-160-3 79.49 0.60-80-10 78.49
0.70-40-3 80.52 0.95-160-10 79.33 0.60-10-10 78.39
0.90-80-3 80.49 0.80-20-10 79.30 0.60-20-10 78.33
0.85-10-3 80.30 0.75-160-3 79.26 0.70-40-10 78.17
0.65-40-3 80.27 0.70-160-3 79.26 0.80-160-10 77.73
0.60-40-3 80.17 0.65-160-3 79.26 0.65-40-10 77.67
0.85-10-10 80.15 0.60-160-3 79.26 0.60-40-10 77.52
0.85-20-10 80.12 0.70-20-3 79.25 0.70-160-10 77.51
0.85-20-3 80.02 0.60-20-3 79.25 0.75-160-10 77.44
0.80-80-3 80.01 0.75-20-3 79.24 0.60-160-10 77.34
0.60-10-3 80.00 0.85-160-3 79.23 0.65-160-10 77.20
0.65-10-3 79.96 0.80-160-3 79.20

Table I.2: Density test: mean classification rate for each parameter set over all
algorithms. The parameter set names show minimum density-minimum
block size-maximum gap size.

Density Block Gap

0.95 186 40 484 3 1221
0.9 207 10 528 10 2019
0.85 312 20 629
0.75 459 80 644
0.8 471 160 955
0.7 517
0.65 541
0.6 547

Table I.3: Sum of ranks for each component of dd-bb-gg parameters

Appendix J

SVM grid search results

The classification accuracies achieved by the Weka classifiers were com-

pared with those of support vector machines, one with a radial basis kernel

and one with a linear kernel. The libsvm1 implementation used was that in

Chicken Scheme.2 The data was split into 100 different training and test sets,

to echo the Weka experiments. The mean results of the best of these, with

the trigram-based “tris-singles” and “tris” feature sets, and a radial basis

kernel, are plotted over the grid search region, in Figures J.1 and J.2. The

maximum accuracy on this coarse grid search was 88.2% for “tris-singles”

and 86.8% for the “tris” set. These sets, which differ slightly from those

reported in Chapter 14 had results of 88.5% and 87.8% respectively with the

Rotation Forest algorithm. As the SVM did not outperform the Weka based

algorithms, and would not be expected to gain much in a finer-grained

search, the use of the SVMs was not pursued further.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
2http://wiki.call-cc.org/eggref/4/libsvm

389

390 APPENDIX J. SVM GRID SEARCH RESULTS

Fi
gu

re
J.1

:S
V

M
gr

id
se

ar
ch

re
su

lt
s:

th
e

m
ea

n
fo

r
10

0
te

st
ru

ns
w

it
h

th
e

fe
at

ur
e

se
t“

tr
is

-s
in

gl
es

”.

391

Fi
gu

re
J.2

:S
V

M
gr

id
se

ar
ch

re
su

lt
s:

th
e

m
ea

n
fo

r
10

0
te

st
ru

ns
w

it
h

th
e

fe
at

ur
e

se
t“

tr
is

”.

392 APPENDIX J. SVM GRID SEARCH RESULTS

Appendix K

Supplementary results for

Chapter 14
This appendix reports on two sets of experiments which explore the effect on

classification of further feature combinations, and of classifier combination.

None of the combinations reported here improve on the results of simpler

models on the split file dataset reported in Chapter 14. Also in this appendix

is a listing of the DNSjava file MX KXRecord, referenced in Chapter 14.

K.1 Feature sets - further combinations

Three-, four- or five-way feature set combinations

The top 5 singles sets, fb, fc, ft, pdp and tris, were combined in groups of

3, 4, and 5. The results in Table K.1 show that these combinations do not

Mean % Mean %
Feature set correct Feature set correct

fc+fb+tris+pdp-singles 91.70 fc+ft+fb+pdp-singles 91.40
fc+tris+pdp-singles 91.65 ft+tris+pdp-singles 91.36
fb+tris+pdp-singles 91.61 ft+fb+pdp-singles 91.20
fc+ft+fb+tris+pdp-singles 91.53 fc+ft+pdp-singles 91.12
fc+fb+pdp-singles 91.51 ft+fb+tris-singles 91.05
fc+ft+tris+pdp-singles 91.51 fc+ft+fb+tris-singles 91.04
ft+fb+tris+pdp-singles 91.47 fc+ft+tris-singles 91.02
fc+fb+tris-singles 91.43 fc+ft+fb-singles 90.48

Table K.1: Mean classification of 3-, 4- and 5-way combinations of fb, fc, ft, pdp
and tris singles sets, over the 23 algorithms.

393

394 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14

Mean % Mean %
Feature set correct Feature set correct

all-fb+tris-singles 91.79 all-fb+all-pdp 91.03
all-fb+all-tris 91.58 all-fb+ft-singles 90.79
all-fb+pdp-singles 91.45 all-fb+all-fc 90.60
all-fb+fc-singles 91.27 all-fb+all-ft 90.32

Table K.2: Mean classification for selected feature sets in combination with the full
fb set over the 23 algorithms.

improve on the classification rate of the best of each group on its own.

The full Ferret basic (“fb”) set combined with other feature sets

The full “fb” set with the SMO algorithm has the best performance for

an individual feature set/algorithm combination. To explore the “fb” set’s

performance in combination with other sets, it was paired with each of the

full and singles features of the other four best sets: “tris”, “fc”, “ft” and

“pdp”. The results are shown in Table K.2. Small improvements over the

mean performance of 91.27% are found by adding “tris”, “tris-singles” or

“pdp-singles”. However, the best individual performance of fb/SMO of

94.29±1.89% is not improved on.

The full trigram (“tris”) set combined with other feature sets

The other full set which performs well is the “tris” set. This was also

combined with the better of the other sets, “fb”, “fc”, “ft” and “pdp”,

both as singles and full sets. The results are in Table K.3. None of these

combinations improve on the full “tris” set results (91.91%).

Mean % Mean %
Feature set correct Feature set correct

all-tris+fb-singles 91.85 all-tris+ft-singles 91.23
all-tris+fc-singles 91.62 all-tris+all-pdp 91.18
all-tris+pdp-singles 91.59 all-tris+all-fc 91.00
all-fb+all-tris 91.58 all-tris+all-ft 90.71

Table K.3: Mean classification for selected feature sets in combination with the full
“tris” set over the 23 algorithms.

K.2. HETEROGENOUS META-CLASSIFIERS 395

K.2 Heterogenous meta-classifiers

Heterogenous meta-classifiers combine a number of algorithms with the

aim of finding complementary information which will improve on clas-

sification accuracy. Previous experiments on earlier versions of this data

showed that the best combination of algorithms are those which do best

individually. This strategy was repeated with the current dataset. First,

the accuracy of the better performing algorithms on the better performing

feature sets are noted. Then the results of combining the top 3 algorithms

for each set with each of 5 meta-classifiers are listed. In general the results

are no better than for the best single algorithm.

How do the better base algorithms perform with the better feature sets?

Table K.4 shows the details of the classification accuracy of each of the 13

selected feature sets with the top 7 of the 11 selected algorithms over these

sets. The results are ranked by the mean over each set and each algorithm.

The best result for each algorithm is in bold text, and the best for each

Fe
at

ur
e

se
t

SM
O

Si
m

pl
e

Lo
gi

st
ic

R
ot

at
io

n
Fo

re
st

FT R
an

do
m

Fo
re

st

SG
D

D
ag

gi
ng

Mean

tris-singles 94.16 93.42 93.20 93.11 92.61 94.01 * 93.78 93.36
fb+tris-singles 94.03 93.47 93.11 93.12 92.54 93.87 93.74 93.41
all-fb+tris-singles 94.25 * 93.49 93.17 92.98 92.66 93.68 93.65 93.41
tris 94.14 93.37 93.15 92.95 93.05 93.96 93.13 93.39
fb * 94.29 93.68 92.71 93.27 91.84 * 94.17 93.00 93.28
all-fb+all-tris 94.15 93.24 93.30 92.44 92.60 93.68 92.58 93.14
fb-singles 93.46 93.36 92.44 * 93.37 91.57 94.15 90.72 92.72
fc+fb+tris-singles 93.14 93.04 * 93.49 92.56 93.35 91.30 91.65 92.65
fc+tris-singles 92.93 93.04 93.27 92.57 93.37 91.11 91.02 92.47
all-fb+fc-singles 92.66 92.67 * 93.37 92.03 93.33 91.38 91.73 92.45
pdp+tris-singles 92.80 93.23 92.90 92.69 92.60 91.04 91.28 92.36
all-singles 91.25 92.94 92.94 92.35 92.99 91.53 91.42 92.20
all-fb+pdp-singles 91.67 92.76 92.38 92.18 92.57 91.18 91.35 92.01

Mean 93.23 93.21 93.03 92.74 92.70 92.70 92.24 92.84

Table K.4: Classification rates of 13 top feature sets with 7 selected algorithms

396 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14

feature set is marked by an asterisk. SMO gives the best result with 6 of the

13 feature sets, but there is no clear “winner” among the feature sets.

Does combining algorithms improve performance?

The aim of this experiment was to discover whether combining algo-

rithms using a heterogeneous meta-classifier could improve these results.

The meta-classifiers Grading, Stacking, MultiScheme, majority vote and

mean vote were used to combine the algorithms. The results for a selection

of 4 feature sets are shown in Table K.5. In each case, 3 algorithms which

perform best with the set are combined, excluding those of similar type,

for example, SGD is not included if SMO is in the set, as both are based on

SVMs. The 3 sets are noted on the row labelled ‘Combination’. These are

SMO, Simple Logistic (SL), Rotation Forest (ROT), Random Forest (RAND)

and Functional Trees (FT). The best result with a single classifier is given

in the next row, followed by the results with heterogenous meta-classifiers

which combine the three algorithms selected for the feature set.

These results indicate that there is no room for improvement over the

single best classifier on any feature set by combining algorithms. As this

is also the case when combining feature sets, it seems that the limit of

classification accuracy has been reached for this data.

Feature set tris-singles fb all-fb-all-tris fc+tris

Combination SMO, SL, ROT SMO, SL, FT SMO, SL, ROT SMO, SL, RAND

Best result 94.16 94.29 94.15 93.37

Majority vote 94.14 94.05 93.96 93.65
Mean vote 93.93 94.14 94.20 93.52
Grading 94.01 93.98 93.96 93.50
MultiScheme 93.41 93.23 93.27 93.40
Stacking 93.36 93.47 93.10 92.82

Table K.5: Heterogeneous meta-classifier results for a selection of feature sets. The
highest accuracy obtained by a single classifier with each feature set
is given, with the mean results for each of the meta-classifiers below.
The algorithms combined are shown, SMO, SL (Simple Logistic), ROT
(Rotation Forest), RAND (Random Forest) or FT (functional tree)

K.2. HETEROGENOUS META-CLASSIFIERS 397

Package and import statements are as MXRecord and KXRecord, but removed here to fit to page
public class MX KXRecord extends Record {
private short priority;
private Name target;
protected
MX KXRecord() {}
public
MX KXRecord(Name name, short type, short dclass, int ttl, int priority,

Name target)
{

super(name, type, dclass, ttl);
priority = (short) priority;
target = target;

}
protected
MX KXRecord(Name name, short type, short dclass, int ttl,

int length, DataByteInputStream in, Compression c)
throws IOException
{

super(name, type, dclass, ttl);
if (in == null)

return;
priority = (short) in.readUnsignedShort();
target = new Name(in, c);

}
protected
MX KXRecord(Name name, short type, short dclass, int ttl,

MyStringTokenizer st, Name origin)
throws IOException
{

super(name, type, dclass, ttl);
priority = Short.parseShort(st.nextToken());
target = new Name(st.nextToken(), origin);

}
public String
toString() {

StringBuffer sb = toStringNoData();
if (target != null) {

sb.append(priority);
sb.append(" ");
sb.append(target);

}
return sb.toString();

}
public Name
getTarget() {

return target;
}
public short
getPriority() {

return priority;
}
void
rrToWire(DataByteOutputStream out, Compression c) throws IOException {

if (target == null)
return;

out.writeShort(priority);
target.toWire(out, null);

}
void
rrToWireCanonical(DataByteOutputStream out) throws IOException {

if (target == null)
return;

out.writeShort(priority);
target.toWireCanonical(out);

} }

Figure K.1: The new file MX KXRecord, referenced in Section 14.2.2

398 APPENDIX K. SUPPLEMENTARY RESULTS FOR CHAPTER 14

Appendix L

Less direct methods of filtering

This appendix explores the three less direct similarity measures for filtering

suggested in Section 15.1. The measures in this category are explained in

the next three sections, and each is illustrated with a small set of example

files taken from the dataset. These files were selected from two projects:

“hatari”, which has multi-way split files, and “gwyddion”, which has high

incidental similarity among the files (a mean similarity of 0.31 between all

pairs of files in one release, compared to Hatari’s 0.17).

Two files were chosen from the hatari project: dialog.c,1 which is split

eleven ways, and gemdos.h, a three-way split.2 The number of unique

trigrams per file in the two releases analysed for this project ranges from

none to nearly four thousand, with a mean of around three hundred and

thirty-five. There are 149 and 162 files in the two releases.

Three files were chosen from gwyddion: gwyutils.c,3 and gwymodule-

file.h,4 which are two-way splits, and gwypixmaplayer.c,5 which is not

split. The file gwymodule-file.h is interesting because the code which has

been extracted from it appears in two other files, gwymodulenums.h and

main.c. The same code has been factored out of a number of other files to

gwymoduleenums.h as part of the same restructuring, however, this code

1http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/dialog-8.xml, also see p.184
2http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/gemdos.xml, also see p183
3http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/gwyutils-7.xml
4http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/gwymodule-file-10.xml
5http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/gwypixmaplayer-7.xml

399

400 APPENDIX L. LESS DIRECT METHODS OF FILTERING

has not been moved from main.c.

There are 279, 303 and 342 files in the next release to each of these

files respectively. The number of unique trigrams per file in these releases

ranges from 4 to 2,500, with one outlier of 3,500, and the mean number in

each release is around the same as the two hatari releases.

L.0.1 Uniquely shared trigrams (2a)

The trigrams uniquely shared by the candidate file and files in the next

release are found by analysing the trigram-file index for a comparison be-

tween files in two releases. Any files which uniquely share trigrams with

the candidate file are considered to be its targets.

There are advantages and disadvantages to this method of selecting

target files. On one hand, it cuts out incidentally similar files. On the other

hand, in projects with high incidental similarity, there may be few or no

unique trigrams among the files in a release, so that no target files will be

selected.

Table L.1 shows the results of the investigation. Candidate (in bold)

and target file names are in the second column of the table. The next

two columns show the number of unique trigrams each file has within the

release, and the number of these which are shared with the candidate file.

Files with fewer than five uniquely shared trigrams are excluded from

the table. This method selects the same true target files as the combination

conditions for gemdos.c. Two of the targets selected by combination con-

ditions for dialog.c are not true targets. These two files have few uniquely

shared trigrams: dlgDevice.c has 8, and dlgFileSelect.c has 2.

One of the two split files in the gwyddion project, gwyutils.c, is matched

to gwyenum.c, to which four functions are moved. However, the other split

file, gwymodule-file.h, has no target files selected because the code in the

target file is shared by another file in the system. No target files are selected

for the final file, gwypixmaplayer.c, which is as expected, because it is not

a split file. In the similarity combination and shared trigram change sets,

12 and 22 targets respectively are selected for this file, because of the high

401

Trigrams unique Trigrams uniquely
among files in shared with the

Project Filename the same release candidate file

hatari src/dialog.c 212 198
src/gui-sdl/dlgDisc.c 311 286
src/gui-sdl/dlgScreen.c 234 228
src/gui-sdl/dlgMain.c 232 216
src/gui-sdl/dlgTosGem.c 178 172
src/gui-sdl/dlgAbout.c 162 143
src/gui-sdl/dlgKeyboard.c 128 123
src/gui-sdl/dlgSound.c 176 114
src/gui-sdl/dlgSystem.c 111 106
src/gui-sdl/dlgJoystick.c 85 79
src/gui-sdl/dlgMemory.c 147 77
src/gui-sdl/dlgDevice.c 73 8

gemdos.h 44 40
gemdos defines.h 172 166
gemdos.c 2261 53

gwyddion gwyutils.c 708 515
gwyenum.c 181 58

gwymodule-file.h 42 42

gwypixmaplayer 227 203

Table L.1: Target files found by uniquely shared trigrams for the test cases (<5, not
reported). Filenames are listed with the number of unique trigrams in
the file and the number of these shared with the candidate file.

level of incidental similarity in the project.

L.0.2 Weighted trigram count (2b)

One way to try to address the problem of target files not being selected by

uniquely shared trigram count (because the code is in more than one file) is

to use a weighted trigram count. As explained in Chapter 9, to compute this

value, each file is compared to all of the files in the next release. Trigrams

shared by the candidate and another file are weighted by the inverse of the

number of files in release n+1 which share the trigram, and are added to

the count.

Table L.2 shows the weighted trigram counts for the five example files.

The same target files are found as by the count of uniquely shared trigrams

for the files dialog, gemdos and gwyutils. Where a value is given as “<n”

in the table, it means that the remaining values are greater than zero and

402 APPENDIX L. LESS DIRECT METHODS OF FILTERING

True Other No. other
Candidate Targets files files

dialog 330–87 <36 50
gemdos 171, 67 <36 28
gwutils 111 32, <13 99
gwymodule-file 12 18, 12, <3 12
gwypixmaplayer – 22, <13 29

Table L.2: Weighted trigram count for the example files

graduate between zero and the upper value. When the difference between

the values is more clear cut, the values are noted. For example, the weighted

counts for gwyutils are 111 (the true target), 32, 12.83, 12.25, 11.83, 11.08

The number of other files sharing trigrams with the candidate file is in the

last column. The correct target file for gwymodule-file.h is ranked second

equal under this measure, but the value is small (12), because little code is

moved between the files and it is shared by other files.

L.0.3 Trigrams shared with the candidate difference set (2c)

The candidate difference set is the name given to the set of trigrams which

are in the candidate file, but not in the amended file. The difference set for

each potential candidate file is compared to the trigrams in each of the files

in release n+1. Files containing significant numbers of these trigrams are

added to the target group.

Table L.3 shows the number of trigrams which true targets and other

files share with the difference set. There are a large number of files which

share difference set trigrams in both projects. The true targets for gemdos

and gwyutils share noticeably more trigrams with the difference set than

other files. There is one non-target file which shares more trigrams than do

some of the target files for dialog.c. As with the weighted trigram count, the

true target file for gwymodule-file is one of three with marginally higher

scores than the rest in the release.

403

True Other No. other
Candidate Targets files files

dialog 576–180 215, <100 125
gemdos 198, 70 <23 86
gwutils 206 <51 259
gwymodule-file 29 30, 10, <4 125
gwypixmaplayer – <20 316

Table L.3: Trigrams shared by the example files with the candidate difference set

L.0.4 Discussion

None of these three less direct methods, which require more processing,

perform as well as the simpler methods in selecting target files for the more

difficult gwymodule-file.h. However, they do reduce the number of inci-

dentally similar files selected as targets for other files. Selection of target

files by uniquely shared trigrams can exclude true targets because of dupli-

cation in the code. This duplication may be due to incidental similarity or

to parallel subsystems. For example, the high incidental similarity of the

project gwyddion, or of “ppcboot”, which has around 70 subsystems for

different motherboards. Weighted similarity goes some way to overcoming

the exclusion problem where uniquely shared trigrams fail, but also intro-

duces target files which share candidate code with few others but are not

true targets. In general, it is also a less useful measure for projects with high

incidental similarity. Finding the number of trigrams shared with the can-

didate difference set does not improve on the results with uniquely shared

trigrams or weighted counts for the problem file tested here.

404 APPENDIX L. LESS DIRECT METHODS OF FILTERING

Appendix M

Extracts from the Lifelines

change log

This appendix contains edited entries from the Lifelines project change log.

Entries were initially selected by the keywords: factor, refactor, split, move,

remove, and while scanning the log visually, the words pull, spun and

combine were added. The log was also searched by filename to try to find

matches for split files found by filtering and not initially found in the log.

Those judged to relate to file splitting are listed, and each split given a

number. If the entry is matched by a candidate file, ’+++’ is added to the

entry (usually before the date), if not, ’- - -’ is added. Other notes are in

square brackets.

Release 3

--- 2007-05-19

*NEW src/liflines/lines_usage.c

1. Move show_usage to be shared by both llines and llexec.

Release 4

+++ 2006-09-16

* ChangeLog src/interp/interp.c src/interp/progerr.c

2. Move declaration of prog_var_error_zstr to correct module (progerr.c).

[* 3, 4, 5: three changes all to one file, so are one split]

* +++ 2006-09-04

405

406 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

* ChangeLog src/gedlib/messages.c src/liflines/interact.c
src/liflines/llinesi.h src/liflines/screen.c
src/liflines/screeni.h src/liflines/searchui.c

3. Move search menu & window painting into searchui.c
Affected: invoke_search_menu, invoke_fullscan_menu,
repaint_fullscan_menu, repaint_search_menu

* +++ 2006-09-02

* ChangeLog build/msvc6/llines/llinesprj.dsp src/hdrs/screen.h
src/liflines/Makefile.am src/liflines/listui.c
src/liflines/llinesi.h src/liflines/screen.c
*NEW src/liflines/interact.c
*NEW src/liflines/screeni.h
*NEW src/liflines/searchui.c

Split interact calls into interact_screen_menu and
interact_choice_string, and renamed interact to interact_worker.

4. Moved interact_screen_menu, interact_choice_string,
interact_worker, translate_hdware_key, translate_control_key
to new file interact.c. Created new header screeni.h.

* +++ 2006-07-25

* ChangeLog build/msvc6/llines/llinesprj.dsp src/gedlib/messages.c
src/hdrs/screen.h src/liflines/Makefile.am src/liflines/screen.c

src/liflines/show.c src/liflines/listui.c src/liflines/listui.h

5. Move popup and browse list code out of screen.c into listui.c.

--- 2006-07-24

* ChangeLog src/gedlib/messages.c src/hdrs/screen.h src/liflines/browse.c
src/liflines/brwsmenu.c src/liflines/dynmenu.c src/liflines/main.c
src/liflines/menuset.c src/liflines/screen.c win32/mycurses.c

6. Moved platform_postcurses_init from main.c into screen.c.

+++ 2006-06-04

* ChangeLog build/msvc6/llines/llinesprj.dsp
po/POTFILES.in src/interp/Makefile.am
src/interp/interp.c src/interp/interpi.h src/interp/rassa.c
*NEW src/interp/progerr.c

7. Move lifelines report error routines to new src/interp/progerr.c.

--- 2005-11-26

* ChangeLog src/interp/Makefile.am src/interp/more.c
*NEW src/interp/rptsort.c

8. Move sort & rsort implementations from end of more.c into new
file rptsort.c.

+++ 2005-11-15

* ChangeLog build/msvc6/dbverify/dbverifyCmd.dsp
build/msvc6/llexec/llexec.dsp build/msvc6/llines/llinesprj.dsp

src/hdrs/llstdlib.h src/liflines/error.c src/stdlib/signals.c
src/tools/dbverify.c
*NEW src/stdlib/errlog.c [from error.c]
*NEW src/stdlib/llabort.c [from signals.c]

9. Factor out crashlog reporting into new file src/stdlib/errlog.c,

407

and implement crashlog for dbverify as well. Also implement
10. optional abort for dbverify (by factoring optional abort into
new file src/stdlib/llabort.c).

+++ 2005-10-05

* ChangeLog build/msvc6/llexec/llexec.dsp build/msvc6/llines/llinesprj.dsp
src/hdrs/liflines.h src/liflines/Makefile.am src/liflines/ask.c
src/liflines/llexec.c src/liflines/main.c

*NEW src/liflines/selectdb.c

Combine two copies of open_or_create_database code from
11. main.c &
12. llexec.c into one copy in new selectdb.c.

* ChangeLog build/msvc6/dbverify/dbverifyCmd.dsp
build/msvc6/llexec/llexec.dsp build/msvc6/llines/llinesprj.dsp

src/hdrs/Makefile.am src/hdrs/gedcom.h

13. Move macros from gedcom.h to new gedcom_macros.h.

+++ 2005-10-01

* ChangeLog src/gedlib/gedcomi.h src/gedlib/init.c
build/msvc6/llines/llinesprj.dsp

*NEW src/gedlib/llgettext.c

14. Pull gettext code out of init.c into new file llgettext.c.

+++ 2005-09-25

* ChangeLong build/msvc6/llines/llinesprj.dsp src/gedlib/datei.c
src/gedlib/datei.h src/gedlib/dateparse.c

src/gedlib/dateprint.c src/gedlib/date.c

15. Split code for parsing dates, and code for printing dates,
into different files.

+++ * ChangeLog src/gedlib/datei.c src/gedlib/datei.h
src/hdrs/date.h src/interp/builtin.c

16. Move a bunch of date structures & enums from date.h to private datei.h.
Add accessors needed for this move (date_get_day, date_get_month, etc).

Release 5

+++ 2005-02-27

* ChangeLog src/gedlib/init.c src/hdrs/gedcom.h

17. Move dblist functions out of init.c into new dblist.c

--- 2005-02-19

* build/msvc6/llines/llinesprj.dsp src/gedlib/date.c
src/gedlib/editvtab.c src/gedlib/gengedc.c src/gedlib/indiseq.c
src/gedlib/init.c src/gedlib/keytonod.c src/gedlib/lloptions.c
src/gedlib/misc.c src/gedlib/names.c src/gedlib/node.c
src/gedlib/valtable.c src/gedlib/xlat.c src/hdrs/table.h
src/interp/alloc.c src/interp/builtin.c src/interp/interp.c
src/interp/pvalalloc.c src/interp/pvalue.c src/interp/symtab.c
src/liflines/import.c src/liflines/llexec.c src/liflines/main.c
src/liflines/screen.c src/liflines/valgdcom.c
src/stdlib/memalloc.c src/stdlib/proptbls.c src/stdlib/table.c
*NEW src/hdrs/hashtab.h

408 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

*NEW src/stdlib/hashtab.c

18. Move hash table into new hashtab.h (use it from table.c).

--- 2005-02-06

* ChangeLog src/btree/btreei.h src/gedlib/gedcomi.h src/hdrs/btree.h

19. Move some btree internal calls to btreei.h.

* ChangeLog src/gedlib/gengedc.c src/gedlib/xlat.c
src/hdrs/table.h src/stdlib/table.c

20. Move gengedc.c local table_incr_item to table.c table_incr_int.
Fix next_table_ptr to use const key.

--- 2005-02-03

* ChangeLog src/btree/btrec.c src/gedlib/gstrings.c src/gedlib/node.c
src/gedlib/spltjoin.c src/hdrs/gedcom.h src/interp/write.c
src/liflines/advedit.c src/liflines/browse.c src/tools/dbverify.c

21. Move normalize_indi from private browse.c to public spltjoin.c.

--- 2005-01-30

22. Move SORTEL (indiseq element) structure from indiseq.h to indiseq.c.

+++ 2005-01-25

* ChangeLog build/msvc6/llines/llinesprj.dsp src/btree/Makefile.am
src/gedlib/Makefile.am src/gedlib/gedcomi.h src/gedlib/indiseq.c

src/gedlib/intrface.c src/gedlib/keytonod.c src/gedlib/node.c
src/hdrs/ src/hdrs/btree.h src/hdrs/gedcom.h src/hdrs/pvalue.h
src/interp/builtin.c src/interp/more.c src/interp/pvalue.c
src/liflines/add.c src/stdlib/list.c
*NEW src/btree/btrec.c
*emptied src/btree/record.c
*NEW src/gedlib/record.c

23. Move record struct & all associated functions into new file record.c.
[from node.c]

+++ 2003-11-12

* .linesrc ChangeLog lines.cfg build/msvc6/llines/llinesprj.dsp
src/gedlib/init.c src/hdrs/Makefile.am src/hdrs/mystring.h
src/liflines/llexec.c src/liflines/main.c src/stdlib/Makefile.am
src/stdlib/mystring.c src/stdlib/stdstrng.c src/tools/btedit.c
src/tools/dbverify.c

*NEW src/hdrs/mychar.h
*NEW src/stdlib/mychar_funcs.c

24. *NEW src/stdlib/mychar_tables.c

+++ 2003-10-07

* ChangeLog build/msvc6/llines/llinesprj.dsp
src/gedlib/keytonod.c src/gedlib/node.c src/gedlib/nodeio.c
src/hdrs/Makefile.am src/hdrs/cache.h src/hdrs/gedcom.h
src/hdrs/standard.h src/stdlib/Makefile.am

25. Move two functions taking CACHE into keytonod.c statics.

Release 7

409

+++ 2003-07-01

* ChangeLog src/hdrs/interp.h src/hdrs/pvalue.h src/interp/interpi.h

Header file restructuring.
26. Move most of interp.h into interpi.h
27. Move pvalue-related stuff into pvalue.h

Release 9

+++ 2003-02-06

* ChangeLog build/msvc6/llines/llinesprj.dsp
src/gedlib/indiseq.c src/gedlib/node.c src/hdrs/interp.h
src/interp/builtin.c src/interp/interpi.h src/interp/pvalue.c
src/stdlib/list.c src/stdlib/table.c
*NEW src/interp/pvalalloc.c

28. Move pvalue memory code into pvalalloc.c.

--
Release 10

2003-02-04

* ChangeLog build/msvc6/llines/llinesprj.dsp
src/gedlib/Makefile.am src/gedlib/gedcomi.h src/gedlib/node.c
src/hdrs/gedcom.h src/hdrs/liflines.h src/interp/write.c
src/liflines/add.c src/liflines/edit.c
*NEW src/gedlib/nodeio.c
29.
+++ Factored out GEDCOM I/O code from node.c into nodeio.c.

* ChangeLog src/gedlib/nodeio.c src/liflines/add.c
src/liflines/edit.c
30.
+++ Move gedcom output routines from edit.c to nodeio.c.

[Note: Looks as if some has gone to nodeio.c, and some to replace.c.]

+++ 2002-11-25

* ChangeLog build/msvc6/llines/llinesprj.dsp
src/hdrs/Makefile.am src/hdrs/standard.h src/hdrs/version.h
src/interp/builtin.c src/liflines/screen.c
*NEW src/hdrs/list.h
*NEW src/stdlib/list.c
*DELETED src/stdlib/double.c:

31. and moved list declarations from standard.h to list.h.

2002-10-11

* ChangeLog build/msvc6/llines/llinesprj.dsp src/hdrs/Makefile.am
src/hdrs/feedback.h src/hdrs/gedcom.h src/hdrs/liflines.h
src/hdrs/win32/curses.h src/interp/alloc.c src/interp/builtin.c
src/liflines/add.c src/liflines/advedit.c src/liflines/ask.c
src/liflines/askprogram.c src/liflines/browse.c src/liflines/delete.c
src/liflines/export.c src/liflines/llinesi.h

32. src/liflines/merge.c src/liflines/newrecs.c src/liflines/screen.c
+++ NEW: src/hdrs/uiprompts.h: [from gedcom.h]

Convert some use of NODE to RECORD. Work on ui separation

* ChangeLog src/btree/traverse.c src/hdrs/btree.h
src/hdrs/impfeed.h src/hdrs/version.h src/interp/builtin.c
src/liflines/export.c src/liflines/import.c src/liflines/llinesi.h

410 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

src/liflines/loadsave.c src/liflines/newrecs.c src/liflines/screen.c:

33.
+++ Pull curses UI out of export.c (into loadsave.c).

--- 2002-07-14

* ChangeLog build/msvc6/llines/llinesprj.dsp hdrs/interp.h
hdrs/llstdlib.h interp/Makefile.am interp/alloc.c
interp/interp.c interp/lex.c interp/yacc.h interp/yacc.y
liflines/pedigree.c stdlib/path.c
NEW: interp/parse.c [NB this file is deleted 2002-07-18]
NEW: interp/parse.h:

34. Move more parse globals into parse context.

--- 2002-07-07

* ChangeLog stdlib/llstrcmp.c stdlib/memalloc.c stdlib/strcvt.c:

35. Moved string widening code in strcmp into
new function makewide in strcvt.c.

--- 2002-07-04

* ChangeLog gedlib/locales.c hdrs/Makefile.am:

36. Move language & country arrays from gedlib/locales.c into
hdrs/isolang.h.

Release 12

--- 2002-07-02

* ChangeLog arch/vsnprintf.c build/msvc6/llines/config.h
build/msvc6/llines/llines.rc build/msvc6/llines/llinesprj.dsp
gedlib/Makefile.am gedlib/gengedc.c gedlib/indiseq.c
gedlib/lloptions.c gedlib/translat.c hdrs/Makefile.am
hdrs/bfs.h hdrs/feedback.h hdrs/gedcom.h hdrs/impfeed.h
hdrs/llnls.h hdrs/lloptions.h hdrs/metadata.h hdrs/warehouse.h
hdrs/win32/iconvshim.h liflines/main.c liflines/menuitem.c
liflines/pedigree.c stdlib/Makefile.am stdlib/bfs.c
stdlib/llstrcmp.c stdlib/strutf8.c
NEW: gedlib/locales.c
NEW: hdrs/icvt.h
NEW: stdlib/icvt.c

37. Moved locale code from translat.c to locales.c.

+++ 2002-06-27

* ChangeLog build/msvc6/llines/llinesprj.dsp gedlib/charmaps.c
gedlib/init.c gedlib/names.c hdrs/llstdlib.h hdrs/mystring.h
interp/interp.c interp/rassa.c liflines/ask.c
liflines/askprogram.c liflines/export.c liflines/loadsave.c
liflines/main.c liflines/screen.c stdlib/Makefile.am
stdlib/mystring.c stdlib/path.c stdlib/stdstrng.c
NEW: stdlib/appendstr.c stdlib/sprintpic.c stdlib/stralloc.c
NEW: stdlib/strapp.c stdlib/strcvt.c stdlib/strutf8.c
NEW: stdlib/strwhite.c:

38. Split string functions by type.

--- 2002-06-14

* ChangeLog configure.in gedlib/init.c hdrs/Makefile.am

411

hdrs/llstdlib.h hdrs/standard.h stdlib/Makefile.am
stdlib/double.c stdlib/memalloc.c
NEW: hdrs/llnls.h stdlib/llnls.c:

39. Move NLS stuff from standard.h into llnls.h.

Release 13

+++ 2002-06-08

* ChangeLog Makefile.am gedlib/init.c gedlib/messages.c
hdrs/Makefile.am hdrs/gedcheck.h hdrs/gedcom.h hdrs/screen.h
liflines/Makefile.am liflines/import.c liflines/llinesi.h
liflines/main.c liflines/screen.c liflines/valgdcom.c
m4/Makefile.am po/POTFILES.in po/de.po po/el.po po/it.po
po/sv.po stdlib/double.c win32/msvc6/libintl/config.h
win32/msvc6/libintl/libintlvc6.dsp win32/msvc6/llines/config.h
win32/msvc6/llines/llines.rc win32/msvc6/llines/llinesprj.dsp
NEW: hdrs/impfeed.h liflines/loadsave.c:

40. Remove curses code from import.c via interface functions.
[to loadsave.c (& export.c?)]

+++ 2002-02-18

* ChangeLog gedlib/indiseq.c gedlib/intrface.c hdrs/Makefile.am
hdrs/interp.h hdrs/llstdlib.h interp/Makefile.am
interp/builtin.c interp/date.c interp/eval.c interp/interp.c
interp/intrpseq.c interp/more.c interp/pvalue.c interp/rassa.c
liflines/Makefile.am liflines/browse.c liflines/main.c
liflines/screen.c liflines/show.c stdlib/double.c
win32/msvc6/llines/llinesprj.dsp
NEW: hdrs/date.h:

41. Moved date function declarations out of interp.h into new date.h.

+++ 2002-02-17

* ChangeLog gedlib/names.c hdrs/interp.h hdrs/llstdlib.h
hdrs/mystring.h hdrs/screen.h hdrs/table.h interp/Makefile.am
interp/alloc.c interp/builtin.c interp/date.c interp/eval.c
interp/heapused.c interp/interp.c interp/intrpseq.c
interp/more.c interp/pvalue.c interp/rassa.c interp/yacc.y
liflines/browse.c liflines/main.c liflines/screen.c
reports/exercise.ll stdlib/mystring.c stdlib/stdstrng.c
stdlib/table.c win32/mycurses.c win32/msvc6/llines/llines.rc
win32/msvc6/llines/llinesprj.dsp:

42. Spun off pvalmath.c & symtab.c from pvalue.c.

--- 2002-01-01

* ChangeLog hdrs/screen.h liflines/llinesi.h liflines/screen.c
liflines/show.c:

43. Renamed show_list to show_big_list, and moved to screen.c
(preparation for improving full list screen).

--- 2001-12-31

* ChangeLog docs/Install.LifeLines.Windows.txt
docs/Run.LifeLines.Windows.txt gedlib/messages.c hdrs/interp.h
hdrs/llstdlib.h interp/builtin.c interp/date.c
stdlib/stdstrng.c:

44. Moved all month names into messages.c.

412 APPENDIX M. EXTRACTS FROM THE LIFELINES CHANGE LOG

--- 2001-12-24

* ChangeLog gedlib/messages.c liflines/show.c:

45. Moved remaining English strings in show.c into messages.c.

* ChangeLog gedlib/editmap.c gedlib/messages.c hdrs/gedcom.h
hdrs/interp.h hdrs/liflines.h interp/builtin.c interp/date.c
interp/eval.c interp/functab.c interp/interpi.h liflines/ask.c
liflines/screen.c reports/exercise.ll:

46. Moved some English strings from builtin.c to messages.c.

--- 2001-11-20

* .linesrc ChangeLog lines.cfg docs/lifelines.sgml
gedlib/messages.c gedlib/node.c hdrs/cache.h hdrs/lloptions.h
interp/date.c liflines/export.c liflines/show.c
stdlib/lloptions.c tools/dbverify.c:

47. (Internat.) Moved some indi strings ("born"...) into messages.c.

Release 14

++?? 2001-11-08

48. Moved ui code from liflines/remove.c into liflines/delete.c,
and then moved non-ui remove.c to gedlib/.
%[looks like code has moved from liflines/delete.c to gedlib/remove.c]

Appendix N

Additional results 1: Chapter 16

In this appendix, detailed results of filtering the two projects PostgreSQL

and DNSjava to find files which have disappeared from the system are

provided. For each project, there are two tables where unmatched and

matched files are listed. Unmatched means files where there is no file with

a similarity of at least 0.05 in the next release, these files are considered

to have been deleted. Matched means files with a target file of at least

0.85 similarity in the next release, these files are considered to be renamed,

moved or both. Uncertain files fall between the two and are the files whose

classification is determined using the machine learning model.

N.1 PostgreSQL

In the PostgreSQL tables, the information is split into two sections, with

files from the backend subsystem studied by Zou [261] separated from the

rest. The first table (N.1) shows the matched files, with their similarity, and

the second table (N.2) lists unmatched files. Figure N.1 shows geqo paths.c,

referred to in Chapter 16, not classified as merged. The target file, prune.c,

is not selected because the number of trigrams shared by the files falls from

231 to 119.

413

414 APPENDIX N. ADDITIONAL RESULTS 1: CHAPTER 16
ba

ck
en

d
su

bs
ys

te
m

no
tb

ac
ke

nd
su

bs
ys

te
m

R
ef

.
Fi

le
M

at
ch

Si
m

.
R

ef
.

Fi
le

M
at

ch
Si

m
.

4
/b

ac
ke

nd
/p

or
t/d

yn
lo

ad
er
/a

lp
ha

.h
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
os

f.h
0.

91
4

/t
es

t/e
xa

m
pl

es
/t

es
tl

o2
.c

/t
es

t/e
xa

m
pl

es
/t

es
tl

o.
c

0.
93

4
/b

ac
ke

nd
/p

or
t/d

yn
lo

ad
er
/s

ol
ar

is
i3

86
.h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
w

in
.h

0.
92

4
/b

ac
ke

nd
/p

or
t/d

yn
lo

ad
er
/b

sd
.c

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
op

en
bs

d.
c

0.
93

6
/in

cl
ud

e/
op

ti
m

iz
er
/x

fu
nc

.h
/in

cl
ud

e/
op

ti
m

iz
er
/

de
ad

co
de
/x

fu
nc

.h
0.

9
4

/b
ac

ke
nd
/p

or
t/d

yn
lo

ad
er
/b

sd
.h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
op

en
bs

d.
h

0.
94

10
/b

ac
ke

nd
/o

pt
im

iz
er
/p

at
h/

xf
un

c.
c

/b
ac

ke
nd
/o

pt
im

iz
er
/p

at
h/

de
ad

co
de
/x

fu
nc

.c
0.

92
10

/in
cl

ud
e/

co
m

m
an

ds
/r

ec
ip

e.
h
/b

ac
ke

nd
/c

om
m

an
ds
/

de
ad

co
de
/r

ec
ip

e.
h

1
10

/b
ac

ke
nd
/e

xe
cu

to
r/

no
de

Te
e.

c
/b

ac
ke

nd
/e

xe
cu

to
r/

de
ad

co
de
/n

od
eT

ee
.c

0.
93

10
/b

ac
ke

nd
/o

pt
im

iz
er
/p

at
h/

pr
ed

m
ig

.c
/b

ac
ke

nd
/o

pt
im

iz
er
/p

at
h/

de
ad

co
de
/p

re
dm

ig
.c

0.
96

11
/in

cl
ud

e/
po

rt
/s

pa
rc

so
la

ri
s.

h
/in

cl
ud

e/
po

rt
/s

ol
ar

is
sp

ar
c.

h
0.

94
10

/b
ac

ke
nd
/c

om
m

an
ds
/d

efi
nd

.c
/b

ac
ke

nd
/c

om
m

an
ds
/in

de
xc

m
ds

.c
0.

96
11

/in
cl

ud
e/

po
rt
/i3

86
so

la
ri

s.
h

/in
cl

ud
e/

po
rt
/s

ol
ar

is
i3

86
.h

0.
98

10
/b

ac
ke

nd
/c

om
m

an
ds
/r

ec
ip

e.
c

/b
ac

ke
nd
/c

om
m

an
ds
/

de
ad

co
de
/r

ec
ip

e.
c

0.
97

12
/t

ut
or

ia
l/C

-c
od

e/
be

ar
d.

c
/t

ut
or

ia
l/b

ea
rd

.c
0.

97
11

/b
ac

ke
nd
/r

eg
ex
/w

st
rn

cm
p.

c
/b

ac
ke

nd
/u

ti
ls
/m

b/
w

st
rn

cm
p.

c
0.

9
12

/t
ut

or
ia

l/C
-c

od
e/

co
m

pl
ex

.c
/t

ut
or

ia
l/c

om
pl

ex
.c

0.
97

11
/b

ac
ke

nd
/c

om
m

an
ds
/v

er
si

on
.c

/b
ac

ke
nd
/c

om
m

an
ds
/

de
ad

co
de
/v

er
si

on
.c

0.
91

12
/t

ut
or

ia
l/C

-c
od

e/
fu

nc
s.

c
/t

ut
or

ia
l/f

un
cs

.c
1

11
/b

ac
ke

nd
/p

or
t/d

yn
lo

ad
er
/i3

86
so

la
ri

s.
h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
so

la
ri

s
i3

86
.h

1
11

/b
ac

ke
nd
/p

or
t/d

yn
lo

ad
er
/s

pa
rc

so
la

ri
s.

h
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
so

la
ri

s
sp

ar
c.

h
1

11
/b

ac
ke

nd
/p

or
t/n

ex
ts

te
p/

dy
nl

oa
de

r.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
ne

xt
st

ep
.c

1
11

/b
ac

ke
nd
/p

or
t/n

ex
ts

te
p/

po
rt

-p
ro

to
s.

h
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
ne

xt
st

ep
.h

1
11

/b
ac

ke
nd
/r

eg
ex
/u

tf
te

st
.c

/b
ac

ke
nd
/u

ti
ls
/m

b/
ut

ft
es

t.c
1

12
/b

ac
ke

nd
/p

or
t/a

lp
ha
/p

or
t-

pr
ot

os
.h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
al

ph
a.

h
0.

85
12

/b
ac

ke
nd
/p

or
t/B

SD
44

de
ri

ve
d/

dl
.c

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
bs

d.
c

0.
87

12
/b

ac
ke

nd
/p

or
t/l

in
ux
/d

yn
lo

ad
er

.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
lin

ux
.c

0.
89

12
/b

ac
ke

nd
/p

or
t/l

in
ux
/p

or
t-

pr
ot

os
.h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
lin

ux
.h

0.
89

12
/b

ac
ke

nd
/p

or
t/s

un
os

4/
st

rt
ol

.c
/b

ac
ke

nd
/p

or
t/

st
rt

ol
.c

0.
93

12
/b

ac
ke

nd
/p

or
t/d

gu
x/

dy
nl

oa
de

r.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
bs

di
.c

0.
94

12
/b

ac
ke

nd
/tc

op
/a

cl
ch

k.
c

/b
ac

ke
nd
/c

at
al

og
/a

cl
ch

k.
c

0.
94

12
/b

ac
ke

nd
/p

or
t/h

pu
x/

dy
nl

oa
de

r.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
hp

ux
.c

0.
95

12
/b

ac
ke

nd
/p

or
t/b

sd
i/d

yn
lo

ad
er

.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
bs

di
.c

0.
96

12
/b

ac
ke

nd
/p

or
t/a

ix
/d

lf
cn

.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
ai

x.
c

0.
96

12
/b

ac
ke

nd
/p

or
t/B

SD
44

de
ri

ve
d/

po
rt

-p
ro

to
s.

h
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
bs

d.
h

1
12

/b
ac

ke
nd
/p

or
t/d

gu
x/

po
rt

-p
ro

to
s.

h
/b

ac
ke

nd
/p

or
t/

lin
ux

al
ph

a/
po

rt
-p

ro
to

s.
h

1
12

/b
ac

ke
nd
/p

or
t/h

pu
x/

ru
sa

ge
st

ub
.h

/in
cl

ud
e/

ru
sa

ge
st

ub
.h

1
12

/b
ac

ke
nd
/p

or
t/i

38
6

so
la

ri
s/

ru
sa

ge
st

ub
.h

/in
cl

ud
e/

ru
sa

ge
st

ub
.h

1
12

/b
ac

ke
nd
/p

or
t/s

co
/p

or
t-

pr
ot

os
.h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
su

no
s4

.h
1

12
/b

ac
ke

nd
/p

or
t/s

co
/r

us
ag

es
tu

b.
h

/in
cl

ud
e/

ru
sa

ge
st

ub
.h

1
12

/b
ac

ke
nd
/p

or
t/s

pa
rc

so
la

ri
s/

ru
sa

ge
st

ub
.h

/in
cl

ud
e/

ru
sa

ge
st

ub
.h

1
12

/b
ac

ke
nd
/p

or
t/s

un
os

4/
po

rt
-p

ro
to

s.
h

/b
ac

ke
nd
/p

or
t/

dy
nl

oa
de

r/
su

no
s4

.h
1

12
/b

ac
ke

nd
/p

or
t/s

vr
4/

ru
sa

ge
st

ub
.h

/in
cl

ud
e/

ru
sa

ge
st

ub
.h

1
12

/b
ac

ke
nd
/p

or
t/u

lt
ri

x4
/d

l.h
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
ul

tr
ix

4.
h

1
12

/b
ac

ke
nd
/p

or
t/u

lt
ri

x4
/d

yn
lo

ad
er

.c
/b

ac
ke

nd
/p

or
t/

dy
nl

oa
de

r/
ul

tr
ix

4.
c

1
12

/b
ac

ke
nd
/p

or
t/u

ni
ve

l/r
us

ag
es

tu
b.

h
/in

cl
ud

e/
ru

sa
ge

st
ub

.h
1

Ta
bl

e
N

.1
:D

is
ap

pe
ar

in
g

Po
st

gr
eS

Q
L

fil
es

fo
r

w
hi

ch
th

er
e

is
a

fil
e

in
th

e
ne

xt
re

le
as

e
w

it
h

a
si

m
ila

ri
ty

of
at

le
as

t0
.8

5.

N.1. POSTGRESQL 415

backend subsystem not backend subsystem

Ref. Filename Ref. Filename

2 /backend/access/heap/stats.c 2 /include/catalog/pg inheritproc.h
2 /backend/access/transam/transsup.c 2 /include/catalog/pg ipl.h
2 /backend/lib/hasht.c 2 /include/catalog/pg log.h
2 /backend/libpq/pqpacket.c 2 /include/catalog/pg variable.h
2 /backend/utils/cache/rel.c 2 /include/lib/hasht.h
2 /backend/utils/mb/palloc.c 2 /include/storage/pagenum.h
2 /backend/utils/mb/sjistest.c
2 /backend/utils/mb/utftest.c 4 /bin/pg version/pg version.c

4 /include/access/funcindex.h
4 /backend/lib/fstack.c 4 /include/lib/fstack.h
4 /backend/libpq/be-dumpdata.c 4 /include/optimizer/internal.h
4 /backend/libpq/be-pqexec.c 4 /include/regex/cdefs.h
4 /backend/libpq/portal.c 4 /include/regex/regexp.h
4 /backend/libpq/portalbuf.c 4 /include/utils/lztext.h
4 /backend/nodes/freefuncs.c 4 /include/utils/module.h
4 /backend/optimizer/geqo/geqo params.c 4 /include/utils/trace.h
4 /backend/optimizer/util/indexnode.c 4 /install-sh
4 /backend/port/hpux/fixade.h 4 /interfaces/odbc/acconfig.h
4 /backend/storage/lmgr/multi.c 4 /interfaces/odbc/install-sh
4 /backend/storage/lmgr/single.c 4 /utils/version.c
4 /backend/utils/adt/chunk.c 4 /win32/endian.h
4 /backend/utils/adt/filename.c 4 /win32/tcp.h
4 /backend/utils/init/enbl.c 4 /win32/un.h
4 /backend/utils/mmgr/oset.c
4 /backend/utils/mmgr/palloc.c 6 /bin/psql/psqlHelp.h

6 /include/lib/qsort.h
6 /backend/utils/sort/lselect.c 6 /include/optimizer/ordering.h
6 /backend/utils/sort/psort.c 6 /include/utils/lselect.h

6 /include/utils/psort.h

10 /include/catalog/pg parg.h
10 /backend/access/common/heapvalid.c 10 /include/optimizer/geqo paths.h

10 /interfaces/libpq++/pgenv.h
10 /pl/plpgsql/gram.c
10 /pl/plpgsql/y.tab.h

11 /backend/port/linuxalpha/machine.h 11 /include/utils/oidcompos.h
11 /backend/utils/adt/oidint2.c 11 /include/version.h
11 /backend/utils/adt/oidint4.c 11 /interfaces/ecpg/test/Ptest1.c
11 /backend/utils/adt/oidname.c 11 /interfaces/ecpg/test/test1.c

12 /backend/lib/qsort.c 12 /include/catalog/pg defaults.h
12 /backend/optimizer/prep/archive.c 12 /include/catalog/pg demon.h
12 /backend/parser/sysfunc.c 12 /include/catalog/pg hosts.h
12 /backend/port/univel/frontend-port-protos.h 12 /include/catalog/pg magic.h

12 /include/catalog/pg server.h
12 /include/catalog/pg time.h
12 /include/parser/sysfunc.h

Table N.2: PostgreSQL files which have disappeared from the system and for which
there is no file of at least 0.05 similarity in the next release

416 APPENDIX N. ADDITIONAL RESULTS 1: CHAPTER 16

Figure N.1: The disappearing file geqo paths.c compared to prune.c, the most sim-
ilar file in the optimizer/path subdirectory, in both the same release
(blue file), and in the next release (red file). The trigrams shared by
the two files are reduced from 231 (in blue and purple) to 119 (purple),
making it unlikely that any text-based analysis will find this relation-
ship. Beagle’s combination of matching techniques finds this merge.

N.2. DNSJAVA 417

N.2 DNSjava

There are also two tables for DNSjava, and the files are split into two groups,

those before release 39, studied by Antoniol et al., and those from release

40 onwards. Otherwise the Tables N.3 and N.4 echo the PostgreSQL tables.

N.3 Reporting

As each project is run, a report is output detailing the unmatched files; the

matched files, and which file they are matched to; the uncertain files, the

similarity to the main target, and the main target; and lastly the number

of files which are thought to have changed directory, based on a threshold

which can be selected at run time (see example in Figure N.2).

Ref. V’n. File

2 56 /org/xbill/DNS/Verifier.java
2 56 /org/xbill/DNS/security/CERTConverter.java
2 56 /org/xbill/DNS/security/DHPubKey.java
2 56 /org/xbill/DNS/security/DNSSECVerifier.java
2 56 /org/xbill/DNS/security/DSAPubKey.java
2 56 /org/xbill/DNS/security/DSASignature.java
2 56 /org/xbill/DNS/security/RSAPubKey.java

10 48 /org/xbill/DNS/TypedObject.java
12 46 /org/xbill/DNS/utils/md5.java
18 40 /org/xbill/DNS/utils/StringValueTable.java

25 33 /org/xbill/Task/WorkerThread.java
27 31 /org/xbill/DNS/TypeMap.java
28 30 /org/xbill/DNS/BitString.java
38 20 /org/xbill/DNS/TypeClass.java

Table N.3: Unmatched disappearing DNSjava files

Ref. From To No.files

45 dnsjava-13/DNS/utils/ dnsjava-14/org/xbill/DNS/utils/ 8
45 dnsjava-13/DNS/ dnsjava-14/org/xbill/Task/ 1
45 dnsjava-13/DNS/ dnsjava-14/org/xbill/DNS/ 47
47 dnsjava-11/DNS/ dnsjava-12/DNS/utils/ 1

Figure N.2: Extract from an example report on the number of “disappearing” DNS-
java files which move from one directory to another

418 APPENDIX N. ADDITIONAL RESULTS 1: CHAPTER 16

Ref. Rel. File Renamed file Sim.

45 13 /DNS/CNAMERecord.java /org/xbill/DNS/CNAMERecord.java 0.87
45 13 /DNS/NSRecord.java /org/xbill/DNS/NSRecord.java 0.87
45 13 /DNS/PTRRecord.java /org/xbill/DNS/PTRRecord.java 0.87
45 13 /DNS/SimpleResolver.java /org/xbill/DNS/SimpleResolver.java 0.89
45 13 /DNS/Credibility.java /org/xbill/DNS/Credibility.java 0.92
45 13 /DNS/NS CNAME PTRRecord /org/xbill/DNS/NS CNAME PTRRecord 0.93

.java .java
45 13 /DNS/Opcode.java /org/xbill/DNS/Opcode.java 0.94
45 13 /DNS/Record.java /org/xbill/DNS/Record.java 0.94
45 13 /DNS/HINFORecord.java /org/xbill/DNS/HINFORecord.java 0.94
45 13 /DNS/UNKRecord.java /org/xbill/DNS/UNKRecord.java 0.94
45 13 /DNS/TXTRecord.java /org/xbill/DNS/TXTRecord.java 0.94
45 13 /DNS/DClass.java /org/xbill/DNS/DClass.java 0.94
45 13 /DNS/MXRecord.java /org/xbill/DNS/MXRecord.java 0.95
45 13 /DNS/Compression.java /org/xbill/DNS/Compression.java 0.95
45 13 /DNS/ARecord.java /org/xbill/DNS/ARecord.java 0.95
45 13 /DNS/utils/StringValueTable.java /org/xbill/DNS/utils/StringValueTable.java 0.95
45 13 /DNS/SRVRecord.java /org/xbill/DNS/SRVRecord.java 0.95
45 13 /DNS/TypeClass.java /org/xbill/DNS/TypeClass.java 0.95
45 13 /DNS/Flags.java /org/xbill/DNS/Flags.java 0.95
45 13 /DNS/CERTRecord.java /org/xbill/DNS/CERTRecord.java 0.96
45 13 /DNS/Section.java /org/xbill/DNS/Section.java 0.96
45 13 /DNS/OPTRecord.java /org/xbill/DNS/OPTRecord.java 0.96
45 13 /DNS/Rcode.java /org/xbill/DNS/Rcode.java 0.96
45 13 /DNS/KEYRecord.java /org/xbill/DNS/KEYRecord.java 0.96
45 13 /DNS/Address.java /org/xbill/DNS/Address.java 0.96
45 13 /DNS/NXTRecord.java /org/xbill/DNS/NXTRecord.java 0.96
45 13 /DNS/NameSet.java /org/xbill/DNS/NameSet.java 0.96
45 13 /DNS/SOARecord.java /org/xbill/DNS/SOARecord.java 0.97
45 13 /DNS/SetResponse.java /org/xbill/DNS/SetResponse.java 0.97
45 13 /DNS/dns.java /org/xbill/DNS/dns.java 0.97
45 13 /DNS/utils/base16.java /org/xbill/DNS/utils/base16.java 0.97
45 13 /DNS/utils/DataByteOutputStream /org/xbill/DNS/utils/DataByteOutputStream 0.97

.java .java
45 13 /DNS/utils/DataByteInputStream /org/xbill/DNS/utils/DataByteInputStream 0.98

.java .java
45 13 /DNS/TSIGRecord.java /org/xbill/DNS/TSIGRecord.java 0.98
45 13 /DNS/TTL.java /org/xbill/DNS/TTL.java 0.98
45 13 /DNS/Master.java /org/xbill/DNS/Master.java 0.98
45 13 /DNS/TSIG.java /org/xbill/DNS/TSIG.java 0.98
45 13 /DNS/Header.java /org/xbill/DNS/Header.java 0.98
45 13 /DNS/SIGRecord.java /org/xbill/DNS/SIGRecord.java 0.98
45 13 /DNS/Type.java /org/xbill/DNS/Type.java 0.98
45 13 /DNS/utils/hmacSigner.java /org/xbill/DNS/utils/hmacSigner.java 0.98
45 13 /DNS/Message.java /org/xbill/DNS/Message.java 0.98
45 13 /DNS/Name.java /org/xbill/DNS/Name.java 0.99
45 13 /DNS/FindServer.java /org/xbill/DNS/FindServer.java 0.99
45 13 /DNS/Zone.java /org/xbill/DNS/Zone.java 0.99
45 13 /DNS/utils/base64.java /org/xbill/DNS/utils/base64.java 0.99
45 13 /DNS/utils/MyStringTokenizer.java /org/xbill/DNS/utils/MyStringTokenizer.java 0.99
45 13 /DNS/Cache.java /org/xbill/DNS/Cache.java 0.99
45 13 /DNS/utils/md5.java /org/xbill/DNS/utils/md5.java 0.99
47 11 /DNS/MyStringTokenizer.java /DNS/utils/MyStringTokenizer.java 0.99

Table N.4: Disappearing DNSjava files with a file of at least 0.85 similarity in the
next release. All of these files are moved from one directory to another.

Appendix O

Additional results 2: Chapter 16

The dataset of disappearing files with two or more target files is imbal-

anced, with a ratio of 45:45:10 unrelated:renamed/moved:split files. In this

appendix, the results of classifying the data using over- and under-sampling

and cost-based classification are reported. Each of these methods aims to

improve classification of the minority class, the first two by artificially bal-

ancing the data, and the last by applying a penalty to the misclassification

of a member of the minority class.

O.1 Disappearing files: classifying imbalanced data

Table O.1 repeats Table 16.18 for reference, and shows the geometric means

of the top ten models, ranked by classification accuracy on this dataset.

Three of the feature sets in these top ten combinations are the larger ones:

“all-feats”, “fall” and “all-cats” (all, all Ferret, and all concatenated features,

respectively). However, the geometric means of classification accuracy for

these three sets are not as high as those of the smaller sets. The seven

other sets were used to investigate the different methods of dealing with

imbalanced data discussed in Chapter 4: over-sampling, under-sampling,

and cost-based algorithms.

The data was over-sampled using the SMOTE [39] algorithm with three

different random seeds, to bring the minority class to 258 instances, as the

419

420 APPENDIX O. ADDITIONAL RESULTS 2: CHAPTER 16

Feature set Algorithm Unrelated Renamed Split Geo.mean

fl+tris-singles ROT 0.929 0.885 0.729 0.843
all-fb+all-pdp SL 0.906 0.897 0.712 0.833
all-tris+all-fl ROT 0.922 0.904 0.661 0.820
all-tris+fc-singles ROT 0.890 0.908 0.678 0.818
all-tris+all-fc ROT 0.898 0.893 0.678 0.816
tris ROT 0.906 0.877 0.661 0.807
fall-cats ROT 0.910 0.893 0.627 0.799
fall ROT 0.902 0.897 0.627 0.797
all-feats ROT 0.918 0.889 0.576 0.778
all-cats ROT 0.929 0.893 0.508 0.750

Abbreviations: ROT - Rotation Forest, SL - Simple Logistic

Table O.1: Geometric means of accuracy for the top 10 results from Table 16.15

majority classes have 255 and 261 instances. Each of the sets were run with

the nine algorithms listed in Table 16.17. Random Forest is one of the two

top-performing algorithms on this data and so was used in the comparison

reported in Table O.2. The results over the 100 sets on the 89 project dataset

are given in column 2. Columns 3-5 have results for the PostgreSQL and

DNSjava data. Column 3 has the classification accuracy using the model

trained on the imbalanced 89 project dataset, with the mean of the results

over the three SMOTE sets in column 4, and the difference between the

two in column 5. The mean difference between the two sets of results is

insignificant at approximately 0.1%. However, in the unseen data, in which

there are 14 examples of split disappearing files, on average one more of

these examples are correctly classified by the SMOTE sets. As the overall

Imbalanced PostgreSQL & DNSjava
Feature mean over
set 100 sets Imbal. SMOTE Diff.

all-tris+all-fl 86.40 85.30 85.00 -0.30
all-tris+all-fc 86.57 87.70 88.25 0.55
all-fb+all-pdp 85.38 85.25 86.07 0.82
all-fb+all-fc 85.19 88.50 88.50 0.00
all-fb+all-tris 85.43 89.30 88.52 -0.78
tris 85.53 86.70 86.07 -0.63
fall-cats 85.16 86.89 87.34 0.45
fl+tris-singles 84.29 86.07 86.89 0.82
fc+tris-singles 83.84 88.52 88.52 0.00

Table O.2: The effect on classification of balancing the dataset by over-sampling
with SMOTE. The mean classification rate over the 100 test sets for the
imbalanced set with Random Forest (25) is in column 2. The rate for the
unseen data is in column 3, with the mean over the 3 SMOTE sets in the
4th column, and the difference between them in the 5th column.

O.1. DISAPPEARING FILES: CLASSIFYING IMBALANCED DATA 421

accuracy is unchanged, this means that an instance from one of the other

classes will be misclassified instead.

The data was also under-sampled using the Weka SpreadSubSample

filter, so that the datasets consisted of 59 instances from each class, small

samples given the variation in the data. Classification on the unseen data

with the three sets tested was around 3% less accurate than with other sets,

and is therefore not reported in detail.

Two cost-based wrappers are provided in Weka 3.7.3, Cost Sensitive

and Meta Cost, for which the user provides the costs to be associated with

incorrect classification. Splits are under-represented in this data, therefore

costs were set to 1 for misclassifying each of the unrelated and renamed

classes, and to 2 for the split class. Table O.3 reports on the results of

applying costs to the Rotation Forest, Random Forest, Simple Logistic, and

Random Committee algorithms to the 89 project dataset. There are small

differences between classifying with, and without, the costs. For example,

the mean difference between Rotation Forest with costs, and without, is

around a quarter of a percent over the feature sets in the table, and between

the geometric means is 0.005.

Tests on the unseen data with the “all-tris+all-fl” (trigram and line count)

feature set, and costs of both 2 and 5, given in Table O.4, show that for these

feature set/algorithm combinations, introducing costs does not improve the

number of correctly classified members of the minority class.

Strategies for dealing with imbalance in the classes: over-sampling and

under-sampling the data, and using cost-based algorithms, do not give

significant changes in most of the tests reported. The Random Forest models

built using data over-sampled by the SMOTE algorithm tend to correctly

classify one more instance of the minority class. However, this effect is not

repeated in the better models, such as the “all-tris+all-fl”/SimpleLogistic

model, which already classifies 11 of the 14 instances correctly. In summary,

none of the strategies for dealing with the imbalance in the classes improves

on the better models built with the raw data.

422 APPENDIX O. ADDITIONAL RESULTS 2: CHAPTER 16

Meta ‘Base’ al
l-

tr
is
+

al
l-

fl

tr
is

al
l-

tr
is
+

al
l-

fc

al
l-

fb
+

al
l-

tr
is

al
l-

fb
+

al
l-

pd
p

fa
ll-

ca
ts

al
l-

fb
+

al
l-

fc

fl+
tr

is
-s

in
gl

es

fc
+

tr
is

-s
in

gl
es

Mean

- ROT 88.13 87.22 87.31 87.13 86.41 87.17 86.47 87.20 86.60 87.07

CS ROT 88.37 87.60 87.51 87.50 86.70 87.34 86.66 87.73 86.56 87.33
MC ROT 88.19 87.43 87.58 87.44 86.46 87.25 86.47 87.49 86.82 87.24
CS RAN 87.07 87.38 87.17 87.05 86.26 85.97 86.50 86.61 86.34 86.71
MC RAN 86.57 87.07 86.54 86.97 85.73 85.44 85.90 86.15 86.08 86.27
CS RC 85.99 86.39 85.97 86.14 85.35 84.88 85.33 85.48 85.48 85.67
MC RC 85.91 86.25 85.69 85.99 85.17 85.12 85.53 85.16 85.30 85.57
MC SL 86.41 85.06 85.54 84.98 87.28 87.24 85.79 83.91 82.66 85.43
CS SL 86.74 84.85 86.06 84.55 87.20 86.54 86.63 83.94 82.76 85.47

- ROT 0.82 0.81 0.82 0.80 0.83 0.80 0.79 0.84 0.84 0.82

CS ROT 0.80 0.83 0.83 0.82 0.82 0.83 0.82 0.83 0.81 0.82
MC ROT 0.82 0.84 0.83 0.83 0.80 0.82 0.79 0.81 0.80 0.82
CS SL 0.80 0.82 0.82 0.82 0.81 0.77 0.82 0.75 0.80 0.80
MC SL 0.81 0.80 0.80 0.80 0.81 0.74 0.80 0.77 0.80 0.79
CS RAN 0.76 0.82 0.81 0.81 0.80 0.82 0.78 0.80 0.74 0.79
MC RAN 0.76 0.81 0.81 0.81 0.82 0.79 0.75 0.81 0.73 0.78
CS RC 0.72 0.80 0.80 0.81 0.76 0.79 0.77 0.74 0.70 0.77
MC RC 0.72 0.79 0.80 0.81 0.75 0.79 0.75 0.75 0.68 0.77

Table O.3: Classification using Cost Sensitive (CS) and Meta Cost (MC) wrappers
with Rotation Forest (ROT), Random Forest (RAN), Random Committe
(RC) and Simple Logistic (SL). Mean classification accuracies over 100
sets at the top, and geometric means at the bottom.

Base Std. MC-2 CS-2 MC-5 CS-5

Simple Logistic 11 11 10 11 10
Rotation Forest 8 7 9 7 8
Random Forest 7 7 7 7 7
Random Committe 7 7 7 8 7

Table O.4: The number of minority class (disappearing and split) from the 14 ex-
amples in the unseen dataset correctly classified with the base algorithm
and the all-tris+all-fl feature set, with Cost Sensitive (CS) and Meta Cost
(MC) wrappers, with misclassification costs of 2 and 5.

Appendix P

Dig et al.: Struts results

This appendix gives the refactorings Dig et al. [64] expected to find in the

project Struts between release 1.1 and 1.2.4 on pages 425 and 426.1 The list

on page 425 has been rearranged to group the impact of the changes at file

level, for comparison with the findings of the research in this dissertation.

The refactorings which were found by Dig et al.’s Refactoring Crawler are

ticked.

The changes to methods listed here mean that the following changes

were made at file level: RequestUtils was split three ways to ModuleUtils

and TagUtils, ResponseUtils is also split to TagUtils, and ActionMapping

is split to ActionConfig. Two of the split files, ActionMapping.java (left)

and ResponseUtils.java (right) and are shown in Figure P.1, the other file is

online at http://homepages.stca.herts.ac.uk/˜gp2ag/xmls/RequestUtils.xml.

1http://netfiles.uiuc.edu/dig/RefactoringCrawler

423

424 APPENDIX P. DIG ET AL.: STRUTS RESULTS

Figure P.1: One method moved from ActionMapping to ActionConfig (left) and
most of the code in the file ResponseUtils (right) moved to TagUtils
(right) between releases 1.1 and 1.2.4 of the project Struts

425

M
ov

ed
fr

om
fil

e
R

eq
ue

st
U

ti
ls

to
fil

e
M

od
ul

eU
ti

ls
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.s

el
ec

tM
od

ul
e,

or
g.

ap
ac

he
.s

tr
ut

s.
ut

il.
M

od
ul

eU
ti

ls
.s

el
ec

tM
od

ul
e

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.s
el

ec
tM

od
ul

e,
or

g.
ap

ac
he

.s
tr

ut
s.

ut
il.

M
od

ul
eU

ti
ls

.s
el

ec
tM

od
ul

e
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
M

od
ul

eN
am

e,
or

g.
ap

ac
he

.s
tr

ut
s.

ut
il.

M
od

ul
eU

ti
ls

.g
et

M
od

ul
eN

am
e

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.g
et

M
od

ul
eN

am
e,

or
g.

ap
ac

he
.s

tr
ut

s.
ut

il.
M

od
ul

eU
ti

ls
.g

et
M

od
ul

eN
am

e
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
M

od
ul

eC
on

fig
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.M
od

ul
eU

ti
ls

.g
et

M
od

ul
eC

on
fig

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
M

od
ul

eP
re

fix
es

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.M

od
ul

eU
ti

ls
.g

et
M

od
ul

eP
re

fix
es

M
ov

ed
fr

om
fil

e
R

eq
ue

st
U

ti
ls

to
fil

e
Ta

gU
ti

ls
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.c
om

pu
te

Pa
ra

m
et

er
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.T
ag

U
ti

ls
.c

om
pu

te
Pa

ra
m

et
er

s
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.c
om

pu
te

U
R

L,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.c
om

pu
te

U
R

LW
it

hC
ha

rE
nc

od
in

g
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.c
om

pu
te

U
R

L,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.c
om

pu
te

U
R

L
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.c
om

pu
te

U
R

L,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.c
om

pu
te

U
R

L
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
A

ct
io

nM
ap

pi
ng

N
am

e,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.g
et

A
ct

io
nM

ap
pi

ng
N

am
e

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
A

ct
io

nM
ap

pi
ng

U
R

L,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.g
et

A
ct

io
nM

ap
pi

ng
U

R
L

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.lo
ok

up
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.lo
ok

up
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
Sc

op
e,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.T
ag

U
ti

ls
.g

et
Sc

op
e

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.lo
ok

up
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.lo
ok

up
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.m

es
sa

ge
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.m
es

sa
ge

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.m
es

sa
ge

,o
rg

.a
pa

ch
e.

st
ru

ts
.ta

gl
ib

.T
ag

U
ti

ls
.m

es
sa

ge
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.p

re
se

nt
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.p
re

se
nt

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.p

ag
eU

R
L,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.T
ag

U
ti

ls
.p

ag
eU

R
L

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.s
av

eE
xc

ep
ti

on
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.s
av

eE
xc

ep
ti

on
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.g

et
M

od
ul

eC
on

fig
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.g
et

M
od

ul
eC

on
fig

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.g
et

A
ct

io
nM

es
sa

ge
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.T
ag

U
ti

ls
.g

et
A

ct
io

nM
es

sa
ge

s
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
eq

ue
st

U
ti

ls
.e

nc
od

eU
R

L,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.e
nc

od
eU

R
L

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

eq
ue

st
U

ti
ls

.is
X

ht
m

l,
or

g.
ap

ac
he

.s
tr

ut
s.

ta
gl

ib
.T

ag
U

ti
ls

.is
X

ht
m

l

M
ov

ed
fr

om
fil

e
R

es
po

ns
eU

ti
ls

to
fil

e
Ta

gU
ti

ls
X

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
es

po
ns

eU
ti

ls
.w

ri
te

,o
rg

.a
pa

ch
e.

st
ru

ts
.ta

gl
ib

.T
ag

U
ti

ls
.w

ri
te

M
ov

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.u
ti

l.R
es

po
ns

eU
ti

ls
.fi

lt
er

,o
rg

.a
pa

ch
e.

st
ru

ts
.ta

gl
ib

.T
ag

U
ti

ls
.fi

lt
er

X
M

ov
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.R

es
po

ns
eU

ti
ls

.w
ri

te
Pr

ev
io

us
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.T

ag
U

ti
ls

.w
ri

te
Pr

ev
io

us

M
ov

ed
fr

om
fil

e
A

ct
io

nM
ap

pi
ng

to
fil

e
A

ct
io

nC
on

fig
X

Pu
lle

dU
pM

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.a
ct

io
n.

A
ct

io
nM

ap
pi

ng
.fi

nd
Ex

ce
pt

io
n,

or
g.

ap
ac

he
.s

tr
ut

s.
co

nfi
g.

A
ct

io
nC

on
fig

.fi
nd

Ex
ce

pt
io

n

426 APPENDIX P. DIG ET AL.: STRUTS RESULTS
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

R
en

am
ed

M
et

ho
ds

or
R

en
am

ed
C

la
ss

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eR

eq
ui

re
d,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eR

eq
ui

re
d

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eR
eq

ui
re

dI
f,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eR

eq
ui

re
dI

f
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eM
as

k,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eM
as

k
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eB
yt

e,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eB
yt

e
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eS
ho

rt
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eS

ho
rt

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eI

nt
eg

er
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eI

nt
eg

er
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eL
on

g,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eL
on

g
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eF
lo

at
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eF

lo
at

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eD

ou
bl

e,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eD
ou

bl
e

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eD

at
e,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eD

at
e

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eI

nt
R

an
ge

,o
rg

.a
pa

ch
e.

st
ru

ts
.v

al
id

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eI
nt

R
an

ge
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eD
ou

bl
eR

an
ge

,o
rg

.a
pa

ch
e.

st
ru

ts
.v

al
id

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eD
ou

bl
eR

an
ge

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eF

lo
at

R
an

ge
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eF

lo
at

R
an

ge
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eC
re

di
tC

ar
d,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eC

re
di

tC
ar

d
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eE
m

ai
l,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eE

m
ai

l
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

va
lid

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eM
ax

Le
ng

th
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eM

ax
Le

ng
th

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.F

ie
ld

C
he

ck
s.

va
lid

at
eM

in
Le

ng
th

,o
rg

.a
pa

ch
e.

st
ru

ts
.v

al
id

at
or

.F
ie

ld
C

he
ck

s.
va

lid
at

eM
in

Le
ng

th
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

ac
ti

on
.A

ct
io

n.
sa

ve
Er

ro
rs

,o
rg

.a
pa

ch
e.

st
ru

ts
.a

ct
io

n.
A

ct
io

n.
sa

ve
Er

ro
rs

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ac

ti
on

.E
xc

ep
ti

on
H

an
dl

er
.s

to
re

Ex
ce

pt
io

n,
or

g.
ap

ac
he

.s
tr

ut
s.

ac
ti

on
.E

xc
ep

ti
on

H
an

dl
er

.s
to

re
Ex

ce
pt

io
n

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ac

ti
on

.A
ct

io
nF

or
w

ar
d.

A
ct

io
nF

or
w

ar
d,

or
g.

ap
ac

he
.s

tr
ut

s.
ac

ti
on

.A
ct

io
nF

or
w

ar
d.

A
ct

io
nF

or
w

ar
d

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ut

il.
R

eq
ue

st
U

ti
ls

.fo
rw

ar
dU

R
L,

or
g.

ap
ac

he
.s

tr
ut

s.
ut

il.
R

eq
ue

st
U

ti
ls

.fo
rw

ar
dU

R
L

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
va

lid
at

or
.R

es
ou

rc
es

.in
it

V
al

id
at

or
,o

rg
.a

pa
ch

e.
st

ru
ts

.v
al

id
at

or
.R

es
ou

rc
es

.in
it

V
al

id
at

or
X

C
ha

ng
ed

M
et

ho
dS

ig
na

tu
re

s,
or

g.
ap

ac
he

.s
tr

ut
s.

co
nfi

g.
Fo

rw
ar

dC
on

fig
.F

or
w

ar
dC

on
fig

,o
rg

.a
pa

ch
e.

st
ru

ts
.c

on
fig

.F
or

w
ar

dC
on

fig
.F

or
w

ar
dC

on
fig

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.h
tm

l.F
ra

m
eT

ag
.s

et
M

ar
gi

nh
ei

gh
t,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.h
tm

l.F
ra

m
eT

ag
.s

et
M

ar
gi

nh
ei

gh
t

X
C

ha
ng

ed
M

et
ho

dS
ig

na
tu

re
s,

or
g.

ap
ac

he
.s

tr
ut

s.
ta

gl
ib

.h
tm

l.F
ra

m
eT

ag
.s

et
M

ar
gi

nw
id

th
,o

rg
.a

pa
ch

e.
st

ru
ts

.ta
gl

ib
.h

tm
l.F

ra
m

eT
ag

.s
et

M
ar

gi
nw

id
th

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
rs

sC
ha

nn
el

.C
ha

nn
el

s.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
rs

sC
ha

nn
el

.C
ha

nn
el

s.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.ti

le
s.

C
on

tr
ol

le
r.p

er
fo

rm
,o

rg
.a

pa
ch

e.
st

ru
ts

.ti
le

s.
C

on
tr

ol
le

r.e
xe

cu
te

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
te

m
pl

at
e.

D
yn

Te
m

pl
at

eA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

te
m

pl
at

e.
D

yn
Te

m
pl

at
eA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

in
vo

ic
e.

Ed
it

In
vo

ic
eA

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
in

vo
ic

e.
Ed

it
In

vo
ic

eA
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
tu

to
ri

al
.F

or
w

ar
dE

xa
m

pl
eA

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
tu

to
ri

al
.F

or
w

ar
dE

xa
m

pl
eA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

dy
nP

or
ta

l.R
et

ri
ev

eP
or

ta
lA

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
dy

nP
or

ta
l.R

et
ri

ev
eP

or
ta

lA
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
ch

an
ne

l.S
el

ec
tC

ha
nn

el
A

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
ch

an
ne

l.S
el

ec
tC

ha
nn

el
A

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

la
ng

.S
el

ec
tL

oc
al

eA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

la
ng

.S
el

ec
tL

oc
al

eA
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
dy

nP
or

ta
l.S

et
Po

rt
al

Pr
ef

sA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

dy
nP

or
ta

l.S
et

Po
rt

al
Pr

ef
sA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

te
st

.T
es

tA
ct

io
nT

ile
A

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
te

st
.T

es
tA

ct
io

nT
ile

A
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
sk

in
.L

ay
ou

tS
et

ti
ng

sA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

sk
in

.L
ay

ou
tS

et
ti

ng
sA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

sk
in

.L
ay

ou
tS

w
it

ch
A

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
sk

in
.L

ay
ou

tS
w

it
ch

A
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
rs

sC
ha

nn
el

.R
ss

C
ha

nn
el

sA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

rs
sC

ha
nn

el
.R

ss
C

ha
nn

el
sA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

sk
in

.S
im

pl
eS

w
it

ch
La

yo
ut

A
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

sk
in

.S
im

pl
eS

w
it

ch
La

yo
ut

A
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
po

rt
al

.U
se

rM
en

uA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

po
rt

al
.U

se
rM

en
uA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

po
rt

al
.U

se
rM

en
uS

et
ti

ng
sA

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
po

rt
al

.U
se

rM
en

uS
et

ti
ng

sA
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.ti
le

s.
A

ct
io

nC
on

tr
ol

le
r.p

er
fo

rm
,o

rg
.a

pa
ch

e.
st

ru
ts

.ti
le

s.
A

ct
io

nC
on

tr
ol

le
r.e

xe
cu

te
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

po
rt

al
.U

se
rP

or
ta

lS
et

ti
ng

sA
ct

io
n.

pe
rf

or
m

,o
rg

.a
pa

ch
e.

st
ru

ts
.w

eb
ap

p.
ti

le
s.

po
rt

al
.U

se
rP

or
ta

lS
et

ti
ng

sA
ct

io
n.

ex
ec

ut
e

X
R

en
am

ed
M

et
ho

ds
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
po

rt
al

.U
se

rP
or

ta
lA

ct
io

n.
pe

rf
or

m
,o

rg
.a

pa
ch

e.
st

ru
ts

.w
eb

ap
p.

ti
le

s.
po

rt
al

.U
se

rP
or

ta
lA

ct
io

n.
ex

ec
ut

e
X

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.ti

le
s.

U
rl

C
on

tr
ol

le
r.p

er
fo

rm
,o

rg
.a

pa
ch

e.
st

ru
ts

.ti
le

s.
U

rl
C

on
tr

ol
le

r.e
xe

cu
te

R
en

am
ed

M
et

ho
ds

,o
rg

.a
pa

ch
e.

st
ru

ts
.u

ti
l.M

od
ul

eE
xc

ep
ti

on
.g

et
Er

ro
r,

or
g.

ap
ac

he
.s

tr
ut

s.
ut

il.
M

od
ul

eE
xc

ep
ti

on
.g

et
A

ct
io

nM
es

sa
ge

X
R

en
am

ed
C

la
ss

es
,o

rg
.a

pa
ch

e.
st

ru
ts

.ti
le

s.
U

nt
yp

pe
dA

tt
ri

bu
te

,o
rg

.a
pa

ch
e.

st
ru

ts
.ti

le
s.

U
nt

yp
ed

A
tt

ri
bu

te
R

en
am

ed
C

la
ss

es
,o

rg
.a

pa
ch

e.
st

ru
ts

.c
on

fig
.A

pp
lic

at
io

nC
on

fig
,o

rg
.a

pa
ch

e.
st

ru
ts

.c
on

fig
.M

od
ul

eC
on

fig

Appendix Q

PyX: matched and unmatched

disappearing files

In this appendix the matched and unmatched files from the PyX project

are listed, in the same format as those for PostgreSQL and DNSjava in

Appendix N. As an example of a file which is matched to another with

similarity close to the threshold, the comparison between minimal.py and

simple.py is shown in Figure Q.1.

Figure Q.1: The disappearing file minimal.c matched to simple.py, similarity 0.89

427

428APPENDIX Q. PYX: MATCHED AND UNMATCHED DISAPPEARING FILES

Ref. File Match Sim.

Matched files

3 /pyx/lfs/createlfs.c /pyx/data/lfs/createlfs.c 1.00
4 /manual/palettename.c /manual/gradientname.c 0.94
5† /examples/axis/simple.c /examples/axis/minimal.c 0.89
5 /examples/bitmap/julia.c /gallery/misc/julia.c 1.00
5 /examples/graphs/arrows.c /gallery/graphs/arrows.c 1.00
5 /examples/graphs/errorbar.c /examples/graphstyles/errorbar.c 1.00
5 /examples/graphs/histogram.c /examples/graphstyles/histogram.c 0.93
5 /examples/graphs/inset.c /gallery/graphs/inset.c 1.00
5 /examples/graphs/integral.c /gallery/graphs/integral.c 1.00
5 /examples/graphs/link.c /examples/axis/link.c 0.92
5 /examples/graphs/mandel.c /gallery/graphs/mandel.c 1.00
5 /examples/graphs/manyaxes.c /gallery/graphs/manyaxes.c 1.00
5 /examples/graphs/partialfill.c /gallery/graphs/partialfill.c 1.00
5 /examples/graphs/piaxis.c /gallery/graphs/piaxis.c 1.00
5 /examples/graphs/symbolline.c /gallery/graphs/symbolline.c 1.00
5 /examples/graphs/washboard.c /gallery/graphs/washboard.c 1.00
5 /examples/misc/box.c /gallery/misc/box.c 1.00
5 /examples/misc/connect.c /gallery/misc/connect.c 0.91
5 /examples/misc/pattern.c /gallery/misc/pattern.c 1.00
5 /examples/misc/vector.c /gallery/misc/vector.c 1.00
5 /examples/path/circles.c /gallery/path/circles.c 0.96
5 /examples/path/sierpinski.c /gallery/path/sierpinski.c 1.00
5 /examples/path/tree.c /gallery/path/tree.c 1.00
5 /examples/splitgraphs/shift.c /gallery/graphs/shift.c 1.00
6 /examples/misc/bitmap.c /manual/bitmap.c 0.87
6 /examples/misc/latex.c /examples/text/texrunner.c 0.90
7 /examples/box.c /examples/misc/box.c 0.91
7 /examples/connect.c /examples/misc/connect.c 1.00
7 /examples/latex.c /examples/misc/latex.c 1.00
7 /examples/pattern.c /examples/misc/pattern.c 1.00
7 /examples/sierpinski.c /examples/path/sierpinski.c 1.00
7 /examples/tree.c /examples/path/tree.c 1.00
7 /examples/valign.c /examples/misc/valign.c 1.00
7 /examples/vector.c /examples/misc/vector.c 1.00

Unmatched files

3 pyx/pykpathsea/ init .c
3 pyx/siteconfig.c
5 pyx/helper.c
5 pyx/t1strip/ init .c
5 pyx/t1strip/fullfont.c
6 examples/examples.c
6 pyx/base.c
6 pyx/tex.c

Table Q.1: Matched and unmatched disappearing files: PyX project.
†See Figure Q.1.

Appendix R

Comparison between Moss and

3CO

In Chapter 2, Moss’s [3] matching technique is discussed. As previously

noted, Moss’ exact matching algorithm is unknown. However, looking Fig-

ure R.1, Moss appears to exclude header information from its calculations,

and to match code using relaxed parameters, on a “first come, first served”

basis, like a greedy parameterised clone detection tool, when used on this

code.

429

430 APPENDIX R. COMPARISON BETWEEN MOSS AND 3CO

(a
)3

C
O

(b
)M

os
s

1
(b

lu
e

fil
e

in
(a

))
(c

)M
os

s
2

(r
ed

fil
e

in
(a

))
(d

)M
os

s
3

(y
el

lo
w

fil
e

in
(a

))

Fi
gu

re
R

.1
:3

C
O

an
d

M
os

s
co

m
pa

ri
so

ns
be

tw
ee

n
ca

llb
ac

ks
.h

,
ui

ca
llb

ac
ks

.h
(b

lu
e

fil
e)

,
pl

ug
in

sl
ot

ca
llb

ac
ks

.h
(r

ed
fil

e)
an

d
co

n-
tr

ol
ca

llb
ac

ks
.h

(y
el

lo
w

fil
e)

.T
he

M
os

s
co

m
pa

ri
so

ns
ar

e
ea

ch
be

tw
ee

n
ca

llb
ac

ks
.h

an
d

on
e

ot
he

r
fil

e,
no

te
d

in
th

e
ca

pt
io

n
by

th
e

co
lo

ur
it

is
gi

ve
n

by
3C

O
.M

os
s’

m
at

ch
in

g
al

go
ri

th
m

gi
ve

s
di
ff

er
en

tr
es

ul
ts

to
th

e
te

xt
ua

lm
at

ch
in

g
of

Fe
rr

et
.

Appendix S

Selected Features

The features selected by the Simple Logistic algorithm from the fc+tris-

singles feature set are listed in Table S.1, and those from the fl+tris-singles

set in Table S.2. There are five selections for each set: for split files, for

the three classes for disappearing files with 2 or more target files, and for

the disappearing files with one target. In the second table, the features

which are common to the two feature sets are highlighted with coloured

backgrounds.

The F1 and F2 columns in the table show the 2 (or 3) files compared.

The third column, headed ‘To’ shows the file in which the measure is taken

or the file to which the measure is proportional. For example, in Table S.2,

looking at the first two XML based features: the first takes the blocks of

code shared by files 1 and 2 and measures the mean number of lines in the

blocks in file 1; and the second feature is the ratio of the lines shared by files

1 and 2, to the number of lines in file 1.

Although around two-thirds of the features are proportional, a wide

range of features is selected. All of the block-based measures, laid out in

Table 13.8 (p.217), are represented in the fc+tris set except for the counts of

the blocks (item 1) and of the number of units in the blocks (item 2).

431

432 APPENDIX S. SELECTED FEATURES

2+ 1
Spl Dis Dis

F1 F2 To P’l Description 0,1 0 1 2 0,1

Trigrams

1 2 – Trigrams shared by files 1
1 3 – Trigrams shared by files 1
1 2, 3 1 X Trigrams shared by 1 ∧ (2 XOR 3) to total 1 1
1 2, 3 1 X Trigrams unique to the file to total 1
2 1, 3 2 X Trigrams unique to the file to total 1
1 2 1 X Shared trigrams to total (containment) 1
1 3 1 X Shared trigrams to total (containment) 1
1 3 3 X Shared trigrams to total (containment) 1 1 1
2 3 3 X Shared trigrams to total (containment) 1
2 1, 3 2 X Trigrams shared by all 3 files to total 1 1
1 2, 3 1 X Trigrams shared by other files to total 1

Sundries

File type (applies to C code) 1
Number of target files selected 1 1

XML block characters

1 – Number of characters in the file 1
3 – Number of characters in the file 1
1 2 1 X Characters in largest shared block to total 1
1 2 1 X Mean shared characters in blocks to total 1
1 2 1 X Shared characters to total (containment) 1
1 2 1 X Characters in blocks ≥ 40 characters to all characters 1 1
1 2 1 X Characters in blocks ≥ 80 characters to all characters 1
1 2 1 – Characters in blocks ≥ 1

32 file size 1
1 2 1 X Characters in blocks ≥ 1

16 file size to all characters 1
1 2 1 – Characters in blocks ≥ 1

4 file size 1
1 2 2 X Mean shared characters in blocks to total 1
1 2 2 – Mean shared characters in blocks 1
1 2 2 X Shared characters to total (containment) 1
1 2 2 X Characters in blocks ≥ 40 characters to all characters 1
1 2 2 X Characters in blocks ≥ 640 characters to all characters 1
1 3 1 X Characters in largest shared block to total 1
1 3 1 X Characters in blocks ≥ 40 characters to all characters 1
1 3 1 X Characters in blocks ≥ 80 characters to all characters 1
1 3 1 X Characters in blocks ≥ 160 characters to all characters 1
1 3 1 X Characters in blocks ≥ 640 characters to all characters 1 1
1 3 1 – Characters in blocks ≥ 1

64 file size 1
1 3 1 – Characters in blocks ≥ 1

16 file size 1
1 3 3 X Mean shared characters in blocks to total 1
1 3 3 X Shared characters to spread 1
1 3 3 – Number of characters in shared blocks ≥ 160 characters 1 1
1 3 3 X Characters in blocks ≥ 40 characters to all characters 1
2 3 2 X Shared characters to spread 1
2 3 2 X Characters in blocks ≥ 320 characters to all characters 1
2 3 2 – Characters in blocks ≥ 1

4 file size 1
2 3 3 – Size of the largest shared block 1
2 3 3 X Shared characters to spread 1
2 3 3 – Characters in blocks ≥ 1

8 file size 1
2 3 3 X Characters in blocks ≥ 1

32 to all characters 1
2 3 3 X Characters in blocks ≥ 1

16 to all characters 1 1

Table S.1: fc+tris-singles features selected by Simple Logistic. The first 2 columns
show the files in the comparison, the next the base file for the measures,
which, if proportional, have a tick in the next column. The last 4 columns
show in which model the features are used: split, disappearing files with
2 or more targets, or 1 target.

433

2+ 1
Spl Dis Dis

F1 F2 To P’l Description 0,1 0 1 2 0,1

Trigrams

1 2 – Trigrams shared by files 1

1 3 – Trigrams shared by files 1

1 2, 3 1 X Trigrams shared by 1 ∧ (2 XOR 3) to total 1

1 2, 3 1 X Trigrams unique to the file to total 1 1
2 1, 3 2 X Trigrams unique to the file to total 1
1 2 2 X Shared trigrams to total (containment) 1
1 3 1 X Shared trigrams to total (containment) 1

1 3 3 X Shared trigrams to total (containment) 1 1 1 1

1 2, 3 1 X Trigrams shared by other files to total 1

Sundries

– File type (applies to C code) 1 1

– Number of target files selected 1

XML blocks line-based

1 2 1 – Mean shared lines in blocks 1
1 2 1 X Shared lines to total (containment) 1
1 2 1 X Lines in blocks ≥ 4 lines to all lines 1
1 2 1 X Lines in blocks ≥ 1

8 to all lines 1

1 2 1 – Lines in blocks ≥ 1
32 file size 1

1 2 1 – Lines in blocks ≥ 1
16 file size 1

1 2 2 – Lines in blocks ≥ 1
16 file size 1

1 2 2 X Shared lines to spread 1
1 2 2 X Lines in blocks ≥ 2 lines to all lines 1
1 2 2 X Lines in blocks ≥ 8 lines to all lines 1
1 3 1 – Lines in blocks ≥ 1

16 file size 1

1 3 1 X Lines in blocks ≥ 4 lines to all lines 1

1 3 1 X Lines in blocks ≥ 8 lines to all lines 1

1 3 1 X Lines in blocks ≥ 32 lines to all lines 1

1 3 1 X Lines in blocks ≥ 1
16 to total lines 1

1 3 3 – Lines in shared blocks to total 1
1 3 3 X Lines in blocks ≥ 32 lines to all lines 1
2 3 2 – Lines in blocks ≥ 1

8 file size 1

2 3 3 X Shared lines to spread 1
2 3 3 X Shared lines to total (containment) 1
2 3 3 X Lines in blocks ≥ 1

16 to total lines 1

Table S.2: fl+tris-singles features selected by Simple Logistic. The first 2 columns
show the files in the comparison, the next the base file for the measures,
which, if proportional, have a tick in the next column. The last 4 columns
show in which model the features are used: split, disappearing files with
2 or more targets, or 1 target. Features marked by a coloured background
appear in both this selection, and that from fc+tris-singles.

434 APPENDIX S. SELECTED FEATURES

Appendix T

Comparing related feature sets

The feature sets based on P-Duplo (pdp) and the line-based XML analysis (fl)

should be similar, as each looks at the similarity between lines of code. One

difference is that P-Duplo requires the whole line to match, whereas line-

based analysis requires only that trigrams in a line appear elsewhere in the

file. Also, the way that the lines are counted differs (see Chapters 6 and 11).

To some extent, the XML density analysis (fd) should find similar blocks

of code to Code Clone Finder (ccf) and Simian (sim), in that all find “gapped”

copies. The differences are that CCFinder and Simian exclude parts of the

code and that the minimum sizes of matching section of code vary.

Table T.1 gives the classification rates for each of these feature sets, with

the minimum and maximum for all feature sets in the last two columns. The

graphs in Figure T.1 show the classification rates for each of the 5 feature

sets, both for the singles (or block-singles) sets and for cat (or block-cats)

sets, as these sets all have features derived from matched blocks in the same

way, varying only in the method of comparing the files to find these blocks.

The graphs show that P-Duplo and line-based XML analysis give similar

results. The other three sets vary, with the density analysis being more like

the P-Duplo and line-based results than the CCFinder and Simian results.

These direct comparisons show that with these features the clone detection

tools are less suited to classifying restructured files than the other two tools.

435

436 APPENDIX T. COMPARING RELATED FEATURE SETS

pdp fl fd ccf sim Min Max
Singles
Original split 89.43 87.92 87.39 81.05 86.33 75.49 92.11
Refiltered 85.49 83.30 82.73 81.13 81.77 72.63 88.70
Disapp. 1 target 88.72 90.66 89.66 75.21 82.52 72.33 93.89
Disapp. 2+ targets 82.25 82.51 82.51 71.67 76.79 68.43 86.02

Concatenations
Original split 85.55 84.83 84.31 78.75 83.14 75.49 92.11
Refiltered 78.58 78.66 78.43 76.69 76.57 72.63 88.70
Disapp. 2+ targets 81.97 84.24 83.40 71.02 76.42 68.43 86.02

Table T.1: Comparison of classification accuracy of related feature sets

(a) 3-way single file comparisons

(b) Concatenated file comparisons

Figure T.1: Classification with related feature sets: P-Duplo and line-based; den-
sity, CCFinder and Simian. The features are block based: the top graph
based on single file, and the bottom on concatenated file, comparisons.

