
Draft version January 14, 2020
Typeset using LATEX twocolumn style in AASTeX62

[C i](1-0) and [C i](2-1) in resolved local galaxies∗

Alison F. Crocker,1 Eric Pellegrini,2 J.-D. T. Smith,3 Bruce T. Draine,4 Christine D. Wilson,5

Mark Wolfire,6 Lee Armus,7 Elias Brinks,8 Daniel A. Dale,9 Brent Groves,10 Rodrigo Herrera-Camus,11

Leslie K. Hunt,12 Robert C. Kennicutt,13 Eric J. Murphy,14 Karin Sandstrom,15 Eva Schinnerer,16

Dimitra Rigopoulou,17 Erik Rosolowsky,18 and Paul van der Werf19

1Department of Physics, Reed College, Portland, OR, 97202
2University of Heidelberg Institute for Theoretical Astrophysics, 69120 Heidelberg, Germany

3Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606
4Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001, USA

5Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada
6Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA

7IPAC, California Institute of Technology, Pasadena, CA 91125, USA
8Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

9Department of Physics & Astronomy, University of Wyoming, Laramie WY, USA
10Research School of Astronomy & Astrophysics, Australian National University, Canberra, Australia

11Departamento de Astronomı́a, Facultad de Ciencias F́ısicas y Matematicas, Universidad de Concepción, Avenida Esteban Iturra s/n,
Casilla 160-C, Concepción, Chile

12INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Firenze, Italy
13Institute of Astronomy, University of Cambridge, Cambridge, UK
14National Radio Astronomy Observatory, Charlottesville, VA, USA

15Center for Astrophysics and Space Science, University of California, San Diego CA, USA
16MPI for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany

17Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
18University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7

19Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands

ABSTRACT

We present resolved [C i] line intensities of 18 nearby galaxies observed with the SPIRE FTS spec-

trometer on the Herschel Space Observatory. We use these data along with resolved CO line intensities

from Jup = 1 to 7 to interpret what phase of the interstellar medium the [C i] lines trace within typical

local galaxies. A tight, linear relation is found between the intensities of the CO(4-3) and [C i](2-1)

lines; we hypothesize this is due to the similar upper level temperature of these two lines. We mod-

eled the [C i] and CO line emission using large velocity gradient models combined with an empirical
template. According to this modeling, the [C i](1-0) line is clearly dominated by the low-excitation

component. We determine [C i] to molecular mass conversion factors for both the [C i](1-0) and [C i](2-

1) lines, with mean values of α[CI](1−0) = 7.3 M� K−1 km−1 s pc−2 and α[CI](2−1) = 34 M� K−1

km−1 s pc−2 with logarithmic root-mean-square spreads of 0.20 and 0.32 dex, respectively. The simi-

lar spread of α[CI](1−0) to αCO (derived using the CO(2-1) line) suggests that [C i](1-0) may be just as

good a tracer of cold molecular gas as CO(2-1) in galaxies of this type. On the other hand, the wider

spread of α[CI](2−1) and the tight relation found between [C i](2-1) and CO(4-3) suggest that much of

the [C i](2-1) emission may originate in warmer molecular gas.

1. INTRODUCTION

In this paper, we study the resolved [C i] line emis-

sion obtained by the Herschel Space Observatory for a

sample of nearby (mostly disk) galaxies. We focus on

∗ Herschel is an ESA space observatory with science instru-
ments provided by European-led Principal Investigator consortia
and with important participation from NASA.

the potential diagnostic power of the [C i] lines and, in

particular, whether they may be used as tracers of the

total molecular gas content.

Ground state neutral carbon (C0) emits two fine-

structure emission lines in the far-infrared (FIR). The

[C i](1-0) and [C i](2-1) lines have wavelengths of 609 and

370 µm, frequencies of 492 and 809 GHz, and upper level

temperatures of 23.6 and 62.4 K, respectively. Given its

low ionization potential of 11.26 eV, C0 is found mostly
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in the cold neutral and molecular ISM and within pho-

todissociation regions (PDRs, e.g., Tielens & Hollenbach

(1985)). For static and homogenous PDRs, the neutral

carbon is expected to reside in a layer between C+ and

CO at a range of extinctions into the cloud from the

dissociating source of AV ≈ 2−4 (Tielens & Hollenbach

1985). In more realistic molecular clouds with clumps,

turbulence and possibly embedded stellar sources, the

neutral carbon ‘layer’ is a complicated surface that may

effectively exist throughout the cloud (Offner et al. 2014;

Glover et al. 2015). This distribution is directly seen in

observations of Milky Way molecular clouds (Shimajiri

et al. 2013).

The [C i] lines are more easily observed at high red-

shift and thus have already been used as ISM diagnostics

(e.g. Walter et al. 2011; Carilli & Walter 2013). How-

ever, much of the low redshift-observational work that

grounds these interpretations is limited to the Milky

Way or has thus far focused on high-excitation galax-

ies, such as LIRGs. Using Herschel Space Observatory

data, Israel et al. (2015) (hereafter Is15) studied a group

of 76 LIRGs and starburst galaxy centers in [C i] and

CO lines. They establish many empirical correlations

between [C i] and CO line intensities and between ratios

of these lines. Then they perform large velocity gradi-

ent (LVG) modeling of three fiducial sets of [C i] and CO

ratios in order to describe different families of galaxies

within their sample.

Kamenetzky et al. (2016) published a master catalog

of central CO, [C i] and [N ii] line fluxes for 301 ex-

tragalactic sources observed with Herschel. However,

these central-only measurements do not indicate the

typical ISM properties within galaxy disks, which re-

quire resolved observations. Two papers from the Very

Nearby Galaxy Survey present and analyze CO and [C i]

maps from Herschel SPIRE spectroscopy of nearby spi-

rals M83 (Wu et al. 2015) and M51 (Schirm et al. 2017).

Wu et al. (2015) reports an interesting linear relation-

ship between [C i](2-1) intensity and the surface density

of star formation. Schirm et al. (2017) are able to in-

clude the [C i] lines along with the CO lines to fit a

two-component non-LTE model describing the state of

the molecular gas in M51. They find the cold component

is similar to that found in more excited galaxies and the

warm component has a similar temperature, but is less

dense. Very recently, a paper with a similar sample to

ours (nine galaxies overlap) published maps of the [C i]

lines for 15 local spiral galaxies (Jiao et al. 2019) and

studies the correlations of [C i] lines with CO(1-0) and

dust emission.

Extragalactic molecular gas measurements typically

depend on 12CO line emission to obtain molecular

masses through a conversion factor αCO: Mmol =

αCOLCO, which is known to vary with certain galaxy

properties (metallicity, IR luminosity; see Bolatto et al.

(2013) for a recent review). The [C i] emission has also

received attention as a potential molecular gas tracer,

particularly as one that might excel at higher redshift.

Comparison of the [C i](1-0) line to various CO lines and

the dust continuum within 14 nearby galaxies led Gerin

& Phillips (2000) to conclude that [C i](1-0) was a pre-

ferred tracer of the H2 mass compared to the CO lines.

Papadopoulos & Greve (2004) present non-equilibrium

chemical models and suggest that this non-equilibrium

chemistry and the known turbulence of molecular clouds

keeps the abundance of neutral carbon high throughout

molecular clouds. They thus argue that [C i] should

be a good tracer of the total molecular gas, especially

highlighting how the [C i] lines may be helpful at high

redshift where they are easier to observe than low-J CO

lines.

Offner et al. (2014) and Glover et al. (2015) simulated

individual, turbulent molecular clouds and focused on

their [C i] content and emission. They both find that

[C i] traces the column density of H2 in their simu-

lated clouds, with a conversion factor of X[CI](1−0) =

NH2/I[CI](1−0) = 1.0 − 1.1 × 1021 cm−2 K−1 km−1 s

(corresponding to a molecular mass conversion factor of

α[CI](1−0) ≈ 20 M� K−1 km−1 s pc−2, including he-

lium). In both cases, the simulations did not include ra-

diation from newly-formed internal stellar sources. So,

in particular, their simulations miss any contribution

from PDRs irradiated by high-intensity radiation fields.

A more recent simulation by Clark et al. (2019) shows

that [C i] (particularly [C i](1-0)) traces molecular gas

with similar characteristics as CO(1-0): gas with num-

ber densities 500-1000 cm−3 and kinetic temperatures

under 30K.

Recent work on local galaxies has analyzed the util-

ity of [C i](1-0) and [C i](2-1) as molecular gas tracers,

with conflicting results. Israel et al. (2015) recommend

against using either [C i] line as a molecular gas mass

tracer having found a poor correlation between the [C i]

lines and their beam-averaged H2 column density. In

contrast, Jiao et al. (2017) also use Herschel data on

LIRGs along with CO(1-0) data to argue that, due to

a strong (linear) relation between the [C i] and CO(1-0)

line luminosities, the [C i] lines can be used to measure

the total H2 mass of these galaxies. Most recently, Jiao

et al. (2019) extend this to local spiral galaxies and again

conclude the [C i](1-0) is likely a good molecular mass

tracer based upon its good correlation with CO(1-0).

Our paper focuses on the resolved [C i] emission in a

sample of local galaxies. After presenting the sample
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and data in Section 2, we first report an empirical anal-

ysis of the [C i] lines (Section 3). In order to understand

what physical properties are driving the relationships

we see, we use models applied to the [C i] and full suite

of CO lines from Jup = 1 to 7 in Section 4. Finally,

we conclude with an investigation of the H2 conversion

factor for the [C i] lines, α[CI], in Section 5.

2. DATA

2.1. Beyond the Peak data

The Beyond the Peak (BtP) project used the SPIRE

spectrometer (Griffin et al. 2010) on the Herschel Space

Observatory (Pilbratt et al. 2010) to target 22 local

star-forming galaxies taken from the KINGFISH project

sample (see Table 1). Galaxies were chosen to repre-

sent a range of gas conditions, star formation rates and

galaxy masses while maintaining a central infrared sur-

face brightness of 9 × 10−6 W m−2 sr−1 or brighter in

a 40′′ aperture. Table 1 documents the physical resolu-

tion achieved for each galaxy and whether each galaxy’s

[C i] emission is not detected (below a S/N of 3), de-

tected only in the center or detected in multiple resolu-

tion elements (resolved). Note that the physical resolu-

tion is computed based upon 40′′ extraction apertures;

the actual spatial resolution is either 37′′ for the longer-

wavelength SLW bolometer data and 19′′ for the shorter-

wavelength SSW bolometer data. Further properties of

these galaxies such as distance, metallicity, stellar mass

and star formation rate are documented in Table 1 of

Kennicutt et al. (2011).

The Herschel SPIRE FTS data were obtained and re-

duced as explained in detail in Pellegrini et al. (2013).

To more reliably extract the faint, extended emission,

many custom modifications were made to the Herschel

pipeline. A semi-extended source correction was applied

to Level 1 data, after which spectra were extracted from

40′′ diameter regions. We choose to extract on a recti-

linear grid with beam centers separated by 40′′ so that

the regions are statistically independent. We then fit-

ted a modified black-body with a scalar offset to each

SPIRE/FTS spectrum (omitting ranges with line emis-

sion) and removed this offset. Synthetic photometry in

the three SPIRE photometric bands was then computed

from these offset-corrected spectra. We flux calibrated

the spectra by using a scale factor to match this syn-

thetic photometry to that measured by the SPIRE pho-

tometer in identical apertures. After this flux calibra-

tion was applied, line fluxes were extracted by fitting

gauss-sinc profiles to the FTS spectra. This profile is

appropriate because even at the highest spectral reso-

lution at short wavelengths (300 km s−1) nearly all the

galaxies had unresolved spectral lines. The one excep-

tion was NGC 7331, which required convolution with

a gaussian profile due to physical spectral broadening

from an inclined star forming ring in the beam. Spec-

tral lines were considered detected if they were above 3σ.

The line intensities for [C i](1-0) and [C i](2-1) are tab-

ulated in Table 2 for all 40′′ diameter regions. The CO

line intensities will be presented in a subsequent paper.

Table 1. BtP sample galaxies: basic parameters and cover-
age.

Galaxy 40” Res. Td (K) Td (K) Enc. Frac.

(kpc) central disk 70µm R25

Not-detected in [C i]

NGC 1377 4.8 30 – 0.90 0.35

NGC 2976 0.69 27 – 0.10 0.10

NGC 3077 0.74 28 – 0.65 0.15

NGC 5457 1.3 22 – 0.05 0.05

Central [C i]

NGC 1266 5.9 28 – 0.95 0.45

NGC 1482 4.4 26 – 0.90 0.25

NGC 2798 5.0 27 – 0.90 0.25

NGC 3351 1.8 25 – 0.70 0.10

NGC 4254 2.8 22 – 0.20 0.10

NGC 4536 2.8 27 – 0.75 0.10

NGC 5713 4.1 25 – 0.70 0.25

Resolved [C i]

NGC 1097 2.8 25 25 0.75 0.15

NGC 3521 2.2 21 21 0.60 0.20

NGC 3627 1.8 24 23 0.70 0.25

NGC 4321 2.8 23 23 0.50 0.25

NGC 4569 1.9 23 22 0.50 0.10

NGC 4631 1.5 25 25 0.65 0.15

NGC 4736 0.90 27 26 0.95 0.20

NGC 4826 1.0 24 23 0.95 0.20

NGC 5055 1.5 22 21 0.30 0.10

NGC 6946 1.3 26 23 0.50 0.30

NGC 7331 2.8 22 22 0.75 0.20

Note—Modified blackbody derived temperatures for the
centers of the BtP galaxies and the average dust temper-
atures of regions detected in [C i] for their disks. The pro-
portion of 70µm emission enclosed and the fraction of the
R25 galactic radius covered by the regions detected in [C i]
(or the central aperture for non-detections) are shown in the
last two columns (rounded to nearest 5% to indicate rough
level of precision).
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Table 2. [C i] line intensities

Galaxy Reg. RA Dec. I([CI](1−0)) Err(I([CI](1−0))) I([CI](2−1)) Err(I([CI](2−1)))

Deg. Deg. W sr−1 m−2 W sr−1 m−2 W sr−1 m−2 W sr−1 m−2

NGC1097 1 1 41.58504 -30.26998 5.178E-10 9.383E-11 6.378E-10 6.313E-11

NGC1097 2 1 41.57861 -30.27002 7.368E-10 1.037E-10 9.7E-10 5.456E-11

NGC1097 3 1 41.57218 -30.27006 3.98E-10 6.825E-11 5.191E-10 4.634E-11

NGC1097 0 2 41.59152 -30.27549 1.759E-10 1.203E-10 2.856E-10 7.672E-11

NGC1097 1 2 41.58509 -30.27553 7.571E-10 9.933E-11 1.055E-09 5.636E-11

Note—The second column indicates the region name for the Beyond the Peak survey and will allow easy cross-
referencing to the CO line intensities. The regions are enumerated as ‘x y’ in a coordinate grid, with ‘2 2’ the central
region. Table 2 is published in its entirety in the machine-readable format. A portion is shown here for guidance
regarding its form and content.

2.2. Auxiliary data

Ground-based CO data were compiled from multiple

sources. CO(1-0) data came from the BIMA-SONG

survey (only those galaxies with short-spacings; Helfer

et al. 2003) or the Nobeyama CO Atlas of Nearby Spiral

Galaxies (Kuno et al. 2007). CO(2-1) data came from

the HERACLES survey (Leroy et al. 2013) and CO(3-

2) data came from the JCMT Nearby Galaxies Legacy

Survey and archival data (Wilson et al. 2012). The dat-

acubes from these surveys were convolved to match our

spatial resolution; line fluxes were extracted based upon

velocity ranges from the high signal-to-noise CO(2-1)

data. αCO values are from Sandstrom et al. (2013),

where available.

2.3. Modified blackbody dust temperatures

We fit single-component modified blackbody (MBB)

functions to the FIR photometry for regions matching
our spectroscopic apertures:

Iν = AνβBν(T ), (1)

where A is an amplitude, β is the emissivity, and Bν(T )

is the Planck function at temperature T . We use far-IR

photometry at 70, 160, 250, 350 and 500 µm from the

Herschel PACS and SPIRE maps obtained under the

KINGFISH project (Kennicutt et al. 2011). The fits

were performed using curve fit function from the SciPy

library; two example fits are shown in Fig. 1. The fit pa-

rameters give an estimate of the cold dust temperature

and the β parameter modifying the blackbody shape.

We choose to use a single MBB component and drop

the 24 µm photometry available from Spitzer, because

the addition of this one more point, but three more free

parameters (associated with a second MBB component)

led to more degeneracies.

101

102

I v 
(M

Jy
/s

r)

NGC 1266
T=27.7 K

50 100 500
Wavelength ( m)

102

103

I v 
(M

Jy
/s

r)

NGC 3521
T=21.4 K

Figure 1. Two examples of the single component modified
blackbody fits to the FIR spectral energy distribution from
70 to 500 µm.

3. EMPIRICAL ANALYSIS

We start with an empirical analysis of the spatially

resolved [C i] and CO line data. This approach has the

inherent strength of being independent of any model as-

sumptions. Critical densities and upper level tempera-

tures for the lines involved are listed in Table 3.

3.1. Disk versus central emission

We separate the disk emission from the central aper-

tures in order to investigate the properties of [C i] emis-

sion in normal galaxy disks as well as in isolated galaxy

centers. We plot the disk and central [C i](2-1)/[C i](1-
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Figure 2. [C i](2-1)/[C i](1-0), CO(4-3)/[C i](1-0) and CO(7-6)/[C i](2-1) ratios for galaxy disks and centers as a function
of dust temperature (1st and 3rd columns), IRAC 3.6 µm intensity (2nd column, disks only) and central X-ray
luminosity (4th column, centers only). Upper (lower) limits are shown as blue (orange) arrows.

Table 3. Reference line parameters.

Line Tu (K) ncrit (cm−3) ncrit (cm−3)

10 K 100 K

[C i](1-0) 24 1.1 × 103 1.1 × 103

[C i](2-1) 62 1.8 × 103 1.2 × 103

CO(1-0) 5.5 1.9 × 103 2.1 × 103

CO(2-1) 17 6.1 × 103 6.7 × 103

CO(3-2) 33 1.5 × 104 1.7 × 104

CO(4-3) 55 3.3 × 104 3.4 × 104

CO(5-4) 83 6.3 × 104 6.1 × 104

CO(6-5) 116 1.1 × 105 9.8 × 104

CO(7-6) 155 1.5 × 105 1.5 × 105

Note—Critical densities and upper level temperatures for
relevant lines. Critical densities are calculated assuming
ortho-H2 is the dominant collision partner and using rate
coefficients appropriate for a kinetic temperature of either
10K or 100K.

0), CO(4-3)/[C i](1-0) and CO(7-6)/[C i](2-1) ratios

against dust temperature, IRAC 3.6 µm intensity (for

the disks; a proxy for stellar surface density) and central

X-ray luminosity (for the centers) in Fig. 2. All three ra-

tios are chosen such that higher values reflect higher ex-

citation conditions (temperature or density, see Table 3).

The motivation for pairing these specific CO lines with

the [C i] lines is that they are the closest in frequency

and thus may be conveniently observed together, with

similar angular resolutions. With 40′′ diameter aper-

tures separated by 40′′ between aperture centers, we

consider all non-central apertures to be dominated by

disk emission.

We look for correlations between both the disk and

central [C i] ratios with dust temperature, as a proxy

of local ISM excitation. Using a Kendall’s tau statis-

tic appropriate for censored data as implemented in the

R package NADA (Nondetects And Data Analysis; Lee

2017), we can reject the null hypothesis of no correla-

tion for the [C i](2-1)/[C i](1-0) and CO(4-3)/[C i](1-0)

ratios for both disks and galaxy centers and the CO(7-

6)/[C i](2-1) ratio for galaxy centers. The p-values of

these correlations are shown in the upper right-hand cor-

ner of the appropriate sub-plot in Fig. 2. In all of these

cases, the data show the expected correlation of more

highly excited [C i] ratios with increasing dust temper-

ature.
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There are very few detections of the CO(7-6)/[C i](2-

1) ratio within galaxy disks, but surprisingly, the de-

tections tend to decrease in ratio as dust temperature

increases in contrast to what is seen for the galaxy

centers and reported elsewhere for LIRGs (Lu et al.

2017). We note that all of the high-temperature low

CO(7-6)/[C i](2-1) ratio points are contributed by the

same galaxy, NGC 4736. This galaxy’s central near-IR

spectrum lacks Brγ emission (Walker et al. 1988) and

optical spectroscopy diagnoses its nuclear region as a

1 Gyr post-starburst with very little current star for-

mation (Taniguchi et al. 1996). NGC 4736’s dust is

likely heated by this high density poststarburst popu-

lation instead of ongoing star formation. Furthermore,

NGC 4736 has the strongest central [C ii] suppression

(Smith et al. 2017) which is similarly interpreted to be

due to a high-intensity, but softer (than ongoing star for-

mation) stellar radiation field. Thus NGC 4736’s very

low CO(7-6)/[C i](2-1) ratios at relatively high dust tem-

perature may be explained by intense starlight with a

relative lack of recent star formation.

Within galaxy disks, the IRAC 3.6 µm intensity is a

proxy for the density of the radiation field contributed

by old stars which has been found to correlate with the

[C ii] deficit (Smith et al. 2017). The relations in Fig. 2

do not show any statistically significant correlations be-

tween these three [C i] ratios and the IRAC 3.6 µm in-

tensity. Note that galaxy centers are excluded from this

plot, because a low-luminosity AGN or central starburst

can make even the 3.6 µm emission a less reliable tracer

of old stars.

The galactic centers of the BtP galaxies are a mix

of low-luminosity AGN, nuclear starbursts and quies-

cent nuclei (Moustakas et al. 2010) in otherwise normal

galaxies. Due to the resolution of our observations, the

central extraction measures not only the true nucleus,

but extended circumnuclear regions from 0.9 to 6 kpc

scale (see Table 1). Line ratios for these central regions

are plotted against their nuclear (within 2.′′3) X-ray lu-

minosity in Fig. 2 in order to look for correlations with

AGN or star formation power. The majority of these

X-ray luminosities are from the compilation by Grier

et al. (2011) of Chandra measurements, with additional

Chandra measurements for NGC 1266 (Alatalo et al.

2014) and NGC 4536 (McAlpine et al. 2011). Note these

X-ray luminosities include both hard and soft emission

(0.3-8.0 keV) and so may have contributions from an

AGN and/or from central star-formation. No statisti-

cally significant correlations are observed between X-ray

luminosity and any of these central [C i] ratios.

3.2. [C i] and CO

Both [CI] lines are indisputably correlated with all

observed transitions of CO, as shown in the intensity

versus intensity plots of Fig. 3 (first and third rows of

each column). In these plots, grey circles indicate de-

tections, green left arrows indicate upper limits in CO

and blue down arrows indicate upper limits in [C i]. For

clarity, data which are non-detections in both lines are

not shown. We fit a power law relation between the in-

tensities (indicated with a dashed line) and the residual

scatter around this relation (second and fourth row of

each column).

The power-law we are interested in is written:

I([CI]) ∝ I(CO)γ . (2)

Values of γ close to one imply that it is reasonable to

convert directly from one line intensity to the other.

Sub- or super-linear correlations imply a dependence on

a physical effect that correlates with the line intensity

of a region. Fitting in log-log space means the slope of

a linear fit will be the desired power-law exponent, γ.

However, the task of fitting such a line is complicated

by the multitude of upper limits within these datasets.

We follow advice from Feigelson & Babu (2012) and use

the doubly-censored Theil-Sen estimator given in Akri-

tas et al. (1995) for fitting lines with doubly left-censored

data as implemented in the R package NADA. We de-

termine best slopes using this algorithm for each com-

bination of CO line and [C i] line, which are shown with

dashed lines in Fig. 3. It should be noted that this algo-

rithm does not return a best estimate for the y-intercept.

Thus we used least squares to find a y-intercept estimate

having fixed the slope at the NADA value and ignoring

the censored data.

The calculated values of the power-law exponent are

shown in Fig. 4 for both [C i](1-0) and [C i](2-1) against

the various J CO lines. Uncertainties on these slopes

are determined by bootstrap resampling of the data. For

[C i](2-1), the relationship with CO(4-3) is very nearly

linear. For [C i](1-0), the relationship between [C i] and

CO is always sublinear, so this means that higher in-

tensity CO regions have higher CO/[C i] ratios, with a

larger effect for lines further from CO(4-3). For both

[C i](1-0) and [C i](2-1), we expect the following physical

reasons are at work. At high intensities of low-J CO, the

majority of gas is cold, and unable to excite the transi-

tions of [C i] with their higher upper level temperatures.

Thus these regions have lower [C i]/CO ratios and result

in sublinear correlations. At high intensities of high-J

CO, there is more dense, warm gas which is more effec-

tive at exciting the high critical density high-J CO lines.

Again this results in lower [C i]/CO ratios at the high

intensity end and thus, again, a sublinear correlation.
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Figure 3. [C i](2-1) (first two rows) and [C i](1-0) (second two rows) versus all seven CO lines. The first and third rows of
each column are intensity versus intensity plots while the second and fourth rows show logarithmic residuals from the best-fit
power law (dashed line). The dotted line in the intensity versus intensity plots indicates a relation with a linear slope. Floating
errorbars above and to the right depict typical errors for the BtP or ground-based detected data in three intensity bins for each
ordinate.
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[C i](2-1) intensities versus CO line intensities of Fig. 3. The
value the CO Jup is shown along the x-axis.

The intrinsic scatter in the relation can be determined

using the statistical approach of Cappellari et al. (2013)

(their Eqn. 6). The basic idea is to compute the re-

duced χ2 statistic including a term for the intrinsic scat-

ter which may be increased until the reduced χ2 equals

its expected value of 1. Using this approach, the intrin-

sic scatter appears minimal for the [C i](2-1) to CO(4-3)

relation as shown in the bottom panels of Fig. 4. This

low scatter is a further indication of a strong relation-

ship between [C i](2-1) and CO(4-3). Relations between

[C i](1-0) and CO(2-1), CO(3-2) and CO(4-3) all have

similar intrinsic scatter. Thus, we cannot make a strong

statement about which CO line [C i](1-0) is best corre-

lated with.

4. AN APPROXIMATION AND MODELS

4.1. LTE approximation

We first consider what the [C i] lines alone can tell

us about the physical state of the gas. Unfortunately,

there are only two [C i] lines, which means we must

make some assumptions if we are to derive gas prop-

erties. A common assumption is that the neutral car-

bon is in LTE and the two [C i] lines are optically thin

(e.g. Kamenetzky et al. 2014). In this case, the exci-

tation temperature is simply calculated by using the

Boltzmann distribution for the [C i] level populations

and Einstein A coefficients to determine the line fluxes

from these level populations. Fig. 5 documents these

optically-thin LTE temperatures for all galaxies where

both [C i](1-0) and [C i](2-1) are detected. These tem-

peratures are generally lower than those found for the

more active galaxies (starbursts, AGN, ULIRGs) in the

Kamenetzky et al. (2014) sample. Within their sample,
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Figure 5. Boxplots indicating the distribution of LTE [C i]
temperatures for each galaxy. For galaxies with fewer than
six [C i] temperature measurements, blue dots show the in-
dividual temperatures instead of a boxplot. Green stars rep-
resent outliers in the distributions.

only six out of eighteen studied regions have LTE [C i]

temperatures below 24 K, the highest temperature seen

in the BtP sample. These optically-thin LTE tempera-

tures are consistent with the kinetic temperatures found

for the [C i]-emitting gas for simulated molecular clouds

at both a solar neighborhood interstellar radiation field

and an ISRF ten times stronger (Clark et al. 2019).

However, the conditions for LTE may not be met, for

instance, if subthermal excitation is important. Section

3.3 of Glover et al. (2015) discusses the problems they

see when assuming LTE for the [C i] emission of their

simulated cloud. If lines are (partially) optically thick,

we also cannot as simply derive the excitation tempera-

ture, as the observed flux will be lower than the emitted

flux. We will later discuss how important these effects
are for the BtP sample, if we use the gas properties de-

rived from our two-component fit.

4.2. Two-component LVG + template models

Next we use models to help connect the [C i] lines to a

physical gas phase. As CO and [C i] emission have been

observed to be cospatial on parsec scales within Milky

Way clouds (e. g. Figures 3 and 4 of Shimajiri et al.

(2013)) as well as on hundreds of parsec scales within

resolved galaxies (e. g. Krips et al. (2016)), we use the

emission from both species to constrain the CO- and

[C i]-emitting gas parameters.

Large velocity gradient (LVG) models are commonly

used to describe the emission from molecular clouds be-

cause they provide an easily computable non-LTE ap-

proximation. To model the line intensities of a single

molecular species, the parameters required are the ki-
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netic temperature, the volume density of dominant col-

lision partners and the column density of the molecule

of interest per unit velocity spread. When such models

are applied to regions within galaxies, we assume those

regions are made up of clouds with identical values of

these parameters. An additional normalization parame-

ter allows for the intensity of the region to be lower than

if it were uniformly filled by such clouds. LVG models

may also include multiple species, so long as either an

abundance ratio is assumed, or there are enough lines

to allow the abundance ratio to be fit.

Two-component LVG models are required to fit the

[C i] and CO emission of these galaxies. Israel et al.

(2015) note that their lowest-excitation galaxies cannot

be well fit by a single component. Schirm et al. (2017)

document in their Appendix A why a one-component

LVG model is not realistic for regions in M51. Similarly,

we found unrealistically high gas kinetic temperatures

and low densities when the BtP data were fit with a

single LVG component.

A full two-component model requires ten free param-

eters: density, kinetic temperature, column density per

velocity interval, filling factor and C to CO abundance

for both components. In the very best cases within the

BtP sample, only 9 lines were detected, and therefore a

more constrained model was necessary. We first tried a

combination of a low-excitation template based upon the

Milky Way and fit a high-excitation LVG model. How-

ever, this led to high reduced χ2 values for many regions

due to poor fits at the low-excitation end of the spectral

line energy distribution (SLED). Thus, we instead use

an empirically-derived template for the high-excitation

emission and an LVG model to account for the lower-

excitation emission. The high-excitation template we

use is based on the detailed empirical observations of an

actively star-forming region in the LMC, N159W (Lee

et al. 2016). Lee et al. (2016) analyze the sources power-

ing the [C i] and CO emission in this region, acknowledg-

ing some is from star-formation powered PDRs, while

other emission must be powered by star-formation feed-

back related shocks. Instead of modeling these compo-

nents separately, we simply use their integrated observed

emission from the region as a template. For the lower-

excitation component, we use the LVG code RADEX to

provide models of the emission (van der Tak et al. 2007).

We constrained the models to n(H2) = 103 cm−3 be-

cause at higher densities the shape simply resembles the

high-excitation template and we lose diagnostic power.

Kinetic temperature is allowed to vary from 10 to 35 K

in 5 K increments. N(CO)/∆v = 0.25, 0.5, 1, 2, 4× 1017

cm−2 km−1 s are options for the column density per unit

velocity. In addition, we allow the C0:CO abundance ra-

tio to be 2:1, 1:1, 1:2, 1:4, 1:8 or 1:16. These choices are

all based upon the ‘quiescent’ and ‘very quiescent’ mod-

els for [C i] and CO from Papadopoulos & Greve (2004),

which summarize observations of the Milky Way, M31

and M33. They also cover the parameters found to fit

the cold component of M51 (Schirm et al. 2017). The

scale factor for each component is defined to be the av-

erage number of ∆v = 1 km s−1 clouds along the line of

sight and is hereafter denoted f?L. While this appears to

be an awkward definition, it prevents us from either hav-

ing to fix the typical cloud width within our galaxies or

from assuming the full velocity line width of the galaxy

is the relevant line width for the LVG approximation.

Based upon this definition, the N159W high-excitation

region has f?H = 1 because it is a 10 km s−1 wide cloud

with a beam filling factor of 0.1 (Lee et al. 2016). Thus

the scale factor we apply to the high-excitation N159W

template for a given region gives us that region’s f?H
scale factor.

For robust fits of the five parameters (T , N(CO)/∆v,

C:CO, f?L, f?H) we decided to require detections in both

[C i] lines and at least four CO lines, including one of

CO(1-0) or CO(2-1). This cut results in 64 independent

regions that are fit. The best fit is determined by min-

imizing the χ2. We show the data and best fits for six

example regions in Fig. 6; histograms documenting the

fit results for all regions are shown in Fig. 7.

4.3. Excitation fraction distributions

Given the adequate decomposition provided by the

two-component fit, we indicate distributions of the low-

excitation fraction of each line in Fig. 8. For [C i],

nearly all of the [C i](1-0) line is contributed by the low-

excitation component. For [C i](2-1), the fraction varies

significantly from region to region although the median

is close to 70%. For CO, there is a steady decrease in

the contribution of the low-excitation component as J

increases. We note that our range for the CO(2-1) high-

excitation fraction corresponds nearly identically to the

range Israel et al. (2015) report for their LIRG/ULIRGs

CO(2-1) dense fraction (rightmost panel of their Fig. 8).

As expected, very little of the highest-J CO line inten-

sities are contributed by the low-excitation component.

These distributions represent the fraction of line emis-

sion from a low-excitation component for the brightest

regions within a sample of normal, local spiral galaxies.

By this analysis, [C i](1-0) and CO(1-0) are both reli-

able tracers of the low-excitation component for these

regions. [C i](2-1) is less reliable as even in these normal

spiral galaxies there are cases where half of its emission is

from a high-excitation component. The CO Jup = 2− 5

lines have low-excitation fraction ranges of typically 30-
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Figure 6. Six example fits to [C i] and CO SLEDS. The fits
combine a constant shape high-excitation template (green
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Figure 7. Histograms representing the results of the two-
component fit to the [C i] and CO lines. Best-fit models
for different regions vary over the full range of Tkin and
N(CO)/∆v, although few regions are best fit by 10 K. Very
low C:CO abundances do not seem to be required. Filling
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excitation components. Reduced χ2 values are mostly lower
than 5.

70%. So for these regions of spiral galaxies they are

not dominated by one component or the other and in-

deed show a wide variation. While this limited two-

component analysis is only a slight improvement on try-

ing to account for the physical properties with a single

LVG model, already we can see that considering multi-

ple components is very important for the [C i] and CO

emitting gas.

4.4. The [C i](2-1) to CO(4-3) connection

One of the goals of this modeling work is to explain

the strong link found between the CO(4-3) and [C i](2-

1) emission. In order to do this, we consider the range

of line ratios produced by these two-component models.

For various abundances and temperatures (shown on the

x-axis; temperature increases from 10 to 35 K left to

right in 5 K steps for each abundance), Fig. 9 shows the

line ratios produced by our two-component model. The
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different color circles represent different f?H/f
?
L filling

factor ratios. We depict the median ratio in orange, the

ratio at 90% of the observed distribution in green and

the ratio at 10% of the observed distribution in blue. We

only show the N(CO)/∆v = 1017 cm−2 km−1 s models

to avoid clutter. The number in the bottom-right corner

shows the multiplicative spread from the minimum to

maximum line ratio for the models.

For [C i](2-1), the models collapse to a small range at

the CO(4-3)/[C i](2-1) ratio. Note that this also occurs

for the four other column densities individually and all

five column densities as a set (not shown). This col-

lapse fits precisely with the linear correlation with min-

imal scatter observed for CO(4-3) versus [C i](2-1) in

Section 3.2. While Fig. 9 graphically shows the lim-

ited range in ratios, we may understand the narrow

range physically as being due to the very similar up-

per level temperatures of 55 K versus 62 K for CO(4-3)

and [C i](2-1), respectively. While their critical densities

differ by a factor of about 20 and this is surely respon-

sible for some of the difference seen in these ratios, the

similar upper level temperatures are more important in

these cases where density is not too far below critical.

However, the observed ratios exhibit an even narrower

range than that populated by these ‘reasonable’ models.

The full range of observed ratios is shown by the grey

band in all of these plots. So even if the models alone

suggest a narrow range for the CO(4-3)/[C i](2-1) ratio,

we find that real regions within galaxies have an even

narrower range in this ratio, suggesting that all of our

model parameter space is not explored by real galaxies.

For [C i](1-0) with its 24 K upper level temperature

and lower critical density, the narrowest range of ra-

tio should occur for CO(1-0)/[C i](1-0) based purely on

the reasonable range models. But at least for the re-

gions with [C i](1-0) detections, the analysis summarized

by Fig. 5 showed minimal scatter for the relationships

between [C i](1-0) and CO(2-1), CO(3-2) or CO(4-3).

This may be due to our detections in [C i](1-0) being

biased towards the brightest (likely higher-excitation)

regions of these spiral galaxies or the lower quality of

the ground-based CO(1-0) data.

5. THE [C i] TO H2 CONVERSION FACTOR

One of the primary interests in the [C i] lines is for

their ability to measure the cold molecular gas mass at

high redshift, where they are observationally easier to

measure than the low-J transitions of CO. Matching the

definition of αCO, we define

α[CI] =
Σmol

I[CI]
(3)
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Figure 8. Distributions of the fraction of line flux con-
tributed by the low-excitation component, according to the
two-component model fit. The boxes enclose the middle two
quartiles, with the median indicated. The whiskers extend
to 10% and 90% of the full data range.

where Σmol is the mass surface density of molecular gas

(including helium) in M� pc−2 and I[CI] is the [C i]

line intensity in K km s−1. For most of the galaxies

in the BtP sample, αCO(2−1) values have been obtained

in Sandstrom et al. (2013) using a technique that min-

imizes the spread in dust-to-gas ratio within a limited

region using the observed dust, H i and CO emission.

We apply these values to calculate Σmol for the regions

with detected [C i] lines. Then, α[CI] may be estimated

by dividing by the region’s [C i] intensity:

α[CI] =
αCO(2−1)ICO(2−1)

I[CI]
. (4)

The test here is to see how the distribution of α[CI]

compares to that of αCO. Unfortunately, observational

uncertainties mean we cannot compare the true distribu-

tions of these values, only their observed distributions.

However, similar to the method used to calculate the

intrinsic scatter about the power-law fits in Fig. 3, we

can estimate the intrinsic spread of the distribution for

αCO(2−1), α[CI](1−0) and α[CI](2−1) since we know the

uncertainties on the quantities used to compute them.

We assume a lognormal distribution for these quanti-

ties. We allow for both the observational uncertainties

and an intrinsic spread of the distribution (σint). The

estimated σint (in dex) is that which gives a reduced χ2

value of 1:

χ2

ν
=

∑ (log10 µ− log10 αi)
2

σ2
i + σ2

int

= 1, (5)

where ν is the number of degrees of freedom, µ is the

geometric mean of all the αi, αi are the calculated val-
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Figure 9. Variation in model ratios with C:CO abun-
dance, temperature, and filling factor ratio with a fixed
N(CO)/∆v = 1017 cm−2 km−1 s. The left column presents
CO ratios with [C i](1-0) and the right column with [C i](2-
1). Along the x-axis, different models are indicated, first
by C:CO abundance of the low-excitation component, then
within those categories, by low-excitation component tem-
perature from 10 to 35 K in 5 K increments (thus 6 points
per abundance flight). Blue, orange, green points indicate
filling factor ratios at 10%, 50% and 90% of the filling factor
ratio distribution. The ratios of these models may be com-
pared to the observed ratios for each combination, indicated
by the median (black line) and the zone containing 10% to
90% of the distribution for the BtP sample, in grey. The
number in the bottom right indicates the factor spread from
the highest to lowest ratio of the models.

ues of α for each region, and σi is the total observa-

tional uncertainty for each region, expressed in dex. The

αCO(2−1) values have a typical uncertainty of about 0.2

dex (Sandstrom et al. 2013). The α[CI] values have ad-

ditional uncertainty from the measurements of ICO(2−1)
and I[CI] that go into computing them.

The top row of Fig. 10 shows the distributions of

αCO(2−1), α[CI](1−0) and α[CI](2−1) values for regions

within BtP sample galaxies. Table 4 tabulates the ge-

ometric mean α[CI] and αCO(2−1) values and both the

observed and intrinsic spreads expressed in dex along

with their errors. There are two rows for αCO(2−1), be-

cause it must be constrained to the same set of data as

its α[CI] pair (fewer regions are available for [C i](1-0))

for a fair comparison. Comparing these data-matched

pairs, the spreads of α[CI](1−0) and αCO(2−1) are not

significantly different, while the spread of α[CI](2−1) is

greater than that of αCO(2−1). Thus [C i](1-0) is po-

tentially as good a tracer of the cold molecular gas as

CO(2-1). On the other hand, [C i](2-1) appears to be a

slightly worse tracer, in agreement with our finding of

its good correlation with CO(4-3).

The factor αCO is known to vary based on local ex-

citation conditions. In particular, it has long been

known that more highly excited galaxies like LIRGs and

ULIRGs tend to have lower αCO ratios (less molecular

mass per unit emission). In the bottom panel of Fig. 10

we use the dust temperature to separate more and less

excited regions within our sample galaxies. We divided

the available data into two bins using a division of 23 K

(the average dust temperature). Blue represents lower

dust temperatures and red higher. The p-values listed in

the upper left hand corner correspond to the probability

that both distributions are samples drawn from the same

parent distribution according to a Kolmogorov-Smirnov

test. Values under 0.05 can be considered significant, so

αCO(2−1) and α[CI](2−1) both show significance. In both

of these cases, we see the expected pattern that higher-

excitation regions tend to lower α values. The α[CI](1−0)
distribution does not show a significant difference be-

tween low and high dust temperature regions, signaling

perhaps it is a better molecular gas tracer because it is

less dependent on excitation conditions.

Our α[CI](1−0) values are mostly lower (our median

value is about a factor of 3 lower) than the simulation-

based predictions of α[CI](1−0) ≈ 20 M� K−1 km−1 s

pc−2 (Offner et al. 2014; Glover et al. 2015, dotted line

in Fig. 10). We suspect this difference occurs because

these simulations do not trace the clouds after star for-

mation begins and thus contain purely quiescent gas in-

stead of the mix contained in our large apertures within

disk galaxies. We also note that the regions with de-
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Figure 10. Distributions of αCO(2−1), α[CI](1−0) and α[CI](2−1) values for regions within BtP sample galaxies. The top row
shows the full distributions while the bottom row’s colored histograms break the distributions into two bins, based on a dust
temperature of 23 K. Probabilities that the two distributions are drawn from the same sample according to a two-sample
Kolmogorov-Smirnov test are given in the upper left-hand corner of each subplot. The dashed red line gives the median of
the warm-dust α values while the blue solid line gives the median of the cold-dust α values. The dotted line in the top center
subplot indicates the α[CI](2−1) value estimated from the Glover et al. (2015) simulation. αCO(2−1) values are from Sandstrom
et al. (2013).

tected [C i] emission have lower than typical αCO val-

ues found on average for disks. When converted to the

more common αCO(1−0) via the Sandstrom et al. (2013)

assumed R21 = 0.7, the mean value of αCO(1−0) is 0.9

(or 1.1) K−1 km−1 s pc−2 for our regions detected in

[C i](1-0) (or [C i](2-1)). These values are both lower

than the mean αCO(1−0) = 3.1 M� K−1 km−1 s pc−2

found by Sandstrom et al. (2013) whose sample contains

many of these same galaxies, but probes further out in

their disks. However, as expected, the mean α[CI] val-

ues we calculate are larger than the α[CI](1−0) = 4.9 M�
K−1 km−1 s pc−2 and α[CI](2−1) = 17 M� K−1 km−1 s

pc−2 found for (U)LIRGs by Jiao et al. (2017) by using

a conversion of CO to H2 mass. On the other hand, Jiao

et al. (2017) find similar values of α[CI](1−0) = 10.3 M�
K−1 km−1 s pc−2 and α[CI](2−1) = 37.4 M� K−1 km−1 s

pc−2 when using a different method of inferring the H2

mass directly from the two [C i] lines, assuming they

are optically thin and in LTE. (Note these are different

than the values in Jiao et al. (2017), adjusted by a factor

1.36 to include the contribution of helium to the total

molecular gas mass.)

6. CONCLUSION

We used spatially resolved Herschel SPIRE/FTS FIR

spectroscopy from the Beyond the Peak program to mea-

sure [C i] and CO line intensities in a sample of 18

nearby, normal galaxies. We found a linear relationship

Table 4. H2 conversion factors for [C i] detected regions.

Mean σobs (dex) σint (dex)

α[CI](1−0) 7.3 0.29 0.20+0.06
−0.05

αCO(2−1) 1.30 0.28 0.21 +0.06
−0.04

α[CI](2−1) 34 0.39 0.32+0.05
−0.04

αCO(2−1) 1.56 0.33 0.27+0.04
−0.03

Note—Units for the means are M� K−1 km−1 s pc−2. The
two rows for αCO(2−1) describe the αCO(2−1) distribution
constrained to the same set of regions as have detections
in [C i](1-0) and [C i](2-1), respectively.

between the [C i](2-1) and CO(4-3) lines. This relation-

ship also had minimal scatter compared to the relation-

ships found with other CO lines. A simple physical ex-

planation is the small difference between the upper level

temperatures of the [C i](2-1) and CO(4-3) lines, which

appears to be more important than their different criti-

cal densities. Other relationships between [C i] and CO

lines are all sublinear (see Figs. 4 and 5).

With a two-component LVG + high excitation tem-

plate model, we find that [C i](1-0) and CO(1-0) are

dominated by the low-excitation gas, while CO(6-5) and

CO(7-6) are dominated by the high-excitation compo-

nent. [C i](2-1), CO(2-1), CO(3-2), CO(4-3) and CO(5-

4) have significant contributions from both low and high
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excitation components, but critically depend on local

conditions.

We also determined [C i] to molecular mass conver-

sion factors for both [C i] lines, with mean values of

α[CI](1−0) = 7.3 M� K−1 km−1 s pc−2 and α[CI](2−1) =

34 M� K−1 km−1 s pc−2. α[CI](1−0) has a similar intrin-

sic spread (0.20+0.06
−0.05 dex) to an αCO value based upon

CO(2-1) (0.21 +0.06
−0.04 dex), thus we conclude that it is a

similarly good tracer of the cold molecular gas. How-

ever, α[CI](2−1) has a larger intrinsic spread (0.32+0.05
−0.04

dex) than αCO(2−1) (0.27+0.04
−0.03), signaling that much of

the [C i](2-1) emission may originate in warmer molecu-

lar gas.

CDW acknowledges support from the Natural Sci-

ences and Engineering Research Council of Canada.

MGW was supported in part by NSF grant AST1411827.

EB acknowledges support from the UK Science and

Technology Facilities Council [Grant No. ST/M001008/1].

LKH is grateful to funding by the INAF PRIN-SKA pro-

gram 1.05.01.88.04. DR acknowledges support from the

UK Science and Technology Facilities Council (Grant

No. ST/N000919/1). ER acknowledges the support of

the Natural Sciences and Engineering Research Council

of Canada (NSERC), funding reference number RGPIN-

2017-03987.

The Herschel spacecraft was designed, built, tested,

and launched under a contract to ESA managed by the

Herschel/Planck Project team by an industrial consor-

tium under the overall responsibility of the prime con-

tractor Thales Alenia Space (Cannes), and including

Astrium (Friedrichshafen) responsible for the payload

module and for system testing at spacecraft level, Thales

Alenia Space (Turin) responsible for the service module,

and Astrium (Toulouse) responsible for the telescope,

with in excess of a hundred subcontractors. SPIRE

has been developed by a consortium of institutes led

by Cardiff University (UK) and including Univ. Leth-

bridge (Canada); NAOC (China); CEA, LAM (France);

IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm

Observatory (Sweden); Imperial College London, RAL,

UCL-MSSL, UKATC, Univ. Sussex (UK); and Cal-

tech, JPL, NHSC, Univ. Colorado (USA). This develop-

ment has been supported by national funding agencies:

CSA (Canada); NAOC (China); CEA, CNES, CNRS

(France); ASI (Italy); MCINN (Spain); SNSB (Sweden);

STFC, UKSA (UK); and NASA (USA).

Software: RADEX (van der Tak et al. 2007), NADA

(v1.6-1; Lee 2017), SciPy (http://www.scipy.org/)

REFERENCES

Akritas, M. G., Murphy, S. A., & LaValley, M. P. 1995,

Journal of the American Statistical Association, 90, 170

Alatalo, K., Nyland, K., Graves, G., et al. 2014, ApJ, 780,

186

Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A,

51, 207

Cappellari, M., Scott, N., Alatalo, K., et al. 2013, MNRAS,

432, 1709

Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105

Clark, P. C., Glover, S. C. O., Ragan, S. E., &

Duarte-Cabral, A. 2019, MNRAS, 486, 4622

Feigelson, E. D., & Babu, G. J. 2012, Modern Statistical

Methods for Astronomy (Cambridge University Press)

Gerin, M., & Phillips, T. G. 2000, ApJ, 537, 644

Glover, S. C. O., Clark, P. C., Micic, M., & Molina, F.

2015, MNRAS, 448, 1607

Grier, C. J., Mathur, S., Ghosh, H., & Ferrarese, L. 2011,

ApJ, 731, 60

Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A,

518, L3

Helfer, T. T., Thornley, M. D., Regan, M. W., et al. 2003,

ApJS, 145, 259

Israel, F. P., Rosenberg, M. J. F., & van der Werf, P. 2015,

A&A, 578, A95

Jiao, Q., Zhao, Y., Zhu, M., et al. 2017, ApJL, 840, L18

Jiao, Q., Zhao, Y., Lu, N., et al. 2019, arXiv e-prints,

arXiv:1906.05671

Kamenetzky, J., Rangwala, N., Glenn, J., Maloney, P. R.,

& Conley, A. 2014, ApJ, 795, 174

—. 2016, ApJ, 829, 93

Kennicutt, R. C., et al. 2011, PASP, 123, 1347

Krips, M., Mart́ın, S., Sakamoto, K., et al. 2016, A&A, 592,

L3

Kuno, N., Sato, N., Nakanishi, H., et al. 2007, PASJ, 59,

117

Lee, L. 2017, NADA: Nondetects and Data Analysis for

Environmental Data, r package version 1.6-1

Lee, M.-Y., Madden, S. C., Lebouteiller, V., et al. 2016,

A&A, 596, A85

Leroy, A. K., Walter, F., Sandstrom, K., et al. 2013, AJ,

146, 19

Lu, N., Zhao, Y., Dı́az-Santos, T., et al. 2017, ApJS, 230, 1

McAlpine, W., Satyapal, S., Gliozzi, M., et al. 2011, ApJ,

728, 25



[C i](1-0) and [C i](2-1) in resolved local galaxies 15

Moustakas, J., Kennicutt, Jr., R. C., Tremonti, C. A., et al.

2010, ApJS, 190, 233

Offner, S. S. R., Bisbas, T. G., Bell, T. A., & Viti, S. 2014,

MNRAS, 440, L81

Papadopoulos, P. P., & Greve, T. R. 2004, ApJL, 615, L29

Pellegrini, E. W., Smith, J. D., Wolfire, M. G., et al. 2013,

ApJL, 779, L19

Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010,

A&A, 518, L1

Sandstrom, K. M., Leroy, A. K., Walter, F., et al. 2013,

ApJ, 777, 5

Schirm, M. R. P., Wilson, C. D., Kamenetzky, J., et al.

2017, MNRAS, 470, 4989

Shimajiri, Y., Sakai, T., Tsukagoshi, T., et al. 2013, The

Astrophysical Journal Letters, 774, L20

Smith, J. D. T., Croxall, K., Draine, B., et al. 2017, ApJ,

834, 5

Taniguchi, Y., Ohyama, Y., Yamada, T., Mouri, H., &

Yoshida, M. 1996, ApJ, 467, 215

Tielens, A. G. G. M., & Hollenbach, D. 1985, ApJ, 291, 722

van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen,
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