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Abstract— Well understanding the access behavior of hot data
is significant for NAND flash memory due to its crucial impact
on the efficiency of garbage collection (GC) and wear leveling
(WL), which respectively dominate the performance and life
span of SSD. Generally, both GC and WL rely greatly on the
recognition accuracy of hot data identification (HDI). However,
in this paper, the first time we propose a novel concept of hot
data prediction (HDP), where the conventional HDI becomes
unnecessary. First, we develop a hybrid optimized echo state
network (HOESN), where sufficiently unbiased and continuously
shrunk output weights are learnt by a sparse regression based on
L2 and L1/2 regularization. Second, quantum-behaved particle

swarm optimization (QPSO) is employed to compute reservoir
parameters (i.e., global scaling factor, reservoir size, scaling
coefficient and sparsity degree) for further improving prediction
accuracy and reliability. Third, in the test on a chaotic benchmark
(Rossler), the HOESN performs better than those of six recent
state-of-the-art methods. Finally, simulation results about six
typical metrics tested on five real disk workloads and on-chip
experiment outcomes verified from an actual SSD prototype
indicate that our HOESN-based HDP can reliably promote the
access performance and endurance of NAND flash memories.

Index Terms— NAND flash memory, solid state disk (SSD),
echo state network (ESN), hot data prediction, regularization.

I. INTRODUCTION

W ITH the explosion of information driven by ubiquitous
internet access, big-data storage industry is escalating

demand for NAND flash-based solid state disks (SSDs) [1].
Compared with hard disk drives (HDDs), SSDs offer higher
access speed and better reliability since no mechanical moving
components are used, hence NAND flash memories are rapidly
expanding into wide applications in consumer electronics and
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communications [2]. At the same time, today’s escalating data
traffic and information sharing jointly challenge both on-site
distributed and back-end service data storages, affecting user
experiences and QoS of enterprises [3]. To satisfy the ever-
increasingly strict requirements of diverse applications as well
as future storage system demands, more speedy, reliable and
energy-efficient SSDs are desirable.

However, NAND flash memory has been facing at least two
challenges, out-of-place update and limited endurance, which
restrict its large-scale applications. Moreover, multi-level per
cell (MLC) technique has been enjoying its popularity for
significantly reducing cost by aggressively storing several bits
in each transistor [3], [4]. In return, it has come at price in
life-span and reliability. An outstanding flash translation layer
(FTL) should well resolve the above issues, to enable users
to utilize the flash memory like in-place update disks through
conventional file systems. As shown in Fig. 1(a), a recycling
policy on the FTL, namely garbage collection (GC), is set up
for reclaiming the spaces occupied by the invalid data. And
a decision policy, namely wear leveling (WL), is established
to improve flash lifetime by evenly distributing erases over
the entire flash memory. The design idea is to distribute the
frequently written data (i.e., hot data) into the blocks that
experience lower erase times and distribute the least recently
used data (i.e., cold data) into the blocks that have larger erase
times. On the basis of above, the identification of hot and cold
data plays a vital role to prolong the flash endurance. In other
words, both GC and WL are fundamentally determined by the
hot data identification (HDI) [5]. Thus, well understanding and
utilizing the statistical characterization of application access
behavior are significant for NAND flash memory due to their
crucial impact on its efficiency and endurance [1], [4].

The past two decades witness considerable efforts on studies
of HDI from direct scheme [6], [7] to indirect scheme [5],
[8]–[12]. The HDC [6] and two-level LRU [7] analyze the
access behaviors by directly recording the statistical rule
of logical block addresses (LBAs). In contrast, the scheme
of multiple independent hash function (MIHF) [8] captures
information of frequency and recency by using multi-hash
functions and one bloom filter. Further, the scheme of multiple
bloom filter (MBF) [5] achieves more fine-grained identifica-
tion of hot data behavior by assigning each bloom filter with
a discriminative hot degree weight. Based on sparse model
for probability distribution of accesses, the scheme of kernel
density function (KDF) [9] thus performs better than MBF.
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Fig. 1. Typical architecture of NAND flash memory-based systems with
(a) traditional hot data identifier and (b) proposed hot data predictor.

Recent HotDataTrap (HDT) [10] and dual layer HDI
(DL-HDI) [11] boost the performance to higher stage on both
identification accuracy and memory overheads. In summary,
all these HDI schemes focus on how to effectively capture the
frequency and recency information of write accesses with less
runtime consumptions and memory overheads. However, LBA
accesses tend to be stochastic and time-variant [5], [10]–[12].
It is challenging to precisely identify the hot ratio of all kinds
of workloads even for the recent state-of-the-art HDI schemes.

The essence of HDI is making attempt to well understand
the access behavior of hot data so as to intelligently allocate
different data to appropriate blocks. Compared with passive
identification, is it possible to develop such a scheme that can
actively learn or even forecast the rules of data behaviors?

Motivated by this proposal, this paper investigated that
reservoir computing (RC) deals particularly well with tem-
poral data classification and prediction task due to its low
computational complexity and fast convergence. It is a prac-
tical machine learning tool that allows rapid computation on
embedded hardware [13]. As one of the most powerful RC
schemes, echo state network (ESN) has been innovatively
applied in proactive deployment of unmanned aerial vehicles
(UAVs) [14], symbol detection in communications [15], con-
tainment control of multivehicle systems [16], and adaptive
fault tolerant control [17] in the most recent years. Notably,
Shafin et al. proposed a green symbol detection method based
on ESN for MIMO-OFDM systems [15], where the traditional
estimation procedure of channel state information (CSI) is
completely subverted.

Greatly encouraged by this irresistible trend, as shown in
Fig. 1(b), we propose a novel concept of hot data predic-
tion (HDP) where the conventional HDI becomes unnecessary.
The main contributions are listed as follows

1) A hybrid optimized ESN (HOESN) is developed, where a
sparse regression is adopted to calculate sufficiently unbiased
and continuously shrunk output weights by maximizing the
merits of L1/2 and L2 regularization.

2) Quantum-behaved particle swarm optimization
(QPSO) [18] is inventively employed to compute the
vital reservoir parameters (i.e., global scaling factor, reservoir

Fig. 2. Structure of echo state network.

size, scaling coefficient and sparsity degree). This intelligent
method can avoid the uncertainty and inconvenience caused
by manual parameter settings.

3) Extensive comparative experiments focusing on HDP
have been simulated on five real disk workloads, and then
verified on an actual SSD prototype, which provide a reference
case of different thinking for improving the performance and
endurance of NAND flash memories.

To our best knowledge, this is the first work exploits the
framework of ESN to form an innovative concept of hot
data prediction to assist GC and WL, so as to enhance the
performance and endurance of NAND flash memories.

The rest of this paper is organized as follows. Section II
presents the theories of HOESN. And its detailed operation
procedure, prediction merits, and computational complexity
are explained and analyzed in Section III. Section IV demon-
strates the evaluation results of HOESN on an open chaotic
benchmark. Section V illustrates extensive simulation results
carried out on real disk workloads and on-chip experiment out-
comes on actual SSD device for HDP and its accommodating
DVPFTL. Finally, conclusion is drawn in Section VI.

II. THEORIES OF HYBRID OPTIMIZED

ECHO STATE NETWORK

A. Echo State Network

A typical ESN includes an input layer, a hidden layer which
is a dynamic reservoir with abundant recurrent connected
neurons, and an output layer [13]. As shown in Fig. 2, the input
layer is linked to the dynamic reservoir via input weights
W in ∈ R

N×K . The dynamic reservoir has internal weights
W∈ R

N×N . The dynamic reservoir is linked to the output
layer through output weights W out ∈ R

(N+K )×1. And the
output is fed back to the dynamic reservoir through feedback
weights Wback ∈ R1×N . Intuitively, the distinct connectivity
of neurons in the dynamic reservoir makes up of the major
difference between ESN and RNN (i.e., recurrent neural
network). Traditionally, RNN needs to learn the input and
output weights through minimizing the overall mean-square
error (MSE). In contrast, ESN only requires to calculate
its output weights Wout, while the values of W in, W and
Wback are randomly chosen with priori. The in-depth idea
is to stimulate a random, large but fixed RNN with external
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stimuli, which excites reservoir neurons to generate nonlinear
responses, and to combine the desired output signals after
training through a linear combination among the trained
response signals. Thus, ESN is a typical externally linear
internally nonlinear network.

Assume input layer has K neurons, dynamic reservoir has
N neurons and output layer has L neurons, the reservoir state
at time step t is formulated as⎧⎪⎨

⎪⎩
U(t) = [u1(t), u2(t), . . . , uK (t)]T

S(t) = [s1(t), s2(t), . . . , sN (t)]T

Y(t) = [y1(t), y2(t), . . . , yL(t)]T

(1)

where U ∈ R
K×L , S ∈ R

N×L , Y ∈ R
L×1. At the time step

t + 1, the internal reservoir is updated as

S(t+1)= logsig(W in U(t+1)+W S(t)+WT
backY T (t)) (2)

where logsig (·) stands for the log-sigmoid transfer function
that will be applied to each element. It is worth mentioning
that, in practice, after create a random matrix W N with
sparsity SD, W is estimated as γ W N , where γ is the global
scaling factor to be used in iterative learning process. Then
the predicted output signal Y & ∈ R

L×1 is obtained by

Y & = [U : S]T Wout = XWout (3)

where [·:·] denotes the operation of matrix connection, and
X ∈ R

L×(K+N) is an L-by-(K + N) intermediate matrix.
The output weights Wout are calculated by minimizing the
following square error

Eorg = min
∥∥∥Y − Y &

∥∥∥2

2
= min ‖Y − XW out‖2

2 (4)

The output weights Wout can be well obtained by
Moore-Penrose pseudo-inversion method, it is estimated
as W&

out

W &
out = (XT X)−1XT Y (5)

There are four key parameters in the dynamic reservoir,
jointly determining the final performance of ESN, which are
spectral radius (SR), reservoir size (N ∈ Z+), input layer
scaling coefficient (IS∈(0, 1]), and reservoir sparsity degree
(SD∈(0, 1)). The necessary condition (but not strict condition)
for ensuring the system stability is that the SR less than one.
Finally, the outputs can be estimated as XW &

out.

B. Hybrid Regularization

It is recognized that ill-posed solutions will visit when the
high-dimensional reservoir states turn to be fairly correlated
in the original ESN. A general method to solve the problem is
to import a τ -norm penalty to regularize Wout with certain
coefficient λ in the cost function (4). To clarify layout,
we denote Wout as ρ, then (4) is modified as

min
{
‖Y − Xρ‖2

2 + λ ‖ρ‖τ
τ

}
(6)

This paper investigates that the L2 regularization (τ = 2)
works well on continuously shrinking weights but fails to
generate sufficiently sparse weights. In contrast, the L1/2 reg-
ularization (τ = 1/2) can generate extreme sparse solutions,

but does not perform well when there is high correlation
between predictors. A powerful combination with L1/2 and
L2 regularization is inspired as

Eregu = min
ρk

{
‖Y k − Xρk‖2

2 + λ2 ‖ρk‖2
2 + λ1 ‖ρk‖1/2

1/2

}
(7)

where λ1 and λ2 are non-negative coefficients, k =1, 2, …, K ,
based on extending formulation, (7) can be derived as

min
ρ∗

k

{∥∥Y∗
k − X∗ρ∗

k

∥∥2
2 + μ

∥∥ρ∗
k

∥∥1/2
1/2

}
(8)

where Y∗
k =

[
Yk
0

]
, X∗ = 1√

1+λ2

(
X√
λ2I

)
, ρ∗

k =
√

1 + λ2ρk and μ = λ1
4√1+λ2

.
The above (8) can be well solved by coordinate descent

algorithm presented in [19]. Given

Cp,k =
∑T

t=1 (yp(t) − ∑N+K
j �=k β

∗
p, j x j (t))xk(t)∑T

t=1 x2
k (t)

(9)

λp,k = μ∑T
t=1 x2

k (t)
(10)

where p = 1, 2, . . ., P are the index of coordinates. After
several derivations, the ρ∗

k in (8) is solved as

ρ∗
p,k =

⎧⎪⎨
⎪⎩

2

3
Cp,k(1 + cos(

2

3
π − 2

3
ϕp,k)),

∣∣Cp,k
∣∣ ≥ 3

4
λ

2
3
p,k

0
∣∣Cp,k

∣∣ <
3

4
λ

2
3
p,k

(11)

where

ϕp,k = arccos(
λp,k

8

∣∣∣∣Cp,k

3

∣∣∣∣
−3
2

) (12)

Herein, we get a hybrid regularization L2-L1/2-ESN
version.

C. Quantum-Behaved Particle Swarm Optimization

The original PSO uses the concept of classical mechanics
in which a particle is depicted by its position and velocity,
which is very specialized in searching fitting solutions for
complex temporal issues. However, it has been reported with
drawbacks of substantial parameters tuning and premature
convergence. Considering these problems, we adopt QPSO,
which has fewer settings and better convergence capability
of global optimization [18], to learn the key parameters of
our HOESN. In the QPSO, besides evolutionary equation
rewriting, the search strategy is also improved by introducing
a so-called mean best position (mbest), which is the average
of the self-best positions (sbest) of all particles, to well solve
the premature convergence problem of the original PSO.

The particle position ϑi for dimension j at the
(t + 1)th iteration is updated according to

ϑ t+1
i j =

⎧⎨
⎩

pt
i j +β×

∣∣∣mbestt
j − ϑ t

i j

∣∣∣×ln(1/ut
i j ), i f ut

i j ≤0.5

pt
i j −β×

∣∣∣mbestt
j −ϑ t

i j

∣∣∣×ln(1/ut
i j ), i f ut

i j > 0.5

(13)

β = ωmax − i ter

i termax
× ωmin (14)

pt
i j = ϕt

i j × sbestt
i j + (1 − ϕt

i j ) × gbestt
j (15)
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Fig. 3. The flow chart of HOESN.

where j = 1, . . ., D is the index varying in D problem
dimension, and i delegates the current particle. ut

i j is a random
number within the range of [0,1]. β is the contraction expan-
sion coefficient (CE), which is the only tunable parameter of
QPSO and has crucial impact on controlling its convergence
speed, iter and itermax denote the current and the maximum
number of iterations, respectively, ωmin and ωmax are the
minimum and maximum inertia weight. Obviously, in the early
stages of iteration we can get a larger β, then in the late
iteration β become minor, which will help us to converge
quickly at an early stage and to converge precisely at a later
stage. pt

i j is the local attractor of particle i , where ϕt
i j is a

random number within the range (0,1).
Finally, mbest is called mean best position, it is the mean

of sbest positions of all particles which can be evaluated by

mbestt
j = 1

Nps

Nps∑
i=1

sbesti j , j = 1, . . . , D (16)

where Nps is the population size of particles.

III. METHODOLOGY AND ANALYSIS

A. Operation Procedure

The QPSO is adopted to optimize the four key reservoir
parameters (i.e., global scaling factor γ , reservoir sparse
degree SD, reservoir size N , and input layer spectral radius IS).
In each iteration, the L2 and L1/2 regularization will be
utilized to constraint the output weights, then determine which
set of parameters are the optimal parameters by the fitness
value. As shown in Fig. 3, the main procedures are listed as
follows.

1) Initialize parameter β by setting itermax , ωmin and ωmax

in QPSO, initialize its population size Nps , give each particle
a random position within a certain range.

2) Initialize parameters and collect data series of
L2-L1/2-ESN, including penalty coefficients λ1, λ2, W in

and W , training data xtr ∈ R
1×dtr and testing data xte ∈

R
1×dte, where dtr and dte are the length of training data and

testing data.
3) Train L2-L1/2-ESN according to (1)-(3), (5) and (7), then

obtain the regularized output weights in (11), where (7) help
to calculate the fitness value of current particle application in
the L2-L1/2-ESN model.

4) Iterate for parameter optimization according
to (13)-(16), utilize step 3) recalculate the fitness value.
Compare the current fitness value to the optimal fitness value
in history, if smaller, update optimal fitness value with current
value of (7), if not, then keep optimal fitness value. The four
optimized parameters are updated under the same manner
during the same loop.

5) Judge whether iteration ends. If end, jump to step 6),
if not, jump back to step 4).

6) Output the four optimal dynamic reservoir parameters for
the prediction model.

Herein, we get the final HOESN with optimal parameters,
being ready for the upcoming prediction task.

B. Hot Data Prediction for GC and WL

Both the GC and WL have critical impacts on the access
latency and lifetime of flash memory. By collecting hot data
to the same block, the garbage collection efficiency can be
improved considerably. And the WL is dedicated to prolong
the flash endurance by allocating hot data to the flash blocks
with a low erase count [10]. Early in 2012, Park [20] reported
in his Ph.D. dissertation that predicting the future hot data
based on past behaviors of a workload might be beneficial
for GC and WL. And an ideal expectation was drawn that if
storing only an item (i.e., requested LBA) that will become
hot in near future would generate revolutionary HDI scheme.

This paper makes attempt to try the above enlightening
conjecture. In specific, an independent block RAM space in
FPGA is open up for supporting the HOESN program to learn
(or to say predict) the changing trends of access requests from
host, rather than to obtain the probability statistics rule from
dynamic LBA sequences in HDI. This embedded prediction
mechanism is called HDP. It works like a detective running
on a compact software RISC processor PicoBlaze (occupies
96 slices in Virtex6-240T, only 0.25% of total) embedded on
FPGA to detect the migration trends of accessing LBAs in
real time, so as to mine the intrinsic priors of access behav-
iors (e.g., regularity, periodicity, or homomorphism), these
dynamically refreshed information offers firm supports for
establishing intelligent GC scheme and cognitive WL strategy.
That is, compared with the traditional HDI, the proposed
concept of HDP extend the range of descriptive information
for hot data from the previous frequency (i.e., the number of
appearance) and recency (i.e., closeness to the present) to trend
(i.e., in near future). In addition, the mined intrinsic priors of
LBAs for a certain workload benefit to dynamically tracking
hot LBAs by setting a self-adaptive hot threshold.

The concept of HDP is basically driven by a concealed
yet objective fact that intrinsic priors exist in access behav-
iors of users, especially to certain applications in specific
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operation scenarios. Notably, many access patterns in work-
loads exhibit high spatial localities as well as temporal local-
ities [10]. And the predictive hot/cold data clustering can be
implicitly achieved through mining intrinsic priors from access
LBA sequences. It is worth mentioning that the HDP is with
no conflict to any modules in current FTL due to its exclusive
block RAM and PicoBlaze. Even if developers plan to inherit
the already equipped HDI, it can be compatible with our
HDP, while the trend information mined by HDP will help the
original HDI decrease false identification rates of hot data.

C. Computational Complexity

Computation complexity analysis is a common measure
to evaluate the performance of algorithms. As mentioned
above, the HOESN is optimized by two significant aspects,
QPSO and hybrid regularization. QPSO optimizes reservoir
parameters by using historical LBA records during off-line
training phase, its computational overheads can be excluded
during the prediction process. The remaining task is to
analyze the total complexity of the hybrid regularization
L2-L1/2-ESN. According to [21], the computational complex-
ity analysis involves two parts of matrix product and function
operation in (2) and (3). For W in U, W S and W T

backUT

in (2), the computational complexities of matrix products are
.
.O(NKL),

.
.O(NNL) and

.
.O(NL), respectively. Although there

has N > K in general, the hybrid regularization limits most
elements of the matrix W to zero so as to maintain the sparsity
of reservoir. Thus, the

.
.O(NNL) can be deduced to

.
.O(Nnz L),

where Nnz stands for the number of non-zero elements in the
sparse W . When it comes to the function operation in (2),
the active function needs to be repeated N × L times due
to (W in U + W S + W T

backUT ) ∈ R
N×L , so its complexity

is
.
.O (NL). As for (3), the matrix products occupy a com-

putational complexity of
.
.O(L(N + K )). Therefore, the total

complexity can be evaluated as
.
.O (max(NKL, Nnz L, NL,

L(N + K))). As K , N , Nnz , and L are positive integers,
they conform to NK> N + K >N , NK> Nnz , so the total
computational complexity of HOESN equals

.
.O(NKL). Con-

sidering that the W &
out in (5) is learnt in advance and required

only once, while the prediction process in (2) and (3) is
produced repeatedly in HDP application. The total complexity
of HOESN can be approximated to the same level of the
fundamental ESN.

IV. PERFORMANCE EVALUATION OF HOESN

This section carries out a set of performance evaluation
tests on an open chaotic benchmark (3-D Rossler chaos),
to confirm that our HOESN can be well qualified for the hot
data prediction task in advance.

A. Selected Competitors and Evaluation Criteria

The fundamental ESN (FESN) [13] is taken as the baseline,
three state-of-the-art enhanced ESN models, i.e., support vec-
tor echo state machine (SVESM) [22], ridge regression-ESN
(RESN) [23] and adaptive elastic ESN (AEESN) [24],
are implemented for longitudinal contrastive analysis. Fur-
thermore, two neural-network-based regression algorithms

Fig. 4. Portraits of system variables in Rossler system: (a) x-y; (b) x-y-z.

(i.e., Elman network [25] and extreme learning machine
(ELM) [26]) are selected for crosswise contrastive analysis.
Three landmark criteria, root mean square error (RMSE),
normalized RMSE (NRMSE) and symmetric mean absolute
percentage error (SMAPE), are considered for performance
verification. They are formulated as follows

RM SE =
√√√√ M∑

t

[y(t) − ŷ(t)]2/(M − 1) (17)

N RM SE =
√√√√ M∑

t

[ŷ(t) − y(t)]2/(

M∑
t

[y(t) − ȳ(t)]2) (18)

SM AP E = 2

M

M∑
t=1

∣∣(y(t) − ŷ(t))/(y(t) + ŷ(t))
∣∣ (19)

where y and ŷ are the actual target data and the predicted
data, ȳ denotes the mean value of actual target data [y(1),
y(2), . . ., y(M)], and M is the target data length. Smaller
criteria represent better prediction performance.

B. Rossler Chaos System and Parameter Setup

As a classical representative, Rossler system can produce
sufficiently chaotic phenomenon. It can be expressed as⎧⎪⎨

⎪⎩
dx

/
dy = −y − z

dy
/

dz = x + ay

dz
/

dt = b + z(x − c)

(20)

where x , y, z are system variables, a, b, c are adjustable
coefficients, and t denotes time dimension. When a = 0.2,
b = 0.2, c = 5.7, formula (20) produces chaos. Fig. 4 exhibits
two typical variable portraits in Rossler chaos system. For fair
comparison, we adopt the precisely same conditions in [24]
to generate Rossler time series: initial condition (−1, 0, 3),
sample step 0.01, and four-order Runge-Kutta method. We also
select the same configurations to reconstruct Rossler system
with embedding dimensions of (3, 3, 3) and time delays of
(13, 13, 13). And QPSO is initialized as follows: the pop-
ulation size of particles Nps = 20, the maximum num-
ber of iterations itermax =100, the minimum inertia weight
ωmin = 0.3, and the maximum inertia weight ωmax = 0.9.

Referring to [24], 4000 samples are used to train HOESN,
where the first 100 of 4000 training samples are washed
out for insuring better reservoir status of HOESN. In the
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TABLE I

PREDICTION PERFORMANCE OF ESTIMATED MODELS FOR ROSSLER-x

prediction stage, 1000 new Rossler chaotic samples are used
to evaluate network performance. Besides, two testing datasets
with or without noise interference are involved for estimating
anti-noise abilities of competitive models. To be specific,
Data1 stands for the noise-free time series, and Data2 denotes
the noisy time series suffered with 20 dB Gaussian white noise.

C. Results and Discussions

After the QPSO training, the optimal parameters of HOESN
are obtained as follows: γ = 0.14, SD = 0.17, N = 100 and
IS = 0.99 for Data1; γ = 0.27, SD = 0.10, N = 96 and
IS = 0.82 for Data2. The SR can be then deduced as 0.4482
and 0.5624, respectively, which prove that our HOESN has
echo state property (ESP) for both Data1 and Data2 with a
great probability, because that the values of SR are less than 1.

TABLE I lists the three evaluation criteria of Elman, ELM,
FESN, SVESM, RESN, AEESN and our HOESN. Evidently,
whether for Data1 or Data2, our HOESN gains the best
prediction accuracy. For Data1, FESN performs slightly better
than the two NN-based schemes, Elman and ELM, the score
is further increased by its two enhanced version, SVESM and
RESN. The recent AEESN begins to show significant effect as
it has combined the strengths of both lasso and ridge regres-
sion. Finally, our HOESN is leading the competition with
nearly perfect scores. When it comes to Data2 involving 20 dB
Gaussian white noise, all the seven competitors experience per-
formance decrease in varying degrees, but FESN and SVESM
suffer more significantly, the main reason is that the estimation
method of output weights W &

out in (5) is quite noise-sensitive
to training samples or models. With the regression schemes,
the last three predictors have better reliability. Notably, our
HOESN ranks first again, with 0.1303 of RMSE, 0.0186 of
NRMSE and 0.0329 of SMAPE. For in-depth understanding,
the target data, predicted data and errors between them by
using FESN and HOESN under noisy condition are illustrated
in Fig. 5. Intuitively, FESN suffers with unacceptable burrs
and fluctuations. For an example, its error peak is high up
to 7.694 when series index NS is 462. In contrast, for our
HOESN, the predicted series are even overlapping to the target
series, and the error curve experiences much less fluctuations.

Fig. 5. Prediction performance comparisons of FESN and HOESN for
Rossler chaos system with 20 dB Gaussian white noise.

TABLE II

WORKLOAD CHARACTERISTICS

V. EXPERIMENT RESULTS AND DISCUSSIONS

This section presents extensive experimental results and
comparative analyses. First, the performance improvement
of SSD brought by the proposed HOESN-based HDP was
evaluated quantitatively in various aspects. Second, the overall
access speed of HDP-based DVPFTL is demonstrated on our
previously implemented on-chip prototype.

A. Performance Simulation Results

1) Simulation Setup: We compare the HDP with one state-
of-the-art HDI scheme, MBF [5], and our recently proposed
HDI scheme, DL-MBF_s [11]. To give a more explicit picture,
the window-based direct address counting (WDAC) [5] is
used as the testing baseline. All the parameters (i.e., size,
number and width of bloom filter, hash function number and
type, et al.) are inherited from [11]. Similar to the testing
procedure in [5], [11], we adopted five real workloads for
objective evaluation. As shown in TABLE II, Financial1 is
a write intensive trace file [27], Financial2 is a read intensive
trace file [27], MSR is a common workload of large enterprise
servers [28], Distilled represents typical usage patterns in a
personal computer, and lastly [7], MillSSD is gathered from an
industrial surface defect inspection device [29], with hardware
configurations of Runcore RCS-V-T25 SSD, Intel X2 7400 and
2G DDR3. MillSSD is also a write intensive trace file due to
its role for substantial image backup.
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Fig. 6. Hot ratios under various workloads (read %: write %).

Fig. 7. False identification rates under various workloads (read %: write %).

2) Simulation Results and Analysis: Two typical perfor-
mance metrics of our proposed HDP, hot ratio and false iden-
tification rate, are evaluated in this section in Fig. 6 and Fig. 7.
Furthermore, four key metrics from FTL performance aspect,
average response time, number of block erase operations,
memory cost and energy consumption, are tested in Fig. 8,
Fig. 9, TABLE III and Fig. 10. To be fair, this part of tests is
evaluated under our DVPFTL framework.

a) Hot ratio: A hot ratio is a ratio of hot data to all
data [5]. Fig. 6 illustrates the hot ratios of MBF, DL-MBF_s
and HOESN compared to those of WDAC. Taking WDAC as
the benchmark, the identified hot ratio curve of MBF fluctuates
near its upside, which indicates the bloom-filter-based HDI

Fig. 8. Performance of average response time.

scheme is effective to classify hot and cold data. The improved
DL-MBF_s provides a similar trajectory, the better identi-
fication effect mainly benefits from its dual-layer structure
with a pre-classifier to effectively drop cold data in advance.
As for our HOESN, the hot ratio curves nearly overlap with
those of WDAC most of the time. This main trend can be
clearly found under all four workloads, especially to more
write intensive MSR and MillSSD. The results show that our
forecasting method can well learn the access behavior of disk
workloads, which is the basic precondition to provide reliable
service for GC and WL.

b) False identification rate: Even though both hot ratios
of two algorithms are identical, hot data classification results of
both schemes may be able to be different since an identical hot
ratio means the same number of hot data to all data and does
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Fig. 9. Performance of number of block erases.

Fig. 10. Performance of energy consumption, both are based on DVPFTL.

not necessarily mean all classification results are identical [5].
Hence, we analyze the false identification rate (FIR), which
is the ratio of mis-identified (or mis-predicted) hot data to
actual hot data, to learn more details of the prediction scheme.
Whenever write requests are issued, we try to compare each
predicted result of each scheme. Fig. 7 exhibits the FIRs of
MBF, DL-MBF_s and HOESN. It is fairly clear that, under
four workloads, the FIRs of our HOESN is lowest, followed
by DL-MBF_s. Although MBF experiences relatively higher
FIRs, it is still a good HDI scheme for SSDs, where the
WDAC was proposed, which becomes a classical benchmark
for the following research. It is noticed that, among the four

workloads, the improvement degree of HOESN is the most
impressive for MillSSD (from 4.08% to 2.23%), the main
reason may be that the behaviors of data access tend to be
regular and stable.

c) Average response time: Tests in Fig. 8 mainly focus
the metric of average response time which are sensitively
affected by the overhead of a garbage collection and address
translation time as well as system service time. For write inten-
sive trace file Financial1, as shown in Fig. 8(a), benefited from
our active prediction scheme, the DVPFT+HDP enters the
convergence time region earlier than DVPFTL+DL-MBF_s,
not only that, the average response time of DVPFT+HDP is
about 12 us less than that of DVPFTL+DL-MBF_s when both
fall into stable time region. When it comes to the Financial2,
evidently in Fig. 8(b), compared with the DL-MBF_s, our
HDP scheme decreases the average response time firmly by
some 2.2 us almost all the time. Next, a more regular and
write intensive workload (MillSSD) is tested. As shown in
Fig. 8(c), the curves of the two schemes show smooth features,
and DVPFTL+HDP reduces average response time by about
27us compared to that of DVPFTL+DL-MBF_s. This encour-
aging result indicates that more regular and write-intensive
workloads can placidly converge in the early stage and be
precisely predicted by our HDP. The main reason is that
the current HOESN version is trained in offline, imagine the
access behavior fluctuates violently, the adaptability achieved
by the HOESN with pre-trained weights would degrade to
some extent.

d) Number of block erase operations: It is worth not-
ing that erase operations are almost 10 times slower than
write operations and over 100 times slower than read oper-
ations. This part chooses the number of block erase oper-
ations as a representative measure of the SSD performance
driven by diverse FTL frameworks and hot data management
schemes. Taking the page-based FTL as the baseline and the
CFTL equipped with MBF-based HDI [5] as a state-of-the-
art case, we evaluate the performance of the aforementioned
two DVPFTL schemes, DVPFTL+HDP and DVPFTL+DL-
MBF_s on Financial1 and Financial2. As shown in Fig. 9(a),
both DVPFTL-based schemes have smaller number of block
erases than CFTL, while the page-based FTL ranks first, but
the corresponding cost is that it needs the highest memory
consumption. Notably, the DVPFTL+HDP performs better
than the DVPFTL+DL-MBF_s, which proves that the active
prediction mechanism of HDP possesses evident advantage
to the traditional passive HDI schemes regarding analysis
performance of access behavior. Further, Fig. 9(b) targets
to the read intensive workload Financial2, the improvement
degree of DVPFTL-series is slightly more remarkable than
those observed in Fig. 9(a), one explanation could be that HDP
tracks read intensive workload better since this kind of request
tends to access more adjacent LBAs.

e) Memory cost: In the TABLE III, we have calculated
the basic memory costs of our HOESN scheme and the
contrastive schemes. It is clear learned that the proposed
HOESN-based HDP consumes 1.547 KB RAM when the
reservoir size N , input layer size K , prediction length L,
time delay, and embedding dimension are set to 16, 5, 5,
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TABLE III

MEMORY SPACE OVERHEADS AND RECENCY STEPPING

2, and 5, respectively. Under this compact configuration,
the memory cost of the HOESN-HDP is comparable to those
of MIHF [8], MBF [5] and DL-MBF_s [11]. While we can get
more fine-grained recency weight stepping of 0.1, compared
with 0.5 of others, which mainly benefits from the added
5 more predicted LBAs among the 10 total LBAs (with
recency and trend) in the hot/cold clustering window. It is
worth mentioning that, we can increase the time delays in
HOESN to down-sample the LBA sequences like that did
in the HDT in [10], this operation can not only discard
infrequently accessed LBAs (i.e., cold data) in advance, but
also save memory costs and CPU clocks.

f) Energy consumption: The total energy consumption
of SSD mainly consumes by flash memory chips, RAM and
FPGA resources (i.e., slices, multipliers). For fair comparison,
both the schemes of DL-MBF_s and HOESN-HDP are running
on DVPFTL, we choose the page-based FTL as the identical
baseline. For simplicity, we present only the energy consump-
tion reduction ratio of the tested scheme to the page-based
FTL. As analyzed above, the two tested schemes consume
comparable RAMs. Thus, for DL-MBF_s, we only considered
the energy consumption on flash memory itself, which is
dominantly brought by the erase and write operations. While
for HOESN-HDP, besides the flash memory itself, the extra
resources occupied by PicoBlaze and multipliers will consume
energy. In addition, the free space of flash memory will affect
the energy consumptions as GC frequency is closely related
with it, which has also been considered in this test.

Intuitively in Fig. 10, the reduction ratios show a downward
trend with the increase of SSD free space in all cases. It is not
difficult to understand that, the more free space, the weaker GC
and WL demand, and the smaller energy consumption. Thus,
the case of with 90% free space is most challenging to obtain
energy reduction. Notably, for the write intensive MillSSD,
even in case of with 90% free space, the HOESN-HDP
has 3.4% advantage of energy reduction to that of
DL-MBF_s (32.2% vs. 28.8%), and the other records also
show reliable leaderships. When it comes to the read intensive
Financial2, the HOESN-HDP consumes higher energy than

Fig. 11. Prototype photo and testing scene.

DL-MBF_s. It means that the energy saving obtained by
HOESN cannot cover its own energy consumption if the
workload is with weak needs for GC and WL (e.g., in this
test, most requests are reads.). Interestingly, for write intensive
Financial1 (more irregular), our scheme of HOESN-HDP help
the DVPFTL win the first two rounds of competitions on
energy consumption reduction ratios. These preliminary test
results on energy consumption indicate the HOESN-based
HDP possesses advantages on hot/cold data clustering espe-
cially on regular and write intensive workloads due to its active
prediction mechanism. However, as the HOESN requires some
basic multiply-add operations, we need to pay attention to its
natural energy consumption during the application process.

In summary, the above test results prove our initial thought
that the problem of hot data identification can be converted to
active hot data prediction for NAND flash memories. Follow
this roadmap, the statistical analysis of access behavior can be
considered as time series prediction problem.

B. Overall On-Chip Performance Results

1) Prototype Glance and Test-Bench Setup: This whole
set of experiments are realized in our previously designed
multi-chipped SSD (MCSSD) in [11], in particular, all the
configurations in [11] are inherited in this paper except that
the HDI scheme of DL-MBF_s in DVPFTL has been replaced
with our HOESN-based HDP. Some key hardware details are
summarized as follows: The model of FPGA is XC6VLX240T,
which has been pre-configured with an embedded 32-bit
software processor, MicroBlaze. The whole MCSSD proto-
type includes 16 NAND flash memory chips with model of
MT29F64G08AFAAAWP. There are abundant

communication interfaces such as SATA 3.0, G-bit Ethernet,
and UART. The realized MCSSD and its test scene photo are
presented in Fig. 11.

For fair comparison, the classical version, PCMark05, con-
tinues to be applied especially for covering the previous
proposed state-of-the-art work (i.e., Hydra in [30]). The
storage benchmark which contains five kinds of workloads
of OS Startup, Application Loading, General Usage, Virus
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Scan, and File Write has been used for emulating typical PC
environments. The workloads details are listed as follows:

OS Startup emulates the boot-up behavior of Windows XP
startup operations, the ratio of request quantity of reading to
writing operations is about 90% : 10%.

Application Loading includes about 83% read and 17%
write operations generated by some frequently used applica-
tions, such as Chrome, Microsoft Office, etc.

General Usage stands for the daily usage of a PC, which
consists of about 60% read and 40% write.

Virus Scan represents host requests operated when scanning
600 MB of files for viruses, and read operations dominate all
the requests (about 99.5% read).

File Write contains host requests for writing 680 MB of
files.

2) Overall Performance of HDP-Based DVPFTL SSD:
In this part, we select two state-of-the-art FTL schemes
(Hydra [30], CFTL+MBF [5]) and one our previously
designed FTL scheme (DVPFTL+DL-MBF_s [11]) for com-
parative experiments. And the proposed method in this paper
is denoted as DVPFTL+HDP. To be as fair as possible, the last
three FTL schemes are verified on the MCSSD prototype
with an identical 2-way-4-channel architecture, while the test
result of Hydra is directly fetched from [30]. Fig. 12 demon-
strates the access performance of four methods by using
five test workloads. Overall, CFTL and DVPFTL-series yield
better performance than Hydra, the main reason is that the
block-level mapping scheme cannot completely overcome the
inherent limitation of low write performance. In contrast,
the core mapping table of CFTL is a page-level mapping so
that CFTL inherits the outstanding write performance well.
And the schemes of hybrid-level mapping and the dynamic
virtual page prevent DVPFTL-series far away from low access
performance. As expected in [11], DVPFTL+DL-MBF_s per-
forms slightly better than CFTL in most cases, which mainly
benefited from its cold data eviction ability provided by the
double-layer structure of DL-MBF_s. This technical route of
pre-discarding cold data has also played an important role
in [3], which motivates this paper to find any breakthrough
from hot data analysis. Consequently, the concept of HDP
is proposed to this end. More positively, for all the five
workloads, DVPFTL+HDP performs promisingly better than
DVPFTL+DL-MBF_s. With the identical DVPFTL, we can
draw a conclusion that the HDP scheme achieves better
accuracy of hot data recognition than the DL-MBF_s, so that
acquires higher throughput speed for MCSSD. It is worth
emphasizing that the neural-network-based HDP tracks the
rules of regular operations better, hence more performance
improvements can be observed for the workloads of Virus Scan
and File Write which involve significantly read or write inten-
sive operations. Interestingly, for the general usage, the testing
scores experience a sharp decline first and then a rise for
the FTL schemes of CFTL+MBF, DVPFTL+DL-MBF_s,
and DVPFTL+HDP, which indicates that the unsatisfactory
performance of DVPFTL on handing workloads interlaced
with massive random reads and writes pointed out in [11]
has been improved by our proposed HDP to some extent.
However, compared with other three methods, our scheme of

Fig. 12. On-chip scores with various workloads (read % : write %).

DVPFTL+HDP consumes maximum memory for holding the
proposed HOESN-based HDP, although our MCSSD prototype
is able to accommodate them.

VI. CONCLUSION

SSD storage plays an important role in today’s fields of
communications and electronics. The average download speed
will be higher than the current storage access speed when
5G communication is widely applied. It is not wise to wait
until that day to boost the performance of storage. Hot/Cold
data clustering is a significant precondition to improve access
performance and life-span of NAND flash memory. This paper
focuses on how to precisely track the access behavior of
hot data, so as to well serve the garbage collection and
wear leveling. Inventively, based on an echo state network,
a novel concept of neural-network-based hot data prediction
is drawn in this paper. For improving the prediction accuracy
and noise robustness, a hybrid optimized echo state net-
work (HOESN) is built based on output weight regularization
and initial parameter optimization. In this model, ill-posed
solutions are avoided to a large extent, sufficiently sparse and
continuously shrunk output weights are calculated by L1/2 and
L2 regularization. In addition, reservoir parameters are learnt
through a quantum-behaved particle swarm optimization to
further improve prediction accuracy and flexibility. HOESN
is first verified on a classical Rossler chaos system, then is
tested with five real disk workloads. The extensive results
indicate that our HOESN performs better on multivariate
chaotic time series prediction than several classical neural
networks (Elman [25], ELM [26], FESN [13], SVESM [22],
RESN [23] and AEESN [24]), and also produces more sat-
isfactory performance on hot data classification than some
recent HDI schemes (i.e., MBF [5] and DL-MBF_s [11]. Both
the simulation and on-chip verification results indicate our
method performs better than Hydra [30], CFTL+MBF [5] and
DVPFTL+DL-MBF_s [11].

However, the resource overheads greatly determine whether
the HOESN-based hot data prediction scheme could be
accepted by storage fields. Reducing hardware complexity and
time overhead without compromising prediction accuracy will
become our focus in the near future. As a simple and efficient
network, HOESN is hopeful to be more lightweight. In the
meanwhile, a new scheme of quasi-online training is under
way, which is expected to improve the adaptability of HDP to
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workload changes by periodically updating the weights Wout
of HOESN.
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