
 

  

Abstract— In this work, a new type of miniaturized on-chip 

resonator using coupled-inductor structure is presented. The 

impact on resonances of the structure due to the use of non- 

inverting- and inverting-coupled configuration is extensively 

investigated. It has been found that using the inverting-coupled 

structure, a stronger resonance can be generated, which is ideally 

suitable for device miniaturization. To fully understand the 

working mechanism of the resonator and use it effectively for 

bandpass filter (BPF) design, simplified LC equivalent-circuit 

models and detailed theoretical analysis are provided. To further 

demonstrate the proposed concept is useful in practice, not only a 

1st-order BPF, but also another two 2nd-order BPFs are designed 

and fabricated in a standard 0.13-µm (Bi)-CMOS technology. All 

of them are designed to have a centre frequency around 15 GHz. 

Their physical dimensions are 0.13 × 0.25 mm2, 0.26 × 0.25 mm2, 

0.24 × 0.22 mm2, respectively. Good agreements between 

simulation and measurement have been obtained, which verify 

that the presented design approach is suitable for miniaturized 

on-chip passive design.  

 

Index Terms— Bandpass filters, inductively coupled resonator, 

inverting coupling, non-inverting coupling, on-chip resonator. 

I. INTRODUCTION  

Radio-frequency (RF) on-chip filter is a building block that 

can be found in many RF transceivers. One of the common 

design issues related to such filters is how to minimize their 

footprint. This is mainly due to the fact that passive components, 

such as spiral inductor (IND) and transmission line (TL), are 

inherently bulky and thus take a fairly large die area. To solve 

this issue without adversely affecting other performance, one of 

the possible techniques is to use active inductors to replace the 

passive ones, which have been extensively studied in the 

literature [1]-[2]. However, the performance of active inductors 

may be severely deteriorated, while the operation frequency 

goes above 10 GHz. Thus, research on miniaturized on-chip 
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passive components design to support microwave and 

millimetre-wave technologies is emerging [3]-[8]. Furthermore, 

another motivation behind device miniaturization is to reduce 

insertion loss of passive component. For operation frequency 

beyond 10 GHz, one of the major sources that increases 

insertion loss of passive component, especially for TLs and 

INDs, is the so-called ohmic loss, which is related to the overall 

length of components. If the overall length of TL or IND can be 

effectively reduced, the insertion loss of them could also be 

reduced. Several prior works have been presented in the 

literature for both silicon and III/V technologies [9]-[26]. The 

most classical method is to fold metal strip lines so that die area 

can be used more effectively [9]-[13]. One of the typical 

examples for this method is to use 3-D inductors for amplifier 

design [10]-[11]. However, simply folding a metal strip does 

not necessarily help to reduce its overall length. As a result, the 

insertion loss of such metal strip is unlikely to be reduced. To 

effectively reduce the insertion loss of a passive component, 

some other approaches have also been explored, such as 

slow-wave structure and co-planer waveguide [14]-[20]. 

However, a slow-wave structure is adopted for a design, the 

footprint of a passive component operating below 60 GHz is 

still fairly large. To solve this issue, a hybrid approach that 

utilizes capacitive-loaded TLs or INDs has been extensively 

used in [21]-[26] Since metal-insulator-metal (MIM) layer is 

provided for the most RF-CMOS process and MIM capacitor 

can be implemented in a very compact way, a combination of 

using a relatively large capacitance with a small inductance to 

obtain the required resonant frequency is desirable.      

In this paper, an interesting design approach is presented for 

miniaturized passive device implementation, especially for 

bandpass filters (BPFs). Two classical coupling structures, 

namely inverting and non-inverting coupling, are investigated. 

As will be shown, the inverting-coupled structure is very well 

suitable for BPF design with a reduced size, several BPF 

prototypes are developed with compact size and excellent 

performance. Thorough theoretical analysis is given to explore 

the insight characteristics of the presented approach and 

provide a guidance to design BPFs based on this concept. To 

prove the approach is feasible in practice, three BPFs are 

implemented and fabricated in a standard 0.13-µm (Bi)-CMOS 

technology and good agreements between the EM simulated 

and measured results are achieved.  
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Fig. 1. Metal stack-up of the selected 0.13-μm (Bi)-CMOS technology. 

 

   

(a)                                                    (b) 

Fig. 2. Two types of resonators using coupled inductors: (a) non-inverting 

coupled type; (b) inverting coupled type.  

The rest of this paper is organized as follows. In Section II, 

the inverting and non-inverting coupled structures are 

compared and discussed in terms of resonant poles and 

transmission zeros. In Section III, how to use the coupled 

structures for BPF design is described and design of a 1st- and 

2nd-order BPFs are given as examples. To further improve 

out-of-band suppression for the designed BPFs, a modified 

resonator and its application for BPF is further explored in 

Section IV. The measurement results are presented in Section V 

and the conclusion is finally drawn in Section VI.  

II. DESIGN OF MINIATURIZED RESONATOR USING 

COUPLED-INDUCTOR STRUCTURE 

A. Overview of the Resonators Design with Different Coupling 

Structures  

The back-end-of-line (BEOL) information is shown in Fig. 

1. A standard 0.13-μm (Bi)-CMOS SiGe technology is used in 

the design, which provides not only high-performance 

transistors (with ft of 200 GHz), but also 7 metal layers (TM1, 

TM2 and M1 to M5) with aluminium as the thick top two metal 

layers (TM1 and TM2). The additional MIM layer is placed 

between the sixth and fifth layers (TM1 and M5).  In addition, 

the height of the silicon substrate is 200 μm. The dielectric 

constant of SiO2 is 4.1 and the loss tangent is 0.01. In this work, 

two types of self-coupled resonators based on non-inverting 

and inverting coupling types will be discussed.   

In this section, both of non-inverting and inverting-coupled 

resonators are theoretically analysed. Both two resonators are 

built on the TM1 and TM2 layers. To understand the difference 

between two coupling structures, 3-D views of them are 

provided in Fig. 2. As can be seen, each structure consists of 

two spiral inductors, which are identical in terms of length and 

width. The difference between them is how the two spiral 

inductors are coupled with each other. As shown in Fig. 2(a), 

both the upper and lower spirals are implemented in a clock 

 
(a)                                        

 
(b) 

Fig. 3. Simplified LC-equivalent circuit models for the resonators in Fig. 2: (a) 

with non-inverting coupled one; (b) with inverting coupled one. 
 

   
(a)                                       (b) 

Fig. 4. Even- and odd-mode analysis of the LC-equivalent circuit: (a) even- 

mode, (b) odd-mode. 

 

 -wise rotating pattern, which is called non-inverting coupled 

structure. Unlike this structure, as illustrated in Fig. 2(b), the 

lower spiral is implemented in an anti-clockwise rotating 

pattern. It means that the lower spiral inductor is placed in an 

opposite orientation of the upper one, which is known as 

inverting-coupled structure. Using the inverting-coupled 

structure, a strong inductive coupling, also known as magnetic 

coupling, will occur between two spirals, which makes the 

structure operating as a resonator. 

To further illustrate the insight of this structure, more 

investigation is given. It will be found that with the same 

dimensions, the inverting-coupled structure can produce a 

resonant mode at a relatively lower frequency than the 

non-inverting-coupled one. This means that to produce a 

resonance at certain frequency, the inverting-coupled resonator 

will occupy smaller size. As will be shown in the later sections, 

a series of BPFs will be designed and implemented using the 

inverting-coupled structure for miniaturized designs. To 

investigate the properties of the presented resonators, further 

analysis and discussions will be introduced in the following 

sub-sections.  



 

 
Fig. 5. A two-port network comprising two inductors including mutual 

coupling. 

 

 

Fig. 6. Calculated S-parameters of two filters using inverting- and 

non-inverting- coupled structures. Related parameter values are: L1 = 1000 pH, 

C1 = 30 fF, C2 = 10 fF, and k = -0.8 (inverting coupling) and 0.8 (non-inverting 
coupling). 
 

B. Analysis of the Resonators 

The above-mentioned resonators can be modelled using 

simplified LC-equivalent circuits, which consist of lumped 

inductors and capacitors. In the analysis, since the resonator is 

regarded as lossless, no resistors are considered in the equivalent 

circuits. Corresponding to Fig. 2, the LC-equivalent circuits of 

two resonators are shown in Fig. 3, where Fig. 3(a) shows the 

equivalent circuit of the non-inverting-coupled resonator, while 

Fig. 3(b) shows the inverting-coupled one. Both two circuit 

models are composed of two inductors L1 with inductive mutual 

coupling M, two mutual capacitances C1 and two grounded 

capacitors C2. The capacitance C1 denotes the electrical 

coupling that exists between two metal lines. C2 is the effective 

grounded capacitor existing between the metal lines and the 

ground. Regardless the type of the resonators, both of them can 

be analysed using even- and odd-mode analysis method. The 

mutual coupling between two coupled inductors can be 

evaluated using a coupling coefficient 𝑘, which is 𝑘 = 𝑀 𝐿1⁄  

and  𝑀  represents the mutual inductance. For the case of 

non-inverting coupled structure, there is  0 < 𝑘 < 1; while for 

the case of inverting coupled one, there is  −1 < 𝑘 < 0.  

The resonator can be bisected into two parts along the 

symmetric line: even-mode circuit and odd-mode circuit. For 

the even-mode circuit, the symmetric line can be regarded as a 

perfect magnetic conductor (PMC), and its equivalent circuit is 

shown in Fig. 4(a). It is a series circuit of an inductor and a 

capacitor. Due to the existence of mutual coupling 𝑀 , the 

inductance in the even-mode circuit is denoted as 𝐿𝑒𝑓𝑓_𝑒.  

 

Fig. 7. Resonant mode distribution of 𝑓1_𝑛, 𝑓2_𝑛, 𝑓1_𝑖 and 𝑓2_𝑖 against k. Related 

parameter values are: L1 = 1000 pH, C1 = 20 fF, C2 = 20 fF. 

 

Therefore, the input admittance of the even-mode circuit 

can be expressed as: 

𝑌𝑒𝑣𝑒𝑛 =
𝑗 ∙ 𝜔𝐶2

1 − 𝜔2𝐿𝑒𝑓𝑓_𝑒 ∙ 𝐶2

                          (1) 

For the odd-mode circuit, the symmetric line can be 

regarded as a perfect electric conductor (PEC), and its 

equivalent circuit is shown in Fig. 4(b). It is composed of 

grounded capacitors and a series circuit of an inductor and two 

paralleled capacitors. Similar to the even-mode case, due to the 

existence of mutual coupling 𝑀 , the inductance in the 

odd-mode circuit can be regarded as 𝐿𝑒𝑓𝑓_𝑜 . Therefore, the 

input admittance of the odd-mode circuit can be expressed as: 

𝑌𝑜𝑑𝑑 =
𝑗 ∙ 𝜔(2𝐶1 + 𝐶2)

1 − 𝜔2𝐿𝑒𝑓𝑓_𝑜 ∙ (2𝐶1 + 𝐶2)
+ 𝑗 ∙ 2𝜔𝐶1        (2) 

 

To determine the value of input admittance 𝑌𝑒𝑣𝑒𝑛 and 𝑌𝑜𝑑𝑑 , the 

effective inductances of 𝐿𝑒𝑓𝑓_𝑒 and 𝐿𝑒𝑓𝑓_𝑜 must be solved. Fig. 

4 displays a two-port network comprising of only two inductors 

with mutual inductive coupling 𝑀, which is equal to 𝑘√𝐿1𝐿2. 

Assuming that 𝐿1 = 𝐿2 = 𝐿, the value of 𝑀 is ranged between 

0 and 𝐿. The voltage and current distribution is also marked in 

Fig. 4. For any inductor 𝐿 itself without mutual coupling, there 

is 𝑣1 = 𝑖1 ∙ 𝑋𝑙 = 𝑖1 ∙ 𝑗𝜔𝐿, so 

𝐿 =
𝑣1

𝑗𝜔 ∙ 𝑖1

                                            (3) 

When the mutual coupling 𝑀 is considered, the effective 

inductance is: 

𝐿𝑒𝑓𝑓 =
𝑣1

𝑗𝜔 ∙ 𝑖1

=
𝑗𝜔𝐿 ∙ 𝑖1 + 𝑗𝜔𝑀 ∙ 𝑖2

𝑗𝜔 ∙ 𝑖1

= 𝐿 + 𝑀
𝑖2

𝑖1

    (4) 

For the even-mode circuit, the symmetric line a – a’ is 

regarded as a PMC. According to the mirror rule, the image 

current along the PMC has the same direction and magnitude of 

the original one; hence, 𝑖2 = 𝑖1 . Therefore, the effective 

inductance 𝐿𝑒𝑓𝑓_𝑒 in the even-mode circuit is  

𝐿𝑒𝑓𝑓𝑒
= 𝐿 + 𝑀                                      (5) 

For the odd-mode circuit, the symmetric line a – a’ is 

regarded as a PEC. According to the mirror rule, the image  



 

 

         (a) 

 

        (b) 

Fig. 8. The values of resonant poles against coupling coefficient k when 

different values of C1 and C2 are chosen: (a) C1 is varied from 10 to 30 fF, (b) C2 
is varied from 10 to 30 fF. 

 

current along the PEC has the same magnitude and opposite 

direction compared with the original one; hence, in this case 

𝑖2 = −𝑖1, and thus the odd-mode effective inductance 𝐿𝑒𝑓𝑓_𝑜 is  

𝐿𝑒𝑓𝑓_𝑜 = 𝐿 − 𝑀                                      (6) 

From (5) and (6), it is obviously seen that the value of 

𝐿𝑒𝑓𝑓_𝑒 will increase with 𝑀 and its value is ranged from 𝐿 and 

2𝐿; while 𝐿𝑒𝑓𝑓_𝑜 will decrease with 𝑀 and its value is ranged 

from 0 and 𝐿. Using (5) and (6), the even- and odd-mode input 

admittance can be rewritten as: 

𝑌𝑒𝑣𝑒𝑛 =
𝑗 ∙ 𝜔𝐶2

1 − 𝜔2(𝐿1 + 𝑀)𝐶2

                            (7) 

𝑌𝑜𝑑𝑑 =
𝑗 ∙ 𝜔(2𝐶1 + 𝐶2)

1 − 𝜔2(𝐿1 − 𝑀)(2𝐶1 + 𝐶2)
+ 𝑗 ∙ 2𝜔𝐶1     (8) 

The resonances occur when the input admittance of the 

even- and odd-mode circuit approaches infinity. Solving 

𝑌𝑒𝑣𝑒𝑛 = ∞ and 𝑌𝑜𝑑𝑑 = ∞, it is possible to find the locations of 

two resonant frequencies of the resonator: 

𝑓1 =
1

2𝜋√(𝐿1 − 𝑀) ∙ (2𝐶1 + 𝐶2)
                     (9) 

𝑓2 =
1

2𝜋√(𝐿1 + 𝑀) ∙ 𝐶2

                                  (10) 

 
Fig. 9. 3D mapping of resonant frequency 𝑓1 against k and L1. 

When the resonator is directly connected with I/O ports, the 

resonator will perform a filtering characteristic. Using the 

expressions of the even- and odd-mode input admittance, it is 

possible to calculate the scattering parameters (S-parameters) 

of the filter, which can be expressed as [27]: 

𝑆21 =
𝑌𝑜(𝑌𝑜𝑑𝑑 − 𝑌𝑒𝑣𝑒𝑛)

(𝑌𝑜 + 𝑌𝑜𝑑𝑑)(𝑌𝑜 + 𝑌𝑒𝑣𝑒𝑛)
 

𝑆11 =
𝑌𝑜

2 − 𝑌𝑒𝑣𝑒𝑛𝑌𝑜𝑑𝑑

(𝑌𝑜 + 𝑌𝑜𝑑𝑑)(𝑌𝑜 + 𝑌𝑒𝑣𝑒𝑛)

                     (11) 

 Two different circuits with inverting- and non-inverting- 

coupled resonators are calculated and compared. Fig. 6 depicts 

the S-paramters of two BPFs based on these two different 

resonators, respectively. It is seen that when the coupling 

coefficients are the same in magnitude (k equals to -0.8 for 

inverting coupling and 0.8 non-inverting coupling) with 

opposite signs, the S-paraemters are totally different. This is 

because different types of coupling result in different resonant 

frequencies and  transmission zeros of the filtering responses. 

To find out the intrisinc machnism, it is important to investigate 

the resonant modes and transmission zeros that are produced by 

the resonators. 

C. Resonant Modes of the Resonators 

As observed from Fig. 6, the resonance of the inverting- 

coupled structure occurs at about 14 GHz, while the resonance 

of the non-inverting-coupld one is at around 45 GHz, which is 

almost three times higher than the inverting-coupled case. This 

can be explained by (9) and (10). For the non-inverting-coupled 

case, the mutual inductance 𝑀 is positive, and two resonant 

frequenies are written as 𝑓1_𝑛 and 𝑓2_𝑛; on the other hand, for the 

case of inverting coupling, the mutual inductance 𝑀  is 

negative, and two resonate frequencies are written as 𝑓1_𝑖 and 

𝑓2_𝑖 . When the same amount of coupling inductance is 

considered in two cases, the resonant poles of 𝑓1_𝑛, 𝑓2_𝑛, 𝑓1_𝑖 and 

𝑓2_𝑖 are located at different positions on the spectrum. As an 

example, when L1 is selected as 1000 pH, C1 = 20 fF and C2 = 20 

fF, the resonant mode distribution of the resonator is displayed 

in Fig. 7. When 0 < |𝑘| < 0.5, there is 𝑓1_𝑖 < 𝑓1_𝑛 < 𝑓2_𝑛 < 



 

 
(a) 

 

(b) 

Fig. 10. The values of transmission zeros (a) varying against C1 when C2 is 

fixed; (b) varying against C2 when C1 is fixed. 

 

𝑓2_𝑖 ; while when 0.5 < |𝑘| < 1, there is 𝑓1_𝑖 < 𝑓2_𝑛 < 𝑓1_𝑛 <

𝑓2_𝑖 . In both cases (0 < |𝑘| < 1), it is found 𝑓1_𝑖  is always 

located at the lowest frequency. The curves in Fig. 7 may vary 

when different values of C1 and C2 are chosen, but the relation 

of resonant poles is similar. This means that if the two 

resonators have same dimensions, the inverting-coupled one is 

likely to get its resonate pole located at the lower frequency. 

Besides, this phenomenon also explains why the calculated |S21| 

of the inverting-coupled case is located at a much lower 

frequency than the non-inverting coupled one, as is indicated in 

Fig. 6. It is obvious that the inverting-coupled one can produce 

a resonant pole at much lower frequency, which is favourable to 

be used in designing miniaturized BPF. 

Fig. 8 shows the relation between k and 𝑓1, 𝑓2 with different 

values of C1 and C2. When |𝑘| is fixed, a smaller C1 will result 

in a higher 𝑓1, as seen from (9); on the other hand, the variance 

of C1 does not affect 𝑓2 because 𝑓2 has nothing to do with C1 as 

seen from (10). Similarly, a smaller C2 will result in a higher 𝑓1 

and 𝑓2, because C2 contributes to the denominators of both 𝑓1 

and 𝑓2 in (9) and (10). Since the capacitances of C1 and C2 are 

relatively small and constant (typically around 10-30 fF), the 

main affecting factor of the resonant poles to 𝑓1 and 𝑓2 are 𝐿1 

and 𝑘 . Fig. 8 shows a 3-D mapping relation of resonant 𝑓1 

against 𝐿1 and 𝑘. It is observed that a lower value of 𝑓1 occurs 

at a larger value of 𝐿1  and a larger value of |𝑘|  when 𝑘  is 

negative. In this design, the first resonant mode of the resonator 

𝑓1 under inverting coupled structure (as written as 𝑓1_𝑖) will be  

 

(a) 

 

(b) 

Fig. 11. Configuration of (a) a conventional 1st-order BPF; (b) a conventional 

2nd-order BPF. Note: ICR stands for inverting-coupled resonator.  
 

 

Fig. 12. S-parameters of the designed BPFs using inverting-coupled structure. 

 

utilized as the resonant pole for design of BPFs in the following 

sections of this paper. 

D. Transmission Zeros   

Apart from the resonant modes, the inverting-coupled 

resonator can also generate multiple transmission zeros, which 

can be used to improve out-of-band suppression. The 

transmission zeros occur when the even-mode impedance and 

odd-mode impedance are equal to each other, which is 𝑌𝑒𝑣𝑒𝑛 =
𝑌𝑜𝑑𝑑 . In this case, from (7) and (8) it is forced to have  

𝑗∙𝜔𝐶2

1−𝜔2(𝐿1+𝑘∙𝐿1)𝐶2
=

𝑗∙𝜔(2𝐶1+𝐶2)

1−𝜔2(𝐿1−𝑘∙𝐿1)(2𝐶1+𝐶2)
+ 𝑗 ∙ 2𝜔𝐶1    (12) 

By solving (12), two solutions to 𝜔 can be derived, which 

correspond to the transmission zeros 𝜔𝑡𝑧1 and 𝜔𝑡𝑧2 that can be 

expressed as: 

𝜔𝑡𝑧1 = √
2𝐶1

2+2𝐶1𝐶2−2𝐶1
2𝑘+𝐶2

2𝑘+2𝐶1𝐶2𝑘−√𝑃

2𝑄
            (13)  

𝜔𝑡𝑧2 = √
2𝐶1

2+2𝐶1𝐶2−2𝐶1
2𝑘+𝐶2

2𝑘+2𝐶1𝐶2𝑘+√𝑃

2𝑄
            (14)      

where 

  𝑃 = 4𝐶1
4𝑘2 − 8𝐶1

4𝑘 + 4𝐶1
4 + 8𝐶1

3𝐶2𝑘2 − 8𝐶1
3𝐶2 + 8𝐶1

2𝐶2
2𝑘2 

         +12𝐶1
2𝐶2

2𝑘 − 4𝐶1
2𝐶2

2 + 4𝐶1𝐶2
3𝑘2 + 4𝐶1𝐶2

3𝑘 + 𝐶2
4𝑘2 

  𝑄 = −2𝐿1𝐶1
2𝐶2𝑘2 + 2𝐿1𝐶1

2𝐶2 − 𝐿1𝐶1𝐶2
2𝑘2 + 𝐿1𝐶1𝐶2

2  



 

 
(a) 

 

(b) 

Fig. 13. 3-D views of the designed BPFs, (a) 1st-order one, (b) 2nd-order one. 
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                                  (a)                                       (b) 

Fig. 14. Layout of the 1st-order BPF: (a) upper layer spiral, and (b) lower layer 

spiral. Note: W1 = 6 µm, W2 = 74 µm, W3 = 4 µm, W4 = 190 µm, W5 = 12 µm, 
W6 = 12 µm, W7 = 6 µm, W8 = 74 µm, W9 = 4 µm, W10 = 190 µm, W11 = 12 µm, 

and W12 = 12 µm. 

The expressions of 𝜔𝑡𝑧1 and 𝜔𝑡𝑧2 are complicated and it is 

difficult to identify the effect of L1, C1 and C2 on the zeros. 

However, by observing (13) and (14), one can find that L1 is 

always on the denominators of 𝜔𝑡𝑧1 and 𝜔𝑡𝑧2, which means the 

positions of transmission zeros are inversely proportional to L1. 

Moreover, to investigate the effect of C1 and C2 on 𝜔𝑡𝑧1 and 

𝜔𝑡𝑧2, multiple cases with different values of C1 and C2 against 

the locations of transmission zeros, 𝑓𝑡𝑧1  and 𝑓𝑡𝑧2 , (which are 

equal to 𝜔𝑡𝑧1 and 𝜔𝑡𝑧2 divided by 2𝜋), are shown in Fig. 10. 

When C2 is fixed and C1 increases from 10 to 30 fF, two 

transmission zeros will move closer to each other. When C1 is 

smaller than a certain value, two transmission zeros will merge 

and disappear. This means that under such circumstance, 

equation (12) has no solutions. On the other hand, when C1 is 

fixed and C2 increases from 10 to 30 fF, 𝑓𝑡𝑧1 will move to lower 

frequencies, while 𝑓𝑡𝑧2 will move further higher. When C2 is 

higher than a certain value, 𝑓𝑡𝑧1 and 𝑓𝑡𝑧2 will disappear as well. 

Therefore, it is quite important to select appropriate values for 

C1 and C2 to guarantee the transmission zeros are existing at the 

upper-stopband during the procedure of BPF design. 

III. DESIGN OF 1ST-ORDER AND 2ND-ORDER BPFS 

A. 1st-Order BPF 

The presented inverting-coupled resonator has been proved 

to be able to produce multiple resonances and transmission 

zeros due to the inductive coupling between two metal layers. 

The resonances and transmission zeros can be easily controlled. 

Therefore, this type of resonator is favoured for BPF designs. 

As one knows, if the resonator is directly taped with two feeds, 

as indicated in Fig. 11(a), it is possible to build a 1st-order filter. 

Since the resonator can provide a transmission zero at DC, this 

1st-order filter is a bandpass type. Apparently, the external 

quality factor is fixed, which has been pre-determined by the 

dimensions of the resonator.  The external quality factor can be 

expressed as: 

𝑄𝑒𝑥 =
2𝑌𝑜𝑔𝑜𝑔1

𝑏𝑟

                                      (15) 

𝑏𝑟 =
𝜔𝑜 ∙ 𝜕Im[𝑌𝑒𝑣𝑒𝑛(𝜔𝑜) + 𝑌𝑜𝑑𝑑(𝜔𝑜)]

4 ∙ 𝜕𝜔
              (16) 

where 𝑔𝑜 and 𝑔1 are the basic element value of a conventional 

n-stage lowpass filter prototype, and br is the the susceptance 

slope parameter of the resonator [27]. 𝑌𝑒𝑣𝑒𝑛  and 𝑌𝑜𝑑𝑑  can be 

calculated from (7) and (8). In addition, the fractional 

bandwidth (FBW) of the passband is also fixed, due to the 

relation between the FBW and 𝑄𝑒𝑥: 

𝐹𝐵𝑊 =
𝑔0𝑔1

𝑄𝑒𝑥

=
𝑏𝑟𝑌0 

𝐽0,1
2                                    (17) 

𝐽0,1 = √
𝑏𝑟𝑌0

𝑄𝑒𝑥
= √

𝑏𝑟𝐹𝐵𝑊𝑌0

𝑔0𝑔1
                     (18)  

where J0,1 refers to the value of the admittance inverter at the 

input/output port. Since no extra feeding network is used in Fig. 

11(a), J0,1 is also a fixed value in this design. To adjust the 

in-band ripple and out-of-band performance, a higher-order 

filter needs to be developed. 

B. 2nd-Order BPF 

Fig. 11(b) shows the configuration of a 2nd-order BPF which 

is also based on the presented inverting-coupled resonator. This 

2nd-order BPF is composed of two identical resonators 

(previously used for 1st-order BPF implementation) and a 

shunted capacitor 𝐶𝑘  in the middle, which acts like a J/K 

inverter to get the specified in-band coupling coefficient. The 

coupling coefficient can be expressed as: 

𝑘1,2 =  
𝐹𝐵𝑊

√𝑔1𝑔2

=
𝐽1,2

𝑏𝑟

                                (19) 

where  

𝐽1,2 = 𝐹𝐵𝑊√
𝑏𝑟

2

𝑔1𝑔2
                                   (20)   

𝐽1,2 is the value of admittance inverter between two resonators, 

and it is realized by the shunted capacitor 𝐶𝑘. Therefore, the 

value of 𝐶𝑘 can be found using the following formula: 



 

 
Fig. 15. Simplified LC-equivalent circuit of the modified inverting-coupled 

resonator. 

 

 
Fig. 16. Configuration of a 2nd-order BPF with controllable external Q-factor. 

 

 
Fig. 17. S-parameters of three 2nd-order BPFs using MICR with different 

bandwidths. 

 

𝐶𝑘 =
𝐽1,2

2𝜋𝑓𝑜

                                             (21) 

As indicated in (12), to provide a suitable coupling between 

two resonators, the value of 𝐶𝑘 should be determined according 

to 𝐽1,2, which should be found based on the selection of 𝐹𝐵𝑊 

and 𝑏𝑟.  

The S-parameters of the 1st- and 2nd-order BPFs are plotted 

in Fig. 12. Both of them have the same resonant poles and 

transmission zeros, which is because the same resonator is used. 

However, compared with the 1st-order BPF, the 2nd-order one 

has one more pole within the passband. Consequently, it 

provides a sharper selectivity and a better out-of-band 

performance. The 2nd-order BPF also has a more constant and 

flat in-band ripple compared with the 1st-order one. Although a 

good filtering response is achieved, the 2nd-order BPF also has a 

fixed bandwidth, which is a major drawback and should be 

improved. Finally, the 3-D view of the 1st- and 2nd-order BPFs 

is given in Fig. 13 and the physical dimensions used for 

electromagnetic (EM) simulation are summarized in Fig. 14. 

 
Fig. 18. The frequency ratio of 𝑓𝑜

′/𝑓𝑜 against 𝐶𝑝 when 𝐶1 varies from 10 fF to 

50 fF. 

IV. DESIGN OF MODIFIED 2ND-ORDER BPF WITH BANDWIDTH 

CONTROL AND IMPROVED UPPER-STOPBAND SUPPRESSION 

A. Modified Inverting-Coupled Resonator 

In Section III, a 2nd-order filter is designed based on two 

inverting-coupled resonators. By controlling the equivalent 

inductance of metal lines and the inter-stage capacitance 

between them, it is possible to allocate the resonance at the 

bandpass frequency and the harmonic resonance at the upper 

stopband. Meanwhile, two transmission zeros are generated 

which helps to enhance the passband selectivity and stopband 

suppression. Based on the existing design, a modified resonator 

which is called modified inverting-coupled resonator is 

proposed here, as shown in Fig. 15. Compared with the 

previously presented resonator, this one has an extra shunted 

capacitor 𝐶3, which is located at one of the metal lines of the 

resonator, splitting 𝐿1 into two parts, 𝐿2 and 𝐿3. When 𝐶3 is in 

the middle point of the metal line, there is 𝐿2 = 𝐿3 = 𝐿1 2⁄ . In 

this case, two spiral inductors become asymmetric, which 

would contribute to an additional transmission zero in the upper 

stopband of the filter. 

B. Modified 2nd-Order BPF with Controllable Bandwidth 

Based on the modified resonator, an improved 2nd-order 

BPF is built using the topology shown in Fig. 16. Compared 

with the initial 2nd-order BPF in Fig. 11(b), the modified design 

includes two cascaded capacitors 𝐶𝑝 at the input/output feeds. 

The cascaded 𝐶𝑝 plays the role of a J/K inverter, which can 

control the external quality factor and FBW. The bandwidth of 

the filter FBW can be expressed as: 

𝐹𝐵𝑊 =
(𝐽01

2 𝑌𝑜⁄ )𝑔0𝑔1

𝜔𝑜 ∙ 𝜕Im[𝑌𝑒𝑣𝑒𝑛(𝜔𝑜) + 𝑌𝑜𝑑𝑑(𝜔𝑜)]
4 ∙ 𝜕𝜔

          (22) 

Therefore, to get a certain value of FBW, the required value 

of the admittance inverter 𝐽0,1  and the capacitance 𝐶𝑝  at the 

input/output port can be found to be: 

𝐽0,1 = √
𝜔𝑜∙𝐹𝐵𝑊∙𝑌𝑜∙𝜕𝐼𝑚[𝑌𝑒𝑣𝑒𝑛(𝜔𝑜)+𝑌𝑜𝑑𝑑(𝜔𝑜)]

4∙𝑔0𝑔1∙𝜕𝜔
           (23)  
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(b)                                         (c) 

Fig. 19. Layout of the modified 2nd-order BPF: (a) 3-D view of the modified 

2nd-order BPF, (b) upper spiral layer; and (c) lower spiral layer. Note: W1 = 6 

µm, W2 = 74 µm, W3 = 4 µm, W4 = 180 µm, W5 = 12 µm, W6 = 12 µm, W7 = 6 

µm, W8 = 74 µm, W9 = 4 µm, W10 = 180 µm, W11 = 12 µm, W12 = 12 µm, W13 

= 12 µm and W14 = 12 µm. 

 

𝐶𝑝 =
𝐽0,1

2𝜋𝑓𝑜√1 − (𝐽0,1 𝑌𝑜⁄ )
2

                           (24) 

When the resonator is fixed, the susceptance slope 

parameter 𝑏𝑟  is also fixed. Thus, the FBW is inverse 

proportional to 𝐽0,1
2 , which means a smaller value of 𝐽0,1 will 

result in a larger bandwidth of the BPF. Based on this relation, 

the bandwidth of the passband can be simply controlled by 

changing the value of  𝐶𝑝, which is closely related to 𝐽0,1. Fig. 

17 shows the S- parameters of three cases with different FBW, 

while the same resonator is used.  It is clearly seen that three 

bandpass filtering responses are realized with exactly the same 

center frequency and transmission zero, but different 

bandwidth. When 𝐶𝑝 is varied from 5 fF to 100 fF, the FBW 

can be tuned from 10% to 30%. Meanwhile, by slightly 

adjusting the value of 𝐶𝑘, one can make the in-band ripple at an 

optimal level. 

C. Frequency Shift in the Modified 2nd-Order BPF 

Due to the existence of 𝐶𝑝, the resonant frequency will shift 

to a higher frequency. This is because 𝐶𝑝 also contributes to a 

part of the resonator in the modified 2nd-order bandpass filter. 

To investigate the frequency shift range, the equivalent even- 

and odd-mode admittance including the effect of 𝐶𝑝 should be 

modified as: 

 

Fig. 20. Comparisons between the S-parameters of the modified 2nd-order BPF 

obtained from EM simulation and simplified circuit model. 

 

𝑌𝑒𝑣𝑒𝑛
′ =

𝑗𝜔𝐶𝑝 ∙ 𝑌𝑒𝑣𝑒𝑛

𝑗𝜔𝐶𝑝 + 𝑌𝑒𝑣𝑒𝑛

                             (25) 

𝑌𝑜𝑑𝑑
′ =

𝑗𝜔𝐶𝑝 ∙ 𝑌𝑜𝑑𝑑

𝑗𝜔𝐶𝑝 + 𝑌𝑜𝑑𝑑

                               (26) 

Since the resonance in the passband occurs under the 

conditions of 𝑌𝑜𝑑𝑑
′ = ∞, the resonant frequency with the effect 

of 𝐶𝑝 can be calculated as: 

𝑓𝑜
′ =

1

2𝜋
√

4𝐶1+𝐶2+𝐶𝑝

(2𝐶1+𝐶𝑝)∙(𝐿1−𝑀)∙(2𝐶1+𝐶2)
               (27)  

Compared with the original resonant frequency 𝑓𝑜 given in 

(9), the resonant frequency 𝑓𝑜
′ in the modified 2nd-order BPF 

has a factor of q, where  

𝑞 = √
4𝐶1+𝐶2+𝐶𝑝

2𝐶1+𝐶𝑝
                                    (28)  

In other words, 𝑓𝑜
′ = 𝑓𝑜 ∙ 𝑞 . It is obvious that 𝑞 > 1, which 

means the original resonant frequency will definitely move to a 

higher frequency due to the existence of 𝐶𝑝. Since the value of 

𝐶𝑝 is much larger than 𝐶1 and 𝐶2, the value of 𝑞 is just a little 

bit larger than 1. Fig. 18 shows the relation between the ratio of 

𝑓𝑜
′/𝑓𝑜  against 𝐶𝑝  when 𝐶1  varies from 10 fF to 50 fF. It is 

clearly seen that the ratio of 𝑓𝑜
′/𝑓𝑜 moves towards 1 when 𝐶𝑝 

increases, and a larger 𝐶1 will lead to a more frequency shift of 

𝑓𝑜
′ from 𝑓𝑜. This frequency shift can be compensated by slightly 

tuning the parameters of the BPF, such as 𝐿1 and 𝐶𝑘, to adjust 

the resonant frequency and coupling coefficient back to the 

original status. 

Fig. 19 shows the 3-D view as well as the layout of the 

modified 2nd-order BPF. Moreover, to prove that the presented 

simplified LC-equivalent circuit model is sufficiently accurate 

for predicting the characteristic of the design, EM simulated 

results are compared with those from the circuit model, which 

are shown in Fig. 19. The following values are chosen for the 

relevant parameters in the equivalent circuit: L2 = 450 pH, L3 = 

100 pH, C1 = 35 fF, C2 = 25 fF, Cp = 250 fF, Ck = 100 fF, and k 

= -0.9. It is clearly seen that three transmission zeros are located 

at the upper-stopband of the filter, which greatly improves the 

harmonic suppression capability of the filter.  



 

 

(a) 

 

(b) 

 

(c) 

Fig. 21. Measured S-parameters of all three designs, (a) 1st-order BPF, (b) 

2nd-order BPF, (c) modified 2nd-order BPF with improved out-of-band 

suppression.  

V. MEASUREMENT RESULTS AND DISCUSSIONS 

A. On-Wafer Measurement Results 

To fully evaluate the performance of the above presented 

designs, all three BPFs are fabricated in a standard 0.13-µm 

(Bi)-CMOS technology. The die microphotographs are 

embedded with the measured results, which are given in Fig. 

20. Excluding the pads, their physical dimensions are 0.13 × 

0.25 mm2, 0.26 × 0.25 mm2, 0.24 × 0.22 mm2, respectively. 

Using a vector network analyser (VNA), ME7838A, from 

Anritsu, all circuits are measured via on-wafer G-S-G probing, 

from 1 GHz up to 67 GHz. Measurements were made by using 

conventional open-short-load-through (OSLT) on-wafer 

calibration to move the reference planes from the connectors of 

the equipment to the tips of the RF probes. For comparison, 

both the simulated and measured |S21| and |S11| (also known as 

return loss) of all the three designs are plotted in each figure. 

For the 1st-order BPF, the results are shown in Fig. 21(a). As 

can be seen, it has a center frequency at 12.5 GHz with a 

bandwidth of 24%. The minimum insertion loss is 1.5 dB, while 

the maximum out-of-band suppression of 23.3 dB is obtained at 

23 GHz. The results of the 2nd-order BPF that simply cascades 

two 1st-order BPF with some additional inter-stage capacitors 

are presented in Fig. 21(b). It has a centre frequency of 14 GHz 

with a 28.6% bandwidth. The minimum insertion loss and 

maximum out-of-band suppression are 2.5 dB and 35 dB, 

respectively. Finally, the results for the modified 2nd-order BPF 

are given in Fig. 21(c). As can be seen, this design has a center 

frequency at 17 GHz with a bandwidth of 27.8%. In addition, 

the minimum insertion loss is 3.5 dB and the out-of-band 

suppression is better than 30 dB from 25 to 67 GHz (limited by 

equipment).   

All in all, fairly reasonable agreements between the EM 

simulated and the measured results for all three designs have 

been achieved. The discrepancy between them and some 

ripples appeared in the tested results below 20 dB are likely to 

be caused by the G-S-G pads and testing environment, which 

are not included in EM simulation.  

B. Discussions 

To demonstrate the performance improvement of the 

presented design over other state-of-the-art ones, a comparison 

table is given in Table I. Depending on different design 

specifications, a BPF can be designed with flexibility to satisfy 

different requirements using the concept presented in this work. 

Comparing the Design 1 and 2 with other works, they have 

achieved the lowest insertion loss with miniaturized physical 

dimensions. Although the insertion loss of the Design 3 is 

slightly higher than the average one, it has successfully 

demonstrated a superior out-of-band suppression to the 

4th-order harmonic frequency at least. 

It is noted that some parasitic capacitance from another side 

of the inductor to the ground is not considered in the equivalent 

circuit, because it is fairly small comparing with other parasitic 

capacitance, and thus it only has marginal impact on frequency 

responses of BPF design. For example, if the parasitic 

capacitors at Ports 1 and 2 are added in the equivalent circuit, 

the frequency responses of the BPF will not change much, in 

terms of the bandwidth, center frequency, positions of 

transmission zeros, in-band ripple and stopband level. 

Therefore, the parasitic capacitance is neglected in the 

synthesis for simplicity. Moreover, although the methodology 

in this work is only demonstrated for BPFs design around 15 

GHz, the method can be directly transferred to higher operation 

frequencies as well. There is no fundamental limitation for 



 

TABLE I  
PERFORMANCE SUMMARY OF THE DESIGNED BPFS WITH OTHER STATE-OF-THE-ART DESIGNS 

 

REF. 
fc 

(GHz) 

Insertion 

loss (dB) 

Filter 

order 

Fractional 

bandwidth (%) ^ 

No. of 

TZs 

Stopband bandwidth @ more 

than 30 dB suppression (GHz) 

Stopband suppression 

@ high frequency (dB) 

Area 

(mm2) 
Tech. (μm) 

[3] 60 9.3 1st 10 n/a n/a n/a 0.11 0.18 CMOS 

[5] 25 2.5 2nd 31 3 51-70 38 0.28 0.13 CMOS 

[12] 65 3.4 2nd 18.5 2 n/a 30 0.074 0.18 CMOS 

[17] 60 2.5 1st 21 2 n/a 20 0.156 0.18 CMOS 

[18] 59.5 3.3 2nd 21.7 2 n/a 27 0.054 0.18 CMOS 

[20] 35 4.5 2nd 37.8 2 56-85 50 0.124 0.18 CMOS 

[21] 33 2.6 2nd 42.4 n/a 72-110 n/a 0.03 0.13 SiGe 

[22] 35 3.1 3rd 50 3 55-62 35 0.075 0.13 SiGe 

[23] 40 1.7 1st  20 1 n/a 21 0.012 0.13 SiGe 

[24] 31 2.4 1st 22.6 1 n/a 20 0.024 0.13 SiGe 

[25] 33 2.6 1st 18 1 58-70 44 0.031 0.13 SiGe 

DESIGN 1 12.5 1.5 1st 24 2 n/a 23 0.033 0.13 SiGe 

DESIGN 2 14 2.5 2nd 28.6 2 20-26 35 0.065 0.13 SiGe 

DESIGN 3 17 3.5 2nd 27.8 3 25-67 38 0.053 0.13 SiGe 

 

using this method to implement a BPF at a higher frequency, 

such as 30 or 60 GHz. A relatively lower frequency is chosen 

due to the fact that the motivation behind this work is 

miniaturization. When operation frequency of passive devices 

is pushing up to millimeter-wave region, their physical 

dimensions are inherently shrinking. Thus, the miniaturization 

of devices becomes less critical. Moreover, due to the limitation 

of the measurement systems, the S-parameters can only be 

measured up to 67 GHz, which means if the BPFs were 

designed at higher frequencies, it would be quite difficult to 

measure the frequency responses at the upper-stopband range, 

especially to investigate the suppression capability of the 2nd- 

and 3rd-order harmonics.  

VI. CONCLUSIONS 

In this work, two different coupling structures, namely 

inverting coupling and non-inverting coupling, are analysed 

and compared. The possibility of using them for miniaturized 

BPFs design is investigated. To fully understand the insight of 

these structures as well as effectively use them for BPFs design, 

simplified LC-equivalent circuit models are developed. Using 

the models, three BPFs are designed and implemented. To 

further prove that the presented approach is feasible in practice, 

all designs are fabricated in a standard 0.13-µm (Bi)-CMOS 

technology. The sizes of them without pads are very small. A 

reasonable agreement between the EM simulated and measured 

results for all designs is obtained. According to the overall 

performances of the designed BPFs, it can be concluded that 

this approach is particularly suitable for miniaturized RFIC 

design in silicon-based technologies.  
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