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Abstract

This thesis seeks to analyse and quantify the differences present in 2 different emission mech-

anisms seen in Planetary Nebulae (PN). These are Hα emission from recombination of ionised

hydrogen and H2 emission from photoexcitation of molecular hydrogen gas.

Firstly, I have gathered images from the UKIRT Widefield Infrared Survey for H2 (UWISH2),

which correspond to PN in the Macquarie/AAO/Strasbourg Hα (MASH) Planetary Nebula

Galactic Catalog, which have been compared and contrasted, and the full extent of which will

be featured in the appendices of this report.

Secondly, I have gathered images from the UWISH2, which correspond to PN found in the

INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane by Viironen et al.

2009, which have been compared and contrasted and will be featured in the appendices of this

report.

The results gained from this work challenge the assumption of Gatley’s Rule that molecular

hydrogen is a predictor for bipolar emission in PN with more than half of the PN in the MASH

sample showing such emission, and approximately 80% of the PN in the IPHAS sample as well.

This work has shown that H2 emission is a good method of searching for PN and may further

be used as a tool to further confirm objects as true PN.
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Chapter 1

Introduction

1.1 Background

1.1.1 What is a Planetary Nebula?

A Planetary Nebula (PN) is produced after a star of main sequence mass of approximately

1M� to 10M� (Iben 1995) moves up the Asymptotic Giant Branch (AGB) and begins to eject

its outer layers in an enhanced mass loss phase. As the star reaches the tip of the AGB, the

mass loss rate drops by several orders of magnitude and the central star evolves to become a

white dwarf. The central star emits ultraviolet photons as it evolves to hotter temperatures,

and proceeds to ionise the surrounding material, producing the PN we are then able to see.

1.1.2 Internal changes within the star

The star in question would normally have had a phase of core hydrogen burning and core helium

burning in order to generate a PN towards the end of its life cycle.

1
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Figure 1.1: A Hertzsprung-Russell diagram of a 2M� star of Solar metallicity from the main sequence to the white
dwarf phase. The red track denotes the main path that a 2M� takes through the Hertzsprung-Russell diagram.
Herwig 2005.

As the star ages, it moves through different regions on the Hertzsprung-Russell (HR) diagram,

following a track which is dependent on mass and metallicity of the star. This is demonstrated

in Figure 1.1, with the red line being the main evolutionary track of a 2 solar mass star with a

solar metallicity, evolving towards a white dwarf.

In the first stage of this evolution the star moves from the main sequence hydrogen core

burning phase, where the star is expected to spend a large portion of its life, to the red giant

branch. The red giant branch is characterised by energy production via fusion in a hydrogen

burning shell around the core. This stage ends when the helium that it has been producing

ignites once the core of the star reaches temperatures ≥ 108 Kelvin.

In the early AGB phase the energy output of a star is dominated by a helium burning shell

around the core, producing oxygen and carbon, which is then deposited onto the core. The

effective temperature of the star decreases during this phase, as seen in Figure 1.1, and this

allows the area at which convection can occur to deepen. This produces a mixing of material,

called the Second Dredge-Up to occur, which brings material from the hydrogen rich outer layers

towards the core, and takes helium rich material away from the core to the outer layers. There

is also an enrichment of the outer layers with heavier elements, such as 14N and 13C.

After this mixing has taken place, the helium shell can no longer sustain fusion reactions

permanently, and instead the energy output comes to be dominated by a now re-ignited hydrogen
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shell. As the hydrogen shell burns, it deposits helium onto the helium shell, which in turn, makes

the base of the shell slightly degenerate, increasing in temperature, which then causes it to re-

ignite. As the helium shell re-ignites, the star becomes larger for a period, and the hydrogen

shell cannot sustain a fusion reaction, and so turns off. Once the helium shell has used up all

the fuel it can, it stops burning, the star collapses back, and the hydrogen shell takes over as the

dominant energy producer in the star. These events are called thermal pulses, and the period

between each pulse is determined by stellar mass.

With the sudden increase in energy from the thermal pulsing, a new convective zone occurs

between the hydrogen burning shell and the helium burning shell. The outer envelope of the

star also increases in convective depth at this point, and now a mixing of material from the zone

between the hydrogen shell and helium shell occurs, bringing carbon to the envelope, which may

change the composition of the envelope drastically. This event is called the third dredge up, and

may occur multiple times during the AGB phase.

1.1.3 External changes in the star

As the internal changes occur as described in section 1.1.2, the star also goes through a number

of physical changes externally as well. As the star progresses up the AGB, it experiences a

heavy mass loss phase. This removes vast quantities of material from the star, on the order of

approximately 10−5M� to 10−6M� per year (Iben 1995). In some cases, mass loss may even

rise to up to 10−4M� per year, during the final stages of the AGB phase (Ramos-Larios et al.

2012).

As seen in Figure 1.1, the AGB corresponds to a period in the star’s lifetime where apparent

luminosity increases, while effective temperature decreases. This drop in surface temperature

allows for the production of dust to occur. In stars with large amounts of oxygen near the

surface, silicate dust will form . In stars which have experienced a number of third dredge up

events, carbon dust will form instead, due to the increased amount of carbon in the envelope.

(Ferrarotti and Gail 2006). This production of dust is important for the mass loss phase, as

radiation pressure exerted upon the dust grains seems to be a driving factor in powering the

mass loss seen in AGB stars. (Winters et al. 2003)

The mass lost in this way produces a circumstellar envelope (CSE), that surrounds the star,
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and obscures it from view in the optical and the near infrared. The CSE’s composition changes

as the AGB phase continues. It primarily starts out as hydrogen and helium, but, over time,

comes to include oxygen, and in the presence of several third dredge up events, carbon as well.

As the star reaches the peak of the AGB, the mass loss rate drops to a fraction of what it

was previously, and the CSE detaches from the star. The dust then becomes optically thin, and

the star becomes visible again. What remains of the central star is a core of primarily oxygen

and carbon, and possibly neon and magnesium if the initial mass of the star was high enough

(Werner et al. 2005), alongside the remaining hydrogen and helium shells around the star.

The CSE continues to expand at this point and the real work of shaping the PN occurs.

The mass loss from AGB stars is thought to be mainly spherically symmetric, however, the vast

majority of PN do not show spherically symmetric structure at all (Sahai, Morris, Villar 2011).

It has been suggested that companion objects such as stars, brown dwarfs or even large planets

may have an effect on the final structure of the PN (de Marco, Farihi, Nordhaus 2009)(de Marco

& Soker 2011)

The central star begins to evolve towards a white dwarf, with a transition to the left in the

HR diagram, reflecting a change in temperature, but a constant luminosity. This can be seen

in Figure 1.1. This phase is mass dependent, with higher mass stars taking a shorter amount of

time to move through this stage. As a result of this, some PN may not have been seen due to

the envelope dissipating before the ionisation of it can take place.

1.1.4 Emission Mechanisms in PN

Hydrogen Recombination emission

The H-alpha (Hα) emission line (656 nm) results from the recombination of electrons and pro-

tons in the ionised envelope around the central star once it reaches an effective temperature of

approximately Teff=20,000K. Once this is achieved, the UV flux is sufficient to photodissociate

the molecular hydrogen in the envelope, and ionise the hydrogen atoms.

Recombination of electrons and protons results in discrete emission lines with Hα due to

transitions between the n=3 and n=2 electronic levels. The Hα line is a widely used diagnostic

of ionised gas and has therefore been used to detect PN.
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Figure 1.2: A diagram of the energy level transitions of Hydrogen, displaying the Balmer series in black. Source:
en.wikipedia.org/wiki/Hydrogen_spectral_series

Molecular hydrogen emission

Molecular hydrogen emission can be excited by a variety of mechanisms, the important ones in

PN being the photoexcitation of molecular hydrogen by UV photons and shock excitation by

fast winds.

UV photons with wavelengths of 100 nm are capable of exciting H2 to the first electronic

state. Subsequent decay to vibrationally bound states of the ground electronic state (See Fig

1.3) results in a cascade of vibrational-rotational lines. The most prominent transition is the

1-0S(1) line at 2.122 µm, resulting from a transition between the ν=1, J=3 and ν=0, J=1 levels

of the ground state.

The second source of molecular hydrogen emission is that of collisional excitation. This is

present in fast outflows from astronomical objects. These are present in a number of classes of

astronomical object (Livio 2000). Jets are thought to be a driving force behind the shaping of

PN in the post AGB phase (Huggins et al. 1999)(Sahai 2004)(Sahai et al. 2005).

1.1.5 Morphological classes of PN

PN come in a number of varied shapes and sizes, however, there are a few overarching mor-

phologies present in any large sample of PN. There are 4 morphological classes that are easy to

define: Circular, elliptical, bipolar and quadrupolar (Mandchado, Stanghellini, Guerrero 1996).

However, not all PN fit these definitions so easily, a large number have abstract or even unde-

fined structures, and as such, classification systems exist on a paper by paper basis (Shaw et



Chapter 1. Introduction 6

Figure 1.3: A diagram displaying the vibrational energy levels present within the ground and first two excited
electronic states in molecular hydrogen. The bottom line to the bottom of the bell curve represents the lower
level of the 1-0S(1) transition. Source: Draine, Physics of the Interstellar Medium. Page 40.

al. 2001) (Sahai et al. 2007) (Sahai, Morris, Villar 2011). For this work, I will just be utilising

the base 4 morphological classifications, along with a point source classification for any that are

too small to measure correctly, and classifying objects that do not fit into these categories as

irregular.

1.1.6 Prior research into molecular hydrogen emission from PN

Molecular Hydrogen emission in PN has been an area of study for over 3 decades now (Beckwith,

Persson, Gatley 1978), and has been expanded recently with the usage of sensitive, large format,

near infrared detector arrays (Kastner et al. 1994).

Work has been focused on linking molecular hydrogen emission with morphological properties

of PN (Kastner et al. 1996), and from this an empirical rule was formulated. Based on the data

in Zuckerman & Gatley (1988), molecular hydrogen emission is suggested as a marker for bipolar

features in PN. This was later expanded upon (Kastner et al 1992)(Kastner et al. 1994)(Kastner

et al. 1996)(Kastner et al. 1998) and has been named ’Gatley’s Rule’.
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1.2 Prior Surveys and UWISH2

1.2.1 Prior Surveys for PN

Many of the surveys used in the search for PN are focused on star formation, and as such, look

at the Galactic plane. The discovery of PN is a secondary goal for a lot of these, and as such,

the majority of PN finds are within the Galactic plane. As mentioned previously, Hα emission

is expected in PN due to the central star producing UV photons with a high enough energy to

ionise hydrogen in the surrounding envelope. PN therefore appear in Hα surveys and this has

been a principal tool for their detection.

Another tracer of PN is forbidden line emission, most notably [OII] and [OIII] that originates

when atoms are excited to a higher energy state, but cannot decay in a preferred way and instead

have to take a normally forbidden transition. This occurs in low density gases and plasmas, which

are present in PN and therefore are another marker for PN.

Initial Hα surveys (Kouhoutek & Perek 1967), have been expanded upon during the last

2 decades (Acker et al. 1992; Kohoutek 2001; Parker et al. 2008; Viironen et al. 2009), and

have vastly expanded the number of PN found. However, there is an issue with Hα, being that

it does not penetrate very deeply through the optically thick Galactic plane. This means that

there could be a large number of PN undiscovered, just obscured by optically thick dust in the

Galactic plane.

1.2.2 UWISH2

The UKIRT (United Kingdom Infrared Telescope) Widefield Infrared Survey for H2 (UWISH2)

is a survey of the H2 in the first quadrant of the galactic plane (6 < l < 65;−1.5 < b <

+1.5). This region overlaps spatially with the J, H and K bands being surveyed already by the

UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Plane Survey (GPS), and several mid-IR

wavelengths (3.6, 4.5, 5.8, 8.0 µm) already being surveyed by Spitzer as part of Galactic Legacy

Infrared Mid-Plane Survey Extraordinaire (GLIMPSE).
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The UWISH2 survey uses the UKIRT (United Kingdom Infrared Telescope), and the Wide-

Field Camera (WFCAM). The WFCAM is composed of four Rockwell Hawaii II (HgCdTe

2048x2048) arrays (Froebrich et al, 2010). The gaps between the 4 arrays are 94% of the

width of an array, and as such, full coverage is a possibility with this set up by mosaicking. The

camera has a pixel scale of 0.4 arc seconds per pixel, but, with the usage of a micro-stepping

pattern to correct for image artifacts, bad pixels and to fully sample the point spread function,

the pixel scale reduces to 0.2 arc seconds per pixel.

The images are acquired through a narrowband filter (∆λ = 0.021 µm) centered on the 1-0

S(1) line of molecular hydrogen at 2.122µm. The exposure time is 60s, but the total per pixel

integration time is 720s, after image stacking to form a complete tile.

Each image is 1/16th of a tile, as shown in Figure 1.5. The 4 cameras work in unison to

produce a mosaic of the targeted area. The red dot is the position of the ’pointing’ for the tile,

and the images are taken in reference to this. The first images taken are the green tiles, and

then the telescope is stepped around to fully image the area and takes an image at each of the

different coloured tiles.

K band images were taken by the UKIDSS GPS, and these can be subtracted from the H2

images by the use of an appropriate algorithm (Jae-Joon et al. 2014), aligning the images by

the use of the astrometric calibration parameters in the file headers to provide a continuum

subtraction. The flux scaling between H2 and K band is calculated for each star individually.

UWISH2 should be a useful tool for finding PN. As mentioned in section 1.2.1, the usage

of Hα has meant that PN have only been found in areas of low dust concentrations along the

Galactic plane, and there may be undiscovered PN lying at higher optical depths than Hα

detections can be made at. This is where H2 can prove useful, as it allows for the detection of

PN in the near-IR at higher optical depths. However, this is not the focus of the project, which

will be explained in the next chapter.

Another area where UWISH2 can be useful is the detection of younger PN, which may only

just be developing a photo ionized region. As mentioned in section 1.1.3, the CSE is detectable

in H2 before it is detectable in Hα due to the time taken for the central star to start giving off

photons with a high enough energy to ionise the envelope.
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Figure 1.5: The structure of each UWISH2 tile. The red dot corresponds to the original pointing for the tile, and
each colour corresponds to a different position which allows for full coverage of the selected area.

1.3 Project Details

1.3.1 Project Work and Goals

The project is focused on the detection of H2 components of PN with a definite Hα component,

and intercomparing emission features. Target selection is based on 2 surveys that have major

overlap with the field for UWISH2. These two surveys are IPHAS and MASH.

IPHAS is the Isacc Newton Telescope (INT) Photometric Hα Survey of the Northern Galac-

tic Plane (Drew et al. 2005). It looks at the Northern Galactic Plane between 29 and 215

degrees longitude and latitudes between +5 and -5 degrees. The survey was taken with the

wide field camera (WFC) focused around Hα. The survey is a very good resource for this study.

A catalogue of PN candidates has been created by Viironen et al. with approximately 1000

candidate PN, and is the main resource for comparison for this project. (Viironen et al. 2009).

MASH 1&2 are the Macquarie/AAO/Strasbourg Hα Planetary Nebula Catalogue 1&2 (Parker

et al. 2006)(Miszalski et al. 2008). These look at the Southern Galactic Plane, and have some

overlap with UWISH2. The survey itself was based on the Anglo-Australian Observatory UK
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Schmidt Telescope (AAO/UKST)Hα survey (Parker et al. 2005) of the Southern Galactic Plane.

The survey was then visually inspected, and the MASH list was compiled over the course of sev-

eral years, with removals of H II areas from the list and other similar objects. This catalogue

is of PN candidates, with spectroscopic confirmation, and has approximately 1200 PN present

within it.

The principal goal of this work is to identify the fraction of Hα detected PN visible in H2 to

ascertain the viability of molecular hydrogen emission as a tool for finding PN.

Goals for the project

1. Identify and catalogue the H2 components of the Hα PN from MASH and IPHAS within

the UWISH2 surveys area, as mentioned previously.

2. Determine the fraction of Hα detected PN also detected in H2. Ascertain from image

comparisons the morphological classification of these PN. See if features are comparable,

or if different features appear altogether.

3. Determine the fraction of Hα detected PN not detected in H2. Ascertain why this may be

the case and check for the validity of empirical rules found in previous research.



Chapter 2

Methodology and Data

Collection

2.1 Initial Work

2.1.1 Initial UWISH2 PN detection

The project requires data collection from a number of sources. As mentioned previously, the Hα

PN selection uses two surveys, MASH and IPHAS to compare and contrast PN against their H2

emission.

The first piece of work was to become familiar with the Graphical Astronomy and Image

Analysis (GAIA) tool, and also with the UWISH2 database. This was done through the use

of a list of PN already found serendipitously by researchers looking for H2 associated with star

formation.

2.2 MASH

The MASH survey (Parker et al. 2006; Miszalski et al. 2008) has over 1200 new confirmed and

possible PN that need to be examined.

To cross match targets in the MASH surveys with those in the UWISH2 survey, I used the

program Topcat. Topcat is a piece of software that allows for the manipulation of data tables

from astronomical surveys by applying constraints based on any feature that is noted in the

data table. For example, the usage of Right Ascension and Declination to constrain a data

set. However, on applying these constraints using Right Ascension and Declination of the area

of the UWISH2 survey, Topcat gave many false matches for targets lying on the edge of the

UWISH2 area by not taking into account the staggered nature of the tiles in UWISH2, due to

the tiles being aligned via Right Ascension and Declination, and not being aligned parallel to

12
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the Galactic plane.

A Python program was then developed that set out each UWISH2 tile as a square in Right

Ascension and Declination, and matched the MASH PN coordinates to tiles, and allowed for

the elimination of false positives that may have appeared while using Topcat. This narrowed

the 1200 MASH objects down to 30 within the UWISH2 area. The code for this program will

be included within the appendices.

The MASH images in Hα have a certain size, 357 x 357 pixels, with a pixel to arcsecond

ratio of 0.67 arcseconds per pixel (Hambly et al 2001). This gives the images an arcsecond size

of 235.62 arcseconds, or 3.927 arcminutes. UWISH2 has an arcsecond to pixel ratio of 0.2, which

means that to have an image with the same field of view the image would have to be 1176 by

1176 pixels. We extract images from the UWISH2 survey to have the same field of view as the

MASH images, to facilitate intercomparison.

2.3 IPHAS

IPHAS is a very large survey, however Viironen et al. (2009) have acquired a large number

(1000) of candidate PN from this. We use the python program detailed in Section 2.2 to match

IPHAS PN candidates to UWISH2 fields and find that within UWISH2 the reduced number of

PN from IPHAS is approximately 140.

The IPHAS PN images were obtained via a web tool (http://apm3.ast.cam.ac.uk/iphas_

finder.html). The IPHAS images have a pixel to arcsecond ratio of 0.33. To have the same

field of view as the MASH images, 235.62 arcseconds, these images need to be 714x714 pixels.

2.4 Other Surveys

Other surveys of the Galactic plane in other wavelengths have played a role as well. To identify

if the object in question is indeed a PN, SIMBAD has been used to cross reference the object

with other observations, and determine if the object is likely to be a true PN. This involves

checking for ultraviolet and radio components to the object, as these emissions would be normal

for a PN.
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2.5 Methodology

We have developed a Python program which outputs a list of the co-ordinates of the first

centring of the UWISH2 tile, as seen in Figure 1.5, the designation of the UWISH2 tile, and the

co-ordinate of the PN that is present in that tile. However, the program sometimes finds PN

that are just off the edge of tiles, or not on the survey. These are discarded as they cannot be

analysed.

The method used to extract these UWISH2 images was a simple process:

1. Identify where the PN was using the UWISH2 web interface and download the correspond-

ing tile section.

2. Open the image using GAIA and identify the central pixel for the object and note it’s X

and Y value.

3. Put these pixel values into an excel spreadsheet to give the pixel range for the cut out

image. (The pixel range was found by adding 588 to the east direction, taking 588 in west,

and repeating the same for north and south, to give an image that was 1176 pixels on each

axis in total).

4. Convert the file from .fits to .sdf using the Starlink fits2ndf command.

5. Confirm that the origin pixel value for the source image was [1,1].

6. Use the ndfcopy command to extract the cut out image, using the pixel range gained from

inputting the pixel values into the excel sheet.

7. Rename file to desired name and check that the process has worked by opening the file in

GAIA.

To make sure that the UWISH2 image was of the same field as the Hα image, I would use

the catalogue overlay tool present in GAIA. I would use the 2MASS survey for this, and identify

the prominent stars in the UWISH2 field which matched up to the same stars in the other

(IPHAS/MASH) field. This provided me with a large degree of certainty that the Hα and H2

fields were the same, and that in the cases of non-detection in H2 fields, that this was indeed

the same field. See Figure 2.1 and 2.2.
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Figure 2.1: An image of the 2MASS overlay showing the stars nearby to a PN from UWISH2. Highlighted in the
search box is the star used to show that the next image is of the same field in space.

Figure 2.2: An image of the same PN as displayed above, this time in IPHAS. Highlighted in the search box is
the same star as before, showing that this is the same field in space.



Chapter 3

Result Tables

The tables shown here are the result of utilising the GAIA software’s analysis tools to individually

look at each candidate PN found in the IPHAS and MASH surveys which overlaps with UWISH2.

The tool specifically used for this was the photometric apeture tool present in GAIA. This

was utilised because of the ability to draw ellipses rather than circles around objects. This

allows for the accurate measurement of angular size in pixels of the object, position angle and

eccentricity of the ellipse.

The headers of each column are as follows:

• Column 1 is the given name of the PN. As MASH PN are spectroscopically verified PN,

they have a PNG identifier, IPHAS are not always verified PN and as such, do not all have

PNG identifiers

• Column 2 is a simple check of yes or no for H2 detection of an object.

• Column 3 is a list of features that the Hα detected object displays.

• Column 4 is a list of features that the H2 detected object displays.

• Column 5 is a morphological classification type for Hα detected objects.

• Column 6 is a morphological classification type for H2 detected objects.

• Column 7-9 are the angular size of the Hα object, inclination of the ellipse used to measure

it, and the eccentricity of the ellipse.

• Column 10-12 are the angular size of the H2 object, inclination of the ellipse used to

measure it, and the eccentricity of the ellipse.

All these items together give a good analysis of what the object is, and compares it to its

counterpart in the other survey.

16
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The images themselves are in the appendices of this document.

3.0.1 IPHAS tables
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Chapter 4

Analysis

The analysis of the data presented in Chapter 3 used several approaches. Firstly, graphs were

made to compare the frequency of detection of PN in H2 to that of Hα and to compare the

number of morphologies found of each classification set out in section 1.1.5.

Secondly, each image was compared and contrasted to ascertain the degree to which H2

emissions matched those of Hα, given the differences in emission mechanism. This was then

used with the data gained from the usage of GAIA to determine the differences in size and

structure between each wavelength.

4.1 Comparison of detection rates of PN in H2 and Hα emissions

The usage of H2 to detect PN is a major part of this work, to see if the wavelength is suitable

for the detection of PN in comparison with detections from optical surveys.

Each object in the 2 surveys (MASH, IPHAS) has a definite Hα detection. This means that

there may or may not be a detection in H2, and therefore, we can compare to see how useful H2

is as a detector for PN with optical emission.

As Figure 4.1 and Figure 4.2 show, not all Hα PN show detectable emission from H2. This

is likely due to the excitation characteristics of the nebulae, see Section 1.1.4

There is a difference between the 2 surveys however. MASH shows a 53% detection rate

for H2 in comparison with IPHAS, which shows a 85% detection rate for H2. This detection

rate may be down to the sample sizing of each of the surveys with their overlap (MASH at 28

objects, IPHAS at 90 objects), or down to the nature of the survey, MASH being a survey of

true and confirmed PN and IPHAS being a survey of possible PN.

Gatley’s rule states that molecular hydrogen emission in PN is a sign of bipolarity. However,

there is evidence to suggest that in the cases of PN found in MASH and IPHAS, that molecular
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Figure 4.1: A graph showcasing the number of detections in H-Alpha in blue, and the number of H2 detections
in red next to it for the MASH survey.
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in red next to it for the IPHAS survey
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Figure 4.3: A graph showing the number of each morphological type of PN in the MASH survey overlap with the
UWISH2 survey, with H-Alpha in blue and H2 in red.

hydrogen emission is more likely to be due to the phase of evolution that the PN is going through,

rather than be linked to a certain morphology. This may also be a cause for the discrepancy

in detection rate for PN between the 2 surveys, as elliptical PN could be a morphology that

occurs after the PN has had time to expand and evolve (Huarte-Espinosa et al. 2012). There

are many more elliptical PN in the MASH survey than in IPHAS, which may contribute to the

lower (53%) detection rate in the MASH PN than the IPHAS PN (85%).

As seen in Figure 4.3 and Figure 4.4, bipolar morphologies make up a very small part of the

total PN sample. The most common shape in MASH is that of elliptical morphologies, and in

IPHAS, it is of Point Sources, where the object is too small to define a structure at all.

Figure 4.5 shows a bipolar PN in the MASH survey, PN G007.7+01.2, that has a definite

H-Alpha detection and no H2 detection. This is not likely linked to the morphology, but more

likely to be linked to the evolutionary stage of the PN. The PN on the right is very large (81.3

arcseconds major axis) and this may be an indication that the PN has been active for a long

period of time, photo-dissociating the molecular hydrogen present to the point where emission
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Figure 4.5: A comparison image of PN G007.7+01.2, with H2 on the left and Hα on the right
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Figure 4.6: A comparison image of PN G0029.8+00.5, with H2 on the left and Hα on the right

is not detectable.

However, size cannot be a definition of PN age, as distances may not show the true size of

a PN, rather its apparent size.

Figure 4.6 shows a smaller PN (34.2 arcseconds) with an extended Hα emission without a

corresponding H2 emission to match. Again, without a measurement of distance, we cannot tell

if this PN is very large, however the lack of H2 emission may provide more of a clue towards its

age.

From the emission mechanisms mentioned in section 1.1.4, it may be that H2 emission is less

of a universal marker for PN, but more associated with the age of the PN itself. This is because

the photodissociation of molecular hydrogen in the nebula will increase with age. So that H2

may be prevalent in early PN but dissapate as the PN becomes older and fully ionised.

4.2 Comparison of H2 emission and Hα emission in the structure

of PN

One of the goals outlined in section 1.3.1 is to compare features found in both wavelengths to

ascertain if there are major changes.
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Figure 4.7: A comparison image of IPHAS 50, with H2 on the left, and Hα on the right

4.2.1 Bipolar PN

There are a very limited number of bipolar PN found in both survey overlaps (MASH and

IPHAS), however, these are very interesting due to the previously mentioned Gatley’s rule that

states that molecular hydrogen emission is a sign of bipolarity.

Overall, there are 3 bipolar PN in IPHAS and 2 in MASH, giving a total of 5 for the whole

sample. Of these 5, there is 1 that does not have an H2 component. This is shown in Figure 4.5.

As mentioned in the previous section, this may be down to the PN being older, and therefore

having very little non photodissociated molecular hydrogen left.

Of the remaining objects, there are a number of differences present between the two wave-

lengths.

These PN, IPHAS 50 and PN G009.8-01.1 (Figure 4.7 and 4.8), show large similarities. They

show a similar size in both wavelengths, along with a similar structure.

However, these PN show a difference in the structure. Both of the images show a clear

difference in size between the wavelengths (IPHAS 89 is 17.76 arcseconds in Hα and 30.89 in

H2), which could be linked to the propagation of the UV photons from the central star, which

shows a different stage of evolution. However, the structural changes could also be down to the
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Figure 4.8: A comparison image of PN G009.8-01.1, with H2 on the left, and Hα on the right

Figure 4.9: A comparison image of IPHAS 87, with H2 on the left, and Hα on the right
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Figure 4.10: A comparison image of IPHAS 89, with H2 on the left, and Hα on the right

higher resolution of UWISH2 in comparison to IPHAS (0.2 arcseconds/pixel for UWISH2, 0.33

arcseconds/pixel for IPHAS).

Figure 4.9 shows IPHAS 87, where the main waist area of the PN in question is closer to

being an elliptical blob in Hα than it is in H2 where it definitely shows the thin waist, wide lobe

characteristics that make it a bipolar PN. However, I would expect that H2 emission would have

a large size than Hα solely due to the emission mechanisms, however, Figure 4.9 shows that this

may not be the case.

Figure 4.10 shows IPHAS 89, which has a much more expected emission in both wavelengths.

The H2 emission image displays a larger PN than in Hα, which is expected because of the

propagation of the UV photons having not reached as far through the cloud to dissociate it yet,

meaning that the Hα is smaller (17.76 arcsecond major axis in comparison with 30.89 arcsecond

major axis).

Overall, bipolar PN seem to display similar features in both wavelengths, but, this would

have to be clarified with a larger sample size to ascertain if this holds true in general for PN.
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Figure 4.11: A comparison image of PN G010.2+00.3, with H2 on the left, and Hα on the right

4.2.2 Elliptical PN

Elliptical PN are more prevalent in the MASH sample than they are in the IPHAS sample. As

explained in Section 4.1, elliptical PN seem to not show emission in H2 at all in half of the

cases. However, it is still useful to compare and contrast the emissions seen in those that have

detections in both wavelengths.

Elliptical PN in the MASH survey which have detections in both wavelengths show a similar

trend. Hα emission displays the whole structure of the object, whereas H2 emission tracks the

edges of the object.

In Figure 4.11, the Hα emission shows much more clearly the structure of the object, whereas

the H2 emission seems to only show the outer edge of the bright inner ring of material. As

mentioned in the previous section, ellipticals are more likely to be older PN, so Hα should track

the material better than the H2 solely because more time has passed, and the UV propagation

can photodissociate more of the molecular hydrogen.

Figure 4.12 shows this, but in a less dramatic example. The overall structure remains the

same, but, the middle has substantially less emission in H2 than in Hα.

However, the differences in resolution between the surveys may contribute to the differences
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Figure 4.12: A comparison image of PN G030.0+00.0, with H2 on the left, and Hα on the right

seen between the 2 wavelengths.

Figure 4.13 pictured above shows an example of H2 emission clearly showing the structure of

the object well, with clear morphological similarities between Hα and H2, whereas Figure 4.14 is

more in-line with the previous examples, where the edges of the object are the higher emitting

areas of the object in H2.

4.2.3 Irregular PN

Irregular PN were defined as objects that did not fit any of the normal classifications set out in

Section 1.15. Overall, there were 2 Hα detections in MASH of irregular objects, with 4 more

being detected in H2. In IPHAS there are 7 detections of irregular PN in Hα and there are 8

detections in H2. This does not mean that there are non detections in Hα, this means that the

detections in H2 do not represent the structure of the emission in Hα.

Figure 4.15 shows PN G017.2+01.1. Both wavelengths show a similar structure, in a small

arc across the center of the image that has shown up to be very dim. This object does not display

the characteristics discussed earlier relating to elliptical PN and the emission mechanisms of Hα,

as both images seem to show a similar level of diffuse emissions. This could however, be a central
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Figure 4.13: A comparison image of IPHAS 36, with H2 on the left, and Hα on the right

Figure 4.14: A comparison image of IPHAS 37, with H2 on the left, and Hα on the right
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Figure 4.15: A comparison image of PN G017.2+01.1, with H2 on the left, and Hα on the right

section of a bipolar PN that has

Figure 4.16 shows another possible irregular PN in both wavelengths. However, the density of

the emission could be interpreted as bipolar. The orientation contribute to a number of objects

being labelled irregular, as from our viewing angle, the PN may appear to have no features of

any known PN type, but, in reality may be another morphology.

Overall, H2 seems to detect irregular PN as the emissions seem to track quite well. However,

irregular PN themselves may be another type of PN, at another viewing angle, such as bipolar

or elliptical.
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Figure 4.16: A comparison image of PN G028.8-00.2, with H2 on the left, and Hα on the right



Chapter 5

Conclusions

In conclusion, the work presented here shows a clear trend between H2 emission and Hα emission

in PN, with 53% of PN in the MASH sample showing H2 emission and 83% of the IPHAS sample

showing H2 emission also.

Morphologically, elliptical PN in the MASH sample showed the greatest discrepancy in de-

tection rates, with only 37.5% of them having a corresponding H2 detection, whereas in IPHAS,

there is a 70% detection rate for ellipticals. Bipolars range from 100% with a H2 detection in

IPHAS to 50% in MASH. Irregulars range from 50% in MASH to 87.5% in IPHAS, and point

sources range from 82.9% in IPHAS to 66% in MASH. Finally, irregular PN detections in H2

range from 50% in MASH to 82.8% in IPHAS.

The validity of Gatley’s Rule comes into question with these results, as molecular hydrogen

emission has been detected across the breadth of PN morphologies, showing that H2 is not only

a sign of bipolarity, but could just be a wavelength that all PN have some emissions in.

Overall, these numbers show that H2 could be a valuable tool for detecting and confirming

PN.

However, with the limited sample size presented here (120 PN), it could be argued that

this work does not represent a wide enough subset of PN to really gauge the usefulness of H2

emission as a tool for finding and confirming PN.

Nevertheless, this work bears further study to see if it still holds true for other surveys of

PN, and to see if morphology and other quantifiable elements have an impact upon H2 emission

in a larger sample size of PN.
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J. Drew, J. Eislöffel, a. Gosling, R. Gredel, J. Hatchell, K. W. Hodapp, M. S. N. Kumar,

53



REFERENCES 54

P. W. Lucas, H. Matthews, M. G. Rawlings, M. D. Smith, B. Stecklum, W. P. Varricatt,

H. T. Lee, P. S. Teixeira, C. Aspin, T. Khanzadyan, J. Karr, H.-J. Kim, B.-C. Koo, J. J.

Lee, Y.-H. Lee, T. Y. Magakian, T. a. Movsessian, E. H. Nikogossian, T. S. Pyo, and

T. Stanke. UWISH2 - the UKIRT Widefield Infrared Survey for H2. Monthly Notices of

the Royal Astronomical Society, 413(1):480–492, May 2011.

[8] Nigel Hambly, Harvey MacGillivray, Mike Read, Sue Tritton, Eve Thomson, Dennis Kelly,

David Morgan, Rob Smith, Simon Driver, John Williamson, Quentin Parker, Mike Hawkins,

Perry Williams, and Andy Lawrence. The SuperCOSMOS Sky Survey. Paper I: Introduction

and Description. Monthly Notices of the Royal Astronomical Society, 326:18, August 2001.

[9] Falk Herwig. Evolution of Asymptotic Giant Branch Stars. Annual Review of Astronomy

and Astrophysics, 43(1):435–479, September 2005.

[10] M. Huarte-Espinosa, A. Frank, B. Balick, E. G. Blackman, O. De Marco, J. H. Kastner, and

R. Sahai. From bipolar to elliptical: simulating the morphological evolution of planetary

nebulae. Monthly Notices of the Royal Astronomical Society, 424(3):2055–2068, August

2012.

[11] P. J. Huggins, R. Bachiller, T. Forveille, P. Cox, and J. P. Maillard. The Shaping of

Planetary Nebulae by Bipolar Outflows or Jets. American Astronomical Society, 31, 1999.

[12] I Iben Jr. Planetary nebulae and their central stars ? origin and evolution. Physics Reports,

250(1?2):1–94, 1995.

[13] J. H. Kastner, L. Henn, D. A. Weintraub, I. Gatley, and R. Siebenmorgen. Kinematics of

Molecular Hydrogen Emission from Bipolar Pre-planetary, Protoplanetary, and Planetary

Nebulae. American Astronomical Society, 30, 1998.

[14] Joel H. Kastner, I. Gatley, K. M. Merrill, R. Probst, and David A. Weintraub. The Bipolar

Symmetry of Ring-Like Planetary Nebulae: H 2 Imaging at 2.122 microns with the Kitt

Peak Cryogenic Optical Bench. American Astronomical Society, 24, 1992.

[15] Joel H. Kastner, David A. Weintraub, Ian Gately, K. M. Merrill, and Ronald G. Probst.

H 2 Emission from Planetary Nebulae: Signpost of Bipolar Structure. The Astrophysical

Journal, 462:777, May 1996.



REFERENCES 55

[16] L. Kohoutek. Version 2000 of the Catalogue of Galactic Planetary Nebulae. Astronomy

and Astrophysics, 378(3):843–846, November 2001.

[17] L. Kohoutek. Version 2000 of the Catalogue of Galactic Planetary Nebulae. Astronomy

and Astrophysics, 378(3):843–846, November 2001.

[18] L. Kohoutek. Version 2000 of the Catalogue of Galactic Planetary Nebulae. Astronomy

and Astrophysics, 378(3):843–846, November 2001.

[19] J.-J. Lee, B.-C. Koo, Y.-H. Lee, H.-G. Lee, J.-H. Shinn, H.-J. Kim, Y. Kim, T.-S. Pyo, D.-

S. Moon, S.-C. Yoon, M.-Y. Chun, D. Froebrich, C. J. Davis, W. P. Varricatt, J. Kyeong,

N. Hwang, B.-G. Park, M. G. Lee, H. M. Lee, and M. Ishiguro. UKIRT Widefield Infrared

Survey for Fe+. Monthly Notices of the Royal Astronomical Society, 443(3):2650–2660,

August 2014.

[20] Mario Livio. Jets in Planetary Nebulae. Asymmetrical Planetary Nebulae II: From Origins

to Microstructures, 199, 2000.

[21] Arturo Manchado, Letizia Stanghellini, and Mart́ın A. Guerrero. Quadrupolar Planetary

Nebulae: A New Morphological Class. The Astrophysical Journal, 466(2):L95–L98, August

1996.

[22] B. Miszalski, A. Acker, and Q. A. Parker. Central Stars of MASH Planetary Nebulae.

Hydrogen-Deficient Stars ASP Conference Series, 391, 2008.

[23] Quentin A. Parker, A. Acker, D. J. Frew, M. Hartley, A. E. J. Peyaud, F. Ochsenbein,

S. Phillipps, D. Russeil, S. F. Beaulieu, M. Cohen, J. Köppen, B. Miszalski, D. H. Morgan,
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import os

import math

fm = open(’IPHAS-Viironen-edit.txt’,’r’)

fu = open(’UWISH2_tiles.txt’,’r’)

f = open(’IPHAS-Results.txt’,’w’)

fml = fm.readlines()

f.write(fm.name+’ Lines: ’+str(len(fml))+’\n\n’)

ful = fu.readlines()

f.write(fu.name+’ Lines: ’+str(len(ful))+’\n\n’)

# For each row of the IPHAS file

for ml in fml:

dx = 15*float(ml[14:16]) + float(ml[17:19])/4 + float(ml[21:23])/240

dy = float(ml[35:38]) + float (ml[39:41])/60 + float(ml[42:44])/3600

# f.write( str(dx)+’ ’+str(dy)+’\n’)

for ul in ful[3:]:

ux = 15*float(ul[29:31]) + float(ul[32:34])/4 + float(ul[35:40])/240

uy = float(ul[45:47]) + float(ul[48:50])/60 + float(ul[51:55])/3600

if ul[44] == ’-’:

uy = -1*uy

# f.write(str(ux)+’ ’+str(uy)+’\n’)

# Dimensions for the tile from the point definition

blx = ux - (math.sqrt(0.75)*5/8)

bly = uy - (math.sqrt(0.75)*3/8)

brx = blx + math.sqrt(0.75)

bry = bly
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tlx = blx

tly = bly + math.sqrt(0.75)

trx = brx

# try = tly

if (dx > blx) and (dx < brx) and (dy > bly) and (dy < tly):

f.write(ml[0:24]+’ ’+ul[1:26]+’ ’+ml[25:45]+’ / ’+ul[29:55]+’\n’)

fm.close()

fu.close()

The code for the Python program mentioned in Section 2.2
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