
Research Archive

Citation for published version:
V. Kelefouras, A Kritikakou I. Mporas, V. Kolonias, “A high-
performance matrix–matrix multiplication methodology for 
CPU and GPU architectures”, The Journal of Supercomputing, 
Vol. 72 (3): 804-844, January 2016. 

DOI: 
10.1007/s11227-015-1613-7

Document Version:
This is the Accepted Manuscript version.
The version in the University of Hertfordshire Research Archive 
may differ from the final published version.  Users should always 
cite the published version of record.

Copyright and Reuse: 
© Springer Science+Business Media New York 2016.
This Manuscript version is distributed under the terms of the 
Creative Commons Attribution licence 
(http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited.  

Enquiries
If you believe this document infringes copyright, please contact the 
Research & Scholarly Communications Team at rsc@herts.ac.uk

https://link.springer.com/article/10.1007%2Fs11227-015-1613-7
http://creativecommons.org/licenses/by/4.0/
mailto:rsc@herts.ac.uk


Noname manuscript No.
(will be inserted by the editor)

A high performance Matrix-Matrix Multiplication
Methodology for CPU and GPU architectures

Vasilios Kelefouras, Angeliki Kritikakou,
Iosif Mporas, Vasilios Kolonias

the date of receipt and acceptance should be inserted later

Abstract Current compilers cannot generate code that can compete with
hand-tuned code in efficiency, even for a simple kernel like Matrix-Matrix
Multiplication. A key step in program optimization is the estimation of optimal
values for parameters such as tile sizes and number of levels of tiling. The
scheduling parameter values selection is a very difficult and time-consuming
task since parameter values depend on each other; this is why they are found by
using searching methods and empirical techniques. To overcome this problem,
the scheduling sub-problems must be optimized together, as one problem and
not separately.

In this paper a Matrix-Matrix Multiplication methodology is presented
where the optimum scheduling parameters are found by decreasing the search
space theoretically while the major scheduling sub-problems are addressed to-
gether as one problem and not separately according to the hardware architec-
ture parameters and input size; for different hardware architecture parameters
and/or input sizes, a different implementation is produced. This is achieved by
fully exploiting the software characteristics (e.g., data reuse) and hardware ar-
chitecture parameters (e.g., data caches sizes and associativities), giving high
quality solutions and a smaller search space. This methodology refers to a wide
range of CPU and GPU architectures.

Keywords Matrix-Matrix Multiplication, Data reuse, optimization, SIMD,
memory hierarchy, loop tiling

1 Introduction

Matrix-Matrix Multiplication (MMM) is an important kernel in most varied
domains and application areas. Its performance is of great practical importance
and it highly depends on memory management; the most performance critical

Address(es) of author(s) should be given



2 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

sub-problems are these of finding the schedules with the minimum numbers
of i) L1 data cache accesses, ii) L2 data cache accesses, iii) L3 data cache
accesses, iv) main memory data accesses, v) addressing instructions. The above
sub-problems depend on each other (e.g., a decrease on the number of L2
data cache accesses will consequently increase the number of L1 data cache
accesses) and this is why they should be addresses together as one problem
and not separately (in [1], a methodology for Matrix-Vector Multiplication is
given).

Toward this, much research has been done, either to simultaneously opti-
mize only two phases, e.g., register allocation and instruction scheduling (the
problem is known to be NP-complete) [2] [3] or to apply predictive heuristics
[4] [5]. Nowadays compilers and related works, apply either iterative compi-
lation techniques [6] [7] [8] [9], or both iterative compilation and machine
learning compilation techniques to restrict the configurations’ search space
[10] [11] [12] [13] [14] [15]. A predictive heuristic tries to determine a priori
whether or not applying a particular optimization will be beneficial, while at
iterative compilation, a large number of different versions of the program are
generated-executed by applying transformations and the fastest version is se-
lected; iterative compilation provides good results, but requires extremely long
compilation times.

The state of the art (SOA) hand/self-tuning libraries for linear algebra,
such as ATLAS [16], OpenBLAS [17], Eigen [18], Intel MKL [19], PHiPAC [20]
and a few of the many noteworthy papers from the past such as [21] [22]
[23] [24] for CPUs and [25] [26] for GPUs, do not give a theoretical solu-
tion; instead, they find the performance critical parameter values mostly by
searching and by using heuristics and empirical techniques. The selection of
the parameter values is a difficult and time consuming task for two reasons.
First, many parameters have to be taken into account, such as the number of
the levels of tiling, tile sizes, loop unroll depth, software pipelining strategies,
register allocation, code generation, data reuse, loop transformations. Second,
the optimum parameters for two slightly different architectures are different.
Such a case is MMM algorithm, which is a major kernel in linear algebra and
also the topic of this paper. In this paper the optimum scheduling parameters
are found by decreasing the search space theoretically, for a wide range of CPU
(including multi-cores) and GPU architectures.

A former MMM methodology for CPUs that support SIMD was introduced
in [27]; the major contribution of [27] is that it addresses the major software
and hardware parameters together, as one problem and not separately. This
paper, extends [27] at four ways. First, the search space is decreased theoret-
ically by applying static performance estimation. Second, this paper extends
[27] to a wide range of computer architectures; this methodology has been ex-
tended to GPU architectures, to CPU architectures without SIMD unit and to
CPU architectures different than those of the general purpose CPUs, e.g., mi-
crocontrollers, smaller processors with one level of data cache, processors with
direct mapped data cache. Third, this methodology takes into account more
hardware architecture parameters (the memories’ latencies, the data cache



Title Suppressed Due to Excessive Length 3

line size, the number, the latencies and the type of the CPU function units,
the number of the load/store units) and software characteristics (number of
matrix operations, number of addressing instructions). Fourth, the proposed
methodology, due to the major contribution of number three above gives a
smaller search space, a smaller code size and a smaller compilation time, as it
does not test a large number of alternative schedules.

The proposed methodology is compared with the state of the art software
libraries of ATLAS and Intel MKL. Although a performance comparison with
Intel MKL is unfair, a detailed experimental analysis has been made as it is
the fastest MMM library in the world for Intel general purpose processors.
A performance comparison with Intel MKL is unfair for two reasons. First,
Intel MKL developers have access to all the Intel processor architecture de-
tails which we do not, e.g., victim cache, hardware prefetchers; this is why
Intel MKL library is the fastest library on Intel processors only. Second, In-
tel MKL loop kernels are written in assembly code while our method in C
(assembly code is always more efficient); Intel developers write assembly code
to deal with the low level transformations, e.g., register allocation, instruc-
tion selection and instruction scheduling. The proposed methodology lies at a
higher level of abstraction and it is used to wide range of computer architec-
tures. Implementing the proposed methodology in assembly code is beyond the
scope of this paper and thus the low level transformations are applied by the
target compiler (which is less efficient). The scope of this paper is not to pro-
vide the peak-performance MMM implementations, but to analytical give the
architecture dependent high level transformation parameters (e.g., tile sizes)
that achieve peak-performance. We strongly believe that if could modify the
MKL library scheduling parameters according to the proposed methodology,
an even higher performance would be achieved.

The proposed methodology is compared to the SOA libraries of ATLAS
and Intel MKL for CPUs and cuBLAS for GPUs. The evaluation is done
by using Intel Xeon CPU E3-1241 v3, Pentium Intel i7-2600K, Valgrind tool
[28], ARMv7-a on GEM5 simulator, PowerPC-440 on Xilinx FPGA Virtex-5,
Nvidia GeForce GTX-580, Gem5 [29] and SimpleScalar simulator [30].

The remainder of this paper is organized as follows. In Sect. 2, the related
work is given. The proposed methodology is presented in Sect. 3. In Sect. 4, the
experimental results are presented while Sect. 5 is dedicated to conclusions.

2 Related Work

The problem of speeding up MMM is studied the last decates. A historical
perspective is given in [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]
[41]; these works present how hardware and software can work on scalable
multi-processor systems for matrix algorithms.

ATLAS [16] [42] [43] [44] [45] is an implementation of a high perfor-
mance software production/maintenance called Automated Empirical Opti-
mization of Software (AEOS). In an AEOS enabled library, many different



4 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

ways of performing a given kernel operation are supplied, and timers are used
to empirically determine which implementation is best for a given architec-
tural platform. ATLAS uses BLAS implementations. The BLAS (Basic Linear
Algebra Subprograms) are routines that provide standard building blocks for
performing basic vector and matrix operations. Intel Math Kernel Library
(Intel MKL) [19] is a computing math library of highly optimized, exten-
sively threaded routines for applications that require maximum performance.
Intel MKL library has been written by Intel and this is why it performs the
best for Intel processors only. MKL kernels have been written in assembly for
maximum performance. During the installation of ATLAS and Intel MKL, on
the one hand an extremely complex empirical tuning step is required, and on
the other hand a large number of compiler options are used, both of which are
not included in the scope of this paper. Although ATLAS is one of the SOA
libraries for MMM algorithm, its techniques for supplying different implemen-
tations of kernel operations concerning memory management are empirical
and hence it does not provide any methodology for it.

Regarding MMM implementations for one core, many related works exist
such as [22,23,21,46–52]. In [22] BLIS is presented; BLIS is a framework for
rapid instantiation of BLAS. In [23], BLIS extends the GotoBLAS approach
to implement peak performance MMM implementations. In [21] a system-
atic analysis of the high-level issues affecting the design of high-performance
matrix multiplication is given. Reference [24] gives a significant theoretical
background on finding the optimum scheduling parameters, but it refers to
specific CPUs architectures only. In [51], analytical models are presented for
estimating the optimum tile size values assuming only fully associative caches,
which in practice are very rare. The aforementioned works refer to specific
CPU architectures only and find the scheduling parameters mostly by using
empirical techniques.

Although loop-tiling is necessary to achieve high performance, the above
works do not find the tile sizes and the number of levels of tiling, by taking
into account the cache sizes, their associativities and the data arrays layouts,
together as one problem; instead searching is applied. Let us give an example.
According to ATLAS [16] (only cache size is taken into account), the size of
three rectangular tiles (one for each matrix) must be smaller or equal to cache
size; however, the elements of these tiles are not written in consecutive main
memory locations and thus they do not use consecutive data cache locations;
this means that having a set-associative cache, they cannot simultaneously
fit in data cache due to the cache modulo effect. Moreover, even if the tiles
elements are written in consecutive main memory locations (different data
array layout), the three tiles cannot simultaneously fit in data cache if the
cache is two-way associative or direct mapped. We will show that loop tiling
is efficient only when cache size, cache associativity and data array layouts,
are addressed together as one problem and not separately.

There are several works optimizing MMM for many cores [53–64]. The
fastest implementations are given in [23] where MMM is parallelized on Intel
Xeon Phi and on IBM Blue Gene/Q; an analysis is made on which loop is



Title Suppressed Due to Excessive Length 5

going to be parallelized. The vast majority of previous works regarding multi-
core architectures, deal with cluster architectures; they partition the MMM
problem into many distributed memory computers (distributed memory refers
to a multiple-processor computer system in which each processor has its own
private memory). SRUMMA [64] describes one of the best parallel algorithm
which is suitable for clusters and scalable shared memory systems. Although
SRUMMA minimizes the communication contention between CPUs, it does
not optimize the MMM problem for one CPU (it runs the cblas sgemm AT-
LAS optimized routine). Furthermore, about half of the above works, use the
Strassen’s algorithm [65] to partition the MMM problem into many multi-core
processors; Strassen’s algorithm minimizes the number of the multiplication
instructions sacrificing the number of add instructions and data locality. The
MMM code for one core, is either given by Cilk tool [66] or by cblas sgemm
routine of ATLAS. At last, [67] and [68] show how shared caches can be
utilized. All the above works, are empirical techniques and do not provide a
theoretical model.

Regarding GPUs, several related works exist such as [25] [26] [69] [70] [71]
[72] [73] [74] [75] [76]. Reference [26] show how to modify the MAGMA
GEMM kernels in order to use more efficient the Fermi architecture. [69]
presents a method for producing MMM kernels tuned only for a specific archi-
tecture, through a canonical process of heuristic autotuning, based on gener-
ation of multiple code variants and selecting the fastest ones through bench-
marking. [71] provide implementations of Strassen’s MMM algorithm as well
as of Winograd’s variant; they show that only for square matrices of very large
sizes (16384×16384) achieve 33% speedup over cblas sgemm (ATLAS routine
for data of type float) and 21% over cblas dgemm (ATLAS routine for data of
type double). [73] presents an in-depth study to reveal interesting trade-offs
between shared memory and the hardware-managed L1 data caches for MMM.
[74] investigates different performance techniques such as tiling, memory coa-
lescing, prefetching, and loop unrolling, in trying to evaluate which method is
the most efficient. [75] provides theoretical analysis why performance draw-
backs appear for specific problem sizes when using cache memories. Finally, in
[76], different data arrays layouts are evaluated, such Z-Morton and X-Morton.
All the above works, are empirical techniques and do not give a methodology.

In contrast to the proposed methodology, the above works find tile sizes
mostly by searching, since they do not exploit all the h/w and the s/w con-
straints. However, if these constraints are fully exploited, the optimum solution
can be found by enumerating only a small number of solutions; in this paper,
tile sizes are given by inequalities which contain the cache sizes and cache
associativities.

3 Proposed Methodology

In this paper a Matrix-Matrix Multiplication (MMM) methodology is pre-
sented where the sub-problems of finding the schedules with the minimum



6 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

for (i=0; i<N; i++)
for (j=0; j<M; j++)

for (k=0; k<P; k++)
C[i][j] += A[i][k] * B[k][j];

Fig. 1 MMM unoptimized code

numbers of i) L1 data cache accesses, ii) L2 data cache accesses, iii) L3 data
cache accesses, iv) main memory data accesses, v) addressing instructions, are
addressed together as one problem and not separately. We find the schedul-
ing parameters that achieve best performance by fully exploiting the software
characteristics (production-consumption, data reuse and MMM parallelism)
and the major hardware architecture parameters, i.e., the a) number of the
cores, b) number of memories, c) size of each memory, d) number of registers,
e) associativities of data cache memories, f) memories’ latencies, e) SSE in-
struction latencies. For different hardware architecture parameters, different
schedules for MMM are created.

It is well known that the search space, i.e., all different MMM implemen-
tations, is infinite and it cannot be searched. In this paper, we find the best
schedules among these that exist in our search space. The search space be-
ing addressed consists of all the high level transformations that affect MMM
performance including all different transformation orderings and all different
transformation parameters (e.g., tile sizes); these are the number of levels of
tiling, loop tiling for all the memories, register blocking, loop interchange, loop
unroll, scalar replacement, data array layouts. The search space we use does
not contain low level transformations, e.g., instruction scheduling to decrease
the number of pipeline stalls (this is beyond the scope of this paper). Although,
the low level transformations are not taken into account the search space be-
ing addressed is enormous and it is impractical to be searched, e.g., if the
number of different tile sizes for each loop is 100, the number of all different
schedules that apply loop tiling for L1 and L2 is (6!× 1006) = 7.2× 1014 (two
levels of tiling add 6 new loops); if we consider that the compilation time of
each schedule is 1 sec and given that 1sec = 3.1× 10−8 years, the compilation
time is very big; if we include all the above transformations, the number of
the schedules becomes enormous. Given that the above transformations are
strongly interdependent, the only way to decrease the search space is to be
addressed together as one problem and not separately.

For the reminder of this paper, the three arrays names and sizes are that
shown in Fig. 1, i.e., C = C + A × B, where C, A and B are of size N ×M ,
N × P and P ×M , respectively.

MMM performance depends on the time needed to the i) data to be
loaded/stored (C, A and B arrays), ii) matrix operations to be executed, iii)
addressing instructions to be executed (integer instructions only), iv) instruc-
tions to be loaded from instruction cache.

Regarding (iv), the time needed for the instructions to be fetched from L1
instruction cache, is lower than the (i)-(iii) values above, since no instruction



Title Suppressed Due to Excessive Length 7

cache conflicts occur; this is because the MMM code size is small and it always
fits in L1 instruction cache. It is important to say that all the todays processors
contain separate L1 data and instruction caches and thus we can assume that
shared/unified L2/L3 caches, contain only data. Architectures with unified L1
caches are not discussed in this paper.

Eq. 1 and eq. 2 approximate the MMM execution time; eq. 1 holds for
architectures that matrix operations and addressing operations are executed
in parallel (we assume that the arrays are floating point numbers) and eq. 2
holds for architectures that do not (either no floating point Arithmetic Logic
Unit (ALU) exists or the arrays are of type integer); in most architectures the
load/store unit and the execution unit work in parallel.

Ttotal = max(Tdata, Tmatrix−operations, Taddressing) (1)

Ttotal = max(Tdata, Tmatrix−operations + Taddressing) (2)

Regarding the time needed to execute the matrix operations
(Tmatrix−operations), it is given by the following two equations, i.e., eq. 3 and
eq. 4; eq. 3 is used in the case there is a separate multiplication unit working
in parallel with the ALU and eq. 4 otherwise (the number of multiplications is
larger than the number of additions). Tmatrix−operations is a constant number.

Tmatrix−operations =
Mullat × (N ×M × P )

NumMult
(3)

Tmatrix−operations =
Mullat × (N ×M × P )

NumMult
+

Addlat × (N ×M × (P − 1))

NumALU
(4)

where Mullat, Addlat, NumMult and NumALU are the latencies and the
numbers of the multiplication and ALU units, respectively.

Regarding addressing instructions, the Taddressing value is not a
constant number; it depends on the implementation/schedule. The number
of addressing instructions is decreased when a) the number of the levels of
tiling is decreased, b) the tile sizes are increased, c) more array references are
assigned into available registers, d) loop unroll factor is increased.

Regarding load/store instructions, Tdata � Tmatrix−operations in most
cases, i.e., if the data do not fit in L1 data cache. On the contrast to the
Tmatrix−operations, Tdata and Taddressing are not constant numbers; they de-
pend on the schedule used. Also, Tdata and Taddressing depend on each other;
normally, by increasing Tdata value, Taddressing is decreased and vice versa,
while the number of the matrix operations remains constant.

To summarize, given that Tmatrix−operations is a constant number and in
most cases Tmatrix−operations ≺ Taddressing and Tmatrix−operations ≺ Tdata,
MMM performance can be increased only by minimizing both Tdata and Taddressing

values; given that Tdata and Taddressing are interdependent, high performance
is achieved, only for both low Tdata and Taddressing values. This is because



8 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

the separate optimization of the Tdata and Taddressing values, gives different
schedules which cannot coexist, as by refining one, degrading another.

Tdata value is found by decreasing the search space theoretically according
to the memory hierarchy architecture parameters. For different cache hierarchy
architecture, a different equation that estimates Tdata value is created, e.g.,
for one level of data cache architecture Tdata value is given by eq.7. These
equations give theoretically the tile sizes that achieve a minimum Tdata value.

As far the Taddressing value is concerned, it cannot be found theoretically.
This is because the number of the addressing instructions highly depends on
the target compiler and its optimizations, e.g., unroll factor values. Thus, we
find all the schedules achieving a low Tdata value and only these that achieve a
low Taddressing value are selected; all the schedules achieving a low Tdata value
are converted into assembly code (by using the target compiler) and their
number of addressing instructions is measured. Then, all schedules achieving
both low Tdata and Taddressing values are compiled and run to the target
platform to find the fastest.

Instead of searching all different MMM schedules to find the best which
is impractical because their number is enormous, only a small number is
searched. The exploration space is decreased by orders of magnitude since
we test only solutions that are close to the best; we test only these schedules
achieving both low Tdata and Taddressing values. In this way, the compilation
time is drastically decreased.

A different schedule is emerged for different types of CPUs, CPU param-
eters and input size. The reminder of this paper presents all these schedules.
The proposed methodology for CPUs with one core is given in subsection 3.1,
while the proposed methodology for CPUs with more than one cores is given
in subsection 3.2. The proposed methodology for GPU architectures is given
in subsection 3.3.

A different schedule is given according to the a) number and the type of
the cores, b) number of cache memories, c) cache sizes, d) input sizes and e)
whether an SIMD unit is supported or not (Fig. 2). In Fig. 2, ’S’, ’M’ and ’L’
indicate small, medium and large input sizes, respectively. Also, the 3.1.1-3.1.6,
3.2.1, 3.2.2 and 3.3 values that are shown in Fig. 2 refer to the Subsect. 3.1.1
- Subsect. 3.1.6, Subsect.3.2.1, Subsect.3.2.2 and Subsect.3.3, respectively and
they are given below.

3.1 CPUs with one core

A different schedule is given according to the a) number of data cache memo-
ries, b) cache sizes, c) input sizes and d) whether an SIMD unit is supported
or not (Fig. 2). The Subsect. 3.1.1 - Subsect. 3.1.6 which are shown in Fig. 2,
are given below.



Title Suppressed Due to Excessive Length 9

Single core CPUs

L1 data 
cache only

L1 data cache 
and L2 cache

SIMD 
support

No SIMD 
support

S M L

Multi core CPUs GPUs

S M L

3.1.6
3.1.1

3.1.6
3.1.2

3.1.6
3.1.3

3.1.1

3.1.1
3.1.2

3.1.1
3.1.3

SIMD 
support

No SIMD 
support

S M L S M L

3.1.6
3.1.1

3.1.6
3.1.4

3.1.6
3.1.5

3.1.1

3.1.1
3.1.4

3.1.1
3.1.5

Shared 
L2

Shared 
L3

3.2.1 3.2.2

3.3

Fig. 2 All different MMM cases. The last nodes refer to the Subsections that provide
the appropriate schedules. ’S’, ’M’ and ’L’ indicate small, medium and large input sizes,
respectively.

C

N

M A

N

P

..
.

B

P

M

..
.

..
.

.........
i0i0

j0 j0

= X

Tile0Tile0Tile0

L1

L1

Fig. 3 MMM for small input sizes and CPU with L1 data cache and with/without L2 cache

3.1.1 Small input sizes and CPU with L1 data cache and with/without L2
cache

For small input sizes, i.e., if all the data of B, the data of 2× i0 rows of A and
the data of 2 × i0 rows of C fit in different ways of L1 data cache (ineq. 5),
the scheduling given below is used (Fig. 3).

L1× (assoc− k1− k2)

assoc
≥ P ×M × element size, (5)

where k1 = d 2×i0×P×element size
L1/assoc e ≤ assoc

4 , k2 = d 2×i0×M×element size
L1/assoc e ≤

assoc
4 , L1 is the size of the L1 data cache memory in bytes, element size

is the size of the arrays elements in bytes and assoc is the L1 associativity



10 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

(assoc 6= 1). P ×M is the size of the B array in elements. k1 is an integer and
it gives the number of L1 data cache lines with identical L1 addresses used for
2× i0 rows of A; k2 is an integer and it gives the number of L1 data cache lines
with identical L1 addresses used for 2× i0 rows of C; for the reminder of this
paper we will more freely say that we use k1 cache ways for A, k2 ways for C
and (assoc−k1−k2) cache ways for B (in other words A, B and C are written
in separate data cache ways). In the case that P ×M � 2× i0×P +2× i0×M
or in the case that a two-way set associative cache exists, 1 cache way is used
for both A and C. In the case that assoc = 1, a slightly different schedule is
given at the last paragraph of Subsect. 3.1.3.

The optimum production-consumption (when an intermediate result is pro-
duced it is directly consumed-used) of array C and the sub-optimum data reuse
of array A have been selected by splitting the arrays into tiles according to
the number of the registers, eq. 6 (Fig. 3). All different i0, j0 combinations
satisfying ineq. 6 give a feasible solution.

RFFP ≥ i0 × j0 + i0 + j0 (6)

where RFFP is the number of the available floating point registers. In the
case that C,A and B contain integer numbers, ineq. 6 contains the addressing
variables and the loop iterators.

We use i0 × j0 registers for C, i0 for A and j0 for B (Fig. 3). We assign
registers across i, j iterators (Fig. 1) and not across k iterator because k is the
innermost one (it is changes its value in each iteration and thus no data reuse
is achieved).

The schedule is shown in Fig. 3. First, the first i0 elements of the first
column of A are multiplied by the first j0 elements of the first row of B. Then,
the first i0 elements of the second column of A are multiplied by the first j0
elements of the second row of B etc. This is repeated until the first i0 rows of
A have been multiplied by the first j0 columns of B; then the same i0 rows of
A as above, are multiplied by the next j0 columns of B etc.

Given that each row of A is multiplied by all columns of B, both A and B
are reused M and N times, respectively; thus, they have to remain in L1 data
cache. To do this, the cache lines of A and B must be written in L1 without
conflict with each other and also with C. 2 × i0 rows of A and C have to fit
in L1, the current processed i0 rows and the next ones, for two reasons. First,
except from the first i0 rows of A and C, also the second i0 rows must be
loaded in L1, without conflict with B. Second, when the third i0 rows of A are
multiplied by B, the L1 cache lines containing the first i0 rows are replaced by
the third i0 rows ones according to the LRU cache replacement policy, without
conflict with the B ones. This is achieved by storing the rows of A, C and the
columns of B in consecutive main memory locations and by using (k1× L1

assoc )

L1 memory size for A, (k2× L1
assoc ) for C and ((assoc− k1− k2)× L1

assoc ) for
B (ineq. 5). We can more freely say that this is equivalent to using k1 cache
ways for A, k2 cache ways for C and (assoc− k1− k2) cache ways for B. An
empty cache line is always granted for each different modulo (with respect to



Title Suppressed Due to Excessive Length 11

Table 1 Number of data accesses in memory hierarchy

Subsection 3.1.1 case
Ineq.5 holds

No optimization
C A B

L1 N ×M N × P ×M P ×M ×N
DDR N ×M N × P P ×M

Schedule in Subsection 3.1.1
C A B

L1 N ×M N×P×M
j0

P×M×N
i0

DDR N ×M N × P P ×M
Subsection 3.1.2 case

Ineq.6 holds
No optimization

C A B
L1 N ×M N × P ×M P ×M ×N
DDR N ×M N × P P ×M ×N

Schedule in Subsection 3.1.2
C A B

L1 N ×M N×P×M
j0

P×M×N
i0

DDR N ×M N × P P×M×N
II

Subsection 3.1.3 case
Ineq.6 does not hold

No optimization
C A B

L1 N ×M N × P ×M P ×M ×N
DDR N ×M N × P ×M P ×M ×N

Schedule in Subsection 3.1.3
C A B

L1 N×M×P
KK

N×P×M
j0

P×M×N
i0

DDR N×M×P
KK

N × P P×M×N
II

Subsection 3.1.4 case
Ineq.7 holds

No optimization
C A B

L1 N ×M N × P ×M P ×M ×N
L2 N ×M N × P P ×M ×N
DDR N ×M N × P P ×M

Schedule in Subsection 3.1.4
C A B

L1 N ×M N×P×M
j0

P×M×N
i0

L2 N ×M N×P×M
JJ

P ×M

DDR N ×M N × P P ×M

Subsection 3.1.5 case
Ineq.7 does not hold

No optimization
C A B

L1 N ×M N × P ×M P ×M ×N
L2 N ×M N × P ×M P ×M ×N
DDR N ×M N × P ×M P ×M ×N

Schedule in Subsection 3.1.5
C A B

L1 N×M×P
KK

N×P×M
j0

P×M×N
i0

L2 N×M×P
KK

N×P×M
j0

P×M×N
II

DDR N×M×P
KK

N × P P×M×N
II

the size of the cache) of A, C and B memory addresses. It is important to say
that if we use L1 ≥ (P ×M + 2× i0×P + 2× i0×M)× element size instead
of ineq. 5, the number of L1 misses will be much larger because A, B and C
cache lines would conflict with each other.

The time needed for the array elements to be loaded/stored, is approxi-
mated by eq. 7 and Table 1.



12 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

Tdata = max(
L1load lat × L1loads + L1store lat × L1stores

L1ports
,

DDRload lat

lineL1
×DDRloads + DDRstore lat ×

DDRstores × dj0/lineL1e
j0

) (7)

where L1load lat, DDRload lat, L1store lat, DDRstore lat are the L1 and
DDR load and store latencies, respectively. L1loads, DDRloads, L1stores, DDRstores,
are the numbers of loads and stores occur for each memory and they are shown
in Table 1. lineL1 is the number of elements each L1 cache line contains and
L1ports is the number of L1 load/store ports. Without loss of generality, in
eq. 7, we assume a memory architecture that only one L1 cache line is re-
placed at a time; if more than one cache lines are replaced in parallel, then
eq. 7 is changed accordingly.

Regarding the number of DDR writes, dj0/lineL1e L1 data cache lines are
written to main memory for each j0 elements of C. For data cache architectures
where reads and writes are executed in parallel, eq. 7 is changed accordingly.

From eq. 7 and Table 1, we can approximate the Tdata value. Supposing
that L1 and DDR load/store latencies are 1 and 50, respectively and also that
L1ports = 1 and lineL1 = 4, eq. 7 and Table 1 give

Tdata = max(2×N ×M +
N × P ×M

i0
+

P ×M ×N

j0
,

50

4
× (N ×M + N × P + P ×M) + 50×

N ×M × d j04 e
j0

) (8)

Regarding DDR access time, it is minimized when j0 is a multiple of cache
line size, i.e., 4. Regarding L1 data cache access time, it is minimized when
( 1
i0

+ 1
j0

) is minimized (i0, j0 are found according to ineq. 6 and RFFP is a

power of 2). For RFFP = 8 or RFFP = 16, the above equation is minimized
when i0 == j0. Let us consider that there are 16 floating point registers. If
i0 == j0, then i0 = j0 = 3 and the number of L1 data cache accesses is
N ×M + 2NMP

3 , while if i0 = 1 and j0 = 14, the number of L1 data cache

accesses is N ×M + 15NMP
14 � N ×M + 2NMP

3 . Also, if RFFP = 8, then
i0 = j0 = 2 gives the minimum L1 data cache access time. However, in the
case that RFFP = 32, we cannot find a good i0 = j0 solution, since several
registers are wasted, i.e., if i0 = j0 = 4 then 16, 4 and 4 registers are used for
C, A and B, respectively, which means that only 24/32 registers are used; in
this case, we do not fully utilize the RF size and thus a solution different than
i0 = j0 is preferred, e.g., i0 = 5 and j0 = 4. On the other hand, if we select
i0 = j0 = 5, then we need 35 register which are more than 32.

However, the best performance is not always achieved by minimizing Tdata

value; although i0 == j0 case achieves a lower number of data accesses than
j0 � i0 case (for the most register file sizes), it achieves a larger number of



Title Suppressed Due to Excessive Length 13

for (i=0; i<N; i+=2) {

for (j=0; j<M; j+=2) {

r1=0;r2=0;r3=0;r4=0;

for (k=0; k<P; k++) {

r5=A[i][k]; r6=A[i+1][k];

r7=B[k][j]; r8=B[k][j+1];

r1+=r5*r7;

r2+=r5*r8;

r3+=r6*r7;

r4+=r6*r8;

}

C[i][j]=r1;

C[i][j+1]=r2;

C[i+1][j]=r3;

C[i+1][j+1]=r4;

} }

for (i=0; i<N; i++) {

for (j=0; j<M; j+=6) {

r1=0;r2=0;r3=0;r4=0;r5=0;r6=0;

for (k=0; k<P; k++) {

r7=A[i][k];

r8=B[k][j];

r1+=r7*r8;

r8=B[k][j+1];

r2+=r7*r8;

r8=B[k][j+2];

r3+=r7*r8;

r8=B[k][j+3];

r4+=r7*r8;

r8=B[k][j+4];

r5+=r7*r8;

r8=B[k][j+5];

r6+=r7*r8; }

C[i][j]=r1; C[i][j+1]=r2; C[i][j+2]=r3;

C[i][j+3]=r4; C[i][j+4]=r5; C[i][j+5]=r6;

} }

(a) (b)

Fig. 4 MMM optimized code for RFFP = 8. In (a) i0 = j0 = 2, while in (b) i0 = 1 and
j0 = 6. (a) achieves a lower Tdata value but (b) achieves a lower Taddressing value

addressing instructions; this is because in the first case, more array addresses
per iteration, are computed (Fig. 4).

The above schedule achieves the minimum number of data accesses (for
the most register file sizes). In this case, C array is loaded and stored once
from L1 data cache, while A and B are loaded N/i0 and M/j0, respectively
(for square matrices, N2 stores and N2 + N3/i0 + N3/j0 loads occur). The
row-column way of multiplying is the best. If we use another schedule, e.g.,
loop interchange transformation is applied and the iterators are k, i, j, instead
of i, j, k and thus we use i0×j0, i0 and j0 registers for A, C and B, respectively,
then N3/i0 stores and N2 +N3/i0 +N3/j0 loads occur, which are more than
those in the previous case. A larger number of data accesses occurs because C
is always accessed twice (C array is both loaded and stored); thus, it is more
efficient to access C array once and A, B arrays more times, than the opposite.

3.1.2 Medium input sizes with L1 data cache only

For medium input sizes where ineq. 9 holds, another schedule is used (Fig. 5).
If all the data of a Tile1 of A and a Tile1 of B fit in separate ways of L1 cache
(ineq. 9), the scheduling given below is used.

L1× (assoc− k)

assoc
≥ II × P × element size (9)



14 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

C

N

M A

N

P B

P

Mj0

II

j0

= X

Tile1Tile1Tile1

II

L1

L1

Fig. 5 MMM for medium input sizes and CPUs with L1 data cache only

where k = dP×j0×element size
L1/assoc e ≤ assoc

2 , L1 is the size of the L1 cache,

assoc is the L1 associativity (assoc 6= 1) and element size is the size of the
arrays elements in bytes.

k is an integer and it gives the number of L1 data cache lines with identical
L1 addresses used for Tile1 of B; we use k cache ways for B and assoc − k
cache ways for A (in other words A and B are written in separate data cache
ways).

In order to the Tile1 tiles of A and B remain in L1 data cache, the cache
lines of Tile1 of A must be written in L1 without conflict with the Tile1 of
B ones. This is achieved by storing the Tile1 of A and the Tile1 of B in
consecutive main memory locations and by using (k × L1

assoc ) L1 memory size

for B and ((assoc− k)× L1
assoc ) L1 memory size for A (ineq. 9). We can more

freely say that this is equivalent to using k cache ways for B and (assoc− k)
cache ways for A. An empty cache line is always granted for each different
modulo (with respect to the size of the cache) of A and B memory addresses.
We do not need any empty space for C because a) Tile1 of C size is much
smaller than the other Tile1 tiles (normally, P � II � j0), b) each element of
C is stored just once into memory (no data reuse) and c) C is stored into main
memory infrequently; thus, the number of conflicts due to C can be neglected
(victim cache if exists, eliminates the misses of C). However, if P is comparable
to II, then an additional cache way must be used for C.

Ineq. 9 holds only when Tile1 of A and B are written in consecutive main
memory locations. Given that the arrays are written row-wise in main memory,
the elements of Tile1 of A are written in consecutive main memory locations,
but the elements of Tile1 of B are not. Thus, the data layout of B is changed
from row-wise to tile-wise, i.e., all elements are written in main memory just
as they are fetched; first, the first j0 elements of the first row of B are written
to main memory, then the first j0 elements of the second row of B etc.

It is important to say that if we use L1 ≥ (II×P +P × j0)×element size
instead of ineq. 9, the number of L1 misses will be much larger because A and
B cache lines would conflict with each other.

The scheduling follows. First, the first i0 rows of A are multiplied by the
first j0 columns of B exactly as in the previous subsection. Then the next i0
rows of A are multiplied by the same columns of B as above. This is repeated



Title Suppressed Due to Excessive Length 15

C

N

M
A

N

P
B

P

MKK j0

IIII

j0

KK

= X

Tile1Tile1Tile1

L1L1

Fig. 6 MMM for large input sizes and CPUs with L1 data cache only

until all the rows of Tile1 of A are multiplied by the first j0 columns of B.
After the first Tile1 of A has been multiplied by the first Tile1 of B, the first
Tile1 of A is multiplied by the second Tile1 of B etc. In this way, data reuse
is achieved on both A and B arrays.

The time needed for the arrays elements to be loaded/stored, is approxi-
mated by eq. 7 and Table 1. Supposing that L1 and DDR load/store latencies
are 1 and 50, respectively and also that L1ports = 1 and lineL1 = 4, eq. 7 and
Table 1 give

Tdata = max(2×N ×M +
N × P ×M

i0
+

P ×M ×N

j0
,

50

4
× (N ×M + N × P +

P ×M ×N

II
) + 50×

N ×M × d j04 e
j0

) (10)

Regarding DDR access time, it is minimized when II is maximized and j0
is a multiple of cache line size, i.e., 4; also II is maximized when j0 = 1 (II and
j0 are interdependent); there is a trade-off. Regarding L1 data cache access
time, it is minimized when ( 1

i0
+ 1

j0
) is minimized (i0, j0 are found according

to ineq. 6).

3.1.3 Large input sizes and CPUs with L1 data cache only

For large input sizes, where ineq. 9 does not hold, the scheduling given below
is used (Fig. 6).

In this case, i0 rows of A and j0 columns of B do not fit in L1; ineq. 9
cannot give j0 � 1 and i0 � 1. Thus, P dimension is also tiled and Tile1 tiles
become even smaller; Tile1 tiles contain i0 sub-rows of A and j0 sub-columns
of B; the Tile1 tiles of A and B are of size II×KK and KK×j0, respectively.
KK is selected to be as large as possible since C array is both loaded and
stored, KK times from main memory.

Now, instead of multiplying rows of A by columns of B, sub-rows of size
KK are multiplied by sub-columns of B. The largest II integer value for
KK = P/2 is selected that ineq. 11 holds. If ineq. 11, still cannot give an II
value satisfying ineq. 6, KK = P/3 is selected etc.



16 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

L1× (assoc− k)

assoc
≥ II ×KK × element size (11)

where k = d j0×KK×element size
L1/assoc e ≤ assoc

2 , KK = P
1 ,

P
2 , ...,

P
n and n is

positive integer (n ≥ 1).

II sub-rows of A and j0 sub-columns of B of size KK, have to fit in separate
ways of L1 data cache. It is important to say that ineq. 11 holds only when the
tile elements of A and B are written in consecutive main memory locations;
otherwise, the tile sub-rows/sub-columns will conflict with each other due to
the cache modulo effect. As it was explained in the previous Subsection, we do
not need any empty space for C. However, if the size of Tile1 of C is comparable
to the others, then cache size which equals to one cache way must be granded
for C.

Regarding the data layout of A, when P dimension is tiled, the data layout
of A is changed from row-wise to tile-wise; A elements are written into memory
just as they are fetched. If the data layout of A is not changed, ineq. 11 cannot
give a minimum number of cache conflicts since the sub-rows of A will conflict
with each other. The same holds for B. The data array layout of B is changed
from row-wise to tile-wise.

The scheduling follows. The multiplication between two Tile1 tiles is ex-
actly the same as in the previous case (Subsection 3.1.1). First, the first Tile1
of A is multiplied by all Tile1 tiles of the first Tile1 block row of B. Then, the
second Tile1 of the first Tile1 block column of A is multiplied by all the Tile1
tiles of the first Tile1 block row of B. Then, the second Tile1 block column of
A is multiplied by the second Tile1 block row of B etc.

The time needed for the array elements to be loaded/stored, is approxi-
mated by eq. 7 and Table 1. Supposing that L1 and DDR load/store latencies
are 1 and 50, respectively and also that L1ports = 1 and lineL1 = 4, eq. 7 and
Table 1 give

Tdata = max(
2×N ×M × P

KK
+

N × P ×M

i0
+

P ×M ×N

j0
,

50

4
× (

N ×M × P

KK
+ N × P +

P ×M ×N

II
) + 50×

N×M×P
KK × d j04 e

j0
) (12)

Regarding DDR access time, it is minimized when KK and II are maxi-
mized and when j0 is a multiple of cache line size, i.e., 4. Tdata highly depends
on the KK and II values which are the largest possible according to the L1
data cache size.

In the case of direct mapped data cache, both A and B tiles compete with
each other for the same L1 addresses. Given that both tiles cannot remain
in L1 due to the cache modulo effect, we select Tile1 of A to be many times
larger than Tile1 of B, i.e., II � j0. In this way, the main part of Tile1 of A
remain in L1 and the number of L1 misses is kept low.



Title Suppressed Due to Excessive Length 17

C

N

M
A

N

P
B

P

M

...

i0i0

JJ

...

L1

L1L2

Tile1Tile1Tile1

= X..
....

JJ

Fig. 7 MMM for medium input sizes and CPUs with L2 and L1 data cache

3.1.4 Medium input sizes and CPUs with L2 and L1 data cache

If all the data of A and the Tile1 of B/C fit in separate ways of L2 cache
(ineq. 13), the scheduling given below is used (Fig. 7).

L2× (assoc− 1)

assoc
≥ N × P × element size (13)

where L2 is the size of the L2 cache, assoc is the L2 associativity and
element size is the size of the arrays elements in bytes (e.g., element size = 4
for floating point numbers).

Given that N � JJ for most cases, the size of A is much larger than the
size of Tile1 of B and Tile1 of C, and thus ((assoc − 1) × L2

assoc ) and ( L2
assoc )

L2 size is needed for A and B-C arrays, respectively.

Regarding L1 data cache, 2 × i0 rows of A and JJ columns of B have to
fit in separate ways of L1 (ineq. 14).

L1× (assoc− k)

assoc
≥ P × JJ × element size, (14)

where k = d 2×i0×P×element size
L1/assoc e ≤ assoc

2 , L1 is the size of the L1 data

cache memory in bytes, element size is the size of the arrays elements in
bytes and assoc is the L1 associativity (assoc 6= 1).

The scheduling follows. First, the first Tile1 of A is multiplied by the
first Tile1 of B. The multiplication between two Tile1 tiles is the same as
in Subsect. 3.1.1. Then, the second Tile1 of A is multiplied by the same Tile1
tiles of B as above etc. We select the whole A to fit in L2, since having a Tile1
of B in L1 data cache, its elements need to be multiplied by as many rows of
A as possible before they are spilled to upper level memories.

The time needed for the array elements to be loaded/stored, is approxi-
mated by eq. 19 and Table 1.

Tdata = max(
L1load lat × L1loads + L1store lat × L1stores

L1ports
,



18 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

L2load lat

lineL1
× L2loads + L2store lat ×

L2stores × dj0/lineL1e
j0

,

DDRload lat

lineL2
×DDRloads + DDRstore lat ×

DDRstores × dj0/lineL2e
j0

)(15)

where L1load lat, L2load lat, DDRload lat, L1store lat, L2store lat, DDRstore lat

are the L1,L2 and DDR load and store latencies, respectively. L1loads, L2loads,
DDRloads, L1stores, L2stores, DDRstores, are the numbers of loads and stores
occur for each memory, according to Table 1. lineL1/lineL2 are the numbers
of elements each L1/L2 cache line contains and L1ports is the number of L1
load/store ports. In eq. 7, we assume that only one L1/L2 cache line is replaced
at the time; if more than one cache lines are replaced concurrently, e.g., two
lines, then eq. 7 is changed accordingly.

Supposing that L1, L2 and DDR load/store latencies are 1, 4 and 50,
respectively and also that L1ports = 1, lineL1 = 4, lineL2 = 4, eq. 7 and
Table 1 give

Tdata = max(2×N ×M +
N ×M × P

i0
+

N ×M × P

j0
,

N ×M +
N ×M × P

JJ
+ P ×M + 4×

N ×M × d j04 e
j0

,

50

4
(N ×M + N × P + P ×M) + 50×

N ×M × d j04 e
j0

) (16)

Regarding DDR access time, it is minimized when j0 is a multiple of L2
cache line size, i.e., 4. Regarding L2 data cache access time, it is minimized
when JJ is maximized and j0 is a multiple of L1 cache line size, i.e., 4. JJ is
maximum according to the L1 data cache size. Regarding L1 data cache access
time, it is minimized when ( 1

i0
+ 1

j0
) is minimized.

3.1.5 Large input sizes and CPUs with L2 and L1 data cache

For large input sizes, where ineq. 13 does not hold, the scheduling given below
is used (Fig. 8).

In this case, ineq. 14 cannot give JJ � 1 and i0 � 1. Thus, P dimension is
also tiled as in Subsect. 3.1.3 and Tile1 tiles become even smaller.

Thus, instead of multiplying rows of A by columns of B, sub-rows of size
KK are multiplied by sub-columns of size KK. The Tile1 of A becomes of size
i0 ×KK and the Tile1 of B becomes of size KK × j0; the largest j0 integer
value for KK = P/2 is selected that ineq. 17 holds. If ineq. 17, still cannot
give a j0 value satisfying ineq. 6, KK = P/3 is selected and etc.

L1× (assoc− k)

assoc
≥ KK × j0 × element size (17)

where k = d 2×i0×KK×element size
L1/assoc e ≤ assoc

2 , KK = P
1 ,

P
2 , ...,

P
n and n is

positive integer (n ≥ 1).



Title Suppressed Due to Excessive Length 19

C

N

M
A

N

P

B

P

M
j0

i0i0

j0

...

L1

L1L2

Tile2 Tile1Tile1Tile1

II

KK

KK

Tile2

= X

..
.

..
.

..
.

... ... ...

Fig. 8 MMM for large input sizes and CPUs with L2 and L1 data cache

2 × i0 sub-rows of A and j0 sub-columns of B of size KK, have to fit in
separate ways of L1 data cache. It is important to say that ineq. 17 holds only
when the tiles of A and B are written in consecutive main memory locations
(tile-wise); otherwise, the tiles sub-rows/sub-columns will conflict with each
other due to the cache modulo effect.

To efficiently use the L2 cache, the array A is further partitioned into Tile2
tiles. A Tile2 tile of A (size of II×KK), a Tile1 tile of B (size of KK×j0) and
a Tile2 of C (size of II × j0), have to fit in L2 cache (ineq. 18). Array A uses
assoc− 1 L2 ways while B-C arrays use only one L2 way. This is because the
sum of Tile2 of C and Tile1 of B, is of smaller size than one L2 way (II � j0);
moreover, C and B tiles do not achieve data reuse in L2 and thus there is no
need to remain in L2 (Tile1 of B is reused in L1 data cache not in L2).

L2× (assoc− 1)

assoc
≥ II ×KK × element size (18)

The scheduling follows. First, the first Tile1 of the first Tile2 of A is multi-
plied by the first Tile1 of the first Tile1 block row of B. Then, the second Tile1
of the first Tile2 of A is multiplied by the same Tile1 of B as above etc. After
the first Tile2 of A has been multiplied by the first Tile1 of B, it is multiplied
by the remaining Tile1 tiles of the first Tile1 block row of B. Then, the second
Tile2 of the first Tile2 block column of A is multiplied by the all Tile1 tiles
of the first Tile1 block row of B etc. The procedure ends when all Tile2 block
columns of A have been multiplied by all Tile1 block rows of B.

We select a big Tile2 of A to fit in L2, since a Tile1 of B which resides
in L1 data cache, is multiplied by all rows of A; thus we multiply Tile1 of B
with as many rows of A as possible before they are spilled to the upper level
memory.

The time needed for the array elements to be loaded/stored, is approx-
imated by eq. 19 and Table 1. Supposing that L1, L2 and DDR load/store
latencies are 1, 4 and 50, respectively and also that L1ports = 1, lineL1 = 4,
lineL2 = 4, eq. 7 and Table 1 give



20 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

C A B

...

RF-2 M

P

P

NN

M

..
.

Reg7
Reg8

Reg1 Reg2

Reg3
Reg4

Reg5 Reg6

..
.

Fig. 9 MMM for CPUs with SIMD

Tdata = max(
2×N ×M

KK
+

N ×M × P

i0
+

N ×M × P

j0
,

N ×M × P

KK
+

N ×M × P

j0
+

P ×M ×N

II
+ 4×

N×M×P
KK × d j04 e

j0
,

50

4
(
N ×M × P

KK
+ N × P +

N ×M × P

II
) + 50×

N×M×P
KK × d j04 e

j0
) (19)

3.1.6 CPUs with SIMD

In this case, a scheduling similar to that explained in Subsect. 3.1.1 is used. The
optimum production-consumption (when an intermediate result is produced
it is directly consumed-used) of array C and the sub-optimum data reuse of
array A have been selected by splitting the arrays into tiles according to the
number of XMM/YMM registers (eq. 20).

RF = p + 1 + 1 (20)

where RF is the number of the XMM/YMM registers and p is the number
of the registers used for C array. Thus, we assign p registers for C and 1 register
each for A and B.

Regarding Tdata value, the best schedule here is similar to than given in
Subsect. 3.1.1, i.e., 2 × 2, 2 and 2 registers are used for C, A and B, when
RF = 8 and 3× 3, 3 and 3 registers are used for C, A and B, when RF = 16.
However, the schedule according to ineq. 20 is faster on SIMD architectures
since the lower number of addressing instructions has a larger effect on per-
formance. As the p value increases, the number of SSE instructions decreases
(it is explained below). We have evaluated both solutions in a large number
of different architectures and the first (that of Fig. 9) is the fastest at all
architectures.

The illustration example consists of the scenario that there are 8 XMM reg-
isters (XMM0:XMM7 of 16 bytes each) and the arrays contain floating point



Title Suppressed Due to Excessive Length 21

data (4 byte elements). The first 4 elements of the first row of A (A(0, 0 : 3))
and the first four elements of the first column of B (B(0 : 3, 0)) are loaded from
memory and they are assigned into XMM0 and XMM1 registers respectively
(the elements of B have been written into main memory tile-wise, i.e., just
as they are fetched). XMM0 is multiplied by XMM1 and the result is stored
into XMM2 register (Fig. 4). Then, the next four elements of B (B(0 : 3, 1)),
are loaded into XMM1 register again; XMM0 is multiplied by XMM1 and the
result is stored into XMM3 register (Fig. 9, Fig. 4). The XMM0 is multiplied
by XMM1 for 6 times and the XMM2:XMM7 registers contain the multipli-
cation intermediate results of the C array. Then, the next four elements of A
(A(0, 4 : 7)) are loaded into XMM0 which is multiplied by XMM1 for 6 times,
as above (Fig. 4); the intermediate results in XMM2:XMM7 registers, are al-
ways produced and consumed. When the 1st row of A has been multiplied by
the first 6 columns of B, the four values of each one of XMM2:XMM7 registers
are added and they are stored into main memory (C array), e.g., the sum of
the four XMM2 values, is C(0, 0).

The above procedure continues until all the rows of A have been multiplied
by all the columns of B. There are several ways to add the XMM2:XMM7
data; three of them are shown in Fig. 10, where 4 XMM registers are used
to store the data of C, i.e., XMM1, XMM2, XMM3 and XMM4 (the SSE
instructions’ latencies are taken into account here). The first one (Fig. 10-a)
sums the four 32-bit values of each XMM register and the results of the four
registers are packed in one which is stored into memory (the four values are
stored into memory using one SSE instruction). The second one, sums the
four 32-bit values of each XMM register and then each 32-bit value is stored
into memory separately (without packing). For most SIMD architectures, the
second (Fig. 10-b) is faster than the first one, because the store and add
operations can be executed in parallel (the first one has a larger critical path).
The third one (Fig. 10-c), unpacks the 32-bit values of the four registers and
packs them into new ones in order to add elements of different registers. For
most SIMD architectures, the third is faster than the other two ones, because
unpacking and shuffle operations usually have smaller latency and throughput
values than slow hadd operations.

By using SSE instructions, eq.1 changes into eq. 21. KK is not shown in
Fig. 9; KK is the tile size across dimension P and for large input sizes KK ≺ P
(Fig. 8). As the KK value decreases, the number of SSE instructions increases
according to the following equation (code shown in Fig. 10 is executed more
times).

Ttotal = max(Tdata, Tmatrix−operations + c×
N ×M × P

KK

p
, Taddressing) (21)

where c is the sum of the SSE instruction latencies shown in Fig. 10.

Thus, as the p value increases, the number of SSE instructions decreases.



22 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

a) b)

c)

Fig. 10 Three different ways for unpacking the multiplication results using SSE intrinsics;
XMM1, XMM2, XMM3, XMM4 contain the C values. For most SIMD architectures, the
three schedules are in increased performance order.

3.2 Multi-core CPUs

To run MMM effectively in many cores, the MMM problem is partitioned into
smaller sub-problems and each sub-problem corresponds to a thread; each
thread runs in one core only. Each thread must contain at least p1 instruc-
tions, where p1 is found experimentally and differs from one CPU to another.
Otherwise, the cores will remain several CPU cycles idle since the threads
initialization and synchronization time is made comparable to the threads ex-
ecution time; this leads to low performance. Furthermore, in order to achieve
high performance, the number of the threads must be higher than p2, where
p2 is found experimentally. The impact of p1 and p2 on performance is com-
parable to the memory management problem.

Regarding small input sizes, a large speedup cannot be achieved. This is
because either a low p1 and/or a low p2 value is selected. In this case it
is preferable to run MMM in fewer number of cores in order to increase p1
and/or p2.

The MMM execution time on a quad core CPU is approximated by eq. 22
and eq. 23.



Title Suppressed Due to Excessive Length 23

C A B
KK

... ... ... ...

...

...

...

..
.

..
.

K
K

JJ
j0

II
core_0 core_1 core_2 core_3

core_0 core_1 core_2 core_3

Tile2Tile1

... ...

JJJ

II

JJ
P

P

M

NN

M

..
.

...

Tile2Tile2

Fig. 11 The proposed methodology for 4 cores having a shared L2 cache.

Ttotal = max(Ttotal−core1, Ttotal−core2, Ttotal−core3, Ttotal−core4) (22)

Ttotal−corei =

Num−of−Threads∑
j=1

Ttotal−threadj (23)

where i = [1, 4] and Ttotal−threadj is the Ttotal value given in Subsect. 3.1.
Most multi core processors, typically contain 2 or 3 levels of cache, i.e., a)

separate L1 data and instruction caches and a shared L2 cache, b) separate
L1 data and instruction caches, separate unified L2 caches and a shared L3
cache. The proposed methodology for shared L2 and shared L3, is given in
Subsect. 3.2.1 and Subsect. 3.2.2, respectively.

3.2.1 CPUs with shared L2

To utilize L2 shared cache, we partition the three arrays into Tile2 tiles
(Fig. 11). The Tile2 tiles of A, B and C, are of size II × KK, KK × JJ
and II × JJ , respectively. Each multiplication between two Tile2 tiles cre-
ates a different thread. For small and medium input sizes, we always select
KK = P (Fig. 11). Each multiplication between two Tile2 tiles is made as in
Subsect. 3.1.5. Having q number of cores, each Tile2 of A is multiplied by q
consecutive Tile2 tiles of B in parallel, each one at a different core (Fig. 11);
thus, JJJ (JJJ = q × JJ) is evenly divisible by M .

One Tile2 of A and at least q Tile1 of B have to fit in L2 shared cache. The
Tile2 of A is always fetched to all the cores. Also, q Tile1 tiles of different Tile2
tiles of B are loaded, which have no consecutive elements between themselves.
The goal is these q Tile1 tiles of B and the next four ones, do not conflict with
the Tile2 of A and do not conflict with each other. In general, an L2 cache



24 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

with assoc ≥ q+1 is needed here. Cache size equal to ((assoc−q)× L2
assoc ) and

(q × L2
assoc ) is needed for A (array A is written into main memory tile-wise)

and B-C, respectively (ineq. 24). We select a big Tile2 of A to fit in L2 since
having one Tile1 of B in each one of the q L1 data caches, their elements need
to be multiplied by as many rows of A as possible before they are spilled to
L2; Tile2 of A is reused M/j0 times. L2 cache size that equals to q L2 ways is
used for the Tile1 tiles of B and C, since their size is small and their elements
are not reused (Tile1 of B is reused in L1 data cache not in L2).

Regarding L2 data cache, the largest II value which satisfy ineq. 24 is
selected (Fig. 11). Given that a Tile1 of B is written in L1 data cache, it is
memory efficient to be multiplied by as many rows of A as possible, before it
is spilled from L1.

L2× (assoc− q)

assoc
≥ II ×KK (24)

where the KK value is determined according to L1 data cache size (ineq. 17).
JJ value depends on the number of instructions each thread must contain and
it is found experimentally; if JJ is smaller than this minimum number, thread
initialization and synchronization time is comparable with its execution time.
The large number of ways needed here is not a problem as the L2 associativity
is larger or equal to 16 in most architectures.

The scheduling follows; suppose that there are four cores (Fig. 11). Each
Tile2 of A is multiplied by a Tile2 of B exactly as in Subsect. 3.1.5. Each
multiplication between two Tile2 tiles makes a different thread and each thread
is executed at only one core. First, the first Tile2 of the first Tile2 block column
of A is multiplied by all Tile2 tiles of the first Tile2 block row of B (M/JJ
different threads); all M/JJ threads are executed in parallel exploiting the
data reuse of Tile2 of A. Then, the second Tile2 of the first Tile2 block column
of A is fetched and it is multiplied by all the Tile2 of the first Tile2 block row
of B as above, etc. The procedure ends when all Tile2 block columns of A
have been multiplied by all Tile2 block rows of B. Concerning main memory
data accesses, A, B and C arrays are accessed 1, N/II and P/KK times,
respectively.

3.2.2 CPUs with shared L3

To utilize L3 cache, A and B arrays are further partitioned into Tile3 tiles, of
size ((q × II)×KK) and (KK × JJJ), respectively (Fig. 12). For small and
medium input sizes, we always select KK = P (Fig. 12). Each multiplication
between two Tile2 tiles of A and B makes a different thread. Each multipli-
cation between two Tile2 tiles is made as in Subsect. 3.1.5. We determine the
Tile1, Tile2 and Tile3 parameters by the data cache sizes and associativities.

Regarding L2 cache, we compute the II value according to the L2 archi-
tecture parameters (ineq. 25).

L2× (assoc− 1)

assoc
≥ II ×KK (25)



Title Suppressed Due to Excessive Length 25

C A B
Tile2

KK

... ... ... ...

...

...

..
.

K
K

JJ

II

co
re
0

Tile2

...

...

JJJ

II

JJ
P

P

M

NN

M

......

..
.

Tile2

..
.

..
.

..
.

co
re
1

co
re
2

co
re
3

co
re
0

co
re
1

co
re
2

co
re
3

Tile3 Tile3

j0

Fig. 12 The proposed methodology for 4 cores having a shared L3 cache.

The largest II value is selected satisfying ineq. 25. JJ is found experimen-
tally since each thread has to contain a minimum number of instructions. KK
is found according to the L1 data cache size (ineq. 17).

Given that a Tile1 of B is written in L1 data cache, it is memory efficient
to be multiplied by as many rows of A as possible, before it is spilled from L1.

Thus, L2×(assoc−1)
assoc size of L2 is used for A; the layout of A is tile-wise here.

L2 cache size that equals to one L2 way is used for the Tile1 of B and C, since
their size is small and their elements are not reused (Tile1 of B is reused in
L1 data cache not in L2).

It is important to say that tiling for L2 is not always performance efficient
because a) an L2 miss has a small penalty here; this is because in this case,
the data are loaded not from main memory but from L3 cache, which is fast
enough, b) extra addressing instructions are inserted which may degrade per-
formance. Thus, tiling only for L1 and L3, may be more efficient in several
cases.

Regarding L3 cache, we compute JJJ according to the L3 cache param-
eters. We choose the biggest Tile3 of B possible, to fit in L3 shared cache.
There is ((assoc− k − 1)× L3

assoc ) L3 size for the Tile3 of B, (k × L3
assoc ) for A

and ( L3
assoc ) for C (ineq. 26).

((assoc− k − 1)× L3

assoc
) ≥ KK × JJJ (26)

where k = d q×II×KK
L3/assoc e and L3 is the size of the L3 cache. The larger JJJ

value is selected satisfying ineq. 26. Also, JJJ = l× JJ where l is an integer.
JJ value depends on the number of instructions, each thread must contain
and it is found experimentally. KK value is found according to L1 data cache
size and it is given by ineq. 17.

The elements of Tile3 of A and B are written in consecutive memory lo-
cations in main memory and thus they occupy consecutive cache lines in L3
cache. These two Tile3 tiles must use different L3 cache ways as cache lines



26 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

C A B

...

...

...

P

P

M

NN

M

...

SM0

SM0

k

k

nk

k

k

nk

Tile2
Tile2

Fig. 13 MMM for GPU. The bullets with the red color show the elements ac-
cessed/multiplied by Thread0 only.

of Tile3 of B must not conflict with Tile3 of A ones. Cache size equals to one
L3 way is used for C array for its cache lines not to conflict with the Tile3 of
A and B ones; C elements are not reused and they are not occupying a large
space.

The scheduling follows; suppose that there are 4 cores (Fig. 12). Each
Tile2 of A is multiplied by a Tile2 of B exactly as in Subsect. 3.1.5. Each
multiplication between two Tile2 tiles makes a different thread and each thread
is executed in one core only. First, all Tile2 tiles of the first Tile3 of A are
multiplied by all Tile2 tiles of the first Tile3 of B ((JJJ/JJ) × q different
threads); these threads are executed in parallel exploiting the data reuse of
Tile1 of B in L1, the data reuse of Tile2 of A in L2 and the data reuse of Tile3
of B in L3. Then, the same Tile3 of B as above, is multiplied by all the Tile2
tiles of the second Tile3 of the first Tile3 block column of A, etc; each Tile3
of B is reused N/II times (this is why the Tile3 of B has to fit in L3 shared
cache) and each Tile2 of A is reused (JJJ/j0) times in L2 (this is why Tile2
of A has to fit in L2 cache). The procedure is repeated until all Tile3 block
columns of A have been multiplied by all Tile3 block rows of B.

3.3 GPUs

All modern GPU architectures are in common (compute capability of 2.∗, 3.∗).
They consist of p (p is up to 16) Streaming Multiprocessors (SM) which are
connected to a common L2 cache. Each SM contains k processors (k is up to
192), each one having a configurable L1; L1 memory contains an L1 data cache
and a shared L1. The number of the SMs, the number of the processors and
the memories sizes differ from one architecture to another. Also, GPUs have
smaller and faster cache memories in contrast to the CPUs.



Title Suppressed Due to Excessive Length 27

Regarding MMM performance on GPUs, the most critical parameters are
the number of the threads run in parallel, the number of the SMs work in
parallel, the GPU occupancy and the memory management.

Table 2 Number of data accesses in memory hierarchy

C A B

shared L1 0 r × n×k2×P
coresSM

r × n× P

L1 data cache n2×k2

coresSM
0 0

L2 N ×M N×P×M
n×k

P×M×N
n×k

DDR N ×M N×P×M
n×k

P×M×N
n×k

The proposed methodology gives a different schedule according to the GPU
architecture parameters and to the input size.

Likewise Subsect. 3.1.1, the best schedule here is that of row-column for
two reasons. First, this schedule gives the minimum number of DDR accesses.
This is because C array is not just loaded, but it is also stored into main
memory (it is accessed twice); thus it is preferable to access C array only once
and A, B more times than the opposite (Subsect. 3.1.1). Second, by writing
the C array just once to main memory, we avoid synchronization problems and
all threads run in parallel.

To utilize the lower level GPU memories, the three arrays are partitioned
into smaller ones according to the number of the registers and the number of
the threads, each SM supports. The three arrays are partitioned into square
tiles of size k × k, where k is a power of 2 and k2 ≤ Num Threads, where
Num Threads is the number of the threads each SM supports. Furthermore,
n1 Tile1 tiles of A and n2 Tile1 tiles of B constitute a Tile2 of A and B,
respectively (Fig. 13); we select n = n1 = n2 and n ≥ 2 (a detailed analysis is
given below). n depends on the input size and its maximum value is limited to
the number of the available registers. A different n value is selected for different
input sizes in order to achieve high occupancy (it is explained below).

The number of blocks of threads run in parallel is N
k×n ×

M
k×n . In order to

none of the SMs remains idle, ineq. 27 holds. Ineq. 27 satisfies that the number
of the blocks of threads is always larger or equal to the number of the SMs;
otherwise, several SMs will remain idle.

N ×M

k2 × n2
≥ Num SMs (27)

We select the largest k value possible satisfying ineq. 27, where n ≥ 2. We
select the largest k value as by increasing k, a) the number of the threads run
in parallel increases, b) the number of data accesses is decreased; in modern
GPU architectures, always k ≥ 16.

The schedule follows. There are N
k×n ×

M
k×n blocks of threads and each

block contains k2 threads. The bullets shown with the red color in Fig. 13, are
multiplied by each other, during the execution of thread0; in this case, n = 3



28 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

and thus there are 9 intermediate results of C (the intermediate results are
produced and consumed since they are in registers). The thread1 multiplies
the 3 elements of A shown in Fig. 13 by the 3 elements of B that exist by
one position to the right of that shown in Fig. 13. The thread2 multiplies the
3 elements of A shown in Fig. 13 by the 3 elements of B that exist by two
positions to the right of that shown in Fig. 13 etc. The thread of number k,
multiplies the 3 elements of A that exist one position down to those shown in
Fig. 13 by the 3 elements of B shown in Fig. 13 etc. In general, each thread
multiplies n elements of the first column of Tile2 of A by n elements of the first
row of Tile2 of B (k2 threads are executed in parallel). Then the procedure
continues with the second column of Tile2 of A and the second row of Tile2 of
B etc. The multiplication of the first n×k rows of A by the first n×k columns
of B takes place in the first SM. The multiplication of the first n× k rows of
A by the second n× k columns of B takes place in the second SM etc.

The number of data accesses in memory hierarchy is given in Table 3,
where r = ( N

k×n ×
M

k×n )/(Number SMs) and coresSm is the number of the
cores in each SM (in Table 3, we assume that none of the cores remains idle).
In Table 3, the Shared L1 and the L1 data cache value corresponds to each
core.

Tile2 tiles of A and B achieve data reuse and thus they are placed in Shared
L1 (ineq. 28).

Shared L1 ≥ 2× n× k2 (28)

We use shared L1 and not L1 data cache. An implementation with Shared
L1 is faster than L1 data cache because a) shared memory normally has 32
banks and is much less susceptible to conflicts, b) by using shared memory, the
layout of A and B is not changed (except from special case explained below),
decreasing the number of load/store and addressing instructions.

Shared L1 is fully utilized. Shared L1 access time equals to 1 clock if no
data conflicts occur. Normally, shared L1 memory is organized into 32 banks
and each bank has width of 32 bits; successive 32-bit words are assigned to
successive banks. If all threads of a warp access different banks, there is no
bank conflict. For most GPU architectures, if k ≥ 16 no bank conflicts exist.
On the other hand, if k ≺ 16, the data array layouts are changed from row-
wise to tile-wise in order to eliminate L1 conflicts, i.e., first we write the first
tile’s elements in main memory in the exact order they are loaded, then the
second’s etc.

Another critical parameter for GPU is memory coalescing. Normally, DDR
memory accesses data in 64/128 byte segments. Thus, to achieve peak band-
width transfer rate, we have to access data within 64/128 byte boundaries at
the minimum. Regarding array A, this means that in the case that k ≺ 32 and
DDR memory accesses data in 128 byte segments, we have to change the A
data array layout from row-wise to tile-wise (we suppose that the arrays are
floating point numbers). Regarding array B, this means that in the case that
n × k 6= 32 ×m, where m is a positive integer, the data array layout of B is
changed from row-wise to tile-wise.



Title Suppressed Due to Excessive Length 29

To sum up, whether the data arrays layouts change or not, depends on
the shared L1 / DDR memory architecture parameters and on the input size.
However, the change of the data arrays layouts introduces an additional cost.
The arrays have to be loaded and rewritten from/to DDR memory. To find
out whether changing the data arrays layouts is performance efficient or not,
the two schedules are tested and the fastest is selected. Normally, if the above
parameters are very close to the optimum ones, performance is approximately
the same.

Regarding L2 data cache, tiling is not performance efficient; this is because
L2 size is small in contrast to the number of the SMs; if we partition the three
arrays even more into Tile3 tiles in order to the new tiles fit in L2, the tiles
sizes would be very small and the extra addressing and load/store instructions
will overlap the locality advantage.

The MMM execution time can be approximated by eq.1. Moreover, if we
assume that none of the cores remains idle Tmatrix−operations (eq.3) is trans-
formed into eq. 29; the floating point multiplications and additions are imple-
mented by the multiply-add instructions which all the GPUs support.

Tmatrix−operations =
Multiply − add− latency × (N ×M × P )

Number − of − cores
(29)

Also, Tdata is approximated by the following equation.

Tdata = max(
L1load lat × L1loads
load/store Units

, L1Store lat ×
L1Stores

L1ports
,

L2load lat × L2loads
lineShared

+
L2store lat × L2stores

lineL1
,

DDRload lat ×DDRloads

lineL2
+

DDRstore lat ×DDRstores

lineL2
) (30)

If we assume that shared L1, L2 and DDR have access latencies of 1 cycle,
3 and 50 cycles, respectively and that lineL1 = lineL2 = 4, L1ports = 2,
lineShared = 4, coresSM = 32 and load/store Units = 16, eq. 30 and Table 3
give:

Tdata = max(r × n× k2 × P

32
+ r × n× P,

n2 × k2

32
,

3× (N ×M + 2×N×P×M
n×k )

4
+

3×N ×M

4
,

50× (N ×M + 2×N×P×M
n×k )

4
+

50×N ×M

4
) (31)

The number of DDR accesses is the critical parameter. If n1 6= n2 had been
used instead of n = n1 = n2, then eq. 31 would had (N×P×M

k × ( 1
n1 + 1

n2 ))

instead of ( 2×N×P×M
n×k ). This is because array A is loaded M/(n2× k) times,



30 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

B is loaded N/(n1× k) and C is loaded/stored once. Thus, the total number
of loads is N×M×P

k × ( 1
n1 + 1

n2 ) + N ×M . ( 1
n1 + 1

n2 ) value is minimized for
n1 = n2. This is why we use n1 Tile1 tiles of A and n2 Tile1 tiles of B, where
n = n1 = n2.

According to eq. 31, the DDR/L2 access time is minimized when n× k is
maximized. However, k, n maximum values are k ≤ 32 and n ≤ 6, respectively,
because their values are restricted to the number of the registers and threads,
each SM supports.

The best Tdata value does not necessarily gives the best performance. If
the numbers of the a) threads run in parallel and/or b) SMs work in parallel,
are less than the number of the cores and the number of the SMs, respectively,
performance is degraded.

Regarding small input sizes, we select a small n value according to ineq. 27
(n = 2), because if we don’t, the number of blocks of threads will become
smaller than the number of the SMs; this means that several SMs will remain
idle, decreasing performance. Since the number of blocks of threads is N

k×n ×
M

k×n , their number is increased when n is decreased.

Regarding medium input sizes, n value is up to 4. For large input sizes,
n � 4. Performance is increased by increasing the n value since a smaller
number of data accesses is achieved.

MMM performance is also increased by applying software prefetching by
using software pipeline. In this case, we use two times more shared L1 memory
than ineq. 28, since we need the current Tile2 tiles (Tile2 tiles of A and B)
and the next ones. When the current Tile2 tiles are multiplied by each other,
the next Tile2 tiles are loaded from DDR to shared L1, in parallel; in this way,
the cores do not remain idle until the Tile2 tiles are fetched.

Finally, performance is slightly increased by applying loop unroll trans-
formation and by using the texture memory to store the A and B arrays on
devices of compute capability larger than 2.0. By using texture memory, a) it
does not interfere with the other caches (this is important if there is a lot of
pressure on the L1/L2 caches) b) it supports address computations.

4 Experimental Results

The experimental results for the proposed methodology, presented in this sec-
tion, were carried out with Intel Xeon CPU E3-1241 v3 (four physical cores),
Pentium Intel i7-2600K (6 physical cores), Valgrind tool [28], ARMv7-a on
GEM5 simulator [29], PowerPC-440 on Xilinx FPGA Virtex-5, GEM5 and
SimpleScalar simulator [30] and Nvidia eForce GGTX-580 of computate ca-
pability 2.0. Optimization level -O3 was used at all cases. The three arrays
are one dimensional arrays and their elements are aligned into main memory
according to the L1 data cache line size, since the aligned load/store instruc-
tions have lower latency than the no aligned ones. The routine changing the
arrays layouts is always included to the execution times.



Title Suppressed Due to Excessive Length 31

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

32 56 128 224 512 1024 1200 2048 4096 4800

P
er

fo
rm

an
ce

 (
Fl

o
p

s)

Input size - square matrices

Proposed 
Methodology

Intel MKL 

Atlas

Fig. 14 Performance evaluation over ATLAS and Intel MKL state of the art software
libraries on the one core of Intel Xeon CPU E3-1241 v3 for square matrices

Although a performance comparison with Intel MKL is unfair, a detailed
experimental analysis has been made as it is the fastest MMM library in the
world for Intel general purpose processors. A performance comparison with
Intel MKL is unfair for two reasons. First, Intel MKL developers have access
to all the Intel processor architecture details which we do not, e.g., victim
cache, hardware prefetchers; this is why Intel MKL library is the fastest li-
brary on Intel processors only. Second, Intel MKL loop kernels are written in
assembly code while our method in C (assembly code is always more efficient);
Intel developers write assembly code to deal with the low level transforma-
tions, e.g., register allocation, instruction selection and instruction scheduling.
The proposed methodology lies at a higher level of abstraction and it is used
to wide range of computer architectures. Implementing the proposed method-
ology in assembly code is beyond the scope of this paper and thus the low
level transformations are applied by the target compiler (which is less effi-
cient). The scope of this paper is not to provide the peak-performance MMM
implementations, but to analytical give the architecture dependent high level
transformation parameters (e.g., tile sizes) that achieve peak-performance. We
strongly believe that if could modify the MKL library scheduling parameters
according to the proposed methodology, an even higher performance would be
achieved.

The experimental results for single-core and multi-core CPU architectures
are given in Subsect. 4.1 and Subsect. 4.2, respectively. The experimental
results for GPU architectures are given in Subsect. 4.3. Finally, in Subsect. 4.4,
an evaluation between multi-core CPUs and GPUs is given.

4.1 Experimental Results for single-core CPU architectures

Regarding general purpose processors, a performance comparison is made over
ATLAS SOA library 3.10.2 and Intel MKL (Parallel Studio XE 2016) by using
the one of the four cores of Intel Xeon CPU E3-1241 v3. The Intel processor



32 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

Table 3 Number of load/store instructions and DDR data accesses of Intel MKL, ATLAS
and the proposed methodology, respectively, of the Fig. 14 case (Valgrind tool is used)

Size Intel MKL ATLAS Proposed Methodology
L/S instr. DDR data acc. L/S instr. DDR data acc. L/S instr. DDR data acc.

56 5.22E + 06 1.14E + 05 3.36E + 06 9.37E + 03 3.43E + 06 8.72E + 03
224 5.88E + 07 9.47E + 04 5.63E + 07 2.92E + 04 5.78E + 07 2.79E + 04
512 3.11E + 08 1.83E + 05 3.14E + 08 1.58E + 05 3.14E + 08 1.45E + 05
1024 1.39E + 09 2.06E + 06 1.43E + 09 3.45E + 06 1.40E + 09 1.89E + 06
2048 6.18E + 09 1.20E + 07 6.49E + 09 2.36E + 07 6.22E + 09 1.15E + 07

contains four physical cores (each core contains 16 YMM registers of 256-bit
each), each one with 32 kbyte L1 data and instruction caches (8-way associa-
tive) and 256 kbyte L2 unified cache. The cores use a shared L3 cache of size
8 Mbytes. The Operating system Ubuntu 14.04 and the gcc-4.8.4 compiler are
used. The cache latency values in CPU clocks for E3−1240 are L1load lat = 4,
L2load lat = 11 and L3load lat = 42. The Operating system Ubuntu 14.04 and
the gcc-4.8.4 compiler are used. It is important to say that by using only the
one core, the one thread has to be manually assigned to the one core; the
programmer has to set the CPU thread affinity flag. Otherwise, the operat-
ing system (OS) will make the core assignment, and it will toggle the thread
among the cores degrading performance because of the pure data locality. The
proposed methodology is compared with cblas dgemm library (double preci-
sion values) for square and non-square matrix sizes (Fig. 14, Fig. 15). Also,
the Valgrind tool [28] is used to measure the number of load/store instruc-
tions and the number DDR memory accesses of the three methods for Fig. 14.
In all the figures shown in this section the average execution time among 10
executions is shown.

First, a performance evaluation for square matrices is given. Regarding
small input sizes (we used the schedules given in Subsect. 3.1.1 and Sub-
sect.3.1.6), i.e., N = 32 and N = 56 (Fig. 14), the proposed methodology
achieves a very large performance gain over ATLAS and a significant gain
over Intel MKL. The proposed methodology achieves the smallest number of
DDR accesses (Table 3); moreover, it achieves a much smaller number of
load/store instructions than MKL and about the same number with ATLAS
(Table 3). The number of load/store instructions is less because the number
of YMM registers has been fully exploited; 14, 1 and 1 YMM registers are used
for C, A and B arrays, respectively (p = 14 in Fig.9). For N = 56 case, both
the proposed methodology and ATLAS execute about 8.5 × 106 instructions
in total (both arithmetical and load/store instructions) while Intel MKL exe-
cutes 13.9×106. We believe that the above number of arithmetical instructions
here is close to the minimum because we apply loop tiling transformation to
the one of the three iterators only (j iterator), decreasing the number of ad-
dressing instructions. Although ATLAS achieves a lower number of load/store
instructions, arithmetical instructions and DDR accesses than Intel MKL, it
does achieve performance gain; we strongly believe that the reason is the bet-



Title Suppressed Due to Excessive Length 33

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

64 128 300 512 1000 2000 4000 64 128 300 512 1000 2000 4000 4 8 30 80 150 400 600

64 128 300 512 1000 2000 4000 4 8 30 80 150 400 600 64 128 300 512 1000 2000 4000

4 8 30 80 150 400 600 64 128 300 512 1000 2000 4000 64 128 300 512 1000 2000 4000

P
er

fo
rm

an
ce

 (
Fl

o
p

s)

Input size (P, M, N)

Atlas

Intel MKL 

Proposed 
Methodology

Fig. 15 Performance evaluation over ATLAS and Intel MKL state of the art software
libraries on the one core of Intel Xeon CPU E3-1241 v3 for non-square matrices

ter Intel MKL hand-written assembly code and the more efficient low level
optimizations it applies (they are further explained below).

For medium and large input sizes (we used the schedules given in Sub-
sect.3.1.4 and Subsect.3.1.5), the proposed methodology achieves a large per-
formance gain over ATLAS (speedup value is about 1.8) and a very small
performance loss over Intel MKL (from 1.01 up to 1.13 times slower). Re-
garding the number of load/store instructions, the three methods achieve ap-
proximately the same values. As far as the number of DDR data accesses is
concerned, the proposed methodology achieves a smaller number at all cases.
This is because for different input size and cache parameters a different sched-
ule is generated minimizing the number of data accesses; this is also shown
in Table 1, where the numbers of memories accesses are shown given the tile
sizes.

Given that the proposed methodology achieves about the same number of
load/store and arithmetical instructions and a lower number of DDR accesses
(for medium and large input sizes it the most performance critical parameter)
than MKL at all cases, we strongly believe that the small performance loss is
due to the four following low level optimizations: a) MKL uses a more efficient
AVX instruction set (especially when unpacking and storing the multiplication
results), b) MKL achieves a lower Taddressing value due to the more efficient
hand-written assembly code, c) the sequence of MKL assembly instructions is
more efficient and thus the number of idle cycles in the pipeline is minimized,
d) MKL uses in a more efficient way some Intel processor units (e.g., victim
cache, hardware prefetchers) since it has access to the hardware details, e)
software prefetch instructions are written at the exact code line. We strongly
believe that if could modify the MKL library to use the proposed methodology,
a higher performance would be achieved.



34 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

0

1

2

3

4

5

6

50 100 160 220 300 420 512 600 720 800 920

Sp
e

ed
u

p
 o

ve
r 

gc
c 

co
m

p
ile

r

Input Size - Square matrices

PowerPC-440

ARMv7-a

Fig. 16 Performance evaluation over PowerPC-440 on Xilinx Virtex-5 FPGA and ARMv7-a
on GEM5 simulator

12780000
11900000 11500000

15800000

22900000

13600000

10200000

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

(i0=1, j0=4) (i0=1, j0=6) (i0=1, j0=8) (i0=1, j0=9) (i0=1, j0=12) (i0=3, j0=3) (i0=2, j0=2)

N
u

m
b

er
 o

f 
Lo

ad
/s

to
re

 in
st

ru
ct

io
n

s

Fig. 17 Evaluation of Subsect. 3.1.1 - Number of load/store instructions for different tile
sizes - ineq.5 holds.

As far as non-square matrices are concerned, the performance is about
the same as in Fig. 14 except from the third cluster of results (P dimension is
much smaller than the others). In this case, Intel MKL performance is reduced
and the peak performance of 50 Gigaflops is not achieved. ATLAS does not
perform well for small input sizes but for medium and large input sizes achieves
about 25 Gigaflops at all cases. The proposed methodology is the fastest for
small input sizes and also it is comparable to Intel MKL for medium and large
input sizes. In general, the proposed methodology and ATLAS achieve about
the same number of flops for square and non-square input sizes, while MKL
does not.

The proposed methodology is also compared with two different embed-
ded processors, i.e., PowerPC-440 on Xilinx Virtex-5 FPGA and ARMv7-a on
GEM5 simulator (Fig. 16). Given that there is no state of the art software
library for these processors, we evaluated our methodology with ’arm-linux-
gnueabihf-gcc’ and Xilinx compiler, on ARM and PowerPC, respectively. As



Title Suppressed Due to Excessive Length 35

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

2 4 8 16

N
u

m
b

er
 o

f 
D

D
R

 a
cc

e
ss

e
s

Tile size II

(i0=2, j0=2)

(i0=1, j0=4)

(i0=1, j0=8)

(i0=1, j0=16)

Fig. 18 Evaluation of Subsect. 3.1.2 - Number of DDR accesses for different tile sizes -
ineq. 9 holds (Fig. 5).

far as PowerPC 440 is concerned, it is a 32-bit embedded Superscalar pro-
cessor with 7 stage pipeline, developed by IBM. It contains L1 data and L1
instruction cache memories of size 32 kbytes, highly-associative (64-way). As
far as ARMv7-a is concerned, it is a RISC dual core processor with two levels
of data cache (experiments are made on the one of the two cores). It contains
L1 data and instruction caches of 32kbytes (2-way associative) and L2 cache
of 1Mbyte and 16-way associative. The speedup values are from 2.6 up to
3.3 and from 3.2 up to 4.8, for PowerPC and ARM, respectively. PowerPC
performs better than ARM because the data cache of the first processor is
64-way associative while the data cache of the second is 2-way associative;
this gives a much larger number of cache misses. As the input size increases,
the speedup value increases (at both processors) as the memory management
problem becomes more critical.

Furthermore, an evaluation of Subsect. 3.1.1 (small input sizes - ineq.5
holds) is made on SimpleScalar simulator (Fig. 17). In Fig. 17, the number of
load/store instructions is shown, for different tile sizes; square matrices of size
N = 216 are taken. Since ineq.5 holds, all the data of B and 2× i0 rows of A,
fit in L1 data cache (Fig.2). In SimpleScalar simulator, 10 available floating
point registers exist and according to ineq.6, the best schedule regarding the
minimum number of load/store instructions is (i0 = 2, j0 = 2) and the next is
(i0 = 1, j0 = 8) (the first uses 8 registers and the second 10 registers); the first
schedule achieves a slightly smaller number of load/store instructions since
the following equation 2 × N × M + N×P

i0
+ P×M

j0
(it gives the number of

load/store instructions) gives 2×N2 +N2 = 3×N2 ≺ 2×N2 +N2 +N2/8 =
3×N2 + N2/8. Furthermore, by using more than 10 registers, the number of
load/store instructions is highly increased since the data are spilled from the
RF and reloaded many times (Fig. 17). The analyss made in Subsect. 3.1.1 is
confirmed by Fig. 17.

Moreover, an evaluation of Subsect. 3.1.2 is made on on SimpleScalar sim-
ulator (Fig. 18). One level of cache is selected here with L1 data cache of size



36 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

1039000
896000

687000

909000
1045000

14703000

2984000 2982000
3574000

3945000

6.70E+05

6.70E+06

(4kbytes, 4 ways) (8kbytes, 4 ways) (16kbytes, 4 ways) (8kbytes, 2 ways) (8kbytes, 1 way)

N
u

m
b

er
 o

f 
C

P
U

 c
yc

le
s 

(L
o

ga
ri

th
m

ic
 

sc
al

e)

(L1 size, L1 associativity)

Proposed 
methodology

Arm compiler

Fig. 19 Performance evaluation over different cache size and associativity values

78000

51294 41517 53161

82705

621000

52108 52140

131700

320000

4.00E+04

4.00E+05

(4kbytes, 4 ways) (8kbytes, 4 ways) (16kbytes, 4 ways) (8kbytes, 2 ways) (8kbytes, 1 way)

N
u

m
b

e
r 

o
f 

L1
 m

is
se

s 
(L

o
ga

ri
th

im
 s

ca
le

)

(L1 size, L1 associativity)

Proposed 
methodology

Arm compiler

Fig. 20 Evaluation over different cache size and associativity values

8 Kbytes and 8-way associative (each way is of size 1 kbyte); given that there
is no L2 cache, the number of L1 misses equals to the number of the DDR ac-
cesses. The number of DDR accesses / L1 misses for different tile sizes is shown,
when ineq. 9 holds (Fig. 18) (floating point elements and N = M = P = 128).
As it was expected, as far as ineq. 9 holds, i.e., if the II rows of A and the j0
columns of B fit in L1, the number of DDR accesses is kept low (the B array is
written tile-wise in main memory). For the (i0 = 1, j0 = 16) case, ineq. 9 does
not hold for none II � 1 value, as the Tile1 of B is 8 kbytes; this is why a
large number of DDR accesses is achieved at all different II values. Regarding,
(i0 = 1, j0 = 4), (i0 = 1, j0 = 8) and (i0 = 2, j0 = 2) cases, the maximum II
value satisfying ineq. 9 is II = 8; this is why the minimum number of DDR
accesses is achieved for this case. When II = 16, Tile1 of A becomes 8 kbytes
and thus there is no cache space for Tile1 of B, increasing the number of DDR
accesses.



Title Suppressed Due to Excessive Length 37

0.00E+00

5.00E+10

1.00E+11

1.50E+11

2.00E+11

2.50E+11

528 900 1200 1800 2400 3600 4800

P
e

rf
o

rm
an

ce
 (

Fl
o

p
s)

Input size - square matrices 

Atlas

MKL-1 thread

MKL-2 threads

MKL-3 threads

MKL-4 threads

Proposed - 1 
thread
Proposed - 2 
threads
Proposed - 3 
threads
Proposed - 4 
threads

Fig. 21 Performance evaluation on Intel Xeon CPU E3-1241 v3 (4 physical cores exist), by
using more than one physical cores

Finally, an evaluation over different cache size and associativity values is
made on GEM5 simulator using ARMv7-a processor for five different cache
sets (L1 size, L1 associativity) (Fig. 19 and Fig. 20). The compiler used is
’arm-linux-gnueabihf-gcc’ and the input size is N = 80 (floating point values
and square matrix sizes). Regarindg gcc compiler, by changing the cache pa-
rameters, its performance does not change significantly, except from the case
that L1=4 kbytes, where its performance is about 5 times lower; this is be-
cause the row of A cannot remain in L1 cache in this case and both A and B
elements are always loaded from DDR. In order to the row of A remains in L1,
one row of A and one column of B have to be smaller than L1 size (otherwise,
the A elements are spilled); however, B is written row-wise in main memory
(by default) and all the column elements are written in no consecutive main
memory locations; thus for one column element to be fetched, an entire L1
cache line is fetched (cache line size is 64 bytes). Given that each array ele-
ment is 4 bytes (float numbers), for one column of B to be fetched, 5120 bytes
are necessarily fetched (16 clumns of B which are of size 80× 16× 4), and this
is why performance is highly decreased when L1=4 kbytes. This is also shown
in Fig. 20 where the number of L1 misses is highly increased. Another impor-
tant observation is that in contrast to gcc, the proposed methodology achieves
a much smaller number of L1 misses for small associativity values (Fig. 20);
this is because the data cache associativity is taken into account. Moreover,
by increasing the cache size, the proposed methodology further increases its
performance, while gcc does not.

4.2 Experimental Results for multi-core CPU architectures

An evaluation of the proposed methodology by using more than one physical
cores is made in Fig. 21. The experimental results were carried out with Intel
Xeon CPU E3-1241 v3 by using the AVX instructions. The proposed method-
ology is compared with ATLAS SOA library 3.10.2 and Intel MKL (Parallel



38 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

1.50

1.70

1.33

1.60

1.14
1.07

1.14
1.03 1.03 1.02 1.01 1.00 1.01 1.00 0.99

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

64 128 192 256 384 512 800 1024 1200 2048 2800 3200 4096 6400 8192

Sp
e

ed
u

p
 o

ve
r 

cu
B

LA
S

Input size N - square matrices of size NxN

Fig. 22 Speedup over cuBLAS state of the art software library on GPU GTX580

Studio XE 2016) (cblas dgemm routine). It is important to say that ATLAS
does not support multiple threads. As far as the performance on the one core
is concerned, the results are similar to Fig. 14. By increasing the number of the
threads, performance is increased accordingly. The CPU utilization factors are
from 1.85 up to 1.95, from 2.67 up to 2.9 and from 3.4 up to 3.79, for 2,3 and
4 cores, respectively. Regarding small input sizes, the core utilization factor is
smaller, as the thread initialization time is comparable to its execution time.
The proposed methodology uses the schedule given in Subsect. 3.2.2. Perfor-
mance is highly affected by the number of YMM registers used and by the L1
tile size. Regarding shared cache, performance is not highly affected by using
different tile sizes, suffice the tiles fit in shared cache. Intel MKL achieves a
small speedup over the proposed methodology for the reasons explained in the
previous Subsection.

4.3 Experimental Results for GPU architectures

The experimental results presented in this Subsection, were carried out with
Nvidia GeForce GTX-580. GTX-580 contains 16 SMs which are connected to
a common L2 of size 768 Kbytes. Each SM contains 32 cores each one with its
own configurable L1. The comparison is made with cuBLAS (CUDA Toolkit
6.5) state of the art library.

The proposed methodology achieves a significant speedup over cuBLAS
SOA library for small and medium input sizes and approximately the same
performance for large input sizes (Fig. 22). For input size N = 64 and N = 128,
n = 2 and k = 32 are selected according to the corresponding inequalities given
in Subsect. 3.3; if we use a larger n value for these cases, the number of blocks
of threads will become smaller than the number of the SMs and performance
will be degraded; the n value is selected according to the ineq. 27. For larger
n sizes, we cannot select k = 32, since we exceed the available number of
registers; thus, k = 16 is selected. Furthermore, for input sizes N = 192 and



Title Suppressed Due to Excessive Length 39

1.63 1.53 1.50 1.55
1.12

0.78 0.71
0.52 0.51

0.35
0.29 0.27 0.26

0.20

0.130.10

1.00

10.00

128 192 256 384 512 672 800 1024 1200 2048 2800 3200 4096 6400 8192

Ec
e

cu
ti

o
n

 t
im

e
 o

n
 G

P
U

 /
 

Ex
ec

u
ti

o
n

 t
im

e 
o

n
 i7

Input size N - square matrices of size NxN

Fig. 23 Performance comparison between GPU GTX580 and CPU i7-2600K

256 ≤ N ≺ 2048, n = 3 and n = 4 are selected, respectively. Last, for input
sizes N ≥ 2048, n = 5 is selected.

4.4 Evaluation between multi-core CPUs and GPUs

Finally, an evaluation between GPU GTX580 and CPU i7-2600K (6 physical
cores) is made in Fig. 23. The GPU contains 512 small cores while the CPU
contains 6 big cores each one using SSE vector instructions; regarding floating
point data, this means that each one of the CPU cores executes 4 floating
point operations at each cycle. For small and medium sizes, i.e., N ≤ 512,
the CPU performs faster than GPU (Fig. 23); this is because in this case, the
time needed to transfer the 3 arrays from the CPU to GPU and vice versa, is
comparable to the execution time. However, for larger input sizes, where the
time needed to transfer the 3 arrays from the CPU to GPU and vice versa,
is smaller than the execution time, GPU performs faster. For N = 1024,
N = 2048 and N = 4096, GPU is 1.92, 2.83 and 3.8 times faster, respectively.
As the input size increases, the speedup over CPU increases, since the transfer
time becomes smaller than the execution time.

5 Conclusions

In this paper, an MMM speeding up methodology is presented where the
optimum scheduling parameters are found by decreasing the search space the-
oretically while the major scheduling sub-problems are addressed together as
one problem and not separately. For the first time an MMM methodology
is given for such a wide range of computer architectures. For different hard-
ware architecture parameters, a different implementation is produced. This
is achieved by fully exploiting the MMM algorithm characteristics and the
hardware architecture parameters.



40 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

References

1. V. I. Kelefouras, A. Kritikakou, E. Papadima, C. E. Goutis, A methodology for speed-
ing up matrix vector multiplication for single/multi-core architectures., The Journal of
Supercomputing 71 (7) (2015) 2644–2667.

2. S. S. Pinter, Register allocation with instruction scheduling: a new approach, J. Prog.
Lang. 4 (1) (1996) 21–38.

3. G. Shobaki, M. Shawabkeh, N. E. A. Rmaileh, Preallocation instruction scheduling
with register pressure minimization using a combinatorial optimization approach, ACM
Trans. Archit. Code Optim. 10 (3) (2008) 14:1–14:31. doi:10.1145/2512432.
URL http://doi.acm.org/10.1145/2512432

4. D. F. Bacon, S. L. Graham, Oliver, J. Sharp, Compiler transformations for high-
performance computing, ACM Computing Surveys 26 (1994) 345–420.

5. E. Granston, A. Holler, Automatic recommendation of compiler options, in: In Pro-
ceedings of the Workshop on Feedback-Directed and Dynamic Optimization (FDDO,
2001.

6. S. Triantafyllis, M. Vachharajani, N. Vachharajani, D. I. August, Compiler optimization-
space exploration, in: Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization, CGO ’03, IEEE Com-
puter Society, Washington, DC, USA, 2003, pp. 204–215.
URL http://dl.acm.org/citation.cfm?id=776261.776284

7. K. D. Cooper, D. Subramanian, L. Torczon, Adaptive optimizing compilers for the 21st
century, Journal of Supercomputing 23 (2001) 2002.

8. T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, F. Bodin, H. A. G. Wijshoff, A
feasibility study in iterative compilation, in: Proceedings of the Second International
Symposium on High Performance Computing, ISHPC ’99, Springer-Verlag, London,
UK, UK, 1999, pp. 121–132.
URL http://dl.acm.org/citation.cfm?id=646347.690219

9. P. A. Kulkarni, D. B. Whalley, G. S. Tyson, J. W. Davidson, Practical exhaustive
optimization phase order exploration and evaluation, ACM Trans. Archit. Code Optim.
6 (1) (2009) 1:1–1:36. doi:10.1145/1509864.1509865.
URL http://doi.acm.org/10.1145/1509864.1509865

10. P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, D. Jones, Fast searches
for effective optimization phase sequences, SIGPLAN Not. 39 (6) (2004) 171–182.
doi:10.1145/996893.996863.
URL http://doi.acm.org/10.1145/996893.996863

11. E. Park, S. Kulkarni, J. Cavazos, An evaluation of different modeling techniques for
iterative compilation, in: Proceedings of the 14th international conference on Compilers,
architectures and synthesis for embedded systems, CASES ’11, ACM, New York, NY,
USA, 2011, pp. 65–74. doi:10.1145/2038698.2038711.
URL http://doi.acm.org/10.1145/2038698.2038711

12. A. Monsifrot, F. Bodin, R. Quiniou, A machine learning approach to automatic pro-
duction of compiler heuristics, in: Proceedings of the 10th International Conference on
Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’02, Springer-
Verlag, London, UK, UK, 2002, pp. 41–50.
URL http://dl.acm.org/citation.cfm?id=646053.677574

13. M. Stephenson, S. Amarasinghe, M. Martin, U.-M. O’Reilly, Meta optimization: im-
proving compiler heuristics with machine learning, SIGPLAN Not. 38 (5) (2003) 77–90.
doi:10.1145/780822.781141.
URL http://doi.acm.org/10.1145/780822.781141

14. M. Tartara, S. Crespi Reghizzi, Continuous learning of compiler heuristics, ACM Trans.
Archit. Code Optim. 9 (4) (2013) 46:1–46:25. doi:10.1145/2400682.2400705.
URL http://doi.acm.org/10.1145/2400682.2400705

15. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson,
M. Toussaint, C. K. I. Williams, Using machine learning to focus iterative optimization,
in: Proceedings of the International Symposium on Code Generation and Optimiza-
tion, CGO ’06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 295–305.
doi:10.1109/CGO.2006.37.
URL http://dx.doi.org/10.1109/CGO.2006.37



Title Suppressed Due to Excessive Length 41

16. R. C. Whaley, A. Petitet, Minimizing development and maintenance costs in supporting
persistently optimized BLAS, Software: Practice and Experience 35 (2) (2005) 101–121.

17. Openblas, an optimized blas library (2012).
URL available at http://xianyi.github.com/OpenBLAS/

18. G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org (2010).
19. Intel, Intel mkl, available at http://software.intel.com/en-us/intel-mkl (2012).
20. J. Bilmes, K. Asanović, C. Chin, J. Demmel, Optimizing matrix multiply using PHiPAC:

a portable, high-performance, ANSI C coding methodology, in: Proceedings of the In-
ternational Conference on Supercomputing, ACM SIGARC, Vienna, Austria, 1997.

21. K. Goto, R. A. van de Geijn, Anatomy of high-performance matrix multiplication, ACM
Trans. Math. Softw. 34 (3) (2008) 12:1–12:25. doi:10.1145/1356052.1356053.
URL http://doi.acm.org/10.1145/1356052.1356053

22. F. G. Van Zee, R. A. Van De Geijn, BLIS: A framework for rapidly instantiating BLAS
functionality, ACM Transactions on Mathematical Software 41 (3).

23. T. M. Smith, R. A. van de Geijn, M. Smelyanskiy, J. R. Hammond, F. G. V. Zee,
Anatomy of high-performance many-threaded matrix multiplication, in: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, May
19-23, 2014, 2014, pp. 1049–1059. doi:10.1109/IPDPS.2014.110.
URL http://dx.doi.org/10.1109/IPDPS.2014.110

24. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, Is search
really necessary to generate high-performance blas?, Proceedings of the IEEE 93 (2),
special issue on ”Program Generation, Optimization, and Adaptation”.

25. V. Volkov, J. W. Demmel, Benchmarking gpus to tune dense linear algebra, in: Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, IEEE Press,
Piscataway, NJ, USA, 2008, pp. 31:1–31:11.
URL http://dl.acm.org/citation.cfm?id=1413370.1413402

26. R. Nath, S. Tomov, J. Dongarra, An Improved Magma Gemm For Fermi Graph-
ics Processing Units, Int. J. High Perform. Comput. Appl. 24 (4) (2010) 511515.
doi:10.1177/1094342010385729.

27. V. I. Kelefouras, A. Kritikakou, C. Goutis, A Matrix–Matrix Multiplication
methodology for single/multi-core architectures using SIMD, Supercomputing,
Springerdoi:10.1007/s11227-014-1098-9.

28. N. Nethercote, J. Seward, Valgrind: a framework for heavyweight dynamic binary in-
strumentation, SIGPLAN Not. 42 (6) (2007) 89–100. doi:10.1145/1273442.1250746.
URL http://doi.acm.org/10.1145/1273442.1250746

29. N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, D. A. Wood, The gem5 simulator, SIGARCH Comput. Archit. News 39 (2) (2011)
1–7. doi:10.1145/2024716.2024718.
URL http://doi.acm.org/10.1145/2024716.2024718

30. T. Austin, E. Larson, D. Ernst, Simplescalar: An infrastructure for computer system
modeling, Computer 35 (2002) 59–67. doi:10.1109/2.982917.
URL http://dl.acm.org/citation.cfm?id=619072.621910

31. S. M. Bhandarkar, H. R. Arabnia, The REFINE Multiprocessor - Theoretical Properties
and Algorithms., Parallel Computing 21 (11) (1995) 1783–1805.

32. H. R. Arabnia, J. W. Smith, A reconfigurable interconnection network for imaging
operations and its implementation using a multi-stage switching box, 1993, pp. 349–
357.

33. M. A. Wani, H. R. Arabnia, Parallel edge-region-based segmentation algorithm targeted
at reconfigurable MultiRing network, The Journal of Supercomputing 25 (1) (2003) 43–
62.

34. H. R. Arabnia, A parallel algorithm for the arbitrary rotation of digitized images using
process-and-data-decomposition approach, Journal of Parallel and Distributed Comput-
ing 10 (2) (1990) 188–192.

35. H. R. Arabnia, M. A. Oliver, A transputer network for fast operations on digitised
images, Computer graphics forum 8 (1) (1989) 3–11.

36. S. M. Bhandarkar, H. R. Arabnia, The Hough transform on a reconfigurable multi-ring
network, Journal of Parallel and Distributed Computing 24 (1) (1995) 107–114.



42 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

37. H. R. Arabnia, M. A. Oliver, A transputer network for the arbitrary rotation of digitised
images, The Computer Journal 30 (5) (1987) 425–432.

38. H. R. Arabnia, S. M. Bhandarkar, Parallel stereocorrelation on a reconfigurable multi-
ring network, The Journal of supercomputing 10 (3) (1996) 243–269.

39. H. R. Arabnia, M. A. Oliver, Arbitrary rotation of raster images with SIMD machine
architectures, Computer Graphics Forum 6 (1) (1987) 3–11.

40. S. M. Bhandarkar, H. R. Arabnia, J. W. Smith, A reconfigurable architecture for im-
age processing and computer vision, International journal of pattern recognition and
artificial intelligence 9 (02) (1995) 201–229.

41. H. Arabnia, A distributed stereocorrelation algorithm, in: Computer Communications
and Networks, 1995. Proceedings., Fourth International Conference on, IEEE, 1995, pp.
479–482.

42. R. C. Whaley, A. Petitet, J. J. Dongarra, Automated empirical optimization of software
and the ATLAS project, Parallel Computing 27 (1–2) (2001) 3–35.

43. R. C. Whaley, J. Dongarra, Automatically Tuned Linear Algebra Software, in: Ninth
SIAM Conference on Parallel Processing for Scientific Computing, 1999, cD-ROM Pro-
ceedings.

44. R. C. Whaley, J. J. Dongarra, Automatically tuned linear algebra software, in: Pro-
ceedings of the 1998 ACM/IEEE Conference on Supercomputing, Supercomputing ’98,
IEEE Computer Society, Washington, DC, USA, 1998, pp. 1–27.
URL http://dl.acm.org/citation.cfm?id=509058.509096

45. R. C. Whaley, J. Dongarra, Automatically Tuned Linear Algebra Software, Tech. Rep.
UT-CS-97-366, University of Tennessee (December 1997).

46. P. Bjørstad, F. Manne, T. Sørevik, M. Vajtersic, Efficient matrix multiplication on simd
computers, SIAM J. MATRIX ANAL. APPL 13 (1992) 386–401.

47. R. A. V. D. Geijn, J. Watts, Summa: Scalable universal matrix multiplication algorithm,
Tech. rep. (1997).

48. S. Chatterjee, A. R. Lebeck, P. K. Patnala, M. Thottethodi, Recursive array layouts
and fast parallel matrix multiplication, in: In Proceedings of Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures, 1999, pp. 222–231.

49. B. Moon, H. V. Jagadish, C. Faloutsos, J. H. Saltz, Analysis of the clustering properties
of the hilbert space-filling curve, IEEE Transactions on Knowledge and Data Engineer-
ing 13 (2001) 2001.

50. M. Thottethodi, S. Chatterjee, A. R. Lebeck, Tuning strassen’s matrix multiplication
for memory efficiency, in: In Proceedings of SC98 (CD-ROM, 1998.

51. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, Is search
really necessary to generate high-performance blas?, Proceedings of the IEEE 93 (2).

52. M. Kulkarni, K. Pingali, An experimental study of self-optimizing dense linear algebra
software, Proceedings of the IEEE 96 (5) (2008) 832–848.

53. E. Garcia, I. E. Venetis, R. Khan, G. R. Gao, Optimized dense matrix multiplication on
a many-core architecture, in: Proceedings of the 16th international Euro-Par conference
on Parallel processing: Part II, Euro-Par’10, Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 316–327.
URL http://dl.acm.org/citation.cfm?id=1885276.1885308

54. J. Choi, A new parallel matrix multiplication algorithm on distributed-memory concur-
rent computers., Concurrency - Practice and Experience 10 (8) (1998) 655–670.
URL http://dblp.uni-trier.de/db/journals/concurrency/concurrency10.html

55. J. Kurzak, W. Alvaro, J. Dongarra, Optimizing matrix multiplication for a short-
vector simd architecture - cell processor, Parallel Comput. 35 (3) (2009) 138–150.
doi:10.1016/j.parco.2008.12.010.
URL http://dx.doi.org/10.1016/j.parco.2008.12.010

56. F. Desprez, F. Suter, Impact of mixed-parallelism on parallel implementations of the
strassen and winograd matrix multiplication algorithms: Research articles, Concurr.
Comput. : Pract. Exper. 16 (8) (2004) 771–797. doi:10.1002/cpe.v16:8.
URL http://dx.doi.org/10.1002/cpe.v16:8

57. M. Hattori, N. Ito, W. Chen, K. Wada, Parallel matrix-multiplication algorithm
for distributed parallel computers, Syst. Comput. Japan 36 (4) (2005) 48–59.
doi:10.1002/scj.v36:4.
URL http://dx.doi.org/10.1002/scj.v36:4



Title Suppressed Due to Excessive Length 43

58. S. Hunold, T. Rauber, G. Rünger, Multilevel hierarchical matrix multiplication on clus-
ters, in: Proceedings of the 18th annual international conference on Supercomputing,
ICS ’04, ACM, New York, NY, USA, 2004, pp. 136–145. doi:10.1145/1006209.1006230.
URL http://doi.acm.org/10.1145/1006209.1006230

59. M. Krishnan, J. Nieplocha, Memory efficient parallel matrix multiplication operation
for irregular problems, in: Proceedings of the 3rd conference on Computing frontiers,
CF ’06, ACM, New York, NY, USA, 2006, pp. 229–240. doi:10.1145/1128022.1128054.
URL http://doi.acm.org/10.1145/1128022.1128054

60. S. Hunold, T. Rauber, Automatic tuning of pdgemm towards optimal perfor-
mance, in: Proceedings of the 11th international Euro-Par conference on Paral-
lel Processing, Euro-Par’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 837–846.
doi:10.1007/11549468 91.

61. F. Desprez, F. Suter, Impact of Mixed–Parallelism on Parallel Implementations of
Strassen and Winograd Matrix Multiplication Algorithms, Rapport de recherche RR-
4482, INRIA (2002).
URL http://hal.inria.fr/inria-00072106

62. G. Tsilikas, M. Fleury, Matrix multiplication performance on commodity shared-
memory multiprocessors, in: Proceedings of the international conference on Parallel
Computing in Electrical Engineering, PARELEC ’04, IEEE Computer Society, Wash-
ington, DC, USA, 2004, pp. 13–18. doi:10.1109/PARELEC.2004.43.
URL http://dx.doi.org/10.1109/PARELEC.2004.43

63. G. Rünger, M. Schwind, Fast recursive matrix multiplication for multi-core architec-
tures, Procedia Computer Science 1 (1) (2010) 67–76, international Conference on Com-
putational Science 2010 (ICCS 2010).

64. M. Krishnan, J. Nieplocha, Srumma: A matrix multiplication algo-
rithm suitable for clusters and scalable shared memory systems, Paral-
lel and Distributed Processing Symposium, International 1 (2004) 70b.
doi:http://doi.ieeecomputersociety.org/10.1109/IPDPS.2004.1303000.

65. V. Strassen, Gaussian elimination is not optimal., Numerische Mathematik 14 (3) (1969)
354–356.

66. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, Y. Zhou,
Cilk: an efficient multithreaded runtime system, SIGPLAN Not. 30 (8) (1995) 207–216.
doi:10.1145/209937.209958.
URL http://doi.acm.org/10.1145/209937.209958

67. P. Michaud, Replacement policies for shared caches on symmetric multicores: a
programmer-centric point of view, in: Proceedings of the 6th International Conference
on High Performance and Embedded Architectures and Compilers, HiPEAC ’11, ACM,
New York, NY, USA, 2011, pp. 187–196. doi:10.1145/1944862.1944890.
URL http://doi.acm.org/10.1145/1944862.1944890

68. D. S. Nikolopoulos, Code and data transformations for improving shared cache perfor-
mance on smt processors, in: ISHPC, 2003, pp. 54–69.

69. J. Kurzak, S. Tomov, J. Dongarra, Autotuning gemm kernels for the fermi gpu. 23 (11)
(2012) 2045–2057.
URL http://dblp.uni-trier.de/db/journals/tpds/tpds23.html

70. C. Jiang, M. Snir, Automatic tuning matrix multiplication performance on graphics
hardware, in: In the proceesings of the 14th International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT), 2005, pp. 185–196.

71. J. Li, S. Ranka, S. Sahni, Strassen’s matrix multiplication on gpus, in: Proceedings of
the 2011 IEEE 17th International Conference on Parallel and Distributed Systems,
ICPADS ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 157–164.
doi:10.1109/ICPADS.2011.130.
URL http://dx.doi.org/10.1109/ICPADS.2011.130

72. J. M. Cecilia, J. M. G. 0001, M. Ujaldon, The gpu on the matrix-matrix multiply:
Performance study and contributions., in: B. M. Chapman, F. Desprez, G. R. Joubert,
A. Lichnewsky, F. J. Peters, T. Priol (Eds.), PARCO, Vol. 19 of Advances in Parallel
Computing, IOS Press, 2009, pp. 331–340.
URL http://dblp.uni-trier.de/db/conf/parco/parco2009.html



44 Vasilios Kelefouras, Angeliki Kritikakou, Iosif Mporas, Vasilios Kolonias

73. 2014 IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS 2014, Monterey, CA, USA, March 23-25, 2014, IEEE, 2014.
URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6832911

74. T. Athil, R. Christian, Y. B. Reddy, Cuda memory techniques for matrix multiplication
on quadro 4000, in: Proceedings of the 2014 11th International Conference on Informa-
tion Technology: New Generations, ITNG ’14, IEEE Computer Society, Washington,
DC, USA, 2014, pp. 419–425. doi:10.1109/ITNG.2014.24.
URL http://dx.doi.org/10.1109/ITNG.2014.24

75. L. Djinevski, S. Arsenovski, S. Ristov, M. Gusev, Performance drawbacks for matrix
multiplication using set associative cache in GPU devices, in: Information & Commu-
nication Technology Electronics & Microelectronics (MIPRO), 2013 36th International
Convention on, IEEE, 2013, p. 193198.

76. K. Matsumoto, N. Nakasato, T. Sakai, H. Yahagi, S. G. Sedukhin, Multi-level Optimiza-
tion of Matrix Multiplication for GPU-equipped Systems, Procedia Computer Science
4 (0) (2011) 342351, proceedings of the International Conference on Computational Sci-
ence, {ICCS} 2011. doi:10.1016/j.procs.2011.04.036.
URL http://www.sciencedirect.com/science/article/pii/S1877050911000949


	UHRA full text deposit cover AAM
	review_ver3 (002)

