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ABSTRACT  

The search for the closest lattice point arises in many communication problems, and is known 

to be NP-hard. The Maximum Likelihood (ML) Detector is the optimal detector which yields 

an optimal solution to this problem, but at the expense of high computational complexity. 

Existing near-optimal methods used to solve the problem are based on the Sphere Decoder 

(SD), which searches for lattice points confined in a hyper-sphere around the received point. 

The SD has emerged as a powerful means of finding the solution to the ML detection 

problem for MIMO systems. However the bottleneck lies in the determination of the initial 

radius.  

This thesis is concerned with the detection of transmitted wireless signals in Multiple-Input 

Multiple-Output (MIMO) digital communication systems as efficiently and effectively as 

possible. The main objective of this thesis is to design efficient ML detection algorithms for 

MIMO systems based on the depth-first search (DFS) algorithms whilst taking into account 

complexity and bit error rate performance requirements for advanced digital communication 

systems. The increased capacity and improved link reliability of MIMO systems without 

sacrificing bandwidth efficiency and transmit power will serve as the key motivation behind 

the study of MIMO detection schemes. 

The fundamental principles behind MIMO systems are explored in Chapter 2. A generic 

framework for linear and non-linear tree search based detection schemes is then presented 

Chapter 3. This paves way for different methods of improving the achievable performance-

complexity trade-off for all SD-based detection algorithms. The suboptimal detection 

schemes, in particular the Minimum Mean Squared Error-Successive Interference 

Cancellation (MMSE-SIC), will also serve as pre-processing as well as comparison 

techniques whilst channel capacity approaching Low Density Parity Check (LDPC) codes 

will be employed to evaluate the performance of the proposed SD.  Numerical and simulation 
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results show that non-linear detection schemes yield better performance compared to linear 

detection schemes, however, at the expense of a slight increase in complexity. 

The first contribution in this thesis is the design of a near ML-achieving SD algorithm for 

MIMO digital communication systems that reduces the number of search operations within 

the sphere-constrained search space at reduced detection complexity in Chapter 4. In this 

design, the distance between the ML estimate and the received signal is used to control the 

lower and upper bound radii of the proposed SD to prevent NP-complete problems. The 

detection method is based on the DFS algorithm and the Successive Interference Cancellation 

(SIC). The SIC ensures that the effects of dominant signals are effectively removed. 

Simulation results presented in this thesis show that by employing pre-processing detection 

schemes, the complexity of the proposed SD can be significantly reduced, though at marginal 

performance penalty. 

The second contribution is the determination of the initial sphere radius in Chapter 5. The 

new initial radius proposed in this thesis is based on the variable parameter   which is 

commonly based on experience and is chosen to ensure that at least a lattice point exists 

inside the sphere with high probability. Using the variable parameter  , a new noise 

covariance matrix which incorporates the number of transmit antennas, the energy of the 

transmitted symbols and the channel matrix is defined. The new covariance matrix is then 

incorporated into the EMMSE model to generate an improved EMMSE estimate. The 

EMMSE radius is finally found by computing the distance between the sphere centre and the 

improved EMMSE estimate. This distance can be fine-tuned by varying the variable 

parameter  .  

The beauty of the proposed method is that it reduces the complexity of the preprocessing step 

of the EMMSE to that of the Zero-Forcing (ZF) detector without significant performance 

degradation of the SD, particularly at low Signal-to-Noise Ratios (SNR). More specifically, it 
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will be shown through simulation results that using the EMMSE preprocessing step will 

substantially improve performance whenever the complexity of the tree search is fixed or 

upper bounded.  

The final contribution is the design of the LRAD-MMSE-SIC based SD detection scheme 

which introduces a trade-off between performance and increased computational complexity 

in Chapter 6. The Lenstra-Lenstra-Lovasz (LLL) algorithm will be utilised to orthogonalise 

the channel matrix   to a new near orthogonal channel matrix  ̅.The increased computational 

complexity introduced by the LLL algorithm will be significantly decreased by employing 

sorted QR decomposition of the transformed channel  ̅  into a unitary matrix and an upper 

triangular matrix which retains the property of the channel matrix. The SIC algorithm will 

ensure that the interference due to dominant signals will be minimised while the LDPC will 

effectively stop the propagation of errors within the entire system. Through simulations, it 

will be demonstrated that the proposed detector still approaches the ML performance while 

requiring much lower complexity compared to the conventional SD.  
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The most frequently used symbols throughout the thesis are presented in this section. These 

symbols are applicable all the sections in this thesis. Symbols which are applicable to specific 

sections are defined within those sections. 

   Size of real-valued modulation alphabet 

   Real signal set of cardinality   

    Length bias term at layer   

    Coherence bandwidth 

    System bandwidth 

   Channel capacity 

   Vector of bits transmitted per vector symbol 

      Bit transmitted at bit index   on layer    

 ( ( )) Euclidean distance between   and   ( ) 

  ( )  Euclidean distance increment at layer   

    Signal energy per bit 

    Signal energy per (vector) symbol 

   Linear filter matrix 

   Channel transfer or lattice generating matrix (real valued model) 

      Channel gain between transmit antenna  and receive antenna   

   Average mutual information 
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  (    ) A posteriori log-likelihood ratio of bit      

   Subset search list with hypotheses on the transmit signal, | |    

 ( ( )) Metric corresponding to the hypotheses that  ( ) was transmitted 
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    Noise power spectral density (double-sided, complex baseband) 

    Probability of a transmission (block) error 

   Interference matrix after linear equalisation (    ) 

     Noise covariance matrix (real-valued model) 

     Transmit covariance matrix (real-valued model) 

  
   Initial hyper-sphere radius 

  
 {[ ]  

   } Remaining radius of the hyper-sphere in sphere detection at layer  , depending 

on the incomplete transmit signal estimate [ ]  

    

    Data rate 

    Code rate 

   Spectral efficiency 

   Stack size of a sequential detector (LISS) 

   Scaling factor for mean squared error of channel estimate, relative to the 

operating SNR 

   Transmitted vector signal (real-valued model) 
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NOTATION 

 Bold lowercase letters x denote vectors 

  ‖ ‖ denotes the Euclidean distance or the   -norm of the vector x. 

 The notation [ ] 
  is used to refer to the vector of elements   through   from x. 

 Bold uppercase letters A denote matrices 

 (    
  ) means that the     element in layer   is equal to -1 

 (    
  ) means that the     element in layer   is equal to +1 

       or [ ]    denote the     row and     column of the matrix A.  

  ( ) denotes the      row vector and     denotes the      column vector.  

    [      ] denotes a matrix with    rows and    columns whose components are 

taken from the set   . 

    [      ] indicates that   is a subset of the set  . 

     denotes the       matrix of zeros while      is the      row vector of zeros.  

      denotes the       matrix of ones while      is the      row vector of ones.  

   
  denotes the vector x at node   in layer   

 [ ]   denotes the inverse of a matrix 

 [ ]  denotes the transpose of a matrix 

 [ ]  denotes the Hermitian transpose of a matrix. 

 [ ]  denotes the complex conjugate transpose of a matrix 

 [ ]  denotes the Moor-Penrose pseudo-inverse or simply the pseudo-inverse. 

 The set of real, complex and integer numbers are donated by ℝ,   and  , respectively. 

 Real valued numbers and imaginary numbers will be denoted by   and   

respectively. 

 The binary field is denoted by with elements {     }  

 Binary mapping will be carried out as follows:     and     ).  
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 Rounding-off to the nearest integer larger than   is denoted by ⌊ ⌋ 

  rounding-off the nearest integer smaller than   is denoted by ⌈ ⌉  

   (    )⁄  denotes the signal-to-noise ratio where    is the number of transmit 

antennas and    is the noise spectral density 

 The Probability Density Function (p.d.f) of the continuous random variable x is 

denoted by p (x). The expected value of a random variable X is denoted by {X}. 

Probabilities are denoted by P[ ].  
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ACRONYMS  
 

AAS    Advanced Antenna Systems 

ADSL Asynchronous Digital Subscriber Line 

APP    A Posteriori Probability   

AWGN          Additive White Gaussian Noise 

BER          Bit Error Rate 

BFS            Breadth First Search 

BICM     Bit interleaved Coded Modulation 

BLAST     Bell Laboratory Layered Space-Time  

BS         Base Station 

CDMA    Code Division Multiple Access 

CLP Closest Lattice Point 

CLPP      Closest Lattice Point Problem 

CPDF       Conditional Probability Density Function 

CSD Conventional Sphere Decoder 

CSI     Channel State Information 

D-BLAST Diagonal Bell Labs Layered Space-Time 

DFE    Decision Feedback Equalization 

DFS   Depth First Search 

EMC Ergodic MIMO Capacity  

EMMSE Extended Minimum Mean Squared Error  

DSP    Digital Signal Processing 

FDA Fano Detection Algorithm 

FEC Forward Error Correction 

ILSS    Integer Least Square Solution 
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ISI     Inter-Symbol Interference 

LD           Linear Detection 

LDC   Linear Dispersion Codes 

LDPC   Low Density Parity Check  

LLL           Lenstra-Lenstra-Lovasz (lattice reduction) algorithm 

LLR         Log-Likelihood Ratio 

MAI Multiple Access Interference 

MAP          Maximum A Posteriori Probability 

MFS        Metric First Search 

MIMO       Multiple Input Multiple Output 

MISO       Multiple Input Single Output 

ML          Maximum Likelihood 

MLD       Maximum Likelihood Detector 

MLSE       Maximum Likelihood Sequence Estimator 

MMSE     Minimum Mean Squared Error 

MMSE-SIC MMSE-Successive Interference Cancellation 

MPIC Multistage Parallel Interference Cancellation 

MUD Multi-User Detection 

MRC Maximum Ratio Combining 

NLD  Non-Linear Detectors  

NP-hard      Non-deterministic Polynomial-time hard 

OFDM       Orthogonal Frequency Division Multiplexing 

MOC    MIMO Outage Capacity 

OSIC    Ordered Successive Interference Cancellation 

PARC     Per-Antenna Rate Control 

PCCC     Parallel Concatenated Convolutional Codes 
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PED Partial Euclidean Distance 

PIC   Parallel Interference Cancellation 

PSA       Post-Sorting-Algorithm  

PSK Phase Shift Keying 

QAM   Quadrature Amplitude Modulation 

QoS     Quality of service 

QRD     QR Decomposition 

SD      Sphere Detector 

SDMA Space Division Multiple Access 

SE      Schnorr-Euchner 

SE-SD Schnorr-Euchner Sphere Detector  

SIC             Successive Interference Cancellation 

SIMO             Single Input Multiple Output 

SNR          Signal-to-Noise Ratio 

SQRD       Sorted QR decomposition 

STBC  Space Time Block Coding 

STC         Space-Time Coding 

STTC Space Time Trellis Coding 

SVD           Singular Value Decomposition 

SVP            Shortest Vector Problem 

V-BLAST     Vertical Bell Labs Layered Space-Time  

ZF                    Zero Forcing 

ZF-SIC ZF- Successive Interference Cancellation 
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1. Introduction 

1.1 A General Overview of Wireless Communication Systems 

The idea of transmitting radio signals over wireless communication channels date back in the 

1890s. The first wireless communications radio link was discovered by Gugliemo Marconi, 

popularly known as the “father of wireless communications”, in 1895. In this year, he 

succeeded in establishing the first recognised wireless communication link by transmitting a 

series of dots and dashes, also known as the Morse code, from the Isle of Wight over a 

wireless communication channel to a receiver in a tugboat located at approximately 30km 

away from the transmitter.  

Although the transmitted radio signals were accurately interpreted by the receiver, there was 

little or no knowledge about the fundamental limits of the rates at which radio signals can be 

transmitted over such a radio link reliably. In these infantry stages of wireless communication 

systems, the communications community remained in the wilderness of darkness until 

Shannon’s pioneering work in 1948 on the capacity limits of an Additive White Gaussian 

Noise (AWGN) channel [1]. It was until then that communication engineers understood the 

fundamental limits on the communication rate of reliable transmission [1].  Since then 

wireless communication systems have seen a tremendous growth with an incredible rate of 

expansion in the past few decades. Today, advanced digital communications systems transmit 

digital signals over billions of kilometres via satellite communication links. 

Today, the goal of a communication system designer is to design  high speed communication 

links with high  spectral efficency and at the same time provide good Quality of Service 

(QoS), i.e., improved link reliability  leading to minimisation of the probability of error. The 

system designer goals also include the reduction of transmission power and bandwidth and 
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minimization of complexity and cost of implementation of the proposed wireless 

communication systems. The ultimate result is increased capacity at significantly low 

interference. Currently, communication technologies based on Long Term Evolution (LTE) 

are being designed to provide high data rate in both the uplink and the downlink. More 

ambitiously, system designers are developing wireless systems to supplant the standard wired 

last mile (access network) of service providing a wireless alternative to cable modems and 

digital subscriber lines, a wireless backbone for Wi-Fi (IEEE802.11) hotspots as well as 

providing general telecommunications and data services [2]. However, little is known about 

the performance characteristics of such wireless systems, neither how to optimize the design 

of such wireless systems, particularly when the complexity of the system design is taken into 

account as a practical constraint.    

1.2 Multiple-Input Multiple Output Detection Algorithms 

Several techniques have been proposed to achieve these design goals. Examples of such 

techniques include the design of more spectral efficient higher order modulation schemes 

such as Quadrature Amplitude Modulation (QAM), Phase Shift Keying (PSK) and Low 

Density Parity Check (LDPC) codes channel coding schemes. However, the use of higher 

order modulation and coding schemes pose more challenges: limited range [3]-[4], thus 

demanding more transmit power and transmission of redundant bits instead of information 

carrying bits. Furthermore, the channel becomes more subject to Inter Symbol Interference 

(ISI) as the modulation order increases, thus, reducing the reliability and consequently the 

performance and capacity of wireless communication systems.  

As communication engineers strive to address existing issues, they are often confronted with 

more serious and more pressing new challenges. The radio communication channel is a 

dynamic process which is never constant, but which is instead continuously varying with 
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time, space and frequency. Communication channels are generally non-orthogonal, i.e., the 

electromagnetic signals radiated from different transmit antennas superimpose at each receive 

antennas [5]. If perfect Channel State Information (CSI) is available at the transmitter, the 

channel can be orthogonalised by using appropriate signalling techniques. However, such 

information is often unavailable or cannot be exploited due to limited computational 

resources at the receiver side. In such scenarios, the detection of received signals becomes a 

daunting task for the receiver as the complexity of optimal detector rises exponentially with 

the number of received bits per transmitted vector symbol.  

One of the candidates for Digital Signal Processing (DSP) technologies which has provided 

solutions to the constraints and technical burden placed on spectrum by exploiting the spatial 

domain of the transmission medium is Multiple-Input Multiple Output (MIMO) systems [6]. 

Equipping both the transmitter and the receiver with multiple antennas can result in 

significant increase in diversity gain, spectral efficiency [7]-[10], link range and reliability 

without additional bandwidth and transmit power. However, due to the non-orthogonality of 

the transmission channel, these benefits come at the cost of potentially high detection 

complexity, particularly in cases where a large number of transmit antennas and large 

constellation sizes are used [11]. 

The brute-force Maximum Likelihood (ML) detector yields an optimal solution in detection  

of both coded and uncoded MIMO signals transmitted over non-orthogonal channels, but 

however,  at the expense of huge and practically unbearable computational complexity due to 

the excessively high number of lattice points visited during the detection process. The need to 

reduce the number of visited lattice points, and consequently computational complexity, has 

motivated intense research in the design of more powerful sub-optimal detectors which are 

capable of fine-tuning the visited lattice points.  These include the Sphere Decoder (SD) [12], 
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the Fano Detection Algorithm (FDA) [13] and the Lattice Reduction-Aided Detection 

(LRAD) schemes [14]-[15]. 

The SD or the Finke-Pohst (FP) detection algorithm [12], [16] was proposed as an efficient 

algorithm for finding the solution to the ML detection problem in MIMO digital 

communication systems. It is an effective method for ML detection for MIMO systems [17]. 

The SD criterion is based on finding the Integer Least-Squares Solution (ILSS) of a system of 

linear equations where the unknown vector is comprised of integers but the coefficient matrix 

and the given vector is comprised of real numbers [18]. This problem is equivalent to finding 

the closest lattice point to a given point and is known to be NP-hard [18]. The SD detection 

problem has been reformulated into a tree search problem, which can be regarded as a search 

for leaf nodes in a tree which maximizes certain metric [19].   

However, the complexity of the SD is very sensitive to the initial radius   , of the hyper-

sphere [19]-[21], which in turn determines the number of lattice points inside the hyper-

sphere. As a result, researchers have shifted their attention towards finding an optimal initial 

sphere radius which minimizes the number of lattice points visited during the detection 

process, and consequently, the computational complexity of the SD. 

The desire to achieve a near-optimal SD detection at low computational complexity has 

resulted in bridging the gap between the study of Multi-User Detection (MUD) and MIMO 

detection. Several sub-optimal detection strategies have been used as pre-processing 

techniques in MIMO detection. The main aim being to improve the reliability of SD input 

signals and consequently reducing the computational cost of the sphere decoder and at the 

same time increasing the performance of the SD [22]-[24]. Among them are the Linear 

Detectors (LD) and Non-Linear Detectors (NLD). Examples of NL detectors include the 

Decorrelating detector, also known as the Zero-Forcing (ZF) equalizer [22]-[23] and the 
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Minimum Mean Squared Error Detector (MMSE) [24]. NLD include the Vertical Bell 

Layered Space-Time (V-BLAST), also known as the Ordered Successive Interference 

Cancelation (OSIC) [27], and its variations, i.e., the Parallel Interference Cancellation (PIC) 

and the Decision Feedback Detector (DFD) [25]-[26], [28].  

This thesis focuses on the performance and complexity analysis of MIMO detection 

algorithms. More powerful codes such as LDPC codes and suboptimal detection schemes will 

be combined with the SD to achieve quasi-optimal solution to the MIMO detection problem 

with minimum complexity.  

1.3 Motivation 

The increasingly high demand for wireless communications services and the increasing users’ 

expectations for multi-media services have led to the explosive increase in different 

applications of wireless technology in the last decade. With this current trend, present 

wireless communication systems will not be able to handle the expected high data rates 

traffic. The demand for high data rates for future wireless communications systems has 

resulted in the congestion of radio frequency spectrum. Frequency spectrum, which is subject 

to physical constraints and regulation, is a scarce and limited resource, and thus a precious 

resource. This fact has consequently led to the need for the design of wireless technologies 

which utilise the radio frequency spectrum as efficiently as possible. The solution lies in the 

design of MIMO systems with high spectral efficiency. It has been demonstrated that MIMO 

technology is the most promising technology as it can improve link reliability without 

sacrificing bandwidth efficiency and transmit power.  

However, the increase in spectral efficiency comes at the expense of a potentially high 

computational cost of the receiver design. The non-orthogonality of the transmission channels 

has motivated intense research into the design of MIMO detectors.  Chapter 2 of this thesis 
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sheds some light on the fundamental principles and benefits of MIMO systems including 

increased capacity, improved diversity gain and spatial multiplexing gain. 

Whilst MIMO systems are capable of achieving near-channel capacity, the major challenge 

lies in the design of the MIMO detectors due to non-orthogonality of MIMO channels. The 

ML detector yields an optimal solution to the detection of MIMO signals transmitted over 

non-orthogonal channels, however, at the expense of its computational complexity which 

arises due to the excessively high number of lattice points visited during the detection 

process. Several suboptimal MIMO detection strategies have been introduced in the literature 

to slice the complexity of the ML detector. Chapter 3 discusses linear and non-linear 

detection schemes including MMSE and the Successive Interference Cancellation (SIC). 

Most researchers to date have not investigated techniques which eliminate error propagation 

effectively. An MMSE-SIC detection scheme, which effectively reduces error propagation 

and yield performance gain over linear detection schemes, is investigated in Chapter 4. 

Linear detectors are popularly known for their significantly reduced complexity, but the 

reduced complexity is achieved at strong performance penalty. Tree search detection 

schemes, which form the core of this thesis, have recently emerged as the most promising 

approaches towards solving the MIMO detection problem. They model the detection task into 

a search for leaf nodes in a tree which maximise a certain metric. By tuning the number of 

lattice points, tree search algorithms are allowed to visit a predetermined number of nodes. 

Thus, performance and complexity can be flexibly traded off against each other. Research in 

this area so far concentrated on iterative detection-decoding and sequential detection. In 

Chapter 4, an SD characterised by the depth-first-search algorithm which is capable of 

achieving near-ML performance is ivestigated. Both coded and uncoded transmissions will be 
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investigated in Chapter 4. The state of the art LDPC will be employed to evaluate and 

improve performance. 

The selection of the initial sphere radius is one of the most difficult challenges faced in the 

design of the sphere detector. A novel Extended Minimum Mean Squared Error (EMMSE) 

initial radius based on the received signal; noise statistics; the number of transmit antennas; 

the energy of the transmitted symbols and on the channel matrix is designed in Chapter 5. 

This proposed initial radius is particularly suitable for reducing the complexity of the SD at 

low signal-to-noise ratios (SNR).  

Finally, it has been shown that non-linear detectors, including sequential detectors, yield 

better performance compared to linear detection schemes at the expense of one or more or a 

combination of the following problems: error propagation and increased computational 

complexity. To overcome these problems, a trade-off between performance and one or more 

of these issues has to be made. Most work to date has concentrated on searching in original 

signal space. The state-of-the-art Lattice Reduction Aided SE-SD (LRAD-SE-SD) which 

searches for the Closest lattice Point (CLP) in the transformed reduced signal space is 

proposed in Chapter 6. Chapter 6 provides a detailed assessment of preprocessing schemes 

which aim to reduce the complexity of the SD and improve performance. The investigations 

cover the case of uncoded transmission, as well as coded transmission. Both average and 

worst case complexity will be investigated in Chapter 6. 
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1.4 Thesis Contributions 

The novel contributions of this thesis are highlighted below. 

 The SIC-based SD characterised by the Depth First Search (DFS) algorithm is 

proposed in Chapter 4. A tree search representation will be used to illustrate how the 

proposed algorithm walks over the tree throughout the design. The sphere detection 

problem will be reformulated into a tree search problem by performing QR 

decomposition on the channel matrix. This allows for the construction of an ordered 

SIC based subset search list which minimizes the number of visited lattice points, thus 

reducing the complexity of the SD significantly. 

 To avoid the effects of error propagation introduced by the SIC algorithm which 

could have an adverse effect on the Bit Error Rate (BER) performance of the 

proposed SD, LDPC codes will be employed to stop error propagation from one stage 

of the detector to the next. Optimal ordering is also used in this design to eliminate 

error propagation by allowing the row within the received signal vector with the 

highest post detection SNR to be detected earlier than others in Chapter 4. 

 The selection of the initial sphere radius is one of the most difficult challenges faced 

in the design of the sphere detector. A novel EMMSE SD initial radius based on the 

received signal; noise statistics; the number of transmit antennas; the energy of the 

transmitted symbols and on the channel matrix is proposed in Chapter 5. The 

proposed initial radius is particularly suitable for reducing the complexity of the 

sphere decoder at low SNRs. In order to further reduce the complexity of the SD, the 

QR decomposition which is inherent in the Schnorr-Euchner SD (SE-SD) will be 

utilised. Simulation results show that the proposed initial sphere radius does not only 

reduce the complexity of the SD, but also significantly improves the BER 

performance of the SD, particularly at low SNR. 
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 An efficient SD detection strategy that yields an ML solution at significantly reduced 

complexity is proposed in Chapter 6. Complexity reduction is achieved by intruding 

the Lattice Reduction Aided detection (LRAD) scheme and performing QR 

decomposition. The resulting reduced SD structure will be referred to as the LRAD-

MMSE-SIC-SE-SD and its computational complexity is independent of the 

constellation size while it is polynomial with respect to the number of antennas.  

Performance results of the proposed complete LRAD-MMSE-SIC-SD detection 

scheme show that the SD complexity is significantly reduced at only marginal 

performance penalty.  

1.5 Thesis Outline 

Chapter 2 provides an overview of MIMO systems. The advantages of MIMO which include 

increased spectral efficiency and/or capacity and diversity gain of wireless communication 

systems are presented in this Chapter. A brief description of the simulation setup and MIMO 

transmit strategies used throughout this thesis is provided in this chapter. The concept of 

channel capacity and channel approaching codes exemplified by LDPC codes is introduced in 

Chapter 2. 

Chapter 3 introduces MIMO detection schemes. Optimal detection schemes are considered in 

the first part of this chapter. Two classes of optimal detection schemes namely the Maximum 

Likelihood Sequence Detector (MLSD) and the Maximum A Posteriori Probability (MAP) 

detection schemes are then discussed. The MLSD will serve as the basis for the SD which 

forms the core of this work. It will also be used as a yardstick against which the performance 

of the other MIMO detection strategies is measured.   

The fundamental principles underlying both linear and non-linear sub-optimal detection 

algorithms are discussed to depth in Chapter 3. The de-correlating and the MMSE detectors, 
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the SIC and the Vertical Bell Laboratory Layered Space-Time (V-BLAST) detection schemes 

are used as representative examples of both linear and non-linear detection schemes 

respectively. These sub-optimal detection schemes will be later used as pre-processing 

schemes as well as comparison techniques for the SD, which is the main focus of this work. It 

will be shown that non-linear detection schemes yield better performance compared to linear 

detection schemes, though at slightly increased complexity. A brief survey of the LRAD 

scheme is also presented in Chapter 3.  

A generic framework for tree search based detection schemes is introduced. An overview of 

the three main classes of tree search detection algorithms, namely the Depth-First-Search 

(DFS), Breath-First-Search (BFS) and the Metric-First-Search (MFS) is provided in this 

chapter, leading to the main subject of this work, i.e., the SD in Chapter 4. 

The SD characterized by the DFS algorithm will be investigated in Chapter 4. This will be 

followed by an in-depth description of the proposed SD design. The orthogonalisation of the 

channel matrix, also referred to as the lattice generating matrix, will be explored in Chapter 4. 

A survey of the EMMSE initial radius is provided in this chapter. The chapter will be closed 

with a thorough analysis of the tree search representation of the DFS SD detection algorithm. 

Note that the terms detector and decoder are interchangeable in the context of sphere 

detection and will be used with the same meaning throughout this thesis.  

In Chapter 5, a simple SE-SD with a novel EMMSE radius based on the received signal; 

noise statistics; the number of transmit antennas; the energy of the transmitted symbols and 

on the channel matrix is proposed. The main goal of this chapter is to address the issue of 

decoding failure and reduction of the computational complexity which is inherent in the SD. 

The LRAD-MMSE-SIC-SE-SD detection scheme that introduces a trade-off between 

performance and the complexity is designed in Chapter 6. The Lenstra-Lenstra-Lovász (LLL) 
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algorithm will be employed to orthognalise the channel matrix by transforming the signal 

space of the received signal into an equivalent reduced signal space. It will be shown through 

simulation results that the computational complexity of this detector is independent of the 

constellation size while it is polynomial with respect to the number of antennas and signal-to-

noise ratio. Finally, an outlook on the future work and the main findings are presented in 

Chapter 7.  

1.6 Declaration 

The following papers have been published and parts of their material are included in this 

thesis: 

 

Published Manuscripts 

 

 G. Kapfunde, Y. Sun, “Performance Evaluation of Linear Detectors for LDPC-Coded 

MIMO Systems,” University College of London Conference, London, UK, 2010. 

 G. Kapfunde, Y. Sun, N. Alinier, “An Improved Sphere Decoder for MIMO 

Systems,” 3
rd

 International Workshop on the Performance Enhancements in MIMO 

OFDM Systems (PEMOS), Barcelona, Spain, October, 2012. 

 G. Kapfunde, F. Tade, Y. Sun, “A Sphere Decoder for MIMO Detection using 

Improved Initial Sphere Radius”, Applied Radio Systems Research and Smart 

Wireless Communications (ARSR/SWICOM), Luton, UK, 2013.  

 



 

Chapter 2 Preliminaries 

PhD Thesis by Goodwell Kapfunde                                                                                                                    12 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

2. Preliminaries 

2.1 Introduction 

The increasing demand for wireless communication services has led to the congestion of the 

electromagnetic spectrum. This has consequently accelerated the desire to design wireless 

communication systems which frees up this scarce and precious resource. Multiple-Input 

Multiple-Output (MIMO) is a technology which employs multiple antennas at both the 

transmitter and receiver to improve the performance of wireless communication systems [7]. 

Performance improvement is achieved by exploiting the spatial domain of the transmission 

medium. Without the discovery of MIMO systems, there would have been no hope of 

achieving Shannon Capacity Limit with Single Input Single Output (SISO) systems. It has 

been demonstrated in [8] that further increases in channel capacity can be gained by the use 

of MIMO systems. 

The idea of using antenna arrays to enhance the performance of wireless communication 

systems was conceived in the late 1920s [29].  Antenna arrays were then mainly used to 

enhance the link budget by beam-steering in these early years [29]. The ultimate goal of using 

antenna arrays was to exploit the receive diversity of a wireless communication system to 

combat the effects of fading [30] and estimating the angle of arrival of radio signals. 

Research into antenna arrays accelerated subsequently with the advent of personal mobile 

communication systems and digital signal processing in the 1970s. As research in antenna 

arrays gathered momentum, it became clear that antenna diversity may also be extended to 

cancellation of co-channel interference, thus increasing the capacity of a wireless link [31]. 

These developments subsequently led to the realization of the true potential of using MIMO 

systems: to increase the capacity and receive diversity gain of wireless communication 

systems. 
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The increasing demand for high data rates for wireless communication systems, coupled with 

the limited availability of radio frequency spectrum has increased the desire to design 

wireless communications systems with higher spectral efficiency [32]. The first practical 

Vertical Bell Laboratory Layered Space Time (V-BLAST) for realizing the performance 

gains for a MIMO system was developed by Gerard J. Foschini [7] in the mid-1990s at Bell 

Laboratories, with the theoretical foundation laid by Telatar [3]. It is now widely accepted 

that by exploiting the available spatial diversity appropriately, the capacity of wireless 

networks and link reliability can be substantially improved [34]. Due to these desirable 

features, MIMO systems have found application in modern wireless communication 

standards including IEEE 802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution (LTE),  

Worldwide Interoperability for Microwave Access (Wi-MAX), also known as IEEE 802.16 

and High Speed Packet Access (HSPA+) [35]-[36]. 

2.2 Multiple-Input Multiple-Output Systems  

2.2.1 Traditional antenna configurations for wireless systems 

Traditional wireless communication systems employ a single antenna at the transmitter and 

receiver and/or smart antenna technology [37]. 

Fading 

Channel

SISO

TX RX
 

Figure 2-1Traditional SISO Antenna Configuration 

The former is known as Single Input Single Output (SISO), while the later (smart antenna) 

exist in two configurations: Multiple-Input Single Output (MISO) and Single Input Multiple 

Output (SIMO) [37]. Figure 2-1 and Figure 2-2 show the conceptual diagrams for the 

respective SISO and smart antenna configurations. 
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Figure 2-2 Traditional SIMO and MISO Antenna Configuration 

2.2.2 Multiple-antenna systems 

MIMO systems are considred as an extension of smart antennas technology. Traditional 

smart antenna technology employ multiple antennas at either the transmitter or receiver only, 

while MIMO systems generally employ multiple antennas at both the transmitter and the 

receiver.  

 

Figure 2-3 Example of Multiple-Input-Multiple-Output System 

The demployment of multiple antennas at both the transmitter and receiver combined with 

advanced signal processing algorithms yields significant advantages both in terms of capacity 

and diversity gain over both traditional SISO wireless systems and smart antenna systems. 

Figure 2-3 shows an example of a MIMO system employing multiple antennas at both the 

transmitter and the receiver.  
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It is important noting that such a MIMO system cannot only be realized by using physically 

co-located antennas, but it can also be realized in decentralized or distributed antenna systems 

[38]-[39].  

2.3 MIMO Channel Configurations 

2.3.1 Centralized transmitter and receiver  

In a typical MIMO system, both the transmitter and the receiver use several antennas with 

separate modulation and demodulation for each antenna.  The interfering channels are the 

radio links between all pairs of transmit and receive antennas. Figure 2-4 shows an example 

of this point-to-point MIMO channel setting. This type of setup can be practically employed 

in a high-rate semi-mobile local-area wireless data communications system, where, for 

example, a laptop computer equipped with a set of antennas mounted on the back side of the 

display and communicates with an access point that also has several antennas. 

 

Figure 2-4 Central transmitter and central receiver MIMO System 

2.3.2. Decentralized transmitters and central receiver  

In the decentralized transmitters and central receiver MIMO configuration, several transmit 

antennas transmit signals which are received by a central receiver. This type of MIMO 

system has found application in Multi-User MIMO (MU-MIMO) systems. Here, several 

transmitters, e.g., mobile phones, transmit radio signals in the uplink direction towards the 

base station of the multiuser mobile communication system. The joint receiver at the base 
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station recovers the individual users’ signals from the received aggregate signal. Since a 

number of users transmit at the same time in the same frequency band, the received signal is 

the superposition of all the active users’ signals. This is referred to as multiuser detection 

problem, and is also known as the MIMO multiple access channels [40]. Figure 2-5 shows 

the block diagram for MIMO multiple access channels.  

 

 

Figure 2-5 Decentralized Transmit and Central Receive MIMO system 

This type of MIMO multiple access setup is analogous to digital subscriber line (ADSL) in 

fixed communication systems where ADSL signals propagate in the upstream direction via 

twisted pairs from the customers to the central office. This type of channel model will not be 

discussed further in this thesis. 

2.3.3. Central transmitter and decentralized receivers  

In the downlink direction of mobile multiuser communication system, the central transmitter 

transmits mobile signals towards decentralised receivers. An example of this setup is the base 

station (central transmitter) simultaneously transmitting mobile signals towards mobile phone 

handsets (decentralized receivers).  Figure 2-6 shows this type of MIMO architecture which 

is referred to as MIMO broadcast system [41]-[45]. 
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Figure 2-6 Centralized Transmit and Decentralized Receive Cooperative MIMO System  

The main features of this MIMO setup is that the endpoints of the channels over which 

communication takes place are not concentrated at one point. The freedom of mutual 

interference of the channels from the base station to each of the users is usually assured by 

using time- or frequency-division-duplex transmission techniques. Separation of the user 

signals can also be achieved by the use of Code Division Multiple Access (CDMA) by 

assigning separate spreading codes or signature waveforms to individual users.  

The technique that is mostly used to separate user signals in multiple access MIMO systems 

is Space Division Multiple Access (SDMA). This technique employs several transmit 

antennas at the base station in parallel to “form beams” [46] towards the users. Similarly, this 

setting is called the downstream direction in ADSL, where high data rate streams of data 

propagate from the central office towards decentralized customers.  

2.4 MIMO Transmission Schemes 

2.4.1 Spatial diversity schemes  

Diversity can be achieved in different ways: time, frequency and space. Time diversity can be 

achieved by coding and interleaving data symbols [37]. Here, the coded symbols are 

dispersed over time in different coherence periods in such a manner that different parts of the 

code-words experience independent fades. Diversity can alternatively be exploited over 

frequency in frequency-selective channels. In MIMO channels diversity can be obtained over 
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space if the transmit or receive antennas are spaced sufficiently far enough. In a cellular 

network, macro-diversity can be exploited by the fact that the signal from a mobile can be 

received at two base-stations [37].  

Spatial diversity schemes are employed to exploit the full diversity offered by the MIMO 

channel where high link reliability is of prime interest. Link reliability is achieved by 

transmitting the same bit stream over all transmit antennas, i.e., the several copies of the 

same message is mapped to all transmit antennas. However, link reliability is achieved at the 

expense of the potential increase in spectral efficiency. 

Space-Time-Block-Codes  

Space-Time Block Codes (STBC) employs some form of repetition data coding through both 

space and time to decouple the non-orthogonal MIMO channels into a set of orthogonal 

SIMO channels to improve the reliability of the transmission.  This does not only enable 

exploitation of the transmit diversity of the system, but it also enables the implementation of 

low complexity receiver architectures based on Maximum Ratio combining (MRC). In each 

STBC block, s independent modulated data symbols are transmitted over a time interval of T 

samples, resulting in a code rate of the STBC of          . It is important pointing out 

that the channel has to remain constant over the duration of T samples in order to guarantee 

orthogonality of the code, and thus the reliability of the transmission.  

The first STBC transmit strategy was proposed and developed by Alamouti [49] for two 

transmit antennas and one receive antenna. This scheme was later extended to general 

orthogonal designs for an arbitrary number of transmit and receive antennas by Tarokh et al. 

[50]. Both the Alamouti scheme and the generalised coding schemes have a very simple 

maximum likelihood decoding algorithm based only on linear processing at the receiver.  
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Figure 2-7 Generalised STBC Block diagram 

However, the major limitation of the STBC scheme is that full rate codes (i.e.,        ) 

exist only for up four antennas, if real signalling is employed and for up to two antennas, and 

if complex signal constellations are used [50]. This limitation can be overcome by sacrificing 

the orthogonality of the code in order to increase its rate: quasi-orthogonal space-time block 

codes [51]. The resulting loss in diversity may be avoided by constellation rotation, which 

however requires more complex receiver architectures [52]. Space-time block coding 

schemes may equivalently be used along the frequency domain, for example in Orthogonal 

Frequency Division Multiplexing (OFDM) based systems [53]. Due to their implementation 

simplicity, STBC are very attractive for improving link reliability in situations where the 

transmitter is equipped with multiple antennas. 

Space-Time Trellis Codes  

Space-Time Trellis Codes (STTC) [54] does not only provide diversity gain like STBC, but 

provides additional coding gain by using Trellis encoding instead of a repetition coding at the 

transmitter. The major limitation of STTC transmit strategy is that it requires complex 

receiver architectures based on Maximum Likelihood Sequence Estimation (MLSE). This 

fact renders STTC some-what less attractive for practical implementation than STBC. 
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Beamforming 

Beamforming [55] can be used to directly address the most dominant eigenmode of the 

channel provided that the instantaneous Channel State Information (CSI) is available at the 

transmitter. The array gain of the transmitter can be exploited in addition to the diversity gain 

of the beamforming MIMO transmit strategy. Again, MRC based receiver structures are 

sufficient to achieve good performance. This strategy is particularly attractive in very low 

mobility scenarios, where CSI of sufficient quality can be made available to the transmitter at 

relatively low overhead, and the beam steering vectors have to be updated only infrequently. 

2.4.2 Spatial Multiplexing Schemes 

Spatial Multiplexing is more attractive in scenarios where the main goal of a wireless 

communication system design is to achieve a high spectral efficiency and consequently high 

data rates. This can be achieved by simultaneously transmitting multiple data streams in 

parallel over the multiple antennas [56]. This strategy is particularly appealing whenever 

sufficient time and frequency diversity is available, in order to make up for the loss in spatial 

diversity (when compared to the diversity schemes discussed above). 

Bell Labs Layered Space-Time transmission  

The Bell Labs Layered Space-Time (BLAST) transmission architecture was first proposed by 

J. Foschini for a spatial multiplexing scheme for multiple antennas systems to take advantage 

of the promising capacity of MIMO channels [7]. It achieves high spectral efficiencies by 

simultaneously spatially multiplexing coded or uncoded data symbols over fading MIMO 

channels. The main idea behind the BLAST scheme is the use of an appropriate encoding 

scheme at the transmitter side in order to achieve good performance when using only 

suboptimal detection schemes at the receive end i.e., the interference cancellation based 

detection schemes.   
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There are two different versions of the BLAST scheme. These are the Vertical BLAST (V-

BLAST) [27] and the Diagonal BLAST (D-BLAST) [7]. Both schemes de-multiplex the bit 

streams into    substreams and separately encode, interleave and modulate these streams. In 

the case of V-BLAST, the bit streams are mapped one-by-one onto each of the transmit 

antennas. This transmit strategy is sometimes also referred to as Per-Antenna Rate Control 

(PARC) [57]. Multi-level coding approaches [58] can be thought of as an extension of this 

scheme, where multiple data streams are transmitted per antenna. It is important to point out 

that none of the bit streams transmitted using the scheme benefit from the available transmit 

diversity. 

In contrast to the V-BLAST scheme, the D-BLAST exploits the available transmit diversity 

by transmitting each bit stream in a time-delayed “diagonal” fashion over all transmit 

antennas. Another important difference between the V-BLAST and the D-BLAST is that the 

layers of the V-BLAST can be coded or uncoded, while the D-BLAST can be used only with 

coded layers. However, the disadvantage of the D-BLAST is the requirement for an 

initializing phase at the beginning of each transmission burst. This results in reduced 

achievable spectral efficiency.  

While not requiring instantaneous knowledge of the channel transfer function at the 

transmitter, both schemes rely on the appropriate assignment of the data rates to the different 

streams, in order to enable a correct functioning of the interference cancellation based 

receiver. In order to do this allocation correctly, it is preferable to have at least some 

statistical knowledge of the channel available at the transmitter. Figure 2-8 shows a block 

diagram of the V-BLAST architecture. The received signals at each receive antenna is a 

superposition of   faded symbols plus Additive White Gaussian Noise (AWGN).  
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Figure 2-8 Generalised VBLAST Architecture 

The transmission of signals is described as follows. A data stream is de-multiplexed into    

sub-streams, also referred to as layers. For D-BLAST, at each transmission time, the layers 

circularly shift across the    transmit antennas resulting in a diagonal structure across space 

and time. Unlike the D-BLAST, the layers of the V-BLAST are arranged horizontally across 

space and time and the cycling operation is removed before transmission. At the receiver, as 

mentioned previously, the received signals at each receive antenna is a superposition of    

faded symbols plus AWGN. Although the layers are arranged differently for the two BLAST 

systems across space and time, the detection process for both systems is performed vertically 

for each received vector. 

Bit Interleaved Coded Modulation  

Bit Interleaved Coded Modulation (BICM) [59] consist of a sequence of encoded, 

interleaved, modulated information and the resulting single symbol stream is then directly 

mapped onto the transmit antennas. It is a transmit strategy with very low complexity and no 

channel knowledge is required at the transmitter side. However, due to the non-orthogonality 

of the MIMO channel, a significant amount of processing is required at the receiver side in 

order to achieve performance close to channel capacity.  
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SVD MIMO  

Singular Value Decomposition (SVD) MIMO [57]-[60], also known as eigenmode 

signalling, can be used if instantaneous channel knowledge of sufficient quality is available at 

the transmitter. The SVD of the channel transfer matrix is used to couple the transmit data 

directly into and out of the eigenmodes of the channel. The signal processing load is balanced 

between transmitter and receiver, as the different data streams can be demodulated 

individually at the receiver side. This requires substantially less processing effort at the 

receiver than for BICM or BLAST-like schemes. The data rates on the individual eigenmodes 

can be chosen such that the channel is not overloaded, in order to avoid outage events. 

Additionally, water filling can be used at the transmitter side, in order to maximize the 

achievable data rate subject to the given transmit power constraint. However, the additional 

gains are often not substantial at high Signal-to-Noise Ratio (SNR) in high diversity 

environments [57]. 

Diversity-Multiplexing Schemes 

There are several situations where it is attractive to combine the benefits of diversity gain and 

multiplexing gain. This can for example be the case when the number of significant 

eigenmodes of the channel is lower than the number of transmit antennas, e.g. in the presence 

of high correlation or in a downlink scenario where the number of antennas at the base station 

exceeds the number of antennas at the user terminal. In 4G wireless communications, the 

main emphasis is on obtaining significant gains in overall system capacity and improved 

spectral efficiency which can be achieved by deploying the optional advanced antenna 

systems (AAS) [49]. Since diversity is such an important resource, a wireless system 

typically uses different diversity schemes. 
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Linear Dispersion Codes  

Linear Dispersion Codes (LDC), belong to a class of space-time or space-frequency codes 

which are defined by linear generator matrices [61]. Examples of special members of this 

family include STBC, BICM and BLAST. The concept of LDC is to linearly superimpose 

multiple space-time encoded data streams (strata). The main advantage is that the number of 

strata may be chosen arbitrarily. However, there is no extra benefit of increasing the number 

of strata beyond the number of eigenmodes of the channel. The space-time coding can be 

designed such that all data streams can exploit the full spatial diversity offered by the 

channel. Examples of LDC include Multi-Stratum Space-Time Codes (MSSTC) [62] and 

Multi-Stratum Permutation Codes (MSPC) [63]. Like the BLAST schemes, data rates on 

individual strata should be chosen to ensure achievement of good performance when using 

suboptimal detection schemes such as the interference cancellation based receiver 

architectures. Otherwise, close-to-optimum tree search based schemes have to be used to 

achieve good performance instead [64]. 

2.5 Diversity Gain 

Multiple-antenna channels provide spatial diversity, which can be used to improve the 

reliability of the link [65]. Diversity schemes play a crucial role in MIMO wireless systems in 

combatting fading and co-channel  interference as well as avoiding error bursts. The premises 

behind diversity gain is that individual channels experience different levels of fading and 

interference. By sending signals that carry the same information through different paths with 

different characteristics, multiple independently faded replicas of the same signal are received 

at the receiver. These versions of the same signal are then combined in the receiver. The 

ultimate result is that the probability that all the signal components fade simultaneously is 

reduced. Hence, the reliability of the link is increased, thus leading to improved quality of 
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service (QoS). It has been shown in [66] that the probability of error at high SNR, averaged 

over the fading gain as well as the additive noise is: 

  (   )  
 

 
                                              (2-1) 

for uncoded binary phase-shift keying (PSK) signals over a single-antenna fading channel. 

By equipping the receiver with two antennas and transmitting the same signal, the error 

probability decreases to [66]: 

  (   )  
 

  
                                                    (2-2) 

The error probability decreases with the exponent of the SNR as can be seen in (2-2). Here, 

the error probability decreases at a faster rate of 
 

  
     . The exponent (2) is called the 

diversity gain    of the MIMO system. Thus the performance gain at high SNR is dictated by 

the exponent of the SNR, which in turn dictates the error probability [67]. The exponent 

depends on the number of independently faded channels over which the transmit signal 

propagates through. The generalised maximum (full) achievable diversity gain      of an 

      MIMO system is given by the number of independent eigenmodes of a MIMO 

channel, that is, the total number of independent signal paths that exist between the 

transmitter and receiver. This corresponds to the product of the number of receive antennas 

and transmit antennas. In general    decays at a rate of        for a multiple antenna system 

as opposed to SNR
-1

 for a SISO system where 1 ≤    ≤ Dmax=     . The diversity gain     

of a MIMO system depends on the error probability    and is given by [67]:  

 

          
       (   )

       
                                                 (2-3) 
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It is important noting that it is only the Bit Error Rate (BER) which improves due to diversity 

gain, and not the data rates as can be clearly seen in (2-3). In addition to improved BER, 

reduced fading can also offer an extra benefit, that is, increased link range. Diversity gain of a 

MIMO system can also be maximized by using appropriate Space Time Coding (STC) at the 

transmitter, thus providing the transmit MIMO signals with immunity to severe impairments 

caused by fading channels. Sensitivity to fading is reduced by the spatial diversity provided 

by multiple spatial paths which experience different levels of fade at a particular instant.   

2.6 Spatial Multiplexing Gain 

Whilst diversity gain is achieved by transmitting information through different paths with 

different characteristics, the spectral efficiency of a MIMO system can be increased by 

Spatially Multiplexing (SM) several data streams in the same frequency band. That is, SM 

provides high data rates by simultaneously transmitting independent data streams over 

different spatial channels. Increased capacity is achieved by introducing additional spatial 

channels that are exploited by using STC at the transmitter. Here, a high rate stream is split or 

de-multiplexed into a number of sub-streams with lower rates. Each of the sub-streams is 

mapped to each transmit antenna and then transmitted simultaneously in the same frequency 

channel.  
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Figure 2-9 Example of MIMO System Multiplexing Structure 

The ergodic capacity of a block-fading MIMO channel is [67]: 
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 (   )   [      (  
   

 
   )]   (b/s/Hz)                                (2-4) 

 (   )     {   }   
   

 
 ∑  [      

 ]   ( )    (      )      {   }
  |   |                    (2-5) 

where    
  is chi-square distributed with   degrees of freedom,      and     . In 

contrast to single-antenna system, the channel capacity increases with SNR 

as    {   }         (b/s/Hz) at high SNR. The implication of equations (2-5) is that MIMO 

channels can be viewed as    {   }  independent parallel SISO channels or spatial 

channels between the transmitter and the receiver, where    {   } is the total number of 

degrees of freedom for communication. The spatial multiplexing gain of a MIMO system 

depends on the data rate   (   )  and is given by [67]: 

          
    (   )

    (   )
                                                   (2-6) 

The main feature of SM is that it exploits rich scattering channels to increase multiplexing 

gain of the system by transmitting independent information symbols in parallel through the 

spatial channels. This phenomenon is referred to as spatial multiplexing. 

 However, the bottleneck of SM system lies at receivers: the decoding complexity becomes a 

challenging problem when the number of transmit and receive antennas and the size of 

modulation constellations increases [68]. The solution to this problem lies in the design of 

optimal or near-optimal detectors at the receiver. 

2.7 The diversity gain vs. multiplexing gain 

Traditionally, multiple antennas have been used to increase diversity to combat channel 

fading as discussed in Section 2.1. Each pair of transmit and receive antennas provides 

independent channels for signals from the transmitter to the receiver [69]. As discussed in 

Sections 2.5 and 2.6, the spatial diversity offered by the wireless channel may be exploited in 

two different ways: to improve link reliability and increase the spectral efficiency. However, 
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Zheng and Tse showed in [67] that there exists a fundamental trade-off between the two, 

rendering it impossible to maximize both at the same time. 

First, let the spatial multiplexing gain     of a system be defined as [67]: 

             
   (   )

    (   )
                                                 (2-7) 

where    is the transmission rate of the system, i.e., the system data rate. The multiplexing 

gain is upper bounded by the maximum number of parallel sub-channels opened up by the 

MIMO system, i.e., the number of eigenmodes with non-zero gain. It thus cannot exceed the 

minimum of the number of transmit and receive antennas: hence,     = min {   ,   }. 

Link reliability is inherently coupled to the fading statistics of the channel, more precisely the 

number of independent channel realizations over which the signal propagates through. The 

spatial diversity gain     of a system can be defined as [67]: 

       : =     
       

   {   (   )}

   (   )
                                (2-8) 

where the probability of error    depends on the transmission rate   . It is important to note 

here that    increases with    , as implied by the achieved multiplexing gain   . The 

maximum achievable diversity gain of a MIMO system is then given by the number of 

independent links present in a MIMO channel, i.e., the product of the number of transmit and 

receive antennas:      =   .   . The results presented in [67] show that it is not possible to 

maximise the diversity gain and the spatial multiplexing gain at the same time, i.e., an 

increased diversity gain will inevitably result in a smaller multiplexing gain.  

Figure 2-10 shows a plot of the trade-off between the spatial multiplexing gain and diversity 

gain of a MIMO system. It can be clearly seen that for a system aiming to maximize the 

diversity gain, the spatial multiplexing gain    will approach zero. Conversely, for a scheme 
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operating within a constant offset of the full MIMO capacity at any given SNR, the diversity 

gain will approach zero. 

 

Figure 2-10 Spatial Multiplexing Gain Diversity trade-off 

The error probability will no longer decrease with increasing SNR. Therefore a trade-off 

between the two has to be made to achieve optimal performance of a MIMO system. 

2.8 MIMO Capacity and Channel Coding Schemes 

In his seminal paper of 1948, Shannon introduced the concept of channel capacity as the 

maximum rate at which information can be reliably transmitted over a channel [1]. This 

concept stemmed from the fact that the probability of error asymptotically approaches zero as 

the duration of transmission tends to infinity. Given the discrete time transmission model:  

                                                                  (2-9)  

where   is the transmitted signal corrupted by some additive noise  , resulting in the signal 

received as  .  
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Figure 2-11 Discrete time transmission model 

Figure 2-11 shows the given discrete time transmission model. The average mutual 

information  (   ) (measure of mutual dependence of   and  ) between the channel 

input   and its output   which determines the rate for which error free transmission is possible 

is given by [70]: 

 (   )   ( )   ( | )   ( )   ( | )                          (2-10) 

where  ( ) is the Shannon or marginal entropy and  ( |  ) is the conditional entropy. The 

channel capacity is obtained by maximizing  (   ) over the choice of the input alphabet 

distribution  ( ). For the AWGN channel with complex noise, it is achieved by choosing    

to be zero mean independent identically complex Gaussian distribution, and is given by:  

          ( )  (   )        (        ) Bits/channel use                  (2-11)  

 where the result has been normalized to the channel bandwidth used for communication and 

       is a measure of the SNR at the receiver. 

2.8.1 Capacity-approaching codes  

The transmission of a codeword     over an AWGN impaired channel can be modelled by 

equation (2-9). The task of the decoder is to recover the codeword which was transmitted 

with highest probability, given the received sequence   and the knowledge of the set of valid 
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codewords  .  This problem is known as Maximum A Posteriori Probability (MAP) decoding 

and can be stated as:  

            
   

  ( | )         
   

 ( | )  ( )

 ( )
        

   
  (( | )  ( ))               (2-12)  

where the first equality follows from the application of Bayes’ theorem and the second from 

the fact that the normalization factor  ( ) has no impact on the optimization problem.  

Assume that the codewords   are chosen from   with equal probability,  ( )  
 

| |
, the MAP 

decoding reduces to the Maximum Likelihood (ML) decoding problem: 

 ̂         
   

  ( | )
 

| |
        

   
  ( | )           

   
  (   )                  (2-13)  

where  (   ) is an appropriate distance metric (e.g., the Hamming distance in the case of a  

Binary Symmetric Channel (BSC)) and the Euclidean distance in the case of an AWGN 

channel [71]. The goal of the detection problem is to find codes and an associated decoding 

algorithm which allow to solve (2-13) at manageable complexity, preferably at fixed or 

reduced cost per transmitted bit. However, the ML decoding problem has been shown to be 

NP-complete for the case of binary linear block codes transmitted over the BSC, which at 

least strongly suggests that (2-13) cannot be solved in polynomial time by any 

“straightforward” decoding algorithm for a linear block code of arbitrary structure.  

The first major step in approaching the Shannon bound with practical coding schemes was 

the invention of Low Density Parity Check (LDPC) codes by Robert Gallagher in 1961 [72]. 

Although his idea was very progressive and forward-looking, it was either ignored or was 

given little attention, apart from the work of R. Michael Tanner [73] who published a paper 

describing a graphical method for representing LDPC codes in 1981, see Figure 2-12.  
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Figure 2-12 Graphical Representation of LDPC Codes 

Gallagher’s codes were characterized by a parity check matrix in which each row has exactly 

   and each column has exactly     non-zero elements, where    and     are small positive 

integers. As the block length gets large, the code can be described by a sparse matrix, or 

equivalently by sparsely connected graph [73] whose structure is given implicitly by the 

definition of the code. This crucial innovation involved the design of the code such that the 

decoding problem can be broken down into a set of smaller (but interdependent) sub-

problems. Each of these sub-problems is solved individually by some processing nodes, 

taking into consideration probabilistic feedback from neighbouring nodes in its decision. In 

order to avoid the nodes’ complexity to grow with the block length, the number of adjacent 

nodes must be independent of the codeword size. 

LDPC codes were largely forgotten for about 30 years after their discovery, until the 

invention of sparse graphs [73] and iterative decoding based turbo codes by Claude Berrou, 

Alain Glavieux [74] and Punya Thitimajshima in 1993. This sparked a revived interest in the 

design of more powerful coding schemes and LDPC codes were finally rediscovered by 

MacKay and Neal some years later [75]. Since then, it has been a major research topic in 
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coding theory, resulting in various refinements and improvements. LDPC codes will be 

employed in this work in order to boost the performance of the sphere detector. 

2.8.2 MIMO channel capacity 

The main goal of a MIMO system is to increase the capacity of the wireless communication 

system. The capacity of the MIMO system is linked to the mutual information between the 

transmitter and the receiver. For a MIMO system with a fixed channel matrix H which is 

perfectly known at the receiver, the mutual information between transmitter and receiver can 

be described by equation (2-14)[33],[70], [76]: 

            I(x;y) = H( | ) = H(y) – H(n) 

   =      det (     ) -      det (     ) =      det (      
  ) 

=      det ((    + H    
 )   

  ) =      det (   
 + H    

    
  ).     (2-14) 

where     is the receive covariance matrix and    
is the identity matrix. The channel 

capacity of a MIMO system for a given channel matrix H can be achieved by maximizing the 

mutual information I(x;y) over the possible choices of input distributions p(x), subject to the 

transmit power constraint tr{   }      [70]. Assuming the availability of perfect CSI at the 

transmitter, the MIMO channel can be regarded as a set of several parallel SISO channels by 

using SVD at both the transmitter and receiver. Multiplying the received signal with the 

conjugate transpose of the left singular vectors    yields: 

 ̃        ( ∑  )       ∑     ̃                           (2-15) 

This operation does not affect the mutual information as it is invertible and thus leads to: 

  (   ̃)       det (          
    ) =      det(      

  )   (   )  

      det (   
               

    )                                    (2-16) 
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For simplicity the assumption made is that          
, i.e.,      is made up of 

independent identically distributed noise samples at the receiver.      will be referred to as 

spatially white noise in this scenario. The last terms in (2-16) then become      
  , which 

is diagonal. To maximise the mutual information      is chosen such that  ̃          is 

diagonal as well [33] and that the transmit power constraint is met with equality (  {   }  

  ). This can be achieved by using the matrix of right singular vectors V for precoding at the 

transmitter, which leaves the transmit power unchanged. Spatially coloured noise(    

     
) is comprehensively covered in [77]. 

The Closed loop MIMO channel capacity 

The capacity of a MIMO system can be improved by exploiting the channel state information 

available to the transmitter through a closed-loop signalling system. The closed loop MIMO 

channel capacity and the spatially white receiver noise can thus be expressed as follows: 

     
  ( )         (   

   ̃   
      

    )  ∑     
 
   (      

 
[ ̃   ]   

  
)           (2-17) 

where   is the number of non-zero eigenvalues of the Gram matrix    .  The capacity can 

be maximized by using iterative water-filling [33] to determine the diagonal entries of  ̃  , 

subject to the transmit power constraint tr { ̃  } =   . 

The Open loop MIMO channel capacity 

Consider now the open loop case where no CSI is available at the transmitter. The optimal 

transmit covariance matrix is given by  ̃           
 [33]. By using similar derivations as 

for closed-loop case, the open-loop capacity can be shown to be: 

     
  ( )         (   

  
  

  
        

   )  ∑     
 
   (      

      

  
)            (2-18) 

where the last equality is again for the case of spatially white receiver noise. 
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It can be clearly seen that the expressions for the closed-loop and open-loop case are very 

similar in the sense that both   parallel data streams can be simultaneously transmitted in 

parallel, thus resulting in improved spectral efficiency compared to SISO systems since the 

MIMO capacity scales as      ( )        (   ) in the limit for high SNR. The only 

difference lies in the power allocation: systems exploiting CSI at the transmitter can achieve 

capacity gains whenever the optimal transmit power allocation deviates from a uniform 

distribution. This is the case for the low to medium SNR regime/or when the (average) 

eigenvalue spread is high. 

The Outage and Ergodic MIMO channel capacity 

Consider now the case where H is not fixed, but a random variable as will be the case for 

essentially all practical applicants. In this case, the channel capacity will not only depend on 

the SNR, but will also depend on the channel statistics, in contrast to the AWGN case. More 

specifically, it will be a function of the number of observed realizations of H and the 

distribution of the singular values of H. The terms MIMO Outage Capacity (MOC) will be 

used to denote the scenario whenever transmission takes place over a certain fixed number    

of independent realizations H. The outage capacity     (     ) is the maximum rate at 

which communication is possible with a probability of transmission error no higher than   : 

    (     )  {    (
 

  
∑      (  )

  
     )    }                  (2-19) 

Likewise, the terms Ergodic MIMO Capacity (EMC) will be used to denote the scenario 

where the transmission interval is long enough to observe the full channel statistics. At rates 

up to     , communication will be possible with vanishing probability of error as the length 

of the transmission interval tends to infinity. The probability of errors is strictly greater than 

zero at higher rates. The ergodic capacity can be expressed as: 

                (    )   {     ( )}                         (2-20) 
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Closed form expressions for      has already been derived by Telatar [33] under the 

assumption of uncorrelated fading and perfect CSI at the receiver but no CSI at the 

transmitter. These were recently extended to the case of correlation at transmitter and/or 

receiver by Kiessling [77]. Telatar [33] also derived outage capacity results for the case of a 

single antenna at transmitter or receiver, i.e., for SIMO and MISO systems. The case of 

multiple antennas at transmitter and receiver was later addressed by Foschini and Gans [78]. 

In practice, the channel state information, i.e., the realization of H has to be learned by the 

receiver. The pilot overhead required to estimate all       sub-channels lowers the potential 

gains of MIMO systems. This issue was first studied by Marzetta and Hochwald [79]. They 

showed that as the channel’s coherence time becomes shorter, there will be no further 

capacity gain from increasing the number of transmit antenna beyond a critical point. The 

capacity of MIMO schemes using training based channel estimation was derived by Hassibi 

and Hochwald [80]. 

2.8.3 MIMO System Setup and Assumptions 

The following system setup will be assumed throughout this thesis unless stated otherwise. 

MIMO signals will be transmitted in blocks of data over MIMO channels. MIMO 

transmission will be achieved by employing    antennas at the transmitter and    antennas at 

the receiver. An information source produces stream of bits      of independent 

identically distributed (i.i.d.) information bits which will be subsequently encoded using 

LDPC codes of code rate     
 ⁄ . The coded bits will then be interleaved resulting in the 

generation of the code word        
[   ]

  which is then divided into    blocks   , 

of      bits.   denotes the number of bits per modulated symbol resulting in M =    

different constellation points and  denotes time-frequency index. It will also be assumed 

that   {      } specifies the time-frequency band used for transmission. Each vector    is 

finally mapped onto a vector transmit symbol x   [     ] whose components    are taken 
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from some complex signal  . The analysis of the MIMO detectors will focus on non-selective 

or flat fading MIMO channels unless otherwise specified. It will also be assumed that 

transmitter and receiver are perfectly synchronized in time and frequency. After matched 

filtering and sampling at the receiver, the transmission at  can be represented by the 

following equivalent discrete-time complex-valued baseband model:     

                                            (2-21) 

where       [      ] is the received signal,        (   x   ) is the channel matrix, and    

   [      ] is the receiver noise. The entries of   ,    and    are zero-mean, circularly 

symmetric complex Gaussian random variables, and the entries      of    are normalized to 

have unit variance. The average energy per transmit symbol    will be denoted by   . The 

corresponding average energy per bit will be denoted by   . The double-sided power spectral 

density of the complex noise (  / 2 per real dimension) will be denoted by   . The Nyquist 

rate sampling of the real and imaginary parts of the received signal will be assumed, such that 

the signalling rate    and the sampling bandwidth B = 1/  . The signal-to-noise ratio is thus 

given by SNR =   /  . Furthermore, the covariance will be defined by        /   . 

Unless stated otherwise, the transmit power will be assumed to be uniformly distributed over 

the transmit antennas (             
) and the noise to be spatially white (    =      

).  

The state-of-the art Forward Error Correction (FEC) schemes namely LDPC codes will be 

employed for the purpose of performance evaluations in this thesis. A very high diversity 

scenario, where the codeword is transmitted over a large number of independent channel 

realizations will be considered. Binary Phase Shifting Keying (BPSK) and M-ary Quadrature 

Amplitude Modulation (M-QAM) [66] constellations for transmission will be employed.  
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2.8.4 MIMO System description 

Consider a symmetric MIMO system with    transmit and       receive antennas. The 

transmitted vector symbols   [           
]
 
drawn from a modulation constellation 

  [           
] at each instant are transmitted from each of the    transmit antennas. At 

the receiver, various detection schemes will be used to detect the received vector    

 [     ]  [           
]
 
  For simplicity, the received signal will be expressed by the 

following linear model: 

                                                          (2-22) 

where    [     ] is some Additive White Gaussian Noise (AWGN).    [      ] is the 

lattice generating matrix whose entries describe the coupling between the     transmit and the 

   receive antenna. The components of  ,   and   will be chosen to be zero-mean, circularly 

symmetric, complex Gaussian random variables.  

Furthermore, the entries of H are normalized such that  {|    |
 
}   , that is, each sub-

channel is passive. The magnitudes |    | follow a Rayleigh distribution, while the phases 

      are uniformly distributed. Using a QR Decomposition, the channel matrix will be 

decomposed into the unitary matrices    [      ]  and the upper triangular matrix   

 [      ]  composed of real, non-negative singular values. Let      {   } and     

 {   } denote the respective transmit and noise covariance matrix.     must be positive 

definite and    {   }      . With   and   independent, the covariance of the received 

signal   is thus given by          
      while the signal-to-noise ratio (SNR) per 

receive antenna is given by      . The overall task of the MIMO detector is to detect the 

most likely vector   that was transmitted based on prior knowledge of  ,   and the statistics 

of  .  
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2.8.5 Equivalent Real-Valued MIMO System Model 

The   -dimentional complex-valued system model described by equation (2-22) can be 

decomposed into an equivalent    -dimentional real-valued system model. The premise 

behind the decomposition process is to separate real and complex variables. This is done by 

decomposing all complex variables into their real and imaginary parts and reads: 

[
 {  

 }

 {  
 }
]  [

 {  
 }

 {  
 }
 
  {  

 }

 {  
 }

] [
 {  

 }

 {  
 }
]  [

 {  
 }

 {  
 }
]                           (2-23) 

where      ℝ[      ],     =  [     ],      ℝ[        ], and      ℝ[      ] with     = 2   

and    = 2     {  
 } and  {  

 } denote the real and imaginary parts of the complex signal 

  respectively. By introducing the QR decomposition, the estimate  ̂ of the transmitted 

vector for such a MIMO system will be described by the equation: 

 ̂             ‖ ̂    ‖                        (2-24) 

where  ̂     ,     ,   is a unitary matrix and   is an upper triangular matrix as in 

Section 2.8.4. The different    components of    in the matrix   will be referred to as the 

layers of the transmit signal. The corresponding covariance matrices of the real valued signal 

and noise are both symmetric and described by: 

     
 

 
[ 

{   
 }

 {   
 }

   {   
 }

 {   
 }

] and     
 

 
[ 

{   
 }

 {   
 }

   {   
 }

 {   
 }

]           (2-25) 

Since the components of   
  are taken from square M-QAM constellations, the entries of    

can be equivalently drawn from A-ary Amplitude Shift Keying (ASK) constellations and can 

be written as x = a( k + ½ )    where k    { -A/2,…, A/2-1}, A = √  and   √
 

   
 is the 

normalisation factor [64]. The transmit signal can hence be interpreted as a shifted finite 

lattice with orthonormal basis vectors, while the noiseless received signal can be seen as a 

subset of points belonging to a skewed infinite lattice defined by the lattice generator matrix 
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H. The task of all detection algorithms discussed in this thesis is to find the lattice point    

with minimum or the shortest Euclidean distance to the received vector  , that is, to solve 

what is known as the Integer Least Squares (ILS) or Closest Lattice Point Search (CLPS) 

problem [16].  



 

Chapter 3 MIMO Detection Strategies 

PhD Thesis by Goodwell Kapfunde                                                                                                                    41 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

3. MIMO Detection Strategies 
 

3.1 Introduction 

The introduction of Multiple-Input Multiple-Output (MIMO) systems has opened up a new 

dimension for relieving the scarce radio frequency spectrum. It has been demonstrated that 

multiple antenna systems provide very promising gain in capacity without increasing 

spectrum and transmit power consumption, and at the same time less sensitive to fading 

channels [7]-[8]. However, the transmission of wireless signals over interference MIMO 

channels poses more serious challenges not previously present in the more traditional 

Additive White Gaussian Noise (AWGN) channels. In order to approach Shannon’s capacity 

limit over MIMO channels, propagation impairment mitigation techniques need to be 

incorporated in channel coding and detection techniques.  

The subject of signal detection for MIMO systems has become one of the major research 

topics in recent years [4]-[18].  Several detection techniques have been proposed in the 

literature. These include linear detectors such as the Zero Forcing (ZF), Minimum Mean 

Square estimation (MMSE) and non-linear detectors such as the Vertical Bell Labs Space 

Time (V-BLAST) methods [5]-[10]. The Maximum Likelihood (ML) is optimum in the sense 

that it minimizes the overall error probability and has been shown to be efficient in MIMO 

transmission setups where few transmit antennas and smaller constellations are employed [7].  

However, the major drawback of the ML is its increased computational complexity (due to 

exhaustive search process) which renders it impractical for real-time implementation, 

particularly where a large number antennas and large constellation sizes are involved. 

Although the ML decoding algorithm is prohibitively complex for most practical 

applications, the theoretical analysis of the ML decoding allows performance prediction of 

suboptimal detection strategies. That is, it can be employed as a yardstick through which the 
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performance of other detectors can be measured against. Whilst the extent to which these 

detection schemes trade off performance with complexity varies, it will be assumed that they 

all share the idea that the effect of the channel matrix should be explicitly cancelled so that 

the receiver can effectively treat the MIMO channel as an AWGN channel.  

In this chapter, MIMO detection schemes which include ML detector, linear and non-linear 

suboptimal detectors and the Lattice Reduction Aided Detection (LRAD) scheme are 

presented. The theoretical background of the ML and its variants is introduced in the first part 

of this chapter. This will be followed by a survey of suboptimal detection schemes based on 

the ZF, the MMSE, Successive Interference Cancellation (SIC) and the VBLAST in the 

second part of this chapter. Low Density Parity Check (LDPC) codes are proposed to reverse 

the performance offset introduced by the suboptimal detectors particularly the SIC where it 

will be used to stop error propagation. The third part of this chapter covers the LRAD 

scheme. The LRAD is proposed to transform the infinity ML lattice to finite LRAD lattice, 

with the main goal of reducing the complexity of the ML. It will be shown in Chapter 6 

through simulation results that complexity reduction will be achieved at the expense of 

marginal performance degradation. The last part of this chapter introduces tree search based 

detection algorithms, which are the main focus of this thesis. 

3.2 The ML Detector 

For any given MIMO channel, the task of the receiver is to detect the transmitted signal   

from the received signal       . That is, the detector detects the most likely vector x 

that was transmitted based on prior knowledge of y, H, and the noise statistics n. The 

received vector y is considered as a perturbed lattice point due to the Gaussian noise n. The 

optimum ML detector makes decisions based on maximizing the posteriori probabilities, and 

hence minimizing the probability of an erroneous receiver decision on which message was 
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transmitted. This decision criterion is called maximum a posteriori (MAP) and is based on 

Bayes’ decision rule which is given by [82]: 

          
   

  (  |  )         
   

 (  |  )  ( )

 (  )
        

   
  ((  |  )  (  ))  (3-1)  

where  (  |  ) is the conditional probability density function (p.d.f) of detecting the 

received (observed) signal vector ( ) given that    was transmitted,  (  |  ) is the a priori 

probability (APP) of the    signal being transmitted give that   was received,   

          is the number of signals transmitted,  ( ) is the p.d.f of the received vector (y) 

and can be stated as [82]: 

 ( )  ∑  (  |  )  (  ) 
                                       (3-2) 

It can be clearly seen in equation (3-1) that the decision rule based on finding the signal that 

maximizes  (  |  ) is equivalent to finding the signal that maximizes  (  |  ). The 

conditional p.d.f  (  |  ) is called the likelihood function and the decision criterion based 

on maximizing  (  |  ) over the M signals (basis vector) is called the ML criterion [66]. 

Computations of  (  ) can be simplified by working with natural logarithms. This translates 

the ML criterion to the detection problem that minimizes the Euclidean distance 

 (    )from the received vector where:  

 (     )  ∑ (       )
  

                                     (3-3)   

where           is the message size of the received signal. This is sometimes termed 

the minimum distance detection [66]. The ML criterion can be represented by two detection 

algorithms: Maximum Likelihood Sequence Detector and the MAP Detector.  

3.2.1 Maximum Likelihood Sequence Detection 

The Maximum Likelihood Sequence Detector (MLSD) yields the most likely transmitted 

sequence   by maximizing the APP,  ( | ), that   was transmitted given that   was received, 
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where   extends over the whole message, i.e., where the observed symbols are interdependent 

over the signal interval. The assumption made is that all possible transmitted sequences are 

equiprobably [21] and that the transmitted signal has memory [66].   

Consider a symmetric MIMO system with    transmit and    receive antennas, where    

     . If the noise vector    in the complex-valued model consists of circularly symmetric 

complex Gaussian i.i.d. samples with covariance matrix  [     
 ]      

  , where   is the 

identity matrix, then the covariance matrix of the corresponding real noise vector   

[ {  
 }   {  

 }]  is given as the      -dimensional matrix   [   ]    
   with   

  

 

 
    

  and real Gaussian per component. Given that the  -dimensional lattice generating 

matrix   and the transmitted vector  ( )  {  
    

      
 } are known where   

          is the message size, the p.d.f of the received MIMO signal y can be, according to 

Bayes’ decision rule, equivalently written as [6]: 

 ( |   )  
 

(    
 )

 
 ⁄
   ( 

‖    ‖ 

   
 )                                  (3-4) 

Therefore, the estimate for the transmitted vector can be approximated to: 

           ̂             ( |   )                                       (3-5) 

where        is an infinity lattice field and   is the set of infinity integers. By substituting 

 ( |   )  in (3-4) with (3-5), (3-5) can be written as: 

         ̂            {
 

(    
 )

 
 ⁄
   ( 

‖    ‖ 

   
 )}                               (3-6) 

It can be clearly seen in (3-6) that the decision rule based on finding the signal that 

maximizes  ( |   ) is equivalent to finding the signal that minimizes ‖    ‖  in (3-6). 

Therefore, (3-6) can be retransformed to distance detection problem by working with natural 

logarithms. This translates the ML criterion to the detection problem that minimizes the 



 

Chapter 3 MIMO Detection Strategies 

PhD Thesis by Goodwell Kapfunde                                                                                                                    45 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

Euclidean distance  (    ) from the received vector which is sometimes termed the 

minimum distance detection [66] and can be expressed as: 

          ̂            ‖    ‖                                              (3-7) 

where   (    )    ‖    ‖ . (3-7) can be equivalently written as: 

     (   ( ))  ∑ (     
( )

)
 

 
                                           (3-8) 

The ML estimate is referred to as the Log Likelihood Ratio (LLR) in this case. The MLSD 

for   given   can generally be expressed as [83]: 

 ̂         ( )   (  |    )                                           (3-9) 

(3-9) can be expressed as: 

 ̂         ( )  
 

(    
 )

      (
‖    ‖ 

   
 )                              (3-10) 

where   is the infinity search space.      

3.2.2 The MAP Detector 

The MAP detection algorithm was developed by Abend and Fritchman in 1970 for channels 

with Inter-Symbol Interference (ISI), and with memory. Unlike the MLSD which makes 

decisions based on the Euclidean distance, the MAP makes symbol-by-symbol decisions 

based on the computation of the APP for each detected symbol [66]. Thus, the detector is 

optimum in the sense that it minimizes the probability of symbol error. This scheme is 

generally referred to as the ML detector. 

The problem with MAP approach is that there are      [26], [40] possible vectors in the 

search space. This calls for an exhaustive or brute-force search whose computational 

complexity increases exponentially with the message sizes N, and number of users, K in a 

multiuser system such as Code Division Multiple Access (CDMA). The complexity of the 
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MAP detector also increases with the number of constellation points in multi-level signalling 

systems and the number of transmit antennas in MIMO systems.  Searching over all possible 

transmit signals     in the vector space   is not clearly an efficient way of solving the ML 

detection problem. Several near-optimal detection algorithms which reduce the computational 

cost of the ML detector have been proposed in the literature. These include the Fano 

detection algorithm [84], M-algorithm, Sequential detection algorithms, LRAD and the SD. 

These powerful detectors solve the detection problem by constructing a subset search list 

    of size | | which contains only a fraction of the elements in the vector space  . The 

subset search list   should contain the ML estimate and the counter-hypotheses, i.e., the 

elements in the subset search list that are complementary to the required ML estimate.  

3.2.3 Analytical Results of the ML Detector 

The ML detector performs optimum signal detection. It compares the received signal with all 

possible transmitted signal vectors which have been altered by channel matrix   or perturbed 

by noise. The ML estimates transmit symbol vector   according to the maximum likelihood 

rule.  Assuming equal power allocation for all transmit antennas and perfect channel state 

information (CSI) (the channel matrix   is perfectly known at the receiver), the ML detector 

can yield superior performance compared to any other detection schemes studied in the 

literature. Figure 3-1 shows an example of analytical (theoretical) results for a symmetric 

(       ) QPSK-ML-MIMO system generated using MATLAB for different number 

of transmit antenna configurations (N=1, N=2, N=4, N=6 and N=8). For a 4x4 MIMO 

configuration (N=4), the ML detector yields a BER of approximately        at 25dB.  

The results in Figure 3-1 also confirm the benefits of MIMO systems. As can be seen in 

Figure 3-1, the diversity performance improves significantly as the number of receive 

antennas, N increases from N=1 to N=8.  These analytical results confirm that probability of 
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error   (BER) for given MIMO system configuration decreases significantly with the 

exponent of SNR as discussed in Section 2.5. 

 

Figure 3-1 Simulation Results For ML 

That is, the diversity gain of a MIMO system increases with increasing number of receive 

antennas and the two quantities are related by           . 

3.2.4 Summary of ML Detection Schemes 

From the analytical results, it has been shown that the performance of the MIMO system 

improves with an increase in the number of transmit and receive antennas. However, the 

complexity of the ML detector increases with the number of transmits antennas and the 

modulation-order or signal constellation size. As with all modulation techniques, the 

performance of the ML deteriorates with increase in the modulation order. Although the ML 

show undesirable features, it cannot be written off from the field of wireless communications 

as it is used as a yard stick through which other detection schemes are measured against.  
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3.3 Linear Detectors 

3.3.1 The Zero-Forcing Detector 

A straightforward solution to the MIMO detection problem is to suppress the interference 

among the layers, i.e. the received data blocks. The Zero-Forcing (ZF) detector [85] solves 

the unconstrained least-squares problem by multiplying the received signal by the Moor-

Penrose pseudo-inverse    of the channel matrix to obtain (3-1). Since the entries of   ̂ are 

not necessarily integers, they can be rounded off to the closest integer, a process referred to as 

slicing [21] or quantisation, to obtain:  

 ̂ =[   ]                                                          (3-11) 

where  ̂  is the Babai estimate and    is the set of all constellation or lattice points. This 

strategy is also referred to as decorrelating detector and is attractive where performance 

degradation due to noise enhancement can be accepted in order to achieve very low receiver 

complexity [85]. The advantage of this detector is that it eliminates interference completely. 

Unlike the ML detector whose computational complexity per symbol rises exponentially with 

the number of users, the decorrelating detector has a linear complexity per symbol. The 

receiver filter matrix     can be defined as: 

    (   )                                                (3-12) 

where       is the Gram matrix and    is the Hermitian transpose of the channel 

matrix  . 

Multiplying the (3-12) with the received signal        yields: 

 ̃                      ̃                            (3-13) 
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where   is the residual interference among the layers,   ̃ is the correlated noise at the ZF 

detector output. Figure 3-2 shows the block diagram of the ZF linear equalizer. The Log 

likelihood Ratio (LLR) for each of the layers can be calculated as: 

  (    | ̃)                 
  {   

| ̃    |
 

[   ]   
 ∑

       (    )

 

  
   }     

      
  
{ }          (3-14)   

where    is the Signal-to-Interference-and Noise Ratio (SINR) on layer  , at the output of the 

filter    ,     is the covariance matrix for the transmit vector   and      
   is the set of all 

constellation points for which the     bit in layer   is         . 

 

Figure 3-2 Block diagram of a Zero-Forcing Equalizer 

It is however important noting that the complexity of de-mapping is significantly reduced at 

the expense of noise enhancement and a reduction of the spatial diversity. This drawback can 

be partially solved by the Minimum Mean Squared Error (MMSE) detector. 

3.3.2 The Minimum Mean Squared Error Detector  

The ZF linear based equalization shows poor performance particularly in symmetrical MIMO 

setups (     ), where the signal-to-interference-noise-ratio (SINR) is exponentially 

distributed and the system suffers frequently from strong noise enhancement. This problem 

can be alleviated by taking the receiver noise into account in the design of the MMSE 

detector.   

The MMSE detector can be considered as the decorrelating detector which takes background 

noise into account and utilize the knowledge of received signal energies to improve detection. 
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Unlike the ZF detector, the MMSE detector was designed to suppress noise enhancement and 

at the same time eliminate the residual interference amongst the signal layers. The linear 

mapping which incorporates noise minimizes the mean-squared error between the actual data 

and the soft output of the conventional detector by applying a partial or modified inverse of 

the correlation matrix see [26].  The MMSE filter matrix can be modelled as: 

       (     
       

  )       
   (       )                                  (3-15)     
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Figure 3-3 Block diagram of an MMSE Filter 

Figure 3-3 shows the block diagram of an MMSE Filter. The MMSE detector has been 

proposed for centralized receivers in AWGN and known fading channels [26]. The amount of 

modification increases with increase in the background noise. It provides better Bit-Error 

Rate (BER) than the ZF detector, but however, the performance of the MMSE detector 

approaches that of the ZF detector as the noise goes to zero, see [26]. 

The reduction of noise enhancement can be achieved at the expense of increased interference 

between layers. In addition to this problem, the diagonal elements of   are not necessarily 

unit (   ). The estimator is said to be biased in this case. This will cause decision errors in 

multi-level signalling techniques. However, this drawback can be overcome by the use of an 

unbiased MMSE filter, where                  with       (              
). 

Another important disadvantage of this detector is that, unlike the ZF detector, it requires 

estimation of the received amplitudes. Like the ZF detector, the MMSE detector faces a huge 

task of implementing matrix inversion. For more information about this detector, see [26]. 
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3.3.4 Results and Discussion of Linear Detection Schemes 

Performance results for linear detection for a 2×2 MIMO system in uncorrelated AWGN 

channels are presented in Figure 3-4. Both uncoded and LDPC coded ZF- MMSE-MIMO 

transmissions are considered using BPSK and 4-QAM modulation schemes. The respective 

modulation schemes are respective representatives for low and high spectral efficiency 

regimes at simulation level.  

 

Figure 3-4 Simulation Results for coded and uncoded ZF and MMSE Detection 

The uncoded ZF linear based equalization shows poor performance in an AWGN channel. 

The poor performance can be attributed to strong noise enhancement, which often results 

from ill-conditioned channel matrix  . It can be clearly seen that the problem can be 

alleviated by applying the MMSE filter which takes the receiver noise into account, though at 

the expense of increased interference between the received signal layers. The MMSE yields a 

performance gain of about 10dB over the ZF and is evident particularly in symmetrical 

MIMO systems where the probability of having a rank-deficient realization of the channel 

matrix is high.  

Encoding the MMSE-MIMO signal with the state-of-the art LDPC coding scheme has the 

effect of reducing the SNR required by the MMSE for the case of 4-QAM to achieve a BER 

of        by 5dB, i.e., a coding gain of 5dB thereby boosting the performance of linear 
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detectors. However, coding has the effect of reducing the capacity of the MIMO system. 

Therefore, a trade-off between capacity, performance and complexity has to be made in 

practical MIMO systems. Furthermore, the performances of both coded and uncoded ZF and 

MMSE decreases with increase in modulation order. The offset between both schemes goes 

down from around 5dB in case of BPSK to below 1dB for 4-QAM.  

3.3.5 Summary of Linear Detection 

Linear detection has been identified as the simplest detection method which offers several 

advantages including the following: 

Low complexity: Unlike the ML detector whose complexity per transmitted symbol is 

exponential, the complexity of linear detection per transmitted symbol is linear. The detection 

of MIMO signal using linear detection only involves vector-matrix multiplication and 

computation of individual LLRs for each received symbol in each transmitted layer.  

High quality of the soft output: The loss in mutual information is mainly due to the strong 

noise enhancement since the SINR on different layers can be precisely characterized. It has 

also been proved that the generation of soft output can be the major challenge for other 

detection schemes [86]. Further to this, the difference in performance between MMSE based 

linear detection and ML detection is typically below 1dB at BERs around       . In high 

diversity environment, where powerful coding schemes can be employed over deep channels 

fades, linear detection can therefore be a promising alternative to more advanced detection 

techniques [87].  

However, linear detection techniques suffer from major setbacks. The main setbacks include 

the following:  
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Increased pre-processing complexity: Computation of the filter matrix requires calculation 

of the inverse of a matrix first. This can result in increased pre-processing complexity 

compared to tree search schemes. 

Noise enhancement: The performance of linear detection depends crucially on the average 

eigenvalue spread of the channel and on the nature of the channel matrix, that is, whether the 

channel matrix is well-conditioned or ill-conditioned. Therefore, linear detectors show very 

poor performance in symmetric MIMO setups and in the presence of correlation at the 

transmitter and receiver. It promotes the use of advanced detection techniques in such 

environments, with the evident SNR gains at low target error rates, due to the high diversity 

order. 

Lower benefit from priori information: There is little or no gain from using feedback from 

the decoder, since this information is not used to reduce the interference among layers. This 

is in contrast to the non-linear detection techniques where priori information can be used to 

improve detection on a layer by layer basis as in the case of the VBLAST and/or the OSIC 

detectors. The use of linear detectors should therefore be restricted to the first iteration in an 

iterative detection-decoding setup. More powerful detection algorithms can thereafter be 

employed in all following iterations [88]. 

3.4 Non-Linear Detectors 

The major drawback of the MMSE detector is its inability to reduce interference between 

layers effectively. Thus, different detection techniques [6], [89] based on interference 

cancellation have been developed. This class of detectors estimate the Multiple Access 

Interference (MAI) and multipath induced interference and subtract out the estimates from 

the congregate signal. This strategy is also known as nulling and cancelling or matrix 

Decision Feedback Equalization (DFE) [6]. There are two major variants of this technique: 

Parallel Interference Cancellation (PIC) and Successive Interference Cancellation (SIC) [26]. 
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PIC schemes use a linear filter to obtain an initial estimate for the transmitted data. 

Subsequently,    different filters are used in parallel, each subtracting out the contribution of 

all but a single layer   from the received signal. 

Hard or soft estimates [90] can be used in interference cancellation process and performance 

very close to channel capacity can be achieved in scatter-rich or high diversity environments. 

However, in scenarios where space is the main source of diversity and/or high correlation is 

present, there will be a substantial offset in performance to more powerful detection schemes.   

3.4.1 Successive Interference Cancellation Detector 

The Successive Interference Cancellation (SIC) is a form of non-linear detection strategy in 

which signals are detected in order of perceived reliability [26]. Detection takes place on a 

layer-by-layer basis, with the interference from already detected layers removed from the 

received signal before detecting the next layer, see Figure 3-4. This can be done by using a 

set of linear filters, as originally proposed, or based on    Decomposition (   ) of the 

channel matrix, i.e.,     , where   is a unitary matrix and   an upper triangular matrix. 

Both approaches are equivalent. Multiplying the received signal with    yields: 

 ̃                       ̃      ̃                         (3-16)  

where  ̃ is the modified receiver noise which is still white after multiplication with the 

unitary matrix   . Exploiting the upper triangular structure of  , the LLRs for each layer can 

now be determined by a back- substitution process [87]-[88]: 
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where       is the     bit in layer  ,      is the corresponding     bit in layer   and   is the 

total number of bits in a codeword. The estimate    for the signal on layer   is obtained by 
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taking hard decisions on the bits      and the subsequent mapping to the corresponding 

modulation symbol.  
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Figure 3-5 Block Diagram of a Successive Interference cancellation Detector 

However, the computed LLRs are only correct if no decision error has occurred in previously 

detected layers. The effects of error propagation can be minimized by detecting the reliably 

received signals first and by sorting the layers in decreasing order of the post-equalization 

SINR. This strategy is commonly referred to as Ordered Successive Interference Cancellation 

(OSIC) [27], [91] and achieves the best performance when using the MMSE criterion for 

layer ordering [92].  

The interference cancellation process operates on equivalent systems where the rows of   and 

the columns of   have been appropriately permuted. For   D-based SIC, the layer ordering 

can either be done before the matrix decomposition or by using a greedy algorithm during the 

matrix decomposition which is known as Sorted    Decomposition (    ) [93]. In order to 

obtain the optimal ordering, a so-called Post-Sorting-Algorithm (PSA) needs to be executed.  
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3.4.2 Vertical Bell Labs Layered Space-Time Detector   

The Vertical Bell Labs Layered Space-Time (V-BLAST) is a class of non-linear detectors 

that offers better performance with only modest increase in complexity. It was the brainchild 

of Foschini [7] and was specifically designed to detect spatially multiplexed MIMO signals. 

The V-BLAST strategy is based on successive interference cancellation. The concept behind 

this strategy is to use an appropriate (space-time) encoding scheme at the transmitter in order 

to achieve good performance at the receiver by using the so-called Ordered Successive 

Interference cancellation (OSIC) [27], or simply the Successive Interference cancellation 

(SIC) detector.  Examples of appropriate encoding schemes at the transmitter include Space 

Time Coding (STC), Space Time Block Coding (STBC) and Space Time Turbo Codes 

(STTC) [94].  
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Figure 3-6 Block Diagram of the VBLAST Detector 

Figure 3-6 shows the block diagram of the VBLAST detector. The input data stream to the 

transmitter of a MIMO system is de-multiplexed into    sub-streams, where    is the number 

of transmit antennas in a symmetric (      ) MIMO system. The sub-streams are 

separately encoded (and/or interleaved) and modulated.  These data streams are then mapped 

one-by-one or layer-by-layer onto the MIMO transmit antennas for transmission. In such a 

system, however, a great challenge is posed in designing an efficient detector because of the 

interference among the transmit antennas [95]. 
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The detection process of the simplest V-BLAST scheme involves two main operations 

namely (a) nulling (interference suppression) and (b) sorting (or layer ordering) and 

cancelling.  The first interference suppression operation nulls out interference by projecting 

the received vector onto the null subspace (perpendicular subspace) of the subspace spanned 

by the interfering signals. This stage involves orthogonalization of the channel matrix 

as     , where   is a unitary orthogonal matrix and   is the upper triangular matrix. The 

received signal        is then pre-processed to obtain (3-18). 

 ̃                       ̃      ̃                      (3-18)  

where          and      , with   being the identity matrix. 

The second operation involves ordering of the received signals in decreasing amplitudes and 

then finally cancelling the received signal with the largest amplitude first. The contribution of 

the detected signal is subtracted from the received vector in this way. This process is repeated 

until when the received signal with the least amplitude is detected. Note that the received 

signal with the largest amplitude does not benefit from the cancellation process. On the other 

hand, the received signal with the least amplitude see much reduced interference which 

translates to a huge benefit for the weakest signal. With a suitable combination of detectors, 

e.g., the serial connection of the V-BLAST and MMSE detector, with the MMSE serving as 

an input to the V-BLAST, spectacular spectral efficiencies of the order of 82bits/Hz can be 

achieved. This translates to data rates of 820 Mbits/s for a 10MHz bandwidth system - a 

significant leap towards achieving very high data rates compared to current wireless systems. 

In addition to these advantages, uncoded data can be transmitted independently in multiple 

antenna systems, meaning that there is no redundancy and there is no correlation among 

antennas [96]. 

The major drawback of the V-BLAST detection scheme is that the error at the first stage of 

this detector propagates throughout all detection stages, resulting in a system which is far 
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from near-optimal [15]. This is a very important issue in uncoded systems where error 

correction is not used, thus the error rate of the V-BLAST is dominated by the first stage. 

This disadvantage can however be overcome by performing nulling and cancelling from the 

“strongest” to the “weakest” signal as proposed in [7]. Regardless of their disadvantages, the 

above heuristic methods all require  (   ) [21] computations, essentially because they all 

first solve the unconstrained least-squares problem. 

3.4.3 Results of Non-Linear Detection Schemes 

Performance results for both linear and non-linear detection schemes for a 2×2 MIMO system 

in uncorrelated fading channels are presented in Figure 3-7.  Only uncoded VBLAST and 

MMSE-SIC MIMO transmissions are considered using BPSK and 4-QAM modulation 

schemes in this section. Again, the respective modulation schemes are representatives for low 

and high spectral efficiency regimes at simulation level. There is a clear gain in performance 

of the non-linear detection scheme over all linear detection schemes particularly when lower 

order modulation schemes are employed. The MMSE-SIC and the VBLAST benefit 

substantially from the reduced error probability on the first layer arising from the cancellation 

of the strongest signal, and MMSE-SIC achieves a performance within 1-3dB of ML in the 

low SNR regime of interest.  

 

            (a) Non-Linear Detectors                         (b) Linear Detectors 

Figure 3-7 Performance Results for Linear Versus Non-Linear detectors 
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However, the MMSE-SIC detection scheme approaches the performance of linear detectors 

as the modulation order is increased. The reason being the increased level of ISI, thus, 

MMSE-SIC-based detection schemes are preferable to linear detection mainly if low BERs 

are targeted in cases where lower modulation schemes are employed. Figure 3-7(a) clearly 

shows that the VBLAST detection schemes yields performance improvements compared to 

the MMSE-SIC detection scheme. The performance gain is attributed to the coding gain 

(arising from STBC of STC coding) introduced at the transmitter. However, the drawback of 

the VBLAST detection is the increased complexity of the detector which increases with the 

number of transmit or receive antennas. 

While MMSE-SIC consistently outperforms linear detection schemes, for uncoded 

transmission setup, this is not necessarily the case for coded transmission. The challenge lies 

in incorporating the effects of error propagation in the calculation of the LLRs. Under the 

assumption of perfect cancellation, performance of the MMSE-SIC detector can be severely 

degraded, unless the channel decoder can be used to enhance the reliability of the estimates 

[97]. However, this problem can be addressed by subtracting soft estimates from the received 

signal and use their variance to assess the expected residual noise after the cancellation step, 

though at increased computational cost [97] and the performance is still inferior to simple 

linear detection for a number of application scenarios of interest [89]. Another drawback of 

the SIC detector is that it suffers from a high processing delay. This is a major challenge to 

applications that are less tolerant to high processing delays, such as cellular systems. One 

way to deal with stringent delay requirement is to limit the number of cancellations. 

Processing delay is one of the issues to be considered in the future work. 

3.4.4 Summary of Non-Linear Detection Schemes 

SIC based detection techniques have several advantages which include the following: 
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Low detection complexity for Hard-SIC: The detection as well as the pre-processing 

complexity is comparable to that of linear detection schemes, if SQRD based hard-SIC is 

used. These heuristic methods require  (   ) [21] computations, essentially because they 

all first solve the unconstrained least-squares problem. However, the performance will only 

be satisfactory if the decoder can be included in the interference cancellation stage. 

Attractive for iterative detection-decoding: SIC based detection schemes can achieve good 

performance once feedback of sufficient quality becomes available from the decoder. It may 

hence be used in the later stages of iterative detection-decoding [88], [97], where it is also 

possible to reduce the complexity of Soft-SIC [98]. 

However, the following challenges are encountered in the use of non-linear detectors:  

Capacity loss: If a V-BLAST transmit strategy is employed, the resulting loss in transmit 

diversity leads to a reduction in the achievable data rate [67]. SIC based detection schemes 

are highly suboptimal, due to error propagation in the first detector-decoder iteration [97] and 

due to a suboptimal rate allocation strategy in the last iterations where the first layers can be 

perfectly cancelled. In both cases, the scheme will be unable to operate close to channel 

capacity. 

Channel-dependent optimal transmit strategy: If the channel is flat and quasi-static fading, 

the transmitter should be using equal rate allocation and layer ordering at the receiver [27]. In 

a high diversity environment on the other hand, the layer capacities depend only on the 

number of interfering layers. The optimal strategy in this case is not to order the layers at the 

receiver but adjust the rates on the different layers based on the average SINRs of the layers 

[100]. The transmitter must hence have knowledge of the channel statistics in order to choose 

an appropriate transmit strategy. In environments with a limited amount of diversity, equal 

rate allocation at the transmitter and an “average” layer ordering for all time-frequency bands 

[101] can be used, but this will result in a loss in achievable data rates, as discussed above. 
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Error Propagation: The errors at the first stage of the SIC detectors propagate throughout all 

detection stages, resulting in a system which is far from near-optimal. This is a very 

important issue in uncoded systems where error correction is not used, thus the error rate of 

the V-BLAST is dominated by the first stage. This disadvantage can however be overcome 

by performing nulling and cancelling from the “strongest” to the “weakest” signal as 

proposed in [7]. 

Propagation Delay: Non-Linear detectors suffer from high processing delays. This is a 

major challenge to applications that are less tolerant to high processing delays, such as 

cellular systems.  

3.5 Lattice Reduction Techniques 

Lattice reduction technique was first proposed for MIMO detection in [6]. For an overview of 

Lattice Reduction Aided Detection (LRAD) schemes, see, [6], [14], [16]. The heuristic 

methods discussed above are exact only if the columns of   are perfectly linearly 

independent and orthogonal.  Practically, the columns of   are rarely orthogonal due to the 

orthogonality defect,  ( ) of the channel matrix [6] which is associated with the strong noise 

enhancements caused by the linear filters. This gives rise to significant performance 

degradation.  The orthogonality defect is given by [6]: 

 ( )  
∏ ‖  ‖

  
   

   ( )
                                                    (3-19) 

The equality sign applies if the columns of   are perfectly orthogonal.   can be diagonalized 

by a unitary transformation on the left, and so, slicing the unconstrained least-squares 

solution yields the exact solution.  

Orthogonalizing the columns of   via a QR decomposition, or otherwise, generally destroys 

the lattice structure [18]. The reason being that if   has integer entries, then,    does not need 

to have integer entries. One method that attempts to alleviate this is lattice reduction. The 
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concept behind these methods is to find an invertible     matrix, such that   and     

have integer entries thereby preserving the lattice structure and such that the channel matrix is 

as “orthogonal as possible.” Having found such a  , rather than solve the original ML 

detection problem, the integer least-squares problem can be solved as follows [18]:     

                            

       ‖    ‖                                                     (3-20)  

To illustrate the lattice reduction aided techniques, consider components of the transmitted 

signal: 

    (  
 

 
   

)                                                        (3-21)  

The noiseless received signal can be interpreted as a subset of points in infinity shifted lattice 

generated by  : 

     (  
 

 
   

)   (   
 

 
    

)                                (3-22)   

where    
is an all-ones column vector with    elements and   

 

 
   

 

The columns of   are in this context referred to as the lattice basis vectors. The target of 

lattice reduction techniques is now to find a new basis  ̅ which spans the same lattice but 

whose columns are nearly orthogonal. This is equivalent to finding an appropriate 

unimodular matrix   such that  ̅      has minimal orthogonality defect. An example for 

such a lattice basis reduction algorithm is the Lenstra-Lenstra-Lovasz (LLL) algorithm. This 

equivalent transmission model is based on the lattice channel matrix  ̅: 

               ̅ ̅                                             (3-23)  

where  ̅      . Introducing  ̅       leads to (3-24): 

 ̅        (     
 

 
      

)   ( ̅  
 

 
      

)                       (3-24)  
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 Using the two equations above, standard MIMO detection techniques can then be used to 

obtain the estimate  ̂ of the transmit signal in the equivalent transformed lattice, which is then 

transformed back to establish an estimate in the original transmit vector:  ̂    ̂.  

 Taking the case of the ZF linear detector with the filter matrix  ̅   ̅ as an example, see 

Figure 3-8, the noise-reduced signal becomes  ̿   ̅   ̅   ̅ . The noise enhancement is 

substantially reduced since the basis vectors forming the lattice reduced channel matrix  ̅ are 

much closer to being orthogonal, i.e.  ( ̅ )   ( ). The estimate  ̂ is obtained by 

appropriate scaling and shifting after quantization of the filter output. 

Since the quantization step is done in the equivalent lattice disregarding the finiteness of the 

original signal lattice, an additional bounding operation is required after transformation of the 

estimate back into the original signal space [6]. Lattice reduction itself is NP-hard. A 

common heuristic is the LLL [102] algorithm. Permitting a gross oversimplification, the LLL 

can be regarded as Gram-Schmidt over integers. Figure 3-8 shows the block diagram of an 

LRAD. 

While lattice reduction may lead to some improvement in the solution of integer least-squares 

problem over the infinite lattice, it is not useful for finite lattice which is a subset of an 

infinite lattice. 
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Figure 3-8 Block diagram of an LRAD 

The reason is that the lattice transforming matrix T often destroys the properties of subset. 

The main disadvantages are the following: 
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High preprocessing complexity: The LLL algorithm typically used for lattice basis 

reduction is of considerable complexity [6]. This can be a limiting factor in scenarios with 

low channel coherence times. 

Low quality soft output: It is difficult to generate LLRs of high quality at the output of the 

detector. Lattice reduction is therefore mainly attractive when very low raw BERs are 

targeted (e.g. in combination with high-rate channel coding) or in environments with low 

time and frequency diversity. 

3.5.1 Performance Results and Discussion  

The performance results for both linear and non-linear detection schemes using the LLL-

algorithm are presented in Figure 3-9. The reduced lattice basis can be achieved by 

introducing the LLL algorithm.  

 

Figure 3-9 LRAD performance results for 4-QAM and 64-QAM 4x4 MIMO setup  

This allows achieving BER performance within 5dB of the ML for all antenna setups and 

modulation schemes employed. The SIC-LLL achieves performance within 1dB of ML for 

all antenna setups. The worst case 64-QAM, 4x4 MIMO ZF-LLL performance is within 

roughly 2dB to about 5dB of the ML performance for all SNR ranges. 
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Figure 3-10 shows the effect of equipping the transmitter with more antennas. Increasing the 

number of the antennas results in an increase in diversity gain as explained in Chapter 2.  The 

LLL-SIC detector yields performance gain of about 4dB at a BER of about      for the case 

of 4-QAM transmission. As expected, the performance of the LRAD detector deteriorates 

with increase in constellation size for both MIMO setups in Figure 3-9 and Figure 3-10. 

 

Figure 3-10 LRAD performance results for4-QAM and 64-QAM 4x6 MIMO setup 

Whilst hard output results are very promising, achieving good soft output is a major 

challenge for lattice reduction aided detection techniques, as the lattice generated by the 

reduced basis is partially modified. This problem can be alleviated by using a number of 

points in the vicinity of the quantised lattice point   ̂ and transform them back into the 

original signal space. However, some of these points may eventually be mapped onto the 

same signal point. Thus, the magnitudes of the LLRs cannot be estimated in this scenario. 

The slight gains obtained by this approach typically do not justify the invested effort. An 

alternative solution to the problem is to generate a list of possible transmit signals, each with 

one bit fixed to a certain value.  
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3.5.2 Summary of the LRAD detection Schemes 

The LRAD advantages include high quality hard output. The LLL-SIC achieves high quality 

hard output with BER performance within 1 dB of ML in the whole BER range, for all 

considered antenna setups and constellation sizes. The detection complexity of the LRAD is 

approximately double that of the original linear or (Hard-) SIC based detection schemes due 

to the shifting operations and additional vector-matrix multiplication required for 

transforming the estimate back into the original signal space. However, the LRAD detection 

complexity is several magnitudes lower than the ML as will be proved in Chapter 6. 

Nevertheless, the LRAD has disadvantages which include high processing complexity which 

arises due to the LLL algorithm. The LLL algorithm is typically used for lattice basis 

reduction and can introduce significant complexity. This can be a limiting factor in scenarios 

with low channel coherence times.  Low quality soft output: as discussed above, it is difficult 

to generate LLR of high quality at the output of the detector. Lattice reduction is therefore 

mainly attractive when very low raw BERs are targeted (e.g., in combination with high-rate 

channel coding) or in environments with low time and frequency diversity. 

3.6 Introduction to tree search based detection schemes 

Several tree search based detection algorithms have been proposed in the literature [13], [16], 

[18].  The Fincke and Pohst algorithm [13] was developed for finding the closest lattice 

points. It was later extended to sphere decoding algorithm for MIMO systems by Hassibi and 

Vikalo [18]. Instead of performing a brute-force search in the entire search space, the Sphere 

Decoding algorithm recursively searches for the closest lattice points inside a hyper-sphere 

centred at the query point y. However, the main challenge of the SD is the choice of the 

initial radius. The SD is very sensitive to the initial radius of the sphere. For a full discussion 

of the SD, see Chapter 4.  
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Schnorr and Euchner introduced an enumeration strategy [103] to improve Fincke and 

Pohst’s decoding algorithm [13]. This strategy involves enumerating the lattice points inside 

the hyper-sphere in an order of increasing distance from the components of integer point 

corresponding to y. The Closest Lattice Point Search Algorithm developed by Agrell et. al. 

generalizes the Schnorr and Euchner’s algorithm for decoding of any MIMO system [16]. 

This technique ignores the determination of the initial sphere radius as the search algorithm 

makes use of a special ordering. Chan and Lee [104] introduced a hybrid version of the 

ordering in Schnorr-Euchner and the Fincke and Pohst’s sphere decoding algorithm while, 

Kannan developed an alternative version to the Fincke and Pohst’s based SD decoding 

algorithm [105].  Unlike the SD, the Kannan’s algorithm recursively searches the entire 

lattice points inside a rectangular parallelepiped, centred at the query point y with its edges 

along the Gram-Schmidt vectors of a proper basis of the lattice. The Finite signal sets and 

stack algorithms are considered in [92].   

The SD is a typical example of the quasi-optimal detection schemes which constructs a subset 

search list. It confines the search list in a hyper-sphere of radius   . Attention will be 

restricted to the sphere detector characterized by the depth-first-search algorithm (see Section 

3.6.3) throughout this work as it is the main topic of this research. Before the discussion is 

extended to the sphere detector, some basic terminologies used in sphere detector and its 

variants are presented in the next section. 

3.6.1 Basic Sphere Detection Terminology  

 

The basic definitions of terms which will be frequently used in detection schemes and the 

subsequent description of tree search based detection algorithms discussed in the rest of this 

work are presented in this section. Figure 3-8 is used for illustrating tree based detection 

algorithms. 
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Node refers to a point in the tree. Each node is uniquely defined by the path which connects it 

to the root of the tree and has associated an accumulated path metric. 

Root node is the node from which the tree emanates. It resides in the virtual layer      and 

has path length and path metric 0. 

Ancestor/Grandparent refers to the root node from which all parent nodes and their 

children or grandchild nodes emanate from. 

 

Figure 3-11 Tree search diagram illustrating sphere detection terminologies 

Parent node is a node at layer  , to which a child node at layer     is directly connected to; 

all nodes except the root node have a unique parent node. 

Child node is a node which is directly connected to a parent node in layer   and is located in 

layer    . All nodes except leaf nodes can have child nodes. 

Siblings are children with the same parent, i.e., these are nodes which originate from the 

same parent node. 

Leaf node, also referred to as lattice point, is a node in layer 1. The associated path has 

length    and its path metric is equal to the metric  ( ) of the corresponding hypothesis on 
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the transmit signal  . Nodes which have no child nodes but are not located in layer 1 are not 

referred to as leaf nodes in this terminology. 

Descendants refer to all nodes and their children or grandchildren that emanate from the root 

node. Note that every node is a root node as far as its child nodes are concerned. Also note 

that all parent, child and grandchild nodes are descendant nodes as far as the root node is 

concerned. 

Branch is an edge in the tree which connects a parent node to its child node. It has associated 

with it a metric increment, or branch metric   . 

Internal nodes are nodes which are not leaf nodes. This includes the root node. 

 Node Extension denotes the process of adding to the tree one or multiple child nodes of a 

node. Due to the involved calculation of branch metrics, it is typically the computationally 

most expensive part of the tree search. 

Layer: the term layer is used to describe each coded or uncoded block of transmitted (or 

received) data. 

Depth is the number of layers between the root node and the leaf nodes. 

Height is the maximum level of any node in a tree. 

Binary Tree is an ordered tree with all nodes having at most two children. 

Enumeration strategy: in the context of sphere decoding, this term is used to describe the 

order in which the child nodes are added to the parent node in the node extension (tree 

search) process and can have a major impact on the complexity of the search. 

NP-Complete (Non-deterministic polynomial-time complete) is a class of decision problems 

where a given solution can be verified, but there is no efficient way of locating that solution. 

Computational time increases rapidly with the problem size. 
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NP-hard (Non-deterministic polynomial-time hard):  In communications parlance, this is a 

class of decision problems whose computational complexity is exponential with the problem 

size, i.e., they are decision problems that are informally “at least as hard as the hardest 

problems in non-deterministic polynomial time hard signals. 

Complexity: In the context of sphere decoding, it generally refers to the number of 

computations or operation executed during tree search, that is, the number of additions, 

subtraction, multiplications or divisions. The number of operations varies with the length of 

the input bits and the initial radius of the hyper-sphere. The amount of execution time of the 

sphere detection algorithm rises polynomially or exponentially with number of operations, 

particularly in low SNR regimes, thus giving rise to NP-hard and NP-complete decision 

problems. 

Soft Decisions are multilevel or symbol based decisions. But in soft decision, decoded 

received samples from the channel pass directly to the detector. 

Hard Decisions are two level or binary based decisions and is the final decision. Hard 

decoding is simpler than soft but soft decoding has a better performance compared to hard 

decision.  Hard/Soft decoding is common in convolutional codes. 

Optimal is a term used to describe received/detected signals which are exact or almost exact 

copies of the transmitted signals. 

3.6.2 Tree Search Based Detection Schemes 

The task of the MIMO detector is to generate the soft output for each bit    of each transmit 

signal component   . The     component of the transmit signal will be referred to as layer   

throughout this work. If the soft output is calculated based on the maxLogAPP approach, 

the     log likelihood ratio (LLR) in layer   can be expressed as the difference between two 

metrics  (    
  ) and  (    

  ) : 
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  (    | )         
        

  { (    
  )}         

        
  { (    

  )}                  (3-25)          

where  (    
  ) is the magnitude of the     signal     

   located in layer   and   (    
  ) is the 

magnitude of the complement of  (    
  ). This corresponds to the hypotheses that  (    

  ) or 

 (    
  ) was transmitted, respectively.     

   denotes the set of symbols  ( )    for 

which        . The dependency of the metrics   ( ) on   is implicit. These metrics are 

defined as [106]: 

  ( )   
 

  
‖    ‖  ∑ ∑   (   (    

  
   

  
   ))    (  ( ))                  (3-26) 

where   is the total number of bits in a codeword. The MAP estimate   ̂    is the hypothesis 

which maximizes the metric ( ) over all possible choices of    . The corresponding bit 

vector is  ̂    {    }. The maxLogAPP detection problem may thus also be stated in the 

form [103]:  

  (    | )   ̂   
   ( ( ̂   )            

    { ( )}                            (3-27) 

where      
    is the set of all potential counter-hypotheses to the MAP estimate for layer   

and bit position  . Counter-hypothesis refers to any symbol  ( )    with a bit value 

complementary to that of the MAP estimate at the considered layer   and bit position        

  ̂   
   . Clearly, the sign of the LLR for any bit      is equivalent to the sign of  ̂   

    while its 

magnitude, and hence the reliability of the bit, is given by the difference between the metric 

of the MAP estimation and the metric of the best counter-hypotheses. Solving the 

maxLogAPP detection problem is thus equivalent to finding the MAP estimate and        

counter-hypotheses. 

 In order to allow constructing the subset search list     efficiently based on a tree search, 

the Euclidean distance part of the metric ( ) has to be reformulated such that it can be 

calculated using a back substitution process. This can be achieved by using the QR-
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decomposition of the channel matrix for a MIMO system. Due to the upper triangular 

structure of  , the metric for any transmit signal   can now be written as sum of per-layer 

metric increments. 

3.6.3 Classification of Tree Search Algorithms 

Decoding algorithms which aim at maximizing a certain metric during a tree search can be 

categorized into three main classes: Metric First Search (MFS), Breadth First Search (BFS) 

and Depth First Search (DFS). 

The Metric First Search keeps an (ordered) list of several nodes during the search while at the 

same time extending the node which currently has the largest path metric by its child nodes. 

The search stops when a predefined number of leaf nodes have been found or the number of 

list entries exceeds a certain limit. This approach is also known as Sequential Detection. 

The Breadth First Search, also known as the K-Best algorithm, keeps a list of the best K 

nodes in the same layer of the decision tree, where K is the number of the best hypotheses 

(nodes) visited during the detection process. Unlike the MFS, the BFS constructs the tree on a 

layer-by-layer basis, i.e. it enumerates all siblings within the same layer before moving to the 

next layer. At each tree extension step, siblings of all parent nodes currently in the list are 

generated and sorted according to their path metrics. A certain predefined number of the 

nodes with largest metric are written back to the list and used for the next extension process. 

This algorithm is preferable in terms of hardware implementation since it has fixed 

complexity and memory usage. The BFS algorithm can achieve optimal solution by making 

K as large as the number of nodes over a layer, though at increased complexity. However, the 

main disadvantage of the breadth-first search algorithms is that the performance of MIMO in 

terms of BER is degraded, especially when the number of candidate symbols kept at each 

level, is small [20]. Moreover, although they provide constant throughput, the latency of 

decoding the received data is still quite long [20]. 
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The Depth First Search is a strategy which considers only a single node at a time. The 

algorithm extends this single node vertically from the top layer to the bottom layer until the 

path metric falls below a certain threshold. It then back-tracks to previously considered layers 

and extends the tree in a different direction. Leaf nodes found during the search may be 

stored in a list, to enable the calculation of soft output. When the Schnorr-Euchner 

Enumeration Strategy is applied, the DFS algorithm allows solving the ML detection problem 

with a complexity far below the brute-force search. However, the computational complexity 

of the DFS algorithm is variable and high particularly in the low SNR region. The DFS will 

be described in detail in Chapter 5, where it is employed as an example of the Sphere 

Detection algorithm. 
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4. Sphere Decoding 
 

4.1 Introduction 

Sphere Decoding (SD) was originally discovered by Finke and Pohst [12] in 1985 as a 

strategy for solving the Closest Lattice Point Problem (CLPP) or Shortest Vector Problem 

(SVP) [107]. It was later adapted to solve other engineering and technological problems 

including communications, cryptography, Global Positioning Systems (GPS) [21], geodesy 

and land surveying [108]. The SD was first used in communications for soft decoding of the 

Golay code by Viterbo and Bigleri in 1993 [99]. Currently, it has emerged as the most 

powerful and promising means of finding the Maximum Likelihood (ML) solution to the 

detection problem for Multiple-Input Multiple-Output (MIMO) digital communication 

systems such as Orthogonal Frequency Division Multiplexing-MIMO (OFDM-MIMO) 

broadband systems. Unlike the ML detector whose complexity rises exponentially with the 

number of transmit and receive antennas, the complexity of the SD is polynomial for both 

finite and infinite lattices which makes real-time implementation of the ML detector 

practical.  

The complexity of sphere decoding depends on the initial radius     of the hyper-sphere 

which in turn determines the number of lattice points inside the hyper-sphere. To avoid the 

exponential complexity of the ML problem, the search for the closest lattice point is restricted 

to include only vector constellation points that fall within a certain search sphere or subset 

search list  . This approach allows for finding the ML solution with only polynomial 

complexity, for sufficiently high SNR regimes [21]. 

In this chapter, a new framework for efficient ML solution using the SD characterized by the 

Depth-First-Search (DFS) algorithm and the traditional Successive Interference Cancellation 
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(SIC) strategy is proposed. Orthogonalisation of the channel matrix   using the Sorted QR 

Decomposition (SQRD) method is proposed to reduce the complexity.  The use of SQRD 

will enable the generation of an upper triangular structure which will enable the detection of 

the most reliably received signals first. This will be achieved by sorting/ordering the received 

vector into an upper triangular structure, with the most reliable signal in the     layer. The 

advantage of the proposed method is that SQRD combines layer ordering into the matrix 

decomposition step at negligible overhead, and at the same time yields an optimised initial 

radius leading to increased efficiency of the proposed SD. The proposed strategy is also 

compatible with sequential tree-search detectors, as well as auxiliary preprocessing schemes 

such as the Minimum Mean Squared Error (MMSE), Vertical Bell Layered Space-Time 

(VBLAST) and Lattice Reduction Aided Detection (LRAD). These strategies will improve 

the reliability of the received signals and also serve as comparison techniques. Low Density 

Parity Check (LDPC) codes will be employed to stop error propagation in the SIC block.  

4.2 The Sphere Detection Concepts 

The basic principle of the SD is to search for the closest point among all the lattice points 

confined in a hyper-sphere of radius     centered at the query or received point, where each 

codeword is represented by a lattice point in a lattice field.  That is, it searches for the 

transmitted vector signal set that minimizes the Euclidean distance with respect to the 

received signal vector. This requires testing the Euclidean distance between each lattice point 

and the given central query point to determine whether it is smaller than the radius    of the 

hyper-sphere or not [109]. The received vector is not however arbitrary, but is rather an 

unknown lattice point that has been perturbed by an additive noise vector whose statistical 

properties are known [21].  
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The SD enumerates all lattice points inside a hyper-sphere centred at a given received vector 

using either the Finke-Pohst (FP) or the Schnorr-Euchner (SE) enumeration strategies [17], 

[110]. It keeps track of only a single node of the tree at any given time. Figure 4-1 illustrates 

the principle of sphere detection where the empty circle is the received lattice point and the 

red circle is the Closest Lattice Point (CLP). The search criteria is based on calculating the 

minimum and maximum bounds for each point and scale increasingly all points until all 

lattice points are calculated, starting with initial radius   . 

 

Figure 4-1 Geometrical representation of sphere detection algorithm 

 

If no point is found inside the hyper-sphere, then the algorithm increases the radius of the 

sphere and restart again. This only arises when the chosen initial radius    is less than the 

distance between the received signal (empty circle) and the CLP (red circle). It is important 

noting that choosing a large sphere radius leads to a sphere containing a very high number of 

hypotheses and counter-hypotheses, also referred to as candidates, and hence to high 

detection complexity. The problem which needs to be solved here is the so-called integer-

least squares problem: 

 ̂              ‖    ‖                                           (4-1)  
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This requires finding an optimal initial radius   , which only includes very few points inside 

the sphere or search space, ideally a single point. The distance between the query point and 

the lattice point in question is given by: 

  
  ‖    ‖                                                      (4-2) 

It will be shown later that this problem can be solved using a combination of the SIC-based 

QR decomposition and the tree based DFS detection algorithm. 

4.3 Design Description  

4.3.1 System Model 

This thesis focuses on coded MIMO signals that have been transmitted over a MIMO channel 

using    transmit antennas and    receive antennas where      . Uncoded MIMO signals 

will also be investigated using this system model: a potential option for boosting system 

capacity as it avoids transmission of redundant bits. At the transmitter, the transmit vector   

is transmitted over a MIMO channel. The received signal  , can be modelled by (4-3): 

                                                               (4-3) 

where       [           
]
 
denotes the transmitted vector,   [           

]
 
is the 

vector for independent and identically distributed (i.i.d) (uncorrelated), circularly symmetric, 

complex Gaussian noise samples and   denotes the       channel matrix whose entries 

     describe the coupling between the     transmit antenna and the     receive antenna, 

and [ ]  is the transpose operator. Figure 4-2 shows a typical MIMO system model described 

above. The block diagram in Figure 4-2 can be described as follows. The data streams are de-

multiplexed at the transmitter into    parallel data streams (layers). The parallel data streams 

are then encoded by a terminated LDPC encoder before being bitwise interleaved by the bit 

interleaver   . 
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Figure 4-2 Block diagram of a complete MIMO System 

The interleaved bits are then mapped to M-QAM symbols using the mapping function M. 

After mapping the symbols, the resulting transmit vector    [           
]  is mixed with 

the       channel matrix   before adding the      noise vector   [           
]  to 

yield the received signal   [           
] . For a    MIMO system, the components of 

the received signals can be analysed as follows: 

                                                                  (4-4)     

 

                                                                  (4-5)     

 

                                                                 (4-6)     

 

                                                                 (4-7)     

 

The detection problem is to find the transmitted vector  ̂ belonging to the set of all possible 

transmitted vector symbols   which minimizes the Euclidean norm with respect to the 

received vector  , that is; 

 ̂            ‖    ‖                                               (4-8)     
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where  ̂ is the estimate for the transmitted vector    This system model represents the original 

ML detection problem, which is computationally expensive. Since the closest lattice point in 

infinity lattice is also the closest point in a hyper-sphere of radius   , the ML detection 

problem can be reduced to a sphere detection problem in (4-1) which has been repeated in (4-

9) for convenience: 

 ̂              ‖    ‖                                            (4-9) 

where the search space is restricted to the subset search list  . Furthermore   is a non-

orthogonal random variable. Orthogonalisation of the channel matrix   using the Sorted QR 

Decomposition (SQRD) method is utilised in order to obtain an upper triangular structure 

which will enable the detection of the most reliably received signals first. The concept of 

sorting signals implies coupling the output of the OSIC detector to the input of the SD. 

Starting the detection process with the most reliably received signals increases the 

performance of schemes with fixed or upper bounded complexity [111] and reduces the 

complexity for schemes with variable complexity [92], [103]. Matrix decomposition enables 

the sorting/ordering of the received vector in an upper triangular structure, with the most 

reliable signal in the     layer. To achieve this, SQRD will be employed as it combines layer 

ordering into the matrix decomposition step at negligible overhead [93].  

4.3.2 Tree representation of sphere decoding  

The SD detector proposed in this Chapter is based on the Depth First Search (DFS) 

algorithm. A tree search representation will be used to illustrate how the proposed algorithm 

walks over the tree throughout the design. The sphere detection problem will be reformulated 

into a tree search problem by performing    decomposition on the channel matrix,   [4]. 

This allows for the construction of an OSIC based subset search list   which minimizes the 

number of visited lattice points, thus reducing the complexity of the SD significantly.   
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4.3.3 OSIC-based QR Decomposition 

The    decomposition, also known as    -factorization [21] is the decomposition of a 

matrix into an orthogonal matrix and an upper triangular matrix. It is normally used to solve 

integer least square (ILS) problems. The main advantage of decomposing the channel matrix 

is that a near-optimal solution can be achieved in low SNR regimes without enhancing noise 

as is the case in linear equalizers. That is, it orthogonalises the channel matrix  . The 

problem size can also be significantly reduced by breaking the problem into a number of sub-

problems which are handy and easy to solve [21] and can lead to a much reduced complex 

system. This is done by establishing a valid range for each signal point as will be shown in 

Section 4.3.4. In this Chapter, OSIC-based    decomposition will be employed to introduce 

performance and to reduce the complexity of the SD as follows:  

   [
 
 
]  [      ] [

 
 
]                                        (4-10)        

where   is an        upper triangular matrix,   is a (       )     zero matrix and 

  [      ] (for rectangular matrix) is an        orthogonal matrix with    and   , are 

the first    and       unitary orthogonal columns of   respectively. By substituting (4-10) 

into (4-2) and multiplying with    , the Hermitian Transpose of   results in (4-11):                                             

  
  ‖  [      ] [

 
 
]  ‖

 

 ‖[
  

  

  
 ]   [

 
 
]  ‖

 

 ‖  
      ‖  ‖  

  ‖         (4-11)          

(4-11) can be rewritten as:        

  
  ‖  

  ‖  ‖  
      ‖                                     (4-12)                                                                        

where   
  and    

 are the respective Hermitian Transposition matrices for    and   . Let 

 ̃    
   and      

    
  ‖  

  ‖ , (5-12) can be written as: 
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  ‖ ̃    ‖                                                    (4-13)       

where      is the new sphere radius conditioned on the initial radius    and  ̃ is the estimate 

for the received signal  . It can be seen from (4-13) that orthogonalising   yields a nice and 

handy upper triangular structure which permit OSIC detection of MIMO signals with low 

SNR regimes without enhancing noise in a tree search structure. This can be improved by 

sorting the upper triangular layers in decreasing order of the post-equalization SINR. This 

point will be illustrated clearly by means of an example in Section 4.3.5.   

4.3.4 Upper and Lower Bound Sphere Radius  

The DFS-based SD keeps track of only a single node of the tree at any given time. Provided 

that the search radius is large enough such that the hyper-sphere is not empty (i.e., contains at 

least a lattice point), the ML solution is clearly located inside the sphere and the hard output 

from the SD will be optimal in the ML sense. The condition which guarantees the existence 

of at least a single lattice point inside the hyper-sphere of radius     centred at the received 

signal   can be obtained by applying the constraint: 

   
  ‖ ̃    ‖  ∑ ( ̃  ∑           

  
   )

 
 ∑   

  
   

  
                          (4-14)          

where   is the number of columns in   and number rows in vectors  ̃ and  .     

               is the number rows in  . Clearly, the distance    of a lattice point from 

the received signal in layer  , should be greater than zero so that the cumulative sum of the 

distance metric increases in a positive sense as    . Thus, the constraint on the overall per-

layer distance can be applied as: 

( ̃  ∑           
  
   )

 
    

  ∑   
  
        

 ([ ]  

   )                          (4-15)          
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where   
 ([ ]  

   ) is the remaining radius at the layer   if [ ]  

    has been used as a partial 

estimate for the transmit signal spanning layers     through   . Expanding the left hand 

side of (4-15) backwards, starting from the       layer to the first layer, yields [21]: 

   
  ( ̃  

       
   

)
 
 ( ̃             

   
                )

 
               (4-16)   

Since the   
   row of the upper triangular matrix has a single non-zero term, the necessary 

condition for    to lie in a hyper-sphere can be obtained by considering the   
   term of the 

above expansion which is: 

   
  ( ̃                )

 
                                          (4-17) 

This leads to the constraint which determines the range of valid signal points. This condition 

is equivalent to     belonging to the interval [21]: 

⌈
       ̃   

        
⌉       ⌊

      ̃   

        
⌋                                      (4-18)   

Likewise, the       ) term belongs to the interval: 

⌈
          

   ̃     |   

            
⌉       

 ⌊
         

   ̃     |   

            
⌋                        (4-19)    

where  ̃     |    is the received signal conditioned to the already estimated symbol      and 

   
  is the new radius conditioned to initial radius     . ⌈ ⌉ and ⌊ ⌋ denote the rounding up and 

rounding down (quantisation) operations respectively. The SD starts the tree search at layer 

   by applying the above constraints in (4-18) and (4-19). This iterative process can be 

repeated until when  ( ) is found.The lower bound radius      ⌈
         

   ̃    |   

            
⌉ and 

upper bound radius      ⌊
         

   ̃     |   

            
⌋ of the SD can be estimated by the lower and 
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the upper limits of the inequality in (4-15) respectively. Due to rounding errors introduced by 

floating-point computations, the two radii contain errors [109]. Underestimation of       

leads to decoding failure, on the other hand, overestimating       leads to excessive 

computational burden. The distance     between the ML lattice point and the received lattice 

point is proposed to overcome this hurdle.  

4.3.5 The Depth Tree Search Algorithm 

Now, consider a vector space   with    elements representing lattice points in an  -ary tree 

with    layers and   nodes per layer. The number of nodes per layer   increase down the tree 

from the root node to the leaf nodes. The DFS algorithm can be illustrated by a tree structure 

rooted at layer     with all branches emanating from each parent node in the tree until the 

leaf nodes are reached.  

 

Figure 4-3 BPSK Binary Tree representation of sphere detection algorithm 

Figure 4-3 shows how the process of sphere decoding can be represented by a binary tree of 

depth or height of      , where     3, i.e., the algorithm walks through 4 nodes down 

from the root node to the leaf nodes; say from node 1 through to node 4 in blue circles. Note 
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that the binary tree represented in Figure 4-3 is up-side down and is a 2-ary tree ( =2) for 

Binary Phase Shift Keying (BPSK) signalling system. 

Table 4.1 shows all the possible hypothesis and counter hypothesis that can be tracked from 

Figure 4-3. 

Note that the number of entries in each hypothesis and/or counter hypothesis increases with 

each layer as the algorithm traverses the tree from the root node to the leaf nodes, i.e., from 

layer     down to    . The candidates are drawn from the set   {    } which resides 

in the generated lattice field and have been mapped using BPSK modulation schemes. The 

elements in set   correspond to 1 or 0 respectively. 

            Table 4-1 Hypothesis and counter hypothesis in the generated lattice field 

 

 

The DFS algorithm based on the tree search in Figure 4-3 can now be described as follows: 

First, let   
( )  [    

( )     
( )    (      )  

( ) ]
 

be a vector at the     node in the     layer of the 

tree, where      (       ) and       . Then, a symbol vector       can be 

represented by   
( )

 in the first layer of the tree at the     node. Let the Partial Euclidean 

Distance (PED)     of an (       )-dimensional vector be    [                ]
 
:  

Nodes Layers 

            

      [        ]   [     ]   [  ] 

      [        ]   [     ]   [  ] 

      [        ]   [     ] - 

      [        ]   [     ] - 

      [        ] - - 

      [        ] - - 

      [        ] - - 

      [        ] - - 
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    ∑ (   ∑           
  
   )

   
                                   (4-20)  

where   is the number of rows and   is the number of columns of  .The tree search is confined 

by the boundaries defined in (4-18) and repeated in (4-21) for convenience: 

⌈
       ̃   

        
⌉       ⌊

      ̃   

        
⌋                                (4-21) 

The FP enumeration strategy starts at the   
   layer, obtains the first estimate for   (   )

and 

then the algorithm proceeds to the next layer in the natural reverse order of the layers. It is 

clearly advantageous to exploit the upper triangular structure of   by first calculating the 

PED    for     among {   }   

  
 since the component    contains only    but not any other 

components, {   }   

    
, see example below in this section for clarity. The enumeration 

process is repeated until either no constellation point lies inside the remaining radius or a leaf 

node is found in layer    . If the leaf node is found, the sphere detector goes back to the 

previous layer (   )and selects the next signal point according to the enumeration strategy 

employed. For example in the case of BPSK where the search list in the hyper-sphere is 

   {    }, if the algorithm selects the signal point       on its way down the tree and 

compute a sphere radius         based on this choice, it will select point      on its way 

up the tree, compute a new radius        and compare the two radii     and    . Of two 

radii, the smaller radius represents the leaf node with a smaller Euclidean distance to the 

received signal y, i.e., the closest lattice point. The signal point corresponding to the smaller 

radius will be used as an improved estimate for the transmit signal   . The algorithm 

continues up and down in this zigzag fashion and stops once no further points lie inside the 

sphere radius and layer    is reached again, i.e., when the algorithm completes a cycle from 

layer    to   and back again to   . 
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To improve the efficiency of the algorithms, all nodes with distances larger than    (a 

parameter no smaller than  ̂  ‖    ̂‖
 

), can be pruned or discarded after computing the 

entire node distances at the   
   layer, i.e., all nodes (and their descendants or child and 

grandchild nodes) outside the sphere will be discarded. If a node is discarded, the node and 

all its descendants will not be considered any more. Next, all the sibling node distances at the 

(    )   layer stemming from parent nodes not discarded at the   
   layer will be 

computed. If a node at the (    )   layer has a distance larger than      , a parameter 

satisfying  ̂            
, it will be discarded. The vector selected at the first layer is the 

ML solution  ̂.   

From the above explanation, it can be seen that the decoding process sometimes goes up a 

level and sometimes goes down a level, but in different branches each time. It goes through 

the tree, except the root node, and performs Depth-First Searching. As an example of the 

Depth First Search sphere detection algorithm, consider three inputs Binary Phase Shifting 

Keying (BPSK) vector   with levels    {    } mixed and transmitted according to the 

channel matrix: 

   [
               
               
           

]                                              (4-22)          

 The resulting received signal is: 

  [
     
    
     

]                                                           (4-23)          

The optimal solution  ̂ to the detection problem is given by:                                                                       

 ̂              ‖    ‖                                           (4-24)                                                                             
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This solution can be obtained by decomposing or orthogonalizing the channel matrix H as 

follows: 

      [
                
                 
               

] [
                  

             
         

]                  (4-25)          

    [
                  
                    
                  

]                         (4-26)        

The sphere detection algorithm searches for all bit sequences for which: 

    ‖    ‖    
                                                        (4-27)                                                     

where    is the search radius and for convenience, it is equal to 1 in this example. Combining 

(4-25) and (4-27) and then multiplying by    yields: 

‖         ‖  ‖ ̂    ̂‖                                       (4-28)          

where:  

 ̂      [
                  
                    
                  

] [
     
    
     

]  [
       
       
       

]                    (4-29)          

 ̂                                                          (4-30)      

          [
   
   
   

]                                              (4-31)        

Equation (4-28) can be rewritten as: 

‖[
       
       
       

]  [
                  

             
         

] [

 ̂ 

 ̂ 

 ̂ 

]‖

 

                (4-32)     
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with     ,  ̂  [ ̂   ̂   ̂ ]
 ,  ̂  [                       ]  and   equal to the upper 

triangular coefficient 3-by-3 matrix. Here, note the advantage of orthogonalising the channel 

matrix   using QR decomposition which yields a nice and handy upper triangular structure 

in equation (4-32). This enables the commencement of OSIC detection process on a layer-by-

layer basis starting with the third layer  ̂  which represents the root of the tree according to 

the above example. It can be clearly seen that the   
   layer (   ), represented by the third 

row of the upper triangular structure, has only a single non-zero element with the other two 

elements equal to zero, i.e.,        and       : a simplified structure. The advantage of 

starting detection process on the   
   layer (at the root node) becomes clear in this example.  

Overall, the sphere detection problem is concerned with finding the vector  ̂  [ ̂   ̂   ̂ ]
  

(according to the above example) which satisfies the above inequality in (4-27), given   

and  . Equation (4-27), which is an ILS problem, looks very simple at first sight. It is 

however a complicated problem which requires a sophisticated algorithm to produce a 

reliable solution particularly in multi-level signalling systems. Solving this problem involves 

testing each element in the vector  ̂ . First, starting with   , and ignoring  ̂  and  ̂  for the 

time being,  ̂  is computed. Next, ignoring  ̂  this time  ̂  is computed using search radius 

    conditioned to the initial radius   . This process continues provided that the condition in 

(4-27) is satisfied until when all the points in the search space are visited or when a 

failure/erasure is declared. When a failure is declared, the algorithm restarts again with a 

larger radius. In practical communications systems, the search space contains many lattice 

points, which explains why the computational complexity of the ML detector increases with 

the number of visited points. Binary inputs where  ̂   ̂   ̂  can only take either -1 or 1 have 

been used in this example. 
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Figure 4-4 Binary Tree diagram illustrating Pruning and Depth-First-Search algorithm 

Now, the rest of the depth search algorithm works as flows: Given that the element      or 

 ̂      then: 

‖               ̂ ‖
  ‖               (  )‖    or                    (4-33)        

This means that  ̂     can be a possible solution to the detection problem. However, it can 

only be concluded that -1 is a solution for  ̂  after testing all values (-1 or 1) for  ̂       ̂  

(and for  ̂   ) which satisfy the inequality in (4-27), i.e., the values of  ̂   ̂   ̂  that jointly 

satisfy (4-27) with the least distance from the received point. Equation (4-33) gives the cost 

function of  ̂  as 0.0172. Figure 4-4 illustrates how the sphere decoding algorithm in this 

example walks through the proposed binary tree. The red arrows indicate backtracking where 

the computed Partial Euclidian Distance (PED) is greater than the proposed initial radius 

whereas the nodes and branches highlighted in green indicate the pruned or discarded nodes 

and their subsequent descendants. The dotted arrows highlighted in grey and the black 
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continuous arrows represent all the nodes whose PED satisfied the condition imposed by (4-

28). 

If there are more than one set of vectors that satisfy the condition in (4-27), then the one with 

the minimum Euclidean distance   from the received vector is chosen as the best possible or 

ML candidate according to Figure 4-5, i.e., the solution is   
  [       ]  where       

since      . Note also that the tree is upside-down, with the root on top of the tree.  

Note that two-level (binary or BPSK) signalling or modulation scheme have been used in this 

example. However, multi-level signalling schemes such as QAM, 16-QAM, 64QAM, 8PSK, 

16PSK, etc., can be used instead. 

  T5

1
1]1,1,[x 

  T7

1
1]1,1,[x 

1d

2d
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Figure 4-5 Illustration of selection of the best candidate in sphere detection 

Multi-level signalling techniques increase the number of constellation or lattice points, thus 

increasing the complexity of the sphere detector significantly and at the same time reducing 

the reliability of the received signals. However the complexity of the sphere detector can be 

reduced by employing the Schonner-Euchner enumeration strategy and tree pruning.  

Further to this, the selection of the best candidate proposed in Figure 4-5 is based on fixed 

initial sphere radius. Since fixed initial sphere radius is not the most efficient method of 

solving the sphere detection problem, the extended MMSE adaptive initial sphere radius is 
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proposed to avoid a scenario where the tree search ends up with more than one set of 

candidates satisfying the condition in (4-27) where a single candidate is required.  

4.4 Optimization Techniques 

The order in which the child nodes are added to the parent node in the extension process has a 

major impact on the complexity of the tree search detection schemes. Firstly, the enumeration 

strategy will influence the number of nodes visited during the search for some of the 

schemes. Secondly, efficient enumeration strategies avoid calculating branch metrics for 

paths which are subsequently discarded. Many of the proposed schemes have been developed 

in the context of the sphere detection. However, it will be shown that they are also applicable 

to other tree search schemes. 

4.4.1 Finke-Pohst Enumeration Strategy  

Let     ̃  ∑       
  
      be the interference reduced signal at layer   in the tree search, and 

let           be the set of possible choices for    in this layer, i.e., the set of potential 

child nodes, with        .Then the Finke-Pohst enumeration [12] can be defined as the 

strategy which considers the possible choices    in the natural order, starting with    until 

when     is found. Figure 4-6 illustrates the Finke-Pohst enumeration strategy where four 

signal points are considered. It enumerates the symbols starting from     through to    in the 

natural order.  

 

Figure 4-6 Illustration of the Finke-Pohst Enumeration Strategy 
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4.4.2 Schnorr-Euchner Enumeration Strategy  

Alternatively, the points can be ordered in ascending order of their Euclidean distance. 

Hence, they will be enumerated in a zigzag manner starting from the signal point closest 

to   , which is,    as shown in Figure 4-7. It then proceeds on to the next closest point to    

i.e.,   , through to     and finally to   . This strategy was originally developed by Schnorr and 

Euchner [103] and has later been reinvented in [104], [112]. Schnorr-Euchner enumeration is 

intuitively preferred over the Finke-Pohst enumeration, as it effectively implements a largest 

branch metric first enumeration strategy for Euclidean distance part of the metric and also 

avoids having to explicitly calculate the branch metrics for all considered signal points to 

obtain the correct order of enumeration [16], [113]-[115]. 

 

Figure 4-7 Illustration Schnorr-Euchner Enumeration Strategy 

From the definition of the branch metrics, it also becomes clear that implementing such a 

strategy will then require the explicit calculation of the branch metrics for all considered 

constellation points, at least for the case of multi-level modulation. 

4.4.3 Tree Pruning  

The tree search complexity can be further reduced by pruning branches from the tree for 

which it can be assured that they do not contain any leaf nodes inside the current sphere 

radius. This can be done by establishing a lower bound on the branch metrics which are 

required to reach a leaf node from the currently considered node. If this lower bound exceeds 
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the remaining search radius, any nodes lying in the considered branch can be excluded from 

the search without sacrificing optimality in the ML sense. This permits reduction of the 

number of visited nodes in the low SNR regime at the expense of the effort invested in 

determining the lower bounds, which involve using convex relaxation of semi-definite 

programming method [116]-[117]. 

On the other hand, branches from the tree which are unlikely to contain leaf nodes can be 

pruned. This approach can result in some loss in performance. The sphere radius is adapted 

such that it increases as the algorithm explores paths of higher length, motivated by the fact 

that paths of higher length have also larger accumulated Euclidean distance. A reasonable 

choice for the radius adaptation rule is obtained by considering the per-layer distance metric 

of the ML solution.  

     4.5 Simulation Setup of the Proposed Sphere Detector 

The proposed SD (PSD) controls the initial radius to ensure that no decoding failure occurs 

and that only a few number of lattice points are visited thus avoiding exhaustive search. It 

keeps track of the ML radius    , the upper bound      and lower bound     radii of the 

conventional SD (CSD). If     is smaller than    , the initial radius of the PSD is given 

by    . However if     is larger than    , the initial radius of the PSD is given by the 

average of     and    , otherwise is the initial radius of the PSD is given by the average of 

    and    .  

MIMO signals are transmitted in blocks of data over uncorrelated flat fading MIMO 

channels. A random information source is used to generate a stream of independent and 

identically distributed (i.i.d.) information bits which are subsequently encoded using Low 

Density Parity Check codes of a code rate      
 ⁄     , where   is the number of 
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information bits and   (   ) is the sum of the information bits and parity check 

(redundant) bits. Note that the redundant bits constitute twice the information bits. The bit 

streams are then interleaved and divided into    blocks (sub-streams) of bits. The bit steams 

are mapped into   bits, where   denotes the number of bits per modulated symbol, resulting 

in M =    different constellation points. 4-QAM and 64-QAM modulation schemes are 

applied on each sub stream as representatives for the respective low and high spectral 

efficiency regimes. The constellation points are finally mapped onto a vector transmit symbol 

x   [     ] whose components    are taken from some complex signal  . It is also assumed 

that transmitter and receiver are perfectly synchronized in time and frequency.   

At the receiver, the proposed SD is used to detect the most likely vector   that was 

transmitted based on prior knowledge of  ,  , and the statistics of noise   where   

  [      ] is the received signal,      (   x   ) is the channel matrix, and      [      ] is 

the receiver noise, the entries of  ,   and   are zero-mean, circularly symmetric complex 

Gaussian random variables, and the entries      of   are normalized to have unit variance. 

The average energy per transmit symbol is denoted by   . The corresponding average energy 

per bit is denoted by    while the double-sided power spectral density of the complex noise 

(  / 2 per real dimension) is denoted by   . The signal-to-noise ratio is thus given by SNR = 

  /  .  

4.6 Performance Results and Discussion 

The BER performance of the proposed PSD is evaluated by comparing it with the ML and 

conventional CSD and MMSE-SIC detection scheme.  Figure 4-8 (a) shows the performance 

results for uncoded 4x4 MIMO systems with 4-QAM and 64-QAM transmission setups. The 

simulations compare the performance of the PSD detector characterised by the DFS 

algorithm, with the ML, CSD and the MMSE-SIC detectors. It can be clearly seen that the 
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PSD approaches the ML performance to within 1dB in the whole SNR regime for both case 

of 4-QAM and 64-Qam transmission setups. The results in Figure 4-8 (a) show that the PSD 

scheme achieves performance improvement of about 3dB at a BER of      for the case of 

the 4-QAM compared to the performance of the suboptimal MMSE-SIC detection schemes. 

The MMSE-SIC detection schemes show poor performance as the modulation order 

increases. It can also be seen that the performance of the MMSE-SIC detector gets worse 

compared to both the ML and the SD as the SNR increases. The poor performance can be 

attributed to interference and/or strong noise enhancement, which often results from ill-

conditioned channel matrix   and error propagation which occurs in the SIC simulation 

block.  

 

(a) Uncoded 4x4 MIMO System Setup           (b) Uncoded 4x6 MIMO System Setup 

Figure 4-8 Performance comparison for 4x4 and 4x6 MIMO Setup for the proposed SD 

Another possible reason for poor performance attributed to the modulation order. As the 

modulation order increases, the Euclidean distance between adjacent lattice points decreases. 

These lattice points gradually overlap, resulting in a phenomenon called Inter-Symbol-

Interference (ISI). The overall effect is increased complexity. However, higher order 

modulation schemes can be attractive in applications where the goal is to achieve high data 

rates. The CSD complexity can be reduced by employing pre-processing schemes which 

include ZF, MMSE, MMSE-SIC or ZF-SIC while the performance can be boosted by 
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employing optimisation techniques such as tree pruning, Schnorr-Enumeration strategies and 

powerful coding schemes.  

Figure 4-8 (b) shows the effect of equipping the transmitter with more antennas. As can be 

clearly seen in Figure 4-8 (b), the PSD benefits substantially from reduced error probability 

by equipping the transmitter with more antennas (6 transmit antennas in this case compared 

to 4 antennas in Figure 4-8 (a). By increasing the number of antennas to 6, the BER 

performance of the PSD at      improves by about 3dB. It has already been proved that 

equipping both the transmitter and the receiver with more antennas can result in significant 

increase in performance [7]. However, this is achieved at the expense of increased 

computational complexity of the detector. 

 

(a) Uncoded 4x4 MIMO System Setup                      (b) Coded 4x4 MIMO System Setup 

Figure 4-9 Performance comparison for coded and uncoded 4x4 MIMO setup for the proposed SD 

Figure 4-9 shows the BER results for an uncoded 4x4 MIMO and a ½ rate LDPC coded 4x4 

MIMO setups where 4-QAM and 64-QAM modulation schemes were applied on each sub 

stream. The introduction of the state-of-the-art LDPC coding scheme results in substantial 

performance improvements for all the detection schemes. Thus the LDPC coding schemes are 

attractive in applications where low BER is the main target, though the performance gain is 

achieved at the expense of high complexity. It can also be clearly seen that low order 
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modulation schemes perform better than higher order modulation schemes at the cost of 

bandwidth inefficiency. 

4.7 Summary of the Sphere Decoder Results 

Performance improvement of the PSD can be achieved by employing the Schnorr-Euchner 

sphere detector which successively refines the search radius as new leaf nodes are found 

inside the sphere. Although the PSD can achieve optimal performance with much lower 

complexity compared to the ML detector, the computational complexity of the PSD schemes 

is variable and still high particularly in the low SNR region. The average complexity of the 

CSD can be significantly reduced by employing MMSE based pre-processing and SIC layer 

ordering. This also substantially reduces variations in the tree search complexity. Both 

average and worst case complexity can be further reduced in the low SNR regimes by 

combining MMSE-SIC pre-processing with tree pruning. The average complexity is then 

largely independent of the operating SNR. The topic of complexity analysis will be dealt with 

in Chapter 6. It is important noting that the tree search complexity increases as the target 

error rate is decreased. ML performance can be retained by using MMSE-SQRD pre-

processing and by using tree pruning.  

4.8 Conclusion 

A tree search MIMO SD detector based on the DFS algorithm was proposed in this chapter. 

The PSD can be used to estimate the ML solution. However, this is achieved at the detriment 

of the NP-hard complexity of the sphere decoder. This problem can be alleviated by splitting 

the SD computational complexity into a preprocessing step, though at the expense of 

negligible performance loss. MMSE-SIC pre-processing with layer ordering is essential to 

achieve a favourable performance-complexity trade-off. This can be achieved by employing 

QR Decomposition. In addition to the MMSE-SIC pre-processing, efficient enumeration 
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method such as Schnorr-Euchner enumeration can be used to substantially speed-up the tree 

search process. The average complexity is largely independent of the SNR. This complexity 

of the SD is dependent on the selection of the initial sphere radius. This aspect is addressed in 

Chapter 5 whiles the complexity analysis is discussed in Chapter 6. Nevertheless, the 

simulation results presented in this chapter are consistent with theory.  
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5. Initial Radius Selection 
 

5.1 Introduction 

The Sphere Decoder (SD) was introduced to perform Maximum Likelihood (ML) detection 

in real-time MIMO digital wireless communication systems [17]. Unlike the ML detector 

whose complexity rises exponentially with the number of transmit and receive antennas, the 

complexity of the SD is polynomial for both finite and infinite lattices which makes real-time 

implementation of the ML detector practical [24]. To avoid the exponential complexity of the 

ML problem, the search for the closest lattice point is restricted to include only vector 

constellation points that fall within a certain search sphere or subset search list  . However, 

the major technical challenge of the SD detection technique is the determination of an 

optimal initial search radius   . The choice of the initial radius for the SD has a significant 

impact on the complexity and the performance of the SD. The selection of the initial radius is 

NP-hard itself particularly in MIMO setups where large signal constellations or many 

transmit and receive antennas are employed. If the chosen initial radius    is too small, no 

lattice point is found inside the hyper-sphere, hence the SD algorithm has to declare an 

erasure or increase the search radius and restart again. This does not only imply that many 

nodes in the tree are searched twice, but the original problem of choosing the initial radius of 

the sphere still remains unresolved - this translate to a wastage of computational resources 

and thus increasing the detection complexity. Furthermore, when an erasure is declared, the 

SD cannot guarantee the optimal BER performance [118]-[120].  

Conversely, choosing a large initial sphere radius leads to a sphere containing a very high 

number of lattice points, also referred to as candidates, thus leading to high detection 
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complexity. Research in the SD based detection schemes has shifted towards finding an 

optimal initial radius which reduces the search operations [19], [21], [106], [120]-[127]. 

Currently, there is no well-established technique for computing the initial search radius. 

However, several techniques for computing the initial radius have been proposed in the 

literature [21], [111]. A fixed sphere radius based on a scaled version of the mean random 

variable   
       (see section 5.4), is suggested in [21]. The adaptive radius approach 

starts with     , sets the new radius to the Euclidean distance of any new leaf node found 

inside the current sphere radius and stops once no more leaf nodes are found inside the sphere 

instead of keeping the search radius fixed [111]. The distance between the lattice point 

mapped by Minimum Mean Squared Error (MMSE) solution and the received signal is 

proposed initial radius in [118], [111]. The MMSE radius guarantees the existence of at least 

a single lattice point in the hyper-sphere, thus avoiding decoding failure. The MMSE utilizes 

the result of QR decomposition to obtain a suboptimal solution and selects the distance 

between the received signal and the lattice point mapped by the suboptimal solution as   . 

However, the determination of the number of lattice points inside the sphere remains a 

mystery. 

In this Chapter, a simple Schnorr-Euchner SD (SE-SD) with a new Extended Minimum Mean 

Squared Error (EMMSE) radius is proposed. The initial radius proposed in this thesis is based 

on variable parameter   and the new scaled variance of the noise     The proposed initial 

radius also depends on the noise power spectral density   , number of transmit 

antennas   and the energy per transmitted symbol   . First, the total noise power spectral 

density is computed at the receiver by multiplying the noise spectral density of each symbol 

by the number of antennas at the transmitter. The new version of the SNR is then calculated 

by dividing the energy per symbol by the total noise power spectral density. The variable 
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parameter   is then computed using the probability of the existence of a lattice point inside a 

sphere (see Section 5.4). Using the variable parameter  , a new noise covariance matrix 

which incorporates the number of transmit antennas, the energy of the transmitted symbols 

and the channel matrix is calculated by multiplying by the variable parameter   and the 

square-root of the new SNR.  

The new covariance matrix is then incorporated into the EMMSE model to reduce the impact 

of noise superimposed on MIMO signals (see Section 5.4). The EMMSE radius is finally 

found by computing the distance between the sphere centre and an improved EMMSE 

estimate. This distance can be fine-tuned by varying the variable parameter   to adjust the 

number of visited lattice points in the hyper-sphere. To further reduce the complexity of the 

SD, the proposed method utilizes the result of QR decomposition which is inherent in the SE-

SD proposed in the previous chapter, thus no extra processing is required. The proposed 

method does not only reduce the complexity of the SD, but also improves the bit error rate 

performance of the SD, particularly at low SNR.  

The rest of this chapter is organised as follows. First, different initial radius techniques 

proposed in the literature are presented. This will be followed by the design description of the 

proposed initial sphere radius. Second, the feasibility of the proposed method will be 

demonstrated by comparing the proposed initial radius with conventional SD radius and with 

other methods proposed in the literature. Finally, performance and complexity results are 

presented for the case of hard output detection for different initial radius methods.  

5.2 Selection of Initial Sphere Radius 

One of the major challenges posed by the Sphere Detection technique is the selection of the 

initial sphere radius [21]. It has also been difficult to predict the number of lattice points 

inside the sphere. Researchers are currently faced with the determination of the initial sphere 



 

Chapter 5 Initial Radius Selection 

PhD Thesis by Goodwell Kapfunde                                                                                                                    102 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

radius. The determination of the initial sphere radius has so far proved hard to address. 

However, a natural candidate for the sphere radius is the smallest radius that guarantees the 

existence of a lattice point inside the sphere for any received vector. Several sphere radius 

selection criteria based on fixed search radius [19], [21], [119]-[121] and adaptive search 

radius [104] have been proposed.  

 The conventional SD (CSD) initial radius is based on the noise variance    and is given in 

[121], [18] as        , where        (     ),     is an experience based figure. 

This choice of the initial radius is based on the statistical properties of noise to avoid NP-hard 

problems associated with a channel matrix-based initial radius. An important advantage of a 

noise variance-based radius compared to an initial radius based on the channel matrix   is the 

reduction of the computational complexity [18]. Complexity aspects of the CSD will be dealt 

with in detail in Chapter 6.  

Qiao proposed a deterministic method for selecting an initial hyper-sphere radius for 

communication applications [19]. Another option of sphere radius proposed in [21], [122] is 

the distance between the Babai estimate and the vector   , i.e.    ‖    ̂ ‖, where  ̂  

is the Babai estimate for the transmit vector  .The Babai radius    guarantees the existence 

of at least one lattice point inside the sphere, thus avoiding decoding failure. However, this 

method does not specify the number (whether few or too many) of lattice points inside the 

sphere [21].  In addition to this problem, the Babai method may produce a too small radius 

due to the rounding errors in floating-point computation and cause sphere decoding failure 

[108], that is, declaration of an erasure. Thus, the selection of the initial radius remains a 

challenge to the CSD detection problem. The target goal of the selection of an optimal initial 

radius is to reduce the complexity of the CSD. If an optimal radius (the radius of a sphere 
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with a single point) is obtained, then the MIMO detection problem would be completely 

solved. A brief overview of the fixed and adaptive radius is provided in the next sections. 

5.2.1 Fixed Radius Search 

One way of determining a reasonable choice of    in order to find the ML solution only is to 

consider the distance     between the ML solution and the received signal point. Since the 

ML solution is the point which minimizes the Euclidean distance to the received signal,     

is the upper bounded by the distance between the noisy received signal    and  , 

respectively:   

   
          

‖     ‖
  ‖    ̂  ‖  ‖ (   ̂  )   ‖    

       (5-1) 

where        and    is the     component in the vector  . Observe that    ‖     ‖ 

is chi-square distributed with     degrees of freedom. Different authors [121], [18] suggest 

choosing the sphere radius to be a scaled version of the mean random variable,   
       . 

The constant  (    ) is chosen such that the sphere contains ML solution with probability of 

at least     [21]: 

       (      )    (     )  ∫
     

  
   (  )

      

 
 
 

 

                     (5-2) 

The structure of the involved lattice (i.e., the realization of   and the signal set employed at 

the transmitter) is not taken into account when fixing the search radius based in (5-1). Since 

the number of nodes inside the sphere does depend on the lattice structure [18], [124], 

following this approach will not necessarily minimize the complexity of the tree search.    

Alternatively, the search radius may be determined based on the Euclidean distance of an 

initial estimate of  , which can, for example, be obtained by linear detection [119]. This 

approach avoids running the search multiple times, as the distance of the ML solution is a 
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lower bound on the distance of any estimate on the transmit signal. However, the number of 

lattice points found may still be very large, and the additional overhead for determining the 

estimate must be invested. 

The abovementioned approaches consider only the problem of finding ML solution and show 

large fluctuations in the number of nodes visited during the tree search. Both problems have 

been addressed in [125] where the knowledge about the lattice structure is used to establish 

an estimate of the number of leaf nodes found inside a sphere of the given radius. The radius 

can be successively refined based on this information, until a certain desired number of leaf 

nodes are found. The variance in the number of visited nodes can be substantially reduced by 

applying this technique. The number of visited nodes is independent of the chosen 

enumeration strategy for this approach. 

5.2.2 Adaptive Radius Search 

An elegant and efficient way to solve the radius determination problem is obtained by a small 

extension of the sphere detection algorithm [106]. Instead of keeping the search radius fixed, 

it is set to the Euclidean distance of any new leaf node found inside the current sphere radius 

[106], [103]. The search may thus be started with      and stops once no more leaf nodes 

are found inside the sphere.  

The number of nodes visited when using this approach depends crucially on the choice of the 

enumeration strategy. It may in principle also be used with a Fincke-Pohst enumeration 

strategy. However, the sphere detector has to be started again from the root node every time 

the radius has been updated, such that many nodes will be visited multiple times [113]. 

Moreover, the number of found nodes is very high since this enumeration strategy always 

starts from the constellations point which is farthest away from the interference reduced 

signal. Both drawbacks are avoided by employing the Schnorr-Euchner enumeration strategy. 
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The first leaf node found will be the Babai point which is in many cases very close to the ML 

solution. Furthermore, the SD will not have to be restarted after the search radius has been 

tightened. Thus, very low detection complexity can be achieved with this scheme. This 

approach will be referred to as Schnorr-Euchner Sphere Detector (SE-SD) throughout this 

thesis. 

5.2.3 System Model 

A system model provided in Section 4.3.1 will be repeated in this section for convenience. 

The received signal vector transmitted over a MIMO system with    transmit antennas and 

   receive antennas is given by: 

                                                             (5-3) 

where       [           
]
 
and       [           

]
 
are the respective   -

dimensional and   -dimensional transmitted and received complex vectors whose entries 

have real and imaginary parts that are integers,          denotes the        channel 

matrix whose entries      describe the coupling between the     transmit antenna and the     

receive antenna, i.e., the Eigen modes of the MIMO channel.        [          ]
  is 

the independent and identically distributed (i.i.d) circularly symmetric, complex additive 

white Gaussian noise (AWGN) vector with zero-mean and covariance matrix     and [ ] is 

the transpose operator.   denotes the set of complex numbers and   is the identity matrix. 

However, a real valued system will be considered in this thesis for simplicity. The elements 

of the vector    span an   -dimensional rectangular lattice     , where   denote the set of 

integers. This system can be represented by the block diagram in Figure 5-1. The detection 

problem here is to find the vector  ̂  belonging to the set of all possible transmitted vector 

symbols       which minimizes the Euclidean norm with respect to the received vector  , that 
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is, to find the lattice point    which is closest to  . Assuming   is known at the receiver, 

detection is carried out as: 

                ̂                ‖    ‖                                          (5-4)          

where  ̂ is the estimate for the transmitted vector  .  

 

Figure 5-1  ML block diagram 

The problem is further complicated as the received   -dimensional vector    , which spans a 

skewed lattice, has non-integer entries. This can be overcome by the process of quantization 

or slicing [18]. The system modelled by (5-4) represents the ML detection problem, which is 

computationally expensive for large constellations and large    and    thus rendering the ML 

detection impractical. This problem can be alleviated by restricting the search space to   

     . However, the number of lattice points in   is still high. To demonstrate the above 

point, an example of a simple     space-time coded MIMO system which spreads     

(  ,  )T = 16 complex symbols from a 16-QAM constellation over T = 4 channel uses [61] 

is given where the code rate is      
 ⁄           . The corresponding lattice 

generating matrix   has        (     )     rows and n = 2  T = 32 columns. 

Therefore, the resulting integer least-squares problem corresponds to dimension      and 

the entries of   each take on 4 integer values, say, {           }. The number of lattice 

points in   is              . It is therefore vitally important to confine the search to a 

sphere of radius     which only includes a few lattice points inside the sphere. 

x y

AWGN

H
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Instead of conducting a brute-force (exhaustive) ML search, the SD solves the ML detection 

problem by restricting the search space         to those lattice points that lie inside a hyper-

sphere of radius     centred at the received vector y. The SD enumerates all lattice points 

inside a hyper-sphere centred at a given received vector using either the Finke-Pohst or the 

Schnorr-Euchner enumeration strategies [17], [109]. It keeps track of only a single node of 

the tree at any given time. The SD concept stems from the fact that the closest lattice point in 

  is also the closest point in a hyper-sphere. If no point is found inside the hyper-sphere, then 

the algorithm increases the radius of the hyper-sphere and restart again. It is important 

recalling that a large sphere radius leads to increased detection complexity and a small radius 

leads to decoding failure.  Figure 5-2 illustrates the principle of sphere detection where the 

empty circle is the received point.  

 

Figure 5-2 Geometric Representation of the Sphere Decoding Algorithm 

The rest of this chapter provides a modification of the proposed SD (PSD) in Chapter 4, 

hence some of the equations used in Chapter 4 are repeated here for convenience. The SD 

detection problem can thus be expressed as:        

 ̂              ‖    ‖                                         (5-5) 

   

xml 
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where   is the subset search space  .                                                                   

Furthermore, the channel matrix   is a non-orthogonal random variable. The channel matrix 

can be orthogonalized by performing    decomposition in order to obtain an upper 

triangular structure which enables the detection of the most reliably received signals first in a 

tree.  Starting the detection process with the most reliably received signals increases the 

performance of schemes with fixed or upper bounded complexity [110] and reduces the 

complexity for schemes with variable complexity [92], [126]. Matrix decomposition also 

enables the sorting of the received vector in an upper triangular structure, with the most 

reliable signal in the     layer. This will be achieved by employing Sorted    

decomposition which combines layer ordering into matrix decomposition step at negligible 

overhead [93].    will be applied as follows [18]:  

   [
  

 
]                                                      (5-6) 

where   [
  

 
] and    is an        upper triangular matrix, 0 is a (       )     all-

zero matrix and   is an        orthogonal matrix. By multiplying the equation (5-1) 

with    , the Hermitian Transpose of  , the received signal can thus be written as: 

 ̃                       ̃                               (5-7) 

where      , the identity matrix and       ̃  is the estimate of the noise. Equation (5-5) 

can be rewritten as:  

 ̂              ‖ ̃     ‖
                                          (5-8) 

The SD radius    
  can thus be modelled by: 

             
  ‖ ̃     ‖

                                                (5-9) 
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The condition which guarantees the existence of at least a single lattice point inside the 

hyper-sphere of radius     centered at the received signal   can be obtained by applying the 

constraint [18]: 

   
  ∑ ( ̃  ∑       

  
   )

   
                                        (5-10) 

where   represents the rows of  ̃    and  , and   represents columns of vectors   ,       

is the total number of layers in a tree structure. The details of the computation of the upper 

bound and the lower bounds of the signal space are provided in Section 4.3.4 in Chapter 4.  

 5.3 Linear detection schemes 

The Zero-Forcing detector: A straightforward solution to the MIMO detection problem is to 

suppress the interference among the layers, i.e. the received data blocks. The Zero-Forcing 

(ZF) detector solves the unconstrained least-squares problem by multiplying the received 

signal by the Moore-Penrose pseudo-inverse    of the lattice generating matrix to obtain  ̂. 

Since the entries of   ̂ are not necessarily integers, they can be rounded off to the closest 

integer, a process referred to as slicing [18] or quantization, to obtain: 

 ̂ =[   ]                                                   (5-11) 

where  ̂  is the Babai estimate and   is the set of all constellation or lattice points. This 

strategy is also referred to as decorrelating [26] and is attractive where performance 

degradation due to noise enhancement can be accepted in order to achieve very low receiver 

complexity. The advantage of this detector is that it eliminates noise completely, i.e., it 

‘forces noise to zero’, as its name suggests. Unlike the ML detector whose computational 

complexity per symbol rises exponentially with the number of multiple-access users, the 

decorrelating detector has a linear complexity per symbol. The receiver filter matrix     can 

be expressed as [126]: 
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    (   )                                                 (5-12) 

where       is the Gram matrix and    is the Hermitian transpose of the lattice 

generating matrix  . Multiplying equation (5-12) with the received signal        yields: 

 ̃                   ̂   ̃                                  (5-13) 

where   ̃ is the correlated noise at the ZF detector output. However, the ZF linear 

equalization shows poor performance particularly when the channel matrix   is ill-

conditioned [126]. This problem can be solved by taking the receiver noise into account in 

the design of the filter matrix, i.e. the design of the MMSE detector.  

The MMSE detector: The MMSE detector can be considered as the ZF detector which takes 

background noise into account and utilize the knowledge of received signal energies to 

improve detection. Unlike the ZF detector, the MMSE was designed to suppress noise 

enhancement and at the same time eliminate the residual interference. The linear mapping 

which incorporates noise minimizes the mean-squared error between the actual data and the 

soft output of the conventional detector by applying a partial or modified inverse of the 

correlation matrix. The MMSE optimization problem can be modelled as [127]: 

      (      
    

)
  

                                        (5-14) 

where   
    

 is the       noise covariance matrix. The estimate for the transmitted signal 

can be obtained by applying the MMSE linear filter as follows: 

 ̂                                                          (5-15) 

The estimate  ̂ can be remapped to a lattice point   ̂  to yield: 

 ̈    ̂                                                             (5-16) 
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The MMSE initial radius can thus be modelled by: 

  
     ‖   ̈‖                                         (5-17) 

5.4 The proposed sphere decoder 

The method of choosing the initial radius based on the scaled variance of the noise proposed 

in [18] is given by: 

  
                                                    (5-18) 

where   is the degree of freedom of the random variable    (   ⁄ ) ‖    ‖ .   is a 

variable parameter which is commonly based on experience and is chosen to ensure that at 

least a lattice point exists inside the sphere with a high probability. Throughout this thesis   

will be referred to as the ‘tuning factor’ (  ) in the proposed novel initial radius. This 

parameter can be determined from the computation of the probability of the existence of a 

lattice point inside a sphere as follows [8]: 

∫
 
 
 
  

 (
 

 
)

  

 
 

                                              (5-19) 

 ( ) is the gamma function. The parameter     is the probability of the existence of a lattice 

point in a sphere. It can be increased or decreased to vary  , which in turn fine tunes the 

radius to ensure the existence of quasi-optimal lattice points inside the sphere. It will be 

shown that the performance of the SD based on Schnorr-Euchner algorithm, i.e., the SE-SD 

[17], [109] will be improved significantly by using   to fine tune the proposed radius. From 

now on, the radius    will be referred to as the ‘conventional radius’ and the proposed radius 

will be referred to as the ‘novel radius’.  The corresponding SE-SD detectors will be referred 

to as the ‘conventional SE-SD’ and the ‘proposed SE-SD’ respectively. 
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In the proposed method, the performance-complexity trade-off can be further enhanced, 

particularly in the low SNR regime, by using MMSE pre-processing [61] and taking into 

account the noise power spectral density of the received signal and the number of transmit 

antennas. An improved SD radius can thus be obtained by employing    and the extended 

system model proposed in [128] where the respective (     )     extended channel 

matrix  ̿ and (     )     extended received vector  ̿ are denoted by: 

 ̿   [
 

     

] and  ̿  [
 

     
]                                        (5-20) [128] 

where   is the original       channel matrix and      √  (    )⁄  is the new designed 

scaled variance of the noise based on the noise power spectral density    and number of 

transmit antennas   .    is the energy per transmitted symbol,    
 is the       identity 

matrix and   is the original      received vector.        is an all-zeros column vector of    

elements.  

Applying the ZF filter  ̿   ( ̿  ̿)
  

 ̿  to the above extended system model is equivalent 

to applying the MMSE filter       (      
     

)
  

   to the original system model 

as follows: 

 ̿   ̿  ( ̿  ̿)
  

 ̿  ̿         (         
     

)
  

                   (5-21) [109] 

The extended system model can then be incorporated into    detection algorithm for the 

purpose of tree search detection. This can be done by incorporating the MMSE extended 

channel matrix  ̿ into the Sorted    Decomposition (SQRD). 

 ̿   ̿  ̿   [
 ̿ 

 ̿ 
  
 ̿ 

 ̿ 
] [ ̿ 

 
]                                                  (5-22) [129] 
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where  ̿  ℝ{(     ) (     )}   ̿  [ ̿ 

 
]   ̿  ℝ(     ),  ̿  ℝ(     ),  ̿  ℝ(     )  

  ̿  ℝ(     )  and   ̿  ℝ(     );   is a       matrix of all zeros. The Extended MMSE 

(EMMSE) radius  ̿     can then be computed based on the extended system model as 

follows: 

 ̿ ( )  ‖ ̿    ̿ ‖
 
 ‖ ̿ 

    ̿  ‖
 
 ‖ ̿ 

  ‖
 
                            (5-23) 

 ̿  ( )   ̿ ( )  ‖ ̿ 
  ‖

 
 ‖ ̿ 

    ̿  ‖
 
                                 (5-24) 

The drawback of using MMSE pre-processing is the introduction of a bias     
 ‖ ̂‖ on 

the calculated distances: 

 ̿  ( )  ‖ ̿ 
    ̿  ‖

 
 ‖    ‖                                     (5-25) 

Where   
  is the noise statistics at the receiver,  ̂ is the estimate of the transmitted 

vector  , ‖    ‖    
     is the original MMSE radius, see (5-17). The poor 

performance is attributed to strong noise enhancement, which often results from ill-

conditioned channel matrix H upon the application of the ZF filter. The overall effect of 

strong noise enhancement is increased complexity which results in errors which cannot be 

dealt effectively with any error coding schemes. However, performance deterioration due to 

the EMMSE bias can be partially eliminated by obtaining knowledge of the structure of the 

bias and then using it to remove the bias before calculating the detector soft output [121].  

The initial radius is further improved by scaling the bias with | | for an M-QAM modulator 

[118]: 

  √
 

| |⁄                                                          (5-26) 

Therefore the novel EMMSE radius  ̿     is given by (5-27): 



 

Chapter 5 Initial Radius Selection 

PhD Thesis by Goodwell Kapfunde                                                                                                                    114 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

 ̿    ( )   ( ̂)                                            (5-27) 

For the case of multi-level modulation, the bias will depend on  ̂.  

5.5 Performance Results and Discussion 

In this section, the average number of nodes or lattice points visited and the performance of 

the SE-SD for different radii are compared with the results obtained using the proposed initial 

radius. The simulation setup is similar to that used in Chapter 4. A counter was introduced to 

count the number of nodes visited during the search operations. Figure 5-3 shows the 

performance results of the conventional radius and the proposed novel radius applied to the 

SE-SD, with and without scaling the bias for a 4x4 MIMO system with a 16-QAM 

constellation. With the search operations upper-bounded to 800 nodes, the complexity of the 

proposed SE-SD gets lower than the conventional SE-SD.  

 

Figure 5-3 Complexity results for SE-SD 16-QAM-4x4 MIMO system  

It can be clearly seen that the proposed approach has significant performance improvement 

compared to the conventional radius. Out of the           lattices points generated in a 
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4x4 MIMO system with a 16-QAM constellation, only about 320 nodes are visited before a 

solution is obtained at an SNR of about 5dB. The effect of scaling of the EMMSE bias can 

also be seen as the number of nodes visited decreased to about 250 nodes compared to about 

320 nodes before scaling.  

In Figure 5-4, the complexity of the proposed novel radius is compared with the conventional 

radius and the original MMSE radius in terms of the number of visited nodes for a 4x6 

MIMO system configuration. The search operations were upper-bounded to 35000 nodes. 

The proposed novel radius with bias scaled shows significant reduction in computational 

complexity of the proposed SE-SD compared to the conventional radius and the SE-SD 

radius without bias. The proposed initial radius reduces the computational complexity of the 

sphere by roughly a factor of 3.5 at a signal-to-noise ratio (SNR) of 5dB with bounded 

number of computations for 4x6 MIMO setup.  

 

Figure 5-4 Complexity results for SE-SD 16-QAM-4x6 MIMO system 

Observe the effect of the number of antennas on the complexity of the proposed SE-SD. The 

results in Figure 5-3 and Figure 5-4 demonstrate that the complexity of the proposed SE-SD 
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is dependent on the number of transmit and receive antennas. By equipping the transmitter 

with more antennas, the number of nodes visited increased from roughly 250 nodes for the 

4x4 MIMO setup with 16-QAM transmission to about 12000 nodes for the 4x6 MIMO setup 

with 16-QAM transmission at an SNR of 5dB. If allowed to perform an unbounded number 

of computations with the proposed initial radius, the SD can achieve performance comparable 

to ML detection. 

It is important mentioning that for each node visited the number of arithmetic operations is 

equal to   , where       (     ) and   is the number of layers within the tree search 

structure. The assumption held during the computation of the arithmetic operations was that 

all multiplications, divisions, additions and subtractions have the same effect on the final 

count. However, it should be noted that the aforementioned arithmetic operations have 

different impacts on the complexity of the proposed SE-SD from a practical point of view, 

with the multiplications being the most expensive in terms of hardware resources. 

 

Figure 5-5 Performance of the proposed SE-SD for uncoded 64-QAM-4x4 MIMO setup 

The BER performance of the ZF, MMSE, conventional SE-SD, ML and the proposed SE-SD 

for uncoded 4x4 MIMO setup with 64-QAM transmission are presented in Figure 5-5. In 
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conducting the simulations, a flat fading channel was assumed. The BER performance of the 

proposed SE-SD is evaluated by comparing it with the ML and conventional SE-SD, MMSE 

and the ZF detector. It can be clearly seen that the proposed SE-SD approaches the ML 

performance to within 1.5 dB in the low SNR regime. However, the BER performance of the 

proposed SE-SD gets worse compared to the ML performance in the high SNR regimes. The 

proposed SE-SD achieves performance improvement of about 5 dB at a BER of      over 

the performance of the MMSE detection scheme in the low SNR regimes.  

 

Figure 5-6 Performance results for the proposed SE-SD for uncoded 4x6 MIMO setup 

Finally, equipping the transmitter with six antennas results in a performance improvement of 

about 4dB at the BER of     . The simulation results in Figure 5-6 show that the 

performance of the proposed SE-SD closely approaches the ML in the low SNR region. 

Again, the proposed SE-SD yields a performance gain of about 2.5dB over the conventional 

SE-SD while the performance of the MMSE and the ZF detectors get worse in high SNR 

range. 
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5.6 Conclusions 

Currently existing sphere decoder based algorithms are capable of achieving maximum ML 

performance. However, optimal solution is achieved at the detriment of the NP-hard 

complexity of the sphere decoder. The choice of the initial radius for the SD has a significant 

impact on the complexity and the performance of the SD. The selection of the initial radius is 

NP-hard itself particularly in MIMO setups where large signal constellations or many 

transmit and receive antennas are employed. Currently, there is no well-established technique 

for computing the initial search radius. However, several techniques for computing the initial 

radius have been proposed in the literature. 

A novel EMMSE initial sphere radius based on the received signal; noise statistics; the 

number of transmit antennas; the energy of the transmitted symbols and on the channel 

matrix was proposed in this Chapter. It was shown through simulation results that the 

proposed initial radius reduces the computational complexity of the sphere by roughly a 

factor of 3.5 at a SNR of 5dB with bounded number of computations for 4x6 MIMO setup. 

However, if the algorithm is allowed to perform an unbounded number of computations with 

the proposed initial radius, SD can achieve performance comparable to ML detection. The 

proposed sphere radius does not only result in reduced computational complexity of the 

sphere decoder, but also achieves performance gain over the conventional detection methods 

particularly at low SNRs. 
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6. The LRAD-SD-based Detection Schemes 
 

6.1 Introduction 

It has been demonstrated in [7] that Multiple-Input Multiple-Output (MIMO) technology is 

the most promising technology as it can improve link reliability without sacrificing 

bandwidth efficiency and transmit power. However, the major drawback of this technology is 

the increased complexity of the detector due to non-orthogonality of MIMO channels. Linear 

detectors are popularly known for their significantly reduced complexity however, the 

reduced complexity is achieved at strong performance penalty [130]-[135].  Non-linear 

detectors, including sequential detectors, yield better performance compared to linear 

detection schemes at the expense of one or more or a combination of the following problems: 

error propagation, performance degradation, increased computational complexity or increased 

processing delay [135]. To overcome these problems, a trade-off between performance and 

one or more of these issues has to be made. Currently, the solution to MIMO detection 

problem lies on tree search based detection algorithms.   

Although the Maximum Likelihood (ML) detector yields an optimal solution to the MIMO 

detection problem, it cannot be implemented in practice as its computational complexity 

increases exponentially with the number of transmit and receive antennas and with the 

constellation size. Sphere Decoder (SD) based algorithms have been shown to be more 

efficient in estimating an ML solution [21], [136]. However, superior performance of the SD 

is achieved at the detriment of its variable NP-hard complexity [136] when the initial radius 

is too large. On the other hand, a small initial radius leads to decoding failure. The Depth-

First-Search (DFS) SD-based algorithm was investigated in Chapter 4. The problem 

associated with the proposed DFS SE-SD is linked with ⌈
          

   ̃     |   

            
⌉       

 



 

Chapter 6 The LRAD-SD-based Detection Scheme 

PhD Thesis by Goodwell Kapfunde                                                                                                                    120 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

⌊
         

   ̃     |   

            
⌋. If               , the initial radius increases drastically. Thus, the 

number of the hypotheses      
rises exponentially with the increase in search radius leading 

to NP-hard complexity of the SD. In [137], the K-Best, also known as the Breadth-First 

Search (BFS), has been proposed to provide a sub-optimal solution to the MIMO detection 

problem. Here, K denotes the number of stored hypotheses      
, also referred to as nodes or 

lattice points, at each layer during the tree search detection process. Although this technique 

yields a near-optimal solution to MIMO detection problem, the key issue is the reduction of 

the size K in order to achieve reasonably lower complexity.  

The main objective of this chapter is to design an SD detection scheme that introduces a 

trade-off between performance, error propagation and complexity. First, the LRAD-MMSE-

SIC detection scheme is proposed. The proposed LRAD-MMSE-SIC scheme will then be 

extended to the SD to reduce the search domain of the DFS based SD proposed in Chapter 4. 

The resulting reduced structure will be referred to as the LRAD-MMSE-SIC-SE-SD. It will 

be shown that its computational complexity is independent of the constellation size while it is 

polynomial with respect to the number of antennas and the signal-to-noise ratio.   

6.2 System Model 

The detection scheme for a symmetric MIMO system with    transmit and    receive 

antennas (      ) is designed in this chapter. At the transmitter, data is de-multiplexed into 

   data sub-streams also referred to as layers. These sub-streams are encoded by the LDPC 

encoder and then interleaved bitwise by the inter-leaver before being mapped by the 

modulator M onto a (    )-complex valued transmit signal vector   of M-QAM symbols 

which are transmitted by the     transmit antennas simultaneously in parallel over the flat 



 

Chapter 6 The LRAD-SD-based Detection Scheme 

PhD Thesis by Goodwell Kapfunde                                                                                                                    121 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

fading channel, where M is the constellations size. In this chapter, 4-QAM and 64-QAM 

modulation schemes will be used. 

LDPC ENCODER

LDPC ENCODER

INTERLEAVER

INTERLEAVER

MODULATOR

MODULATOR

DE
MU

LT
IP

LE
XE

R

 
DATA IN

 

Figure 6-1 MIMO system transmission model 

At the receiver, the received      complex valued signal vector is modelled by: 

                                                           (6-1) 

where   denotes the AWGN noise of variance   
  observed at the receiver. The average 

transmit power of each antenna will be normalized to 1, i.e.  {   }     
 and  {   }  

  
    

.   is the      channel matrix whose elements are uncorrelated complex Gaussian 

fading gains with unit variance. In this design, a flat fading environment is assumed where 

the channel matrix H is constant over a time frame T and changes independently from frame 

to frame. It is also assumed that the channel matrix   is perfectly known at the receiver. The 

       complex valued system model in (6-1) can be decomposed into its     real-

valued equivalent model which can be written as: 

[ 
{ }

 { }
]  [ 

{ }

 { }
   { }

 { }
] [ 

{ }

 { }
]  [ 

{ }

 { }
]                               (6-2) 

where       and        are the dimensions of the real valued channel matrix, [ 
{ }

 { }
] 

and [ 
{ }

 { }
] are      vectors, [ 

{ }

 { }
   { }

 { }
]is a         channel matrix and  
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[ 
{ }

 { }
] is a      vector. The corresponding dimensions of the received, noise and 

transmit vectors are given by   ℝ ,   ℝ  and      respectively.   denotes the finite 

set of real-valued transmit signals. The finite set   generated using an M-QAM modulation 

scheme is given by: 

   { 
 

 
   

 

 
    

√   

 
 }                                             (6-3) 

where √  denotes the modulation index of the corresponding real-valued QAM modulator 

while the power normalisation factor  ( √
 

     
) is used for normalizing the power of the 

complex valued transmit signals. In this design, it is chosen in such a manner that the transmit 

power is normalised to 1. Each noiseless received signal is viewed as a point of in a finite 

lattice spanned by H in the proposed design.  

6.3 MIMO detection schemes 

To recover the received signal, MIMO detection schemes are used to search for the received 

point located in the lattice generated by  . The optimum ML detector performs an exhaustive 

search over the uncut set of transmit signals     , and decides in favor of the transmit 

signal  ̂  that minimizes the Euclidian distance to the receive vector   and can be expressed 

as: 

 ̂              ‖    ‖                                  (6-4) 

However, the brute force ML detection is not feasible for larger number of transmit antennas 

or higher order modulation schemes as the computational effort is of order    . A feasible 

alternative is the SD discussed in Chapter 4 and Chapter 5, which restricts the search space to 
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a sphere of radius   . Nevertheless, the computational complexity is still high in comparison 

to simple, but suboptimal successive interference cancellation (SIC).  

In this chapter, a less complex SD detection scheme based on the hybrid LRAD-MMSE-SIC 

is proposed. It is well known that the MMSE yields an ML solution in perfectly orthogonal 

channels. Unfortunately, practical MIMO channels are non-orthogonal. In order to improve 

the performance of MMSE in practical non-orthogonal MIMO channels, the LRAD is 

proposed to transform the channel matrix   into a near-orthogonal channel matrix  ̅.  

However,  ̅ is still not perfectly orthogonal. It has been shown in [135]-[136] that the SIC 

detector is capable of achieving further improved performance compared to MMSE detector 

in non-orthogonal or near-orthogonal MIMO channels. It achieves performance 

improvements by successively cancelling out the interference due to adjacent signal layers 

starting with the influence of the largest signal first, until the signal with the smallest power is 

detected. To yield improved performance, the ordered SIC detection is thus proposed in this 

design. First, an overview of the LRAD detection scheme is provided in the next section 

before a detailed description of the proposed SD. 

6.3.1 Lattice Reduction Aided Detection schemes 

In this design, the columns    of the real-valued channel matrix   where       are 

regarded as the basis of a lattice spanned by the channel matrix  . It is also assumed that the 

possible transmit vectors are given by    , the   -dimensional infinite integer space. First, 

the estimate of the transmitted symbols are mapped to the appropriate QAM decision regions 

by performing scaling and shifting operation of the received signal in accordance to the 

LRAD principles as follows:  ̃  
 

 
     , where   is the minimum distance between QAM 

constellation points and    denotes an all-ones (    )-dimensional vector. Next, the 

MIMO channel matrix   is transformed into an effective near-orthogonal channel matrix  ̅ 
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which yields an effective equivalent received signal model. This is achieved by using 

Lenstra-Lenstra-Lovasz (LLL) algorithm which decomposes   into    ̅    where   is an 

      unimodular matrix [102], i.e.,   contains only integer entries and the determinant is 

det ( ) = 1 and     is the inverse of the matrix  . Mathematically, it is accepted that the 

inverse of a unimodular matrix always exist and contains only integer values, i.e.,        

(     ). Thus, the effective transformed channel matrix  ̅ which generates the same 

lattice as   is given by:   

 ̅                                                                             (6-5) 

Finally, to further reduce the complexity of the proposed system, the channel matrix can be 

decomposed using QR decomposition,  as      where the       matrix   

[           
] consists of orthogonal columns of unit length (       

).   is the upper 

triangular matrix which consists of elements      where           Thus, each column 

vector    of the channel matrix H is given by    ∑       
 
    where   (      ) is a 

counter. Here, the vector    denotes the direction of    perpendicular to the space spanned 

by            and      describes the corresponding length of   . Furthermore,        
    

is the length of the projection of    onto   . The premise behind the LRAD technique is to 

transform a given basis H into a much better conditioned new basis   ̅ with vectors of 

shortest length or, equivalently, into a basis consisting of near-orthogonal basis vectors. 

Likewise, the transformed channel matrix  ̅ can be decomposed to  ̅   ̅ ̅ in order to 

perform ordered SIC detection. The design description for the proposed MIMO detection 

scheme is provided in the next section. 
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6.3.2 LRAD-MMSE-SIC-SE-SD System Description 

A detailed description of the proposed LRAD-MMSE-SIC-SE-SD MIMO detector is 

provided in this section. Figure 6-2 shows the block diagram of the proposed detection 

scheme. This consists of five main blocks namely LLL Algorithm, LRAD Preprocessing, 

MMSE-SIC, the SE-SD and the decision circuit. Each of the blocks addresses one or more 

the issues mentioned in Section 6.1. The LRAD linear detection performs nonlinear 

quantization on   instead of   . The vector   resides in the transformed equivalent system 

model of the received signal.  

First, the LLL and LRAD Preprocessing blocks address the problems associated with the ill-

conditioned and non-orthogonality of the channel matrix  . The LLL algorithm in the LRAD 

pre-processor generates   and     which are used to transform the channel matrix   and the 

transmit vector   into the   domain as: 

 ̅    ,                                                       (6-6) 

The transformed receive signal vector can then be rewritten as: 

                 ̅                   (6-7) 

Note that    and  ̅  describe the same point in a lattice. The only difference is that the LLL-

reduced channel matrix  ̅ is much better conditioned and near-orthogonal than the original 

channel matrix  . The condition of  ̅ determines the noise amplification, hence the solution 

based on  ̅ outperforms that based on  . This solution does not only lead to performance 

gain of the overall system, but also reduces the computational complexity of the overall 

proposed LRAD-MMSE-SIC-SE-SD detector. 

Since   belongs to the set   ,   also belong to   , where     . Therefore,   and   stem 

from the same set. The only difference here is that for M-QAM the lattice is finite and the 
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domain of   differs from   .  In other words,   now resides in a much reduced lattice. 

Further reduction in complexity is achieved by sorted  ̅  ̅  decomposition of  ̅. This leads to 

the generation of the estimate  ̃  of the received signal   with an ordered upper triangular 

matrix  ̅. The modified signal  ̃ is then further processed by the SE-SD which utilises    

computed by the MMSE-SIC processor. In the SIC block, signal detection starts with the 

most reliable signal, i.e., the signal with the largest amplitude. The details of the SIC 

algorithm is provided in Chapter 3 of this thesis. 

Second, with the transformed received signal, the MMSE-SIC Preprocessing block generates 

a reliable initial radius        to be utilised in the SE-SD. The MMSE filter       

( ̅   ̅    
     )   ̅  is applied to improve the accuracy of the estimate  ̅       , of  . 

Applying the MMSE-filter       to the lattice-reduced system yields   ̅        as follows: 

 ̅               {( ̅   ̅    
     )   ̅ }                                (6-8) 
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Figure 6-2 Proposed LRAD-MMSE-SIC-SE-SD block diagram 
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The output  ̅            of the MMSE-SIC detector is equivalent to multiplying the original 

MMSE-SIC estimate  ̅         by   , the inverse of the unimodular matrix  , that is: 

 ̅                ̅                                                  (6-9) 

The estimate  ̅            can be remapped to a lattice point  ̅ ̅             to yield: 

 ̅   ̅ ̅                                                           (6-10) 

The initial SE-SD radius can thus be modelled by: 

  
        

  ‖   ̅‖                                             (6-11) 

The initial radius    is fed into the input of the SE-SD. This is then processed using the SE-

SD algorithm described in Chapter 4 to yield  ̂. The SE-SD estimate can be recovered by 

multiplying  ̂ by the unimodular matrix   as follows: 

 ̃    ̂                                              (6-12) 

This is fed into the decision circuit which finally generates the estimate  ̂ of the received 

signal  .  To prevent error propagation in the MMSE-SIC preprocessing unit, the LDPC error 

corrected estimate   ̂ is feedback via the LRAD post-processing unit where it is transformed 

into the z-domain as follows: 

        ̂                                                        (6-13) 

The effect of this feedback does not only ensure that error propagation is effectively arrested, 

but it also ensures that the overall performance of the system improves significantly.  

6.4 Performance Results and Discussion 

The simulation results for the proposed LRAD-MMSE-SIC-SE-SD detection strategy are 

presented in this section. The simulation setup is similar to the setup described in Chapter 4. 
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The BER performance results are presented for different modulation orders and different 

number of transmit and receive antenna configurations.  The performance results for the 

proposed LRAD-MMSE-SIC-SE-SD are evaluated by comparing them with the ML, LRAD-

MMSE-SIC, and the MMSE-SIC detection schemes. The assumption made is that MIMO 

signals are transmitted through uncorrelated Rayleigh flat fading channels with the transmit 

power normalised to unit. Figure 6-3 shows the BER results for ½ rate LDPC coded and 

uncoded 4x4 MIMO setups for the proposed LRAD-MMSE-SIC-SE-SD. 4-QAM and 64-

QAM modulation schemes were applied on each sub stream as representatives for the 

respective low and high spectral efficiency regimes.  

It can be clearly seen that the proposed LRAD-MMSE-SIC-SE-SD achieves substantial 

performance improvements in comparison with the LRAD-MMSE-SIC and MMSE-SIC 

detection schemes. The results in Figure 6-3 (a) show that the proposed LRAD-MMSE-SIC-

SE-SD scheme achieves performance improvement of about 2dB and 3dB at a BER of      

for the cases of both coded and uncoded 4-QAM transmissions compared to the performance 

of the LRAD-MMSE-SIC and MMSE-SIC detection schemes respectively. The performance 

improvement arises from the combination of the reduced search space introduced by the 

LRAD schemes and the optimal ordering due to the MMSE-SIC.  

 

(a) Coded 4x4 MIMO System Setup    (b) Uncoded 4x4 MIMO System Setup 

Figure 6-3 Performance results for (a) coded and (b) uncoded 4x4 MIMO System Setup 
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However, there is a marginal overall performance loss of the proposed LRAD-MMSE-SIC-

SD compared to the ML although the performance is 1dB within that of the ML throughout 

the SNR regimes. The performance loss comes with a benefit of significantly reduced 

computational complexity. A similar trend in BER performance is also observed for the cases 

of both coded and uncoded 64-QAM although there is a modulation efficiency improvement 

penalty of about 6dB decrease in performance at a BER of      compared to the case of the 

4-QAM. The proposed scheme is about 2dB and 8dB better than the LRAD-MMSE-SIC and 

MMSE-SIC schemes respectively at a BER of       for the uncoded case shown in Figure 6-

3 (b).  

The benefit of equipping both the transmitter and the receiver is demonstrated in Figure 6-4. 

This is demonstrated by comparing the BER results for uncoded 4x4 MIMO setup and 4x6 

MIMO setup where 4-QAM and 64-QAM modulation schemes are applied on each sub 

stream. Again, the proposed LRAD-MMSE-SIC-SD achieves substantial performance 

improvements in comparison to the LRAD-MMSE-SIC and MMSE-SIC detection schemes.   

 

(a) Uncoded 4x4 MIMO System Setup          (b) Uncoded 4x6 MIMO System Setup 

Figure 6-4 Performance results for proposed LRAD-MMSE-SIC-SD 

As can be clearly seen in Figure 6-4, the proposed LRAD-MMSE-SIC-SD benefits 

substantially from reduced error probability on the first layer by equipping the receiver with 
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more antennas (6 antennas in this case compared to 4 antennas in Figure 6-3). It can also be 

clearly seen that low order modulation schemes perform better than higher order modulation 

schemes at the cost of bandwidth inefficiency. These results demonstrate that equipping the 

transmitter and the receiver with more antennas in conjunction with higher order modulation 

schemes can be attractive where high data rates are the main target of the wireless 

communication system. 

6.5 Computational Complexity Analysis 

The goal of the MIMO detector is to solve the closest lattice point search (CLPS) problem as 

efficiently as possible with minimum computational complexity. However, the ML performs 

an exhaustive search which is impractical for real-time systems. Fortunately, the emergence 

of the SD has restored the lost hope for high data rate MIMO systems. This section 

investigates the complexity aspects of the proposed LRAD-MMSE-SIC-SE-SD for MIMO 

systems. The complexity analysis focuses on uncoded MIMO transmission, i.e., hard output 

detection.  

So far, most of the available results on the complexity for sphere detection have focused on 

the average behaviour [11], [18], [113], [138] and complexity exponents at moderately high 

SNR [18]. It is stated in [139], that the SD has a considerably higher worst case, but lower 

average complexity than other tree search based detection algorithms.  

In this thesis, the average complexity of the proposed LRAD-MMSE-SIC-SE-SD is 

investigated by estimating the number of arithmetic operations conducted to yield an estimate 

of the ML solution. This is then compared to the enumeration techniques in [12]. The 

simulation setup is equivalent to the one used in Section 2.8.3. For a brute force search (ML 

detection), the maximum number of arithmetic operations    required to compute an 

exhaustive ML solution is   
   ∑     

   . To make a fair comparison, the number of each 
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addition, multiplication, and extraction of a square-root will be counted as one operation as 

proposed in [12]. The upper limit for the original Fincke-Pohst (FP) is used as a figure of 

merit or yardstick against which the complexity of the proposed LRAD-MMSE-SIC-SE-SD 

is measured and is given by [12]: 

 

 
(          )  

 

 
(        )  (( ⌊√   ⌋   ) (

⌊    ⌋    

⌊    ⌋
)   )       (6-14) 

where     ,   is the sphere radius and      (    
        

 ) while that in [124] require 

cubic O (  ) computations. 

For a 4x4 MIMO with a 64-QAM constellation, the upper bound number of arithmetic 

operations used in simulations is         . Figure 6-5 shows the average value of the 

arithmetic operations    for the proposed LRAD-MMSE-SIC-SE-SD plotted against SNR. 

According to the results obtained to date in the literature, the expected complexity of FP-SD 

is only polynomial in the problem size for a wide range of SNRs [18]. However, it was 

proven in [140] that there exists a lower bound exponent on the complexity of the FP-SD.   

 

Figure 6-5 Average arithmetic operations without statistical pruning 
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While this implies that the complexity of the FP-SD will always grow exponentially with the 

problem size, the rate of exponential growth depends strongly on the SNR as is depicted in 

Figure 6-5. Here, the number of required arithmetic computations decreases substantially as 

the SNR is increased and the detection complexity eventually approaches that of linear 

suboptimal detectors, i.e., the detection complexity eventually approaches a constant value. 

Conversely, the number of arithmetic computations increases substantially as the SNR is 

decreased and the detection complexity eventually approaches that of a brute force search. 

The FP-SD complexity is also extremely sensitive to the choice of the search radius.  

The goal of a wireless communication system is deliver high data rates at minimum transmit 

power and much reduced detector complexity. As can be seen in Figure 6-5, the proposed 

LRAD-MMSE-SIC-SE-SD can achieve the desired BER performance (see Figure 6-3 & 

Figure 6-4) at much reduced complexity within the whole range of the SNR regime (0-30dB) 

compared to the ML and original FP-SD for both cases of 4-QAM and 64-QAM 

transmissions.  

The reduction in complexity of the proposed LRAD-MMSE-SIC-SE-SD is partly attributed 

to the MMSE-SIC preprocessing with layer ordering and partly due to the reduced search 

domain introduced by the LRAD scheme.  

The complexity of the proposed LRAD-MMSE-SIC-SE-SD can be further reduced by 

applying statistical tree pruning, particularly in the low SNR regime. Figure 6-6 illustrates 

that the proposed LRAD-MMSE-SIC-SE-SD algorithm solves the CLPS problem far more 

efficiently than the original FP-SD with the application of statistical tree pruning, particularly 

in the low to medium SNR regime, and for the case of higher order modulation. The 

complexity of the proposed LRAD-MMSE-SIC-SE-SD can be reduced by several orders of 

magnitude for 64-QAM transmission at SNRs below 10dB. The average complexity of the 
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proposed LRAD-MMSE-SIC-SE-SD can be reduced by a factor of about 30 in the low SNR 

regime for the case of 64-QAM transmission as can be clearly seen in Figure 6-6. However, 

the reduction in complexity is not noticeable for the case of 4-QAM transmission. 

 

Figure 6-6 Average arithmetic operations with statistical pruning 

The average complexity of the original FP-SD becomes largely independent of the operating 

SNR by employing LRAD-MMSE-SIC based preprocessing. A reduction of 80-90% 
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from the suboptimality due to statistical tree pruning. Overall, the complexity for both the 
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and Figure 6-6 it can be concluded that the proposed SE-SD with LRAD-MMSE-SIC 

preprocessing is the most attractive option for solving the CLPS problem, i.e., the best option 

for solving the ML detection problem.   
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6.6 Summary 

The simulation results shown in Figure 6-3 and Figure 6-4 are both consistent with theory. In 

both cases, coded transmissions show superior performance compared to uncoded 

transmissions. However, as the modulation order increases, the BER performance 

deteriorates. Simulations of the proposed LRAD-MMSE-SIC-SE-SD presented in this 

chapter show that the worst case computational complexity of the sphere detector largely is 

dependent on the number of transmit and receive antennas and the initial sphere of radius.  

6.7 Conclusions 

The LRAD-MMSE-SIC-SE-SD detection scheme which introduces a trade-off between 

performance, error propagation and complexity was designed in this chapter. The reduction in 

complexity mainly results from the transformation of the channel matrix into a near-

orthogonal channel and SQRD. Computational complexity can also be minimized in the tree 

search process by using efficient enumeration strategies such as the Schnorr-Euchner and tree 

pruning techniques. The state-of-the-art LDPC were applied to stop errors from one stage 

propagating to the next stage of the detector. This has significant effect on performance 

improvement of the sphere detector. 
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7. Conclusion and Future Work  
 

7.1 Conclusions 

This thesis focused on the performance and complexity analysis of MIMO detection 

algorithms. A detailed study of the state-of-the-art sphere decoder for MIMO systems was 

conducted. The sphere detector for MIMO systems can be considered as an efficient ML 

detector whose search space is restricted to the hyper-sphere of radius   .  

A detailed study of the ML and the heuristic suboptimal detection schemes was conducted in 

Chapter 3. It has also been shown that the MMSE detector performs very well in the 

detection of MIMO signals and will therefore, be considered in future work as a strong 

candidate for pre-coding schemes. Simulations of the NLD detection schemes in Chapter 3 

show that NLD outperform LD, hence they are potential candidates for the pre-processing 

schemes for more powerful detection schemes such as the SD. It has also been shown that the 

channel capacity approaching LDPC coding can significantly improve the performance of 

MIMO detection schemes, thus laying the foundation for a bright future for high capacity 

MIMO systems.  

The results for the proposed PSD in Chapter 4 show that the task of generating or recovering 

the transmitted MIMO signals at the receiver can be a significant challenge for the tree search 

based detection strategy. However, this challenge can be overcome by using a combination of 

the SD characterized by the Depth-First Search (DFS) with heuristic Multi-User Detection 

(MUD) methods, both linear and non-linear detectors. The BER curves of the PSD follow the 

error rate curve for the ML closely indicating that the PSD performance approaches the ML 

performance particularly in the low SNR regimes.  
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The choice of the initial radius is a crucial factor in the complexity of the sphere detector. A 

novel EMMSE radius based on the received signal, noise statistics, the number of transmit 

antennas, the energy of the transmitted symbols and on the channel matrix was developed in 

Chapter 5. The benefit associated with this approach is that it ensures that the number of 

lattice points inside the sphere is small, thus reducing the complexity of the SD detection 

scheme for MIMO systems.  

The Schnorr-Euchner Sphere Decoder based on the DFS algorithm was investigated to depth 

in Chapter 5 where its ability to achieve near-optimal performance was demonstrated through 

simulation results. The complexity aspect of the sphere detector has been identified in this 

thesis as the central issue in MIMO detection, which can prohibit the realization of channel 

capacity in MIMO systems. It was shown through simulations in Chapter 6 that the 

computational complexity of the sphere detector is largely dependent on the number of 

transmit and receive antennas and the initial sphere of radius, which in turn determines the 

number of lattice points inside the sphere.  

In Chapter 6, a new LRAD-MMSE-SIC-SE-SD detection scheme that introduces a trade-off 

between performance, error propagation and complexity was proposed. This detection 

scheme benefits largely from the transformation of the channel matrix into a near-orthogonal 

channel and SQRD. Computational complexity can also be minimized in the tree search 

process by using efficient enumeration strategies such as the Schnorr-Euchner and tree 

pruning techniques. The state-of-the-art LDPC were applied though at the expense of slight 

increase in complexity of the detector to stop errors from one stage propagating to the next 

stage of the detector. This has significant effect on performance improvement of the sphere 

detector.  
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7.2 Future Work 

7.2.1 Tree search based Algorithms and sequential Detection  

 

This thesis has concentrated on the sphere decoder for MIMO systems. It mainly focused on 

the DFS algorithm. A detailed analysis of the Metric First Search (MFS), Breadth First 

Search (BFS) and sequential detection remains an open research area, and thus remains a 

possible direction for this work. It would be also interesting to extend this analysis to other 

applications including Multi-User MIMO detection and cooperative communications.  

7.2.2 MIMO Detection Problem Size  

The MIMO detection problem size was limited to six real dimensions to yield real-time 

results at manageable computational complexity. For high data rate systems, an extension of 

the problem size beyond six will be a possible consideration in the future. For high data rate 

wireless communication systems, large constellation sizes and several transmit and receive 

antennas typically 16x16 MIMO configurations with 256-QAM will be investigated in the 

future. 

7.2.3 Sphere Detection Computational Complexity Analysis  

Research in the computational complexity analysis of the sphere decoder has largely focused 

on the number of arithmetic computations. To date, it has been shown that all studied tree 

search algorithms show very similar complexity. It has been thus difficult to determine which 

of the schemes is best suited for practical applications. A further extension of this work is the 

design of tree search based schemes which take practical implementation constraints such as 

parallelisation and latency issues into account.  Further investigation of complexity reduction 

techniques such as MMSE preprocessing for real-time systems is a fascinating direction for 

this work. 
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7.2.4 Initial Radius Selection  

The determination of an optimal initial search radius still remains the major challenge of the 

SD detection technique. The choice of the initial radius for the SD has a significant impact on 

the complexity and the performance of the SD [141]. To achieve the channel capacity, an 

optimal initial sphere radius which results in a sphere with a single point other than the 

received point is required. It would be very interesting designing such system that computes 

an optimal initial sphere radius in the future. 

7.3.5 Hardware Implementation of the Proposed Detection schemes 

Throughout this thesis, all detection schemes for MIMO systems investigated have been 

verified by computer simulations. The ultimate test for the validity of the proposed schemes 

is the real world application. A first step in this direction could be the evaluation of tree 

search algorithms using hardware-in-the-loop approach [132].  

FPGA hardware based simulations have also received a lot of attention due to their improved 

performance advantages over software based simulations [143]. Hardware based simulations 

do not only provide real-time simulations but also enable the designers to effectively and 

accurately evaluate the hardware architectures of algorithms and systems. FPGA based 

simulations will therefore be an attractive optional future direction of this work.
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