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Abstract 

In this work we apply the method of diagonal regression to derive an alternative 

version of Principal Component Analysis (PCA). “Diagonal regression” was 

introduced by Ragnar Frisch (the first economics Nobel laureate) in his paper 

“Correlation and Scatter in Statistical Variables” (1928). The benefits of using 

diagonal regression in PCA are that it provides components that are scale-invariant 

(i.e. changing the units of measurement leads to an equivalent result), and which 

reflect both the correlation structure of the data set, and the variance structure as well. 

By contrast PCA based on the correlation matrix will only reflect the correlation 

structure of the data. The problem is formulated as a generalized eigen-analysis and is 

demonstrated using a numerical example which highlights some desirable properties 

of what we call Invariant Principal Components Analysis (IPCA).     
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Introduction 

Principal Component Analysis (PCA) is quite widely used in different areas 

such as data compression, image processing, visualisation, exploratory data analysis, 

pattern recognition etc. One may find a chapter on PCA in numerous texts on 

multivariate analysis e.g. Rao (1952), Kendall (1965), Gnanadesikan (1977), 

Chatfield and Collins (1986). For a more detailed explanation there are books entirely 

dedicated to Principal Component Analysis: Dunteman (1989), Jolliffe (2002),   

Jackson (2003). PCA originated in some work by Karl Pearson (1901) around the turn 

of the 20th century. Frisch (1928) introduced his view on how to transform a set of 

statistical variables to an uncorrelated set. Hotelling (1933) developed the approach to 

Principal Component Analysis which prevails in most textbooks today. According to 

Jolliffe (2002) the central idea of Principal Component Analysis is to reduce the 

dimensionality of a data set which may consist of a large number of interrelated 

variables, while retaining as much as possible of the variation present in the data set. 

Thus principal component analysis is concerned with reducing the number of 

variables under consideration by using only the first few principal components and 

discarding those, which have small variances. When one is dealing with high 

dimensional data it is often necessary to reduce its dimensionality, either to reduce 

storage requirements, for speedier transmission of information, or to make further 

analysis easier. Typically, the computation time in statistical analysis grows at a rate 

which is exponentially related to the dimension of the data. 

 Kendall (1965) summarises the underlying idea: “A linear or orthogonal 

transformation is applied to the p variates pxxx ,...,, 21   to produce a new set of 

uncorrelated variates nZZZ ,...,, 21 ”. In general PCA is a way of identifying patterns in 

data, and expressing the data in such a way as to highlight their similarities and 

differences. The success of PCA is due to the following important properties: 

 Principal components sequentially capture the maximum variability 

among  the data, thus guaranteeing minimal information loss when 

lesser components are discarded. 

 Principal components are uncorrelated, so one can talk about each of 

the Principal components without referring to the others, each one 

makes an independent contribution to accounting for the variance of 

the original variables Dunteman (1989). 
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ten Berge and Kiers (1996) consider the following three traditional approaches to 

PCA: 

1. Components which themselves possess maximum variance. 

2. Components which explain the maximum amount of variance in the original 

variables, by optimal least squares fitting. 

3. Components which provide an optimal least squares fit of the covariance or 

correlation matrix of the original variables. 

Jackson (2003) observes that as an alternative to traditional PCA one can compute 

one’s own principal components based on subjective criteria, although one should 

investigate the properties of these components, particularly with regard to the extent 

to which they are correlated and the extent to which they account for variability in the 

original variables. Korhonen (1984) calculates, what he calls, Subjective Principal 

Components by maximizing the absolute values of the correlations between principal 

components and the variables important to one, and not by maximizing their 

variances. Another approach was proposed by Kaiser (1967): to obtain components by 

looking for linear combinations of the original variables of the form Z=XA, where A 

is chosen such that the trace, Tr(A), is maximized so that each column of X ( i.e. one 

of the p original variables) is paired with a column of Z, the sum of correlations over 

all p pairs being as large as possible.  

Devlin et al. (1981) distinguish two general approaches for principal components. The 

first is to view the problem as Pearson (1901) did, as one of fitting a sequence of 

mutually orthogonal hyperplanes, and to replace the criterion minimizing the sum of 

squares of perpendicular deviations of the observations from the fitted plane by other 

criteria possessing desirable properties. The second approach is to perform standard 

eigenanalysis computations on the different measures of multivariate dispersion. 

Work in this direction has been done by Campbell (1980), Devlin et al. (1981) and 

Mathews (1984), they were interested in robust measures i.e., robust covariance and 

correlation matrices. Different estimators were used to create a form of PCA which is 

not overly affected by atypical observations.  The problem these authors wanted to 

solve was the scale dependency of principal components.  

  PCA is well known to be scale dependent and so some form of normalisation 

is required. The usual approach is to standardize variables so that they have zero mean 

and unit variance. The idea is that all the variables have equal importance, where 

importance is assumed to be measured by the variance. Jackson (2003) states that the 
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choice of scale will determine the dispersion matrix used to obtain components. If no 

scaling is employed, the resultant matrix will be a second moment matrix; if the mean 

is subtracted it will be a covariance matrix; if data is in standardized units it will be a 

correlation matrix. The problem associated with the covariance matrix is that if one of 

the variables has greater variance than the others, then the first principal component 

will be more influenced by this variable. In an effort to make all variables equally 

‘important’, the correlation matrix is used instead of the covariance matrix. Under this 

standardisation the resulting principal components will not be equivalent to those 

using covariances. More generally, changing the type of normalisation used will affect 

the resulting components. For example, dividing each variable by its mean, or by its 

inter-quartile range, or using logs, will all make the data dimensionless, but in each 

case the set of principal components obtained will not be equivalent to that from other 

normalisations. From this one may conclude that the PCA method is not unit 

invariant: changes of scale affect the components one ends up with. Kendall (1965) 

expressed this in geometrical language: “lines of closest fit found by minimizing the 

sum of squares of perpendicular distances are not invariant under change of scale”. 

This difficulty has been well known since the introduction of PCA, and different 

methods have been suggested for dealing with it. Hotelling (1933) notices that: “since 

the set of variables is capable of transformations such as changes of units and other 

linear transformations, the ellipsoids may be stretched and squeezed in any way. The 

method of principal components can therefore be applied only if for each variable 

there exists a unit of measure of unique importance”. Sokal and Rohlf (1981) point 

out that determining the slope of the major axis (principal axes) can be done if both 

variables are in the same units of measurement, but when two variables have different 

units of measurements the slope of the major axis is meaningless and another 

technique should be employed. When the correlation matrix is used, variables are 

standardized to have zero mean and unit standard deviation. Nevertheless, 

standardization does not solve the scale dependency problem, but just avoids it. It 

merely forces upon the user a unit of measurement equal to one standard deviation. 

 As an illustration, Loretan (1997) applies PCA in order to generate market risk 

scenarios. Significant correlation between different financial variables allows the use 

of PCA to reduce the dimensionality of the data. He notices that: “Since PCA is 

sensitive to the units of measurement of the data, we report our results both for the 

“raw” and for “standardized” (zero mean, unit variance) series. Standardization is 
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found to have little qualitative effect except when groups of series with differing 

group variances, such as exchange rates and interest rates, are analysed”. He notes 

that when a combination of stock market indices, exchange rates and long term 

interest rates are analysed for unstandardized series, the first PC explains 50% of the 

variance. However, upon standardization the influence of first PC is diminished to 

26%. The explanation for this can be found in Jackson (2003) who says that “there is 

no one-to-one correspondence between the PCs obtained from a correlation matrix 

and those obtained from a covariance matrix”. Gnanadesikan (1977) also states that 

“principal components of the covariance matrix are not the same as those of the 

correlation matrix, or of some other scaling according to measure of ‘importance’”. 

Another example of an application of PCA to finance can be found in Lardic et al. 

(2002) where PCA is used to analyse the interest rate exposure of fixed-income 

portfolios. The authors state that, depending on the choice of original variables (scaled 

or not scaled), different sensitivities (components) are obtained. This had the 

extremely important effect that the structure of the investment portfolio differed and 

hence the performance would be affected by the scales of the variables.

 Gnanadesikan (1977) observes that for reasons of a statistical nature such as: 

interpretation, formal statistical inference and distribution theory, it is often preferable 

to work with PCA based on the covariance matrix. Healy (2000, p96) makes the point 

very strongly that “the common choice of the [correlation matrix] for analysis has 

little or no theoretical motivation” 

 Interpretational problems of PCA based on the correlation matrix are well 

described by Walker (1967) where she criticises  Ahamad (1967). The data analysed 

by Ahamad (1967) consist of the number of offences, classified according to 18 

categories. The first principal component 1Z , by definition, is a weighted sum of the 

number of crimes in the 18 categories. This is expressed as: 

nn xaxaxaxaZ 13132121111 ...+++=  

Where nx  is the number of crimes in category n and a is the eigenvector of the first 

PC. Ahamad (1967) performs PCA on the correlation matrix using the data and 

suggests that the first component 1Z  can be described as a crime rate. However, if 

every variable is standardized, one finds that, for example, the crime of larceny, with 

values of order 300,000 per year contributes to the weighted sum 1Z  about the same 

amount as robbery, with only about 1,000 crimes per year. Therefore, it is difficult to 
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see what 1Z  measures. One can find it quite awkward to make equally important such 

different types of crimes as larceny and robbery. As result Walker (1967) suggests not 

to analyse this data using PCA, but to use a different technique.  

 Another problem is noted by Chatfield and Collins (1986): “Analysing the 

correlation matrix also makes it more difficult to compare results from two or more 

different samples”. The problem is that PCA based on the correlation matrix takes 

into account only the correlation structure of the data without paying any attention to 

the differences in variances. Suppose two different samples have an apparently similar 

correlation structure, but actually have quite different properties in terms of their 

variances. To compare such samples by looking at the correlations alone is not 

enough. What one would probably like to see are differences in coefficients (elements 

of eigenvectors) which reflect the variance differences in the data.  

 Work on weighted principal components has been presented by Meredith and 

Millsap (1985). They describe it as “an alternative approach to component analysis 

which lends itself to a broad characterization of equivalent classes of component 

solutions under metric transformation”. They notice that since the choice of scale for 

many psychological measurements is arbitrary, the scale-invariance properties of 

component solutions are of particular concern to psychologists. Meredith and Millsap 

(1985) introduce two different criteria generalized to allow weighting, the choice of 

weights determining the scale invariance properties of the resulting solution. 

However, as the authors point out in their work, two criteria are developed and are 

shown to lead to different component solutions. This fact suggests that both solutions 

are not unique to the data characteristics.    

The underlying idea we are introducing in this paper is based on the method of 

diagonal  regression introduced by Frisch (1928). This regression line possesses 

properties which we feel make it worthy of application to multivariate analysis. The 

problem will be formulated as a generalized eigenanalysis, where the identity matrix I 

will be replaced by a diagonal matrix D containing products of moments. 
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Diagonal1  regression and invariant estimators 
Since the nineteenth century different methods have been developed to fit a 

straight line when both variables are subject to error. The earliest work appears to be 

that due to Adcock (1877), who suggested minimizing the sums of squares of the 

normals i.e. perpendicular distances (orthogonal regression), from the data points to 

the line. Later, Pearson (1901)  introduced and explained the same approach. Pearson 

advocated this approach in the knowledge that in many cases in physics and biology 

the “independent” variable is subject to just as much deviation or error as the 

“dependent” variable. According to Reed (1921): “in practically all cases of observed 

data, x is as subject to variation as y and it therefore, appears a priori that a better 

fitting straight line would be obtained if we define the word residual as the normal 

deviation of an observed point from the line. This definition assumes that an observed 

point fails to fall on the line due to an error in both x and y”. It’s worth noting that 

Pearson (1901) not only proposed such a “best fit line”, but also observed that it 

passes through the direction of maximum data variation and coincides with the 

direction of the maximum  (principal) axis of the correlation ellipsoid and 

perpendicular to the least (minor) axis of the correlation ellipsoid.  

Wald (1940) notices that many objections can be raised against this method. First, 

there is no justification for minimizing the sums of squares of the normal deviates  − 

why not in some other direction? Second, the straight line obtained by that method is 

not invariant under transformation of the coordinate system. A criticism against 

orthogonal regression can also be found in Frisch (1934), who states that if variates 

are not normalized, orthogonal regression is not even invariant to a change in units of 

measurement. Roos (1937) emphasizes the same point, summarizes different methods, 

and then proposes a general formula for fitting lines (and planes in case of more than 

two variables), which do not depend on the choice of the coordinate system. Jones 

(1937) gives a geometrical interpretation of Roos’s general solution and some of the 

special cases.  He arrives at the conclusion that the “true” relation between two 

variables would be: 

                                                 
1  In “Correlation and Scatter in Statistical variables” Ragnar Frisch introduced two invariant 
regressions: “diagonal” and “composite”. However, in “Statistical Confluence Analysis by Means of 
Complete Regression Systems” he does not make this distinction and unites both lines under the names 
“diagonal” or “true” regression. Later on Cobb (1939) and Samuelson (1942) refer to Frisch’s invariant 
regression as “diagonal regression”. 
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y

x

y x
σ
σ

=  

where andy xσ σ are population standard deviations of variables x and y respectively 

and states that “Geometrically this regression line is the diagonal of the rectangle 

circumscribing the correlation ellipse” (Figure 1). 

FIGURE 1 

Woolley (1941) tackles the same problem again, but from a geometrical point of view. 

He presented a method of determining a straight-line regression by minimizing the 

summed absolute values of the areas of right-angled triangles formed by the data 

points and the regression line (Figure 2). 

 

FIGURE 2 

In this work, he proves that the slope of this “least triangles” regression in the case of 

a linear relationship of y on x is: 
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y

x

σ
σ

± , 

and in the case of a relationship of x on y: 

x

y

σ
σ

±  

The sign of the coefficients in both cases is determined by the sign of the correlation 

coefficient.  Samuelson (1942), in response to Woolley’s publication, explains that 

Woolley’s line is “nothing other than Frisch’s diagonal regression and is a statistical 

parameter, which has long appeared in literature. In terms of correlation surface it 

represents the major axis of the concentric ellipses of equal frequency”. It is not 

difficult to see that Jones (1937), when describing the invariant regression introduced 

by Roos (1937) and Samuelson (1942), when noting the diagonal regression 

introduced by Frisch (1928), are both describing the same line. According to Jones 

(1937), the dimensions of the rectangle circumscribing the correlation ellipsoid are 

2 xσ in the x direction and 2 yσ  in y direction. One can now see that the slope of the 

diagonal of this rectangle is y

x

σ
σ

. If we circumscribe rectangles around each of the 

concentric ellipses of equal frequency, it is apparent that they are all going to have the 

same diagonal as all the concentric ellipses (Figure 3).  

 

FIGURE 3 

 

So we see that various people have proposed estimating procedures to build invariant 

lines and planes. Nevertheless, they all in general lead to the same estimators and 
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coincide with the major axis of the concentric ellipses of equal frequency, as has been 

suggested by  Samuelson (1942). A very early work in this direction is that of Ragnar 

Frisch (1928): “Correlation and Scatter in statistical variables”. However, for some 

reason, diagonal regression did not become popular, and since then has been 

rediscovered many times and in some cases extended by e.g. Teissier (1948),  Barker 

et al. (1988), Draper and Yang (1997), Tofallis (2002).  

 Let us assume a sample of n observations and p variables, each observation is 

represented by a point iX  in p dimensional space.  The sample is written as ( )n p×  

data matrix X: 

11

1

...

{ }

...

ip

ij ij

n np

variables

x x

X x x observations

x x

 
 

= =  
 
 

M M
 

The rows of X standing for observations will be written 11 2( , ,..., )i i ipX x x x= and the 

columns standing for variables will be written 1 2( , ,..., )j j j njx x x x ′=  we may write  

1 2 1 2( , ,..., ) ( , ,..., )n pX X X X x x x′= = . For simplicity and without loss of generality we 

can assume that all variables are measured from their mean, thus 0iµ = . The product 

moments, taken about the means, are defined as: M X X′= . The moment matrix is:  

11

1

...

{ }

...

ip

ij ij

p pp

m m

M m m

m m

 
 

= =  
 
 

M M  

The ith diagonal element iim of M is the sum of squares of the variable ix , 

ii i i i im x x x x′= =∑ and i iim nσ = + is the standard deviation of ix . Due to the 

symmetry property of the covariances, this is necessarily a symmetric matrix and 

positive definite (semi definite), self adjoint. 

In p dimensions, the coefficients pa  of Frisch’s invariant regression (in 

Frisch’s notation) are given by solving the following eigen-system of equations, there 

is one equation for each value of i , and i = 1…p: 

( ) 0 (1)ip i ii ip pp
m m e aλ− =∑ , 
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where ipm and iim are elements of the moment matrix, iλ  are characteristic roots 

and
0
1ip

when i p
e

when i p
≠

=  =
. The coefficients ka of the diagonal regression will correspond 

to the largest characteristic root iλ  satisfying the system of the equations. 

Using the same notation, orthogonal regression in p dimensions will be: 

( ) 0 (2),ip i ip pp
m e aλ− =∑  

Where ipm  is the element of the moment matrix, iλ  are characteristic roots 

and
0
1ip

when i p
e

when i p
≠

=  =
 , as in diagonal regression the coefficients of orthogonal 

regression will correspond to the largest characteristic root.  

 The term “diagonal” arises from the fact that the absolute values of the 

regression coefficients can also be determined by the square roots of the diagonal 

elements in the adjoint of the moment matrix. Frisch (1941) derives a general formula 

for the coefficients of diagonal  regression (using Frisch’s notation) 

ˆ
(3),

ˆ
j jj

ij
i ii

m
d

m
ε
ε

=  

where ijd are the diagonal regression coefficients, jε  and iε are signs (1, −1 or 0), of 

ˆ jjm and ˆ iim  respectively, (these are the elements of the adjoint of the moment matrix). 

If we set j =1 in (3) then the equation can be written as: 

1 1 1
1 2 3

2 3

... (4),p
p

x x x xσ σ σ
σ σ σ

= ± ± ±  

 Cobb (1939) shows that an exceptional case occurs when the plane collapses to a 

line: in three dimensions it would take the form 

31 2

1 2 3

p

p

xxx x
σ σ σ σ

= = =  

An interesting feature of the diagonal regression line in two dimensions is that it is 

unique in being the only line-fitting technique that satisfies all of the following four 

properties:  

1. For perfectly correlated variables the fitted line should reduce to the correct 

equation. 

2. The fitted equation is invariant under an interchange of variables.  
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3. The regression is invariant under a simple dimensional or scale change in any 

of the variables. 

4. The regression slope depends only upon the correlation coefficient and 

standard deviations. 

These results were proved by another Nobel prize-winner, Paul Samuelson (1942). 

This set of properties motivates us to investigate the application of this method in 

multivariate statistics, particularly in Principal Component Analysis.  

 

 The problem of lack of invariance in PCA 
To find the principal components one must solve the eigenvalue problem  

( ) 0 (5),M I vλ− =  

Where M is the moment matrix, I is the identity matrix and λ  is the eigenvalue. This 

problem is equivalent to finding numbers λ  such that there is a nontrivial vector v  

with 

(6),Mv Ivλ=  

The eigenvalues identify the size of the semi axes, and the eigenvectors give the 

directions of these axes (see Figure 4).  

FIGURE 4 

If equation (5) is to have a solution for v other than the zero vector then 

( )M Iλ− must be a non-singular matrix, thus it leads to the characteristic equation  

det( ) 0 (7),M Iλ− =  

The determinant can be expanded to give a characteristic equation of nth degree: 
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1 2
1 2 0( 1) ( ... ) 0 (8),n n n n

n nλ α λ α λ α− −
− −− + + + + =  

Equation (8) is called the characteristic equation of the matrix M, and the polynomial 

is called the characteristic polynomial. The roots of the characteristic equation are the 

eigenvalues. These n roots are non-negative since M is positive definite (semi 

definite). The sums of the squares of the original variables and of their principal 

components are the same. 

1

( )
n

i
i

trace M λ
=

=∑  

Thus, we can say that each principal component accounts for a proportion  

1

i
n

i
i

λ

λ
=
∑

 

of the overall variation in the original data.  

 Variables in the sample can be standardized by dividing by their standard 

deviation, in that case the moment matrix M becomes the correlation matrix R. 

11 1

1

...

{ }

...

p

ij ij

p pp

r r

R r r

r r

 
 

= =  
 
 

M M  

The diagonal elements iir  of R are equal to 1 and ijr is the correlation coefficient 

between ix and jx . If one uses the correlation matrix R instead of the moment matrix, 

the mathematical procedure for calculating the eigenvalues and eigenvectors is 

exactly the same. For the correlation matrix R, the diagonal elements are all unity. 

Hence, the sum of the variances of the standardized variables will equal n, which is 

the number of variables in the data set; so the proportion of variance acquired by the 

ith principal component is simply /i nλ . One can see from this that the eigenvalues and 

eigenvectors of the moment and correlation matrices are different and do not have a 

one-to-one relation. 

 Now let us assume that one of the variables has been multiplied by a scalar 

value c. To illustrate, let us take two centred variables 1y  and 2y  with moment matrix  

1 1 1 2

2 1 2 2

y y y y
K

y y y y
′ ′ 

=  ′ ′ 
 

this leads to  

det( ) 0K Iλ− =  
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and then the characteristic polynomial of the second degree is 
2

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) 0y y y y y y y y y y y yλ λ ′ ′ ′ ′ ′ ′− + + − =  

Let us change the scales of one of the variables, 1y for instance, by multiplying by 

scalar c. The sum of squares of the 1y  will change from 1 1y y′  to 2
1 1c y y′ . Therefore, the 

moment matrix on the left side of equation Kv Ivλ= has changed, but the right hand 

side of the equation stays the same.  

 The new moment matrix K ′′  is  
2

1 1 1 2

2 1 2 2

c y y cy y
K

cy y y y
 ′ ′ 

′′ =  ′ ′ 
 

the characteristic polynomial is  
2 2 2

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) 0c y y y y c y y y y y y y yλ λ ′ ′ ′ ′ ′ ′− + + − =   

In both equations, the first member stays unchanged, but the second and the third 

members are different. In the case of more dimensions, it generalizes in an obvious 

way.  

As result the roots of the two equations will not differ proportionally, thus we obtain 

different eigenvalues and eigenvectors that are not equivalent. 

The literature offers two ways to solve this difficulty: 

1. Use only variables measured in the same scales  

2. Or, use the correlation matrix instead of the moment matrix. 

PCA based on the correlation matrix will produce exactly the same eigenvalues and 

eigenvectors for both the scaled and unscaled data sets, however the solution will not 

reflect the variance structure of the variables and will stay the same as long as the 

correlation structure of the samples stays the same. 

 

Invariant Principal Components  
Frisch (1928) defines ‘invariant regression’ as being when the associated 

regression coefficient changes proportionally when one of the variables is rescaled. 

For instance, let us consider a regression equation for the relationship between price 

and quantity, where price is measured in pounds. For the particular quantity 1Q units 

price equals 1P  pounds. Then, suppose the price axis is rescaled from pounds to 

pence. For the same quantity 1Q , the price will now be P2 where 2 1100P P=  (see 
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Figure 5), the same price just measured in different units and therefore regression 

lines are invariant.  

 

FIGURE 5 

Frisch (1928) demonstrates that diagonal  regression is invariant to change of scale of 

the original variables. Where diagonal regression is as represented by formulae (1), 

(3) and (4). One can compare formula (1) and formula (2) and see that the difference 

between them is the coefficient, (a sum of squares), attached toλ .  

Now let us consider the situation where the identity matrix I in (5) is 

substituted by a diagonal matrix D, containing the products of the moments on the 

main diagonal. This matrix is defined as ii i i i id x x x x′= =∑ .  

11 ... 0
{ }

0 ...ii
pp

d
D d

d
 

= =  
 

 

Due to the properties of products of moments this matrix is positive definite 

and symmetric. The moment matrix M is as defined in the previous section. 

Both matrices M and D are Hermitian, this is a consequence of them having 

only real entries and being symmetric TM M= and TD D= . The moment matrix M is 

also positive definite (semi definite). Equation (1) leads to the generalized eigen-

problem 

( ) 0 (9),M D vλ− =  

Equations (1) and (9) are identical and are merely written using different notations. 

Hence, we introduce diagonal regression using a generalized eigen-problem approach, 

where:  
1 1

2 2M D MD− −′ =  

then the problem becomes: 
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M v vλ′ =  

As D is always positive definite M ′ is positive semi-definite. All eigenvalues of the 

definite pencil { , }M D are real. This allows us to write them in sorted order 

1 2 3 ... nλ λ λ λ≤ ≤ ≤ . If all 0iλ > , then M Dλ−  is called positive definite, and if all 

0iλ ≥ , then M Dλ− is called positive semidefinite. Each eigenvector iv is real, 

because M and D are real.  

As in the previous section, let us consider the case of two variables, 

1y and 2y with 1 20, 0µ µ= = . The moment matrix L is as defined as in the previous 

section and the diagonal matrix D is: 

1 1

2 2

0
0
y y

D
y y

′ 
=  ′ 

 

The characteristic equation for this problem follows in the same way as equation (5), 

but instead of the identity matrix I we have matrix D.  

det( ) 0L Dλ− =  

Expanding the determinant on the left hand side we have the following characteristic 

polynomial 
2

1 1 2 2 1 2 2 1( 2 1) 0 (10),y y y y y y y yλ λ′ ′ ′ ′− + − =  

In equation (10) one can see that if one rescales one of the variables, then the whole 

equation changes proportionally. For example: change the scale of variable 2y  by 

multiplying it by scalar c, as we did in the previous section, equation (10) changes 

thus: 
2 2

1 1 2 2 1 2 2 1( ( 2 1) ) 0c y y y y y y y yλ λ′ ′ ′ ′− + − =  

Consequently we shall obtain the same roots (eigenvalues) and the eigenvectors will 

change proportionally. From the properties of principal components we know that 

“The sum of the squared correlations for each column equals the associated latent 

root, the amount of variance explained” Dunteman (1989). Hence the amount of 

variance explained by each component will not change either, but the eigenvector 

elements will change proportionally to reflect the changes in the variances of the 

original variables. One can see that the IPCA possesses the properties we require, 

namely: (i) the proportion of the overall variance explained by each component stays 

the same after the data set is rescaled, and (ii) the eigenvectors change proportionally 

according to the changes in the data set. 
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Numerical example  
In this section we illustrate Invariant Principal Component Analysis using a “toy” 

example. The purpose is to demonstrate the properties of our analysis. We create a 

small data set containing three variables 1 2 3, ,x x x  and calculate invariant components. 

Then we change the scales of the first two variables by multiplying through by ten and 

re-calculate the components. We denote the rescaled variables by 1 2 3, ,y y y .  

1x  2x  3x  1y  2y  3y  

5.944 5.706 17.832 59.44 57.06 17.832 
1.189 1.664 8.797 11.89 16.64 8.797 
5.231 6.895 16.167 52.31 68.95 16.167 
4.517 5.231 13.552 45.17 52.31 13.552 
7.370 7.133 19.020 73.70 71.33 19.020 
5.468 6.419 16.405 54.68 64.19 16.405 
4.755 3.804 9.510 47.55 38.04 9.510 
2.378 2.615 7.846 23.78 26.15 7.846 
3.566 3.804 8.321 35.66 38.04 8.321 
2.615 2.140 6.419 26.15 21.40 6.419 

TABLE 1 

Descriptive statistics for the original set are:
1 2 3

4.30, 4.54, 12.39x x xµ µ µ= = = , 

1 2 3
1.87, 2.01, 4.71x x xσ σ σ= = = ,  

1 2 3

2 2 23.49, 4.05, 22.15x x xσ σ σ= = = , and for rescaled 

set are: 
1 2 3

43.03, =45.41, 12.39,y y yµ µ µ= =
1 2 3

18.67, 20.13, =4.71y y yσ σ σ= = , 

1 2 3

2 2 2348.52, 405.05, 22.15y y yσ σ σ= = = .  

Conventionally, one would standardize the data in both sets and perform PCA using 

correlation matrices. In that case of course we shall obtain the same results for both 

datasets: identical eigenvalues and eigenvectors. We shall take the data as displayed 

and only subtract the respective means from each variable. Table 2 shows the 

correlation between variables. Obviously the variables of the rescaled set have the 

same correlation structure. 

 1x  2x  3x  

1x 1.00   

2x 0.93 1.00  

3x 0.88 0.93 1.00

TABLE 2 
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The methodology of PCA suggests that only if variables in the data set are correlated 

is there any point in proceeding with such an analysis. Using our proposed method, 

solving (9) we obtain the following results for the original dataset. (Computations 

were carried out using Matlab’s built-in  eig function.) 

Eigenvalues are: 1 2 32.8228, 0.1224, 0.0549λ λ λ= = = and eigenvectors are given in 

Table 3: 

 PC1 PC2 PC3 

1x  
0.10237 -0.12893 -0.069096 

2x  
0.096787 0.0048592 0.13433 

3x  
0.040673 0.048947 -0.031077 

TABLE 3   Principal Components calculated using the diagonal regression approach 

 
For the rescaled data set the eigenvalues are; 

1 2 32.8228, 0.1224, 0.0549λ λ λ= = = (same as above), and eigenvectors are: 

 PC1 PC2 PC3 

1y  
0.010238 -0.012892 -0.0069131 

2y  
0.009678 0.00048259 0.013432 

3y  
0.040673 0.048955 -0.031064 

TABLE 4 

 
As expected we obtain the same eigenvalues, for both datasets; this can be explained 

by the fact that the correlation structure has not changed with rescaling of the 

variables. The variance structure has changed however, and we obtain proportionally 

adjusted eigenvector elements identifying the new directions, in accordance with the 

change in scales. This can be seen from the ratios between the eigenvectors. One can 

divide components associated with, for instance, the third variable in each data set by 

components associated with the first and the second variables and see that the ratios 

have changed proportionally (results are given in Table 5).   
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 PC1 PC2 PC3 

3 1/x x  0.39731367 -0.37964011 0.449766 

3 1/y y  3.97274858 -3.79731617 4.493498 

3 2/x x  0.42023206 10.0730573 -0.23135 

3 2/y y  4.20262451 101.442218 -2.31269 

TABLE 5 Note that the first two rows differ by a factor of 10, as do the last two rows. 

 

Table 6 shows the squared correlations (these are invariant to change of scale, and so 

are the same for both scaled and unscaled data sets); note how high these are for the 

first component using IPCA. 

 PC1 PC2 PC3 

1x  
0.9279 0.0637 0.00821 

2x  
0.9638 0.0001 0.0360 

3x  
0.9309 0.0584 0.0105 

Sum 2.8226 0.1222 0.05471 
TABLE 6  Squares of correlations between principal components and variables. 

Summing each column in Table 6, we see that sum of squared correlations equals the 

corresponding eigenvalue for the principal component; and the sum of the eigenvalues 

equals the number of the variables. Hence, the proportion of the overall variance that 

each principal component explains can be calculated according to the same formula as 

used in conventional PCA based on the correlation matrix: 

i

n
λ  

The first component explains 95% of overall variance, the second 4% and the third 

explains only 1%.  

Table 7 shows the principal components obtained using traditional PCA based on the 

correlation matrix  

PC1 PC2 PC3 
-0.573364 0.722079 0.387112 
-0.584331 -0.029208 -0.81099 
-0.574292 -0.691194 0.438679 

TABLE 7   
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These components are the same for both the rescaled and unscaled datasets, from 

which fact it follows that they do not reflect the variance structure of the data. 

Calculated eigenvalues are as follows: 1 2 32.8228, 0.1224, 0.0549λ λ λ= = = . One 

notices that traditional PCA based on the correlation matrix has the same eigenvalues 

as our Invariant PCA. Thus, one can see that IPCA reflects the correlation structure of 

the data in the same way, but in addition, the eigenvectors describe variance structure 

of the datasets unlike PCA based on correlation matrix.   

 Note that the calculated eigenvectors are not normalized, but as  Cadima. J. 

and Jolliffe (1997) point out: “The different scalings change the size of the vector but 

not its direction. Relative values of loadings in the vector are unchanged”. By 

definition, elements of the first eigenvector are coefficients of the best fitting plane.  

Hence they have to be the same as the coefficients from Frisch’s diagonal regression 

(4). 

Setting the first principal component (PC1) to zero:  

(11),1 2 30.10237x +0.096787x +0.040673x = 0  

and re-arranging: 

(12),1 2 3x = -(0.93x +0.397x )  

One can substitute values in the formula (4) and see that they are identical to the 

coefficients in (12). Likewise, we get identical results for the rescaled dataset. 

  

Conclusion 
We have presented the application of diagonal regression to Principal Component 

Analysis. The problem has been introduced using generalized eigen-analysis. The use 

of diagonal regression allows us to build scale-independent (i.e. unit-invariant) 

models which reflect not only the correlation structure of the data set, but the variance 

structure as well. This combination of properties is not shared by traditional PCA 

based on the correlation matrix. The invariant results of PCA based on the correlation 

matrix reflect the correlation structure but not the variance structure of the data, as 

standardized variables all have variance equal to unity, i.e. all the variables are 

assumed equally important.  

 A numerical example was employed to illustrate some properties of Invariant 

Principal Component Analysis. The correlation between the components and the 

variables of the rescaled and original datasets were shown to be the same and 
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eigenvectors differ accordingly. This property illustrates that the results arising from 

Invariant PCA are scale-independent with coefficients which reflect the variance 

structure of the data.  
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