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1 Introduction

In the past decade a new, geometric picture has emerged for scattering amplitudes in pla-

nar N = 4 super Yang-Mills (SYM) theory. It originated from the observation that the

tree-level amplitudes and loop-level integrands of n-point amplitudes for all helicity sectors

can be computed using integrals over the Grassmannian space [1, 2]. In such formula-

tion, amplitudes can be extracted from a Grassmannian integral over a suitable contour

which selects a particular sum of residues. Building upon this idea, novel studies revealed

the interrelation between the rich combinatorial structure of positive Grassmannians and

the physical properties of amplitudes [3]. From this point of view, the aforementioned

residues are associated with positroid cells, which are particular subvarieties inside the

positive Grassmannian. The proper combination of cells is selected by using the Britto-

Cachazo-Feng-Witten (BCFW) recursion relations [4, 5]. However, the cells contributing

to a particular amplitude are seemingly not related to each other inside the positive Grass-

mannian. Nevertheless, via a map defined by a positive matrix of bosonized momentum

twistor variables, they assemble in a convex-like object. The image of the positive Grass-

mannian through such map is a geometric space, the amplituhedron [6], and the union of the

cell images provides a particular triangulation. The amplituhedron became eventually the

first example of a vast family of the so-called positive geometries [7], which nowadays pro-

vide a geometric description for various quantities in theoretical physics: see, for instance,
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the kinematic associahedron [8], the cosmological polytope [9], and positive geometries in

CFT [10, 11].

Nevertheless, despite the name, the amplituhedron is more naturally suited to describe

the dual Wilson loop rather than the amplitude itself, being defined in the momentum

twistor space. In particular, the employment of these variables restricts the possible gener-

alization of this geometry to scattering amplitudes in other models, since it is based on the

Amplitude/Wilson loop duality which is present only in planar N = 4 SYM. Therefore it

limits the possibility of finding positive geometries for scattering amplitudes in less super-

symmetric models and beyond the planar sector. It is then desirable to find a geometric

description directly in the ordinary twistor space or, even better, in the spinor helicity space

(λi, λ̃i). The first attempt in this direction was made in [12], where it was suggested that

the amplituhedron in momentum space should be the image of the twistor-string world-

sheet [13] through the Roiban-Spradlin-Volovich (RSV) equations [14]. In particular, it

was conjectured that the space should have proper sign flips for both λi and λ̃i, as well

as the additional assumption that the planar Mandelstam variables should be positive. In

this paper we will show that a suitable positive geometry with such characteristics exists

and provides the proper expressions for the amplitude when written in the non-chiral su-

perspace (λi, λ̃i, ηi, η̃i). In order to achieve our goal, we will first introduce its bosonized

version: (Λi, Λ̃i). By assuming that the external kinematic data Λ and Λ̃ satisfy particular

positivity conditions, we will reproduce the sign flips postulated in [12]. Additionally, fur-

ther constraints entangling Λ and Λ̃ will enforce positivity of Mandelstam variables. Then,

we will define the momentum amplituhedron as the image of the positive Grassmannian

through a map determined by this positive external data. We will show that such space is

indeed a positive geometry, whose canonical logarithmic differential form encodes scattering

amplitudes in spinor helicity variables.

The paper is structured as follows. We start in section 2 by reviewing the formulation

of the original amplituhedron in the bosonized momentum twistor space. We proceed by

defining the momentum amplituhedron, i.e. the positive geometry in the bozonized spinor

helicity variables. Afterwards, we show how to find the logarithmic differential form on the

momentum amplituhedron and how to extract the scattering amplitudes from it. Section 3

consists of examples which show in detail how to use the construction from section 2.

We end the paper with Conclusions and Outlook, and a few appendices containing more

technical details of our construction.

2 The definition

2.1 The ordinary amplituhedron

We start by recalling the construction of the amplituhedron in momentum twistor space.

In the past few years there has been a lot of progress on different descriptions of the am-

plituhedron [7, 15]. We will focus here on two of them, which will be relevant for our

construction of the momentum amplituhedron: the original definition introduced in [6] and

the description based on the sign flips presented in [15]. The first states that the amplituhe-

dron A(m=4)
n,k′ can be described on the space of bosonized supertwistors ZAi , A = 1, . . . , 4+k′,
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which specify the kinematic data for the n-particle Nk′MHV amplitude. The components of

bosonized supertwistors include the bosonic part of the momentum supertwistors (λai , µ̃
ȧ
i ),

a, ȧ = 1, 2, and the bosonized version of the fermionic components ξαi = φαRχ
R
i , α = 1, . . . k′,

where φαR are auxiliary Grassmann-odd parameters and R = 1, . . . , 4 is the R-symmetry

index. As already explored in the literature, there exists a straightforward generalization

of bosonized variables beyond the case relevant for physics, m = 4, and in the following we

will allow any values for the label m. We start by demanding that the matrix of bosonized

variables Z = (ZAi ) ∈ M+(m + k′, n) is positive, i.e. all its ordered maximal minors are

positive. Then the amplituhedron A(m)
n,k′ is defined as the image of the map

ΦZ : G+(k′, n)→ G(k′, k′ +m) , (2.1)

given by

Y A
α = cαiZ

A
i ∈ G(k′, k′ +m) , C = (cαi) ∈ G+(k′, n) . (2.2)

Here, G+(k′, n) is the positive Grassmannian, i.e. the space of all positive matrices modulo

GL(k′) transformations. For each amplituhedron A(m)
n,k′ , one can define a (k′·m)-dimensional

differential form Ω
(m)
n,k′ , called the volume form, which has logarithmic singularities on all

boundaries (of all dimensions) of the amplituhedron space A(m)
n,k′ . In particular, the vol-

ume form Ω
(m=4)
n,k′ encodes the Nk′MHV tree-level amplitude in N = 4 SYM. The geo-

metric space A(m)
n,k′ together with the form Ω

(m)
n,k′ describe a positive geometry, as defined

in [7]. Throughout the years, various methods to find the volume form Ω
(m)
n,k′ have been

proposed [7, 16–18]. One can, for example, triangulate the amplituhedron A(m)
n,k′ by e.g.

finding a collection of positroid cells T = {∆σ} of dimension k′ ·m in G+(k′, n) such that

the images of these cells through the function ΦZ do not overlap and cover the ampli-

tuhedron. To each positroid cell one can associate a canonical form ωσ with logarithmic

singularities on all its boundaries, see [3]. The volume form Ω
(m)
n,k′ is found by evaluating

the push-forward of the canonical forms ωσ via the function ΦZ and then summing over

all positroid cells in the triangulation

Ω
(m)
n,k′ =

∑
∆σ∈T

(ΦZ)∗ ωσ . (2.3)

The result of the push-forward is a logarithmic differential form on G(k′, k′+m) which can

be written as

Ω
(m)
n,k′ =

∑
∆σ∈T

dY logασ1 (Y, Z) ∧ dY logασ2 (Y, Z) ∧ . . . ∧ dY logασk′m(Y,Z) , (2.4)

where ασi (Y,Z) are the canonical positive coordinates parametrizing the cell ∆σ. The

explicit expressions for various values of parameters (n,m, k′) can be found e.g. in [7].

An alternative way to find the volume form is to introduce a volume function Ω
(m)
n,k′

defined by

Ω
(m)
n,k′ =

k′∏
α=1

〈Y1 . . . Yk′d
mYα〉Ω(m)

n,k′ , (2.5)

– 3 –



J
H
E
P
0
8
(
2
0
1
9
)
0
4
2

where
∏k′

α=1〈Y1 . . . Yk′d
mYα〉 is the standard measure on the Grassmannian G(k′, k′ +m).

The volume function can also be obtained by evaluating the integral over the space of k×n
matrices

Ω
(m)
n,k′ =

∫
γ

dk
′·ncαi

(12 . . . k′)(23 . . . k′ + 1) . . . (n1 . . . k′ − 1)

k′∏
α=1

δm+k′
(
Y A
α −

∑
i

cαiZ
A
i

)
, (2.6)

over a suitable contour γ. The integrand is a meromorphic function of c and the integral

reduces to a sum of residues, specified by the contour γ.

The original construction of the amplituhedron defines the volume form Ω
(m)
n,k′ as differ-

ential form on an auxiliary Grassmannian space G(k′, k′+m) parametrized by Y . However,

as pointed out in [15], the form (2.4) can be also thought of as a differential form on the

purely bosonic part of the momentum supertwistors, zai , a = 1, . . . ,m. It can be accom-

plished by replacing the differential with respect to Y by the differential with respect to

the kinematic data Z: dY log → dZ log, and at the same time by fixing Y = Y ∗, where

Y ∗ is a reference k′-plane in k′ + m dimensions. This new differential form is a logarith-

mic differential form on the space of configurations of zai , satisfying particular sign-flip or

topological conditions [15]. Let us now recall the proper sign-flip conditions in the m = 2

case, which will be relevant for us in the following. For m = 2, we consider a configuration

of two-dimensional vectors zai , a = 1, 2, and define the brackets 〈ij〉z := z1
i z

2
j − z2

i z
1
j . The

amplituhedron A(m=2)
n,k′ space is defined as a subspace of the configuration space {zi}i=1,...,n

satisfying the following conditions:

〈ii+ 1〉z > 0 and the sequence {〈12〉z, 〈13〉z, . . . , 〈1n〉z} has exactly k′ sign flips. (2.7)

Although the sign-flip characterization of the amplituhedron does not refer either to any

auxiliary space or the quite peculiar bosonization described above, it is not an easy task

to find the volume form directly from this definition. Therefore, we often refer back to the

original construction of the amplituhedron in the bosonized space.

2.2 The momentum amplituhedron

In order to define an amplituhedron directly in the spinor helicity space we will follow a

reverse path compared to the one described in the previous section. Our starting point will

be the conjecture in [12] suggesting that we should consider a positive geometry described

by proper sign-flips in the spinor helicity space, together with positivity of the Mandelstam

variables formed out of consecutive momenta. Let us start by taking a configuration space

of n spinor-helicity variables parametrized by {λa, λ̃ȧ}, a, ȧ = 1, 2, and define the brackets

〈ij〉λ := λ1
iλ

2
j − λ2

iλ
1
j and [ij]λ̃ := λ̃1

i λ̃
2
j − λ̃2

i λ̃
1
j . Let us also define planar Mandelstam vari-

ables

si,i+1,...,i+p =
∑

i≤j1<j2≤i+p
〈j1j2〉λ[j1j2]λ̃ . (2.8)

This relation is understood modulo n. Then the conjecture of [12] states that the positive

region would be defined by the following conditions:
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• Positive planar Mandelstam variables: si,i+1,...,i+p > 0 for i = 1, . . . , n, p = 1, . . . ,

n− 3.

• Correct sign flips: let the list {〈12〉λ, 〈13〉λ, . . . , 〈1n〉λ} have N sign flips and the list

{[12]λ̃, [13]λ̃, . . . , [1n]λ̃} have Ñ sign flips, then we require one of the two possibilities:

(N, Ñ) = (k − 2, k) or (N, Ñ) = (n− k, n− k − 2).

In this paper we define the space of bosonized spinor helicity variables and a related pos-

itive geometry, which we call the momentum amplituhedron Mn,k. This will encode the

Nk−2MHV n-particle tree-level amplitudes in N = 4 SYM.1 By demanding certain posi-

tivity conditions on the bosonized variables, we will recover proper sign flips for λ and λ̃.

With additional assumptions, we will also guarantee that the planar Mandelstam variables

are positive.

As described in details in [12], any n-particle Nk−2MHV scattering amplitude in planar

N = 4 SYM can be written as a differential form in spinor helicity space. The starting point

is the non-chiral superspace which is parametrized by spinor helicity variables, {λa, λ̃ȧ},
a, ȧ = 1, 2, together with the Grassmann odd parameters {ηr, η̃ṙ}, r, ṙ = 1, 2. Then the

amplitude is a function on n copies of this superspace with coordinates {λi, ηi|λ̃i, η̃i}. Let

us remark that in this space the supercharges take the form:

q̃ȧr =

n∑
i=1

λ̃ȧi η
r
i , qar =

n∑
i=1

λai η̃
ṙ
i . (2.9)

Moreover, there is a natural way to associate the R-symmetry indices (r, ṙ) with the spinor

indices (a, ȧ) and write any function on the superspace as a differential form on its bosonic

part. It amounts to the replacement

ηa → dλa , η̃ȧ → dλ̃ȧ . (2.10)

The degree of this differential form in (dλ, dλ̃) is then (2(n − k), 2k), respectively. This

is a similar situation to the one which we have encountered for the momentum twistors,

where the amplitude can be thought of as a differential form of degree 4k′ = 4(k − 2) on

the bosonic part of the momentum twistor superspace. Equivalently, it was possible to

introduce a bosonized momentum twistor space by introducing auxiliary Grassmann-odd

parameters. We will now repeat this construction for the spinor helicity variables.

Let us introduce 2(n − k) auxiliary Grassmann-odd parameters φαa , α = 1, . . . , n − k
and 2k auxiliary Grassmann-odd parameters φ̃α̇ȧ , α̇ = 1, . . . , k. We define bosonized spinor

helicity variables as

ΛAi =

(
λai

φαa · ηai

)
, A = (a, α) = 1, . . . , n− k + 2 , (2.11)

Λ̃Ȧi =

(
λ̃ȧi

φ̃α̇ȧ · η̃ȧi

)
, Ȧ = (ȧ, α̇) = 1, . . . , k + 2 . (2.12)

1Notice that k = k′ + 2, where k′ was defined in the previous section.
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In the next step we define a positive region on the space of bosonized spinor helicity

variables. We introduce the matrices

Λ =
(

ΛA1 ΛA2 . . . ΛAn

)
∈M(n−k+2, n), Λ̃ =

(
Λ̃Ȧ1 Λ̃Ȧ2 . . . Λ̃Ȧn

)
∈M(k+2, n) , (2.13)

and refer to the pair (Λ, Λ̃) as the kinematic data. These matrices describe linear subspaces

of dimension n−k+2 and k+2, respectively, inside an n-dimensional space. We denote their

orthogonal complements as Λ⊥ ∈M(k − 2, n) and Λ̃⊥ ∈M(n− k − 2, n). The orthogonal

complements are defined up to a GL-transformation, corresponding to a change of basis of

the corresponding subspaces. Additionally, we define two types of brackets on the space of

bosonized variables. On the space of Λ’s we define

〈i1i2 . . . in−k+2〉 = εA1A2...An−k+2
ΛA1
i1

ΛA2
i2
. . .Λ

An−k+2

in−k+2
. (2.14)

Similarly for the space of Λ̃’s we have

[i1i2 . . . ik+2] = εȦ1Ȧ2...Ȧk+2
Λ̃Ȧ1
i1

Λ̃Ȧ2
i2
. . . Λ̃

Ȧk+2

ik+2
. (2.15)

Until now there is manifest symmetry between Λ and Λ̃: if we exchange Λ ↔ Λ̃

together with exchanging k ↔ n − k, the space looks the same. This corresponds to the

parity invariance of N = 4 SYM. In the following we will, however, need to break this

symmetry by choosing one of two possible descriptions. These two choices correspond to the

two possibilities available in the conjecture for the sign-flip condition. In order to define the

positive region, we restrict the allowed external data to be positive in the following sense:{
matrix Λ̃ positive

matrix Λ⊥ positive

}
. (2.16)

Alternatively, we could assume that the matrices Λ̃⊥ and Λ are positive and proceed in an

analogous way. We emphasize that the fact that the matrix Λ⊥ is positive does not imply

that the matrix Λ is positive. On the contrary, using the discussion from the appendix A,

one can notice that the matrix encoding the orthogonal complement of a positive matrix

will have both positive and negative minors.

Having defined the positive region we are ready to adapt the map (2.1) to the bosonized

spinor helicity space. We define the momentum amplituhedron Mn,k as the image of the

positive Grassmannian G+(k, n) through the map

Φ(Λ,Λ̃) : G+(k, n)→ G(k, k + 2)×G(n− k, n− k + 2) , (2.17)

which to each element of the positive Grassmannian C = {cα̇i} ∈ G+(k, n) associates a pair

of Grassmannian elements (Ỹ , Y ) ∈ G(k, k + 2)×G(n− k, n− k + 2) in the following way

Ỹ Ȧ
α̇ = cα̇i Λ̃Ȧi , Y A

α = c⊥αi ΛAi , (2.18)

where C⊥ = {c⊥αi} is the orthogonal complement of C. One can show that Y has rank

(n − k), therefore it is an element of G(n − k, n − k + 2) and the map Φ(Λ,Λ̃) is well de-

fined. After imposing additional assumptions on Λ and Λ̃, which will guarantee positive
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planar Mandelstam variables, we claim that the momentum amplituhedron Mn,k is a pos-

itive geometry and its volume form encodes the n-particle Nk−2MHV tree-level scattering

amplitude in N = 4 SYM.

In order to confirm this claim, we start by checking that the momentum amplituhedron

has the expected dimension, namely 2n − 4, and that we find the correct pattern of sign

flips. Let us first observe that the dimension of G(k, k + 2)×G(n− k, n− k + 2) is 2n

dim(G(k, k + 2)) + dim(G(n− k, n− k + 2)) = 2k + 2(n− k) = 2n . (2.19)

We notice, however, that the image of the positive Grassmannian G+(k, n) through the map

Φ(Λ,Λ̃) is lower dimensional. Indeed, the momentum amplituhedron lives in the following

co-dimension four surface inside G(k, k + 2)×G(n− k, n− k + 2):

P aȧ =

n∑
i=1

(
Y ⊥ · Λ

)a
i

(
Ỹ ⊥ · Λ̃

)ȧ
i

= 0 . (2.20)

For a proof of this statement see appendix C. We defined here the orthogonal complements

Y ⊥ ∈ G(2, n − k + 2) and Ỹ ⊥ ∈ G(2, k + 2). One can think about the condition (2.20)

as being equivalent to the momentum conservation but written directly in the momentum

amplituhedron space. Indeed, if we project through a fixed Y and Ỹ , as we will see later,

then we find (
Y ⊥ · Λ

)a
i
→ λai ,

(
Ỹ ⊥ · Λ̃

)ȧ
i
→ λ̃ȧi , (2.21)

and the condition (2.20) reduces to the usual momentum conservation. Equation (2.20)

implies that the image of the positive Grassmannian G+(k, n) through the map Φ(Λ,Λ̃) is a

co-dimension four surface inside the space G(k, k + 2)×G(n− k, n− k + 2) and therefore

has the correct dimension 2n− 4.

The second check we would like to perform is to confirm that this geometry satisfies

the correct sign flip conditions, postulated in [12]. Let us first remind the reader that one

can reduce the geometry in the bosonized space to the purely bosonic part by projecting

the kinematic configuration in the direction of a fixed Y , see [15]. In the context of the

momentum amplituhedron, the projection results in the reduction:

〈Y ij〉 → 〈ij〉λ , [Ỹ ij]→ [ij]λ̃ . (2.22)

Therefore, we are interested in the following sequences of brackets:

{〈Y 12〉, 〈Y 13〉, . . . , 〈Y 1n〉} , (2.23)

and

{[Ỹ 12], [Ỹ 13], . . . , [Ỹ 1n]} . (2.24)

We want to show that the number of sign flips equals k − 2 in the sequence (2.23) and

k in the sequence (2.24). This corresponds to the condition (N, Ñ) = (k − 2, k) in the

conjecture in [12]. It is easy to see that the number of sign flips in the sequence (2.24) is

k since the formula in (2.18) for Ỹ is the definition of the ordinary amplituhedron [6] with

– 7 –
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m = 2 and k = k′. It was shown in [15] that in this case the number of sign flips equals k.

The sequence (2.23) requires further attention. Let us define X ∈ G(k − 2, k) by

XĀ
α̇ = (Λ⊥)Āi cα̇i , Ā = 1, . . . , k − 2 , α̇ = 1, . . . , k . (2.25)

We emphasize that both matrices Λ⊥ and C in (2.25) are positive. Therefore (2.25) is

similar to the definition of the ordinary amplituhedron with m = 2 and k → k − 2, with

the role of the matrices C and Λ⊥ exchanged. It implies that the number of sign flips in

the sequence

{(X12), (X13), . . . , (X1n)} , (2.26)

equals k − 2, where we defined

(Xij) = εα̇1...α̇kX
1
α̇1
. . . Xk−2

α̇k−2
cα̇k−1,i cα̇k,j . (2.27)

Moreover, one can show that

(Xij) = 〈Y ij〉 , (2.28)

see appendix B. This implies that the number of sign flips in (2.23) is k − 2, as required.

2.3 Momentum amplituhedron volume form

Having defined the space Mn,k, we want to find its volume form, i.e. the differential form

with logarithmic singularities on all boundaries of Mn,k. We start by classifying possible

boundaries of the momentum amplituhedron. There are three different types of bound-

aries: two of them are similar to the ones we have encountered already for the amplituhe-

dron A(m=2)
n,k :

〈Y i i+ 1〉 = 0 , [Ỹ i i+ 1] = 0 . (2.29)

These can be related to all possible collinear limits of the amplitude. In addition, there is

also a new type of boundary which depends on both Λ and Λ̃. These are defined by

Si,i+1...,i+p = 0 , p = 2, . . . , n− 4 , (2.30)

where Si,i+1...,i+p is the uplift of the planar Mandelstam variables (2.8) to the amplituhedron

space defined as

Si,i+1...,i+p =
∑

i≤j1<j2≤i+p
〈Y j1j2〉[Ỹ j1j2] . (2.31)

Notice that Si,i+1...,i+p reduces to the ordinary Mandelstam variables si,i+1...,i+p we de-

fined in (2.8) when projected through fixed Y and Ỹ . The boundaries (2.30) correspond

to all possible non-trivial factorizations of the amplitude. Notice that the case when a

two-particle Mandelstam variable vanishes splits into two boundaries of the momentum

amplituhedron of the type (2.29) and are not included in (2.30).

We look now for a differential form Ωn,k with logarithmic singularities on all bound-

aries of the form (2.29) and (2.30) and which is finite inside Mn,k. To do this we first

triangulate the spaceMn,k with each triangle being an image through the map Φ(Λ,Λ̃) of a
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(2n− 4)-dimensional cell of the positive Grassmannian G+(k, n). The proper combination

of cells can be found using the positroid MathematicaTM package [19].2 The logarithmic

differential form on Mn,k is the sum over such cells of push-forwards of canonical differen-

tial form for each cell. As for the ordinary amplituhedron A(m)
n,k , the explicit answer is a

sum of rational functions where the denominators can contain spurious singularities, cor-

responding to spurious boundaries in a given triangulation. These singularities disappear

in the complete sum and the only divergences of Ωn,k correspond to the external bound-

aries (2.29) and (2.30). The final check we need to perform in order to obtain a positive

geometry is to confirm that there are no singularities of Ωn,k insideMn,k. It is clear for the

boundaries (2.29) because it is easy to show that for all points inside the amplituhedron

〈Y i i+ 1〉 > 0 , [Ỹ i i+ 1] > 0 . (2.32)

The situation is more complicated for the singularities where Si,i+1,...,i+p vanish. As we

will see when studying examples in the following section, the positivity conditions which

we spelled out in the previous section — Λ̃ positive and Λ⊥ positive — are not enough

to guarantee that Si,i+1,...,i+p > 0 for all points inside the amplituhedron Mn,k. At the

moment it is unclear in full generality what are the necessary and sufficient conditions to

enforce positive Mandelstam variables. Nevertheless, we have found instances for which all

planar Mandelstams are positive for all points in Mn,k, proving that the set of configura-

tions for which the momentum amplituhedron is a positive geometry is non-empty. Let us

take for example the following parametrization of the kinematic data:

(Λ⊥)Āi = iĀ−1 , Λ̃Ȧi = iȦ−1 . (2.33)

This choice of positive matrices corresponds to considering the vertices of the polytopes

defined by the matrices Λ⊥ and Λ̃ to lie on the moment curve. We have explicitly checked

that for all points inside the momentum amplituhedron Mn,k, for n ≤ 10 and any k, and

with the kinematic data specified by (2.33), all planar Mandelstam variables are positive:

Si,i+1...,i+p > 0 , p = 1, . . . , n− 3 . (2.34)

We will study examples in more detail in the following section. We will notice that the

space of allowed kinematic configurations is rather large and, in particular, for MHV and

MHV amplitudes all kinematic configurations provide positive geometry.

We conclude this section by two remarks. First, we describe how to obtain the ampli-

tude Atree
n,k from the volume form Ωn,k. Let us recall that the momentum amplituhedron

Mn,k is (2n−4)-dimensional and therefore the degree of Ωn,k is (2n−4). There are various

ways one can write Ωn,k, related to each other by momentum conservation. In order to

make it invariant we use the fact that 1 = δ4(P )d4P . This allows us to define the volume

function Ωn,k in the following way:

Ωn,k ∧ d4P δ4(P ) =

n−k∏
α=1

〈Y1 . . . Yn−kd
2Yα〉

k∏
α̇=1

[Ỹ1 . . . Ỹkd
2Ỹα̇] δ4(P ) Ωn,k . (2.35)

2To find a possible triangulation of Mn,k one needs to use the function treeContour[n,k].
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Indeed, the form Ωn,k ∧ d4P is top-dimensional and therefore can be written in terms of

the measure on G(k, k + 2) × G(n − k, n − k + 2) multiplied by a function. Then, the

procedure to extract the amplitude from the volume form Ωn,k is similar to the ordinary

amplituhedron, i.e. we localize the Y and Ỹ on reference subspaces3

Y ∗ =

(
02×(n−k)

1(n−k)×(n−k)

)
, Ỹ ∗ =

(
02×k
1k×k

)
, (2.36)

obtaining

Atree
n,k = δ4(p)

∫
dφ1

a . . . dφ
n−k
a

∫
dφ̃1

ȧ . . . dφ̃
k
ȧ Ωn,k(Y

∗, Ỹ ∗,Λ, Λ̃) , (2.37)

where δ4(p) comes from the localization of δ4(P ) on Y ∗, Ỹ ∗. In the following section we

will show how extracting the amplitude works in practice in a few examples.

Finally, in analogy with the ordinary amplituhedron, we can introduce an integral

representation of the volume function Ωn,k as an integral over a matrix space

δ4(P ) Ωn,k =

∫
d(n−k)·(n−k)g

(detg)n−k

∫
ωn,k

n−k∏
α=1

δ(n−k+2)(Y A
α − gβα (c⊥)βi ΛAi )

×
k∏

α̇=1

δ(k+2)(Ỹ Ȧ
α̇ − cα̇i Λ̃Ȧi ) , (2.38)

where we additionally need to integrate over the matrix g corresponding to a GL(n −
k)-transformation encoding the ambiguity of defining an orthogonal complement. The

integration measure ωn,k is the canonical measure on the space of k · n matrices:

ωn,k =
dk·ncα̇i

(12 . . . k)(23 . . . k + 1) . . . (n1 . . . k − 1)
, (2.39)

where the brackets in the denominator are minors of the matrix C

(i1i2 . . . ik) = εα̇1α̇2...α̇k cα̇1i1cα̇2i2 . . . cα̇kik . (2.40)

3 Examples

3.1 MHV/MHV amplitudes

We now move to study examples of momentum amplituhedra, starting with MHV and

MHV amplitudes. Already in this case the volume function takes a new and interesting

form. The dimension of the momentum amplituhedron Mn,2 is the same as the dimen-

sion of the positive Grassmannian G+(2, n) and therefore there is no need to triangulate

the amplituhedron, it is enough to take the image of the Grassmannian top-dimensional

positroid cell. It is an easy task to find all boundaries of the momentum amplituhedron

Mn,2: they are all of the form 〈Y ii + 1〉 = 0 for i = 1, . . . , n. The volume form we find

3This choice of Y ∗, Ỹ ∗ is compatible with the embedding of λ, λ̃ in Λ, Λ̃ as in (2.11), (2.12).
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in this section will make these boundaries manifest. One can also show that, for all points

inside the momentum amplituhedron Mn,2, [Ỹ ii + 1] > 0 for all i = 1, . . . , n, as well as

Si,i+1...,i+p > 0 for all i = 1, . . . , n and p = 1, . . . , n− 3, see appendix D.

Let us start by considering the simplest case, i.e. the four-point MHV amplitude. We

parametrize the top cell of G+(2, 4) using the positive parameters αj :

C =

(
1 α2 0 −α3

0 α1 1 α4

)
. (3.1)

There are various ways to find α’s from equations (2.18). A particular choice results in α’s

depending only on Y and Λ:

α1 =
〈Y 12〉
〈Y 13〉

, α2 =
〈Y 23〉
〈Y 13〉

, α3 =
〈Y 34〉
〈Y 13〉

, α4 =
〈Y 14〉
〈Y 13〉

. (3.2)

The push-forward of the Grassmannian top form through (2.17) is therefore:

Ω4,2 =

4∧
j=1

dlogαj = dlog
〈Y 12〉
〈Y 13〉

∧ dlog
〈Y 23〉
〈Y 13〉

∧ dlog
〈Y 34〉
〈Y 13〉

∧ dlog
〈Y 14〉
〈Y 13〉

(3.3)

=
〈1234〉2

〈Y 12〉〈Y 23〉〈Y 34〉〈Y 41〉
〈Y d2Y1〉〈Y d2Y2〉 . (3.4)

If instead we solve equations (2.18) only in terms of Ỹ we find the following representation

for the volume form

Ω4,2 =
[1234]2

[Ỹ 12][Ỹ 23][Ỹ 34][Ỹ 41]
[Ỹ d2Ỹ1][Ỹ d2Ỹ2] . (3.5)

It is easy to check that (3.3) and (3.5) are related to each other by momentum conserva-

tion (2.20). Independently of the chosen representation for the volume form, the volume

function can be evaluated using (2.35) and gives the following manifestly parity symmet-

ric answer:

Ω4,2 =
〈1234〉2[1234]2

〈Y 12〉〈Y 23〉[Ỹ 12][Ỹ 23]
, (3.6)

unique up to momentum conservation. Finally, we can extract the amplitude Atree
4,2 us-

ing (2.37) to get

Atree
4,2 = δ4(p)

δ4(q)δ4(q̃)

〈12〉λ〈23〉λ[12]λ̃[23]λ̃
, (3.7)

where q, q̃ are defined in (2.9). This formula agrees with the result found in [12].

This calculation can be easily generalized to any MHV amplitude. A particular repre-

sentation for the volume form reads

Ωn,2 =
n−1∧
i=2

(
dlog

(
〈Y i, i+ 1〉
〈Y 1, i+ 1〉

)
∧ dlog

(
〈Y 1, i+ 1〉
〈Y 12〉

))
(3.8)

=
〈1 . . . n〉2

〈Y 12〉〈Y 23〉 . . . 〈Y 1n〉
〈Y d2Y1〉〈Y d2Y2〉 . . . 〈Y d2Yn−2〉 . (3.9)
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This result agrees with the one we get for the ordinary amplituhedron A(2)
n,n−2. Let us

notice that, when Ωn,k is written explicitly as a logarithmic form (3.8), it can be easily

compared with results in [12]: it is sufficient to project through a fixed Y , which results

in removing all Y -dependence, and to consider the differentials to act on λ. Finally, the

volume function for MHVn amplitudes is

Ωn,2 =
〈1 . . . n〉2

(∑
i<j [12ij]〈Y ij〉

)2

[Ỹ 12]2〈Y 12〉〈Y 23〉 . . . 〈Y 1n〉
. (3.10)

The results for MHV amplitudes are the parity conjugate of the previous formulæ. In

particular, as for the MHV case, we do not need to triangulate the momentum amplituhe-

dron Mn,n−2 since its dimension is already 2n − 4. The boundaries of Mn,n−2 are easily

found and all take the form [Ỹ ii + 1] = 0 for i = 1, . . . , n. Moreover, for all points inside

Mn,n−2 we find 〈Y ii + 1〉 > 0 for i = 1, . . . , n and Si,i+1,...,i+p > 0 for i = 1, . . . , n and

p = 1, . . . , n− 3.

3.2 NMHV6 amplitude

As a next step, we consider the first example where we need to triangulate the momen-

tum amplituhedron in order to find the volume form. The positive Grassmannian G+(3, 6)

is nine-dimensional, while the momentum amplituhedron M6,3 is eight-dimensional and

therefore the image of the positive Grassmannian through the map Φ(Λ,Λ̃) cannot be injec-

tive. In order to find the volume form Ω6,3 we need to therefore focus on codimension-one

cells in G+(3, 6). There are two possible combinations of eight-dimensional cells whose

images triangulate M6,3:

T1 = {(123) = 0, (345) = 0, (561) = 0} , T2 = {(234) = 0, (456) = 0, (612) = 0} ,
(3.11)

where by (ijk) = 0 we denote the cell in G+(3, 6) for which the minor (ijk) vanishes. The

volume form can then be written as follows

Ω6,3 = Ω
(612)
6,3 + Ω

(234)
6,3 + Ω

(456)
6,3 = Ω

(123)
6,3 + Ω

(345)
6,3 + Ω

(561)
6,3 , (3.12)

where Ω
(ijk)
6,3 is the pushforward of the logarithmic differential form on the cell (ijk) = 0.

In the following we focus on Ω
(123)
6,3 , the other terms can be found by cyclic shifts.

We parametrize the cell for which (123) = 0 using canonical coordinates and solve the

relations (2.18) to find

α1 =
〈Y 12〉
〈Y 13〉

, α2 =
〈Y 23〉
〈Y 13〉

, α3 =
[Ỹ 3̂4]

[Ỹ 1̂3̂]
, α4 =

[Ỹ 64]

[Ỹ 1̂3̂]
(3.13)

α5 =
[Ỹ 61̂]

[Ỹ 1̂3̂]
, α6 =

[Ỹ 41̂]

[Ỹ 1̂3̂]
, α7 =

[Ỹ 45]

[Ỹ 64]
, α8 =

[Ỹ 56]

[Ỹ 64]
, (3.14)

where we have denoted the following shifted variables

ˆ̃Λ1 = Λ̃1 +
〈Y 23〉
〈Y 13〉

Λ̃2 ,
ˆ̃Λ3 = Λ̃3 +

〈Y 12〉
〈Y 13〉

Λ̃2 . (3.15)
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One can notice that the canonical variables are just an uplift of the formula found in [12].4

The push-forward is computed as

Ω
(123)
6,3 =

8∧
i=1

dlogαi , (3.16)

which, using (2.35), leads to the following explicit form for the volume function

Ω
(123)
6,3 =

(〈Y 12〉[12456] + 〈Y 13〉[13456] + 〈Y 23〉[23456])2 ([Ỹ 45]〈12345〉+ [Ỹ 46]〈12346〉+ [Ỹ 56]〈12356〉)2

S123〈Y 12〉〈Y 23〉[Ỹ 45][Ỹ 56]〈Y 1|5 + 6|4Ỹ ]〈Y 3|4 + 5|6Ỹ ]
.

(3.17)

After using our procedure (2.37) for extracting the amplitude, we find that the expres-

sion (3.17) reduces to the formula found in [12]. While for the denominator it can be easily

seen, the numerator requires a more careful analysis. The reader can convince oneself that

the first bracket in the numerator will reduce to the “d6λ̃” part:

(〈Y 12〉[12456] + 〈Y 13〉[13456] + 〈Y 23〉[23456])2 → δ4(q)(η̃4[56]λ̃ + η̃5[64]λ̃ + η̃6[45]λ̃)2 ,

(3.18)

while the second bracket corresponds to the part proportional to “d6λ”:(
[Ỹ 45]〈12345〉+ [Ỹ 46]〈12346〉+ [Ỹ 56]〈12356〉

)2
→ δ4(q̃) (η1〈23〉λ + η2〈31〉λ + η3〈12〉λ)2 .

(3.19)

Finally, we can write the complete volume form Ω6,3 by using (3.16) and shifting labels:

Ω6,3 = Ω
(123)
6,3 + Ω

(345)
6,3 + Ω

(561)
6,3 = Ω

(123)
6,3 + Ω

(123)
6,3

∣∣∣
i→i+2

+ Ω
(123)
6,3

∣∣∣
i→i+4

, (3.20)

and similarly for the volume function. One can check that the spurious divergencies,

appearing as poles of the type 〈Y i|j+ k|lỸ ] in Ω
(123)
6,3 , cancel in the sum and the form Ω6,3

diverges logarithmically on the 15 boundaries of the momentum amplituhedron M6,3:

〈Y ii+ 1〉 = 0 , i = 1, . . . , 6 , [Ỹ ii+ 1] = 0 , i = 1, . . . , 6 , Si,i+1,i+2 = 0 , i = 1, 2, 3 .

(3.21)

Moreover, it is also easy to verify that for all points inside M6,3 one has 〈Y ii+ 1〉 > 0 and

[Ỹ ii + 1] > 0. This immediately implies that the two-particle Mandelstam variables are

positive. It is however not true for the three-particle Mandelstam variables. Let us focus

first on

S123 = 〈Y 12〉[Ỹ 12] + 〈Y 13〉[Ỹ 13] + 〈Y 23〉[Ỹ 23] . (3.22)

It is clear that the first and last term in this expansion are explicitly positive, however

the middle term has no definite sign. Using (2.18) we can further expand the Mandelstam

4The attentive reader will notice that we have a discrepancy of signs w.r.t. [12]. In our formulæ they are

such that the canonical coordinates are all positive for positive data.
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variable to get

S123 = (123)
[
〈1〉⊥

[
(145)[12345] + (146)[12346] + (156)[12356] + (456)[23456]

]
+〈2〉⊥

[
(245)[12345] + (246)[12346] + (256)[12356] − (456)[13456]

]
+〈3〉⊥

[
(345)[12345] + (346)[12346] + (356)[12356] + (456)[12456]

]]
+(456)

[
〈4〉⊥

[
(124)[12456] + (234)[23456] + (134)[13456] + (123)[12356]

]
+〈5〉⊥

[
(125)[12456] + (235)[23456] + (135)[13456] − (123)[12346]

]
+〈6〉⊥

[
(126)[12456] + (236)[23456] + (136)[13456] + (123)[12345]

]]
,

(3.23)

where we have organized the expansion to have all brackets explicitly positive. Then,

the manifestly negative terms present in the expansion can in principle dominate over the

positive terms making the Mandelstam variable negative. Let us first remark that a careful

numerical analysis shows that S123 is negative only in a very small subregion of M6,3 for

generic positive data. Moreover, when the kinematic data is taken to be on the moment

curve (2.33), S123 is positive. We can now state a sufficient condition for S123 to be positive

for points inside M6,3: we impose the constraints on the kinematics

〈1〉⊥ ˇ[1]− 〈2〉⊥ ˇ[2] + 〈3〉⊥ ˇ[3] + 〈4〉⊥ ˇ[4]− 〈5〉⊥ ˇ[5] + 〈6〉⊥ ˇ[6] > 0 , (3.24)

where with [̌i] we denote the five-bracket with the index i omitted. By studying the

remaining independent three-particle Mandelstam variables, i.e. S234 and S345, we find the

same type of relations (3.24) with the signs cyclically shifted by, respectively, one and

two positions. For all kinematic data satisfying these three conditions, the momentum

amplituhedron M6,3 is a positive geometry. At the moment it is unclear what is the

geometric interpretation of these inequalities.

Factorization properties. One important property of the amplitudes is that they fac-

torize into products of smaller amplitudes when planar Mandelstam variables vanish. This

is reflected in the amplituhedron geometry in the fact that, when we approach one of its

boundaries, then the volume form factorizes. In the ordinary amplituhedron, the statement

is even more general: the geometry itself factorizes as a cartesian product of two positive

geometries. For the momentum amplituhedron the situation is slightly more involved and

the factorization properties rather come from the amalgamation of on-shell diagrams inside

the positive Grassmannian [3]. To perform the amalgamation we need to start with two

planes CL ∈ G(kL, nL) and CR ∈ G(kR, nR), where nL,R denote the number of particles

in the left and right diagram, respectively, and kL,R is their respective helicity. Then we

take their direct product, which brings us to Ĉ ∈ G(kL + kR, nL + nR), and subsequently

we project the product to C ∈ G(kL + kR − 1, nL + nR − 2). As a result, the C-matrix

describing the cell where the factorization takes place is composed of the two overlapping

C-matrices corresponding to the left and the right amplitude.

To illustrate how the amalgamation works in the context of the momentum ampli-

tuhedron, we study it in details for n = 6 and k = 3. We encounter three different types
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of amalgamations, depending on which boundary we approach. Let us start by taking

S123 → 0. This boundary is parametrized by a seven-dimensional positroid cell for which

(123) = (456) = 0. This cell can be written in terms of positive coordinates as

C6,3|S123=0 =

 1 α5 + α7 α5α6 0 0 0

0 1 α6 α2 + α4 α2α3 0

0 0 0 1 α3 α1

 . (3.25)

This matrix can be regarded as coming from the amalgamation of two positive matrices cor-

responding to four-point MHV amplitudes. We can indeed recognize that the two matrices

inside the (2× 4) boxes are positive and both correspond to M4,2.

The second type of boundaries we consider is [Ỹ ii+1]→ 0. Let us focus on [Ỹ 56]→ 0.

We expect this limit to describe the case when particles 5 and 6 become collinear, and the

amplitude Atree
6,3 reduces to Atree

5,2 . It is indeed reflected in the form of the matrix defining

this boundary. We can see it by studying the seven-dimensional cell parametrizing the

boundary [Ỹ 56]→ 0:

C6,3|[Ỹ 56]=0 =

 1 α3 + α5 + α7 (α3 + α5)α6 α3α4 0 0

0 1 α6 α4 α2 0

0 0 0 0 1 α1

 , (3.26)

where one can recognize the positive matrix defining M5,2 in the upper left corner. Notice

that the value of k reduces in this limit. Finally, we consider the limit 〈Y ii+ 1〉 → 0 which

should correspond to a collinear limit with k preserved. Indeed, the boundary with 〈Y 56〉 =

0 corresponds to the following seven-dimensional cell in the positive Grassmannian:

C6,3|〈Y 56〉=0 =

 1 α5 + α7 α5α6 0 0 0

0 1 α3 + α6 α3α4 0 0

0 0 1 α4 α2 α1

 . (3.27)

The highlighted part corresponds to the positive 3 × 5 matrix present in the definition of

M5,3, as expected.

Comments on positive Mandelstam variables. We finish by commenting on the

sufficient conditions for the kinematic data which guarantee positivity for all planar Man-

delstam variables. We will study the case k = 3 in details. Let us introduce the following

combination of brackets relevant in this case:

Pi1i2i3,j1j2j3 = 〈i1〉⊥[i2i3j1j2j3]− 〈i2〉⊥[i1i3j1j2j3] + 〈i3〉⊥[i1i2j1j2j3] . (3.28)

We checked that, for any n and k = 3, the conditions guaranteeing positivity for all

Mandelstam variables Si,i+1,...,i+p read:

Pi1i2i3,j1j2j3 + Pj1j2j3,i1i2i3 > 0 i1i2i3 ∈ Ii,p, j1j2j3 ∈ Īi,p , (3.29)

where we defined Ii,p := {i, i+ 1, . . . , i + p}. In particular we see that the relations (3.24)

which we found in the previous section to have S123 > 0 can be written as

P123,456 + P456,123 > 0 . (3.30)
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After a preliminary study of the Mandelstam variables for higher k we have observed

that a similar set of relations should be valid also in that case. However, it is unclear to us

at the moment what will be the general form of such relations, whether they also provide

necessary conditions and what is their geometric interpretation.

4 Conclusions and outlook

In this paper we have introduced a novel geometric object, the momentum amplituhedron

Mn,k, which computes tree-level scattering amplitudes in N = 4 SYM directly in momen-

tum space. To accomplish this, we have defined bosonized spinor helicity variables (Λi, Λ̃i),

for which we imposed specific positivity conditions, i.e. we demanded the matrices Λ⊥ and

Λ̃ to be positive. The image of the positive Grassmannian G+(k, n) through this positive

data defines a positive geometry if additional constraints on kinematics are imposed. Then,

the volume form on the momentum amplituhedron Mn,k encodes the tree-level amplitude

Atree
n,k . Additionally, we showed that the positive kinematics, when projected to the spinor

helicity space, satisfies the conjecture formulated in [12]; in particular, it obeys the sign-flip

conditions postulated there.

As already mentioned, in the cases of MHV and MHV all planar Mandelstam variables

are positive. In order for this to be true in other helicity sectors, and to guarantee the

momentum amplituhedron to be a positive geometry, the positive region of the (Λ, Λ̃)-

space needs to be restricted further. The nature of such additional constraints on the

kinematical data remains however unclear to us. Nevertheless, we checked algebraically up

to a large number of particles n that the restricted space is not empty. Extensive numerical

tests showed that it is actually rather large. Providing necessary and sufficient conditions

for positivity of planar Mandelstam variables is an open problem and is left for future work.

Our paper opens various interesting avenues of investigation. The first question is

whether a generalization of our construction to loop amplitudes is possible. There exists

a natural extension of tree-level differential forms to loop integrands, as suggested in [12].

Bosonizing those formulæ in a similar fashion as for tree level would therefore be a step

worth pursuing. Then the underlying positive geometry should bear similarities with the

ordinary loop-level amplituhedron. Perhaps the most fascinating question is whether we

can extend our construction to other theories. For instance, our work could shed light on

positive geometries in twistor theories in higher dimensions [20–24]. Moreover, the momen-

tum amplituhedron is formulated directly in spinor helicity variables, which are universal

variables for massless theories in four dimensions (and beyond). This opens the pathway

for investigating positive geometries for non-planar, less- or non-supersymmetric theories.

For instance, in [8] the differential forms for Yang-Mills and non-linear sigma model were

found. These forms do not have logarithmic singularities, which would indicate that there

is no underlying positive geometry. However, already for N = 4 SYM one needs to factorize

δ4(q) to get a logarithmic form on the spinor helicity space, see [12]. Nevertheless, this

problem disappears when we consider the forms on the momentum amplituhedron, as we

showed in this paper. We anticipate that similar, but more complicated, behaviour might

be possible for less- or non-supersymmetric theories.

– 16 –
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A Orthogonal complements

In this appendix we set the conventions for orthogonal complements we use in the main

body. Let us consider a matrix

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...

bk1 bk2 . . . bkn

 . (A.1)

It describes a k-plane B in an n-dimensional space. We can therefore define its orthogonal

complement B⊥: an (n− k)-plane in n dimensions. Such plane can be parametrized by an

(n− k)× n matrix

B⊥ =


b⊥11 b⊥12 . . . b⊥1n
b⊥21 b⊥22 . . . b⊥2n
...

...
. . .

...

b⊥n−k 1 b
⊥
n−k 2 . . . b

⊥
n−k n

 . (A.2)

Matrices related by a GL(n−k) transformation acting on rows of B⊥ define the same plane

B⊥, with a different choice of basis. The maximal minors of matrices B and B⊥ are related

to each other

(i1, . . . , in−k)
⊥
B = g εi1,...,in−k,j1,...,jk(j1, . . . , jk)B , (A.3)

where {i1, . . . , in−k, j1, . . . , jk} = {1, . . . , n} and g is a scalar, independent of the minors we

consider. In our considerations we will fix a particular basis of the orthogonal complement,

which will fix the value for g. We motivate it by considering B to be an element of the

Grassmannian G(k, n). We choose a patch in the Grassmannian such that

B = (1k×k|b) , (A.4)

and the basis of its orthogonal complement to be

B⊥ =
(
−bT |1(n−k)×(n−k)

)
. (A.5)

It is easy to check, by taking {j1, . . . , jk} = {1, . . . , k}, that in this case

g = (−1)k(n−k) . (A.6)

It is important to notice that the relation (A.3) is not an involution. In the most general case

(j1, . . . , jk)B = g̃ εj1,...,jk,i1,...,in−k(i1, . . . , in−k)
⊥
B . (A.7)

– 17 –



J
H
E
P
0
8
(
2
0
1
9
)
0
4
2

For this to agree with (A.3) we need to fix

g̃ = (−1)k(n−k)g = 1 . (A.8)

In order to be consistent, we need to therefore indicate which matrices from the main

body of the paper we treat as B and which ones as B⊥. The rule we adopt is that the

positive matrices will all play the role of B. This implies the following relations between

brackets we introduced in the main text:

(j1, . . . , jk) = εj1,...,jk,i1,...,in−k(i1, . . . , in−k)
⊥ , (A.9)

〈j1, . . . , jk−2〉⊥ = εj1,...,jk−2,i1,...,in−k+2
〈i1, . . . , in−k+2〉 , (A.10)

[j1, . . . , jk+2] = εj1,...,jk+2,i1,...,in−k−2
[i1, . . . , in−k−2]⊥ , (A.11)

where the round, angle and square brackets above are the minors of the positive matrices

C, Λ⊥ and Λ̃, respectively.

B Proof of the relation (Xpq) = 〈Y pq〉

With the conventions for orthogonal complements from the previous appendix, we are able

to prove the formula (2.28):

(X p q) =
∑

i1<...<ik−2

(i1 . . . ik−2 p q)〈i1 . . . ik−2〉⊥ = (B.1)

=
∑

j1<...<jn−k

εi1...ik−2 p q j1...jn−k(j1 . . . jn−k)
⊥εi1...ik−2 j1...jn−k p q〈j1 . . . jn−k p q〉 (B.2)

=
∑

j1<...<jn−k

(j1 . . . jn−k)
⊥〈j1 . . . jn−k p q〉 = 〈Y p q〉 . (B.3)

C Momentum conservation

In this appendix we show that the momentum amplituhedron lives in the co-dimension

four surface defined by the conditions:

n∑
i=1

(
Y ⊥ · Λ

)a
i

(
Ỹ ⊥ · Λ̃

)ȧ
i

= 0 , a, ȧ = 1, 2 . (C.1)

Let us start by observing that

0 = Y ⊥ · Y = Y ⊥ · Λ · C⊥ . (C.2)

Therefore the 2-dimensional subspace Y ⊥ · Λ is contained in the k-dimensional subspace

(C⊥)⊥ = C. Analogously, we can deduce that Ỹ ⊥ · Λ̃ ⊆ C⊥. Then, the two subspaces

Y ⊥ · Λ and Ỹ ⊥ · Λ̃ are themselves orthogonal, as encoded in formula (C.1).

– 18 –
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D Positive Mandelstam variables for k = 2

We would like to prove that, for all MHV momentum amplituhedra, every planar Mandel-

stam variable is positive, namely:

SI =
∑

j1,j2∈I
〈Y j1j2〉[Ỹ j1j2] > 0, I = {i, i+ 1, . . . , i+ p} . (D.1)

First, let us observe that, for k = 2:

〈Y j1j2〉 = 〈〉⊥(j1j2) , (D.2)

where 〈〉⊥ = 〈1 . . . n〉 is positive. Then we can rewrite:

SI = 〈1 . . . n〉
∑

j1<j2∈I,a<b
(j1j2)(ab)[abj1j2] . (D.3)

There are only two cases for which the bracket [abj1j2] is negative: a < j1 < b < j2 or

j1 < a < j2 < b. In particular, we observe that if a, b 6∈ I then [abj1j2] > 0. For b ∈ I and

a < j1 < b < j2, together with the term

(j1j2)(ab)[abj1j2] < 0 , (D.4)

in the sum there are two additional terms proportional to [abj1j2]:

(bj2)(aj1)[aj1bj2] + (j1b)(aj2)[aj2j1b] , (D.5)

both positive. Using Schouten identity, the three terms together add up to zero:

(j1j2)(ab)[abj1j2] + (bj2)(aj1)[aj1bj2] + (j1b)(aj2)[aj2j1b] = 0 . (D.6)

Analogously, for the case j1 < a < j2 < b, together with the term

(j1j2)(ab)[abj1j2] < 0 , (D.7)

we have also two positive terms

(aj2)(j1b)[j1baj2] + (j1a)(j2b)[j2bj1a] . (D.8)

Again, using Schouten identity, the three terms together add up to zero. We therefore

conclude that all negative terms are cancelled and the Mandelstam variables are positive.
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