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We present an information-theoretic approach for quantifying the level of coordination between cooperating
parties engaged in a computer-mediated collaborative interaction. The approach builds on Shannon’s mutual
information, as a task-independent objective measure, which captures the level of corelation between the
actions of interacting agents. We introduce the approach through two characteristic examples and discuss
the challenges in designing a reliable measure and the amount of modelling effort required. Our initial results
suggest the potential of this measure in supporting designers of collaborative systems and in providing more

solid theoretical foundations for the science of Human-Computer Interaction.

1. INTRODUCTION

A fluid, engaging collaboration between people
connected remotely via a computer has long been
a goal of technology-mediated interaction. Modern
hardware increasingly facilitates the emergence of
exciting high-bandwidth, tightly-coupled, continuous
interaction styles by getting new sensing, processing
and feedback capabilities. Multi-player games, taking
place in virtual environments, are just one example
of such systems. More recent work expands further
the research towards human-robot collaboration.

Cooperation in the real world emerges as a distinct
combination of innate and learned behaviour accord-
ing Tomasello (2009), and collaborative systems tap
into both individual and social processes such as
mutual perception, joint attention, turn-taking, and
mutual entrainment. Research on the interactive di-
mensions of mutual perception (Auvray et al. (2009))
show that rich perceptions are possible even with a
minimal channel of communication, which has direct
practical implications. Causes and consequences of
disrupted coupling between agents is studied in the
context of deficits in social cognition abilities like in
people with autism spectrum disorders. However, in
order to analyse such social contingencies we need
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coupling measures in place. Standard performance
metrics, such as success rate or completion time,
might not be applicable, nor descriptive for a particu-
lar system, hence, in order to evaluate such systems
we need new objective measures.

One current challenge is the development of a for-
mal measure, quantifying the level of coordination
between participants of computer-mediated environ-
ments. A rigorous measure of coordination could
help provide a firm foundation for designers to treat
and evaluate collaborative systems in a general
fashion. An analytical tool, characterising coordina-
tion in real time, could give direct insight into the
detailed interactions that evolve as people engage
and disengage from contact with each other. In this
paper we present initial results of the application
of the information-theoretic approach introduced in
Trendafilov et al. (2015) to a labyrinth game sce-
nario and discuss its sensitivity and potential for
characterizing the dynamics in social interaction.
Variants of Shannon’s mutual information are typi-
cally used in the identification of the ’flow of infor-
mation’ in a given system (Ay and Polani (2008),
Wheeler (1990)), where the joint information stems
from a common past (Matsumoto and Tsuda (1988);
Schreiber (2000)).
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Figure 1: In this example each of the two players controls
only one axis of the labyrinth game. First, player 1 brings
the ball to position A without any interaction from player 2.
By reversing the roles, player 2 then brings it to position B.
Finally, both players need to cooperate in order to pot the
ball in the green target and not in one of the wholes.

2. COLLABORATIVE INTERACTION

Real-time collaborative systems enable the simul-
taneous interaction between multiple participants;
however, for simplicity we will consider the bidirec-
tional coupling of two agents only and will focus
on the perceptual crossing in what Tomasello et al.
(2005) call a 'dyadic engagement’. Collaboration
could take place in proximal interaction, involving a
jointly manipulated physical object, or in distal inter-
action, where the agents are not in direct physical
contact with each other.

An example of proximal interaction is presented
in Figure 1, which shows a collaborative labyrinth
game, consisting of a maze with holes and a ball.
The goal is to guide the ball through the maze
by slating the board while preventing it from falling
into holes. By constraining the dimensionality of the
sensorimotor coupling, this scenario facilitates the
emergence of cooperative strategies.

An example of distal interaction is presented in
Figure 2, depicting a collaborative target acquisition
game, which requires partners’ coordinated actions
and is performed in a shared mediated environment.
In recent studies (Trendafilov et al. (2014, 2011))
we investigated the dynamics of social interactions,
building on the minimalist experimental paradigm of
Lenay et al. (2007), and exploring the emergence
of cooperative strategies using limited modes of
communication. In these studies the interaction was
limited to scrolling a finger on a touch-sensitive
tactile device. Given the all-or-none nature of the
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Figure 2: An example of perceptual interaction, involving
the exploration of a shared one-dimensional space,
utilising touch-sensitive tactile devices. When the avatar of
an agent (green/black) overlaps with a fixed object (black
square, on the left), the object is perceived by that agent.
When the avatars of A and B (opposite in black and green)
meet, the agents perceive each other.

sensory feedback, the perception of an object was
possible only by means of dynamic exploration of the
shared one-dimensional space. More precisely, the
spatial characteristics of an object could be defined
by specific 'laws of sensorimotor contingencies’,
which make it possible to anticipate the sensory
consequences of one’s actions in the course of an
active exploration (O’Regan and Noé (2001), Noé
(2005)).

In both of the examples, standard performance
metrics may not be descriptive for the level of
coordination, since high levels of coupling may
achieve low levels of performance, and vice versa, as
suggested in Trendafilov et al. (2015). For example, a
smooth coordinated performance (Figure 2), may be
slow in locating objects, resulting in a lower score.
Alternatively, jumping from one object to the next,
could appear as a less coordinated behaviour, but
at the same time lead to a higher score.

3. MEASURE OF COORDINATION

In recent work (Trendafilov et al. (2015)) we
proposed an information-theoretic approach to
quantify coordination, based on mutual information,
which is defined for random variables X4 and Xp
given X as follows

I,(Xa: Xp|Xs) = 3 ples),(Xa: Xples), (1)

where
Ip(XA : XB|SCS) =

TB|TA,T
- Zp(xAkCS) Zp($B|$A71'S) log w.
zA Tp p(xg|zs)
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Figure 3: Schematic diagram of a dyad cognitive sensorimotor loop in a shared computer-mediated environment.

Furthermore

Ip,(Xa: Xp|Xs) <min(Hp(Xa), Hy(XB)), (2)
which gives a characteristic upper bound, provided
by the minimum of the two entropies. In this
formalism X, and Xp denote the actions of the
agents A and B respectively, and X¢ denotes the
state of the shared environment. Intuitively, the
mutual information in Equation 1 captures how well
we can predict the behaviour of A, if we know the
behaviour of B, for a given state of the shared
environment S. If X, and Xp are conditionally
independent, then the coordination is zero, meaning
that there is no corelation between the actions of A
and B. Equation 2 provides the range of this measure
for a particular stochastic model and can serve as a
benchmark in system evaluation.

4. STOCHASTIC MODEL

In order to apply Equation 1 to experimental data, we
need an empirical approximation of the probability
distribution. This, in turn, requires the definition of
a discrete stochastic model (i.e. random variables
X4, Xp, Xg) for a particular system, and the
population of conditional probabilities from empirical
data. The approach relies to a great extent on the
quality of the model — the more accurate the model,
the more reliable the measure it implies. In the
discretisation of the continuous sets of actions and
environmental states, we need to find a trade-off
between space granularity and measure reliability,
which is influenced by the density of our empirical
data. Higher resolution spaces usually require larger
amounts of data to provide a reliable empirical
distribution, as data sparsity could bias the model.

Feedback in the perception—action loop is subject
to disturbances, such as noise and delays, which
affect the quality of experimental data and have
implications on the modelling process. Lag is
inevitable and can be attributed to properties of
the human cognitive and sensorimotor system,
input/output devices and software (Figure 3).
Sampling rates of input and update rates of output
devices are major contributors. Lag is increased

further due to ’software overhead’ — a loose
expression for a variety of system-related factors.
Communication modes, network configurations,
number crunching, and application software all
contribute. In human-human mediated interaction,
however, we also have to account for the variable
response time of a human decision maker, which
— unlike machines — varies across individuals and
depends on various factors, making it unpredictable.
Other sources of disturbances are different types
of noise due to digital sensor imprecision, human
sensorimotor inaccuracy, transmission interference,
etc. In order to tackle the effect of these factors
on experimental data, we need to apply advanced
filtering and delay compensation techniques, prior to
the computation of this measure.

5. RESULTS

We applied the above method to data collected in a
labyrinth game study. A sample of force data, derived
from the electromyograms (EMG) of the players’
fingers, is shown in Figure 4 (top).
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Figure 4: Time series from an experimental trial yielding
0.42 bits of coordination (top). Player A vs. a quasi-random
sine wave yielding 0.27 bits of coordination (bottom).
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Figure 5: Levels of coordination of 60 consecutive trials
suggesting the learning effect.

Using a variant of Equation 1, which ignores the ball
position as environmental state (Xg), we computed
the mutual information of X4 and X, representing
both players’ switches in finger force trajectories.
Encoding switches with binary random variables in
our stochastic model implies a theoretical upper
bound of 1 bit. Applying a delay compensation in the
range of 20ms, we computed the corelation between
switches across trials. To validate the results, we
generated a quasi-random sine wave with similar
frequency characteristics (Figure 4 bottom), and
computed the corelation between this artificial curve
and player A’s data, which resulted in 0.27 bits
of coordination, whereas the coordination between
player A and player B measured 0.42 bits. The
evolution of the coordination level across all 60
trials of one pair shows signs of a learning effect
(Figure 5), represented by a gradual increase from
0.4 to 0.45 bits. Further analysis is required to
determine the precise relationship between our
measure and standard performance metrics.

The corresponding results of the distal interaction
experiment can be found in Trendafilov et al. (2015).

6. CONCLUSION

In this paper we present an application of mutual
information to measure coordination between collab-
orating parties in the context of two representative
computer-mediated systems. Our initial results show
interesting trends, however, detailed sensitivity anal-
ysis is required to further explore the properties of
this approach. A rigorous measure could give direct
insight into the convergence properties of mutual
entrainment and could help provide a firm foun-
dation for designers in making informed decisions
when evaluating collaborative systems. Applying our
method, however, requires prior modelling — the
more accurate the models, the more costly they
are to create, but the more reliable the measure
they imply. The aim of this paper is to raise the
awareness of the research community about the
potential of systematic quantification of coordination
in computer-mediated environments.

ACKNOWLEDGMENT

The authors would like to acknowledge support by
the H2020-641321 socSMCs FET Proactive project.

REFERENCES

Auvray, M., C. Lenay, and J. Stewart (2009).
Perceptual interactions in a minimalist virtual
environment. New Ideas in Psychology 27(1), 32—
47.

Ay, N. and D. Polani (2008). Information flows in
causal networks. Advances in Complex Systems.

Lenay, C., . Thouvenin, A. Gunand, O. Gapenne,
J. Stewart, and B. Maillet (2007, August).
Designing the ground for pleasurable experience.
In Conference on designing pleasurable products
and interfaces, Helsinki, Finland.

Matsumoto, K. and I. Tsuda (1988). Calculation of
information flow rate from mutual information. J.
Phys. A: Math. Gen. 21(6).

Noé, A. (2005). Action in perception. Cambridge MA:
MIT Press.

O’'Regan, J. K. and A. Noé (2001). A sensorimotor
account of vision and visual consciousness.
Behavioral and Brain Sciences 24, 939-973.

Schreiber, T. (2000). Measuring information transfer.
Phys. Rev. Lett. (85), 461-464.

Tomasello, M. (2009). Why We Cooperate. Boston
Review Books.

Tomasello, M., M. Carpenter, J. Call, T. Behne,
and H. Moll (2005). Understanding and
sharing intentions: the origins of cultural cognition.
Behavioral and Brain Sciences 28, 675—735.

Trendafilov, D., S. Lemmel&, and R. Murray-Smith
(2014).  Negotiation models for mobile tactile
interaction. Mobile Social Signal Processing, 64—
73.

Trendafilov, D., D. Polani, and R. Murray-Smith
(2015, March). Model of coordination flow
in remote collaborative interaction. In IEEE
UKSim-AMSS 17th International Conference on
Computer Modelling and Simulation, UKSim2015
(UKSim2015), Cambridge, United Kingdom.

Trendafilov, D., Y. Vazquez-Alvarez, S. Lemmela, and
R. Murray-Smith (2011). Can we work this out?:
an evaluation of remote collaborative interaction in
a mobile shared environment. Proc. MobileHCI,
499-502.

Wheeler, J. A. (1990). Complexity, entropy and the
physics of information. Santa Fe Studies in the
Sciences of Complexity, 328.



