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Abstract. We apply machine-learning techniques to help automate the
process of mining the version history of software projects. Analysis of
version histories is important in the study of software evolution. One of
the associated problems is tracing program elements which have changed
or moved as the result of file restructuring. As an initial application,
we have developed classifiers to identify one such type of file change,
‘split files’. Our process involves extracting features through syntactic
analysis of the original source code, and then training and evaluating
classifiers against a set of data assessed by visual inspection. We analysed
266K files from 84 open-source projects, filtering out a set of candidate
files for which our classifiers achieve either 89% overall accuracy, or a
false positive rate of 5%.
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1 Introduction

Mining software repositories for information about the evolution of software
code is an active field of research. The large volume of open-source code avail-
able provides a rich supply of material for data mining. Software engineers study
the mined information to gain greater understanding of the software develop-
ment process, and the maintenance and design of software systems. The studies
include measuring software qualities in the evolving system [1–3]; analysing past
transactions to provide recommendations to users [4, 5]; discovering patterns in
source code to predict faults [6, 7]; or using change patterns to identify defect-
causing changes [8–10], co-changing files [11, 12], or to predict refactorings [13].

As software evolves in response to changing requirements, to upgraded plat-
forms, or for fault correction, it tends to become more complex [14]. Periodic
restructuring is therefore required to simplify the code. This may take the form
of moving, renaming, merging, splitting or recombining files. However, restruc-
turing often occurs under time or cost constraints which may leave documen-
tation incomplete or absent, leading to difficulty in tracing program elements.
For example, a file which is renamed, or merged with another file, will seem to
‘disappear’. It is important to be able to follow these changes, both to aid subse-
quent maintainers of the system and to provide continuity between elements in
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version histories. Godfrey and Zou [15, p.1] state that “detecting where merges
and splits have occurred can help software maintainers to better understand the
change history of a software system” and “that having an accurate evolutionary
history that takes structural changes into account is also of aid to the research
community”.

One way to identify or predict such changes is to study those which have taken
place in other projects, and from these infer a model or typical set of criteria
for identifying changes from other properties of the software project. However,
there are no datasets of this type readily available in the public domain.

There are several challenges when mining software repositories. The first is
the large volume of source code that may be considered. A moderately sized
project may contain 10K-100K lines of code, and this can be multiplied by the
number of development versions through which it evolves. Coupled with this
volume is the relative scarcity of the items of interest. The number of times
a particular type of complex change occurs in a single project’s lifetime will
be small. Finally, there is the challenge of identifying and recognising these
changes [16], a task which is frequently manually intensive [17, p.1], [18, p.5].

The aim of this study was to explore whether data-mining and machine-
learning techniques could automate part of the identification process, and so
facilitate the analysis of large repositories of source code. In particular, we are
interested in techniques which analyse the source code within the projects, and
do not employ information-rich features. To test the validity of our approach,
we focus on split files in this work. Split files are those files from which blocks
of code are removed and placed elsewhere in the system, either in a new file or
in a more suitable location, such as a utility file.

Our procedure involved two separate stages: filtering candidate split files and
constructing features to build classifiers. We employed Ferret [19–21], a text-
based tool for comparing source code files, during the filtering stage. Filtering
involved detecting both candidate split files and possible target files for the
extracted code. Ferret computes the Jaccard coefficient of similarity between
pairs of files, based on token trigrams. This measure yields a value between 0 (no
similarity) to 1 (identical). The advantage of Ferret is its high level of efficiency,
with processing time approximately linear in the amount of input code.

Having pinpointed the candidate files and related target files, we constructed
features based on the files and the relationship between them, using values output
by Ferret and by Duplo [22]. Duplo is an open-source text-based tool which
detects copied blocks in software by matching hashed lines of code. The features
were used to build classifiers to determine whether the candidate files had been
split. We inspected every group of files visually to label the candidates. The
Weka [23] system provided the infrastructure and algorithms for conducting the
machine learning experiments.

To summarise, the process is: first, filter out obvious non-split files, leaving
a set of candidate files which may or may not be split files; second, construct a
set of features based on the text of the source code; and third, train a classifer
to determine whether a candidate file is or is not a split file. Two outcomes
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of this work are: first, a feature construction and classification tool, which can
be used to identify split files in new code; and second, an automated method
for marking up datasets, so generating information which would be of use in
software evolution research.

We define split files in Section 2, the method used for identifying these files
is described in Section 3, the outcome in Section 4 and Section 5 concludes.

2 Defining Split Files

We use the terms below to refer to the different types of files in our analysis.
The original file is the file in release n which may be split. The amended file has
the same name as the original file, but follows in release n + 1. The new file or
files are those files created in release n + 1 which are related to the original file.

Fig. 1. Code extracted to
reduce file complexity

Fig. 2. Common code ex-
tracted from 2 files

Fig. 3. Code relocated to
a more suitable file

Figures 1 to 3 exemplify what we mean by a split file. In Figure 1, the original
file has been shaded to indicate three blocks in the code. The following release
contains two files: the amended file having two of the original file’s blocks, with
the third block in a new file. Figure 2 depicts common code, the shaded block,
similarly removed from two original files. Blocks of code may be moved from
one file to another, as shown in Figure 3. These situations can arise in typical
refactorings, such as Class Move or Extraction [24].

3 Experiment: Identifying Split Files

The aim of this experiment was to identify and extract examples of split files,
from the version history of a variety of software projects. We focused on split
files as a syntactic form of change which may be identifiable using machine-
learning techniques, without requiring semantically-based features. There were
two parts to this experiment. First, similarity scores were computed between
pairs of files and used to select groups of comparisons which identify possible, or
candidate, split files. Second, information relating to these groups was gathered,
and features constructed for use in classifying the candidate files.
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3.1 Candidate File Selection

Eighty-four projects were selected from the Sourceforge repository [25] for anal-
ysis. Selection was based on the maturity and C code content of the projects.
The C programming language was chosen for this study because of its popularity
and overlap with C++ and Java. However, the method described here is text-
based, and is therefore language independent. The projects contained a total of
69,425K lines of code in 266,687 files, an average of 826K lines and 22 releases
per project. For each release of each project, all C source code files were selected.

It is not uncommon for each file in a project to begin with a large identical
comment block, which inflates the similarity score between files, particularly
when the code element of the file is relatively small. To remove biases of this
type, every file was stripped of comments.

For every pair of files from consecutive releases within each project, similarity
scores were computed using the Ferret tool. These scores provide information
about both the changes to a file between one release and the next, and the
similarity between a file in one release and all other files in the next release.

If a file has been split, there are three likely indicators: the file will become
smaller; the two versions of the file will not be highly similar; and either a new
and similar file will appear, as in Figures 1 and 2, or an existing file will become
more similar, as in Figure 3. When there are no other changes to the files,
this pattern of indicators will be clear. However, these indications are usually
obscured by other changes made to the code between releases, by multi-way
splits, or by a combination of these two factors.

For our experiments, we needed to manually construct a classified set of
files. File similarity and size were used to select those files which had changed
sufficiently to indicate possible splitting. Potential target files for extracted code
were identified using the similarity scores. Each candidate split file has a related
amended file and one or more target files which may be new or existing files. This
group of related files is called the comparison group. Apart from the selection
of the parameter values, this process is fully automated and generates a set of
comparison groups.

Given the lengthy process of manually checking these groups of files, the filter
parameters were narrowed to produce a dataset of manageable size. Comparison
groups with at least one new file were selected for this initial investigation. Every
comparison group was examined to establish whether it contained a split file. The
experimental dataset comprised 151 candidate split files, 104 positive examples
(files that had been split) and 47 negative examples.

3.2 Feature Set and Classification

The features constructed to enable classification contained information about the
files in a comparison group and their relationship with each other. Both Ferret
and Duplo were used to match the original file with various combinations of
other files in the comparison group. By matching token trigrams wherever they
occur, Ferret is useful for detecting rearranged or inexact copies in the code.
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Duplo provides a complementary function by locating blocks of identical lines
of code. Ferret delivers output in two forms, giving both metrics and a report
showing the location of duplicated trigrams. The metrics, which are trigram
counts and similarity scores, were used directly. The reports were analysed to
provide information about the distribution of the duplicated trigrams. Most of
the features were based on the output from Ferret, the remainder being derived
from the report provided by Duplo. For example, the number of duplicated blocks
containing at least n lines of at least m characters, or the ratio of copied lines
to total lines in a file.

Many of the features were intended to provide answers to the type of question
that someone scanning the files might ask. Questions such as “is the duplicated
code in this file in large enough blocks to be significant?” determined by using
Duplo to find the proportion of the shared code in blocks of a minimum size; or
“is all of the code from the original file present in the amended and new files?”,
which is addressed by using Ferret to compare a concatenation of the new and
amended files with the original file. Another such question is “what proportion of
the original file appears in another file?”, answered by measuring containment,
which is calculated by dividing the number of trigrams shared by the two files by
the number of trigrams in the original file. In total, we constructed 136 features.

Lastly, for each machine learning algorithm, to test generalisation, 100 selec-
tions of 66% of the dataset were used to build models, leaving the remaining data
for testing. The mean of each of the false negative and the false positive classifi-
cations in the test sets was recorded. All of the suitable base classifiers available
in Weka were run in this way. The better performing of these classifiers were
selected for use with all of the homogenous meta-classifiers. The heterogenous
meta-classifiers were run with various combinations of base classifiers.

4 Results

The ten classifiers with the fewest false positive classifications are shown on the
left of Table 1. The figures given are: the mean number of false negatives, the
mean number of false positives, the false positive rate, and the overall classifica-
tion rate. Shown on the right of the table are the seven best base classifiers, and
the three ensemble classifiers which improved on the rate achieved by SMO [26],
the best base classifier.

Minimising false positives is important when building a set of positive exam-
ples. The best algorithm in this case is Conjunctive Rule, misclassifying a mean
of 0.85 instances per run, 5.32% of 15.98, the mean number of negative instances
in a test set. This comes with the cost of missing a mean of 8.47 positive in-
stances, meaning that 96.94% of the positive classifications (0.85 fp + 26.89 tp)
are correct.

The grading algorithm [27] combining locally weighted learning [28], a support-
vector machine with sequential minimal optimisation [26] and voted percep-
tron [29] classifiers provides the best mean overall classification rate, 88.76%.
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Table 1. Results: On the left are the 10 classifiers which give the fewest false posi-
tives. On the right, the 7 base classifiers with fewest total misclassifications and the
3 ensembles which outperform them. The figures show false negatives and positives,
false positive rate and overall classification rate. ∗ Pre-pruned. † Algorithms used in
heterogenous meta-classifiers are abbreviated as follows: L stands for LWL, Locally
Weighted Learner; P for PART; S for SMO; and V for Voted Perceptron.

Ranked by number of false positives Ranked by overall classification rate

Classifier FN FP FP % Classifier FN FP FP %
(%) correct (%) correct

∗Conjunctive Rule 8.47 0.85 5.32 81.85 †Grading L,S,V 1.95 3.82 23.90 88.76
LWL 7.36 0.96 6.01 83.79 †Voted avg. L,S 2.50 3.57 22.34 88.18
NBUpdateable 13.61 1.54 9.64 70.49 †MultiScheme L,S,V 2.58 3.56 22.28 88.04
†Voted avg. P,S 4.21 2.66 16.65 86.62 SMO 2.58 3.57 22.34 88.02
Bayes Network 5.50 2.91 18.21 83.62 Random Forest(100) 3.50 3.76 23.53 85.86
REPTree 5.99 3.21 20.09 82.08 Logistic Model Trees 3.85 3.73 23.34 85.24
Random Forest(100 trees) 4.09 3.34 20.90 85.53 Alternating Decn.Tree 3.93 4.05 25.34 84.46
Bagged Simple Logistic 3.60 3.52 22.03 86.13 LWL 7.36 0.96 6.01 83.79
Bagged ADTree 4.09 3.52 22.03 85.18 Bayes Network 5.50 2.91 18.21 83.62
Multilayer Perceptron 4.04 3.54 22.15 85.24 J48 graft 4.33 4.15 25.97 83.48

5 Conclusion

We have described our current work on constructing classifiers to locate files
of a specific type within evolving software projects. Our process uses syntactic
features, calculated from the source code, as the basis for classifier construction.
After analysing 266,687 files containing 69,425K lines of code from 84 projects,
we have developed classifiers to locate split files with an overall accuracy of 89%,
or a false-positive rate of 5%. Our best overall classifier is an ensemble technique,
combining the best base classifiers according to overall score, false negative score,
and false positive score respectively.

We aim to continue this work by developing related techniques for extracting
syntactic features and by detecting other restructured files, such as merged or
recombined files, using a similar approach. This will provide models for use by
software engineers needing to track such changes, and help contribute to the
development of automated techniques to analyse the evolution of software code.
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