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Abstract: In this short paper, we will review the proposal of a correspondence between the doubled geometry
of Double Field Theory and the higher geometry of bundle gerbes. Double Field Theory is T-duality covariant
formulation of the supergravity limit of String Theory, which generalises Kaluza-Klein theory by unifying
metric and Kalb-Ramond �eld on a doubled-dimensional space. In light of the proposed correspondence,
this doubled geometry is interpreted as an atlas description of the higher geometry of bundle gerbes. In this
sense, Double Field Theory can be interpreted as a �eld theory living on the total space of the bundle gerbe,
just like Kaluza-Klein theory is set on the total space of a principal bundle. This correspondence provides a
higher geometric interpretation for para-Hermitian geometry which opens the door to its generalisation to
Exceptional Field Theory.
This review is based on, but not limited to, my talk at the workshop Generalized Geometry and Applications
at Universität Hamburg on 3rd of March 2020.
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1 Introduction
One of the most characteristic and fascinating features of String Theory, when compared to the usual �eld
theories, is the appearance of T-duality: an additional, hidden symmetry of the theory. Double Field Theory is
a T-duality covariant formulation of the supergravity limit of String Theory whichmakes this symmetry man-
ifest. Double Field Theory was proposed in [63] and seminal work includes [85, 86]. See [10, 13] for reviews.
As enlightened by [9, 10], Double Field Theory can be interpreted as a generalisation of Kaluza-Klein theory,
which geometrically uni�es the metric with the Kalb-Ramond �eld, instead of a gauge �eld.

The higher geometry of T-duality.
The Kalb-Ramond �eld is, geometrically, the connection of a bundle gerbe G � M, a categori�cation of a
U(1)-bundle, which was introduced by [71, 72] and reformulated in terms of Čech cohomology by [55]. In [74],
bundle gerbes are formalised as principal ∞-bundles in the context of higher geometry. Given a good cover
{Uα} of the base manifoldM, the connection of a bundle gerbe is given by local 2-forms B(α) ∈ Ω2(Uα), local
1-forms Λ(αβ) ∈ Ω1(Uα ∩ Uβ) and local scalars G(αβγ) ∈ C∞(Uα ∩ Uβ ∩ Uγ), which are patched on overlaps of
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patches by
H = dB(α)

B(β) − B(α) = dΛ(αβ)

Λ(αβ) + Λ(βγ) + Λ(γα) = dG(αβγ)

G(αβγ) − G(βγδ) + G(γδα) − G(δαβ) ∈ 2πZ.

(1.0.1)

Since the Kalb-Ramond �eld is the connection of a bundle gerbe, T-duality has been naturally formulated in
the context of higher geometry. Topological T-duality [17–20] is based on the topological properties of bundle
gerbes and T-duality has been formulated as a particular isomorphism of bundle gerbes in [25, 26, 42–45, 75].
We will now brie�y introduce such a formulation, by unravelling [26, De�nition 2.8].

Let us consider two Tn-bundle spacetimes M π−→ M0 and M̃ π̃−→ M0 over a common base manifold M0, with
�rst Chern classes c1(M) ∈ H2(M0,Z)n and c̃1(M̃) ∈ H2(M0,Z)n. Then, consider the couple of bundle gerbes
G

Π−→ M and G̃
Π̃−→ M̃, encoding two Kalb-Ramond �elds respectively on M and M̃, with Dixmier-Douady

classes of the form

[H] =
[ n∑
i=1

hi ⊗ c̃1(M̃)i
]
∈ H3(M,Z), [H̃] =

[ n∑
i=1

h̃i ⊗ c1(M)i

]
∈ H3(M̃,Z), (1.0.2)

where hi and h̃i are respectively the generators of the cohomology of the �bres Tn and T̃n. Then, the bundle
gerbes G and G̃ are geometric T-dual if there exists an isomorphism

G ×M0 M̃ M ×M0 G̃

G M ×M0 M̃ G̃

M M̃

M0

∼=
T-duality

Ππ̃ πΠ̃

Π ππ̃ Π̃

π π̃

(1.0.3)

such that the following condition, known as Poincaré condition, is satis�ed: for any given point x ∈ M0, we
must have [

T-duality|x
]

=
[ n∑
i=1

hi ^ h̃i
]
∈ H2(Tn × T̃n ,Z)

im(π*|x)⊕ im(π̃*|x) , (1.0.4)

where we used the fact that an isomorphism of bundle gerbes is equivalently a U(1)-bundle on its base man-
ifold.
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This diagram is closely related to the diagram in [29], which formalises T-duality in the context of generalised
geometry:

TK ⊕ T*K

TM ⊕ T*M TM̃ ⊕ T*M̃

TM0 ⊕ T*M0 ⊕ (M0 ×R2n)

π*π̃*

/Tn /T̃n

(1.0.5)

where we called K := M ×M0 M̃. This is because we can interpret the Courant algebroid as a geometric object
which embodies the in�nitesimal symmetries of a bundle gerbe [51]. In this sense T-duality is a geometric
property of bundle gerbes.

1.1 Introduction to local Double Field Theory

Here, we will give a brief introduction to the formalism of local Double Field Theory.

Doubled patch.
Let us consider an open simply connected 2d-dimensional patch U. We can introduce coordinates (xµ , x̃µ) :
U→ R2d, which we will call collectively xM := (xµ , x̃µ). Now, we want to equip the vector space R2d with the
fundamental representation of the continuous T-duality group O(d, d). Since the action of O(d, d)-matrices
onR2d preserves thematrix ηMN :=

( 0 1
1 0
)
, we can de�ne ametric η = ηMNdxM⊗dxN ∈ �2T*Uwith signature

(d, d). Here,� is the symmetric product de�ned by A1 � · · ·� An := 1
n!
∑

σ∈SnA1 ⊗ · · ·⊗ An, where Sn is the
symmetric group on n symbols.

Gauge algebra.
We want now to de�ne a generalised Lie derivative which preserves the η-tensor, i.e. such that LXη = 0 for
any vector �eld X ∈ X(U). Thus, for any couple of vector �elds X, Y ∈ X(U) we can de�ne(

LXY
)M := XN∂NYM − PML NP∂LXNYP , (1.1.1)

where we de�ned the tensor
PML NP := δMP δLN − ηMLηNP , (1.1.2)

which projects the GL(2d)-valued function ∂LXN into an o(d, d)-valued one. The generalised Lie derivative
is also known as D-bracket JX, YKD := LXY. The C-bracket is de�ned as the anti-symmetrisation of the D-
bracket, i.e.

JX, YKC := 1
2
(
JX, YKD − JY , XKD

)
. (1.1.3)

Now, if we want to construct an algebra of generalised Lie derivatives, we immediately �nd out that it cannot
be close, i.e. we generally have [

LX , LY
]

≠ LJX,YKC (1.1.4)
Thus, to assure the closure, we need to impose extra conditions. The weak and the strong constraint (also
known collectively as section condition) are respectively the conditions

ηMN∂M∂Nϕi = 0, ηMN∂Mϕ1∂Nϕ2 = 0 (1.1.5)
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for any couple of �elds or parameters ϕ1, ϕ2. The immediate solution to the section condition is obtained by
considering only �elds and parameters ϕ which satisfy the condition ∂̃µϕ = 0. Therefore, upon application
of the strong constraint, all the �elds and parameters will depend on the d-dimensional quotient manifold
U := U/ ∼ ↪→ U, where ∼ is the relation identifying points with the same physical coordinates (xµ , x̃µ) ∼
(xµ , x̃′µ). In particular, vector �elds X ∈ X(U) satisfying the strong constraint can be identi�ed with sections
of the generalised tangent bundle TU⊕T*U of generalised geometry.Moreover the C-bracket, when restricted
to strong constrained vectors, reduces to the Courant bracket of generalised geometry, i.e. we have

J−, −KC
∣∣∣
∂̃µ=0

= [−, −]Cou (1.1.6)

In this sense, the geometry underlying Double Field Theory, when strong constrained, locally reduces to gen-
eralised geometry.

Generalised metric.
We can de�ne the generalised metric G = GMNdxM ⊗ dxN by requiring that it is symmetric and it satis�es the
property GMLηLPGPN = ηMN . Thus, the matrix GMN can be parametrised as

GMN =
(
gµν − BµλgλρBρβ Bµλgλν

−gµλBλν gµν

)
. (1.1.7)

where gµν and Bµν are respectively a symmetric and an anti-symmetric matrix. Finally, we must impose the
strong constraint on GMN , so that its components are allowed to depend only on the xµ coordinates, and not
on the x̃µ ones. Now, g := gµνdxµ ⊗ dxν is a symmetric tensor and B := 1

2Bµνdxµ ∧ dxν is an anti-symmetric
tensor on the d-dimensional quotient manifold U. These can be respectively interpreted as a metric and a
Kalb-Ramond �eld on the d-dimensional patch U. If we consider a strong constrained vector V := v + ṽ ∈
X(U)⊕ Ω1(U). The in�nitesimal gauge transformation given by generalised Lie derivative δGMN = LVGMN is
equivalent to the following gauge transformations:

δg = Lvg, δB = LvB + dṽ (1.1.8)

where Lv is the ordinary Lie derivative. This, then reproduces the gauge transformations of metric and Kalb-
Ramond �eld. Therefore, the in�nitesimal generalised di�eomorphisms of the 2d-dimensional patchU unify
the in�nitesimal di�eomorphisms of the d-dimensional patch U ↪→ U with the in�nitesimal gauge transfor-
mations of the Kalb-Ramond �eld, in analogy with Kaluza-Klein theory.

The globalisation problem.
However, the Kalb-Ramond �eld B is geometrically the connection of a bundle gerbe and hence it is glob-
alised by the patching conditions (1.0.1). Thus, it is not obvious how the local patches

(
U, ∼, η, G

)
, which

we introduced here, can be consistently glued together? This is the substance of the globalisation problem of
the doubled geometry underlying Double Field Theory. Seminal work in this direction was done by [11]. The
purpose of this paper is to try to answer this question.

We knowhow to globalise the local geometry of Double Field Theory for particular classes of examples, where
the gerby nature of the Kalb-Ramond �eld is not manifest. In particular, global Double Field Theory on group
manifolds [15, 16, 52, 61] is well-de�ned. Also, doubled torus bundles [60], which are globally a�ne T2n-
bundles on an undoubled base manifold [8], are well-de�ned. However, there is no conclusive answer on
how to globalise this geometry in themost general case. Moreover, it has been argued in [56] that the doubled
torus bundles should be recoverable by imposing a certain compacti�ed topology to a general doubled space,
whose geometry, however, remains an open problem. A problem which becomes even more obscure in the
case of the geometry underlying Exceptional Field Theory.
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1.2 Para-Hermitian geometry for Double Field Theory

The �rst proposal of formalisation of the geometry underlying Double Field Theory as a para-Kähler mani-
fold was developed by [89] and then generalised to a para-Hermitian manifold by [90]. The para-Hermitian
program was further developed by [6, 7, 48, 49, 53, 64, 69, 70, 84, 87, 88].

Para-complex geometry.
An almost para-complex manifold (M, J) is a 2d-dimensional smooth manifoldM which is equipped with a
(1, 1)-tensor �eld J ∈ End(TM), called almost para-complex structure, such that J2 = idTM and that the ±1-
eigenbundles L± ⊂ TM of J have both rank(L±) = d. An almost para-complex structure is, then, equivalently
given by a splitting of the form

TM = L+ ⊕ L− (1.2.1)
Therefore, the structure group of the tangent bundle TM of the almost para-complex manifold is reduced to
GL(d,R) × GL(d,R) ⊂ GL(2d,R). The para-complex structure also canonically de�nes the following projec-
tors to its eigenbundles:

Π± := 1
2 (1 ± J) : TM −� L±. (1.2.2)

An almost para-complex structure J is said to be, respectively, ±-integrable if L± is closed under Lie bracket,
i.e. if it satis�es the property [

Γ(M, L±), Γ(M, L±)
]

Lie ⊆ Γ(M, L±). (1.2.3)
The ±-integrability of J implies the existence a foliation F± of the manifoldM such that L± = TF±. An almost
para-complexmanifold (M, J) is a para-complexmanifold if andonly if J is both+-integrable and−-integrable
at the same time.

Para-Hermitian geometry.
An almost para-Hermitian manifold (M, J, η) is an almost para-complex manifold (M, J) equipped with a
metric η ∈⊙2 T*M of split signature (d, d) which is compatible with the almost para-complex structure as
it follows:

η(J−, J−) = −η(−, −). (1.2.4)
A para-Hermitian structure (J, η) canonically de�nes an almost symplectic structure ω ∈ Ω2(M), called fun-
damental 2-form, by ω(−, −) := η(J−, −). An almost para-Hermitian manifold can be equivalently expressed
as (M, J, ω), since the para-Hermitian metric can be uniquely determined by η(−, −) = ω(J−, −). Notice that
the subbundles L± are both maximal isotropic subbundles respect to η and Lagrangian subbundles respect
to ω.

Recovering generalised geometry.
The para-Hermitianmetric immediately induces an isomorphism η] : L±

∼=−−→ L*∓. In the case of a +-integrable
para-Hermitian manifold, this implies the existence of an isomorphism

TM ∼= TF+ ⊕ T*F+ (1.2.5)

given by X 7→ Π+(X) + η](Π−(X)), for any vector X ∈ TM. As shown by [48, 69], it is possible to de�ne a
bracket structure J−, −KD : X(M) × X(M) → X(M) which is compatible with the para-Hermitian metric, so
that (TM, J−, −KD, η) is a metric algebroid, and which makes a generalised version of the Nijenhuis tensor of
J vanish [69, p. 13]. If we consider any couple of sections X + ξ , Y + ζ ∈ Γ(M, TF+⊕ T*F+), the bracket can be
rewritten as

JX + ξ , Y + ζ KD =
(

[X, Y] + LXζ − ιYdξ
)︸ ︷︷ ︸

Dorfman bracket on TF+⊕T*F+

+
(

[ξ , ζ ]* + L*ξY − ιζd*X
)

(1.2.6)
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where [−.−]*,L*(−) and d* are operators induced by the Lie bracket of TM. Therefore, if we restrict ourselves to
couples of strongly foliated vectors, i.e. X + ξ , Y + ζ ∈ X(F+)⊕Ω1(F+), we recover the usual Dorfman bracket

JX + ξ , Y + ζ KD = [X, Y] + LXζ − ιYdξ , (1.2.7)

i.e. we recover generalised geometry.

An almost para-Hermitian manifold (M, J, η) is, in particular, a para-Kähler manifold if the fundamental 2-
form is symplectic, i.e. dω = 0. In the general case, the closed 3-formK ∈ Ω3

cl(M) de�ned byK := dω, which
embodies the obstruction of ω from being symplectic, is interpreted as the generalised �uxes of Double Field
Theory.

Born geometry.
A Born geometry is the datum of an almost para-Hermitian manifold (M, J, ω) equipped with a Riemannian
metric G ∈⊙2 T*Mwhich is compatible with both the metric η and the fundamental 2-form ω as it follows:

η−1G = G−1η and ω−1G = −G−1ω. (1.2.8)

Such a Riemannian metric can be identi�ed with the generalised metric of Double Field Theory.

Generalised T-dualities.
As explained by [70], the generalised di�eomorphisms of Double Field Theory can now be identi�ed with
di�eomorphisms of M which preserve the para-Hermitian metric η, i.e isometries Iso(M, η). Thus, at any
point p ∈ M, the push-forward f*|p : TpM → Tf (p)M of a generalised di�eomorphism f ∈ Iso(M, η) is
given by an O(d, d) ⊂ GL(2d) transformation. The Jacobian of such a di�eomorphism can then be seen as an
O(d, d)-valued function, which we will call f* ∈ C∞(M, O(d, d)), by a slight abuse of notation.

This group of symmetries can be further extended to the group of general bundle automorphisms of TM
preserving the para-Hermitian metric η. Thus, a generalised di�eomorphism induces a morphism of Born
geometries

(M, J, ω, G) 7−→ (M, f *J, f *ω, f *G), (1.2.9)

which is an isometry of the para-Hermitian metric, i.e. such that it preserves η = f *η.

Particularly interesting is the case of the b-shift, which can be interpreted as a bundle morphism eb : TM→
TM covering the identity idM of the base manifold. Given b ∈ ∧2L*+, we can de�ne this bundle morphism by

eb(X) = X+ + b](X+) + X−, (1.2.10)

for any vector X = X++X−with components X± ∈ L±. This transforms the para-complex structure by J 7→ J+b],
which also impliesω 7→ ω+b. Therefore, a b-shiftmaps the splitting TM = L+⊕L− to a newone TM = L′+⊕L−,
preserving the eigenbundle L−, but not L+. Therefore, it does not preserve +-integrability.

The patching puzzle of para-Hermitian geometry.
However, as shown in [2], if we are interested in recovering a general conventional geometric back-
ground, given by a general spacetime manifold M equipped with a general bundle gerbe connection
(B(α), Λ(αβ), G(αβγ)), we encounter a conceptual problem.

If we want to consider a conventional bosonic supergravity background, there must exists a foliation F− of
M such that L− = TF− and the leaf space M := M/F− of this foliation must be a smooth manifold. Thus, the
foliationF− is simple and the canonical quotientmap π : M � M = M/F− is a surjective submersion,making
M a �bered manifold. Let now (x̃µ , xµ) be local coordinates adapted to the foliation F−, i.e. �bered, on any
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patch Uα. Then, the fundamental 2-form ω ∈ Ω2(M) must have the form [70, p. 40]

ω = dx̃(α)µ ∧ dxµ(α) − π
*B(α). (1.2.11)

Since, this satis�es π*H = d(π*B(α)) = −dω, where H ∈ Ω3
cl(M) is the curvature of the Kalb-Ramond �eld,

we would expect to be possible for the local 2-forms B(α) to be patched as a general connection of a bundle
gerbe. In otherwords, by de�ning the patches of the leaf space byUα := π(Uα), wewould expect the following
general patching conditions

B(β) − B(α) = dΛ(αβ) on Uα ∩ Uβ ,
Λ(αβ) + Λ(βγ) + Λ(γα) = dG(αβγ) on Uα ∩ Uβ ∩ Uγ ,

G(αβγ) + G(βαδ) + G(γβδ) + G(δαγ) ∈ 2πZ on Uα ∩ Uβ ∩ Uγ ∩ Uδ

(1.2.12)

to be allowed. However, as shownby [2], the transition functions ofM on two-fold overlaps of patchesUα∩Uβ
force, in general, the bundle gerbe to be trivial. Therefore, if we want to embed a conventional supergravity
background into an almost para-Hermitian manifold, we have some troubles.

Thus,wehave twomainquestions to answer about para-Hermitiangeometry. Firstly,whydoes itwork sowell?
We are currently unable to provide a well-de�ned generalisation of para-Hermitian geometry to Exceptional
Field Theories, but if we could be able to derive para-Hermitian geometry fromamore fundamental geometric
principle, perhaps this would give us the key to �nd such a generalisation. Secondly, how can we modify its
globalisation such that recovering a conventional supergravity backgroundbecomes possible? The formalism
proposed in [1, 2] tries to answer both questions. To explain how, we �rst need to introduce more elements of
higher geometry.

2 Bundle gerbes
In this section we will brie�y introduce some fundamental notions in higher geometry, with particular focus
on bundle gerbes. For an introductory self-contained review, see [21].

Let Di� be the ordinary category of smooth manifolds and ∞Grpd the (∞, 1)-category of ∞-groupoids.
Roughly, a smooth stack X is de�ned as an ∞-functor

X : Di�op −→∞Grpd (2.0.1)

which satis�es some higher gluing properties, known as descent. For more details, we redirect to [83]. This
can be thought of as a generalisation of the notion of sheaf which takes value in Lie ∞-groupoids. We will
call H the (∞, 1)-category of smooth stacks on manifolds.

Example 2.1 (Manifolds as smooth stacks). Given any smooth manifold M ∈ Di�, we can easily construct a
sheaf C∞(−,M) ∈ H of smooth functions to M, which is in particular a stack. This is nothing but a Yoneda
embedding Di� ↪→ H of the smooth manifolds into the (∞, 1)-category of stacks.

The abelian bundle gerbe is a categori�cation of the principal U(1)-bundle introduced by [71, 72]. More re-
cently, in [74], the bundle gerbe has been reformalised as a special case of principal ∞-bundle, where the
structure Lie 2-group is G = BU(1), i.e. the circle 2-group.

De�nition 2.2 (Circle 2-group). The circle 2-group BU(1) ∈ H is de�ned as the group-stack which sends a
smooth manifold M to the groupoid BU(1)(M) whose objects are U(1)-bundles on M and whose morphisms
are bundle isomorphisms. The group-stack structure is given by the following bundle isomorphisms

P−1 ⊗ P ∼= M × U(1), P ⊗ P−1 ∼= M × U(1),
P ⊗ (P′ ⊗ P′′) ∼= (P ⊗ P′)⊗ P′′

(2.0.2)
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where, for any given circle bundle P, we called P−1 its dual bundle, which is a circle bundle with opposite 1st
Chern class, i.e. such that c1(P−1) = −c1(P).

Thus, the tensor product ⊗ plays the role of the group multiplication, the trivial bundle M × U(1) plays the
role of the identity element and P−1 plays the role of the inverse element of P.
Let us now give a concrete description of this geometrical object.

De�nition 2.3 (Bundle gerbe). Let M be the smooth manifold that we can identify with usual spacetime. A
bundle gerbe is de�ned as a principal BU(1)-bundle G

Π−−→→ M by the following pullback diagram in the
(∞, 1)-category H of higher smooth stacks:

G *

M B2U(1)

Π

f

(2.0.3)

where the higher stack B2U(1) := B(BU(1)) is the delooping of the group-stack BU(1) and the map f : M →
B2U(1) is the Čech cocycle of the bundle gerbe.

In this paper, the two-headed arrow � is used to denote epimorphisms and the hooked arrow ↪→ to denote
monomorphisms.

Remark 2.4 (Bundle gerbe in local data). LetU := {Uα} be any good cover for the basemanifoldM. The Čech
groupoid Č(U) is de�ned as the ∞-groupoid corresponding to the following simplicial object

· · · ⊔
αβγ Uα ∩ Uβ ∩ Uγ

⊔
αβ Uα ∩ Uβ

⊔
α Uα Č(U). (2.0.4)

Now, by using the natural equivalence between the Čech groupoid Č(U) and the manifold M in the (∞, 1)-
category of stacks, we can express the map between M and the moduli stack B2U(1) as a functor of the form

M ' Č(U) B2U(1).f (2.0.5)

By using the de�nition of the Čech groupoid, such amap can be presented as a collection of cocycles⊔αβ Uα∩
Uβ → BU(1) which are glued by isomorphisms on three-fold overlaps of patches⊔αβγ Uα ∩ Uβ ∩ Uγ . Since,
as we have seen, any map U → BU(1) from an open set U is equivalently a U(1)-bundle P � U, we obtain
the following diagram:{

µ(αβγ) : Pαβ ⊗ Pβγ
∼=−−→ Pαγ

} ⊔
αβ Pαβ

⊔
αβγ Uα ∩ Uβ ∩ Uγ

⊔
αβ Uα ∩ Uβ

⊔
α Uα

M

(2.0.6)

More in detail, we have a collection of circle bundles {Pαβ � Uα∩Uβ} on each overlap of patchesUα∩Uβ ⊂ M
such that:
• there exists a bundle isomorphism Pαβ ∼= P−1

βα on any two-fold overlap of patches Uα ∩ Uβ,
• there exists a bundle isomorphism µ(αβγ) : Pαβ ⊗ Pβγ

∼=−−→ Pαγ on any three-fold overlap of patches
Uα ∩ Uβ ∩ Uγ ,
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• this isomorphism satis�es µ(αβγ) ◦ µ−1
(βγδ) ◦ µ

−1
(γδα) ◦ µ(δαβ) = 1 on any four-fold overlaps of patches Uα ∩

Uβ ∩ Uγ ∩ Uδ.
We, thus, recovered the Hitchin-Chatterjee formulation [55] of the bundle gerbe Π : G −� M.

Remark 2.5 (Topological classi�cation of bundle gerbes). Notice that the trivialisation we introduced de-
�nes Čech cocycle

[
G(αβγ)

]
∈ H2(M, C∞(−, S1)

)
, where C∞(−, S1) is the sheaf of maps to the circle. It is a

well-established result (e.g. see see [55] for details) that there exists an isomorphism H2(M, C∞(−, S1)
) ∼=

H3(M,Z), induced by the short exact sequence of sheaves 0 → Z → C∞(−,R) → C∞(−, S1) → 0. The image
of
[
G(αβγ)

]
along such an isomorphism will be an element of the 3rd cohomology group of the base mani-

foldM, which we will call Dixmier-Douady class dd(G ) ∈ H3(M,Z) of the bundle gerbe. Thus, bundle gerbes
G ∈ H are topologically classi�ed by a Dixmier-Douady class dd(G ) ∈ H3(M,Z).

Lemma 2.6 (Automorphisms of the bundle gerbe). As seen by [24], the 2-group of automorphisms of a bun-
dle gerbe G

Π−−→→ M is
Aut(G ) = Di�(M) n H(M, BU(1)) (2.0.7)

where H(M, BU(1)) = BU(1)(M) is the 2-group of U(1)-bundles on M.

2.1 Bundle gerbes with connective structure

Let BU(1)conn ∈ H be the stack of U(1)-bundles with connection.

De�nition 2.7 (Bundle gerbe with connective structure). LetM be the smooth manifold that we can identify
with usual spacetime. A bundle gerbe with connective structure is de�ned as a principal BU(1)conn-bundle
G

Π−−→→ M by the following pullback diagram in the (∞, 1)-category H of higher smooth stacks:

G *

M B(BU(1)conn)

Π

(Λ(αβ) ,G(αβγ))

(2.1.1)

where the higher stack B(BU(1)conn) is the delooping of the group-stack BU(1)conn and the map
(Λ(αβ), G(αβγ)) : M → B(BU(1)conn) is the Čech cocycle of the bundle gerbe with connective structure.

Such a cocycle is given by a collection of local 1-forms Λ(αβ) ∈ Ω1(Uα∩Uβ) and local scalars G(αβγ) ∈ C∞(Uα∩
Uβ ∩ Uγ) such that:

Λ(αβ) + Λ(βγ) + Λ(γα) = dG(αβγ),
G(αβγ) − G(βγδ) + G(γδα) − G(δαβ) ∈ 2πZ.

(2.1.2)

Lemma 2.8 (Automorphisms of the bundle gerbe with connective structure). We can now re�ne lemma 2.6
to a bundle gerbe G with connective structure. As explained in [39], the∞-groupoid of automorphisms of the
bundle gerbe G with connective structure

Aut(G ) = Di�(M) n H(M, BU(1)conn) (2.1.3)

This is nothing but the higher geometric version of the gauge group GDFT = Di�(M)nΩ2
cl(M) of DFT proposed

by [62]. In fact, the natural map H(M, BU(1)conn)→ Ω2
cl(M) is just the curvature map sending a U(1)-bundle

to its curvature b ∈ Ω2
cl(M).
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De�nition 2.9 (Connection of a bundle gerbe). LetM be a smoothmanifold. A bundle gerbewith connection
is given by a cocycle

M B2U(1)conn,
(B(α) ,Λ(αβ) ,G(αβγ)) (2.1.4)

where the stack B2U(1)conn ∈ H is de�ned as follows:

B2U(1)conn : U 7−→ H
(
P(U), BU(1)

)
(2.1.5)

for any di�erentialmanifoldU andwhereP(U) is the path∞-groupoid ofU. The cocycle (B(α), Λ(αβ), G(αβγ)) :
M → B(BU(1)conn) is given by a collection of local 2-forms B(α) ∈ Ω1(Uα ∩Uβ), local 1-forms Λ(αβ) ∈ Ω1(Uα ∩
Uβ) and local scalars G(αβγ) ∈ C∞(Uα ∩ Uβ ∩ Uγ) such that:

B(β) − B(α) = dΛ(αβ),
Λ(αβ) + Λ(βγ) + Λ(γα) = dG(αβγ),

G(αβγ) − G(βγδ) + G(γδα) − G(δαβ) ∈ 2πZ.
(2.1.6)

Notice that there is an obvious couple of forgetful functors:

B2U(1)conn −� B(BU(1)conn) −� B2U(1). (2.1.7)

3 Global Double Field Theory on bundle gerbes
In this section we will construct the correspondence between the doubled geometry of Double Field Theory
and the higher geometry of bundle gerbes. We will de�ne an atlas of a bundle gerbe and we will show that it
can be identi�ed with the doubled space of Double Field Theory. This will have the consequence that Double
Field Theory canbe globally interpreted as a�eld theory on the total space of a bundle gerbe, just like ordinary
Kaluza-Klein theory lives on the total space of a principal bundle.

De�nition 3.1 (0-truncation of stacks). Let H0 be the ordinary category of sheaves on manifolds. Then, the
inclusionH0 ↪→ H has a left adjoint τ0 : H→ H0 which is called 0-truncation andwhich sends a higher stack
X ∈ H to its restricted sheaf τ0X ∈ H0 at the 0-degree.

De�nition 3.2 (Atlas of a smooth stack). An atlas of a smooth stack X ∈ H is de�ned by a smooth manifold
A equipped with a morphism of smooth stacks

Φ : A −→ X (3.0.1)

which is, in particular, an e�ective epimorphism, i.e. whose 0-truncation τ0Φ : A −� τ0X is an epimor-
phism of sheaves.

This formalizes the idea that to a smooth stackX ∈ Hwe can associate an atlas which ismade up of ordinary
manifolds A. This provides a remarkably handy tool to deal with higher geometric objects. See [54] and [66]
for more detail. Moreover, the notion of atlas will be a pivotal in establishing a relation between doubled and
higher geometry.

Remark 3.3 (Gluing morphisms of stacks). Given a smooth stack X ∈ H equipped with an atlas Φ : A −→
X , we can write the Čech nerve of Φ as the following simplicial object

. . . A ×X A ×X A A ×X A A X .Φ (3.0.2)

For simplicity, let us now consider just a geometric 1-stack X ∈ H. A complicated object such as amorphism
of stacks σ : X −→ S , for some S ∈ H, can be equivalently expressed on the atlas A of the stack X . This
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can be done as the map induced by the atlas

A X S
Φ

σ

σ (3.0.3)

together with an isomorphism of the two maps induced by the kernel pair of the atlas

A ×X A S

σ

σ′

(3.0.4)

such that it satis�es the cocycle condition onA ×X A ×X A. For more details, see [54].

The idea of gluingmorphisms of stacks on an atlaswill be useful in this section,whenwewill have to consider
geometric structures on a bundle gerbe.

3.1 The double/string correspondence

The aim of this section will be to prove the existence of a correspondence between doubled and higher geom-
etry in a linearised form.

De�nition 3.4 (string Lie 2-algebra). Let us call string := Rd⊕bu(1) the 2-algebra of the abelian Lie 2-group
Rd × BU(1). It is well-understood that any L∞-algebra g is equivalently described in terms of its Chevalley-
Eilenberg dg-algebra CE(g). In our particular case this is

CE(string) = R[ea , B]/〈dea = 0, dB = 0〉, (3.1.1)

where {ea} with a = 0, . . . , d − 1 are generators in degree 1 and B is a generator in degree 2.

The Lie 2-algebra string = Rd ⊕ bu(1) � Rd can be interpreted as a linearisation of a bundle gerbe, in the
sense proposed by [40]. Thus, such a Lie 2-algebra can be thought as trivially made up of a �at Minkowski
space and a trivial Kalb-Ramond �eld. Now, we want to introduce a notion of atlas for this 2-algebra.

Remark 3.5 (Transgression element). A transgression element of a cocycle µ ∈ CE(g) on a �bration ĝ
Π−−→→ g

is de�ned as an element B ∈ CE(ĝ) on such that dB = Π*(µ). Morever, it can be proved (see [44]) that, if the
�bration is the higher central extension

ĝ *

g bnu(1),

ho�b(µ)

µ

(3.1.2)

then such a transgression element is universal. This means exactly that, given a transgression element ω ∈
CE(h) of µ ∈ CE(g) for another �bration h

π−−→→ g, then there is a unique morphism of �brations

h ĝ

g

π

ϕ

ho�b(µ)
(3.1.3)

such that ω = ϕ*(B).
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Remark 3.6 (Atlas of an L∞-algebra). By linearising the notion of atlas of a smooth stack [65, 83], we obtain
that an atlas of an L∞-algebra g can be de�ned by an ordinary Lie algebra atlas equipped with a homomor-
phism of L∞-algebras ϕ : atlas −→ g that is surjective onto the 0-truncation of g. In this dissertation, we will
also require that the dual homomorphism ϕ* : CE(g) ↪→ CE(atlas) of dg-algebras is injective.

We will also need the following slight specialisation of the notion of atlas of an L∞-algebra, which will be
useful to deal with our physically motivated examples.

De�nition 3.7 (Lorentz-compatible atlas). Let g � Rd be an L∞-algebra �brated on a Minkowski space and
equipped with an atlas ϕ : atlas −→ g. We say that the atlas is Lorentz-compatible if atlas comes equipped
with a SO(1, d − 1)-action such that
1. it non-trivially extends the natural SO(1, d − 1)-action on Rd,
2. ϕ is SO(1, d − 1)-equivariant,

and if dim(atlas) is the minimal dimension for which the above conditions are satis�ed.

Notice that, in a Lorentz-compatible atlas, the images of the higher generators of g through the map ϕ* :
CE(g) ↪→ CE(atlas) are non-zero elements which are invariant under Lorentz action. We are now ready to
present the main result of this section.

Lemma 3.8 (double/string correspondence). There exists a unique Lorentz-compatible atlas for the Lie
2-algebra string and it consists of the para-Kähler vector space

(
Rd ⊕ (Rd)*, J, ω

)
, where

• J is the para-complex structure corresponding to the canonical splitting Rd ⊕ (Rd)*,
• ω is the symplectic structure given by the transgression element of the higher generator of string to

the space of the atlas Rd ⊕ (Rd)*.

Proof. Recall the de�nition 3.6 of atlas ϕ : atlas −→ string for an L∞-algebra. The map ϕ can be dually
given as an embedding ϕ* : CE(string) ↪−→ CE(atlas) between their Chevalley-Eilenberg dg-algebras. Thus,
we want to identify an ordinary Lie algebra atlas such that its Chevalley-Eilenberg dg-algebra contains a 2-
degree element

ω := ϕ*(B) ∈ CE(atlas) (3.1.4)

which is the image of the 2-degree generator of CE(string) and which must satisfy the equation

dω = 0, (3.1.5)

given by the fact that a homomorphism of dg-algebras maps ϕ*(0) = 0. Recall that atlasmust be an ordinary
Lie algebra, so its Chevalley-Eilenberg dg-algebra CE(atlas) will only have 1-degree generators. Sincewewant
a Lorentz-compatible atlas, ω must also be a singlet under Lorentz transformations. Thus the generators of
the atlas must consist not only in the images {ea := ϕ*(ea)}a=0,...,d−1, but also in an extra set {ẽa}a=0,...,d−1
which generates (Rd)*. This way the image of the generator b ∈ CE(string) is

ω = ẽa ∧ ea , (3.1.6)

which is Lorentz-invariant. Indeed, the generators {ea} ofRd transform by ea 7→ Nabe
b for N ∈ SO(1, d − 1),

while the generators {ẽa} of (Rd)* transform by ẽa 7→ (N−1) ba ẽb. Now, the equation dω = 0, combined with
the equation dea = 0, implies that the di�erential of the new generator is zero, i.e. dẽa = 0. Therefore, we
found the dg-algebra

CE(double) = R[ea , ẽa]/〈dea = 0, dẽa = 0〉 (3.1.7)

where we renamed the Lie algebra atlas to double. This ordinary Lie algebra is immediately double =
(
Rd ⊕

(Rd)*, [−, −] = 0
)
, i.e. the abelian Lie algebra whose underlying 2d-dimensional vector space is Rd ⊕ (Rd)*.

Now, recall that the Chevalley-Eilenberg dg-algebra CE(g) of any ordinary Lie algebra g is isomorphic to the dg-
algebra

(
Ω•li(G), d

)
of left-invariant di�erential forms on the corresponding Lie group G = exp(g). Therefore,
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we have the isomorphism
CE(double) ∼=

(
Ω•li(Rd,d), d

)
(3.1.8)

where we called Rd,d the abelian Lie group integrating doublewhose underlying smooth manifold is still the
linear space Rd × (Rd)*. Thus, the smooth functions C∞(Rd,d) are generated by coordinate functions xa and
x̃a and the basis of left-invariant 1-forms on Rd,d is simply given by

ea = dxa , ẽa = dx̃a (3.1.9)

Thus, the transgression elementω ∈ CE(double) is, equivalently, the symplectic formω = dx̃a∧dxa.Moreover,
the canonical splittingRd⊕(Rd)* induces a canonical para-complex structure J, which is compatiblewith the
symplectic formω. Therefore, the atlas of string is equivalently a para-Kähler vector space

(
Rd⊕(Rd)*, J, ω

)
.

Remark 3.9 (Emergence of para-Hermitian geometry). On one side of the correspondence, the Lie 2-algebra
string = Rd⊕bu(1) is the linearisation of a bundle gerbe and, on the other side, the para-Kähler vector space(
Rd ⊕ (Rd)*, J, ω

)
is the linearisation of a para-Hermitian manifold. The latter is an atlas of the former.

atlas
(
Rd ⊕ (Rd)* , J, ω

)
Rd ⊕ bu(1)

bundle gerbe para-Hermitian manifold
(i.e. doubled space)

Figure 1: para-Hermitian geometry (i.e. the geometry of doubled spaces) as atlas description of bundle gerbes.

Notation 3.10 (string Lie 2-algebra). Usually, the name "string Lie 2-algebra" is reserved to the central exten-
sion stringc(g) of an ordinary Lie algebra gby the Lie 2-algebrabu(1), corresponding to a cocycle c ∈ H3(g,R).
However, in this paper, we call string := Rd ⊕ bu(1) string Lie 2-algebra. This has a two-fold reason. Firstly,
our de�nition is a particular case of the latter, even if a trivial one. Secondly, this nomenclature conceptually
matches the notation used by [43–45], where the symbol "string" is used to denote the (super) Lie 2-algebras
which can be interpreted as the linearised (super) bundle gerbes underlying Type II and heterotic supergrav-
ity.

Remark 3.11 (Kernel pair of the atlas of string). Now let us discuss the kernel pair of the atlas ϕ : atlas −→
string. This is de�ned as the pullback (in the category theory sense) of two copies of the map ϕ of the atlas.
The homotopy pullback diagram of is

double ×string double double string.ϕ (3.1.10)

To deal with it, we can consider the Chevalley-Eilenberg algebras of all the involved L∞-algebras and look at
the homotopy pushout diagram of the cokernel pair which is dual to the starting kernel pair (3.1.10). This will
be given by the following maps of di�erential graded algebras:

CE(double) tCE(string) CE(double) CE(double) CE(string).ϕ* (3.1.11)
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Let us describe this in more detail. When composed with ϕ*, the two maps at the centre of the diagram both
send the generators ea ∈ CE(string) to ea ∈ CE(double)tCE(string) CE(double). However, theymap the generator
B ∈ CE(string) to two di�erent elements ω = ẽa ∧ ea and ω′ = ẽ′a ∧ ea, where ẽa and ẽ′a are such that
they both satisfy the same equation dẽ′a = dẽa. This implies that they are related by a gauge transformation
ẽ′a = ẽa + dλa. This can be seen as a consequence of the gauge transformations B′ = B + dλ with parameter
λ := λaea.

Remark 3.12 (T-duality on the double algebra). The ordinary Lie algebra double is not the atlas only of the Lie
2-algebra string, but of an entire class of Lie 2-algebras. For example, we have

double

string s̃tring

ϕ̃ϕ (3.1.12)

where we called s̃tring the Lie 2-algebra whose Chevalley-Eilenberg dg-algebra is given by CE
(
s̃tring

)
=

R
[
ẽa , B̃

]
/〈dẽa = 0, dB̃ = 0〉 and where ϕ̃ is the atlas mapping the generators by ẽa 7→ ẽa and B̃ 7→ ea ∧ ẽa.

The Lie 2-algebra s̃tring = (Rd)* ⊕ bu(1) can be immediately seen as the T-dualisation of string along all
the d directions of the underlying spacetime. More generally, double will be the atlas of any T-dual of the Lie
2-algebra string: this is nothing but a linearised version of T-duality of bundle gerbes.

3.2 The doubled space/bundle gerbe correspondence

In the previous subsection,we established a correspondence between linearised doubled geometries and L∞-
algebras, which interprets the former as an atlas description of the latter. In this subsection we will globalise
this relation and we will construct a method to extract a doubled space from a bundle gerbe.

Remark 3.13 (On the nature of the extra coordinates). The 2d-dimensional atlas of the bundle gerbe is the
natural candidate for being an atlas for the doubled space where Double Field Theory lives. This way, we
can completely avoid the conceptual issue of postulating many new extra dimensions in extended geometry,
because the extra coordinates which appears in the extended charts describe the degrees of freedom of a
bundle gerbe. In this sense, a �at doubled space Rd,d can be seen as a coordinate description of a trivial
bundle gerbe.

Remark 3.14 (Atlas for the Lie 2-group). LetRd ×BU(1) be the Lie 2-groupwhich integrates the Lie 2-algebra
string := Rd ⊕ bu(1). Let us call again Rd,d the the ordinary Lie group which integrates the ordinary abelian
Lie algebra Rd ⊕ (Rd)*. Therefore, we have a homomorphism of Lie groups

exp(ϕ) : Rd,d −→ Rd × BU(1), (3.2.1)

which exponentiates the homomorphism of Lie algebras ϕ : atlas −→ string from the previous section.
Consequently, this is also a well de�ned atlas for Rd × BU(1), seen as a smooth stack.

De�nition 3.15 (Lorentz-compatible atlas of an ∞-bundle). Let us de�ne a Lorentz-compatible atlas for an
∞-bundle P

Π−−→→ M as an atlas whose charts are Lorentz-compatible in the sense of de�nition 3.7.



316 | Luigi Alfonsi

Theorem 3.16 (Doubled space from a bundle gerbe). There exists a unique Lorentz-compatible atlas of
a bundle gerbeG

Π−−→→ Mwith connection and it consists of a para-Hermitianmanifold (M, J, ω), where
• J is the para-complex structure corresponding to the splitting of TM into horizontal and vertical

bundle induced by the connection of the bundle gerbe,
• ω is the fundamental 2-form given by the transgression of the connection of the bundle gerbe, i.e.

which satis�es π*H = −dω with H ∈ Ω3
cl(M) curvature of the bundle gerbe and where π : M � M

is the projection induced by Π on the atlas.

Proof. Let G � M be a bundle gerbe on a base manifold M. Thus G can be locally trivialised as a collection
of local trivial gerbes {Uα × BU(1)}α∈I on a given open cover {Uα}α∈I of the base manifoldM. Thus, we have
an e�ective epimorphism φα : Rd × BU(1) → Uα × BU(1) for any chart. These can be combined in a single
morphism⊔α∈I R

d ×BU(1) {φα}α∈I−−−−−−−→ G . As explained in [74], this is in particular an e�ective epimorphism.
To see this, notice that we have a pullback diagram⊔

α∈I R
d × BU(1) G

⊔
α∈I R

d M,

(3.2.2)

where⊔α∈I R
d � M is an atlas, and in particular an e�ective epimorphism, by construction. Since e�ective

epimorphisms are stable under (∞, 1)-pullback, the upper arrow is an e�ective epimorphism too. Thus, we
can cover the bundle gerbe with copies of the Lie 2-groupRd ×BU(1). Since this Lie 2-group comes equipped
with the natural atlas (3.2.1), we can de�ne the composition maps Φα : Rd,d exp(ϕ)−−−−−−→ Rd × BU(1) φα−−−−→→
Uα × BU(1). By combining them we can construct an e�ective epimorphism

Φ :
⊔
α∈I

Rd,d {Φα}α∈I−−−−−−−→ G (3.2.3)

From now on, let us call the total space of the atlasM := ⊔α∈I R
d,d. Notice that, in general, this is a disjoint

union ofRd,d-charts. We can now use the map (3.2.3) to explicitly construct the Čech nerve of the atlas. What
we obtain is the following simplicial object:⊔

α,β,γ∈I
Rd,d ×G Rd,d ×G Rd,d

⊔
α,β∈I

Rd,d ×G Rd,d
⊔
α∈I

Rd,d G ,{Φα}α∈I

which tells us how the charts of the atlas are glued bymorphisms. Let us describe this diagram inmore detail
in terms of its dual diagram of function dg-algebras. Let us also call

(
B(α), Λ(αβ), G(αβγ)

)
the Čech cocycle of

the bundle gerbe. The two maps of the kernel pair send the local 1-degree generator to dxµ and the local 2-
degree generator to a couple of local 2-forms ωtriv

(α) = dx̃(α)µ ∧dxµ and ωtriv
(β) = dx̃(β)µ ∧dxµ on the �ber product

of the α-th and β-th charts. Now the local 1-forms dx̃(α)µ and dx̃(β)µ are required to be related by a gauge
transformation dx̃(α)µ = dx̃(β)µ + dΛ(αβ)µ where the gauge parameters Λ(αβ)µ are given by the cocycle of the
bundle gerbe. Equivalently, the two 2-forms must be related by a gauge transformation ωtriv

(α) = ωtriv
(β) + dΛ(αβ)

with gauge parameter Λ(αβ) := Λ(αβ)µdxµ. The gauge parameters are required to satisfy the cocycle condition
Λ(αβ) + Λ(βγ) + Λ(γα) = dG(αβγ) on three-fold overlaps of charts.
On the atlas M of the bundle gerbe, we can de�ne a 2-form ω ∈ Ω2(M) by taking the di�erence ω(α) :=
ωtriv

(α) −π*B(α) of the local 2-form ωtriv
(α) and the pullback of the local connection 2-form B(α) of the bundle gerbe

from the base manifold on each chart Rd,d. This de�nition assures that ω(α) = ω(β) on overlaps of charts
Rd,d ×G Rd,d. Therefore, this 2-form is globally well-de�ned and we can write it simply as ω, by removing the
α-index. In local coordinates we can write

ω =
(

dx̃(α)µ + B(α)µνdxν
)
∧ dxµ (3.2.4)
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Notice that the form ω is, more generally, invariant under gauge transformations of the bundle gerbe. From
the de�nition of ω, we obtain the relation with curvature of the bundle gerbe:

π*H = −dω, with H ∈ Ω3
cl(M), (3.2.5)

where H ∈ Ω3
cl(M) is the curvature of the bundle gerbe, i.e. a closed 3-form which satis�es the equation

H|Uα = dB(α) on any open set Uα ⊂ M of our cover. Now, we want to show that M is canonically para-
Hermitian with fundamental 2-form ω. The projection π : M � M induces a short exact sequence of vector
bundles:

0 ↪−→ Ker(π*) ↪−→ TM π*−−−→→ π*TM −−→→ 0. (3.2.6)

The fundamental 2-form ω immediately induces a map ω] : TM → TM. In particular, this is a projector to
the vertical bundle, i.e.

ω] : TM −� Ker(π*). (3.2.7)

To see this, it is enough to notice that the fundamental 2-form ω = (dx̃(α)µ + B(α)µνdxν) ∧ dxµ induces the
map ω](V) = (ṽµ + B(α)µνvν)∂̃µ ∈ Ker(π*), where V = vµ∂µ + ṽµ ∂̃µ is any vector on the atlas, expressed in the
coordinate basis. Therefore, the 2-form ω de�nes the splitting π* ⊕ ω] into horizontal and vertical bundle

TM ∼= π*TM ⊕ Ker(π*). (3.2.8)

This splitting canonically de�nes a para-complex structure J ∈ Aut(TM). If we split any vector in horizontal
and vertical projection X = XH + XV , the para-complex structure J is de�ned such that J(X) = XH − XV . Notice
that, since J de�nes a splitting TM = L+⊕ L− of the tangent bundle ofM, as seen in section 1.2, this identi�es
L+ ≡ π*TM and L− ≡ Ker(π*). Therefore, the atlas of a bundle gerbe is a para-Hermitian manifold (M, J, ω)
with para-complex structure J and fundamental 2-form ω, de�ned above.

Remark 3.17 (Towards an extended/higher correspondence). We can easily notice that not any para-
Hermitianmanifold can be obtained as an atlas of a bundle gerbe with connection. Therefore, there exists no
bijection between para-Hermitian geometries and bundle gerbes with connection. However, as we are going
to see in the �nal section of this paper, the para-Hermitian atlas of a given bundle gerbe is also an atlas for any
string background which is T-dual to the original bundle gerbe. As shown in [1, 2], most of the known exam-
ples of doubled spaces, including the ones underlying non-geometric or non-abelian T-duality, can be derived
from the structure of a bundle gerbe with connection. Therefore, our method of extracting a para-Hermitian
geometry from a bundle gerbe can be applied to all the relevant examples of doubled spaces coming from the
physics literature. Moreover, the idea that a general doubled spacemust be an (almost) para-Hermitianman-
ifold is something which has been postulated, not strictly proved. Thus, it is legitimate to speculate towards
the establishment of a full extended/higher correspondence.

Remark 3.18 (Principal connection of the bundle gerbe). Let Ω2 ∈ H be the usual sheaf of di�erential 2-
formsover smoothmanifolds.We cande�ne adi�erential 2-formω on the bundle gerbeG as amapG

ω
−−→ Ω2.

Notice that, given the fundamental 2-form ω in (3.2.4), we can construct a 2-form G
ω
−−→ Ω2 given as follows:

M G Ω2Φα

ω(α)

ω , M ×G M Ω2

ω(α)

ω(β)

.

Since Ω2 is a 0-truncated stack, the 2-morphism in the second diagram is just an identity. In other words we
obtain that ω ∈ Ω2(G ) is given on the atlas by a collection of local 2-forms ω(α) =

(
dx̃(α)µ + B(α)µνdxν

)
∧ dxµ

on any chart, which satisfy ω(α) = ω(β) on any overlap of charts. Thus, the fundamental 2-form ω on the atlas
M from the previous theorem can be interpreted as a 2-form ω on the bundle gerbe G .



318 | Luigi Alfonsi

Remark 3.19 (Analogy with a principal U(1)-bundle). Theway of expressing the fundamental 2-form on our
atlas as in remark 3.18 is, despite of the appearance, very natural and familiar. When we write the connec-
tion of a U(1)-bundle in local coordinates, we are exactly writing a 1-form ω(α) := dθ(α) + A(α)µ(x(α))dx

µ
(α) ∈

Ω1(Rd+1) on the local chart Rd+1, where
{

dθ(α), dxµ(α)
}
is the coordinate basis of Ω1(Rd+1). On the overlaps

of charts we have ω(α) = ω(β), which assures that the the 1-form we are writing in local coordinates is equiva-
lently the pullback ω(α) = ϕ*αω of a well-de�ned 1-form ω on the total space of the U(1)-bundle. Notice that
this is in perfect analogy with remark 3.18.

Example 3.20 (Topologically trivial doubled space). Let us consider a topologically trivial bundle gerbe G =
M × BU(1) with connection. The corresponding doubled space is a para-Kähler manifold (M, J, ω) where
M = T*M is just the cotangent bundle of the base manifold, the para-complex structure J corresponds to the
canonical splitting TM ∼= TM ⊕ T*M and the connection ω = dx̃µ ∧ dxµ is the canonical symplectic form on
T*M with {xµ , x̃µ} Darboux coordinates.

Example 3.21 (Doubled Minkowski space). If, in the previous example, we choose as base manifold the
Minkowski spaceM = Rd, the corresponding doubled space will be the para-Kähler vector space (Rd,d , J, ω).

Remark 3.22 (Correspondence between sections of the bundle gerbe and the doubled space). Let us con-
sider again a topologically trivial bundle gerbe G = M × BU(1) with connection. Any section M I

↪−→ G will
be a U(1)-bundle I � M, while any section M ι

↪−→ M will be an embedding x̃ = x̃(x). These two objects are
immediately related by

ι*ω = curv(I) (3.2.9)

where curv(−) is the curvature 2-form of a U(1)-bundle. Since any bundle gerbe can be locally trivialised, it is
possible to generalise this relation to the general topologically non-trivial case. The relation between bundle
gerbes and doubled spaces was �rstly presented and studied in [1] by using this observation.

Remark 3.23 (A doubled-yet-gauged space). The principal action of the bundle gerbe is transgressed to the
atlas by a shift (xµ , x̃µ) 7→ (xµ , x̃µ + λµ(x)) in the unphysical coordinates, which can be identi�ed with a gauge
transformation B 7→ B + d(λµdxµ) of the Kalb-Ramond �eld. Moreover, the property G /BU(1) ∼= M of bundle
gerbes, when transgressed to the atlas, can be identi�ed with the idea that physical points correspond to
gauge orbits of the doubled space [76]. Remarkably, this gives a global geometric interpretation of the strong
constraint ofDouble FieldTheory [1]. Therefore, anatlas of thebundle gerbe is naturally adoubled-yet-gauged
space, according to the de�nition given by [76].

Remark 3.24 (Basis of global forms). In general it is also possible to express the principal connection ω =
ẽa ∧ ea in terms of the globally de�ned 1-forms ẽa = dx̃(α)a + B(α)aνdxν and ea = dxa on the atlas. We pack
both in a single global 1-form EA with index A = 1, . . . , 2d which is de�ned by Ea := ea and Ea := ẽa. In this
basis, we have that the connection can be expressed by ω = ωAB EA ∧ EB, where ωAB is the 2d-dimensional
standard symplectic matrix.

De�nition 3.25 (Generalised metric). A global generalisedmetric can be de�ned, in analogy with a Rieman-
nian metric, as an orthogonal structure G

G
−−→ O(2d)Struc on the bundle gerbe, where the stack O(2d)Struc

which we will now construct explicitly. A map G → O(2d)Struc is de�ned as a twisted bundle given as it
follows:

TG GL(2d)//O(2d) *

G BO(2d) BGL(2d).

N(αβ)

(3.2.10)
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The bundle TG is naturally classi�ed by a cocycle valued in BGL(d) n bu(1)conn on the base manifold M of
the bundle gerbe. Notice that this can be embedded in a cocycle valued in BO(d, d), i.e.

BGL(d) n bu(1)conn ↪→ BO(d, d) ↪→ BGL(2d). (3.2.11)

Such a cocycle is given by the following O(d, d)-valued matrices on each overlap of patches:

N(αβ) =
(
N(αβ) 0

dΛ(αβ) N−T
(αβ)

)
, (3.2.12)

where N(αβ) are the transition functions corresponding to TM and (Λ(αβ), G(αβγ)) is the Čech cocycle corre-
sponding to the bundle gerbe. The cocycle N(αβ) can be seen as the cocycle corresponding to TM appearing
in the short exact sequence (3.2.6).Moreover, notice thatO(d, d)∩O(2d) ∼= O(d)×O(d). Therefore the inclusion
BO(2d) ↪→ BGL(2d) which de�nes a general orthogonal structure reduces to B

(
O(d) × O(d)

)
↪→ BO(d, d).

On the atlas (M, J, ω), thiswill be givenby a collection of RiemannianmetricsG(α) with the followingpatching
conditions:

M G O(2d)Struc.Φα

G(α)

G
, M ×G M O(2d)Struc,

G(α)

G(β)

which assures that they are patched by the condition G(β) = NT
(αβ)G(α)N(αβ).

As explained in [1], if we require the generalised metric structure to be invariant under the principal BU(1)-
action of the bundle gerbe, this will have to be of the form

G = GAB EA � EB = gab ea � eb + gab ẽa � ẽb (3.2.13)

where we called the matrix GAB := (g ⊕ g−1)AB and where g ∈ �2Ω1(M) is a Riemannian metric on the base
manifold. In the coordinate basis {dxµ(α), dx̃(α)µ} we �nd the usual expression

G(α)MN =
(
gµν − B(α)µλgλρB(α)ρβ B(α)µλgλν

−gµλB(α)λν gµν

)
, (3.2.14)

where B(α) is the connection of the bundle gerbe. As explained in remark 3.23, invariance under the principal
BU(1)conn-action can be seen as the global geometric version of the strong constraint of Double Field Theory.
This was called higher cylindricity condition in [1], in analogy with Kaluza-Klein theory.

3.3 The NS5-brane is a higher Kaluza-Klein monopole

In this subsection we will present an immediate application of the correspondence between doubled spaces
and bundle gerbes. We will, indeed, formalise the NS5-brane of 10-dimensional supergravity as a topologi-
cally non-trivial higher Kaluza-Klein monopole on the bundle gerbe.

De�nition 3.26 (Higher Dirac monopole). A higher Dirac monopole is a topologically non-trivial bundle
gerbe G −� R1,5 ×

(
R4 − {0}

)
.

Here,R4−{0} can be seen as the transverse space of themonopole andR1,5 as itsworld-volume,magnetically
charged by the Kalb-Ramond �eld.

Remark 3.27 (Higher Dirac charge-quantization). Notice that R4 − {0} ' R+ × S3, where R+ gives the radial
direction in the transverse space and S3 the angular directions. Since R1,5 × R+ × S3 is homotopy equivalent
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to S3, we have dd(G ) ∈ H3(S3,Z) ∼= Z. This implies

dd(G ) = m
2 [Vol(S3)], (3.3.1)

with m ∈ Z, in direct analogy with the ordinary Dirac monopole.

Now we can give a precise de�nition of a higher Kaluza-Klein monopole, which is constructed by directly
generalising the ordinary Kaluza-Klein monopole [50] to a bundle gerbe.

De�nition 3.28 (Higher Kaluza-Klein monopole). Ahigher Kaluza-Kleinmonopole [1] is a non-trivial bundle
gerbe G −� R1,5 ×

(
R4 − {0}

)
equipped with a generalised metric G such that, on the atlas M, it takes the

form
G = ηµνdxµdxν + ηµνdx̃µdx̃ν + h(r)δijdyidyj + δij

h(r) (dỹi + Bikdyk)(dỹj + Bjkdyk) (3.3.2)

where the curvature of the gerbe and the harmonic function are respectively

H = *R4 dh, h(r) = 1 + m
r2 (3.3.3)

with m ∈ Z and r2 := δijyiyj radius in the four dimensional transverse space. Here, the atlas (M, ω, J) of the
bundle gerbe, with fundamental 2-form ω = dx̃µ ∧ dxµ + (dỹi + Bijdyj) ∧ dyi and {xµ , x̃µ} are coordinates on
T*R1,5 and {yi , ỹi} are local coordinates onM|R4−{0}.

Notice that this monopole is nothing but a globally-de�ned Berman-Rudolph monopole [12]. As observed by
[5], the Berman-Rudolph monopole gives rise to the non-geometric branes. In the global geometric context,
the arising of non-geometric branes was studied in [1].

Remark 3.29 (NS5-brane is higher Kaluza-Klein monopole). By higher Kaluza-Klein reduction of (3.3.2) to
M = R1,5 ×R+ × S3 we get the following metric and gerbe connection

g = ηµνdxµdxν + h(r)δijdyidyj , B = Bij dyi ∧ dyj (3.3.4)

which satisfy the conditions (3.3.3) on the transverse space. These are exactly the metric and Kalb-Ramond
�eld of an NS5-brane with H-charge m ∈ Z in 10d spacetime M.

Therefore, the higher Kaluza-Kleinmonopole encompasses a higher Diracmonopole fromde�nition 3.26, just
as the Kaluza-Klein monopole does with an ordinary Dirac monopole. The Kaluza-Klein brane appears when
spacetime is a non-trivial circle bundle and, analogously, the NS5-brane appears when the bundle gerbe is
non-trivial.

3.4 Recovering generalised geometry

Here we will show that generalised geometry is naturally recovered from the bundle gerbe perspective upon
imposition of the strong constraint, i.e. invariance under the principal BU(1)-action.

Remark 3.30 (Generalised geometry on the atlas). Let {∂M} = {∂µ , ∂̃µ} be the local coordinate basis of TM.
A vector on the atlas (M, J, ω) can be written in local coordinates as V = VM(α)∂M = vµ(α)∂µ + ṽ(α)µ ∂̃µ, where
the components VM(α) are locally de�ned. The fundamental 2-form ω will project this into a vertical vector
ω(V) = (ṽ(α)µ +B(α)µνvν(α))∂̃µ. Now, if we call {DA} the basis of globally de�ned vectors onM dual to the global
1-forms {EA}, we can write a vector on the atlas by V = VADA, where now the components VA are globally
de�ned. We can now express the isomorphism π* ⊕ ω in (3.2.8) by

VADA = vµ(α)∂µ +
(
ṽ(α)µ + B(α)µνv

ν
(α)
)
∂̃µ (3.4.1)
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Notice that, if we restrict ourselves to strong constrained vectors, i.e. vectors whose components VM(α) only
depend on the coordinates of the base manifold M, these are immediately sections of a Courant algebroid
twisted by the bundle gerbe G � M with local potential B(α).

We have already shown that strong constrained vectors on such an atlas reduce to sections of a Courant
algebroid. Now, we want to show that the bracket structure of the Courant algebroid also comes from the
bundle gerbe. This was mostly explored in [1].

We can now introduce the in�nitesimally thickened point

D1 := Spec(R[ϵ]/〈ϵ2〉). (3.4.2)

Notice that this is not a stack, i.e. D1 ∈ ̸ H. However, it is possible to de�ne a new (∞, 1)-category Hformal by
enlarging the categoryDi� of smoothmanifolds, onwhich the objects ofH are presheaves. It well-understood
that this can be achieved by using the category Di�formal of formal smooth manifolds, i.e. smooth manifolds
possibly equippedwith in�nitesimal extension. For details about this construction see [65, 83]. From now on,
we will commit a slight abuse of notation and we will denote Hformal just by H.

De�nition 3.31 (Tangent stack). We de�ne the tangent stack of a stack X ∈ H as the internal hom stack
TX := [D1,X ], where D1 is the in�nitesimally thickened point.

Remark 3.32 (Atiyah sequence of the bundle gerbe). For a given a bundle gerbe with connective structure
G

π−−→→ M, we can de�ne its tangent stack by TG = [D1, G ]. A direct calculation shows that [D1,M] = TM and
[D1, BU(1)conn] = BU(1)conn n bu(1)conn, where bu(1)conn is the stack of real line bundles with connection.
From this, we obtain the short exact sequence

0 ↪−→ G n bu(1)conn ↪−→ TG
π*−−−→→ π*TM −−→→ 0. (3.4.3)

This sequence is nothing but the stack version of the short exact sequence (3.2.6). If we also choose a connec-
tion B(α) for the bundle gerbe, we will have induced an isomorphism of stacks

TG ∼= π*TM ⊕ G n bu(1)conn, (3.4.4)

which is the stack version of the isomorphism (3.2.8).

De�nition 3.33 (Atiyah L∞-algebroid of the bundle gerbe). We can de�ne the Atiyah L∞-algebroid of our
bundle gerbe by atG := TG //BU(1)conn −� M, in perfect analogy with the Atiyah algebroid of a principal
bundle.

Remark 3.34 (Courant 2-algebra). The isomorphism (3.4.4) induces the isomorphism of L∞-algebroids on
the manifold M

atG ∼= TM ⊕s M × bu(1)conn, (3.4.5)

where⊕s is the semi-direct sum. This, on sections, gives the isomorphism of L∞-algebras

Γ(M, atG ) ∼= X(M) ⊕s bu(1)conn(M), (3.4.6)

where bu(1)conn(M) is the 2-algebra of line u(1)-bundles with connection on M. In [1] we showed that the
sections of such algebroid encode the in�nitesimal symmetries of a bundle gerbe with connective structure.
As also seen in [1], a section V ∈ Γ(M, atG ) can be expressed in Čech data as V = (v + ṽ(α), f(αβ)), where
v ∈ X(M) is a global vector �eld, ṽ(α) ∈ Ω1(Uα) is a collection of 1-forms on each patch Uα of M and f(αβ) ∈
C∞(Uα ∩ Uβ) is a collection of functions on each overlap Uα ∩ Uβ of M. These local data are glued according
to

ξ(α) − ξ(β) = −ιXdΛ(αβ) + df(αβ),
f(αβ) + f(βγ) + f(γα) = 0,

(3.4.7)
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where (Λ(αβ), G(αβγ)) is the Čech-Deligne cocycle corresponding to the connective structure of the bundle
gerbe G .

As shown by [35], the Lie 2-algebra structure of X(M) ⊕s bu(1)conn(M) is isomorphic to the Lie 2-algebra
structure of the standard Courant 2-algebra, whose 2-bracket is the Courant bracket [−, −]Cou. If we write
sections V ,W ∈ Γ(M, atG ) of the Atiyah L∞-algebroid on the atlas, in the notation of remark 3.30, we will
have the 2-bracket

[V ,W]Cou = [v, w]Lie + Lvw̃ − Lw ṽ − 1
2 d(ιvw̃ − ιw ṽ) + ιv ιwH, (3.4.8)

where H ∈ Ω3
cl(M) is the curvature of the gerbe.

Let us conclude this section by mentioning the relation between this stack perspective on generalised geom-
etry and symplectic dg-geometry.

Remark 3.35 (Relation with NQP-manifolds). It is well-understood that, given a L∞-algebroid a � M, its
Chevalley-Eilenberg dg-algebra CE(a) can be seen as the dg-algebra of functions on adg-manifold, also known
as NQ-manifold. In the case of the Atiyah L∞-algebroid, we have

CE(atG ) =
(
C∞(T*[2]T[1]M), QH

)
(3.4.9)

where the dg-manifold T*[2]T[1]M, called Vinogradov algebroid, is canonically symplectic, i.e. it is a NQP-
manifold. The Poisson bracket, combined with the di�erential QH , reproduces the Courant 2-algebra [78].
Inspired by this relation, a purely dg-geometric approach to Double Field Theory was developed by [28, 36–
38].

4 T-duality, non-geometry and bundle gerbes
Recall that we already described a linearised version of T-duality in remark 3.12, where we showed that every
couple of T-dual Lie 2-algebras share the same atlas.

T-duality

bundle gerbe

bundle gerbe

atlas atlas

"doubled space"

Figure 2: the "doubled space" seen as the atlas of both a bundle gerbe and its T-dual.
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If two di�erent bundle gerbes G and G̃ are T-dual, they will have the same atlas M. In other words, we will
have a correspondence

M

G G̃ .

Φ̃Φ (4.0.1)

This can be seen directly by looking at the Čech data of the T-dual bundle gerbes with the respective connec-
tions, as it was done in [1, 2]. It is not hard to see it from the isomorphism G ×M0 M̃ ∼= M ×M0 G̃ underlying
T-duality between G � M and G̃ � M̃.

As we will show in the next subsection, the lift of the T-duality to the atlas will be an isometry (M, J, ω) −→
(M, J̃, ω̃) of para-Hermitian manifolds, i.e. a smooth map which preserves the para-Hermitian metric
η(−, −) := ω(J−, −) ofM.

4.1 Topological T-duality

Lemma 4.1 (Topological T-duality on the doubled space). Let G
Π−−→→ M and G̃

Π̃−−→→ M̃ be two bundle gerbes
equipped with connection, such that they are T-dual. Then their atlases, respectively (M, J, ω) and (M, J̃, ω̃),
are related by a para-Hermitian isometry, i.e. a change of polarisation as de�ned by [69].

Proof. Let us start from the T-duality diagram of two topologically T-dual bundle gerbes. An atlas will sit on
top of the diagram as it follows:

M

G ×M0 M̃ M ×M0 G̃

G M ×M0 M̃ G̃

M M̃

M0

Φ Φ̃

Ππ π̃Π̃

Π ππ̃ Π̃

π π̃

(4.1.1)

Let us consider the atlas (M, J, ω) of the bundle gerbe G � M. Let ei ∈ Ω1(M) be the connection of the Tn-
bundle M � M0. As shown in [1, p. 46], we can expand the local 2-form potential of the bundle gerbe in the
connection ei ∈ Ω1(M) by

B(α) = B(0)
ij e

i ∧ ej + B(1)
(α)µidx

µ ∧ ei + B(2)
(α)µνdxµ ∧ dxν (4.1.2)

where B(0)
ij is a globally de�ned scalar moduli �eld on M and, therefore, we omitted the α-index. The corre-

sponding fundamental 2-form on the atlasM will be

ω =
(
ẽi + B(0)

ij e
j) ∧ ei + ẽµ ∧ eµ , (4.1.3)
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where we patch-wise de�ned the following global 1-forms on the atlas:

eµ = dxµ ei = dθi(α) + Ai(α)µdxµ

ẽµ = dx̃(α)µ + B(2)
(α)µνdxν ẽi = dθ̃(α)i + B(1)

(α)iµdxµ
(4.1.4)

Let us explicitly construct the para-Hermitian metric η of the atlas. This will globally be

η(−, −) := ω(J−, −) ⇒ η = ẽi � ei + ẽµ � eµ (4.1.5)

Since b := B(0)
ij e

i ∧ ej ∈ Ω2(M) is a global 2-form, the moduli �eld B(0)
ij ∈ C∞(M, so(n)) can be interpreted as

a global B-shift. Thus, there exists an isometry of our para-Hermitian manifold [69, p. 15] given by

ω′ = eb ω = ẽi ∧ ei + ẽµ ∧ eµ , (4.1.6)

By using this isometry, we forgot the moduli �eld and we retained only the topologically relevant component
of the connection. Now, let (M, J̃, ω̃) be the atlas of the bundle gerbe G̃ � M̃. Since we started from a couple
of T-dual geometric backgrounds G and G̃ , we already know that the potential 2-form of the latter is

B̃(α) = B̃(0)ij ẽi ∧ ẽj + Ai(α)µdxµ ∧ ẽi + B(2)
(α)µνdxµ ∧ dxν (4.1.7)

where B̃(0)ij is a global moduli �eld (which can be explicitly obtained by using the Buscher rules) and Ai(α)µ
is the 1-form potential of the Tn-bundle M � M0. Therefore, the T-dual corresponding fundamental 2-form
will be

ω̃ =
(
ei + B̃(0)ij ẽj

)
∧ ẽi + ẽµ ∧ eµ (4.1.8)

Similarly to the �rst bundle gerbe, b̃ := B̃(0)ij ẽi ∧ ẽj is a global 2-form and, thus, the map

ω̃′ = eb̃ ω̃ = ei ∧ ẽi + ẽµ ∧ eµ (4.1.9)

is an isometry of the para-Hermitianmetric. Now, let us call J′ and J̃′ the para-complex structures correspond-
ing to ω′ and ω̃′. We need to �nd a morphism of para-Hermitian manifolds f : (M, J′, ω′) −→ (M, J̃′, ω̃′) such
that ω̃′ = f *ω′ and check that it is an isometry. This is immediately the map f :

(
x(α), x̃(α), θ(α), θ̃(α)

)
7→(

x(α), x̃(α), θ̃(α), θ(α)
)
, which is given by the exchange of the torus coordinates θ and θ̃ on each chart and

is clearly an isometry. Therefore, by composition, we obtained an isometry eb ◦ f ◦ e−b̃ : (M, J, ω) −→
(M, J̃, ω̃).

Remark 4.2 (Buscher rules). In [1, p. 47], we also showed that the Buscher transformations (g(0)
ij , B

(0)
ij ) 7→

(g̃(0)ij , B̃(0)ij) of the moduli �eld of the metric and the Kalb-Ramond �eld follow directly from applying the
isometry of the lemma to the generalised metric, i.e. G̃ = f *G.

4.2 Non-geometric T-duality

We identi�ed the isometries of our atlas (M, J, ω) with changes of polarisation, i.e. with changes of T-duality
frame. However, in general, it is not be possible to identify the target (M, J̃, ω̃) of an isometry with the atlas
of another bundle gerbe. In general, we can also obtain an almost para-complex structure J̃ which is not
integrable. In this case, the backgrounddescribedby the transformedatlas (M, J̃, ω̃) is, then, a non-geometric
background.

For a detailed discussion of the non-geometric cases, such as T-folds, in the context of higher geometry and
atlases we redirect to [1, 2].
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5 Outlook
The correspondence between doubled spaces and bundle gerbes we explored in this paper sheds new light
on the global geometry underlyingDouble Field Theory.Moreover, it provides a higher geometric explanation
for the appearance of the extra coordinates and for para-Hermitian geometry. These results are particularly
important for the investigation of the other extended geometries, i.e. the exceptional geometries underly-
ing Exceptional Field Theories, whose globalisation is signi�cantly more obscure. In particular, the higher
geometric perspective will allow to �nd a generalisation of para-Hermitian geometry for Exceptional Field
Theory. Even if exceptional generalised geometry [33, 34, 77] is well-understood, such a generalisation is still
completely unknown. A generalised para-Hermitian formalism would be extremely fruitful, for example, in
the current research in exceptional Drinfel’d geometries [14, 67, 68, 73, 80, 81].
In [30–32], extended geometry has been studied in algebraic terms, in the light of representation theory.
The extended/higher correspondence will then provide a complementary global geometric perspective to
extended geometry, as well as new connections between higher geometry and representation theory.
Moreover, since the non-perturbative quantisation of strings and branes can be achieved by higher geometric
quantisation [22, 23, 39, 79], the close relation we established between extended and higher geometries will
have a profound impact on the problem of quantisation. This issue, among other ones, was started to be
studied in [3].
The higher structure which encompasses the global geometry of the C-�eld of 11-dimensional supergravity
can be seen as a bundle 5-gerbe twisted by a bundle 2-gerbe [41], which gives rise to the following diagram:

GM5 *

GM2 B6U(1) *

M B6U(1)//B2U(1), B3U(1),

ΠM5

fM5

ΠM2

fM2/5

fM2

(5.0.1)

where the twisted cocycle fM2/5 can be also generalised to a 4-cohomotopy cocycle M fM2/5−−−→ S4, where the
4-sphere can be given in terms of its minimal Sullivan dg-algebra by

CE(S4) = R[g4, g7]/〈dg4 = 0, dg7 + g4 ∧ g4 = 0〉, (5.0.2)

where g4 and g7 are respectively 4- and 7-degree generators. In the context of L∞-superalgebras, a notion of
super exceptional space R1,10|32

ex has been de�ned by [44, 46, 47]. Notice that, in its bosonic form, i.e.

R1,10
ex = R1,10 ⊕ ∧2(R1,10)* ⊕ ∧5(R1,10)*, (5.0.3)

can also be interpreted as the atlas of the linearised version of the twisted bundle 5-gerbe GM5 � M. If we
split the base space in time and space by R1,10 = R1

t ⊕R10, we obtain the decomposition

R1,10
ex = R10︸︷︷︸

pp-wave
⊕ ∧2(R10)*︸ ︷︷ ︸

M2-brane

⊕ ∧2R10︸ ︷︷ ︸
M9-brane

⊕∧5(R10)*︸ ︷︷ ︸
M5-brane

⊕ ∧6R10︸ ︷︷ ︸
KK-monopole

, (5.0.4)

which agrees with the description of brane charges in M-theory [59]. Notice that, if we split the base space in
an internal and external space by R1,10 = R1,3 ⊕R7, we obtain

R1,10
ex = R1,3 ⊕

(
R7 ⊕ ∧2(R7)* ⊕ ∧5(R7)* ⊕ ∧6R7

)
⊕ · · · , (5.0.5)
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where the terms we explicitly wrote correspond to the (4 + 56)-dimensional extended space underlying E7(7)
Exceptional Field Theory [57]. Moreover, the terms we omitted are mixed terms involving wedge products
betweenR1,3 andR7 which correspond to tensor hierarchies [27, 58] at 0-degree. Moreover, as already argued
by [4, sec. 9.2], the naturally expected structure generalising the fundamental 2-form to the exceptional case
would generally be an almost n-plectic structure. Recently, [82] proposed a local generalisation of the Born
σ-model of the string to the M-branes. These are equipped with 3- and 6-forms which appear to be closely
related to the transgression of the higher �eld whose curvature comes from the dg-algebra (5.0.2). All these
are strong hints that the correspondence between extended geometry and higher geometry via atlases can
be well-de�ned for the exceptional cases too.
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