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Quantum Kerr oscillators’ evolution in phase space: Wigner current,
symmetries, shear suppression and special states

Maxime Oliva and Ole Steuernagel∗

School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK
(Dated: March 20, 2019)

The creation of quantum coherences requires a system to be anharmonic. The simplest such
continuous one-dimensional quantum system is the Kerr oscillator. It has a number of interesting
symmetries we derive. Its quantum dynamics is best studied in phase space, using Wigner’s distri-
bution W and the associated Wigner phase space current J. Expressions for the continuity equation
governing its time evolution are derived in terms of J and it is shown that J for Kerr oscillators
follows circles in phase space. Using J we also show that the evolution’s classical shear in phase
space is quantum suppressed by an effective “viscosity”. Quantifying this shear suppression provides
measures to contrast classical with quantum evolution and allows us to identify special quantum
states.

I. INTRODUCTION

The formation of quantum coherences is of central im-
portance in the study of quantum systems and their dy-
namics.

Here we consider closed one-dimensional Kerr-type os-
cillators. These are anharmonic and can therefore create
coherences [1]. Additionally, their dynamics has circular
symmetry in phase space. This makes them the simplest
continuous system to create coherences.

In other words, the results reported here apply to
regular anharmonic systems (with Hamiltonians of the

form Ĥ = p̂2/2m + V (x̂), see [2] and [3]) but the Kerr-
oscillators’ symmetries make them particularly suited to
help us understand aspects of nonclassical effects in quan-
tum dynamics.

Wigner’s distribution W [4, 5] is the closest quantum
analog [2, 5–8] of the classical phase space distribution ρ.
In continuous one-dimensional systems the creation of
quantum coherences is represented by the creation of
negative regions of the Wigner distribution [2, 6, 7, 9, 10].
The formation of such negative regions in the Wigner dis-
tribution is easily monitored numerically.

The evolution of W is governed by the associated
Wigner phase-space current J (strictly speaking J is
a probability current density). Generally, phase-space-
based approaches are suitable for comparison of quantum
with classical dynamics [3, 6, 11]. Specifically, J allows us
to adopt a geometric approach [1–3, 12, 13] to studying
quantum dynamics.

We introduce Kerr oscillators, their Wigner distribu-
tion W , and their associated Wigner current J in Sec. II.
In Sec. III we show that there are no trajectories and no
phase-space flow for anharmonic systems such as Kerr
oscillators. In Sec. IV we investigate how pulses in phase
space smear out classical spirals [Fig. 1(b); in all figures
atomic units with ~ = 1, M = 1 and k = 1 are used]. We
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FIG. 1. Probability distributions in phase space.(a),
We start from a weakly excited coherent state |α〉 = |7/12〉
which is positive everywhere.(b), After time t = 60 under
classical time evolution, ρ(t) has formed a highly sheared and
tight spiral.(c), After the same time the quantum evolution
yields a Wigner distribution W (t) which has much less fine
detail but negativities (blue). The green line superimposed
on(c) traces out the Wigner distribution profile on a ring
around the origin with radius r = 1 which passes through an
area with pronounced negativity. Fig. 2 displays evolution on
this ring [Λ = 1

2
, see Eq. (4)].

find that pulses in phase space steepen and lengthen dy-
namically. This analysis is aided by the system’s circular
symmetry and the fact that the probability on circles in
phase space is conserved. In Sec. V we show that using
Wigner current J’s effective “viscosity” [3] allows us to
contrast classical with quantum dynamics and pick out
special quantum states.

Our results can be generalised to higher-dimensional
systems [4].

II. WIGNER DISTRIBUTIONS AND WIGNER
CURRENT OF KERR OSCILLATORS

A one-dimensional system’s Wigner distribution
W%(x, p, t) [4, 5] (where x denotes position, p the as-
sociated momentum, and t time), for a quantum state
described by a density matrix %̂, is defined as the Fourier
transform of its off-diagonal coherences %(x+ y, x− y, t)
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(parametrized by the shift y)

W%(x, p, t) =
1

π~

ˆ ∞
−∞

dy 〈x+ y|%̂(t)|x− y〉 e− 2i
~ py, (1)

where ~ = h/(2π) is Planck’s constant. By construction
W is normalized and nonlocal (through y). Unlike %̂, W
is always real-valued but, generically, W features nega-
tivities [4]. Since W% is %̂’s Fourier transform, W and %̂
are isomorphic to each other, allowing us to describe all
aspects of the quantum system’s state and its dynamics
using the Wigner representation of quantum theory [14].

A. Time evolution of the Wigner distribution

For conservative Kerr systems the time development
of W is given by the Moyal-bracket {{., .}} [14, 15]

∂tW (x, p, t) = {{H,W}} (2)

≡ 2

~
H(x, p) sin

(
~
2 (
←
∂ x
→
∂ p −

←
∂ p
→
∂ x)

)
W (x, p, t). (3)

Here, ∂x = ∂
∂x , etc.; the arrows over the derivatives in-

dicate whether they act on (point towards) Hamiltonian
or Wigner distribution.

The Hamiltonian of anharmonic single-mode oscilla-

tors of the Kerr type has the form

ĤΛ =

(
p̂2

2M
+
k

2
x̂2

)
+ Λ2

(
p̂2

2M
+
k

2
x̂2

)2

, (4)

with the oscillator mass M and spring constant k. Such
Hamiltonians describe electromagnetic fields subjected to
Kerr nonlinearities χ(3) (here Λ2 ∝ χ(3)) [16–19]. This
system is fully solvable since wave functions of the har-
monic oscillator are solutions to the Kerr Hamiltonian

with eigenenergies En = ~
√

k
M [(n+ 1

2 )+Λ2(n+ 1
2 )2]. Its

quantum recurrence time is

TΛ =
π

|Λ|2
. (5)

Following Wigner [4], we cast expression (3) in the form
of the phase-space continuity equation

∂tW + ∇ · J = 0 , (6)

where ∇ =

(
∂x
∂p

)
is the gradient, and J =

(
Jx
Jp

)
denotes the Wigner current in phase space [12]. J is
the quantum analog [20, 21] of the classical phase-space
current j = ρv [22] which transports the classical proba-
bility density ρ(x, p, t) according to Liouville’s continuity
equation ∂tρ = −∇ · j.

J reveals details [12, 13] about quantum systems’
phase space dynamics previously thought inaccessible
due to the supposed “blurring” by Heisenberg’s uncer-
tainty principle.

From now on we will consider M = k = 1 only. Then [for a derivation see Eqs. (22) and (23) in the Appendix VI],

with r = (x, p) = r(cos θ, sin θ), r =
√
x2 + p2 and ∆ = ∂2

x + ∂2
p , J can be written as

J =

(
p

−x

)[
1 + Λ2

(
x2 + p2 − ~2

4
∆

)]
W =

(
r sin θ

−r cos θ

)[
1 + Λ2

(
r2 − ~2

4
(∂2
r +

1

r
∂r +

1

r2
∂2
θ )

)]
W . (7)

J is tangent to circles concentric with the origin of phase space. This circular symmetry allows us to consider an
approximation of the dynamics on such individual circles, an observation we make use of below.

For future reference we split J into its classical j and
quantum terms JQ

J = j + JQ = Wv −
(
p

−x

)(
~2Λ2

4
∆

)
W. (8)

Here v =
(
p
−x
)
(1 + Λ2r2) is the classical phase-space ve-

locity. The quantum terms JQ are only present for an-
harmonic potentials [1], which is why only anharmonic
potentials create coherences. Harmonic systems’ phase-
space dynamics follows v and is classical, see Refs. [1, 2].

III. NO TRAJECTORIES OR FLOW IN
QUANTUM PHASE SPACE

Inspired by classical mechanics, there have been sev-
eral attempts to treat quantum phase-space evolution
as a flow along trajectories [2]. Such attempts are ill
fated [2] as we explain now. They use the formal fac-
torization J = Ww to define a “quantum phase-space
velocity” w = J/W , then the continuity equation (6)
assumes the form [2, 23, 24]

∂tW + w ·∇W +W∇ ·w = 0 . (9)

Here the convective term w ·∇W describes the transport
that carries W along with the current (following fieldlines
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in phase space) without changing its values. In contrast,
the current divergence term W∇·w changes values of W .
This is best seen by formally rearranging Eq. (9) for the
total derivative

dW

dt
= ∂tW + w ·∇W = −W∇ ·w . (10)

Treating a continuity equation in this form is known as
its Lagrange decomposition. This decomposition has to
be treated with extreme caution, since it essentially splits
the well behaved and finite term ∇ · J into the two in-
dividually singular terms w ·∇W and W∇ · w. Some
implications are discussed below.

For the Kerr system this total derivative is

dW

dt
= −Λ2~2

4

[
p

(
(∂xW )

W
− ∂x

)
−x
(

(∂pW )

W
− ∂p

)]
∆W = −Λ2~2

4
W∂θ

(
∆W

W

)
, (11)

and the convective transport term in Eq. (10) is

w ·∇W =

(
Λ2

[
−r2 +

~2

4W
∆W

]
− 1

)
∂θW. (12)

Since the divergence ∇ ·w is nonzero, the quantum evo-
lution does not preserve phase-space volumes [1, 2, 15].

One could still describe quantum evolution by phase-
space transport if the magnitude of this divergence were
finite across the entire phase space [2]. Indeed, modelling
quantum phase-space dynamics through such transport
along trajectories has been attempted many times; in
this context it has been considered an undesirable feature
of w that it is a singular quantity when W is zero (see
Ref. [2] for details). But zeros in W are unavoidable [25]:

The singularities in ∇ ·w are a fundamental and nec-
essary feature to create negative regions in W and thus
to create quantum coherences. Such singularities are not
a flaw. A velocity field w with positive divergence that
is bounded from above, B >∇ ·w > 0, will by itself not
be able to generate negativities. The associated expan-
sion of phase-space volumes can only reduce the initial
value W (0) > 0 of a density towards zero, since Eq. (10)
implies that [2, 23]

W (t)|comoving > W (0) exp(−Bt) > 0 (13)

for all times. Trahan and Wyatt noticed this and con-
cluded that “the sign of the density riding along the tra-
jectory cannot change” [23].

But this interpretation is incorrect. When W = 0 the
velocity w and its divergence is singular, Eq. (11) cannot
be integrated since w’s singularities render integrals and
associated bounds such as (13) ill-defined [2]. Therefore,
in anharmonic quantum systems neither trajectories nor
transport along flow lines exist [2]. (Refs. [21] and [12]
refer to Wigner “flow” but were written before this was
realized.)

Because of the singular volume changes associated with
Eq. (11), we feel the quantum Liouville equation (6)
should be called Wigner’s continuity equation instead.

We are forced to conclude that a trajectory-based ap-
proach to quantum phase-space evolution creates con-
tradictions such as singular w and singular phase-space

volume changes. This highlights the stark differences be-
tween classical and quantum dynamics in an illuminating
manner. The singularities in w and phase-space volume
changes are needed to violate inequality (13) thus allow-
ing for the creation of quantum coherences and negative
regions in W [1, 2].

IV. PULSES IN QUANTUM PHASE SPACE

In the classical case the probability (of ρ) on a classi-
cal trajectory of a conservative system is conserved over
time. It can be checked that the probability (of W ) on
a classical trajectory is not conserved for typical anhar-
monic quantum systems.

The quantum Kerr system is an exception as its evo-
lution preserves probability on rings around the origin:

‰
dθ ∂tW = −

‰
dθ ∇ · J = 0, (14)

since ∇ · J = r∂θ([v(r) − Λ2 ~2

4 ∆]W ). In addition to
the circular symmetry displayed in Eq. (7), this proba-
bility conservation on circles is the primary reason why
considering the Kerr dynamics on circles is suitable.

The classical velocity profile v(r) leads to the forma-
tion of fine detail in the classical evolution: in the case of
a Gaussian initial state, the state becomes wrapped into
a single tightly wound spiral [see Fig. 1(b)]. The quan-
tum evolution shows this tendency of spiral wrapping as
well, but while the formation of fine detail is suppressed
through “viscous” behaviour (see Sec. V), negativities of
the Wigner distribution emerge. To study this in more
detail, consider W on a ring of radius r, as displayed in
Fig. 2.

The quantum “cross-talk” terms ∂2
r + 1

r∂r in Eq. (7)
couple the current on adjacent rings. We can cast these
terms aside if we may assume that the Wigner distribu-
tion’s azimuthal curvature ∂2

θW is much greater than its
radial curvature and gradient. Making this assumption
temporarily, the velocity on a ring is approximately

w(r, θ) ≈ r
[
1 + Λ2

(
r2 − ~2

4r2

1

W
∂2
θW

)]
. (15)
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This approximation is obviously poor when W ≈ 0,
but Eq. (15) is still useful for the discussion that follows.

In Figs. 2-4 the full evolution is portrayed, not its ap-
proximate behaviour of Eq. (15). The axis “−θ” is chosen
in Figs. 2-4 since classical evolution proceeds clockwise,
in the direction of negative values of θ.

The effect of the θ-curvature term, retained in Eq. (15),
is primarily twofold: for a Wigner distribution on a circle,
forming a hump, the hump’s leading and trailing edges,
having positive curvature, get delayed. Conversely, the
negative curvature of the peak of the hump accelerates its
center (see Fig. 2). This lengthens the pulse, making the
tail trail, and sharpens its front since the center catches
up with the front (see Fig. 2). This sharpening in turn
spawns oscillations that project forward from the pulse
(see Fig. 2 and discussion in Ref. [26]).

A narrower pulse, as portrayed in Fig. 3, develops more
pronounced oscillations. Additionally, in Fig. 3, Λ is cho-
sen formally complex such that Λ2

− < 0. This creates
“backwards” dynamics when contrasted with a positive
Kerr-nonlinearity (compare Figs. 2 and 3: in Fig. 3 the
pulse lengths to the “right” and steepens and spawns os-
cillations to the “left”; in “reverse” to Fig. 2).

In Fig. 4, two pulses on a ring interfere with each other.
Here, like in Fig. 2, the overall effect is that the quantum
terms speed the pulses up.

V. J’S VISCOSITY AND SPECIAL STATES

In Sec. IV we discussed motion on a ring. Here we con-
sider cross talk between motion on neighbouring rings.

Over time classical Hamiltonian phase-space flow
shears ρ since v creates nonzero gradients of its angu-
lar velocity across energy shells. This flow is inviscid as
v is independent of ρ; thus no terms suppress the effects
of the angular velocity gradients, and, as time progresses,
nonsingular probability distributions in phase space get
sheared into ever finer filaments [see Fig. 1(b)].

The associated classical phase-space shear has been de-

FIG. 2. Time evolution of W (θ) on a ring with fixed ra-
dius r = 1.0 for initial coherent state |α〉 = |7/12〉 over time
t = 0 to TΛ/4 = 4π = 12.56 [Λ = 1

4
]. The darker and thin-

ner the curves, the more time has elapsed. The curves move
clockwise on the ring, towards increasing values of “−θ”. The
quantum evolution leads to a speedup over the classical evolu-
tion (the classical phase angle vt is subtracted). Additionally,
under quantum evolution the pulse widens and steepens at the
front, this triggers the formation of oscillations with negative
regions in front of the pulse which eventually catch up with
the main pulse from “behind”.

FIG. 3. Time evolution of W (θ) on a ring with fixed
radius r = 1.6 for initial coherent state |α〉 = |5/4〉 over
time t = 0 to TΛ−/4 = 12.56. Here the Kerr-nonlinearity is

negative, Λ2
− = −1/16, therefore the Wigner distribution is

wrapped anticlockwise and the center of gravity of the pulse
falls behind the classical motion (vt has been subtracted).
Contrast with Fig. 2.

FIG. 4. Time evolution of W (θ) on a ring with fixed
radius r = 1.6 for initial squeezed vacuum state (squeezing
parameter = 1/3) over time t = 0 to TΛ+ = π

4
= 0.785.

Here the Kerr-nonlinearity is positive, Λ2
+ = 1, therefore the

Wigner distribution’s center of gravity moves ahead of the
classical motion (vt has been subtracted): at time t = T1

4

(its recurrence time is shortened by T1
4

because the squeezed
state is symmetric with respect to the origin) the original
pulse reforms and is rotated forward, similar to Fig. 2.

rived in Ref. [3] as

s(x, p;H) = ∂∇̂H
(−∇× v) = ∂∇̂H

(∂pvx − ∂xvp). (16)

Here the directional derivative across energy shells, ∂∇̂H
,

is formed from the normalized gradient ∇̂H = ∇H/|∇H|
of the Hamiltonian H. Because of the Kerr system’s cir-

cular symmetry, ∇̂H = ∂r.
The sign convention using the negative curl in s in

Eq. (16) is designed to yield a positive sign for clockwise-
orientated fields since this is the prevailing direction of
the classical velocity field v. This choice yields s > 0 for
hard potentials (potentials for which the magnitude of
the force increases with increasing amplitude, i.e., Λ2 >
0), since they induce clockwise shear [see Fig. 1(b)]. s =
0 for harmonic oscillators (i.e., Λ = 0), and s < 0 for soft
potentials (for which the magnitude of the force decreases
with increasing amplitude, i.e., Λ2 < 0) since they induce
anticlockwise shear. The reaction of quantum dynamics
to classical shear s has to reside in JQ of Eq. (8). To
extract it we form the vorticity of JQ [3]:

δ(x, p, t;H) = −∇× JQ = ∂pJ
Q
x − ∂xJQp . (17)

δ’s sign distribution shows a pronounced polarization
pattern, see Fig. 5.

Specifically, for a system with clockwise shear Fig. 5(b)
illustrates that δ(HΛ+

) [with Λ2
+ = +(1/4)2] tends to
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FIG. 5. Polarization of the vorticity δ and inversion
of this polarization. (a), The Wigner distribution W of a
Gaussian initial state centered on x = −4, p = 0 and evolved
to t = 40 using ĤΛ+ = Ĥ1/4. Its contours (for emphasis the
zero contour is shown as black-green dashed lines) are also
employed in (b) and (c). The inset for W in (a) is repro-
duced showing the effects of,(b), clockwise shear [δ(HΛ+)]
and,(c), anticlockwise shear [δ(HΛ−)]. Comparing (b) with
(c) demonstrates polarization inversion of δ associated with
shear inversion of the system, here Λ2

+ = +(1/4)2 = −Λ2
−.

be positive on the inside (towards the origin) and nega-
tive on the outside of the positive main ridge of W [see
inset of Fig. 5(a)]. Because of this, the outside is be-
ing slowed down while the inside speeds up. This po-
larized distribution of δ therefore counteracts the classi-
cal shear (sHΛ+

> 0) and can suppress it altogether [3].

The same applies to other positive regions of W , whereas
for its negative regions the current J tends to be in-
verted [12, 13], inverting δ’s polarization pattern [see
Ref. [3] and Fig. 5(b)].

When the same state W is governed by a Hamilto-
nian HΛ− with anticlockwise shear [3] [i.e., (Λ−)2 < 0],
δ(HΛ−) tends to be the sign-inverted form of δ(HΛ+

) (for
Kerr systems we find δ(HΛ+

) = −δ(HΛ−) if |Λ+| = |Λ−|).
This is illustrated in Fig. 5(c), where Λ2

− = −(1/4)2 is
negative, whereas in Fig. 5(b) Λ2

+ = +(1/4)2 is positive.

The distribution of δ’s polarization can be picked up
with the directional derivative ∂∇̂H

δ(t;H) = ∂rδ(t;H).
This we multiply with W , because negative regions of W
invert the current J [12], and because we want to weight
it with the local contribution of the state. The result-
ing local measure for weighted shear polarization is [3]
π(x, p, t;H) = W (t) ∂rδ(t;H). Its average across phase
space is W ’s shear polarization [3]

Π(t;H) = 〈〈π(t;H)〉〉 =

¨ ∞

−∞
dxdp π(x, p, t;H) . (18)

Fig. 6 illustrates that Π(t) initially drops and after a
while levels off.

We emphasize that the levelling-off behaviour of Π(t) is
in marked contrast to the classical case: for long enough
times, in simple bound-state classical systems nonsingu-
lar states ρ(t) get stretched out linearly [3] into ever finer
threads [see Fig. 1(b)] therefore 〈〈∂r(−∇ × j)〉〉 ∝ t [3].
The quantum evolution counteracts this classical shear s
resulting in values of the shear suppression Π which are
opposite in sign to those of s [3] (for the Kerr system
sgn[s]=sgn[Λ2]).

Moreover, starting from an initial Gaussian state, the
magnitude |Π(t)| initially grows the more the evolution
stretches out the state into finer structures. Eventually
quantum shear suppression stops classical shear from cre-
ating finer structures in phase space [3]: |Π(t)| levels off.

In other words, the quantum evolution is effec-
tively “viscous”. This viscosity is the mechanism by
which quantum evolution enforces that W can typically
not form structures below the size scale identified by
Zurek [6]. Therefore, Π(t) settles when the state has
formed structures at the Zurek scale. This can, e.g., be
quantified by monitoring the phase-spatial frequency
content of W as a function of time (for details see Ref.[3]).

Yet, quantum evolution is not truly viscous, it allows
for revivals. Interestingly, these are picked up by the

FIG. 6. Smoothed Π(t) picks out special states. De-
viations of Π(t) from the settled value (≈ −115) single out
special states: the evolution shows recurrence of the initial
state at time TΛ+ = 16π ≈ 50.3 (Λ+ = 1/2). Pronounced
peaks and troughs at intermediate times identify fractional
revival states [27] with special n-fold symmetries.
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deviation of Π(t) from the local time average. For the
Kerr system, the special states for which this deviation is
largest are (fractional) revival states [19, 28] (see Fig. 6).

We emphasize that such revival states are traditionally
picked up through the overlap of the evolved state with a
suitably chosen reference state (such as a Gaussian initial
state) [28], instead, our measure Π(t) does not depend on
a reference state, this makes it more versatile than the
use of wave-function overlaps.

We note that graphs of Π(t) for anharmonic systems
that do not have the symmetry of the Kerr system carry
high frequency oscillations [3], whereas, due to the sym-
metry of the Kerr system, such oscillations are absent
here. Generally, for other anharmonic systems without
circular symmetry, graphs of as smooth as those for Π(t)
obtained in Fig. 6 require frequency filtering [3]. In ad-
dition to the symmetries identified above, also in this re-
gard are Kerr oscillators the simplest possible continuous
quantum systems that alter quantum coherences.

To conclude, quantum dynamics that generates coher-
ences in continuous systems is most easily studied in
phase space and using Kerr systems, since these have
special symmetries. The two symmetries we have iden-
tified are circular phase-space current J, Eq. (7), and

probability conservation for W on rings, Eq. (14). These
imply the absence of high-frequency components in Π(t)
of Eq. (18), see Fig. 6. We also have identified a quantum
speedup of the propagation of wave-function pulses in
phase space and we demonstrate that the dynamics of the
Kerr system is “effectively viscous”. This can be quanti-
fied, explains the emergence of Zurek’s scale for the for-
mation of minimum structures in quantum phase space,
and can be used to pick out special quantum states.

The geometric nature of our approach helps us to
guide the understanding of the generation of coherences
in quantum dynamics and the formation of negativities
of W and will hopefully help pave the way to devise
new strategies to protect coherences (for related ideas
see Ref. [26]).
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VI. APPENDIX

The Hamiltonian of anharmonic single-mode oscillators of the Kerr type has the form (4)

HΛ =

(
p2

2M
+
k

2
x2

)
+

(
Λ
p2

2M
+ λ

k

2
x2

)2

, (19)

with Λ = λ. Here we keep the two parameters Λ and λ distinct to allow us to tune the system’s nonlinearities
independently and help with keeping track of terms in the derivation of the form of J.

The Wigner distribution of the Kerr oscillator obeys the phase-space continuity equation (3) [18, 29, 30]

∂tW (x, p, t) = {{H,W}} =
2

~
H(x, p) sin

(
~
2 (
←
∂ x
→
∂ p −

←
∂ p
→
∂ x)

)
W (x, p, t) (20)

=

([
−Λ2 ~2

4M2
p∂3
x + λ2 ~2k2

4
x∂3

p −
{

Λλ
kxp2

M
+ λ2k2x3

}
∂p

−Λλ
~2k

4M
p∂x∂

2
p + Λλ

~2k

4
x∂p∂

2
x +

{
Λ2 p

3

M2
+ Λλ

kx2p

M

}
∂x

]
+

p

M
∂x − kx∂p

)
W (x, p, t). (21)

The square brackets enclose the terms arising from the Kerr Hamiltonian’s anharmonic part, whereas the terms
p
M ∂x − kx∂p stem from the harmonic oscillator contribution p2/(2M) + kx2/2.

The associated Wigner current components (6) are

Jx =

[
~2

(
−Λ2 1

4M2
p∂2
x − Λλ

k

4M
p∂2
p

)
+

{
Λ2 p

3

M2
+ Λλ

kx2p

M
+

p

M

}]
W (x, p, t) (22)

and Jp =

[
~2

(
λ2 k

2

4
x∂2

p + Λλ
k

4M
x∂2

x

)
−
{
λ2k2x3 + Λλ

kxp2

M
+ kx

}]
W (x, p, t). (23)

The curly brackets in Eqs. (22) and (23) contain the classical Hamiltonian current terms, and the round brackets
contain the quantum terms.

To justify this assignment, note that the first term in Jp is of the form ~2

4·3!∂
3
xV ∂

2
pW [4, 12] and thus has to be assigned

to Jp, while the first term of Jx is its “partner” term for the position case. What remains somewhat ambiguous is
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whether the second terms in (22) and (23) have been assigned correctly. To highlight this ambiguity consider

J (σ)
x = Jx + σΛλ

~2k

4M

[
x∂p∂x + p∂2

p

]
W (x, p, t) (24)

and J (σ)
p = Jp − σΛλ

~2k

4M

[
x∂2

x + p∂x∂p
]
W (x, p, t), (25)

parametrized by the interpolation parameter σ with 0 ≤ σ ≤ 1. This interpolation fulfils the continuity equation (6)
since the σ-dependent terms are divergence-free for 0 ≤ σ ≤ 1.

To remove the ambiguity we can use Wigner current plots. We notice that the field plots of J(σ 6=0) do not “make
sense” [see Fig. 7: J(σ=0) of Eqs. (22) and (23), or Eq. (7) is the correct Wigner current expression].

We emphasize that this circular symmetry of J, derived for W formed from a superposition of two states, carries
over to the case of general W since any W can be decomposed into sums of two-state superpositions.

FIG. 7. Wigner distribution, incorrect and correct Wigner current patterns for state (|0〉+ |1〉)/
√

2. With Λ = λ
the dynamics of this superposition state is isomorphic to that of the harmonic oscillator, except for an extra phase due to the
Kerr oscillator’s different energy spectrum. The incorrect expression J(σ=1) for the current (middle panel) does not respect this

isomorphism; it breaks the system’s circular symmetry and is therefore discarded. The correct expression J(σ=0) for the current
is depicted in the right-hand panel. The region represented by green is that where W < 0; this leads to current inversion [12].
For the Kerr system the only point of stagnation [12] of the current is the coordinate origin. When the current stagnates
elsewhere in phase space, it forms lines of stagnation [13].
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