
designs

Article

A Lazy Bailout Approach for Dual-Criticality Systems
on Uniprocessor Platforms

Saverio Iacovelli † and Raimund Kirner *,†

The School of Engineering and Computer Science, University of Hertfordshire, College Lane,
Hatfield AL10 9AB, UK; savio.iacovelli@yahoo.com
* Correspondence: r.kirner@herts.ac.uk; Tel.: +44-1707-28-4125
† These authors contributed equally to this work.

Received: 20 October 2018; Accepted: 28 January 2019; Published: 1 February 2019
����������
�������

Abstract: A challenge in the design of cyber-physical systems is to integrate the scheduling of tasks
of different criticality, while still providing service guarantees for the higher critical tasks in the
case of resource-shortages caused by faults. While standard real-time scheduling is agnostic to
the criticality of tasks, the scheduling of tasks with different criticalities is called mixed-criticality
scheduling. In this paper, we present the Lazy Bailout Protocol (LBP), a mixed-criticality scheduling
method where low-criticality jobs overrunning their time budget cannot threaten the timeliness of
high-criticality jobs while at the same time the method tries to complete as many low-criticality
jobs as possible. The key principle of LBP is instead of immediately abandoning low-criticality jobs
when a high-criticality job overruns its optimistic WCET estimate, to put them in a low-priority
queue for later execution. To compare mixed-criticality scheduling methods, we introduce a formal
quality criterion for mixed-criticality scheduling, which, above all else, compares schedulability
of high-criticality jobs and only afterwards the schedulability of low-criticality jobs. Based on this
criterion, we prove that LBP behaves better than the original Bailout Protocol (BP). We show that
LBP can be further improved by slack time exploitation and by gain time collection at runtime,
resulting in LBPSG. We also show that these improvements of LBP perform better than the analogous
improvements based on BP.

Keywords: real-time systems; Fixed-Priority Preemptive Scheduling (FPPS); mixed-criticality
systems; cyber-physical systems

1. Introduction

Cyber-physical systems (CPS) typically require the integration of services of different criticality.
At the same time, it is important that tasks of lower criticality have limited leverage to influence
the schedulability of tasks with higher criticality in the case of resource shortages. Traditional
real-time scheduling protocols, such as rate-monotonic scheduling (RMS) or earliest deadline first (EDF) [1],
give priority to jobs with the most strict timing requirements. This approach works well as long as
it can be assured that enough resources are available to schedule all tasks. However, in cases where
availability of enough resources cannot be guaranteed, traditional real-time scheduling methods miss
the flexibility to prioritise the resources to tasks of higher criticality.

Research on mixed-criticality scheduling protocols [2,3] has been started to overcome this
limitation. The basic idea of mixed-criticality scheduling protocols is that, as long as enough resources
are available, the scheduling priorities are defined by a real-time scheduling protocol. In the case
of a resource shortage, e.g., a job overrunning its estimated worst-case execution time (WCET) [4],
the tasks’ criticalities are used as the primary criterion to allocate resources. A task’s criticality can be
derived from different aspects. One possibility is to express the relative importance or relative utility

Designs 2019, 3, 10; doi:10.3390/designs3010010 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
https://orcid.org/0000-0002-8922-8452
https://orcid.org/0000-0003-3921-6813
http://www.mdpi.com/2411-9660/3/1/10?type=check_update&version=1
http://dx.doi.org/10.3390/designs3010010
http://www.mdpi.com/journal/designs

Designs 2019, 3, 10 2 of 26

of different services in a system as their criticality [5]. Another possibility is to express the relative
level of assurance, for example, dictated by different development standards for safety critical or
relevant systems, such as DO-178C [6] in the avionics domain, ISO26262 [7] in the automotive domain,
or IEC 61508 [8] in the automation domain as different levels of criticality. However, the meaning
of criticality is still sometimes subject of discussion, with Esper et al. assuming different execution
modes [9] not originally described by Vestal [2]. In this paper, we do not mandate a specific procedure
for defining criticality levels, as this is an orthogonal issue to the mixed-criticality scheduling discussed
in this paper.

To apply mixed-criticality scheduling, at least two levels of criticality have to be defined, typically
labelled as LO (low-criticality) and HI (high-criticality). A common approach is to assume for LO
tasks only the knowledge of easy to derive optimistic WCET estimates while for HI jobs also a higher
level of assurance based on safe upper WCET bounds is assumed. The active research challenge is to
find ways to effectively combine the resource prioritisation based on criticalities with the scheduling
priorities based on real-time constraints.

Recent mixed-criticality scheduling approaches are the Bailout Protocol (BP) by Bate et al. [10]
and its extension that exploits the system slack time, named Bailout Protocol-Slack (BPS). The authors
afterwards presented further extended versions of the BP, aiming at a higher utilisation of LO jobs.
Such extensions use a dynamic approach to deploy gain times in order to reduce the duration and
number of times the system switches to high-criticality execution mode and are denoted as Bailout
Protocol with Gain Time (BPG) and Bailout Protocol-Slack and Gain Time (BPSG) [11].

This article contains the following contributions:

1. Lazy Bailout Protocol (LBP), which is a mixed-criticality scheduling protocol inspired by the Bailout
Protocol (BP) from Bate et al. [10,11], is introduced. Compared with BP and its derivatives, LBP
does not abandon jobs immediately but rather keeps them for potential later execution during
idle periods of the processor.

2. A formal criterion to compare different mixed-criticality scheduling protocols with priority given
to high-criticality jobs is defined.

3. LBP is combined with the complimentary techniques used in BPG, BPS and BPSG, resulting in
LBPG, LBPS and LBPSG, respectively, proving that LBP and its derivatives perform better than
their corresponding BP-based protocols according to such a formal criterion.

4. The comparison and evaluation of BP, LBP and their derivatives protocols in a hard real-time
setting is presented.

Section 2 presents an overview of the state of the art in mixed-criticality scheduling. A precise
presentation of the scheduling problem is presented in Section 3. We present a new mixed-critcality
approach named LBP in Section 4 that does not suddenly abandon LO task instances during resource
shortages. In Section 5, we derive formal properties of LBP and its derivatives. Section 6 provides
an experimental evaluation of the performance of the LBP-based approaches compared with other
methods. Section 7 concludes the article.

2. Related Work

Most of the works about mixed-criticality systems that have been published by the real-time
scheduling research community is based on a model proposed by Vestal [2]. The system model consists
of a set of periodic tasks that perform functions having different criticalities and requiring different
levels of assurance. Each task may have a set of alternative worst-case execution times, with each
assured to a different level of confidence. The more confidence one needs in a task execution time
bound, the larger and more conservative that bound tends to become in practice. The final aim was to
guarantee that safety-critical task instances do not miss their deadlines.

Crespo et al. reviewed the challenges of applying mixed-criticality in control systems and
studied the possibility of using virtualisation as basis for building mixed-criticality partitioned

Designs 2019, 3, 10 3 of 26

software architectures [12]. Their work reviews the challenges connected to systems with virtual
partitions having different criticality that are executed in an independent way. Such systems are based
on a hypervisor that provides temporal, spatial and fault isolation among partitions that contain
components that have to be guaranteed at different assurance levels and on hierarchical scheduling as
strategy to process jobs.

Ernst and Natale provided an explanation about the meaning of criticality and a review about
the mixed-criticality model in current real-time research [13]. They highlighted how functional safety
standards usually provide the basis to design industrial mixed-criticality systems. In fact, all industrial
safety standards classify different levels of concern, called Safety Integrity Levels (SIL) in IEC 61508,
Automotive Safety Integrity Levels (ASIL) in ISO 26262 or Design Assurance Level (DAL) in DO-178C.
Each level involves a certain likelihood to perform successfully the required functions under certain
conditions and within a stated period. In such standards, the definition of criticality levels is usually
obtained as a result of a Failure Modes, Effect and Criticality Analysis (FMECA) process. However,
these standards focus on the safety targets while engineers normally focus on metrics such as cost,
performance and power consumption that are often in conflict with safety requirements. Such contrast
grows with the autonomous driving and with the integration challenges derived from cyber-physical
systems and Internet of Things.

Burns and Davis published a survey of research on mixed-criticality systems [14].The review
contains an historical introduction of the topic and the challenges faced in developing better
mixed-criticality on both single- and multi-processor systems. The key question emerging from
their work is how to reconcile the conflicting requirements of partitioning for safety and sharing
for efficient resource usage. Lastly, the review contains criticisms and limits of the current
mixed-criticality approaches.

In 2011, Baruah et al. extended Vestal’s model by proposing a refinement named Adaptive
Mixed-Criticality (AMC) protocol together with related mixed-criticality response-time analysis
techniques [15]. Such mixed-criticality schedulability tests have been recently extended for task sets
containing tasks with arbitrary deadlines [16]. In 2013, Fleming et al. extended the response time
bound techniques and the AMC protocol to work with multiple criticality levels [17]. The AMC
protocol assumes two execution modes, a low-criticality mode (indicated as LO) and a high-criticality
mode (indicated as HI). Once the system goes into the high-criticality mode, all LO task instances are
abandoned and the system remains in that mode. However, to move mixed-criticality research into
industrial practice, it is important to implement protocols whose runtime behaviour is acceptable for
system engineers. Abandoning all LO tasks in high-criticality mode is not an acceptable behaviour and
the system should return to the low-criticality mode, where all functionalities are provided, as soon as
conditions are appropriate. Therefore, a simple but necessary extension to AMC is to allow a switch
back to the starting mode when the system experiences an idle instant.

However, going back to the low-criticality starting mode only in case of idle instants leads to a high
amount of LO tasks interrupted or abandoned and this is still not satisfactory. Different complementary
ways of guaranteeing a higher level of service for LO tasks have been proposed, e.g., extending their
periods and/or deadlines such as in the elastic task model [18] or reducing their execution times by
switching to a simpler version of the software [19].

The Priority May Change (PMC) strategy has been proposed to better manage the overload
situations in which higher priority LO tasks could preempt lower priority HI tasks [20]. The AMC
algorithm assigns a single priority to each task by considering together both low- and high-criticality
modes, whereas PMC computes priorities in two steps. Firstly, priorities are assigned to tasks according
to some predefined policy such as deadline monotonic [21] and such priorities are used while the
system is in low-criticality execution mode. Once the system switches to high-criticality mode, HI task
priorities are re-assigned according to a priority ordering policy that is optimal for tasks with release
jitter [22]. However, PMC does not dominate the standard AMC but it has performances similar to it.

Designs 2019, 3, 10 4 of 26

In 2014, Fleming and Baruah proposed a scheme in which system designers can assign to
lower critical functionalities a utility that is used to decide in which order their instances have to be
suspended during an overload occurrence [23]. Such method allows the system designer to control
how non-critical functionalities degrade after the most critical ones overrun their optimistic time
threshold. The utility value is assigned as an ordinal scale [24] to provide a predefined order in which
LO task instances are abandoned, with least important task instances being abandoned first. The
authors adapted the Audsley priority assignment technique [25] to assign lower priority to lower
utility LO tasks. Such protocol allows increasing performances for LO tasks and processing them for
a significantly increased amount of time.

Somehow, the former methods considered thus far allow for LO task invocations to execute after
a criticality mode change but they are mainly best effort and do not have a predefined minimum
threshold guaranteed for lower critical tasks. Since most hard real-time systems could miss some
deadlines provided that it happens in a known and predictable way, the Adaptive Mixed Criticality
with Weakly-Hard constraints (AMC-WH) was introduced in 2015 [26] and represents an extension
of AMC [15] that integrates the notion of weakly-hard constraints. The definition of weakly-hard
real-time system was given in 2001 [27] to indicate systems in which hard real-time tasks are permitted
to miss some deadlines as long as the number of missed deadlines is strictly bounded. The AMC-WH is
a scheduling policy that allows a number of consecutive instances per LO task to be skipped during the
high-criticality execution mode. This reduces the overall system load, frees more resources for highly
critical tasks and provides a degraded but guaranteed minimum quality of service for LO tasks upon
a criticality mode change. The number of skips permitted and the number of subsequent deadlines
that must be met could be a requirement deduced either from the design of a control algorithm [28] or
from physical properties of the system. Even if AMC-WH allows scheduling more LO task instances if
compared with previous policies, it does not provide a fast recovery from the high-criticality execution
mode since it is still necessary to wait for idle instants to go back to the starting mode. This leads to
unnecessary abandonments of LO instances.

Such problem was considered with the Bailout Protocol (BP) [10]. The BP still represents an AMC
refinement and hence exhibits both low- and high-criticality execution modes. The low-criticality
mode is named Normal mode while the high-criticality execution mode is represented by both the
Bailout and Recovery modes. Similar to AMC, the system starts its execution in the LO criticality mode,
Normal mode, and whenever a HI job exceeds its optimistic WCET, then it switches to the Bailout mode.
The protocol aims to restore the normal execution mode as soon as possible to minimize the number of
LO instances that miss their deadlines or are not executed at all. LO tasks are still abandoned during the
high-criticality execution but they contribute to make the switch back to the starting execution mode
faster by means of a Bailout Fund (BF). In fact, if BF becomes not strictly positive during the Bailout
mode, the system enters the Recovery mode to allow the lowest priority pending HI job to complete its
execution before going back to the Normal mode without waiting for an idle instant. Once the system
is back to the starting mode, all lower critical functionalities start again to be processed with their full
timely behaviour. The strength of this protocol is that to provide an effective control mechanism to
go back to the low-criticality mode, where all jobs can start and being processed. However, the main
weakness of BP is that to immediately drop low-critical instances during the high-criticality modes.
Because of this, the percentage of LO jobs that miss their deadlines is still high.

An orthogonal approach to improve the overall service for LO tasks is based on a method
introduced by Santy et al. [29]. This approach was subsequently refined by Burns and Baruah [19]. They
scaled up the optimistic WCETs of HI tasks using sensitivity analysis until the system is schedulable.
If used together with the BP the resulting protocol is named Bailout Protocol-Slack (BPS). More recently,
Bate et al. further refined BP with a second complementary technique [11]. Such approach consists
of an update of the optimistic time budget made at runtime by collecting the so-called gain time, i.e.,
the spare CPU time not required at runtime by task instances. These techniques allow reducing both
the number of times and the duration the system executes in high-criticality modes. By combining

Designs 2019, 3, 10 5 of 26

the online gain time collection with BP, the authors introduced two new scheduling protocols that are
named Bailout Protocol-Gain Time (BPG) and Bailout Protocol-Slack and Gain Time (BPSG).

3. System Model

In the following, the system model used for task sets is described. A dual-criticality system,
which consists of multiple tasks, where each task has a criticality l ∈ {LO, HI} with HI being of higher
criticality than LO, is assumed. As discussed in Section 1, the criticality of a task can be derived by
different means but no specific interpretation of criticality is assumed, as this is orthogonal to the
scheduling method presented in this paper. Furthermore, it is assumed that the processor is the only
resource that is shared among tasks, and that the overheads due to the scheduling operations and
context switches can be bounded by a constant included within each task worst-case execution times.

We consider a set of independent and sporadic tasks τ that has to be processed on uniprocessor
systems and that consists of two sub sets:

τ = τLO ∪ τHI (1)

with
τLO = {τi ∈ τ | li = LO} (2)

τHI = {τi ∈ τ | li = HI} (3)

where τHI is the subset of tasks that are highly critical and τLO is the subset of tasks that are not highly
critical within the system.

The tasks represent scheduling units that the system has to perform. An individual task τi ∈ τ is
represented by the following tuple:

τ = 〈T, D, CLO, CHI, L〉

where T is the period, D is the relative deadline, CLO and CHI are, respectively, the optimistic and
the pessimistic worst case execution times and L ∈ {LO, HI} refers to the criticality. In this paper, for
simplicity, we assume implicit deadlines, i.e., tasks with deadlines equal to their periods: D = T.

A job is an instance of a task at runtime, i.e., a job represents the actual object processed by
the scheduler and inherits almost all properties from the task that generates it plus the arrival time
A as below:

ji = 〈A, D, CLO, CHI, L〉

The LO tasks and, as a consequence, their relative jobs do not have a known safe WCET bounds
CHI, since safe worst-case execution times are rather costly to obtain and thus provided only for HI
tasks. Once it finishes its execution, each job ji has got a computation time et(ji) that can vary for each
specific job of the same task. The job set produced by an individual task τi is indicated by J(τi) while
J(τ) is the job set produced by all tasks belonging to the task set τ. Therefore, τ represents the set
of activities that have to be performed by the system while J represents the set of concrete process
instances that have to be considered by the scheduler.

The jobs produced via the task set are scheduled according to the standard fixed-priority fully
pre-emptive real-time scheduling. However, the traditional fixed-priority scheduling is unaware of
criticality of task instances and scheduling decisions are only made according to priority that indicates
the job timing requirements. Therefore, it is also used a protocol that considers the task’s criticality to
meet the mixed-criticality requirements. The following assumptions are made about the task set and
the underlying real-time scheduler, i.e., fixed priority fully pre-emptive scheduling:

Assumption 1. All HI and LO jobs together are schedulable with the underlying real-time scheduling method
with respect to their CLO.

Designs 2019, 3, 10 6 of 26

Assumption 2. All HI jobs alone are schedulable with the underlying real-time scheduling method with respect
to their CHI. Since CHI is a safe WCET bound, i.e., et ≤ CHI, this assumption also implies that the HI jobs alone
are schedulable with respect to their actual execution time.

Assumption 3. All HI jobs are schedulable with respect to their CHI, while also assuming the execution of all
LO jobs arrived in Normal mode with respect to their CLO.

Note that Assumption 3 is required so that, while LO tasks are allowed to run within their CLO,
it is still ensured that all HI tasks are still schedulable within their CHI. Assumption 3 is based on jobs
rather than tasks as it covers the moment in time when a HI task overruns its CLO. In addition, note
that Assumption 2 is just a weaker case of Assumption 3, without the LO tasks considered.

4. The Lazy Bailout Protocol

The standard BP is an adaptive protocol to schedule mixed-criticality job sets. The strength of BP
is providing an effective and fast control mechanism to go back to the low-criticality mode, where all
jobs can start and being processed. However, the main weakness of BP is immediately abandoning LO
jobs in case of resource shortage, which leads to a high percentage of jobs that miss their deadline.

The Lazy Bailout Protocol (LBP) is built upon BP and inherits from it the following three execution
modes that work as specified below:

1. Normal: It is the starting system execution mode. It corresponds to a low-criticality mode where
all jobs within the system are supposed to be processed correctly according to the CLO threshold.

2. Bailout: It is the emergency mode that is entered whenever a HI job overruns its CLO.
3. Recovery: It is the emergency mode that is entered to allow the last pending lowest priority HI job

to complete before going back to Normal mode.

Figure 1 shows the components of LBP. The LBP filter is responsible for changing the execution
modes. The system has two ready queues for jobs: the high-priority queue represents the BP ready
jobs queue while the low-priority queue keeps the LO jobs that have been released during Bailout or
Recovery modes or that have exceeded their CLO. Note that LO jobs inserted into the low-priority
queue run until their deadline and only when the high-priority queue is idle. Thus, such jobs cannot
lead to any deadlines being missed. There are two job monitors to check, respectively, LO and HI
jobs that overrun their CLO. ET-MonLO signals to the real-time scheduler the LO jobs that have to be
inserted within the low-priority queue while ET-MonHI communicates to the LBP filter when a HI job
exceeds its optimistic WCET to switch the execution mode to Bailout.

LBP	Filter	

ET-MonLO	

ET-MonHI	

high-priority	queue	

low-priority	queue	

FP	Preemptive	Scheduler	

SHI	

SLO	

New	job	

SM	

Figure 1. LBP architecture.

Similar to BP, LBP inherits from AMC the system execution behaviour, i.e., the system starts in
a low-criticality execution mode and whenever a HI job exceeds its optimistic WCET, the system
switches to a high-criticality execution mode where any LO job execution is prevented. Finally,

Designs 2019, 3, 10 7 of 26

the system goes back the starting execution mode in case of idle instant. Furthermore, LBP inherits
from BP the control mechanism that is in charge of the execution mode changes that permits a fast
recovery from the Bailout/Recovery modes back to the Normal mode. Such mechanism is based
not only on the detection of a idle instant but also on the value of a decision variable named Bailout
Fund (BF). It is worth noting that LBP, as well as AMC and BP, implement dispatching policies that
are independent and separated from the priority assignment used. Moreover, since a fixed-priority
scheduler is used, no priority change is allowed. Figure 2 shows how the execution mode changes in
the scheduling protocol. It contains the events that trigger the switch to a different execution mode
together with the related update of the BF value. The system starts in Normal mode and then, if any
HI job overruns its CLO, the BF variable is initialised and there is a change to Bailout mode. Once the
system is in this mode, the BF variable is updated with the earlier completion of jobs, the release of
new LO jobs or the HI jobs overrunning their CLO. If an idle instant occurs, then Normal mode is
entered, whereas, if the BF becomes zero, then Recovery mode is entered. After the pending lowest
priority HI job completes its execution in Recovery mode, the system goes back to Normal mode.

Normal Bailout

Recovery

HI job overruns its CLO
and BF is initialised

HI job overruns its CLO
[BF is updated]

The BF becomes zero and
the pending lowest priority
HI job needs to complete its

execution

HI job completes
its execution

There is an idle instant
and BF is reset

HI job overruns its CLO
and BF is updated

Figure 2. Execution mode changes in LBP.

The difference between LBP and BP is that LO jobs released in Bailout and Recovery modes or
exceeding their CLO are inserted into the low-priority queue instead of being abandoned. This allows
increasing the amount of LO jobs scheduled without interfering with the execution of jobs in the
high-priority queue. In fact, LO jobs in the low-priority queue run until their deadline when the
high-priority queue is idle. The essential difference in scheduling behaviour is that, in those cases
where BP would be idle, LBP might have some tasks preserved in the low-priority queue that can now
successfully be executed.

Whenever a job in the low-priority queue misses its deadline, it is removed. LO jobs released
in Normal mode can continue to execute in both Bailout and Recovery modes and they could even
overrun their deadlines as long as they do not exceed their CLO. Below, is a detailed description of LBP
in each of its execution modes:

Normal mode:

• While all HI jobs execute for no more than their CLO values, the system remains in this mode.
• If any HI job overruns its CLO without signalling completion, then the system switches into the

Bailout mode and the BF is initialised to BF = CHI − CLO.
• LO jobs that overrun their CLO are interrupted and inserted into the low-priority queue.

Designs 2019, 3, 10 8 of 26

• LO jobs that have been inserted into the low-priority queue are executed during idle instants.
If they do not complete within their deadlines, then they are removed from the low-priority queue.

Bailout mode:

• If any HI job executes for its CLO without signalling completion, then the bailout fund is updated
by its maximum extra time budget: BF = BF + (CHI − CLO).

• If any HI job completes with an execution time e, with e ≤ CLO, then its time left is donated to the
bailout fund: BF = BF− (CLO − e).

• LO jobs released in Normal mode that complete with an execution time of e, with e ≤ CLO, donate
their time left to the bailout fund: BF = BF− (CLO − e).

• If any HI job that already exceeded its CLO completes with an execution time of e, with CLO < e ≤ CHI,
then it donates its extra time left, reducing the bailout fund: BF = BF− (CHI − e).

• LO jobs released in Bailout mode are not started but inserted in the low-priority queue to be
executed during idle instants in Normal mode. Furthermore, when the scheduler would otherwise
have dispatched such a job, the job’s budget of CLO is donated to the bailout fund: BF = BF− CLO.

• If the BF becomes zero, then the lowest priority HI job that did not complete its execution (let this
job be jk) is recorded and the Recovery mode is entered.

• If an idle instant occurs, then a transition is made to Normal mode, and BF is reset to zero.

Recovery mode:

• LO jobs released in this mode are not started but inserted within the low-priority queue to be
executed during idle instants in Normal mode.

• If any HI job executes for its CLO value without signalling completion, then the system switches
back to Bailout mode and BF is initialised: BF = CHI − CLO.

• When the job jk noted at the point when Recovery mode was last entered completes, then the
system switches to Normal mode.

Figure 3 shows how the same task set is scheduled according to the On the one hand, the standard
BP abandons all the LO jobs released during the HI criticality execution modes while the lazy approach
allows to recover and schedule more LO jobs. In particular, in Figure 3b, jobs B1 and B4 are released,
respectively, at times t = 6 and t = 24 and they have the highest priority. Such jobs are inserted in
the low-priority queue to be removed, respectively, at times t = 12 and t = 30 when they miss their
deadlines and the next instance of the same task arrives. Furthermore, the LO jobs B2 and B5 released
respectively at times t = 12 and t = 30 are executed afterwards in Normal mode since there are idle
instants to exploit before their deadlines. Such example highlights how LO jobs that are delayed,
instead of being abandoned, are executed during idle instants in Normal mode to not influence the
real-time behaviour of jobs in the high-priority queue. Overall, compared with LBP, the standard BP
results in a decrease of the system utilisation because, whenever there is interference among HI and LO
jobs released in Bailout or Recovery modes, LO jobs are simply abandoned. On the other hand, LBP
increases the processor utilisation by exploiting the system idle time and, by doing this, it improves
the overall service provided to LO tasks, which is achieved by increasing the number of LO jobs that
are processed.

Designs 2019, 3, 10 9 of 26

A0	

B0	

A1	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 11	 3	 13	 HI	

B	 6	 6	 2	 2	 ---	 LO	 B3	

A1	overruns	its	CLO		

30	

A0	overruns	its	CLO		

Bailout	

B1	is	
abandoned	

B2	is	
abandoned	

B4	is	
abandoned	

B5	is	
abandoned	

(a)

A0	

B0	

A1	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 11	 3	 13	 HI	

B	 6	 6	 2	 2	 ---	 LO	 B3	

A1	overruns	its	CLO		

30	

A0	overruns	its	CLO		

Bailout	

B2	

B1	is	abandoned	 B4	is	abandoned	

(b)

Figure 3. Comparison between BP and LBP: LBP schedules more LO jobs than BP: (a) BP abandons
all LO jobs released in Bailout mode; and (b) LBP rescues the LO jobs B2 and B5, while B1 and B4 are
abandoned after they miss their deadlines.

5. Proofs

In this section, we formalise a criterion to compare different mixed-criticality systems. Below are
definitions and predicates used to prove the theorems afterwards.

STS, τ, JS:
STS is a set of task sets τ. τ is an individual scheduling problem consisting of tasks. JS is a set of
jobs created at runtime by scheduling a task set.

METHOD:
This is the scheduling method applied, which can be BP, LBP or some of their derivatives resulting
from the integration with the offline sensitivity analysis or with the online gain time collection.

HI(τ), LO(τ): τ → τ:
HI(τ) is a subset of τ containing only tasks of high-criticality. LO(τ) is a subset of τ containing
only tasks of low-criticality.

Scheduled(mtd, τ): METHOD × τ→ JS:
The list of jobs generated from a task set τ, which are successfully scheduled by method mtd,
i.e., jobs which completed within their deadline.

ScheduledHI(mtd, τ): METHOD × τ→ JS:
This includes only those jobs from Scheduled(mtd, τ) which are derived from tasks with
high-criticality.

ScheduledLO(mtd, τ): METHOD × τ→ JS:
This includes only those jobs from Scheduled(mtd, τ) which are derived from tasks with
low-criticality.

Failed(mtd, τ): METHOD × τ→ JS:
The list of jobs generated from a task set τ, which are not successfully scheduled by method mtd,
i.e., jobs which were not completed within their deadline.

Abandoned(mtd, τ): METHOD × τ→ JS:
This predicate returns the list of jobs generated from a task set τ that were never forwarded

Designs 2019, 3, 10 10 of 26

by the mixed-criticality scheduling method mtd to its underlying real-time scheduler. This is
a special case of failed jobs:

Abandoned(mtd, τ) ⊆ Failed(mtd, τ)

Abandoned jobs are also different from dropped jobs, which are jobs that failed after having started
execution with the underlying real-time scheduler.

LORated(mtd, τ): METHOD × τ→ JS:
This predicate returns the list of LO jobs, which were re-queued from the default high-priority
queue to the low-priority queue (LBP-based methods only).

IsBetterMCS(mtd1, mtd2, τ): METHOD2 × τ→ BOOL:
This predicate tests whether a scheduling method mtd1 is better than method mtd2 for a task set
τ with respect to mixed-criticality scheduling, which is formally defined as:

IsBetterMCS(mtd1, mtd2, τ)⇒

=

TRUE if (ScheduledHI(mtd1, τ) ⊃ ScheduledHI(mtd2, τ)) ∨

((ScheduledHI(mtd1, τ) == ScheduledHI(mtd2, τ)) ∧
(ScheduledLO(mtd1, τ) ⊃ ScheduledLO(mtd2, τ)))

FALSE otherwise

This tests whether mtd1 has a better performance than mtd2 for HI jobs, or equal performance for
HI jobs but better performance for LO jobs.

IsBetterMCS(mtd1, mtd2): METHOD2 → BOOL:
This predicate tests whether a scheduling method mtd1 is better than method mtd2 for all task
sets with respect to mixed-criticality scheduling, which is formally defined as:

IsBetterMCS(mtd1, mtd2)⇒
∃ts ∈ STS. IsBetterMCS(mtd1, mtd2, τ) ∧
6 ∃τ ∈ STS. IsBetterMCS(mtd2, mtd1, τ)

It is worth noting that IsBetterMCS(mtd1, mtd2, τ) and IsBetterMCS(mtd1, mtd2) are transitive:

IsBetterMCS(mA, mB) ∧ IsBetterMCS(mB, mC)⇒ IsBetterMCS(mA, mC)

5.1. Comparison between BP and LBP

Theorem 1. LBP has the same success rate of HI tasks than BP, which can be formally written as:

∀τ ∈ STS. ScheduledHI(BP, τ) == ScheduledHI(LBP, τ)

Proof. (Theorem 1) BP and LBP behave the same way regarding the handling of HI jobs:

1. If a HI job is overrunning its CLO, it is granted an execution budget until CHI.
2. If a HI job does not finish within CHI or within its deadline, then it is dropped.

The only difference between BP and LBP lies in the handling of LO jobs, where LBP puts them
in a lower priority scheduling queue instead of abandoning them immediately when released in
Bailout/Recovery modes or dropping them after the overrun of their CLO as BP does. The content of
the low-priority scheduling queue of LBP cannot influence the scheduling of the default scheduling
queue. Thus, for any task set τ, it follows that ScheduledHI(BP, τ) == ScheduledHI(LBP, τ).

Designs 2019, 3, 10 11 of 26

Theorem 2. LBP can have a better success rate of LO tasks than BP, but never worse, which can be formally
written as:

∀ τ ∈ STS. ScheduledLO(BP, τ) ⊆ ScheduledLO(LBP, τ)

∃ τ ∈ STS. ScheduledLO(BP, τ) ⊂ ScheduledLO(LBP, τ)

Proof. (Theorem 2) The only difference between BP and LBP lies in the handling of LO jobs, where LBP
puts them in a low-priority scheduling queue instead of abandoning them immediately or dropping
them after the overrun of their CLO. Hence, we have:

∀ τ ∈ STS. Abandoned(BP, τ) ⊆ LORated(LBP, τ)

Thus, to prove Theorem 2, we only have to show that, among the tasks that BP abandons,
there is at least one task that with LBP instead gets put into the low-priority queue and finally
successfully scheduled:

∃ τ ∈ STS. Abandoned(BP, τ) ∩ LORated(LBP, τ) ∩ Scheduled(LBP, τ) 6= ∅

which means it is sufficient for the proof to show by example that it is possible to have task sets where
LO-rated jobs can be scheduled within an idle time of the default scheduling queue. To do so, we use
the following task set consisting of one HI task A and one LO task B:

Task P D et CLO CHI L
A 15 15 5 3 10 HI
B 4 4 2 2 - LO

Task A is assumed to have an execution time et = 5, which always causes an overrun of the
optimistic WCET estimate. The first time, job A0 exceeds its CLO at t = 7 and the system switches
into Bailout mode. The LO job B2 is released at time t = 8.0 during Bailout mode. Hence, the bailout
fund BF is decreased by a quantity equal to the CLO of B2. However, BF remains positive. After A0 is
completed, the system experiences an idle instant and this causes a switch back to Normal mode.

As shown in Figure 4a, BP immediately abandons job B2 at its arrival time during the
high-criticality execution mode. In contrast, as shown in Figure 4b, LBP moves such job into the
low-priority queue at its arrival and executes it when the default queue becomes idle. Thus, this
example demonstrates the existence of a task set τ such that

∃ τ ∈ STS. Abandoned(BP, τ) ∩ LORated(LBP, τ) ∩ Scheduled(LBP, τ) 6= ∅

which demonstrates that there are cases where LBP can successfully schedule more jobs than BP.
Here, we have to remind the fact that those jobs which are successfully scheduled by BP are processed
exactly the same way by BP and LBP, meaning that, whenever BP successfully schedules a job, so does
LBP. This property together with the existence of above example completes the proof of:

∀ τ ∈ STS. ScheduledLO(BP, τ) ⊆ ScheduledLO(LBP, τ)

∃ τ ∈ STS. ScheduledLO(BP, τ) ⊂ ScheduledLO(LBP, τ)

Designs 2019, 3, 10 12 of 26

A0	

B0	

A0	

B1	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 5	 3	 10	 HI	

B	 4	 4	 2	 2	 ---	 LO	 B3	
B2	is	abandoned	

A0	overruns	its	CLO		

15	

A1	

(a)

A0	

B0	

A0	

B1	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	
B3	

B2	is	delayed	and	then	
processed	in	Normal	mode	

B2	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 5	 3	 10	 HI	

B	 4	 4	 2	 2	 ---	 LO	

A0	overruns	its	CLO		

15	

A1	

(b)

Figure 4. (Proof of Theorem 2) Example in which LBP successfully executes LO jobs that are abandoned
by BP: (a) BP abandons LO jobs that are not released in Normal mode; and (b) LBP provides a delayed
execution for job B2.

From Theorems 1 and 2, it follows that:

Corollary 1. LBP has a better mixed-criticality performance than BP, which can be formally written as:

IsBetterMCS(LBP, BP)

5.2. Comparison between BPG and LBPG

Theorem 3. LBPG has the same success rate of HI tasks than BPG, which can be formally written as:

∀τ ∈ STS. ScheduledHI(BPG, τ) == ScheduledHI(LBPG, τ)

Proof. (Theorem 3) BPG and LBPG behave the same way regarding the handling of HI jobs:

1. If a HI job is overrunning its CLO, it is granted an execution budget until CHI.
2. If a HI job does not finish within CHI or within its deadline, then it is dropped.

Moreover, any job that completes before its optimistic WCET during Normal mode gives its gain
time to the next highest priority job in the ready queue. The only difference between BPG and LBPG
lies in the handling of LO jobs that exceed their optimistic WCETs or that are released during Bailout
and Recovery modes. BPG abandons such jobs while LBPG inserts them in the low-priority queue for
later execution. Furthermore, the gain time collection only happens among jobs in the high-priority
queue and no gain time is passed or happens among jobs in the low-priority queue. This guarantees
that BPG and LBPG process and schedule jobs in the high-priority queue the same way. Thus, for any
task set τ, it follows that

ScheduledHI(BPG, τ) == ScheduledHI(LBPG, τ).

Designs 2019, 3, 10 13 of 26

Theorem 4. LBPG can have a better success rate of LO tasks than BPG, but never worse, which can be formally
written as:

∀ τ ∈ STS. ScheduledLO(BPG, τ) ⊆ ScheduledLO(LBPG, τ)

∃ τ ∈ STS. ScheduledLO(BPG, τ) ⊂ ScheduledLO(LBPG, τ)

Proof. (Theorem 4) The only difference between BPG and LBPG lies in the handling of LO jobs, where
LBPG puts them in a low-priority scheduling queue instead of abandoning them immediately or
dropping them after the overrun of their CLO. Hence, we have:

∀ τ ∈ STS. Abandoned(BPG, τ) ⊆ LORated(LBPG, τ)

to prove Theorem 4 we only have to show that among the tasks that BPG abandons, there is at least one
task that with LBPG instead gets put into the low-priority queue and finally successfully scheduled:

∃ τ ∈ STS. Abandoned(BPG, τ) ∩ LORated(LBPG, τ) ∩ Scheduled(LBPG, τ) 6= ∅

which means it is sufficient for the proof to show by example that it is possible to have task sets where
LO-rated jobs can be scheduled within an idle time of the default scheduling queue.

We use the task set in Figure 5 to show that LBPG outperforms the standard BPG. The HI task A
is assumed to have an execution time et = 9, which always causes an overrun of the optimistic WCET
estimate. On the other hand, the LO task B always has an execution time of et = 3 apart from its first
instance that runs for only two time units which allows to have a gain time of 1. Job B0 completes
earlier at time t = 2 and gives its gain time to job A0 for which the optimistic time budget is now
updated to A5. A0 enters the Bailout mode at time t = 7 and then runs until its completion. No other
gain time is collected during the schedule showed in the figure. Figure 5a,b show, respectively, that
BPG abandons job B1 and B3, while LBPG runs them in Normal mode during idle time. Thus, this
example demonstrates the existence of a task set τ such that

∃ τ ∈ STS. Abandoned(BPG, τ) ∩ LORated(LBPG, τ) ∩ Scheduled(LBPG, τ) 6= ∅

which completes the proof.

Designs 2019, 3, 10 14 of 26

A0	

B0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 9	 4	 13	 HI	

B	 8	 8	 3-1	 3	 ---	 LO	

A0	overruns	its	CLO		
	gain	time	-	1	

30	
B2	

A1	

A1	overruns	its	CLO		

Bailout	

gain	time	+	1	

Normal	

(a)

A0	

B0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 9	 4	 13	 HI	

B	 8	 8	 3-1	 3	 ---	 LO	

A0	overruns	its	CLO		
	gain	time	-	1	

30	
B2	

A1	

A1	overruns	its	CLO		

Bailout	

gain	time	+	1	

B1	 B3	

Normal	

(b)

Figure 5. (Proof of Theorem 4) Example in which LBPG successfully executes LO jobs that are
abandoned by BPG: (a) BPG abandons LO jobs in Bailout mode; and (b) LBPG provides a delayed
execution for job B1 and B3

From Theorems 3 and 4 it follows that:

Corollary 2. LBPG has a better mixed-criticality performance than BPG, which can be formally written as:

IsBetterMCS(LBPG, BPG)

5.3. Comparison between BPS and LBPS

Theorem 5. LBPS has better mixed-criticality performance than BPS, which can be formally written as:

IsBetterMCS(LBPS, BPS)

Proof. (Theorem 5) The proof has two parts:

1. Proving that there is no task set τ such that

IsBetterMCS(BPS, LBPS, τ)

2. Showing by concrete example that there exists a task set τ such that

IsBetterMCS(LBPS, BPS, τ)

Part 1:

The strength of BPS over BP consists of the scaling up of the optimistic WCETs of HI tasks to
increase the duration of Normal mode and to decrease the amount of time the system runs in Bailout
mode. On the one hand, this leads to abandon a smaller amount of LO jobs due to the decrease in
high-criticality mode duration. On the other hand, the increase of the Normal mode duration allows
releasing and processing more LO jobs. The only difference between BPS and LBPS is in the handling of
LO jobs released exceeding their CLO or released in high-criticality modes, i.e., BPS suddenly abandons
them while LBPS inserts them in a low-priority queue for later execution during system idle instants.

Designs 2019, 3, 10 15 of 26

Therefore, LBPS keeps the BPS advantage, but it adds also the Lazy Bailout approach, which allows
recovering LO jobs during high-criticality modes execution. This increases the amount of LO jobs
processed and eventually scheduled during the Normal mode execution. This means that LBPS can
never have worse performances than BPS.

Part 2:

To prove the second part, it is necessary to show that there exists one task set in which LBPS
schedules more LO jobs than BPS. As an example, we use the task set given in Figure 6, for which
the optimistic WCET CLO of the HI task A has been already scaled up by sensitivity analysis. BPS
increases the duration in which the system runs in Normal mode. However, it still abandons LO jobs
released during high-criticality execution modes. Conversely, LBPS runs them afterwards during idle
instants. Figure 6 displays how the LO job B1 released at time t = 9 is abandoned with BPS while
LBPS manages to execute it later at time t = 10.

This concludes the proof of Theorem 5.

10	 30	20	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

Normal	

A2	A1	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

B0	 B2	 B3	

5	 15	 25	

(a)

10	 30	20	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	delayed	and	
then	processed	

Normal	

A2	A1	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

B0	 B2	 B3	

5	 15	 25	
B1	

(b)

Figure 6. (Proof of Theorem 5, Part 2) LBPS always schedules more LO jobs than BPS: (a) BPS abandons
job B1; and (b) LBPS schedules all LO jobs.

5.4. Comparison between BPSG and LBPSG

With Corollary 2 and Theorem 5, we proved„ respectively that the LBPG always outperforms
LBP and LBPS always outperforms BPS. This is because the gain time collection made at runtime and
the offline scaling up of the CLO have the same benefits in the lazy Bailout method as in the standard
Bailout protocol. On the other hand, from Corollary 1, we know that LBP always outperforms BP.
It follows that:

Corollary 3. LBPSG has a better mixed-criticality performance than BPSG, which can be formally written as:

IsBetterMCS(LBPSG, BPSG)

In this section, we introduce the criterion IsBetterMCS(mtd1, mtd2) to compare the performance
of mixed-criticality scheduling methods with priority given to HI jobs scheduled. Using this criterion,
we show that LBP always performs better than BP. Moreover, we also show that the offline sensitivity

Designs 2019, 3, 10 16 of 26

analysis and online gain time collection always contribute to increase the amount of LO jobs scheduled
and that they achieve better performances if used with LBP rather than BP. To conclude, the proposed
LBPSG is consistently better than the existing BPSG [11].

Note that this result is strictly bound to our definition of IsBetterMCS(mtd1, mtd2), which is
motivated by systems where a sacrifice of HI jobs to increase performance of LO jobs is not acceptable.

6. Experimental Evaluation

In this section, we describe how we conducted our experiments and what were the final outcomes.
We start by explaining how the experiments were structured. Section 6.2 explains how task sets
were created, what were our application scenarios and what scheduling methods we compared.
Next, Section 6.3 describes what type of performance metrics we considered to evaluate and compare
different mixed-criticality scheduling methods. Finally, Section 6.4 contains the description and
discussion of results according to what is shown within tables and charts.

6.1. Task Set Generation

The aim of the task set generation was to simulate situations in which the system easily switches
to the Bailout execution mode in order to show the effectiveness of the LBP methods over BP and
its derivatives in systems with high load (using a utilisation factor of 0.6 or more). The system load
computed according to the pessimistic WCET of all HI tasks within each task set was always greater
than that computed according to the optimistic WCET of all its tasks. Furthermore, the execution times
of HI tasks almost always exceeded their CLO in order to trigger the mode change.

As a result, task sets were generated to have an overall utilisation factor that varied randomly
between 0.60% and 0.75% with respect to the optimistic WCET CLO of all tasks while the utilisation
factor computed according to the HI tasks was always 0.75%. The number of tasks per task set varied
randomly between 4 and 20. Within each task set, the amount of HI tasks varied randomly between
20% and 70% of the task set. Moreover, the execution times of HI tasks varied between the 90% of their
CLO and their CHI, while the execution times of LO tasks was between 40% of their CLO and 10% more
than the CLO. Priorities were assigned to tasks according to the Deadline Monotonic (DM) strategy: task
instances with shorter deadlines had higher priorities.

6.2. Description of Experiments

We conducted different experiments, each consisting of a group of 3000 task sets randomly
generated. Tasks within every task set have implicit deadlines and their periods varied randomly
between 3 and 22. Every task set group belonged to one of the three scenarios specified below:

HC-LP contains job sets where all HI jobs have larger deadlines than all LO jobs. More precisely,
LO tasks’ periods varied randomly between 3 and 10, while HI tasks’ periods varied between 14
and 22. Therefore, all HI jobs had lower priority than all LO jobs:

∀j∈JHI. ∀j′∈JLO. pr(j) < pr(j′)

HC-MP contains job sets where HI jobs have deadlines that are smaller or larger than those of LO
ones. In fact, periods of tasks, either HI or LO, varied randomly between 3 and 22. Therefore, HI
and LO jobs had mixed priorities:

∀j∈JHI. ∀j′∈JLO. pr(j) ≤ pr(j′) ∨ pr(j) > pr(j′)

HC-HP contains job sets where all HI jobs have smaller deadlines than all LO ones. More precisely,
HI tasks’ periods varied randomly between 3 and 10 while LO tasks’ periods varied between 14
and 22. This implies that all HI jobs have higher priority than LO jobs:

∀j∈JHI. ∀j′∈JLO. pr(j) > pr(j′)

Designs 2019, 3, 10 17 of 26

We compared the following scheduling protocols:

• The standard Fixed-Priority Preemptive Scheduling with DM as priority assignment (FPPS-DM).
• The standard Bailout Protocol (BP).
• The Bailout Protocol with Gain Time (BPG), where each job that finishes before its optimistic time

threshold in Normal mode gives its gain time to increase the time budget of next job ready to
be scheduled.

• The Bailout Protocol-Slack (BPS) and the Bailout Protocol-Slack and Gain Time (BPSG) that represent
the execution of BP and BPG on task sets in which the CLO of HI tasks is appropriately increased
via sensitivity analysis [30,31] while the schedulability is guaranteed according to AMC-rtb [15].

• The Lazy Bailout Protocol (LBP).
• The Lazy Bailout Protocol with Gain Time (LBPG), the Lazy Bailout Protocol-Slack (LBPS) and the Lazy

Bailout Protocol-Slack and Gain Time (LBPSG) that represent extensions of LBP made by using the
offline scaling of CLO of HI tasks with sensitivity analysis and the gain time collection at runtime.

We finally show the benefit of the lazy bailout approaches with respect to the former methods.
It is important to note that, if HI tasks all have higher priority than LO ones, then the scheduling

problem so created becomes equivalent to the standard real-time scheduling problem since there
is no criticality inversion. The same applies to those cases in which higher priority is assigned
to the highest criticality tasks regardless of their periods or deadline as in Criticality As Priority
Assignment (CAPA) [32].

Results of experiments are collected in Tables 1 and 2, which refer to the different scenarios
described above. For each scenario, we show the results with different scheduling protocols.

Table 1. BP and LBP variants: comparison of task set schedulability (%).

HC-LP HC-MP HC-HP

Method TSSched TSSchedHI TSSchedLO TSSched TSSchedHI TSSchedLO TSSched TSSchedHI TSSchedLO

FPPS-DM 83.03 83.03 100.0 76.87 98.33 77.27 78.67 100.0 78.67
BP 2.20 100.0 2.20 0.97 100.0 0.97 0.87 100.0 0.87
BPG 4.87 100.0 4.87 1.17 100.0 1.17 0.93 100.0 0.93
BPS 7.23 100.0 7.23 11.17 100.0 11.17 12.30 100.0 12.30
BPSG 11.87 100.0 11.87 17.23 100.0 17.23 20.00 100.0 20.00
LBP 13.93 100.0 13.93 22.53 100.0 22.53 46.43 100.0 46.43
LBPG 21.17 100.0 21.17 23.57 100.0 23.57 46.63 100.0 46.63
LBPS 20.73 100.0 20.73 30.77 100.0 30.77 52.97 100.0 52.97
LBPSG 29.57 100.0 29.57 37.60 100.0 37.60 58.57 100.0 58.57

Table 2. BP and LBP variants: comparison of jobs scheduled within their deadline (%).

HC-LP HC-MP HC-HP

Method GJSched GJSchedHI GJSchedLO GJSched GJSchedHI GJSchedLO GJSched GJSchedHI GJSchedLO

FPPS-DM 99.19 88.64 100.0 98.51 99.55 97.91 99.11 100.0 98.18
BP 62.81 100.0 55.99 73.63 100.0 54.78 85.41 100.0 60.20
BPG 67.22 100.0 61.12 74.38 100.0 55.89 85.63 100.0 60.73
BPS 66.21 100.0 60.38 79.06 100.0 64.68 88.44 100.0 69.96
BPSG 71.03 100.0 66.07 81.64 100.0 69.41 90.05 100.0 75.13
LBP 83.64 100.0 80.94 92.71 100.0 88.71 97.87 100.0 95.16
LBPG 85.87 100.0 83.54 92.91 100.0 88.99 97.88 100.0 95.18
LBPS 85.23 100.0 82.92 93.24 100.0 89.54 97.99 100.0 95.51
LBPSG 87.57 100.0 85.66 93.77 100.0 90.48 98.08 100.0 95.78

6.3. Description of Performance Metrics

This subsection introduces the criteria we used to assess performances of scheduling protocols
that process dual-criticality task sets. To evaluate the results, we defined two types of performance
parameters, i.e., task set schedulability that is relative to the whole amount of task sets and the global job
set schedulability that is relative to jobs within each individual task set.

Designs 2019, 3, 10 18 of 26

We conducted our experiments on three sets of 3000 task sets STS, one per scenario (HC-LP,
HC-MP and HC-HP). The task set schedulability formula tsched is defined as follows:

tsched(S, cat) =
|STSsucc(S, cat)|

|S| (4)

where S could be either a simple task set τ or set of task sets STS and the category
cat ∈ {HI + LO, HI, LO} represents the type of tasks within a set that is HI to indicate HI tasks, LO to
indicate LO tasks and either when we use HI+LO. The function STSsucc depends on the scheduling
protocol that is actually used and returns as output the set of task sets STS in which there are no jobs
missed of category cat. The absolute values within the formula give the set cardinality. Equation (4)
allows deriving the percentages of tasks set in STS that are successfully processed according to the
category cat as follows:

TSSched is the amount of task sets scheduled with no jobs missing their deadlines.

TSSched = tsched(STS, HI + LO)

TSSchedHI is the amount of task sets scheduled with no HI jobs missing their deadlines.

TSSchedHI = tsched(STS, HI)

TSSchedLO is the amount of task sets scheduled with no LO jobs missing their deadlines.

TSSchedLO = tsched(STS, LO)

The task set schedulability permits showing the percentage of task sets in which no job of category
cat misses its deadline. However, whenever a task set contains some jobs, either HI or LO, that miss
their deadline, it is also useful to assess the level of service provided in terms of jobs completed within
their deadlines and jobs abandoned or aborted. The job set completion rate method jsched returns the
percentage of jobs of category cat generated by a specific task set that complete within their deadlines.

The job set schedulability jsched is formally written as below:

jsched(τcat) =
|Jsucc(J(τcat))|
|J(τcat)|

| cat ∈ {LO, HI} (5)

The formula of the global job set schedulability gjsched(STS, cat) returns the average amount of
jobs of category cat processed within their deadline that has been generated by a set of task sets STS:

gjsched(STS, cat) = ∑τ∈STS jsched(τcat)

|STS| | cat ∈ {LO, HI} (6)

As in the previous case, it is possible to filter the jobs meeting their deadline according to the
category cat as below:

GJSched is the average number of jobs (either HI or LO) that is scheduled within a task set.

GJSsched = gjsched(STS, HI + LO)

GJSchedHI is the average number of HI jobs that is scheduled within a tasks set.

GJSchedHI = gjsched(STS, HI)

GJSchedLO is the average number of LO jobs that is scheduled within a task set.

GJSschedLO = gjsched(STS, LO)

Designs 2019, 3, 10 19 of 26

Tables 1 and 2 contain, respectively, the results about task set and global job set schedulabilities.
It is possible to comment on the data according to scenario or scheduling protocol. However, we use
figures to describe graphically what is contained within the tables and to allow an easier and quicker
comparison among the results.

Task set and global job set schedulabilities are averages and do not give information about how
data are distributed and about outliers. Therefore, we use also boxplots charts to show the distribution
of LO jobs scheduled per task set. The information shown in Table 1 is contained in Figures 7a, 8a
and 9a. On the other hand, Figures 7b, 8b and 9b displays the average percentages of LO jobs completed
within their deadlines.

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Ta
sk

 S
et

 S
ch

ed
ul

ab
ili

ty
 [

%
]

TSSched

TSSchedHI

TSSchedLO

(a)

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Gl
ob

al
 Jo

b
Se

t S
ch

ed
ul

ab
ili

ty
 [

%
]

GJSched

GJSchedHI

GJSchedLO

(b)

Figure 7. BP and LBP variants: schedulability in HC-LP scenario: (a) task sets with no jobs missed; and
(b) average of jobs scheduled per task set.

Designs 2019, 3, 10 20 of 26

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Ta
sk

 S
et

 S
ch

ed
ul

ab
ili

ty
 [

%
]

TSSched

TSSchedHI

TSSchedLO

(a)

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Gl
ob

al
 Jo

b
Se

t S
ch

ed
ul

ab
ili

ty
 [

%
]

GJSched

GJSchedHI

GJSchedLO

(b)

Figure 8. BP and LBP variants: schedulability in HC-MP scenario: (a) task sets with no jobs missed;
and (b) average of jobs scheduled per task set

Designs 2019, 3, 10 21 of 26

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Ta
sk

 S
et

 S
ch

ed
ul

ab
ili

ty
 [

%
]

TSSched

TSSchedHI

TSSchedLO

(a)

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG

Gl
ob

al
 Jo

b
Se

t S
ch

ed
ul

ab
ili

ty
 [

%
]

GJSched

GJSchedHI

GJSchedLO

(b)

Figure 9. BP and LBP variants: schedulability in HC-HP scenario (as priority and criticality values
have the same order, this is essentially a standard real-time scheduling problem): (a) task sets with no
jobs missed; and (b) average of jobs scheduled per task set.

Designs 2019, 3, 10 22 of 26

6.4. Discussion of Results

This subsection is dedicated to study the outcome of the experiments. It contains figures that
summarise the results of our experiments with dual-criticality job sets. Figures 7 and 8 summarise the
results in cases where there is criticality inversion. In these situations, if no HI job completes within its
optimistic threshold estimate CLO, then very likely there will be some new incoming higher priority
LO jobs that will interfere with it. Then, Figure 9 contains information about cases in which all HI jobs
have higher priority than LO jobs since all the critical jobs have smaller deadlines. This basically leads
to having no interference between HI and LO jobs and thus no criticality inversion occurrence during
the scheduling process.

Looking both at task set and job set schedulabilities results in Figures 7–9, it is possible to notice
that, compared with mixed-criticality methods, the standard deadline monotonic approach always
schedules jobs only according to priorities. In this case, the percentages of HI and LO jobs successfully
scheduled mainly depend only on their priority, with all LO jobs always meeting their deadlines in
HC-LP scenario and all HI jobs always meeting their deadlines in HC-HP scenario. Conversely, the
mixed-criticality protocols always assure that there are no HI job missed regardless of job priorities.
The experiments confirm what is stated in Section 5 with LBP in which the percentage of task set
scheduled with no jobs missed is between 13% and 46% while BP schedules no more than 2.20% of
task sets with no jobs missed.

Then, where the offline and online complementary techniques are used, there is an increase in LO
jobs successfully processed. Furthermore, the usage of sensitivity analysis and the gain time mechanism
have the same effects when applied both to the standard or to the lazy bailout method. A noticeable
result is that each LBP-based approach always increases the amount of LO jobs completed within
their deadlines compared with the corresponding standard BP-based protocol. Overall, according to
the criteria defined in Section 5, LBPSG is the protocol that outperforms all other mixed-criticality
scheduling methods with an amount of task set scheduled with no jobs missed that is between 29.57%
and 58.57%.

Figures 10–12 display the distribution of the LO jobs percentages per task set that are completed
within their deadlines. Each scheduling protocol is represented by a box-and-whisker diagram with
the box itself representing the range in which at least 50% of results tend to be concentrated. The box
also contains the indication of the median and the mathematical average of all the LO jobs scheduled
by the related protocol. The results highlight how the LBP-based methods always increase the LO jobs
success rate, as defined in Section 5, compared with the former BP ones.

In conclusion, the experiments confirm what is stated in Section 5 with lazy approaches increasing
the amount of LO jobs successfully scheduled while guaranteeing the correct completion of all HI jobs.
In other words, LBP has better mixed-criticality performances than BP, while LBPS, LBPG and LBPSG
have, respectively, better mixed-criticality performances than BPS, BPG and BPSG. Finally, the usage of
mixed-criticality protocols is recommended in HP-LP and HC-MP scenarios, i.e., when HI jobs could
have lower priorities than LO jobs.

Designs 2019, 3, 10 23 of 26

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG

Figure 10. BP and LBP variants: LO jobs scheduled per task set in HC-LP scenario.

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG

Figure 11. BP and LBP variants: LO jobs scheduled per task set in HC-MP scenario.

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG

Figure 12. BP and LBP variants: LO jobs scheduled per task set in HC-HP scenario.

Designs 2019, 3, 10 24 of 26

7. Summary and Conclusions

Mixed-criticality scheduling is important for cyber-physical systems to provide robustness against
resource shortage. In this paper, we have introduced the mixed-criticality scheduling protocol Lazy
Bailout Protocol (LBP). LBP is a scheduling protocol for uni-processor platforms and is a refinement of
Bailout Protocol (BP). We have also introduced a formal criterion to compare performances among
mixed-criticality scheduling protocols. This criterion prioritises HI jobs against LO jobs, where HI
indicates high-criticality and LO stands for low-criticality. Based on that criterion, we have proven
that the complementary techniques used in [11] always contribute to increase the performances of the
scheduling protocol. Similar to BP, LBP and its derivatives always guarantee the correct completion of
HI jobs. Moreover, we have shown that LBP always schedules more LO jobs than BP and that each
LBP derivative always outperforms the corresponding BP-based approach.

Besides these formal results, we have also presented experiments that give quantitative values of
the comparisons between the different mixed-criticality scheduling protocols. LBP schedules between
13.93% and 46.63% of task sets with no jobs missed while BP at maximum schedules no more than
2.20% of task sets with no jobs missed. Finally, the experiments confirm that LBP is equivalent to BP
in guaranteeing HI jobs and that the derivatives of LBP (LBPS, LBPG and LBPSG) outperform all the
equivalent BP-based protocols by increasing the amount of LO jobs successfully scheduled. Overall,
LBPSG has shown the best mixed-criticality performance with an amount of task sets processed with
no jobs missed that is between 29.57% and 58.57%.

Future work will be on extending LBP towards support for many-core platforms.

Author Contributions: R.K. has contributed the majority of formal proofs, S.I. has done the implementation and
experiments and refined some proofs.

Funding: The research leading to these results in its early stages has received funding from the FP7 ARTEMIS-JU
research project “ConstRaint and Application driven Framework for Tailoring Embedded Real-time Systems” (CRAFTERS)
under contract no 295371.

Acknowledgments: The authors would like to thank Olga Tveretina for general comments on how to
improve proofs.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
J. ACM 1973, 20, 46–61. doi:10.1145/321738.321743.

2. Vestal, S. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time
Assurance. In Proceedings of the 28th IEEE International Real-Time Systems Symposium (RTSS’07), Tucson,
AZ, USA, 3–6 December 2007; pp. 239–243. doi:10.1109/RTSS.2007.47.

3. Burns, A.; Davis, R.I. Mixed Criticality Systems—A Review; Research Report V4-31/7/2014; Department of
Computer Science, University of York: York, UK, 2014.

4. Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D.; Bernat, G.; Ferdinand, C.;
Heckman, R.; Mitra, T.; et al. The Worst-Case Execution Time Problem—Overview of Methods and Survey
of Tools. ACM Trans. Embed. Comput. Syst. (TECS) 2008, 7. doi:10.1145/1347375.1347389

5. Kirner, R.; Iacovelli, S.; Zolda, M. Optimised Adaptation of Mixed-criticality Systems with Periodic
Tasks on Uniform Multiprocessors in Case of Faults. In Proceedings of the 11th IEEE Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’15), Auckland, New Zealand,
13 April 2015.

6. RTCA SC-205. Software Considerations in Airborne Systems and Equipment Certification.
RTCA/DO-178C. Available online: https://www.rtca.org (accessed on 20 December 2011).

7. International Organization for Standardization (ISO). Road Vehicles—Functional Safety; ISO Standard 26262;
ISO: Geneva, Switzerland, 2011.

https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/RTSS.2007.47
https://www.rtca.org

Designs 2019, 3, 10 25 of 26

8. International Electrotechnical Commission. Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems; IEC Standard 61508; International Electrotechnical Commission: Geneva,
Switzerland, 1998.

9. Esper, A.; Nelissen, G.; Nélis, V.; Tovar, E. How Realistic is the Mixed-criticality Real-time System Model?
In Proceedings of the 23rd Int’l Conference on Real Time and Networks Systems (RTNS), Lille, France, 4–6
November 2015; ACM: New York, NY, USA, 2015; pp. 139–148. doi:10.1145/2834848.2834869.

10. Bate, I.; Burns, A.; Davis, R.I. A Bailout Protocol for Mixed Criticality Systems. In Proceedings of the 27th
Euromicro Conference on Real-Time Systems, Lund, Sweden, 8–10 July 2015.

11. Bate, I.; Burns, A.; Davis, R.I. An Enhanced Bailout Protocol for Mixed Criticality Embedded Software.
IEEE Trans. Softw. Eng. 2017, 43, 298–320.

12. Crespo, A.; Alonso, A.; Marcos, M.; de la Puente, J.A.; Balbastre, P. Mixed Criticality in Control
Systems. In Proceedings of the 19th World Congress of The International Federation of Automatic Control,
Cape Town, South Africa, 24–29 August 2014.

13. Ernst, R.; Natale, M.D. Mixed Criticality Systems—A History of Misconceptions. IEEE Des. Test 2016, 33,
65–74.

14. Burns, A.; Davis, R.I. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. 2017,
50, 82:1–82:37. doi:10.1145/3131347.

15. Baruah, S.K.; Burns, A.; Davis, R.I. Response-Time Analysis for Mixed Criticality Systems. In Proceedings of
the 2011 IEEE 32nd Real-Time Systems Symposium (RTSS ’11), Vienna, Austria, 29 November–2 December
2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 34–43. doi:10.1109/RTSS.2011.12.

16. Burns, A.; Davis, R.I. Response Time Analysis for Mixed Criticality Systems with Arbitrary Deadlines.
In Proceedings of the 5th International Workshop on Mixed Criticality Systems (WMC 2017), Paris, France,
5 December 2017.

17. Fleming, T.; Burns, A. Extending Mixed Criticality Scheduling. In Proceedings of the 1st International
Workshop on Mixed Criticality Systems (WMC), Vancouver, BC, Canada, 3–6 December 2013.

18. Su, H.; Zhu, D. An Elastic Mixed-Criticality task model and its scheduling algorithm. In Proceedings of
the Conference on Design, Automation and Test in Europe (DATE), Grenoble, France, 18–22 March 2013;
pp. 147–152.

19. Burns, A.; Baruah, S. Towards A More Practical Model for Mixed Criticality Systems. In Proceedings of the
1st International Workshop on Mixed Criticality Systems (WMC), Vancouver, BC, Canada, 3–6 December
2013; pp. 1–6.

20. Baruah, S.; Burns, A.; Davis, R. An Extended Fixed Priority Scheme for Mixed Criticality Systems.
In Workshop on Real-Time Mixed Criticality Systems (ReTiMics); George, L.; Lipari, G., Eds.; University
of York: York, UK, 2013; pp. 18–24.

21. Audsley, N.C.; Burns, A.; Richardson, M.F.; Wellings, A.J. Hard Real-Time Scheduling: The Deadline-
Monotonic Approach. In Proceedings of the IEEE Workshop on Real-Time Operating Systems and Software
(RTOSS), 1991; pp. 133–137.

22. Zuhily, A.; Burns, A. Optimal (D-J)-monotonic priority assignment. Inf. Process. Lett. 2007, 103, 247–250.
23. Fleming, T.; Burns, A. Incorporating the Notion of Importance into Mixed Criticality Systems.

In Proceedings of the 2nd International Workshop on Mixed Criticality Systems (WMC), Rome, Italy,
2 December 2014; pp. 33–38.

24. Prasad, D.; Burns, A.; Atkins, M. The Valid Use of Utility in Adaptive Real-Time Systems. Real-Time Syst.
2003, 25, 277–296. doi:10.1023/A:1025184411567.

25. Audsley, N. Optimal Priority Assignment and Feasibility of Static Priority Tasks With Arbitrary Start Times;
Technical Report YCS 164; Department of Computer Science, University of York: York, UK, 1991.

26. Gettings, O.; Quinton, S.; Davis, R.I. Mixed criticality systems with weakly-hard constraints. In Proceedings
of the 23rd International Conference on Real Time and Networks Systems (RTNS ’15), Lille, France, 4–6
November 2015; ACM: New York, NY, USA, 2015; pp. 237–246.

27. Bernat, G.; Burns, A.; Llamosi, A. Weakly Hard Real-Time Systems. IEEE Trans. Comput. 2001, 50, 308–321.
doi:10.1109/12.919277.

28. Frehse, G.; Hamann, A.; Quinton, S.; Woehrle, M. Formal Analysis of Timing Effects on Closed-Loop
Properties of Control Software. In Proceedings of the 2011 IEEE 32Nd Real-Time Systems Symposium.
IEEE, 2014 (RTSS ’14), Rome, Italy, 2–5 December 2014; pp. 53–62.

https://doi.org/10.1145/2834848.2834869
https://doi.org/10.1145/3131347
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1023/A:1025184411567
https://doi.org/10.1109/12.919277

Designs 2019, 3, 10 26 of 26

29. Santy, F.; George, L.; Thierry, P.; Goossens, J. Relaxing Mixed-Criticality Scheduling Strictness for Task Sets
Scheduled with FP. In Proceedings of the 24th Euromicro Conference on Real-Time Systems (ECRTS), Pisa,
Italy, 11–13 July 2012; pp. 155–165.

30. Bini, E.; Natale, M.D.; Buttazzo, G.C. Sensitivity analysis for fixed-priority real-time systems. Real-Time
Syst. 2008, 39, 5–30. doi:10.1007/s11241-006-9010-1.

31. Punnekkat, S.; Davis, R.; Burns, A. Sensitivity Analysis of Real-Time Task Sets. In Advances in Computing
Science—ASIAN’97: Third Asian Computing Science Conference Kathmandu, Nepal, December 9–11, 1997
Proceedings; Springer: Berlin/Heidelberg, Germany, 1997; pp. 72–82. doi:10.1007/3-540-63875-X_44.

32. De Niz, D.; Lakshmanan, K.; Rajkumar, R.R. On the Scheduling of Mixed-Criticality Real-Time Task Sets.
In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium (RTSS ’09), Washington, DC, USA,
1–4 December 2009; pp. 291–300.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/s11241-006-9010-1
https://doi.org/10.1007/3-540-63875-X_44
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	The Lazy Bailout Protocol
	Proofs
	Comparison between BP and LBP
	Comparison between BPG and LBPG
	Comparison between BPS and LBPS
	Comparison between BPSG and LBPSG

	Experimental Evaluation
	Task Set Generation
	Description of Experiments
	Description of Performance Metrics
	Discussion of Results

	Summary and Conclusions
	References

