
 
 
 
 

 
Citation for the published version:  
 
 
Coudron, L., McDonnell, M. B., Munro, I., McCluskey, D., Johnston, I., Tan, C., & 
Tracey, M. (Accepted/In press). Fully integrated digital microfluidics platform for 
automated immunoassay; a versatile tool for rapid, specific detection of a wide range 
of pathogens. Biosensors & Bioelectronics, 128, 52-60. 
https://doi.org/10.1016/j.bios.2018.12.014 
 
Document Version:  Accepted Version 
 
This manuscript is made available under the CC-BY-NC-ND license 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 
Link to the final published version available at the publisher:  
https://doi.org/10.1016/j.bios.2018.12.014 
 
General rights 
Copyright© and Moral Rights for the publications made accessible on this site are retained by the 
individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied and it is a 
condition of accessing publications that users recognise and abide by the legal requirements 
associated with these rights. You may not engage in further distribution of the material for any 
profitmaking activities or any commercial gain. You may freely distribute both the url 
(http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or 
not-for-profit purposes without prior permission or charge. 

Take down policy 
If you believe that this document breaches copyright please contact us providing details, any such 
items will be temporarily removed from the repository pending investigation. 

Enquiries 
Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at 
rsc@herts.ac.uk 



© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  

Fully integrated digital microfluidics 
platform for automated immunoassay; 
a versatile tool for rapid, specific 
detection of a wide range of pathogens  
Loïc Coudron,*

a
 Martin B. McDonnell,

ab
 Ian Munro,

a
 Daniel K. McCluskey,

a
 Ian D. Johnston,

a
 Christabel K. L. Tan

 

a
 and Mark C. Tracey

 a 

a
 School of Engineering and Technology, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, United 

Kingdom.  

b
 Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom. 

* Contact E-mail: l.coudron@herts.ac.uk
 

Abstract 
With the tangible threat posed by the release of chemical and biological warfare (CBW) agents, detection of airborne 

pathogens is a critical military and security concern. Recent air sampling techniques developed for biocollection take 

advantage of Electrowetting on Dielectric (EWOD) to recover material, producing highly concentrated droplet samples. 

Bespoke EWOD-based digital microfluidics platforms are very well suited to take full advantage of the microlitre 

concentrated droplet resulting from this recovery process. In this paper we present a free-standing, fully automated DMF 

platform for immunoassay. Using this system, we demonstrate the automated detection of four classes of CBW agent 

simulant biomolecules and organisms each representing credible threat agents. Taking advantage of the full magnetic 

separation process with antibody-bound microbeads, rapid and complete separation of specific target antigen can be 

achieved with minimal washing steps allowing for very rapid detection. Here, we report clear detection of four categories of 

antigens achieved with assay completion times of between six and ten minutes. Detection of HSA, Bacillus atrophaeus (BG 

spores), MS2 bacteriophage and Escherichia coli are demonstrated with estimated limit of detection of respectively 

30 ng ml
-1

, 4 x 10
4
 cfu ml

-1
, 10

6
 pfu ml

-1
 and 2 x 10

7
 cfu ml

-1
. The fully-integrated portable platform described in this paper is 

highly compatible with the next generation of electrowetting-coupled air samplers and thus shows strong potential toward 

future in-field deployable biodetection systems and could have key implication in life-changing sectors such as healthcare, 

environment or food security. 

Introduction  
Dissemination of chemical and biological warfare (CBW) agents is unfortunately a tangible threat 

(Gooding 2006). Defence and security agencies require technologies capable of addressing such 

threats by providing quick, efficient and specific detection of CBW agents (Franz et al. 1997; Gooding 

2006; Lane and Fauci 2001; Lane et al. 2001; McDonnell 1993; Naimushin et al. 2005), for which the 

aerosol route has been identified as a possible method of dissemination (Franz et al. 1997). Hence, 

detection of airborne pathogen is a critical military and security concern that also has key implication 

in sectors such as health and environment (Brunekreef and Holgate 2002; Garrett et al. 1998; Rainer 

et al. 2001; Sarıca et al. 2002; Tuet et al. 2017) or food (Mahlein et al. 2012; West and Kimber 2015). 

Lab-on-a-chip systems have been developed to tackle the challenges in sample collection and 

address the potentially very low concentration of airborne pathogen (Fronczek and Yoon 2015). In 

the last ten years, electrowetting-on-dielectric (EWOD) based digital microfluidics (DMF) 

(Abdelgawad and Wheeler 2009; Jebrail et al. 2012; Mugele and Baret 2005; Nelson and Kim 2012; 

Pollack et al. 2000), used in conjunction with various air-sampling techniques, has been envisioned 
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as a powerful tool to produce in-droplet highly concentrated sample from airborne collected 

material (Jönsson-Niedziółka et al. 2011; Zhao and Cho 2006; Zhao et al. 2008). More recently, a 

personal air sampler using EWOD based DMF as a way to increase the sampling concentration rate 

has been demonstrated (Foat et al. 2016). This technique produces highly concentrated droplet 

samples that can be transferred into a bespoke bio-detector. The use of immunoassay as a detection 

technique appears particularly relevant in this context. Whilst being relatively simple compared to 

other methods such as DNA hybridization assays (Diamandis 1990) they can offer fast, high 

specificity detection of a large range of target species (Diamandis 1990; Wild 2013). Heterogeneous 

immunoassays, which rely on specific binding of a target antigen in solution to a solid-bound 

antibody (e.g. wall, surface or suspended particles), are popular amongst immunoassay techniques 

because of their good sensitivity and high specificity (Wild 2013). In their simplest form, they consist 

of the separation of a target antigen from other material in solution by extracting the solid-bound 

antibody-antigen complex. The target separated in this way can be detected, typically using another 

antibody, conjugated with an optical label, such as a fluorophore, or an enzyme that will trigger a 

reaction (e.g. colour change, chemiluminescence or chemifluorescence) at the detection substrate.  

 

To take full advantage of the highly concentrated small volume samples resulting from the collection 

process, it is desirable to use them undiluted in their microlitre-droplets form. EWOD based DMF 

appears very well suited: in addition to an obviously very straight-forward integration with other 

EWOD based systems such as the one presented by Foat et al. (2016), DMF carries the promise of a 

possible paradigm shift in micro-volume bioassays by allowing complex manipulation of discrete 

microlitre-scale droplets (Abdelgawad and Wheeler 2009). In the last decade, a number of these 

systems have been developed to serve as a platform for DNA or antibody based assays using 

magnetic particles as solid support for the separation of target material (Kokalj et al. 2015). The use 

of magnetic particles is particularly interesting, especially for use in DMF systems because they can 

be transported within a fluid droplet and be trapped or released by respectively engaging or 

disengaging magnets at a specific magnetic separation site. While DNA assays benefit from a higher 

sensitivity and specificity, immunoassays are capable of addressing a large range of targets, including 

for example toxins, which makes them suitable for application in a versatile biodetection system.  

 

Sista et al. (2008) reported the first generation of DMF platform for magnetic microparticles-based 

heterogeneous immunoassays. This system, operating in oil filler, achieved separation of the target 

by a serial dilution-based process, consisting of the repetition of three steps comprising the 

immobilization of the magnetic particles followed by the dilution of the suspension with a droplet of 

fresh buffer before splitting the droplet into two droplets, one containing the magnetic particles and 

the other the particle-free excess solution. Employing this principle the system performed on-chip 

non-competitive immunoassays for insulin and interleukin-6. Employing a similar kind of 

immunoassay, an optimised version of this system was used to perform completely automated 

detection of cardio troponin I (cTn1) on whole blood (Sista et al. 2008). Since then, pursuing the 

promise of precise, fast and sequential low-volume automation, a number of immunoassay 

applications have been developed on DMF platforms (Choi et al. 2013; Dixon et al. 2016; Fobel et al. 

2014; Ng et al. 2012; Ng et al. 2015a; Vergauwe et al. 2011). 
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Actuating biomaterial-laden droplets, as required in a DMF bioassay, can cause biomaterial and 

objects present in the droplet to be deposited and/or adsorbed at the surface of the actuation chip. 

This phenomenon, referred to as biofouling, can cause severe droplet actuation impairment and, 

eventually, device malfunction (Au et al. 2011; Luk et al. 2008). In order to reduce the biofouling 

rate, some DMF platforms operate in oil (Sista et al. 2008; Vergauwe et al. 2011). Whilst showing 

good performance in terms of biofouling prevention, the use of oil filler is not ideal within the scope 

of the application presented above due to limited connectivity and field-transportability that the use 

of oil implies (Ng et al. 2012): a special packaging is required for oil containment and connection 

with other air-filled DMF devices, such as Foat et al.’s (2016), may be compromised. There is also the 

risk of trace molecules within the oil infiltrating the droplet thus interfering with the droplet’s 

chemistry (Au et al. 2011; Yoon and Garrell 2003) or small molecules exfiltrating from the droplet 

into the medium (Ng et al. 2015b), which could jeopardise the sensitivity of detection. The Wheeler 

Group presented an alternative to oil-filled systems by using non-ionic surfactant to reduce 

biomolecule deposition (Au et al. 2011; Luk et al. 2008). Using this approach, they developed a fully 

automated in-air DMF platform for immunoassays (Choi et al. 2013; Dixon et al. 2016; Fobel et al. 

2014; Ng et al. 2012; Ng et al. 2015a). Building on the technique first demonstrated on a single plate 

EWOD device by Fouillet et al. (2008), the Wheeler Group’s system features efficient extraction of 

magnetic particles from droplet supernatant (Choi et al. 2013; Dixon et al. 2016; Fobel et al. 2014; 

Ng et al. 2012; Ng et al. 2015a). This allows complete specific separation of the target using a 

reduced number of washing steps. With their open-access platform DropBot (Fobel et al. 2013), the 

Wheeler Group demonstrated detection of a number of biomarkers (thyroid stimulating hormone 

(Choi et al. 2013; Ng et al. 2012), 17β-estradiol (Ng et al. 2012), Rubella IgG (Dixon et al. 2016; Fobel 

et al. 2014; Ng et al. 2015a) and Rubella IgM (Ng et al. 2015a). Recently, the Wheeler Group has 

demonstrated in-field diagnostics against measles and rubella immunoglobulin G (IgG) in remote 

northwestern Kenya’s population using a fully integrated version of their DMF immunoassay 

platform (Ng et al. 2018). 

 

In the context of medical diagnostics that the platforms above are addressing, the patient has 

already been exposed to pathogens or other threat agents and has produced biomarkers that will be 

detected. In current state of the art DMF platform for immunoassay, only indirect detection of 

pathogens, i.e. detection of clinical biomarkers resulting from the infection process, has been 

performed. However, when detecting from an airborne sample, the pathogen itself must be directly 

detected. In addition, to offer a sufficiently rapid response to such pathogen, the detection should 

ideally occur in the field, close to the threat location. Hence the detection platform should be easily 

man-transportable, preferably oil-free, self-contained, i.e. not requiring external hardware and fully 

automated. Implementing all these features, the platform developed by the Wheeler Group (Ng et 

al. 2018) and the system described here, developed in parallel, based on defence specifications, are 

arguably by far, the two most advanced, potentially deployable, DMF biodetection systems.  

 

In this paper, for the first time on a EWOD chip, using a bespoke, free-standing, fully automated DMF 

platform for immunoassay, we demonstrate the rapid detection of four classes of CBW agent 
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simulant biomolecules and organisms representing threat agents or other pathogens, namely: 

proteins (toxins), vegetative bacteria, bacterial spores and viruses. The design and realisation of the 

different components constituting the integrated, completely self-contained DMF platform, 

including the high voltage waveform generator and drive electronics will be discussed in the 

experimental section. The performance of this system is assessed against fully automated detection 

of human serum albumin (HSA, a globular protein), Escherichia coli (E. coli, a vegetative bacteria), 

Bacillus atrophaeus (BG, a bacterial spore) and MS2 (a bacteriophage virus). It is expected that the 

system described here, when coupled with an in-droplet collection strategy, has the potential to 

address future aspirations for efficient detection of (airborne) pathogens. 

 

Experimental Section 

Material and method 

HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-Hydroxyethyl)piperazine-N′-(2-

ethanesulfonic acid) hemi-sodium salt pH 7.5 (Sigma Aldrich H9897) was used to make up the main 

assay running buffer. The HEPES salt was diluted into DI water to form a 100 mM HEPES solution at a 

pH of 7.5 and TweenTM 80 (Surfact-Amps™ Detergent Solution, ThermoFisher Scientific 28328) was 

added to a concentration of 0.01% v/v. 

 

The magnetic microparticles employed in this study are functionalised PierceTM NHS-Activated 

Magnetic Beads (ThermoFisher Scientific 88826). The beads have a mean diameter d = 1 µm and a 

magnetic susceptibility χ ≈ 0.1 (S.I.) estimated in accordance with the value of magnetic susceptibility 

of magnetite (Fe3O4) that can be found elsewhere (Kelland 1973).  
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Table 1 Antigens and antibodies used in the EWOD assay development and testing. Unless stated otherwise, materials listed in this table were provided by the 

Defence Science and Technology Laboratory (Dstl, UK). The following abbreviations are used: Rb for rabbit, cfu for colony forming units and pfu for plaque 

forming units.  

 

  

Antigen Antigen’s stock 

concentration 

Capture antibody Detection antibody 

HSA (Abcam, UK) 10.3 mg ml-1 

 

Anti-Human Serum 

Albumin [15C7] 

(Abcam ab10241) 

 

Anti-Human Serum 

Albumin [1A9] (HRP) 

(Abcam ab24438) 

 

B. atrophaeus (BG) 

spores  

 

9.5 x 108 cfu ml-1 Rb anti-BG polyclonal  

 

 

Biotinylated Rb anti-

BG polyclonal  

E. coli  

MRE 162 

3 x 109 cfu ml-1 Rb anti-E. coli MRE 

162 polyclonal  

 

Biotinylated Rb anti-E. 

coli MRE 162 

polyclonal  

 

MS2 virus 1 x 108 pfu ml-1 Goat anti-MS2 

polyclonal  

Biotinylated Rb anti-

MS2 polyclonal  
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The beads were derivatised with antibody using the commercially available Pierce™ Direct Magnetic 

IP/Co-IP Kit following the manufacturer’s instructions. Before use, the antibody coated beads were 

blocked by suspension overnight in Blocker™ Casein (1% w/v) in PBS buffer (TFS 37582, 

ThermoFisher Scientific, UK) at a concentration of 4 mg/ml. Using a permanent magnet to separate 

the beads from supernatant, the beads were then washed three times in buffer before suspending 

them in running buffer at the test concentration of 2.5 mg/ml.  

 

The antigens as well as the capture (attached to the microbeads) and detection antibodies used in 

this study, and their respective provenance are listed in the table 1. 

 

The biodetection assay (figure 1) used in this study involves the selective capture of antigen by 

antibody coated magnetic beads followed by the addition of a secondary detection antibody leading 

ultimately to the measureable emission of light from a chemiluminescent reaction. The process 

utilises a sequence of stepwise manipulations dependent on the effective extraction, resuspension 

and mixing of the magnetic beads within 2.5 µl droplets. Light generation is triggered by the reaction 

between the enzyme horseradish peroxidase (HRP) present on the beads (depending on the quantity 

of captured antigen) and a luminol substrate (SuperSignal™ ELISA Femto Substrate, TFS 37075, 

ThermoFisher Scientific, UK) brought to the beads at the end of the process in the form of a droplet 

used to resuspend and mix the beads. The luminescent droplet is subsequently moved by EWOD to 

the photodetector for light collection. The enzyme is attached directly (HSA assay) or indirectly (BG, 

E. coli and MS2 assays) via a NeutrAvidin®-biotin (Pierce™ High Sensitivity NeutrAvidin™- horseradish 

peroxidase conjugate, TFS 31030, ThermoFisher Scientific, UK) or streptavidin-poly-HRP (Pierce™ 

Streptavidin Poly-HRP, TFS 21140, ThemoFisher Scientific, UK) linkage to the detection antibody. The 

basic assay sequence with the use of a detection antibody-HRP conjugate is summarised in figure 1a. 

The use of a biotinylated detection antibody instead of an antibody-HRP conjugate requires an 

additional on-chip step using a droplet containing NeutrAvidin®-HRP or streptavidin-poly-HRP 

conjugate (figure 1b). In some experiments, using biotinylated detection antibody, the antibody and 

the conjugate are premixed off-chip to save the extra on-chip step. 
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Figure 1. Schematic diagram of the EWOD immunoassays: (a) four-extractions assay sequence using a detection antibody-HRP conjugate, (b) five extractions 

assay sequence using biotinylated detection antibody. 

The design and fabrication of the EWOD chip 

The central component of the DMF platform is the EWOD chip (Figure 2). The EWOD actuation plate 

(Figure 2a) comprises 47 electrodes each independently addressed by 48 channel electronics 

(described in the next section). Each electrode is 1.7 x 1.7 mm2 for typical droplet volumes ranging 

from 1.5 µl to 3 µl. To provide semi-transparency, the pads are filled by a grid design (Figure 2b). A 

rectangular pattern composed of eight electrodes constitutes the mixing region of the plate. A larger 

5 x 5 mm2 pad is used as waste pad for separated supernatant. The EWOD chip operates using the 

common parallel-plate configuration (Figure 2c) (Latip et al. 2017). In this configuration, the droplet 

is sandwiched between the hydrophobic surfaces of the actuation plate and a conductive, grounded 

cover plate both separated by a precisely defined gap. In the present embodiment, the gap (d) 

is 500 μm, set using specified thickness plastic spacers. In our operating configuration, the cover 
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plate is located at the bottom of the EWOD chip while the droplet is actuated by locally applied 

electric field via the actuation plate at the top. 

 

A commercially available chrome (Cr) mask fabrication service (Compugraphics, Scotland) was used 

to manufacture the electrode array on the glass plate (Cr thickness typically is 1000 Å) according to 

our design. The plates were precisely cut to size using a SYJ-400 precision CNC Dicing/Cutting Saw 

(MTI Corp, USA). The cut Cr/glass plates were coated with a 6 µm thick Parylene-C layer as dielectric 

layer. The Parylene-C was deposited following the Gorham process (Gorham 1967) using 7.4 g of 

DPX-C dimer in a SCS Parylene Deposition System 2010 ‘Labcoater 2’ (Specialty Coating System, 

USA). A layer of Cytop® was deposited on top of the dielectric layer to provide hydrophobicity to the 

EWOD surface. The Cytop® was spin-coated in a Süss Microtec ‘Labspin’ spin-coater (SÜSS MicroTec 

AG, Germany) at 1500 rpm for 30 s and the plates were then baked at 140°C for 30 min. The cover 

plate is made of a 500 μm thick, 4-inch silicon wafer (p-type, <100>, 1-10 Ohm.cm, Pi Kem Ltd), on 

which a Cytop® layer was deposited according to the process described above. 

 

 

Figure 2. Overview of the EWOD chip setup. (a) EWOD actuation plate. (b) pad, magnification x20. (c) schematic drawing of the parallel-plate EWOD chip in 

operation 
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DMF platform 

The DMF bioassay platform (Figure 3) integrates all the necessary components required to perform a 

complete chemiluminescent immunoassay. The platform includes a dark Faraday cage chamber to 

isolate it from stray light and to avoid electromagnetic interference affecting the detection 

electronics. This allows the chemiluminescent reaction between the enzyme horseradish peroxidase 

(HRP) and the luminol substrate to be monitored by a photodiode (S9270 photodiode, Hamamatsu, 

Japan). The fully integrated platform performs automated manipulation and transportation of 

magnetic micro-particles suspended in bio-material laden droplets. Droplets are ideal vessels for 

such solid micro-objects; in contrast to continuous flow in microchannels where transportation of 

suspended solid objects is problematic due to obstruction of the flow by the objects, there is no risk 

of such clogging in droplet-based DMF. The platform allows fully-automated immunoprecipitation 

involving the separation of the magnetic solid phase from the supernatant using an automated 

permanent magnet. The platform, controlled with a bespoke software interface, is fully-operated via 

an USB-connected computer and a UK main power-socket (Figure 3a).  

 

 

Figure 3. The digital microfluidics platform. (a) Overview of the all-integrated platform in operation; the dark faraday cage, in which the EWOD operation, the 

magnetic separation and the detection are performed, allows a minimal electromagnetic interference; the platform is connected to a computer running the 

bespoke software interface controlling droplet operation. The approximated dimensions of the unit are 26 x 30 x 30 cm3. (b) The platform with the chamber 

opened and its rotating stage in running position (magnet at the bottom). (c) The platform with rotating stage in droplet loading position (magnet on top). (d) 

The platform in droplet loading position with the lid (magnet attached) removed and the loading deck on. (e) Sprung-loaded connector (pogo pins) for 

electrical connection with the EWOD plate. (f) Integrated electronics: the top board comprises the wave generator and the bottom board  encompasses the 

control electronics. (g) The photodetector board comprising pre-filters and shielding case. (h) Manual pipetting of droplet through the droplet loading deck. (i) 

EWOD chip comprising the loaded droplets, the green arrow points to the detection site. 
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To remove any potential negative influence of gravity on the magnetic separation process, the 

platform operates with the vertically movable N42 cylindrical magnet (25 mm diameter and 10 mm 

height) located at the bottom of the silicon cover plate (Figure 3b). The magnet, embedded in a 3D-

printed protective case can be automatically moved up and down for either magnetic separation or 

re-suspension of the magnetic particles. A standard commercial off-the-shelf Arduino Uno controller 

board with an additional L298 H bridge motor controller IC (STMicroelectronics, Switzerland) is used 

to control the magnetic actuator by driving a small DC gear motor (Pololu, USA) that is connected to 

the driveshaft of the magnetic actuator assembly. Opto-switches detect when the motor has driven 

the magnet to either the retracted (magnet off) or extended (magnet on) position. A binary signal 

from the EWOD droplet transport modules determines whether the magnet should be extended or 

retracted. Additionally, the Arduino uses a Pulse Width Modulated signal to control the speed of the 

motor and thus gradually slow it down before contacting the silicon plate. 

 

The magnet assembly is mechanically aligned with the EWOD chip via precise positioning of the 

magnet with respect to the droplet at the prescribed separation site. The mechanical assembly 

contains a rotary stage allowing 180° rotation to alter the platform from its running position to its 

droplet loading position (Figure 3c & d). The magnet assembly is fixed on the lid, which can be 

unclamped and removed to free the silicon cover plate. With the cover plate removed (Figure 3d), 

the EWOD actuation plate can be slotted into place (or removed) and connected to the telescopic 

sprung loaded probes (otherwise commonly known as pogo pins) to establish electrical contact with 

the drive electronics (Figure 3e).  

 

The EWOD drive electronics (Figure 3f) consists of a stack of two PCBs, both powered from a PC via a 

USB cable, which are respectively responsible for the high voltage drive of the system on one board 

and for PC communication, channel switching and capacitive feedback measurement system on the 

other.  

 

The high voltage drive for the system is controlled by a Microchip 18F45K22 microcontroller. The 

microcontroller contains an 8 bit sine wave lookup table, the values of which are continuously 

iterated though, and output to an R-2R resistor ladder to produce a 1 kHz analog sine wave. This 

signal is then filtered and amplified to be used as the EWOD actuation signal on the assay plate. The 

operating RMS (root mean square) voltage ranges from 0 V to 225 V and is varied by the micro-

controller altering the value of a digital potentiometer determining pre-amplification.  

The lower communication board is responsible for the high voltage signal addressing as well as 

droplet feedback. The board is controlled by an 18F67K22 microcontroller. The board can control 48 

independent drive channels. Each channel consists of 2 high voltage MOSFET switches (ASSR4118 

photo MOSFET SSR), chosen for their low leakage current, high voltage capability and small form 

factor to allow on one electrode channel to both control and sensing of a droplet. These switches 

are arranged such that each channel can be connected to the high voltage AC source for droplet 

actuation, or to the analog to digital converter (A/D) of the microcontroller (including a MOSFET 
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allowing ground connection) for droplet sensing. The droplet sensing method is based on capacitive 

feedback but unlike the common feedback systems encountered in DMF, it doesn’t rely on a ring 

oscillator. Instead the droplet sensing system is based on charge accumulation during current 

injection. Feedback at rest and during droplet actuation is possible by simply measuring with the 

microcontroller A/D input after the microcontroller has injected a known current for a fixed time 

period using the Charge Time Measurement Unit of the microcontroller. 

 

A droplet actuation operation sequence would typically consist of the following events: The PC sends 

a command to the microcontroller declaring what drive voltage is required, followed by a command 

declaring which channels should be switched on and for what duration. The microcontroller then 

connects the required drive channels to the high voltage drive, enables the high voltage drive for the 

specified time, then disables the high voltage drive. Disabling the drive turns off all sine-wave 

generation rather than just disconnecting the drive so as to reduce possible interference sources 

during the charge measurement phase (droplet sensing). Once the drive is disabled all the switches 

are simultaneously closed for 20ms to dissipate any residual charge. After all residual charge has 

been removed the switches are then set to connect the channels to the A/D for droplet sensing. The 

software compares the measured charge level of the droplet destination pad with the previous 

known droplet’s location. By examining the difference in these values it can be determined whether 

the droplet has successfully moved.  

 

The optical detection module (Figure 3 g) is based around a Hamamatsu S9270 photodiode with an 

integrated preamplifier. The S9270 was chosen for its large 10mm x 10mm collection area to 

maximise light collection without collection optics and integrated trans-impedance amplifier to 

minimise noise. The amplifier has a built in feedback resistor of 1 GΩ and a built in feedback 

capacitor of 5 pf. This means that 1 nA of photodiode current will produce and output voltage of 1 V 

with a bandwidth of 32 Hz. In order to minimise noise magnitude, with the module having an output 

noise voltage of 9.7 µVrms/Hz, a 1 nf capacitor was placed in parallel with the built in 5 pf reducing 

the bandwidth to 0.15 Hz and thus reducing the noise at source. To reduce other possible noise and 

interference sources, the signal was fed directly into an Analog Devices AD7799 low noise 24 bit A/D. 

The A/D also has a 90dB 50Hz filter when sampling at 16.7Hz and a noise floor of 1.45uV rms. The 

A/D uses a Linear Technology LTC6655 precision voltage reference. The A/D is interfaced to 

PIC18F14K22 microcontroller which is connected to the PC via and FT232R USB to serial interface. 

Further reduction in EMI sources was achieved by careful PCB design including placing all analogue 

components in a screened ‘can’.  

 

The EWOD chip is aligned with the photodetector (Figure 3 h & i) allowing for a precise detection site 

for the luminescent droplet at the centre of the collection area for maximum light collection. Sample 

and reagents are brought onto the EWOD plate using bespoke loading deck (Figure 3 h) for precise 

manual pipetting of the 2.5 μl droplets onto their initial delivery pad. Up to ten droplets can be 

loaded this way to allow for up to nine separation steps assay. 
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Results 
When aiming at rapid, specific detection, reducing the number of assay steps is a desirable outcome. 

For this purpose, using a technique reported elsewhere (Ng et al. 2012), the full extraction of the 

magnetic beads from the droplet is a very efficient way to achieve the complete specific separation 

of the target with minimum dilution and/or washing steps. The detailed mechanism and theory of 

the magnetic full extraction process (appendix A) and a video of the magnetic extraction step can be 

found online as supplementary material. 

 

Whilst, an increase of the voltage directly increases the actuation force, hence facilitating magnetic 

extraction, it also participates in increasing the biofouling rate (Latip et al. 2017; Yoon and Garrell 

2003). Accordingly, based on a series of preliminary experiments described in appendix B (available 

online as supplementary material), 105 Vrms was selected as the operating voltage for the DMF assay 

with a couple of exceptions: firstly, the minimal reliable actuation for the luminol:H2O2 droplet was 

found to be 120 Vrms and secondly, a higher voltage of 165 Vrms was used to produce a higher force 

during the magnetic separation process. All of these voltages are implemented in the automated 

sequence used to perform the fully automatic immunoassay. 

 

Taking advantage of the full magnetic separation process with antibody-bound microbeads and 

using minimal washing steps, very rapid detection is achieved. Here, we report clear detection of 

four categories of antigens (see figure 4), achieved with assay times as short as six minutes and no 

longer than ten minutes. 
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Figure 4. EWOD immunoassay result, unless indicated otherwise, the incubation time (tinc) is 84 seconds. (a) Human serum albumin. (b) BG spore. (c) MS2 

bacteriophage. (d) E. coli bacteria 

 

Detection of HSA (Figure 4a) involved the use of an anti-HSA detection antibody directly 

functionalised with HRP. Three different concentrations of this conjugate were used to provide 

information of the dependency of the specific detection and non-specific background signals on that 

variable (0.5, 2.0 and 4.0 µg ml-1). All these measurements were made with an incubation time of the 

antibody capture beads with the sample of 84 seconds, allowing a rapid total assay time of 6 

minutes. During the incubation period, and as for all other assays presented here, the droplet was 

kept moving following a mixing pattern in the mixing region of the EWOD chip. 

 

A conjugate concentration of 2.0 µg ml-1 was selected for a more detailed study with standard 

deviations (n=3) obtained for all antigen concentrations measured. An estimated limit of detection 

(LoD) of approximately 30 ng ml-1 is obtained. A single experiment with an antigen concentration of 

103 ng ml-1 with an extended sample incubation of 160 seconds showed a 36% increase in signal with 

no increase in the non-specific background signal. This suggests a potential reduction of the LoD to 

approximately 18 ng ml-1 while maintaining a rapid assay time of 7.4 minutes. 
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For the detection of BG spores (Figure 4b) a biotinylated detection antibody combined with a 

NeutrAvidin®-HRP conjugate was used. To simplify the assay, the biotinylated detection antibody 

and conjugate were premixed to reduce the number of assay steps. Both were at final 

concentrations of 1 µg ml-1. The assay shows a relatively high background due to non-specific 

binding of the HRP conjugate. Although clear positive responses are obtained at concentrations 

above 104 cfu ml-1, the relatively high standard deviations obtained from the data indicate a limit of 

detection of approximately 4 x 104 cfu ml-1. From the plot it appears that there may be a ‘hook 

effect’ at concentrations above 106 cfu ml-1, but this cannot be confirmed due to the high standard 

deviations in the experimental data.  

 

The MS2 bacteriophage is employed to demonstrate detection of a viral antigen (Figure 4c). As with 

the BG assay, the biotinylated rabbit anti-MS2 antibody was pre-mixed with the Neutravidin-HRP 

conjugate, both at a concentration of 1 µg ml-1. The antigen incubation time was 84 seconds. A clear 

positive response at concentrations above 105 pfu ml-1 is obtained, however the relatively high SDs 

indicate a limit of detection of approximately 106 pfu ml-1, a very promising result nonetheless 

considering the short assay time of 6 minutes. 

 

Finally, detection of a vegetative bacterial antigen is shown using E. coli (Figure 4d). In contrast to 

the BG and MS2 assays, the biotinylated rabbit anti-E. coli antibody (3.6 µg/ml) was not pre-mixed 

with the enzyme conjugate.  In order to enhance the response signal Neutravidin HRP conjugate was 

replaced with streptavidin poly-HRP at a concentration of 1 µg ml-1. The antigen incubation time was 

168 seconds. Two wash steps were included prior to luminol addition to minimise background noise. 

The fairly high LoD of 2 x 107 cfu ml-1 is balanced by the low sample volume needed and the short 

assay time (albeit longer than for the other species) of ten minutes. 

Discussion 
The use of a DMF platform for bioassays combines the advantage of low volume samples and short 

assay times whilst retaining, and in some cases improving upon, typical LoD performance 

characteristics of most common biosensing methods (Ivnitski et al. 1999; McBride et al. 2003; Rowe 

et al. 1999; Speight et al. 1997), which are often considerably more time consuming and/or require 

several orders of magnitude larger sample volume. Whilst the versatility of the technique is proven, 

one caveat concerns the fairly high LoD obtained for the vegetative bacteria representative (E. coli) 

resulting from the limitations of the available antibodies for that particular antigen. Improvements in 

the detection performance should be obtained by the selection of higher affinity antibodies or by 

the selection of antibodies for which target epitopes are present at higher densities on the surface of 

the micro-organism. 

 

In general, detection performance could be improved by increasing the detection sensitivity while 

reducing the chemiluminescent background caused by the non-specific binding (NSB) of the 

antibody-HRP complex to the magnetic beads. Using higher affinity antibodies will increase the 

desired reaction signal in absolute terms. However, even with an increased sensitivity in detection, 
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the NSB is the main current limiting factor for the LoD. Further investigation to reduce the NSB may 

be involving the selection of a new blocking agent for the beads as an alternative to the casein 

protein blocker employed in this study and a modified formulation of the buffer and surfactant.  

 

Disregarding the LoD issue, the detection sensitivity could be further improved via several routes. In 

the current configuration, prior to reaching the photodetector surface, the optical signal is 

attenuated by the semi-transparency of the grid Cr electrode of the EWOD structure. Accordingly, it 

is anticipated that using fully transparent electrodes could significantly increase the optical signal 

and hence sensitivity. It would also be possible to increase the photodetector’s sensitivity. A very 

obvious way to achieve this would be to replace the present photodiode by one of higher sensitivity 

such as a Silicon PhotoMultiplier (SiPM) device. 

 

A question regarding the use of immunoassays is raised by the figure 4b where the large 

uncertainties of data point for the highest concentration of the analyte can be attributed to a slow 

degradation of reagents during the course of a day’s tests. The results obtained by plotting only the 

data obtained using fresh solutions (N=2) are also shown on the same graph. Whilst the comparison 

between the N=2 and N=3 plots seems to indicate that the impact of reagent degradation on the 

LoD is very marginal, general future investigation concerning the stability of antibody solutions when 

used in the field would be valuable. 

 

It should be noted that, whist important, the limit of detection of the biosensor isn’t the only factor 

on the bio-detection process that determines the likelihood of detecting very low concentrations of 

airborne pathogen. The probability for a target to be detected is a function of the sensor’s LoD as 

well the concentration of the collected sample introduced into the detector. Hence, it is essential to 

maximise the concentration of the sample resulting from the collection stage of the bio-detection 

chain. We propose that our detection technique should be used in conjunction with a DMF-based air 

sampler, such as that presented by Foat et al. (2016), which produces highly concentrated droplet 

samples. Such a sampling technique relies on continuous sampling over a period of time prior to a 

concentration step using EWOD based DMF to transfer the material into a liquid droplet. Although, 

for such systems in general, real-time detection of threat aerosols should be the ultimate aim, this is 

not currently achievable due to the requirement for very rapid but highly specific measurement of 

the very low agent concentrations in a widely fluctuating biological background combined with a 

resulting high reagent burden when operating in the field. A more realistic approach is for detection 

to be achieved sufficiently early to allow for affected personnel to receive appropriate medical 

treatment. This could be achieved by using continuous collection of aerosol combined with rapid 

analysis of the resulting sample at user selected intervals or triggered, for example, by a reagentless 

continuously monitoring aerosol counter (Kaye and Hirst 2015).  

 

To further explore the significance of the results presented in this paper, a brief hypothetical case-

study involving detection of airborne Bacillus anthracis using our detector coupled to the DMF-based 
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air sampler presented by Foat et al. (2016) is conducted here. Whilst hypothetical, the study 

employs experimental results from both this paper and Foat et al.’s (2016). The following 

assumptions are made:   

- BG, employed in this study, is routinely used as a simulant for B. anthracis by the defence 

community (Ho and Duncan 2005). It is therefore assumed that the values for collection 

efficiency of BG and the LoD of BG respectively estimated in the study from Foat et al. (2016) 

and in this paper would be similar to the one of B. anthracis and will therefore be used 

interchangeably in the projection. 

- The respiratory minute volume of a moderately active person is assumed to be VR = 20 l/min 

(Altman and Dittmer 1971) 

- The retention ratio of inhaled organisms is considered to be 100%. 

From the perspective of CBW protection, B. anthracis, responsible for the Anthrax disease, is 

arguably the primary bio warfare  threat (Gutting et al. 2012; Primmerman 2000). Although not 

precisely known for humans, the median infective dose ID50 (dose that will infect 50% of the 

exposed population) of B. anthracis can be estimated at around 10,000 spores based on the values 

found in the literature (Goel 2015; Primmerman 2000; Toth et al. 2013). The infection time (time for 

ID50 to be inhaled, tID50) to the minimum sampling time (time for the sampler to achieve the LoD, 

tLoD) ratio can be estimated as follow (Equation 1): 

𝑡𝐼𝐷50

𝑡𝐿𝑜𝐷
=

𝐼𝐷50∙𝑅𝐶

𝐿𝑜𝐷∙𝑉𝑅
  (Equation 1) 

with Rc being the sampler’s concentration rate as defined by the product of the system’s collection 

efficiency and the flow rate divided by the sample’s volume. The collection efficiency of BG reported 

by Foat et al. (2016) using the ESP-EWOD system ranges from 1.3% to 5.4%. For a 2.5 µl volume 

output such as introduced to the detector of the present study, Rc ranges from 1.4 105 min-1 to 

5.4 105 min-1. Using the DMF immunoassay platform presented in this paper, detection of BG can be 

achieved with a LoD of 4 104 cfu/ml. Accordingly, the ratio of infection time to the minimum 

sampling time can be estimated between 1.9 and 7.4, which means that a detectable sample can be 

collected 1.9 times to 7.4 times faster than for a subject exposed to inhale the ID50, hence allowing 

detection to potentially occur prior to infection. At the very least, employing DMF-based detection 

could allow threats to be identified shortly after exposure thereby enabling rapid response including 

medical countermeasures. 

 

Exploring some plausible scenario of malicious airborne dissemination (Ho and Duncan 2005; 

Reshetin and Regens 2003), the concentration of aerosolised B. anthracis can vary from low, 

0.007 cfu/ml to very high, 160 cfu/ml. At the latter concentration, one human breath cycle will be 

sufficient to inhale more than 10 times the ID50. In this case, early detection will allow timely 

treatment but will be unlikely to prevent infection that could occur as soon as the subject is exposed. 

However, at the lower concentration of 0.007 cfu/ml, using our very simplistic assumption, it would 

take approximately 70 minutes for a subject exposed to inhale the ID50. In this kind of situation, 

using our detector coupled to the DMF-based air sampler, the minimum time for the DMF-based 

sampler to collect a sample of detectable concentration (i.e. the LoD) ranges between 10 minutes 
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and 38 minutes. Thus the short DMF assay time of 6 min to 10 min reported here, would allow pre-

infective detection to be included within the range of possibilities. 

 

Conclusions 
A bespoke digital microfluidic immunoassay platform has been demonstrated, which addresses the 

limitations of aerosol detection of CBW agents. For the first time on an EWOD chip, rapid, efficient 

and specific detection of four common types of representative pathogen - simulant biomolecules 

and organisms (proteins, vegetative bacteria, bacterial spores and viruses) has been achieved.  

 

Rapid, fully automated detection of E.  coli, BG, MS2 and HSA have been demonstrated as a proof of 

concept for versatile biodetection. 

 

In recent years, EWOD-based air sampling systems achieving high concentration rate have been 

developed. These systems exploit small volume droplets to produce highly concentrated sample in-

droplet from collected aerosol material. The fully-integrated portable platform described in this 

paper is highly compatible with this next generation of electrowetting-coupled air samplers and thus 

shows strong potential toward future in-field deployable bio detection systems. The development of 

such technology could impact a wide range of disciplines with life-changing repercussion including 

food security (crop pathogen monitoring) and healthcare (point of care diagnostics). 

 

With this paper, we hope to demonstrate that DMF is a very promising technique to address the 

crucial bio-detection challenges posed by early detection of weaponised aerosols. With the concepts 

presented here and thanks to the democratisation of DMF systems, strongly underpinned by a 

decade of research and exemplified by the recent foundation of DMF systems solution providers  

such as Sci-Bots and GaudiLabs, we anticipate that continuous improvement of the state-of-the-art 

of DMF systems will be crucial to the development of the next generation of in-field bio-detectors. 
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