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Abstract 
 

Currently the best algorithms for transcription factor 
binding site prediction are severely limited in accuracy. 
In previous work we applied classification techniques on 
predictions from 12 key prediction algorithms. In this 
paper, we investigate the classification results when 4 
feature selection filtering methods are used. They are Bi-
Normal Separation, correlation coefficients, F-Score and 
a cross entropy based algorithm. It is found that all 4 
filtering methods perform equally well. Moreover, we 
show that the worst performing algorithms are not 
detrimental to the overall performance.  
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1. INTRODUCTION 
 

In this paper we address the problem of feature 
selection for imbalanced data, in the context of 
improving the identification of transcription factor 
binding sites on sequences of DNA. There are many 
different algorithms  to search for binding sites in current 
use  (see Section 3). However, most of them produce a 
high rate of false positive predictions. This is problematic 
for practicing biologists who wish to validate these 
results - testing a prediction is costly.  

 In [1], we attempt to reduce these false positive 
predictions using classification techniques taken from the 
field of machine learning. We combine random selection 
under-sampling and SMOTE over-sampling techniques 
to cope with the imbalanced dataset. In addition, we use a  
‘window’ of consecutive results in order to contextualise 
the neighbouring results. In this work, we investigate the 
classification results when using 4 feature selection  
filtering methods: Bi-Normal Separation (BNS), 
correlation coefficients (CC), F-Score and a cross 
entropy based algorithm, on the windowed inputs.  

 

2. PROBLEM DOMAINS 
 

   It is increasingly acknowledged that the variation in 
complexity of organisms is due to differences in the 
regulation of gene activity rather than to differences in 
the genetic specifications for protein coding per se. Gene 
activity is dynamic and affected by, among other things, 
metabolic products and intermediates such as various 
hormones. Whereas the general principles underlying the 
translation of the coding regions of genes (exons) into 
their protein products are largely comprehended, the 
mapping between a gene's expression and the 
information contained in (non-coding) regulatory regions 
of the genome is not well understood. These regulatory 
regions are short sequences upstream or downstream of 
the position where gene transcription begins. They are 
generally composed of dense clusters of so-called 
transcription factor binding sites (TFBS). In turn, these 
binding sites are recognized by transcription factors, 
proteins that – upon binding to them - act as repressors or 
activators, thus controlling the rate of transcription. 
      Recent research has made clear that genetic 
regulatory mechanisms are much more intricate than was 
once assumed. For example, a single base substitution 
will commonly modify the intensity of the interaction 
between transcription factor and DNA rather than abolish 
it. This implies that such regions are fairly robust to 
mutations. It also allows a relatively small number of 
transcription factors to produce a multitude of patterns of 
gene expression. Furthermore, certain weakly binding 
transcription factors require assistance of other, more 
vigorously binding proteins whereas others compete for 
access to a single regulatory site. The situation is further 
complicated by the fact that certain regulatory regions are 
more accessible to transcription factors than others [2]. In 
higher eukaryotes some of these regions may be located 
far upstream or downstream of the target gene. These are 
called enhancers or cis-regulatory modules and have 
proven to be very difficult to recognise. 



 

     One of the most exciting, but also challenging areas of 
current biological research is therefore devoted to the 
understanding of the regulation of gene expression. The 
identification of regulatory regions and transcription 
factor binding sites clearly forms an essential step in this 
endeavour. However, although as much as 50% of the 
human genome is estimated to be regulatory [3], most of 
this is not yet deciphered. The desire for large scale 
understanding has driven the development of high 
throughput methods. It favours computational approaches 
because these sidestep the ultimately more reliable but 
slow and expensive route of experimental verification. 
     Regulatory regions appear to have statistical 
properties that help to distinguish them from other parts 
of the genome, such as the over-representation of similar 
sequential motifs [4-6] and a sequential persistency and 
an informational entropy that is intermediate between 
those of exons and non-coding, non-regulatory DNA [7]. 
These and other statistical properties are exploited by 
various types of algorithms for predicting TFBS, or their 
motifs, from raw sequence data. Enumerative algorithms 
build or assume a background model of base pair 
distribution  in the DNA non-coding regions that do not 
contain TFBS, and look for motifs in the given sequence 
that are statistically significant against this background. 
They are often applied to (putative) co-regulated genes 
found by expression (micro-) array analysis. Another 
enumerative approach is phylogenetic foot-printing, 
which identifies motifs by comparing sequences from 
phylogenetically related species. Iterative algorithms use 
techniques such as Expectation Maximization to define 
weight matrices for the most over-represented motifs. 
These algorithms also require a collection of upstream 
sequences from possibly co-regulated genes and a model 
for background distribution. Content based algorithms 
segment the available sequence into a 'lexicon' of words 
and look for regularities in the way one would proceed to 
decipher a text consisting of a long string of letters 
written in an unknown language in which words are not 
delineated. 
    The downside of the developments sketched above is 
that we are currently burdened by a bewildering variety 
of algorithms. Nowadays it takes quite some 
computational and statistical expertise to make an 
educated choice about what methods to use. Even more 
worryingly is the fact that many of the published 
algorithms are still severely limited in accuracy and of 
uncertain quality. Not only is picking regulatory regions 
out of the background of other non-coding DNA 
sequences a non-trivial enterprise, also the fierce 
competition in the prediction market hardly allows for a 
thorough evaluation. For example, in a large sample of 

annotated yeast promoter sequences, a selection of 12 
key algorithms were unable to reduce the error rate of 
positive predictions below 80%, with between 20% and 
65% of annotated binding sites recovered. These 
algorithms represent a wide variety of approaches to the 
problem of transcription factor binding site prediction, 
such as the use of regular expression searches, PWM 
scanning, statistical analysis, co-regulation and 
evolutionary comparisons. 
     One way to overcome this problem is to combine the 
outcomes of a large number of algorithms instead of 
relying on the result of just one. The importance of such 
meta-classifiers goes without question and their 
investigation will therefore be at the core of this paper. In 
the work described here we take the results from the 12 
aforementioned algorithms and combine them into 2 
different feature vectors, as shown in next section. We 
then investigate whether the integrated classification 
results of the algorithms can produce better 
classifications than any one algorithm alone. (See Figure 
1, and more details about Figure 1 can be found in 
section 3.1). In our previous work [1], we found that the 
integrated classifier using a support vector machine 
(SVM) [8] outperform each of the original individual 
algorithms and the other classifiers employed in this 
work.  In particular they have a better tradeoff between 
recall and precision. 

 

 
 
Figure 1. The 12 algorithms give their own prediction 
for each sequence position and one such column is 
shown. The 12 results are combined as an input to a 
classifier. 

 
 

3. DATASETS AND METHOD 
PERFORMATIONS 

 
3.1 Description of the Data 
 

    The data is extracted from the SCPD database 
(http://cgsogma.cshl.org/jian), which is one of the largest 



 

and most reliable collections of experimentally verified 
annotated data available. The dataset has 68910 possible 
binding positions and a prediction result for each of the 
12 base algorithms. The 12 algorithms can be categorised 
into higher order groups: Single sequence algorithms (7) 
[9-12]; Coregulatory algorithms (3) [13, 14]; A 
Comparative algorithm (1) [15]; An Evolutionary 
algorithm (1) [16]. The data has two classes labeled as 
either binding sites or non-binding sites, with about 93% 
being non-binding sites. 
     In this work, we use 2/3 of the data as the training set 
and 1/3 as the test set.  Amongst the data there are 
repeated vectors, some with the same label (repeated 
items) and some with different labels (inconsistent 
items).  It is obviously unhelpful to have these repeated 
or inconsistent items in the training set, so they are 
removed. However there is no change in the case of the 
test set, which therefore contains the full set of data.  
     As the data is drawn from a sequence of DNA 
nucleotides the label of other near locations is relevant to 
the label of a particular location.  We therefore 
contextualise the training and test data by windowing the 
vectors as shown in Figure 2.  We use the locations up to 
three either side, giving a window size of 7, and a 
consequent input vector size of 84.  This has the 
considerable additional benefit of eliminating most of the 
repeated and inconsistent data. 
 

 
 
Figure 2. The window size is set to 7 in this study. The 
middle label of 7 continuous prediction sites is the label 
for a new windowed inputs. The length of each 
windowed input now is 12 × 7.  
 
3.2 Sampling Techniques for Imbalanced 
Dataset Learning 
 
     Since the dataset is imbalanced, supervised 
classification algorithms will be expected to over predict 
the majority class, namely the non-binding site category. 
There are various methods of dealing with imbalanced 
data [17], classified as algorithm-based and data-based 

methods. So far we concentrate on data-based methods.  
In this work we apply random selection under-sampling 
for the majority class (negative examples) and SMOTE 
[18] over-sampling for the minority class (positive 
examples). More details on data-based methods can be 
found in [19].  
    The aim of the SMOTE method is to synthetise new 
patterns by applying majority voting to each of the 
attributes of the K-nearest neighbours of each pattern in 
the minority class. We take 5 nearest neighbours, and 
triple the number of items in the minority class.  The 
actual ratio of minority to majority class is determined by 
under-sampling the majority class. For feature selection 
to work effectively it is desirable for the two classes to be 
of equal size.  
 
3.3 Classifier Performance 
 
     To evaluate classifiers used in this work, we apply a 
range of standard reference metrics defined in Table 1, 
where TN is the number of true negative samples; FP is 
false positive samples; FN is false negative samples; TP 
is true positive samples. 
 

Table 1. Definitions of several performance metrics. 
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      In the context of identifying binding sites a high 
Precision and low FP_Rate are particularly important, as 
a higher cost is associated with a degradation of 
performance on these metrics. There is a trade-off 
between Precision and Recall for the imbalanced dataset, 
integration of the metrics using the F-Score provides a 
single metric for evaluating overall performance.  The 
value of the correlation coefficient, CC [20], ranges from 
-1 to 1. When predictions exactly coincide with the 
known binding site, it has value 1. 
 

4. FEATURE SELECTION 
 
It is known that a dataset with a large number of 

features may suffer from the curse of dimensionality 



 

[21]. To alleviate this problem, many feature selection 
techniques have been proposed. One excellent recent 
introduction to this topic can be found in [22]. There are 
three main approaches: wrappers, filters and embedded 
methods. Wrappers and embedded methods integrate 
feature selection with the machine learning process, 
while filters are a pre-processing step, which choose a 
subset of features according to a particular feature 
selection algorithm. In this work, we focus on filtering 
methods.   

In the context of the data used here, feature selection 
is the elimination of one or more of the base algorithms 
that may be less useful in constructing the final meta-
classifier. This elimination can be achieved simply by 
using one (or more) of the aforementioned performance 
metrics. In this way we are selecting the best algorithms 
prior to combining them to produce the meta-classifier. 
Two suitable metrics are F-Score and CC as defined in 
Table 1.  

Alternately, we can select features to eliminate by 
using a combination of the metrics, as described in 
Section 4.1, or an algorithm from Information Theory, as 
described in Section 4.2. 

    
4.1 Filtering Metrics  
 

Bi-Normal Separation (BNS) is a method that 
combines two metrics to compute which features to 
eliminate. BNS was proposed in [23], where it was found 
to perform well. Its definition is given by 

)()( 11 FP_RateFRecallF !!
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F  is the 

standard normal inverse cumulative distribution. The 
BNS distance metric is proportional to the area under the 
ROC curve [24], which is often used to measure a 
classifier’s performance.  

 
4.2 The Entropy Based Algorithm  
 

 An algorithm, using cross entropy was proposed in 
[25].  Here we describe it following [17].  

Assuming there is a set of features 
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5. EXPERIMENTAL RESULTS 

 
5.1 Results on Feature Selection   

 
We compute the BNS, F-Score and CC scores for 

each of 12 base algorithms. The cross entropy-based 
algorithm is implemented using the classification 
toolbox, which is available at the URL http://www.yom-
tov.info/toolbox.html. These scores are sorted and plotted 
in Figures 3-6.  

To select a subset of the features we are looking for a 
suitable boundary in the graphs where the curves begin to 
fall away relatively rapidly. We decided that 6 features 
represented a good compromise.  Thus, the length of a 
windowed feature vector is 6 × 7 = 42.   

Table 2 shows that the rank of the 12 base algorithms 
(denoted A to L) resulting from the different feature 
selection methods. It can be seen that there are 4: A, C, G 
and I, in common in the first 6 selected features of all the 
filtering methods employed here. In addition, the ranking 
of features using the BNS and CC methods are the same 
except for rank 9 and 10. 

 

 
    Figure 3. BNS of each algorithm. 

 
 
5.2 Results on Classification 



 

 
  Since BNS and CC selected the same 6 algorithms 

there are only 3 different sets of data, one for each of the 
different sets of selected features. For each set of data, an 
SVM was trained as a meta-classifier. All the SVM 
parameters were obtained using cross-validation. For the 
purpose of comparison we also ran the SVM on the full 
set of 12 features, denoted by Full in Table 3.  

Table 3 shows the results. Interestingly, we can see 
that all performances are similar. Full windowed inputs 
have the highest F-Score, while BNC/CC windowed 
inputs have the lowest FP-Rate and highest Precision. 
Overall, none of the 4 feature selection filtering methods 
outperforms the others.  
 

.  
. Figure 4. F-Score of each algorithm. 

 
 

 
Figure 5.  CC of each algorithm. 
 

 
.  Figure 6. The expected cross entropy of each 

algorithm. 
 

 
Table 2.  The rank of  the 12 base algorithms. 
Rank BNS F-Score CC Entropy 

1 I I I B 
2 A A A G 
3 G G G A 
4 J K J C 
5 C L C J 
6 K C K I 
7 L J L D 
8 D D D F 
9 B F F E 

10 F E B H 
11 H H H K 
12 E B E L 

 
 
 
 

6. DISCUSSION 
 
It is found that all 4 feature selection filtering 

methods perform well. All of them give similar 
classification performances to the classifier which used 
the full set of features. This is an interesting result since 
it implies, for this dataset, that the filtering process is 
unnecessary.  It is clear that the 6 worst performing 
algorithms were not detrimental to the overall 
performance of the meta-classifier. On the other hand, we 
have shown that effective classification can be achieved 
using just the 6 best algorithms.    



 
 

Table 3. Performance of  the 4 feature selection methods.  Each row corresponds to 
one feature selection  method, with the performance of the resulting classifier down 

each column. 
 Recall Precision F-Score FP_Rate CC 

Full 0.35 0.26 0.30 0.07 0.24 
BNS/CC 0.28 0.30 0.29 0.05 0.23 
F-Score 0.29 0.27 0.28 0.06 0.22 
Entropy 0.31 0.27 0.29 0.06 0.23 
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