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Synopsis 

The present work investigates the tribological properties of solid particles as lubricant 

additives in lubricants. Two types of solid particles, Ceria nanoparticles (CeO2) and Zinc 

borate ultrafine powders (ZB UFPs), were used as the lubricant additives in this study. The 

friction and wear behaviours of these lubricant additives in different base lubricants were 

identified. With an appropriate application of these solid lubricant additives, the friction 

reduction and wear resistance properties of the lubricant have been successfully improved. 

Without assistance of surfactant or surface modification, the two types of solid particles 

behave very differently. Evident performance was observed that pure ZB UFPs were capable 

of considerably reducing the friction coefficient of sunflower oil and liquid paraffin when 

they were used as a lubricant additive without further treatment. On the contrary, CeO2 

nanoparticles did not show noticeable contribution to friction reduction when they were used 

as the only additive in water. Only when surfactant Sorbitan monostearate was employed to 

enhance the dispersibility of CeO2 nanoparticles in water, the application of this additive was 

capable of reducing friction coefficient of the water based lubricant effectively.  

Surface modification of the solid particles was carried out to improve the dispersibility of 

these particles in base lubricants. Oleic acid (OA) and Hexadecyltrimethoxysilane 

(HDTMOS) were selected as the modification agents. Modified CeO2 nanoparticles and ZB 

UFPs revealed outstanding wear resistance property. An improvement of up to 15 times was 

identified although this improvement on wear resistance, in this case, was often companied 

by a rise in friction coefficient. 

Tribo-films generated by tribo-chemical reaction were observed on most of the worn surfaces 

and the formation of this tribo-film appeared to have played an important role in the friction 
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and wear behaviours of a system. A tenacious tribo-film with good surface coverage was only 

generated on the worn surface when HDTMOS modified solid particles were used as 

lubricant additives. The mechanical properties and elemental composition of the tribo-film 

were studied with nano-indentation and energy-dispersive X-ray spectroscopy (EDS). Finally, 

based on the experimental evidence, different functionalities of CeO2 nanoparticles and ZB 

UFPs as solid lubricant additives were recognized  
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Chapter 1. Introduction 

1.1 Framework, Aims and Objectives 

Lubricant additives have an important influence on the performance of lubricants. These 

additives are active ingredients which can be added during a blending process to base oils in 

order either to enhance the existing performance of the base fluids or to impart new 

properties that the base fluids lack. In modern industry, the ever growing demand on the 

duration and efficiency of machineries stimulates the research for lubricant additives with 

better performance. At the same time, industry is facing increasingly rigorous environmental 

regulations. Compared with the traditional organic lubricant additives that contain P, S and Cl 

elements, novel lubricant additives with environmental friendly feature are certainly 

becoming more desirable in the future, and research for the novel lubricant additives with 

good tribological properties and low environmental impact becomes important [1-3]. 

Most of lubricant oils at present contain several critical lubricant additives, including 

antiwear additive, dispersant, detergent, friction modifier, viscosity index improver and 

antioxidant. Traditionally, lubricant oils are presented as a single phase material in order to 

maintain a good consistency and dispersibility of the lubricant additives in the base oil.  

However, a great amount of research has been focused on introducing solid particles as a 

friction reduction or antiwear lubricant additive over recent years due to a number of 

incomparable advantages of the two-phase lubricant oils (liquid-solid), such as the superior 

thermal conductivity, the high pressure standing ability, high resistance to decomposition at 

temperature, low environmental impact, etc. [4-6]. Some of the solid lubricant additives, 

particularly in nano or submicron size, have even demonstrated better tribological 
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performances than the traditional organic additives, Zinc dialkyldithiophosphates (ZDDP) for 

instance. 

Due to the diversity of the materials, there are still many controversies about how their 

behaviour in a base lubricant and their lubricating mechanisms although many potential 

candidates have been tested as the solid lubricant additives and many of them have shown the 

excellent tribological properties [7-9]. The major drawback of solid lubricant additives, the 

intrinsic poor stability in liquid base lubricant systems, has considerably restrained them from 

applications. Therefore the research on exploring novel solid lubricant additives and the 

techniques that would improve their dispersibility in base lubricants is certainly required. 

In this study, CeO2 nanoparticles, and zinc borate submicron particles have been selected as 

the solid lubricant additives and investigated. CeO2 nanoparticles, as an important rare earth 

material have attracted much attention due to their special optical and electrical properties; 

however other information of this material, especially the tribological properties in lubricant 

base oil are still very limited. Similarly, the information of submicron size zinc borate 

powders, whose nanoparticles have showed outstanding lubricating performances, is also 

lacking.  

Eventually, this research aimed to study the influence of these solid lubricant additives on 

friction and wear properties of the base lubricants, and to develop a new mild wear test 

method which can be applied to future exploration of different lubricant additives. This is 

achieved through the following objectives: 

 Explore the influence of different types of solid lubricant additives on the friction and 

wear properties of the base lubricants.  
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 Improve the dispersibility of the solid lubricant additives by using surface 

modification technique and investigate the tribological properties of the surface 

modified solid lubricant additives.  

 Interpret the mechanisms of the effects of these solid lubricant additives on 

tribological performances.  

 Use advanced techniques to analyse worn surfaces and investigate the effect of 

particle dispersibility on the formation of tribo-films and the antiwear mechanism of 

the tribo-films. 

1.2 Dissertation Outline 

In Chapter 2, this thesis begins with a literature survey which aims to provide an 

understanding of the background knowledge and theories in tribology. 

Chapter 3 provides a review regarding the previous studies on the solid lubricant additives. the 

tribological properties of different types of solid lubricant additives and the various 

mechanisms which have been proposed to explain their tribological behaviours are also 

discussed. 

Chapter 4 describes the experimental techniques used to characterise the solid lubricant 

additives and to investigate the friction and wear behaviours of the solid lubricant additives in 

base lubricants as well as the mechanisms. The testing materials involved in this study 

including solid lubricant additives and the surface modification agents were also introduced 

in this chapter. 

Chapter 5 presents the experimental results and observations which were obtained from 

tribology tests of using Cerium dioxide (CeO2) nanoparticles as the solid lubricant additive in 

water. The friction and wear reduction mechanisms of CeO2 nanoparticles in water were also 

discussed. 
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Chapter 6 reports the experimental results and observations of using Cerium dioxide (CeO2) 

nanoparticles as a lubricant additive in liquid paraffin. Oleic acid (OA) and 

Hexadecyltrimethoxysilane (HDTMOS) coupling agents were employed to modify CeO2 

nanoparticle surfaces in order to improve the dispersibility in base lubricant. The tribological 

properties of the original and modified CeO2 nanoparticles in liquid paraffin (LP) was 

evaluated and compared. 

Chapter 7 reports friction reduction and anti-wear properties of zinc borate ultrafine powders 

(ZB UFPs) as a lubricant additive in sunflower oil. The morphology and mechanical 

properties of worn surface as well as the tribo film generated on the surface were analysed. 

In Chapter 8 surface modification to ZB UFPs were carried out using Oleic acid (OA) and 

Hexadecyltrimethoxysilane (HDTMOS) coupling agents to improve the dispersibility. 

Surface modification of ZB UFPs was verified using FTIR Spectrometer and 

Thermogravimetric analyser (TGA). The tribological properties of liquid paraffin with 

original and modified ZB UFPs were investigated and tribochemical reaction conducted on 

the worn surfaces was identified. 

Individual interpretation and discussion sections were included in Chapter 5 to Chapter 8 to 

discuss the possible mechanisms of the tribological behaviour that the corresponding solid 

lubricant additive has demonstrated in base lubricants. 

Finally, Chapter 9 summarises the main findings from the overall study and makes some 

suggestions for the future research in this area. 
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Chapter 2. Fundamental Theory of Tribology 

2.1 Introduction 

This chapter reviews the background knowledge and theories in tribology. It starts with a 

brief overview of the nature of a solid surface, the parameters to describe roughness and the 

fundamentals of contact models which have been developed to describe the encounter of real 

surfaces. The next section deals with the definition and previous studies of boundary 

lubrication, as surface sliding in this lubrication regime is the main focus of this thesis. A 

section that explains wear, wear mechanisms and its measuring approaches is included in the 

chapter. Finally the principles of friction and related mathematical models of different 

friction components are followed. 

2.2 Solid surface 

Tribology is the science that studies interacting surfaces in relative motion (all surfaces 

mentioned are referred to solid surface) [10]. The nature of the interaction of surfaces 

seriously influences the friction, wear and lubrication behaviours. Therefore a good 

understanding of the surface nature is essential in tribology study. This section reviews the 

nature of surface and surface contact. 

2.2.1 Surface nature 

Solid surfaces in general have complex structures and properties. The nature of solids, the 

method of surface preparation, and the interaction between the surface and the environment 

all have considerable influence on the structures and properties of solid surfaces. During 

friction practice, surface properties greatly affect the real contact area, friction coefficient, 
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wear, and consequently lubrication performance. Therefore, solid surface properties are 

critical to tribological functions. 

No surface is perfectly flat. The solid surfaces, irrespective of the methods of formation, 

contain irregularities or deviations from the prescribed geometrical form [11, 12]. Shape 

deviation and reregulation of the order of inter-atomic distances obliterate the possibility of a 

molecularly flat surface. 

Solid surface itself does not have a consistent structure like a bulk material. A solid surface is 

composed of several layers, which have different physic-chemical properties from the bulk 

material [13]. Generally speaking, surface material is distinguished to be five layers: 

Deformed layer, beilby layer, chemical reacted layer, physisorbed layer, and chmisorbed 

layer [14]. Details of these surface layers are presented as follow: 

Deformed layer: 

Deformed layer is referred to a strained layer that was formed during a material surface 

preparing process. This highly strained layer can be formed during grinding, lapping, 

machining and polishing processes, in which the surface layer can be plastically deformed 

and hardened [15-17]. Cook and Bhushan have demonstrated that the deformed layer can also 

be formed during friction [18]. 

The properties of deformed layer can be influenced by two factors: 1). the amount of work or 

energy that was put into the deformation processes; 2). the properties of the material. The 

closer the deformed layer gets to the surface, the more strained it becomes. The typical 

thickness ranges of the lightly and heavily deformed layers are 1-10 and 10-100 µm [14] as 

shown in Figure 2–1. 
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Beilby layer: 

Beilby layer is the surface layer formed by quenching effect of melting surface flow 

deposited on the cool substrate material. The thickness of the Beilby layer ranges from 1-100 

nm and it can be reduced by a fine finishing process [14]. 

Chemically reacted layer: 

Chemically reacted layer is one of the most familiar surface layers. In atmosphere 

environment, oxide layers form on the surface of most metals and alloys due to the reaction 

with oxygen. The oxide layers can also be formed during machining and the friction process. 

Likewise, these metals and alloys will form other layers in different environment. The 

thickness of chemically reacted layers could vary with three factors: reactivity of materials to 

environment, reaction temperature and reaction time [14]. A typical thickness of chemically 

reacted layers is 10-100 nm. In the case where a lubricant is used during a friction process, 

the lubricant and its additive may result in the formation of a solid reaction film on substrate 

surface, and this film can play an important role in reducing friction or protecting substrate 

surface. 

Physisorbed layer: 

Physisorbed layer is a layer mounted on substrate material by physisorption. There is no 

electrons interchange between the chemisorbed components and the solid surface. Adsorbed 

layers can be formed on both metallic and non-metallic surfaces [14]. The most common 

constituents of adsorbate layers are molecules of water vapour, oxygen, or hydrocarbons from 

the environment that may be condensed and become physically adsorbed to the solid surface 

[19]. The thickness of the layer can be either polymolecular or monomolecular. Different 

from chemical reaction, during physisorption, no electron exchange takes place between 
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adsorbate and adsorbent. Bonding that is involved in a physisorption process is attributed to 

van der Waals force, which is relatively weak. With lubrication, oily and greasy film can be 

formed due to physical absorption of the lubricant applied. The thickness of the lubricant film 

can be as small as 3nm [14]. 

 

Figure 2–1 Solid surface layers [14] 

Chemisorbed layer 

Different from physisorption, electrons are shared and interchanged between the chemisorbed 

components and the solid surface in chemisorption. The bonding between the chemisorbed 

components and solid surface is covalent, which is much stronger than the Van der Waals 

force in physisorption [20]. 

In chemisorption, the chemisorption components remain their own identity. Therefore, the 

initial adsorbing components can be recovered through proper treatment. The difference 

between chemisorption and chemical reaction is that the chemisorption layer is limited to a 

monolayer. Chemisorption comes to an end as soon as the surface is covered with a layer. 

The formation of subsequent layer can be either physisorption or chemical reaction. 
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Compared with physisorption, chemisorption requires certain activation energy. As a result, 

chemisorption will only take place above certain level of temperature. Additionally, 

chemisorption will also be limited by the purity of the adsorbent surface, however, 

physisorption happens on all surface. 

The comparison of Physisorption, chemisorption and chemical reaction is shown in Figure 2–

2.  

 

Figure 2–2 Schematic diagrams of physisorption, chemisorption, and 

chemical reaction [13] 

 

2.2.2 Methods of surface analysis 

A number of surface analytical techniques have been developed for the characterisation of 

surface layers [21]. The grain structure of the deformed layer can be determined by 
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examining the cross section area using powerful optical microscope or a scanning electron 

microscope (SEM). Transmission electron microscopy (TEM) can be used to examine 

microcrystalline structure and dislocation density of a sample prepared in very thin thickness. 

The crystalline structure of a surface layer can also be studied using X-ray, high-energy or 

low-energy election diffraction techniques (by firing electrons at a sample and observing the 

resulting, the properties of an element can be examined). Elemental analysis can be 

commenced by a range of analytical techniques, such as X-ray energy dispersive analyser 

(EDS) available with most SEMs, auger electron spectroscope (AES) [22], electron probe 

micro analyser (EPMA) [23], ion-scattering spectrometer (ISS) [24], Rutherford 

backscattering spectrometer (RBS), and X-ray fluorescence (XRF). The chemical analysis 

can be performed using X-ray photoelectron spectroscopy (XPS) and secondary ion mass 

spectrometry (SIMS) [25-27] . 

Mass spectrometry, Fourier transform infrared spectroscopy (FTIR), Raman scattering, 

nuclear magnetic resonance (NMR) and XPS can also be used to conduct chemical analysis 

of adsorbed organic layers. XPS and ellipsomery (a powerful optical technique for the 

investigation of thin film) are the mostly used technique to measure the thickness of organic 

layers [14]. 

2.2.3 Surface roughness 

2.2.3.1 Introduction of surface roughness 

Surface texture is the description of the three-dimensional topography of a surface [28]. It 

includes three components: waviness, surface roughness and lay, as shown in Figure 2–3. 

Lay is a description of the direction of the predominant machine finish [29]. Waviness is the 

measure of surface irregularities with spacing greater than that of surface roughness, which is 
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the surface irregularity in macro scale. Surface roughness is a measure of the finely spaced 

surface irregularities commonly in nano or micro scale. Surface roughness can be considered 

to be superimposed on the wavy surface [29].  

In the tribology field, surface roughness is a factor mostly discussed and concentrated on. 

Roughness plays an important role in how a real object interacts with another. In machinery, 

high surface roughness usually causes high friction coefficient and wear rate. Machinery 

damage and unexpected energy loss are more likely to be introduced by the side products of 

friction, such as heat and wear debris, which is often caused by high surface roughness [30, 

31]. 

 

Figure 2–3 Concepts of surface roughness, waviness, and lay [32] 

As a matter of fact, surface roughness has a very complicated relationship with wear. In 1938, 

America car manufacturer Chrysler suggested that low surface roughness would reduce the 

direct asperity contact so as to reduce abrasion [33]. If it was true, according to this theory, 

two perfect smooth rubbing surfaces would have no abrasion at all. However, in 1941 

America car manufacturer Buick suggested that friction abrasion was mainly caused by 
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molecular interaction, consequently, certain level of surface roughness was required to 

protect machinery components from abrasion [33]. Mechanical department of former Soviet 

Academy of Sciences also studied effects of the surface roughness on wear rate, and they 

proved the existence of corresponding optimal surface roughness in different working 

conditions, as shown in Figure 2–4 and Figure 2–5. This theory has also been proved by 

many other scientific institutions [34-36]. 

The existence of optimal surface roughness indicates that: wear is caused by a coalition effect 

of mechanical interaction and molecular interaction. Mechanical interaction will play a 

predominating role when surface roughness is greater than the optimal figure. On the other 

hand, abrasion is mainly attributed to molecular interaction when surface roughness is 

smaller than the optimal value [14]. 

 

Figure 2–4 Relationship of wear rate and surface roughness [34] 
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Figure 2–5 Optimal roughness at different loading conditions [34] 

2.2.3.2 Roughness parameters 

 Surface roughness is a parameter that measures the texture of a surface. It commonly refers 

to the variations of asperities of surface compared with a reference line. It is usually 

described by one of the two statistical height descriptors advocated by the American National 

Standards Institute (ANSI) and the International Standardization Organization (ISO) [32, 37]. 

These two parameters are: (1) Ra, CLA (Center-line average), or AA (arithmetic average) 

and (2) the standard deviation or variance ( ), Rq or root mean square (RMS). As show in 

Table 2-1, there are other extreme-value height descriptors: Rt, Rp, Rv, Rv, Rz and Rpm. 

 Table 2-1 Roughness parameters 

 

Rt maximum peak-to-valley height 

Ra arithmetic average of absolute values 

Rq root mean squared 

Rp maximum peak height or maximum peak-to-

mean height 

Rv maximum Valley depth or mean-to-lowest 

valley depth 

Rz average peak-to-valley height 
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The schematic presentation of a surface profile is shown in Figure 2–6. z(x) is a function of 

profile height measured from a mean line. The area of the profile above the mean line is equal 

to the area of the profile below the mean line. 

 

Figure 2–6 Schematic presentation of a surface profile [14] 

Roughness Average Ra (also called AA and CLA) is an arithmetic average of the absolute 

values of the vertical deviation from the mean line to the profile. It can be written as: 

           
 

 
         

 

 

 (2-1) 

where L is the profile length. 

Rq or the Root Mean Square (RMS) is the square root of the arithmetic mean of square of the 

veridical deviation of roughness profile from mean line. It can be written as: 

         
 

 
        

 

 

 (2-2) 
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2.2.4  Surface contact 

2.2.4.1 Introduction of surface contact 

When two perfect flat surfaces are in contact, the normal force is supported evenly 

throughout the apparent contact area. However, the perfect surface does not exist. Even when 

the perfect finish was achieved to atomic level, a flat surface is still composed of spherical 

asperities because of the shape of atom. In real life, surface roughness makes contact only 

occur at certain contact spots as shown in Figure 2–7, where the spots in dark colour are the 

deformed asperities in contact. The real contact area is the sum of the contact areas of these 

spots. In most of the cases, when a load is applied, the real contact area will only be the small 

fraction of the nominal contact area. With an increase of the load, more asperities come into 

contact, and the real contact area also increases. Clearly real contact area is decided by 

surface texture, material properties and loading conditions. Friction and wear are contributed 

by interactions of asperities on contact pairs. The degree of these interactions greatly depends 

on the properties of real contact [38]. Therefore understanding of the contact mechanism is 

essential in study of tribology. 
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Figure 2–7 Surface asperity contact and deformation [39] 

Both the uneven size and shape of surface asperities cause the uncertainty of the mode of 

surface deformation. When a small load is applied on an object, elastic deformation firstly 

occurs. The local stresses may exceed the elastic limit although sometimes the nominal stress 

is within the elastic range (yield strength) [38]. Similarly, in most of the cases, some 

asperities are conducting elastic deformation when others are experienced plastically. The 

overall deformation of the object is still elastic, but plastic deformation on the tip of some 

asperities has already taken place  

Asperities on surface are not uniform. As a result, in order to avoid interference of asperities 

in different conditions, a contact analysis of contact focusing on single asperity is conducted. 

Due to the small size of each asperity, it is convenient to treat the tip of an asperity as 

spherical shaped. 
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2.2.4.1.1 Elastic contact 

The first analysis of contact mechanics of two elastic solids was attributed to Heinrich Hertz 

in 1882 [40]. Such elastic contact is referred to as Hertzian contact. The analysis of such 

contact is based on 4 assumptions:  

 The surfaces are continuous, smooth and nonconforming 

 The strains are small 

 Each solid can be considered as a elastic half-space in the proximity of the contact region 

 The surfaces are friction less 

A schematic model of two solid spheres in static contact is shown in Figure 2–8 [14]. The x-y 

plane is the contact plane. The point of first contact is taken as the origin of a coordinates 

system and the two spheres in contact have radii of R1 and R2. The objects are brought into 

contact when a normal load W is applied, and a circular contact area is formed due to the 

deformation of the spherical bodies. Hertz realised that the condition of the deformation was 

related to Young’s modulus E, Poison’s ratio ν, and the geometry shape of both bodies, and 

the load W applied. Hertzian formulae for calculating the contact area radius, the maximum 

pressure and the approach of two distant points are given below: 



Chapter 2. Fundamental Theory of Tribology 

18 

 

 

Figure 2–8 Two frictionless spherical solid in static contact [14] 

The radius of contact area can be written as: 

   
    

   
  

   

   
 
 

   (2-3) 

              (2-4) 

where:  

   is the maximum contact pressure,   is the normal load,   is the effective radius and    is 

the effective modulus. 

Approach of distant points Compliance: 
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where the composite Young’s modulus equals: 

 
 

  
 

    
 

  
 

    
 

  
 (2-6) 

The composite curvature: 

 
 

 
 

 

  
 

 

  
 (2-7) 

The maximum contact pressure    is achieved at the contact center with a value of 1.5 times 

of mean contact pressure   : 

               (2-8) 

    
 

 
   

  

    
  

     

    
 
 

   (2-9) 

The pressure distribution is elliptical: 

               
 

   (2-10) 

In macro scale, there are many other contact forms, such as contact between a sphere and an 

elastic half-Space, contact between two crossed cylinders, contact between a rigid Cylinder 

and an elastic half-space, and contact between two cylinders with parallel axes. The 

calculations for these contact forms are all following the similar principle. 

However, the classic Hertz contact model does not incorporate the effect of adhesion. In the 

theory any surface interactions such as near contact Van der Waals interactions, or contact 
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adhesive interactions are neglected. Based on the previous work, some improved elastic 

contact models were developed by other scientists. 

2.2.4.2 Improvement of elastic contact 

2.2.4.2.1 JKR model 

With consideration of surface energy, Johnson et al. [41] have developed the JKR theory for 

elastic contact. In this theory they incorporate the adhesion effect in Hertzian contact. The 

contact area of JKR model is composed of two parts, one is attributed to the elastic material 

deformation, and the other one is introduced by interfacial interaction strength (adhesion 

strength). As a result of the adhesive contact, contacts can be formed during the unloading 

cycle also in the negative loading (pulling) regime. Schematic contact profile for the JKR 

model is shown in Figure 2–9. 

 

Figure 2–9 Contact profile of JKR model 

 

2.2.4.2.2 DMT model 

An alternative model for adhesive contact has been developed in Derjaguin Muller Toporov 

(DMT) model. According to DMT theory, the contact area remained the same as in Hertzian 

contact, but adhesion and Van der Waals played additional attractive interactions outside the 

http://en.wikipedia.org/wiki/File:JKRModel.svg
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area of contact [42]. Schematic of contact profile for the DMT model is shown in Figure 2–

10. 

 

 

Figure 2–10 Contact profile of DMT model 

2.3 Boundary lubrication 

2.3.1 Introduction 

Three distinguishing lubrication regimes can be observed when two rubbing counterparts are 

lubricated by liquid lubricants. These three lubrication regimes are defined by a relative 

thickness of the lubricant film formed between the rubbing components to the roughness of 

the component surface: 

Hydrodynamic or fluid film lubrication is the condition when the load carrying surfaces are 

separated by a relatively thick film of lubricant. This is a stable regime of lubrication and 

metal-to-metal contact does not occur during the lubrication since the thickness of the 

lubricant film is bigger than the roughness of the surfaces. The lubricant pressure is self-

generated by the moving surfaces and the lubricant is entrapped into the wedge formed by the 

moving surfaces at a sufficient velocity to generate the pressure to completely separate the 

surfaces and support the applied load [43]. 

http://en.wikipedia.org/wiki/File:MaugisDugdale.svg
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Mixed lubrication is the condition when a lubricant film formed between two surfaces is thick 

enough to avoid most of the asperities in contact but not sufficiently thick to prevent the 

contact completely as in hydrodynamic lubrication regime. During this type of lubrication, 

the tallest asperities of the bounding surfaces will protrude through the film and occasionally 

come in contact. This lubrication regime often occurs at high load condition when insufficient 

entrainment speed and lubricant with low viscosity are applied [44]. 

Boundary lubrication is the condition when the fluid films are so thin and there are 

considerable asperities in contact. Compared with the other two lubrication regimes, 

boundary lubrication generally occurs at relatively severe operating conditions. Very low 

entrainment speed, very high load and the employment of lubricant with very low viscosity 

could all result in boundary lubrication [45].  

A boundary film can be formed during boundary lubrication, and the physical and chemical 

properties of thin surface films are of significant importance. Lubricant additives can have 

important influence to the properties and the formation of boundary films. Therefore in 

boundary lubrication it is important to understand the characteristics of the lubricant additives 

and the boundary films. The morphology of boundary films is very random and depends on 

the lubrication condition. The boundary films can be either patchy or continuous [46, 47]. 

Extensive studies in boundary lubrication have been carried out over recent years, and 

various advanced techniques have been developed and employed. However due to many 

intrinsic difficulties the understanding of this type of lubrication is still not comprehensive. 

First of all, the study of boundary lubrication involves the understanding of the boundary 

films which generally have a very small thickness varying from few nanometres to hundreds 

of nanometres. Such small size introduces enormous difficulties on not only the scientific 

measurement but also the theoretical analysis. Secondly, boundary films are formed in a 
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closed environment and locked between two moving surfaces. This makes the real time 

observation difficult. Finally, there are many factors that would affect the formation and 

properties of the boundary films, such as: physical and chemical nature of metal surface, 

geometry of the contact, properties of the lubricants, environmental influences, lubricating 

conditions, etc. 

2.3.2 Stribeck curve 

Stribeck curve is often used to present the transitions between different lubrication regimes 

[48, 49]. In a Stribeck curve, as shown in Figure 2–11, friction coefficient is presented as a 

function of viscosity, speed and load. Stribeck curve can also be used to show how friction 

coefficient develops with a variation of lubricant film thickness since these are the parameters 

that control the lubricant film thickness. 

Many sliding components are attempted to be designed to operate in hydrodynamic and 

mixed lubrication regimes, in which low friction coefficient and wear can be obtained due to 

the good separation of sliding surfaces by a lubricant film. However, for some components 

enduring very high pressure, especially in starting and stopping stage, boundary lubrication 

can be the dominant regime in which the system is operating and high friction and wear are 

expected in these circumstances. In boundary lubrication, a monolayer of adsorbed molecules 

could make a noticeable difference on the antiwear performance of a component. The 

performance of sliding components in boundary lubrication becomes crucial since it 

sometimes controls the durability of the components [50-54]. 
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Figure 2–11 Stribeck Curve [55] 

2.3.3 Current status on boundary lubrication 

In hydrodynamic lubrication, the lubricating performance of the system greatly depends on 

the physical properties of the lubricant, such as viscosity. As suggested by Reynolds, since 

the two surfaces were separated by a complete lubricant film, the physical and chemical 

interactions of the lubricant with the solid bodies appeared to be relatively unimportant. 

However, in boundary lubrication, it is quickly realised that although two different lubricants 

have the similar viscosity they could deliver quite different performance of lubrication. It was 

thought that the lubricating performance of a lubricant was governed by ‘oiliness’, which was 

soon understood to be associated with the interaction of lubricant with solid surface.  

Interaction of the lubricant with solid surface is believed to play an important role in 

boundary lubrication. 
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Wells and Southcombe [56] in 1920 found that low concentrations of long chain surfactants 

reduced friction and wear in a boundary lubrication region. It was later discovered that the 

reduction of friction and wear was related to the adsorption of a monolayer or multilayer of 

surfactant on solid surface. This then attracted much attention of the researchers [57-60].   

The term ‘boundary lubrication’ was firstly used by Hardy and Doubleday [61] to describe 

the friction and wear reduction in sliding of two solid bodies. They believed that the solid 

bodies were separated by oiliness film composed of surfactant molecules.  In the same period, 

Langmuir [62] found that surfactant molecules adsorbed on metallic surfaces to form 

vertically-oriented mono-layers, and consequently friction coefficient was reduced. The 

amount of wear and friction reduction was also proved to be dependent on the chain length of 

the surfactants.  

Extensive studies have been done on the nature of the surfactant layers on the solid surfaces 

over 40 years. It was discovered that the oiliness films were made of near-vertically oriented 

molecules of long chain polar surfactants [63]. Langmuir-Blodgett (L-B) technique was 

developed to produce monolayers or multilayers on a surface [64]. This technique proceeds 

by transferring an insoluble monolayer floating on the surface of water to the surface of a 

solid. Bowden and Tabor [65] examined the influence of the number of the surfactant layer 

deposited on a surface to the friction coefficient. The results show that the greater the number 

of layers deposited on the surface the longer it takes to be worn off, hence the longer these 

surfactant layers will protect the surface from wear. The effect of chain length of the carbon 

atoms of paraffin, alcohols, and fatty acids on the coefficient of friction was also studied by 

Bowden and Tabor [65] and Zisman [66]. They observed a steady decrease in friction 

coefficient with an increase of carbon chain length when a stainless steel surface was sliding 

against a glass surface lubricated by a monolayer of fatty acid. Zisman [66] and Owens [67] 
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have also reported the improvement on durability of the lubricant films with a length grow of 

the film chain. In the later studies, there are consistent works showing that the lubricants may 

decompose chemically during rubbing, and a polymerized layer can be formed to protect the 

substrate surfaces. The thickness of this type of layer can even reach hundreds of nanometres 

[68]. 

In recent decades, many new techniques have been established to study the boundary films 

[69-71]. Different types of lubricant additives are also developed to improve the strength and 

the duration of boundary films formed during the usage. For instance, additional 

organophosphorus compounds in lubricant are found to be particularly useful to reduce wear 

[72, 73]. Many other organic additives such as tricresyl phosphate (TCP), trixylyl phosphate 

(TXP) and dilauryl phosphate have also been proved to have good anti-wear and extreme 

pressure (EP) properties [74-76]. Similarly to zinc dithiophosphate (ZDDP), they usually 

contain active elements such as sulphur, phosphorus or chlorine as well as polar group for 

strong adsorption. Under mild sliding conditions, a perpendicular orientated film will be 

formed on specimen surface to withstand the local contact pressure; On the other hand, under 

harsh conditions, those additives could react with specimen surface to form a protection film 

which protects interaction surface from further damage. ZDDP is one of the mostly used 

additives, and together with other popular additives they are still routinely used in lubricants 

today [51, 71, 77, 78]. 

However, there is always a downside for an employment of these active elements. Due to 

their corrosion effects on metal surface and pollution caused during manufacture, the use of 

these organic lubricant additives ought to be limited for environmental concern. More 

recently, inorganic solid lubricant additives have also been developed. The utilisation of nano 

sized or submicron sized particles as an inorganic lubricant additive is gradually earning their 
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attention in industrial applications, owing to their outstanding tribological properties and 

good environmental friendly feature compared with the traditional organic lubricant additives 

that contain P, S and Cl elements [1, 76, 79-82]. Like the traditional lubricant additives, some 

of the inorganic solid lubricant additives are also capable of forming a boundary film through 

so-called ‘tribo-chemical’ reaction to protect the rubbing surfaces. This boundary film may 

contain the materials from lubricant additives, lubricant, and substrate surface. [83, 84] 

2.3.4 Types of boundary films and characterisation techniques 

Boundary films can be generated in different forms. Based on the chemical and physical 

properties, thickness, and the structure orientation of the films, they can be categorized in to 

the following types as shown in Figure 2–12 [85]. 

Boundary films can also be sorted into two groups according to their physical states: solid-

like boundary films and viscous or fluid-like boundary films [69]. The difference between the 

two groups of films can be demonstrated clearly in a Stribeck curve. As shown in Figure 2–

13(a), the friction coefficient in boundary and mixed lubrication regimes (low speed) can be 

reduced with the presence of solid-like boundary films as a result of the low shear strength of 

the asperities of the films and the reduction of adhesive junctions [86]. Alternatively, in 

Figure 2–13(b), highly viscous boundary layer formed on the solid surface can be entrained 

into a contact easily, so that the mixed lubrication regime can be reached at relatively low 

speed, and therefore the formation of fluid-like boundary film is able to shift the Stribeck 

curve to the left [87]. 
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Figure 2–12 Types of boundary films on solid surfaces [85] 
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Figure 2–13 Influence of boundary films on lubrication regeme (a) solid-like 

boundary film and (b) viscous boundary film [87] 
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2.3.4.1 Solid-like boundary films 

Solid-like boundary films are the most common boundary films formed on rubbing surfaces. 

Chemical reactions are often involved in the generation process of these boundary films [53]. 

There are several mechanisms of how the boundary lubricating film may function. Mainly 

these films functionalise as a sacrificial film or an easy shear layer. In the shear motion of the 

surfaces, the solid-like boundary films will be worn off gradually; therefore, replenishment 

character of the films becomes very important. The rate of film generation must be higher 

than the rate of film removal to ensure their efficacy [88]. 

Oxide layers  

Oxide layers can be the most common boundary films. Normally, oxide layers would deliver 

lower friction coefficient and wear compared with bare metal surface due to reduced 

adhesion. 

Layer-structure films 

Layer-structure films are the boundary films with a layer lattice structure like graphite and 

molybdenum disulphide. Each two layers are attached together through Van der Waal force. 

The weaker attraction force between each layer cannot provide the structure a good resistance 

on shear deformation, and therefore imparts the layer-structure films, the lower shear strength. 

Surfactant monolayers  

Surfactant monolayers are composed of surfactant molecules. These surfactant molecules 

normally contain a polar group attached to a long, non-polar hydrocarbon chain. This polar 

end can attach to metal surfaces through Van der Waal forces. The long chain hydrocarbon 
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group can reduce the direct surface contact and reduce adhesion between asperities. 

Consequently reduction of friction and wear can be limited. 

Active element additive films 

In relatively severe conditions, lubricant additives that contain active elements such as 

sulphur, chlorine or fluorine may react with substrate metal and form boundary films 

containing the complex compounds [77, 89]. These boundary films have relatively low shear 

strength and are able to protect the sliding surface from seizure. 

Boundary films generated by solid lubricant additive 

Employment of solid inorganic lubricant additives has attracted much attention in recent 

years for technical and environmental reasons. Boundary films can be formed on the rubbing 

surface through two mechanisms: tribo-chemical reaction [90-93]; mixture of polymerised 

lubricant with additive particle filler [2, 53, 80]. 

2.3.4.2 Viscous, fluid-like boundary films 

Viscous, fluid-like boundary film can be generated in the form of a monolayer of polymers 

adsorbed on the metal surface when some mineral oils which contain polar viscosity index 

improvers are used as lubricant. This layer of polymer has much higher concentration than 

the bulk solution, and therefore it has great influence on friction and wear performance at low 

speeds when the boundary film thickness reaches the similar dimension with the diameter of 

the polymer molecules. Lubricants of mixture of polar and non-polar components which have 

different viscosity can also form viscous, fluid-like boundary films. A viscous boundary film 

with a thickness of few nanometres was observed by Gao and Spikes in their study on 

mineral oil mixed with highly viscous polar ester [94].  
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2.3.4.3 Characterisation techniques of boundary film  

Interferometry 

Optical interferometry is the one of the best techniques that is capable of offering an in-situ 

observation of the formation of boundary films. This technique is originally applied in an 

investigation of elastohydrodynamic film in the 1960s [95]. As illustrated in Figure 2–14, it 

involves a metal ball or cylinder rolling or sliding a flat glass counterpart. During 

measurement, a beam of light is shone through the flat glass onto the contact zone. Two 

beams of light, one is from the underside of the glass and the other one is from the surface of 

the metal (due to the separation of the glass and metal surface by a lubricant film), are 

reflected back to the same side of the glass. An interference fringe pattern can be generated 

by these two beams of light. By calculating the parameters of the fringe pattern, the thickness 

of the lubricant film that separates the two surfaces can be achieved. 

An improvement of the technique was made in the 1980s by coating a transparent solid 

spacer layer of around 100 nm to the flat glass, which significantly increased the accuracy of 

the film thickness measurement to 2 to 5nm [96]. This enables the application of the optical 

interferometry technique on boundary film observation [77, 97-99]. 
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Figure 2–14 Set-up of optical interferometry [96] 

Scanning Tunnelling Microscopy 

A scanning tunneling microscope (STM) is an instrument that is able to image surfaces at the 

atomic level, which have made significant contributions to the study of the detailed 

topography of boundary films. The scanning tunneling microscopy was invented by Binnig in 

1982 based on the concept of quantum tunneling [46]. When examining a surface with STM, 

a scanning tip is brought very close to, and voltage is applied between the tip and the surface 

so that electrons are able to tunnel through the vacuum between them. Information of the 

surface is acquired by monitoring the current as the tip's position scans across the surface 

[100]. The scanning tip used in STM is very sharp, typically has a radius of several 

nanometres. However, compared with other scanning microscopic techniques, STM has a big 
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drawback in the application of boundary film examination, as it requires extremely clean and 

stable surfaces, chemical variations of films formed on the surfaces may distort tunneling 

current and fail to give perfect compliance of the real topography of the surface [47]. 

Atomic Force Microscopy 

Atomic force microscopy (AFM), also known as scanning force microscopy (SFM), is 

another type of scanning probe microscopy with very high resolution. The AFM is one of the 

most popular tools for surface imaging and measuring at the nanoscale. The AFM was 

developed to overcome the basic drawbacks of STM. The AFM consists of a cantilever with a 

sharp tip at one end that is used to scan the specimen surface. The force between the tip and a 

specimen surface is maintained constantly, and when the cantilever is dragged along a surface, 

the image of the surface can be generated by recording the deformation of the cantilever. 

Simplicity is the greatest advantage of AFM. It does not require complicated sample 

preparation such as conductive coating and can be applied on surfaces made of most of the 

engineering materials. AFM was employed in current study to map the morphology of 

tribofilm, the details of apparatus configuration and set-up will been discussed in Chapter 4. 

2.4 Wear 

2.4.1 Introduction 

Wear is known as the progressive removal and deformation of material on a surface in a 

sliding, rolling or impact motion against its counterpart. In most of the cases, wear is not 

desired, since it may result in shrink in durability of machinery components, reduction of 

reliability and cost of replacement for failed machinery parts. Therefore it is of great interest 

for industry to carry out research on characterising and minimising wear. 
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Like friction, wear is not a material property. Wear of a system depends on many factors, 

such as working environment, type of motion, speed of motion, load, temperature, contact 

geometry, properties of the contact surfaces and so on [101]. Wear of a system is independent 

from the friction performance to some extent. High friction can be companied with little wear, 

and low friction does not necessarily suggest insignificant wear [14].  

2.4.2 Mechanisms of wear 

There are generally four types between wear: abrasive wear, adhesive wear, fatigue wear and 

corrosive wear. Based on the material removal mechanism, the four types of wear are listed 

as follow: 

Abrasive wear 

Abrasive wear occurs in sliding between two surfaces, where an asperity of one surface 

penetrates to the counterpart and removes materials from it. Abrasive grooves can be 

generated on a soft surface by the ploughing action of the asperities from a hard surface. The 

displaced material forms ridges adjacent to grooves. Wear debris can be produced and 

removed from the surface due to microcutting mechanism. For brittle material, wear debris 

can also be formed due to a crack propagation underneath the surface and eventually being 

peeled off from the surface [102]. Depending on material properties at the contact region and 

the contact mechanics, two types of abrasive wear can be released: two-body mode and three-

body mode. As shown in Figure 2–15, two-body wear occurs when the asperities of a hard 

surface abrade a softer surface and remove material from the counterpart. While in three-

body mode, the loose particles or debris are not constrained, and are free to roll and slide on a 

surface. 
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Figure 2–15 Schematic view of abrasive wear [102] 

Adhesive wear 

Adhesive wear takes place in sliding motion of two surfaces, when asperity contact 

undergoes adhesion or cold welding. Adhesive wear involves a detachment of material from 

one surface and an attachment of the same material to the other surface, as illustrated in 

Figure 2–16. Theoretically, wear does not occur in adhesive wear, materials are simply 

transferred from one body to the other. However, the transferred material is often weakly 

attached and will eventually be detached in microscopic particles. The result of adhesive wear 

is characteristically a matted, torn surface with grooves in the direction of sliding, and often 

with transferred ridges of material [103]. Adhesive wear can take place in both dry friction 

and lubricated friction conditions. Surface attraction and surface energy play an important 

role in adhesive wear. Some level of adhesion on contact surfaces happens in most solids. 

However, oxidation films, lubricants and contaminants on a surface can all suppress adhesion. 

Even with lubrication, severe adhesion may still occur under high load and high shear rate. 

Using lubricant additive that can interact rapidly with sliding surfaces and form a protective 

film is an effective approach to reduce adhesion and prevent adhesive wear [104]. 
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Figure 2–16 Schematic of Adhesive wear [104] 

Corrosive wear 

Corrosive wear is caused by a removal of layers of materials which are being continually 

formed on rubbing surfaces by chemical reaction. Corrosive wear takes place when surfaces 

are slide in a corrosive lubricant system or a lubricant system contains corrosive species such 

as water, oxygen, carbon dioxide, sulphur and other types of lubricant additives. The reaction 

product generated from chemical or electrochemical interactions is often weaker than the 

substrate material. Although the resultant usually prevents or reduces adhesive wear, it can be 

easily abraded away. As the fresh surface exposes, the reaction continues. Since the chemical 

reaction is the dominant mechanism for corrosive wear, the wear rate is controlled by the rate 

of chemical reaction. 

Fatigue wear 

As the name suggests, fatigue wear is a type of material failure caused by repeated stress 

cycles on an asperity contact. The repeated loading and unloading cycles that the materials 

are experiencing may induce cracks on surface or underneath surface [105]. Cracks can be 

initiated and propagated by fatigue wear even when the sliding is relatively too mild to 

prompt adhesive wear and abrasive wear. As shown in Figure 2–17, when these cracks reach 

a critical size, the top material will be removed and catastrophic wear will take place [105].  
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Figure 2–17 Schematic of Fatigue wear [104] 

In a system, the dominant wear mode may not be constant at all time. There are a number of 

factors that may influence the transition of wear mode such as [106]: 

 A change of contact geometry and  

 Altering of the properties of the rubbing surfaces  

 Lubricant additive empoyed. 

2.4.3 Wear measurement  

A number of ways developed to measure wear have been widely accepted and become the 

standard means to characterise and subsequently predict wear [107, 108]. These measuring 

techniques can be categorised into two groups: direct measurement and indirect measurement.  

2.4.3.1 Direct measurement 

Mass measurement 

Evaluating wear by measuring tested samples directly is a broadly used quantification 

technique due to its convenience and simplicity. This technique involves weighting the 
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sample before and after a test, and the variance between the two measurements tells how 

much the wear is. However, in order to ensure a good accuracy, this technique is only 

suitable in measuring a system with relatively high wear rate and mass loss. The tested 

samples must be cleaned thoroughly and handled in a great care as deposit of oxidized oil, 

wear debris and contamination could all affect the reliability of the result. In particular, one 

downside of this method is that it does not provide any information on the distribution of 

wear on worn surface. 

Dimension measurement 

For some other specimens with a predictable geometrical change after tribological test, a 

dimension measurement is another way of quantifying wear. The dimension measurement 

includes linear, wear scar diameter and volume measurements of the specimens. 

Linear measurement is often practiced in pin-on-disc test, where the reduction of pin length is 

recorded to reflect the wear rate. Same method also applies on measuring a change in 

diameter of cylindrical shafts, discs or bushes in wear tests. 

Wear scar diameter measurement is generally used in 4-ball and ball-on-disc tests, and high 

frequency reciprocating rig (HFRR) where bearing balls are used to rub against a counterpart. 

Because of the spherical shape of the bearing balls, worn surface generated in the test will 

appear as a circle. Material loss can be quantified in volume with only one dimension of the 

circle due to the special spherical geometry. The biggest advantage of this method is that the 

measurement of the depth of the wear scar can be avoided; therefore a good accuracy can be 

achieved even in a low wear rate scenario. 

The volume of the material loss can be obtained directly using atomic force microscope 

(AFM) [109, 110], light interferometer [111, 112] and stylus or optical 3-D profilometer. 
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With these sophisticated techniques very precise measurement becomes possible even for 

very mild wear. Gahlin [113] used AFM to measure the local wear volume and to map the 

distribution of wear by comparing the topography of the same surface region before and after 

a test. This technique promises to bring evaluation of wear to a new level of sensitivity and 

detail, in an order of 30nm. More importantly, the extremely high resolution endowed by 

these techniques may also improve tribological testing of real machine elements by reducing 

the need for excessively accelerated tests or an extremely long test duration [113]. 

2.4.3.2 Indirect measurement 

Thin Layer Activation (TLA) 

Thin Layer Activation (TLA) is originally a corrosion monitoring technique developed from 

nuclear science. It uses high-energy charged particles beam to produce a radioactive surface 

layer and gamma radiation will be emitted as radioisotopes decay. The change in gamma 

radiation emitted from the surface layer, which is associated with material removal from the 

surface, can be measured by suing a gamma detector. This technique promises a real time 

observation on wear phenomena, not only it can be employed in an experimental simulation 

but also in real machinery testing in industry [114]. 

Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES) 

Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) is one of the most 

common techniques for elemental analysis. In ICP-AES, a plasma source is used to dissociate 

the sample into its constituent atoms or ions, exciting them to a higher energy level. 

Depended on the element present, the photons of a characteristic wavelength will be emitted 

when they return to their ground state. This light then can be recorded by an optical 

spectrometer and calibrated against standards to provide a quantitative analysis of the target 
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sample [115]. Since ICP-AES can only be used to detect metal elements, it is of particular 

interest to monitor the wear performance of a system contains metal by using this technique. 

Fan and Spikes [116] successfully used ICP-AES to monitor the concentration of iron in 

lubricant solution from which wear rates of system was determined. 

2.5 Friction 

2.5.1 Introduction 

Friction is a resistant force generated when a body is in sliding or rolling motion against a 

counterpart. Friction force can be desirable in some cases such as gloves, brakes and clutches, 

but also undesirable in other scenarios such as bearings and gears. Friction is not a material 

property but a system response. Apart from material, friction of a system also depends on 

many environmental factors. For instance, in the same system the static friction force which 

is the tangential force required to initiate motion is often higher than the kinetic friction force 

which is the force required to continue the motion [117]. 

There are three most basic rules of conventional friction established by Leonardo da Vinci 

and Guillaume Amontons [118]. They are: 

 In kinetic friction, friction coefficient ( ) is the ratio of the friction force ( ) to the 

normal load ( ) and is independent of normal load as described in equation below: 

      (2-11) 

 The coefficient of friction (or friction force) is independent of the nominal area of 

contact  

On top of these two rules, a third rule was added by Coulomb [119]: 
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 The friction coefficient (or friction force) is independent of the sliding velocity once 

motion commences. 

These three rules that build the very foundation of tribology are entirely empirical. Although 

they are generally obeyed in wide range of applications, situations in which these rules are 

not followed do not suggest disagreement of more essential principle of nature [104]. 

2.5.2 Mechanism of sliding friction 

The early investigators, including Amontons and Coulomb proposed that friction is the result 

of the mechanical interaction of asperities of the contacting surfaces. As shown in Figure 2–

18 Coulomb model is one of the earliest friction models suggested. However, the mechanical 

interaction theory was abandoned since it could not provide a source of energy dissipation. 

 

Figure 2–18 Coulomb friction model 

One of the widely accepted friction theories for metals and ceramics is firstly raised by 

Bowden and Tabor [120]. In this theory, adhesion and ploughing are believed to be the two 

dominant mechanisms for friction. Therefore the total friction force of a system can be 

written as the sum of the forces required to shear adhered junctions (Fa) and conduct 

deformation (Fd): 
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         (2-12) 

 

2.5.2.1 Adhesion term of friction 

According to classical theory of adhesion, friction force contributed by adhesion can be 

written as [104]: 

        (2-13) 

Where,    is the real area of contact, and   is the shear strength of the softer of the two 

contacting materials. Based on the first law of friction, the coefficient of adhesive friction can 

be written as: 

    
   

 
 

 

 
 (2-14) 

Where, P is the mean real pressure. For plastic contact which is the type of deformation takes 

place on asperities of a surface in most of the cases (at least at the tip of the asperities), P is 

the hardness of the softer of the contacting materials. 

In general, the interfacial shear strength   cannot exceed the bulk shear strength significantly. 

For ductile metals the hardness is normally around five times of the bulk shear strength. 

Therefore, the predicted values for the coefficient of adhesive friction should lie abound 0.2. 

However this assumption is not consistent with many experimental data which suggest a 

much bigger contribution on friction coefficient from adhesion. Two mechanisms could be 

the explanation for such disagreement: work-hardening and junction growth. 

Work-hardening 
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Work hardening is the strengthening of a metal by plastic deformation. It happens when a 

metal is strained beyond the yield point. At this point, the metal appears to be stronger and 

harder to deform. During sliding between two metal surfaces, although the normal load is 

supported by plastic flow some distance from the immediate vicinity of the asperity junctions, 

the junction themselves will work-harden significantly, and increase the relative value of 

shear strength in comparison with that of hardness [101]. Therefore, coefficient of adhesion 

friction is increased. 

Junction growth 

For ductile metals, in most cases that involves plastic deformation, a growth of contact area 

will occur when a surface is subject to a combination of normal and tangential stress by as 

much as an order of magnitude [121]. In comparison with the scenario of an asperity 

compressed with a sole normal load, the application of shear stress lowers the critical normal 

pressure for plastic flow to take place. However, if the normal load remains the same the real 

area of contact must increase to maintain the plasticity [101]. 

2.5.2.2 Deformation term of friction 

Deformation term of friction is the other dominant component of friction when plastic 

deformation and displacement of the interlocking asperities take place on the interface of two 

sliding surfaces. Although this component of friction is not considered as the primary 

contribution to friction in the classic theory suggested by Bowden and Tabor, it is 

demonstrated in the later of Tabor and Greenwood [122] that friction is mainly contributed by 

plastic deformation when adhesion is unlikely to occur. 

During sliding of a hard surface against a softer counterpart, the asperities on the harder 

surface may penetrate and plough into the matching surface and produce grooves when the 
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shear strength of the softer surface is exceeded. Rigney and Hirth believed that the dominant 

mechanism of energy dissipation in metals was plastic deformation [123]. They were focused 

on the plastic work done in the near-surface region, and looked for a way to quantify the 

contribution of plastic deformation. 

In the first model, an asperity is considered to be a rigid body which has a conical shape with 

an attack angle of   pressed into a softer body, as shown in Figure 2–19. Then the load 

supporting area Al which is the horizontal projection of the asperity contact can be written as: 

    
 

 
    (2-15) 

At an equilibrium condition, friction force is equal to the resistance produced by the ploughed 

area Ap which is the vertical projection of the asperity contact: 

    
 

 
             (2-16) 

Assuming that the yielding of the body is isotropic and the tangential force F, and normal 

load W required to carry out the plastic deformation can be treated as the indentation 

hardness H of the surface material, multiplied by the cross section area of the groove and the 

normal projection area of the asperity respectively: 

       (2-17) 

       (2-18) 

Hence, 

      
 

 
 

  

  
 (2-19) 
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Finally, 

      
     

 
 (2-20) 

The slopes of real surfaces are usually less than    , as a result, the value of      can be 

expected to be close to 0.1 [101]. 

 

Figure 2–19 Schematics view of a conical asperity indenting and sliding 

through a softer material 

Similar model with different asperity shape has also been reported by Moore [124]. As shown 

in Figure 2–20,      of a spherical asperity (with a radius of R) in contact with a softer body 

can be written as: 

      
  

  
 

 

  

 

 
 (2-21) 
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Figure 2–20 Schematics view of a spherical asperity indenting and sliding 

through a softer material 

Base on the classical friction theory, Suh and Sin [125] extended the expression for     . In 

this case, ploughing groove was considered to have large width compared with the radius of 

spherical asperity, hence they put the ploughing by wear particles into account: 

      
 

 
  

 

 
 
 

      
 

 
    

 

 
 
 

   

 
 

  (2-22) 

From the equation, it is clear that      will surge sharply with a rise of the value r/R, this 

suggests that the coefficient of friction will increase as the sphere digs deeper [125]. 

2.5.2.3 Other mechanism of friction 

Crystallographic structure of a material and Grain boundary effects may also affect the 

friction performance.  

Rabinowicz [104] has suggested that the less number of slip planes in hexagonal close-

packed metal than that in face-centred cubic metal is responsible for the low coefficient of 

friction and much less wear observed.  
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Sliding friction experiments across the surface of grain boundaries have been conducted by 

Buckley [126]. It is found that the presence of grain boundaries in a material hugely 

influences its tribological performance and strain hardening in the surficial layers caused by 

the accumulation of dislocations (blocked by grain boundaries in the sliding process) enlarges 

resistance for sliding, and hence increases the friction coefficient. 

2.5.3 Friction transition in sliding  

In this section the mechanisms of sliding friction are discussed. Adhesion and deformation 

are the dominant terms of friction, while crystallographic structure of a material and Grain 

boundary effects would also affect the friction to some extent. The fundamental theories and 

classic mathematical models are presented in the section. It is clear that low shear strength 

between contact surfaces is the key factor to obtain low friction force. 

In a sliding experiment, temporary fluctuations in friction coefficient would commonly be 

observed shortly after the start of the action between freshly prepared samples. The phase of 

sliding is described as run-in or break-in. After some period, the friction coefficient stabilizes 

when the system enters the steady state of sliding. This friction transition caused by the 

change of the condition of mating surfaces is not necessarily a singular event; it can go on 

periodically more than two times before the system reaches the steady state.  

Run-in has a big influence on the performance and life span of a sliding system. During run-

in, high asperities will be smoothened out, initial surface films will be removed and replaced 

by the new steady films, and eventually better mating between two surfaces can be achieved. 

An appropriate run-in can lead to a desired state of sliding and significantly reduce the 

chance of system failure. 
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Blau [127] has given a systematically reviewed on the transition of friction, as shown in 

Figure 2–21, eight types of friction break-in curves have been described. Among them, 

Figure 2–21(a) and Figure 2–21(b) are the most seen curves. 

 

Figure 2–21 Typical types of run-in curve shapes [127] 

Figure 2–21(a) is characteristic of sliding of a pair of metal components in a dry friction 

contact. A surface contamination, oxide, and adsorbed species reduce adhesion of two 

surfaces at the beginning of the sliding. As the sliding goes on, these substances are quickly 

worn away, and lead to a greater degree of adhesion, hereby a rise in friction [127]. Figure 2–

21(b) is often seen in boundary lubrication. The first temporary rise in friction caused by the 

initial roughness of the surface is quickly replaced by a reduction in friction due to the 
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surface conformity and smoothing. Depending on the materials and conditions, surface 

texturing by shear and the development of a low-shear transfer film can also be responsible 

for reduction of friction after the initial rise [128]. 

Run-in is a complex process, and it is closely related to the condition in which a system is 

operating. Surface roughness and macro-conformity, thermal effects, vibration, 

microstructural effects such as work-hardening, fatigue damage and third body formation are 

all among the factors that are influential on running-in. 

2.6 Summary 

The present Chapter reviewed the nature of surface, fundamental subjects in lubrication, as 

well as the theoretical background of friction and wear. The basic principles of boundary 

lubrication were described. The important experimental techniques that are encompassed in 

tribology study were also summarised. The inclusion of this chapter on fundamentals helps 

obtain a comprehensive understanding of friction and wear mechanisms. Boundary 

lubrication regime is used in this study, where the solid lubricant additives may show their 

effectiveness. Suitable surface analysing techniques are selected and the details will be 

discussed in Chapter 4. 

  



 

51 

 

Chapter 3. Solid Lubricant Additives and Surface Modification Techniques 

3.1 Introduction 

In modern industry, machinery parts operating under severe conditions require lubricants to 

be able to withstand high temperatures and pressure. Friction and surface damage caused in 

such conditions can be avoided or reduced by applying extreme pressure (EP) and anti-wear 

(AW) additives. However, when temperature is elevated under extreme conditions, the failure 

of the boundary films may cause direct contact of the moving surfaces and lead to adhesion 

and surface damage of the components. Sulphur, chlorine and phosphorous containing 

organic compounds were mostly used in the past. They were designed to react chemically 

with the metal surfaces, and to form easily sheared layers of sulphides, chlorides or 

phosphides, and thereby to prevent severe wear and seizure. 

Back in 1960s, solid lubricant additives began to be used as antiwear and extreme pressure 

agents in gear oil. Graphite and molybdenum disulfide micron particles that have layered 

structurs were the firstly employed solid lubricant additives [129-132]. The good friction and 

wear reduction performances were observed due to the low shear strength of the materials as 

a result of their intrinsic crystal structure. However, introduction of a solid lubricant additive 

in lubricant oil caused another problem, stability. Solid particles generally are not stable in 

liquid media, especially for large particles. The flocculation of the solid lubricant particles 

cause them to separate from the lubricant by sedimentation, hereby reduce or remove the 

additive content from the base lubricant so that the benefits gained from the introduction of 

solid particles in the lubricant are therefore lost.  

Nano sized and submicron sized particles began to be used as solid lubricant additives in the 

1980s, thanks to the development of synthesis techniques. Compared with the large sized 
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particles, particles with smaller size have demonstrated intrinsic advantages. Typically, nano-

sized and submicron-sized particles have the superior dispersibility in a lubricant base media. 

This greatly improves feasibility of solid particles in lubricant application and reduces the 

possible abrasion that the solid lubricant additives may cause to the substrate surface. 

Outstanding performance in friction and wear reduction was observed in some applications of 

the solid inorganic lubricant additives [1, 2, 80, 82, 84, 133-136]. Some of the solid inorganic 

lubricant additives even outperform the traditional organic lubricant additive ZDDP [83, 137].  

Dispersing agent is often used to improve the dispersibility of solid lubricant additive in base 

lubricant. Surface modification technique is also broadly applied to change the surface 

property of additive particles so as to serve the same purpose. It is essential to understand the 

mechanisms of the surface modification and how the modification agents react with solid 

particles before the employment of such technique. 

3.2 The roles of solid lubricant additives 

The excellent tribological property of solid inorganic lubricant additives can be attributed to 

four mechanisms: 

Tribochemical reactions --solid lubricant additives may interact with the surface material of 

friction pairs and form a surface protection film [93, 138, 139]. 

Ball effect--small spherical nano-particles enable to roll between friction pairs. These 

particles introduce a partial rolling friction into a pure sliding friction [4, 8, 140]  

Mending effect--in most of the cases, surface roughness is greater than the mean diameter of 

nano-particles. Nano-particles can be deposited on the surface, and form a physical tribo-film 

which compensates the mass loss of materials [141, 142]. 
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Third body effect—a large quantity of nano-particles help to reduce compress stress 

concentrations associated with high contact pressure by bearing the compressive force 

depressively[141, 143]. 

3.3 Layer structure solid lubricant additives 

Solid lubricant additives with layer structure have been extensively studied and excellent 

tribological performance has been observed. These solid lubricant additives, including 

graphite, molybdenum disulfide (MoS2), tungsten disulphide (WS2) and boron nitride (BN) , 

have a lamellar crystalline structure, in which the bonding between molecules within each 

layer is strong covalent, while each two layers are bonded together by weak van der Waals 

forces. Due to such a unique structure, low shear stress is expected and an easy-shear 

mechanism is resulted when these additives are applied between sliding surfaces [81, 143-

146].  

Graphite powder is one of the mostly used solid lubricant additives, especially in harsh 

conditions with very high or very low temperatures. It can be used directly as a dry powder, 

as an additive in water or oil, or as colloidal graphite (a permanent suspension in a liquid). 

The special layer structure, as shown in Figure 3–1, provides a low shearing localized film 

between rubbing surfaces and leads to a significant friction and wear reduction. Conventional 

flake graphite has a particle size of several to several tens of microns meters and the large 

particle size means a problem in dispersion. Graphite nano-sheets are much smaller than the 

ordinary flake graphite, and their small size gives them better dispersibility in a base lubricant 

and superior tribological performance to the ordinary flake graphite. SEM morphology of 

graphite nano-sheets is shown in Figure 3–2. The tribological behaviour of nano graphite 

nanosheets as an additive in paraffin oil was investigated by H.D. Huang at el. with a four-

ball and a pin-on-disk tribo tester [81]. The graphite nanosheets with an average diameter of 
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500 nm and a thickness of 15 nm were prepared by stirring ball milling. The maximum 

nonseized loads of the lubricating oil were determined according to the ASTM D2783 

standard method. As a lubricant additive in oil, graphite nanosheets demonstrated better 

tribological properties than in pure paraffin oil when an appropriate additive concentration 

was used. Figures 3–3 - 3–5 illustrate the friction reduction, anti-wear and maximum non-

seizure load properties of the lubricant improved by adding graphite nanosheets respectively. 

The low shear strength between the sliding surfaces resulted from the employment of 

graphite nanosheets with layered structure is responsible for the observed improvement on 

tribological properties. 1% was found to be the optimal concentration for the application of 

this type of solid lubricant additive [81]. 

 

Figure 3–1 Atomic arrangement of lamellar graphite 



Chapter 3. Solid Lubricant Additives and Surface Modification Techniques 

55 

 

  

Figure 3–2 SEM morphology of graphite nano-sheets [81] 

 

Figure 3–3 Effect of graphite nanosheets and flake graphite on friction 

coefficient [81] 
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Figure 3–4 Wear scar diameter as a function of additive concentration [81] 

 

Figure 3–5 Effect of graphite nano-sheet and flake graphite concentration on 

maximum non-seizure load [81] 

J. Gansheimer [146], L. Rapoport [147] and Yoshitsugu Kimura [145] also reported the 

similar improvement on tribological properties, such as friction and wear reduction and the 

improvement on maximum non-seizure load, by using MoS2, WS2 and BN as solid lubricant 

additives correspondingly. 
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3.4 Metal particles as solid lubricant additives 

Recent research has suggested that an addition of nano sized metal particles to a lubricant is 

effective for the reduction of wear and friction in mechanical systems. Numerous types of 

metal nanoparticles as lubricant additives have recently been investigated. 

Nanoparticles of soft metals, such as copper (Cu), gold (Ag), and nickel (Ni) are the mostly 

studied materials. Wear and friction properties of Cu nanoparticles in commercial base 

lubricants at different loading and sliding speed conditions were studied by He-long Yu [148] 

and S. Tarasov [140]. As shown in Figure 3–6, an excellent mending effect of copper nano-

particles has been demonstrated by the Scanning Electron Microscopy (SEM) observations. 

Compared with the surface lubricated by pure oil (Figure 3–6(e)), surfaces lubricated by the 

lubricants containing Cu nanoparticles have all revealed a smoother surface finish. As shown 

in Figure 3–7, He-long Yu has illustrated the effect of temperatures on the friction coefficient 

and wear scar diameter when 50CC pure oil and 50CC oil containing Cu nano-particles were 

tested. Clearly, 50CC oil containing 0.2% Cu nano-particles showed better friction and wear 

reduction performance through the whole temperature range. Most importantly, it can be seen 

that the higher the temperature went, the better the tribological properties Cu nano-particles 

demonstrated. S. Tarasov also found that the worn surface lubricated with motor oil 

containing copper nanoparticles were very smooth, whereas much rougher surface with wear 

grooves formed by wear particles were typical worn surfaces lubricated by motor oil without 

additive [140]. 
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Figure 3–6 (a-d) SEM images of worn surfaces after friction tests with copper 

nanoparticles (e) worn surfaces after friction tests with pure oil [148] 
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Figure 3–7 Tribological properties of 50CC oil and 50CC oil with 0.2% Cu 

nanoparticles at different emperatures: (a) Friction coefficient; (b) Wear scar 

diameter [148] 

R. Chou studied the tribological properties of nickel nanoparticles in polyalphaolefin, and 

reported the similar friction reduction and antiwear performance[149]. As shown in Figure 3–

8 and Figure 3–9, dramatic reductions in friction coefficient and wear loss were achieved at 

all additive concentrations. Highest improvement on tribological performances of the base oil 

was delivered by the employment of 0.5% nickel nanoparticles. 

 

Figure 3–8 Friction reduction performance of nickel nanoparticles at different 

concentrations [149] 
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Figure 3–9 Wear reduction performance of nickel nanoparticles at different 

concentrations [149] 

In order to interpret the mechanism of friction and wear reduction properties of copper 

nanoparticles in base lubricant, He-long Yu also analysed the mechanical properties of the 

worn surfaces after tribology tests. The nano-hardness, reduced modulus and elastic modulus 

of the worn surfaces were measured with a nano-indentation tester, as seen in Table 3-1. 

Table 3-1 Micro mechanical property of copper film and worn surfaces 

lubricated with 50CC oil [148] 

 

The readings in the columns “50CC oil” describe the mechanical properties of the worn 

surfaces lubricated using 50CC oil, and the readings in the columns “Copper film” present 

the mechanical properties of the worn surfaces lubricated using 50CC oil blended with 

surface modified copper nano-particles. This low reduced and elastic modulus (Er and Es) 

achieved from using 50CC oil blended with surface modified copper nano-particles indicated 

that a protective film with less strength was formed on friction surfaces. The film material 
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provided a lower shear strength which led to a lower friction coefficient. Soft worn particles 

would also be capable of getting through the contact area more easily, and therefore abrasive 

wear would be consequently reduced. Furthermore, Soft film on the worn surfaces could also 

increase the contact area and provide fast relaxation and reduction of contact stress. 

3.5 Metal oxide solid lubricant additives 

Metal oxides nanoparticles are one of the firstly studied solid lubricant additives and various 

types of metal oxide nanoparticles have been tested before [2, 134, 150-152]. The anti-wear 

performance of CuO, ZnO and ZrO2 nano-particles blended in a polyalphaolefin (PAO 6) 

were described by A. Hern´andez Battez at el. [151]. Micrographs of these three nano-

particles are shown in Figure 3–10. 

 

Figure 3–10 Micrographs of nanoparticles: (a) ZnO; (b) CuO; (c) ZrO2 [151] 

Friction coefficients of lubricant nano-particles in different concentrations were illustrated as 

a function of sliding distance in Figures 3–11 - 3–13 [151]. 

Clearly, all nano-particles indicated obvious friction reduction, and the optimal concentration 

that gave the lowest friction coefficient for each type of nano-particles was recorded. 
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Figure 3–11 Friction as a function of sliding distance with PAO 6 + ZnO 

nano-particles [151] 

 

Figure 3–12 Friction as a function of sliding distance with PAO 6 + CuO 

nano-particles [151] 

Figure 3–14 illustrated the overall comparison of CuO, ZnO and ZrO2 nano-particles on wear 

reduction readings. It is evident that the nanoparticle concentration at which the optimal 

friction reduction performance was received did not necessarily contribute the best antiwear 

ability. The 2%CuO nano-particles in PAO 6 gave the highest friction coefficient, but the 

same combination also exhibited the least wear, with a reduction of about 60% in comparison 

with pure PAO 6. This phenomenon demonstrates the mending effect of CuO nanoparticles 

that tribo-film formed on friction surfaces compensates the wear loss and protects the 

surfaces. 
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Figure 3–13 Friction as a function of sliding distance with PAO 6 + ZrO2 

nano-particles [151] 

 

Figure 3–14 Overall anti-wear performance comparison [151] 

It has also been reported that in an application of metal oxide nanoparticles as a solid 

lubricant additive, a reduction of friction coefficient was sometimes companied by higher 

wear rate. It is probably due to the high hardness of the metal oxide nanoparticles. As a result, 

high abrasive wear is caused on the contact surfaces.  

The observed friction and wear reduction properties of metal oxide nanoparticles are 

generally attributed to the ‘third body’ mechanism and ‘mending’ effect of the additives 
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[153]. However complex physical and chemical reactions between the solid lubricant additive 

and substrate metal material may also have taken place, and therefore thorough research on 

this matter is still required. 

3.6 Borate solid lubricant additives 

Excellent wear and friction reduction performance of borate particles with various sizes, as 

well as their improving effect on the maximum non-seizure load of base lubricant has been 

widely reported in the literatures. It is well known that alkali metal borate is an excellent 

antiwear and friction reducing additive [12, 13, 154]. Alkaline earth metal borate possesses 

similar tribological properties to alkali metal, magnesium borate nanoparticles [91], strontium 

borate nanoparticles [138] and calcium borate submicron ultrafine powders [155] which all 

have demonstrated promising potential in wear and friction reduction aspect, as shown in 

Figures 3–15 - 3–17 

 

Figure 3–15 Effect of magnesium borate nanoparticles on friction coefficient 

of a lubricant oil. (1) Base oil with dispersing agent; (2) base oil; (3) oil with 

dispersing agent and magnesium borate [91] 
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Figure 3–16 Effect of nanoparticle magnesium borate on wear scar diameter 

[91] 

 

Figure 3–17 Effect of nano-particle magnesium borate content on maximum 

non-seizure load of lubricant base oil [91] 

Many other metal borate nano-particles can also be used as lubricant additives. Nanoparticles 

of Zinc borate [84], Titanium borate [156], Lanthanum borate [139] and Cerium borate [92] 

have been tested as solid lubricant additives in literature and proved to have the effective 

friction and wear reduction properties. During an elemental analysis of the wear scar some 

boron was generally detected in all applications of borates solid lubricant additive. The 

chemical state of the boron is given in Figure 3–18 and the binding energy indicates that there 
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are diboron trioxide (192 eV) and FeB (187.9 eV) on the wear scar. Tribochemical reactions 

were observed in the application of borates particles as a solid lubricant additive. Figure 3–19 

gives a schematic diagram of the friction and wear reduction mechanism. Diboron trioxide 

was firstly formed and deposited in the rubbing surface owing to tribochemical reaction of 

borate particles. Then, Fe2B and FeB formed due to further reaction between diboron trioxide 

and Fe of the substrate metal. A decrease of shearing stress due to a gradual deposition of 

friction product of borate solid lubricant additive on the rubbing surface is the possible 

explanation in the friction reduction behaviour. Also the protective film generated through 

tribochemical reaction is capable at some level of protecting the surface from wear. 

 

Figure 3–18 XPS spectra of boron on rubbed surface: (1) cleaned using 

ultrasonic bath with ligroin; (2, 3, 4) cleaned using ultrasonic bath with 

ligroin and then with distilled water, sputtered by Ar ions for 5, 10, 30 min 

respectively [84] 
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Figure 3–19 Schematic diagram of the friction and wear reducing mechanism 

of borate nanoparticles [139] 

3.7 Particle surface modification 

Lubricants with solid lubricant additive are two-phase systems, with one phase (solid phas) 

dispersed in another (liquid phase). Some important issues have to be tackled in a two-phase 

system and one of the most important issues is the stability of the system. The intrinsic poor 

dispersibility of solid particles in base oil greatly restrains their lubricating performance and 

the development in practical applications and still remains a big challenge to achieve desired 

stability of solid lubricant additive in base lubricants 

3.7.1 Stabilization of solid lubricant additive in base lubricant 

Dispersibility of a solid lubricant additive describes the capability of the additive particles to 

be dispersed evenly in a base lubricant and to remain as they are. The two phenomena that 

control the dispersibility of a solid lubricant additive are agglomeration and sedimentation. 

Small particles have large surface area and therefore high surface energy. As a result the 
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tendency to form agglomerates is quite strong. Minimising agglomeration is of major 

importance in improving the dispersibility of solid lubricant additive in a base lubricant.  

As illustrated in Figure 3–20, electrostatic stabilization and steric stabilization are the two 

main mechanisms for stabilization against agglomeration: 

Electrostatic stabilization  

In general, different phases have different charge affinities, so that an electrical double layer 

can form at any interface. Base on DLVO (named after Derjaguin and Landau, Verwey and 

Overbeek.) theory[157], agglomeration of small particles can be reduced by tuning the 

surface potential of particles using a surface modification agent. The mutual repulsion of 

alike electrical charges on particle surfaces can partially counteract attraction and hereby 

reduce particles agglomeration. 

Steric stabilisation  

Steric stabilization involves covering the particles in polymers, which physically separates 

the particles spatially and prevents the particles from getting close to each other. 
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Figure 3–20 Stabilization mechanisms [158] 

3.7.2 The methods to enhance the stability 

3.7.2.1 Surfactants and application with solid particles 

Using surfactants is a simple and economic approach to improve the dispersibility of solid 

lubricant additives in base lubricants. Even small amount of surfactant is able to markedly 

affect the inter-surface properties of a system. One surfactant molecule is composed of two 

parts; a hydrophobic tail portion, usually a long-chain hydrocarbon at one end, and a 

hydrophilic group at the other end. Surfactants are able to improve the contact quality of two 

materials by locating onto the surface of solid particles and introducing a degree of continuity 

between the solid particles and the fluid environment 

According to the composition of the hydrophilic end, surfactants are divided into four 

categories [158]:  
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 Nonionic surfactants without charge groups in its head (including polyethylene oxide, 

alcohols, and other polar groups). 

 Anionic surfactants with negatively charged head groups (anionic head groups include 

long-chain fatty acids, sulfosuccinates, alkyl sulfates, phosphates, and sulfonates),  

 Cationic surfactants with positively charged head groups (cationic surfactants may be 

protonated long-chain amines and long-chain quaternary ammonium compounds). 

 Amphoteric surfactants with zwitterionic head groups (charge depends on pH). 

Water-soluble surfactants are generally selected to stabilise solid lubricant additive in polar 

solvent otherwise. Vice versa, oil-soluble surfactants are used for nonpolar solvent. 

Although surfactant addition is an effective way to enhance the dispersibility of solid 

particles in liquid media, surfactants might cause undesired concerns. For example, the 

amount of surfactant used to effectively improve the dispersibility of the solid particles could 

have a big impact on the viscosity of the base liquid [159]. Also foams can be produced by 

additional surfactants during heating up, which needs to be avoided in a system where 

heating and cooling are a routine process[5]. 

3.7.2.2 Surface modifications of solid particles 

Surface modification is a technique to prepare particle additives by attaching an organic layer 

onto the particle surface. Similar to using surfactant, the organic layer coated on particle 

surface helps to minimise particle/particle interaction and to enhance particle/matrix 

interaction. Functionalising solid particles has proved to be a promising approach to achieve 

long-term stability of solid particles in a lubricant. Dispersion of surface modified particles 

does not require additional surfactant therefore the problems associated with the application 

of surfactant can be avoided. 
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3.7.2.2.1 PyDDP 

Yang and Liu presented a work on the synthesis of novel MoS2 nanoparticles which were 

“capped” by dialkyldithiophosphate (DDP) molecules [160]. This capped nanoparticles were 

prepared by an ion modification method and the modified particles obtained had good 

solubility in organic solvents such as acetone, DMF, THF, and others [160]. Similar 

modification agent was also successfully applied on other solid lubricant additives such as 

PbS [161], ZnS [162], Cu [9], Ag and LaF3 [76]. As shown in Figure 3–21, Pyridinium di-n-

hexadecyldithiophosphate (PyDDP) was used as a modification agent. However active 

elements of S and P are contained in this modification agent, and therefore its manufacturing 

and employment may become a potential hazard for the environment concern. 

 

Figure 3–21 Chemical formula of PyDDP 

3.7.2.2.2 Succinimide 

Some Nitrogen (N) containing organic compounds have also been found to adsorb 

competitively on the metal surface to give good compatibility with the lubricant oils and also 

deliver effective antiwear ability. The chemical formula of succinimide is shown in Figure 3–

22. Succinimide was used as modification agent and desired interaction with LaF3 was 

observed [137]. 
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Figure 3–22 Chemical formula of Polyisobutylene Succinimide 

3.7.2.2.3 Carboxylic acids 

Carboxylic acids are the group of the mostly used surface modification agents. As shown in 

Figure 3–23, they are a type of organic acid that contains at least one carboxyl group. During 

modification, carboxylic group (-COOH) reacts with the Hydroxyl (-OH) on the surface of 

the solid particles and forms a covalent bond, which strongly attaches the other part of the 

carboxylic acid to the surface of the particles. Similar to other modification agents, the carbon 

chains at the other end of the carboxylic acids provide better interaction with base lubricants 

hence a better dispersibility of the modified particles can be achieved [163]. Many types of 

solid lubricant additives have been successfully modified using stearic acid [164, 165], oleic 

acid[163, 166], 2-Ethylhexanoic acid (EHA) [82] and linoleic acid. Stearic acid is the mostly 

used carboxylic acid modification agent currently. It is very cheap and easy to access since it 

is the main ingredient for soap production. However, stearic acid has a straight carbon chain, 

it is not easy to tangle with the surrounding hydrocarbon chains and its steric stabilizing 

effect is far from perfect [167]. 

 

Figure 3–23 Chemical formula of carboxylic acids 
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3.7.2.2.4 Silanes 

Silanes are often used as a surface modification agent most recently and they have 

demonstrated some superior stabilization performance than the classic carboxylic acids [168, 

169]. Sharing the same principle as carboxylic acid modification, the hydroxyl group on solid 

particle surface is commonly the group that silanes react with. During modification, the 

alkoxy groups of the trialkoxysilanes are hydrolyzed to form silanol-containing species. 

Reaction of these silanes involves four steps [170]. Initially, hydrolysis of the three labile 

groups occurs, followed by the condensation to oligomers. Then the oligomers form 

hydrogen bond with OH groups on the particle surface. Finally a covalent linkage can be 

formed with the particles, and at the same time produces water. The reactions after the initial 

hydrolysis step can occur simultaneously. At the interface, for each silicon atom of the silane, 

there is usually only one linkage formed to the substrate surface. The two remaining silanol 

groups can appear either in condensed or free form. The modification reaction is shown in 

Figure 3–24. 

 

Figure 3–24 Surface modification with silanes [171] 
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3.8 Summary 

The present chapter has reviewed previous studies regarding the application of solid lubricant 

additives. Various types of solid lubricant additives have demonstrated outstanding 

tribological properties such as friction reduction, wear resistance and improvement on 

maximum non-seizure load. 

In general, it can be categorized into three ways by which solid lubricant additives are 

capable of improving the tribological performance of a lubrication system. The first approach 

is to employ their easy shear crystal structure. Solid lubricant additives that have such 

lubricating mechanism include graphite, Molybdenum disulfide (MoS2), Tungsten disulphide 

(WS2), Boric acid, and Boron nitride (BN). These solid lubricant additives create a layer of 

material with low shear strength, and therefore reduce the force required to activate the 

sliding manoeuvre, and consequently reduce friction. The second approach is by mending or 

third body effect. Solid lubricant additives that have such lubricating mechanism include 

metal nanoparticles, metal oxide nanoparticles and other inert solid particles with small 

particle size. These particles may deposit onto the contact surfaces, fill up valleys and work 

as the separation material, ultimately reduce direct “substrate to substrate” contact and protect 

contact surfaces. Finally, the third approach is associated with tribochemical reactions. Solid 

lubricant additives that have such lubricating mechanism include borates, sulfides, chloride 

and other materials that contain active elements such as Sulfur (S), Phosphorus (P), Chlorine 

(Cl) and Fluorine (F). These lubricant additives react with base oil and substrate material and 

form a protective film (tribo film) with low shear strength on contact surfaces. Exfoliation 

and replenishment of tribo film are the typical phenomenons involved in tribo chemical 

reactions. 
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Although many materials have been tested as the solid lubricant additives and many of they 

have shown the good tribological properties, there are still many controversies about their 

lubricating mechanisms. Therefore the research looking for new materials that are potentially 

suitable for a lubricant additive certainly needs to be continued. It is well known in literatures 

that the dispersion of the additives in base oil, in the application of solid lubricant additives, 

plays an important role on the tribological performance. Exploitation on new modification 

techniques is also an essential part of the research on solid lubricant additive. 
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Chapter 4.  Experimental Techniques and Materials 

4.1 Introduction 

In this study, the tribological properties of the selected solid lubricant additives were 

investigated by measuring friction and wear using a pin-on-disc configuration and comparing 

these parameters with the according base lubricants. In order to understand the mechanism of 

the modifications that the solid lubricant additives brought to base lubricants, several test rigs 

were also employed to post analyse the worn surface of the pins and the discs. The key test 

equipments involved in the study are introduced in this chapter. 

4.2 Experiment outline 

Common experimental procedures were applied to study the tribological performance of solid 

lubricant additives in lubricant base oil. Firstly, the solid lubricant additives were dispersed in 

base media. Subsequently the prepared lubricants were used to lubricate the pure sliding 

contact carried out with a pin-on-disc tribo tester, and the real time friction coefficient was 

recorded during a test. Wear of material was determined by measuring the wear scar diameter 

of the bearing balls (the upper pin) or the wear track depth on the lower discs. Post analysis 

on the worn surface generated in a tribology test was then conducted. A number of testing 

equipment were involved to determine the chemical and mechanical properties of the worn 

surface as well as the tribo film generated on the surface. By comparing the test results from 

pure base lubricants and the lubricants that contain solid lubricant additives, the friction and 

wear properties of the solid lubricant additives in base lubricants and the associate 

mechanisms can be identified. After the tribology tests, the worn surfaces were analysed by 

various types of laboratorial devices including nano-indentation, scanning electron 
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microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and atomic force 

microscope (AFM). 

4.3 Experimental apparatus 

4.3.1 Pin-on-disc tribo tester 

The tribological properties of all lubricant samples were evaluated using a POD 2 Pin-on-disc 

tester (Teer Coatings Ltd.) as shown in Figure 4–1. Friction force can be measured 

automatically by a strain gage with a sensitivity of 0.02N on friction force measurement. 

Based on the literature study, suitable test conditions were selected. All the tests were carried 

out with a sliding speed of 50mm/s under 10-50N (1.54-2.63GPa Hertz pressure) normal load 

for a testing period of 30/60 minutes at the ambient temperature of 22°C. The bearing balls 

with 5mm diameter used as the pin in the experiments were made of AISI52100 chrome steel 

with HRC of 59-61. The disc samples used in this study was made of the identical material. 

At the initial stage of the study, disc samples with the dimensions of 27mm in diameter and 

12mm in thickness were prepared. These discs were polished using progressively finer grades 

of emery paper at intervals of 400, 800, 1200 to achieve a uniform surface roughness Ra of 

around 30nm. However at the later stage of the study, automatic polishing device was 

adapted for consistent quality of samples in polishing. In order to meet the specification of 

the polishing device, the thickness of the disc samples was reduced from the original 12mm 

to 3mm instead. Accordingly, polishing technique was then changed to use diamond 

suspension on polishing ‘Multicloth’ (from Metprep, UK) since the disc samples with smaller 

thickness were no longer suitable for the original polishing technique and surface roughness 

Ra of 15nm was achieved using the second polishing technique. It has been verified that no 

noticeable influence on friction and wear results was made by changing polishing techniques 

due to the highly similar degree of finishing both two polishing techniques achieved. 
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Figure 4–1 Pin-on-disc tribo tester used in this study 

4.3.1.1 Repeatability of pin-on-disc test 

In order to investigate the repeatability of the pin-on-disc tests, five preliminary tests were 

carried out using liquid paraffin. The test conditions were listed as follow:  

 10N applied load 

 50mm/s sliding speed 

 Operating temperature 22°C 

 One hour test duration  

The sliding speed and operating temperature are identical with the systematic pin-on-disc 

tests and 10N load (1.54GPa Hertz pressure) was employed to demonstrate the repeatability 

of the test rig at the least sensitive condition. At the end of each test, the stabilized friction 

coefficient was recorded and they are shown in Table 4-1.  

Table 4-1 Friction coefficients of the preliminary pin-on-disc tests 

 Test 1 Test 2 Test 3 Test 4 Test 5 Average 

Standard 

deviation 

Friction coefficient 0.086 0.092 0.087 0.091 0.091 0.0894 0.0027 
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Standard deviation was calculated to describe the repeatability of the pin-on-disc tests of 

these five tests, the relatively low standard deviation (0.0027), compared with the mean 

friction coefficient of 0.0894, suggests that the data points tend to be close to the mean value. 

Therefore the results have demonstrated a good repeatability. 

4.3.2 Electrical contact resistance 

In order to investigate the alteration in contact conditions during sliding of two surfaces under 

lubrication, a device was designed to measure the electrical contact resistance (ECR). A 

constant current of 0.1Amp was selected as the power source (Figure 4–2(a)), and a 

‘Picoscope’ (Figure 4–2(b)) was used to measure the voltage distribution between contact 

surfaces and to log the data into a computer. Then ECR was easily be calculated according to 

Ohm's law. The electrical circuit of the device set up is illustrated in Figure 4–3. The system 

was calibrated with standard resisters and a system error is less than 5%. 

 

Figure 4–2 Main conponents of the ECR device (a) constant current power 

supply and (b)picoscope used for voltage measurement 
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Figure 4–3 electrical circuit of ECR measuring device 

 

4.3.3 Fourier transform infrared spectroscopy (FTIR) 

FTIR is one of the most powerful tools for identifying types of chemical bonds (functional 

groups). In infrared spectroscopy, a beam of infrared radiation containing many frequencies 

of light is passed through a sample. Some of the infrared radiation is absorbed by the sample 

and some is passed through (transmitted). Different materials or chemical bondings have a 

unique absorption and transmission spectrum which is the fingerprint of the material. 

Therefore by analysing an infrared spectrum received from the material, the chemical 

bondings of this material can be identified. In this study, the FTIR device, as shown in Figure 

4–4, was employed to investigate the surface modification of the solid particles. The Infrared 

spectroscopy measurements were conducted using a Perkin-Elmer Spectrum 100 FTIR 

Spectrometer. Samples were prepared as powder-pressed KBr pellets. The spectra were 

collected in a wave range from 600 to 4000 cm
-1

 with a resolution of 4cm-1 in a transmission 

mode. 
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Figure 4–4 The inferred spectrum facility used in this study 

4.3.4 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is a technique that measures the amount and rate of 

change in the weight of a material as a function of temperature or time in a controlled 

atmosphere. The TGA device as shown in Figure 4–5 was employed to verify the surface 

modification carried out to the solid lubricant additives. At elevated temperature, solid 

particles have a better stability than the surfactant attached on the particle surface through 

surface modification process. As the temperature rises, the attached surfactant will be burn 

out first which leads to a reduction in sample weight. By comparing the sample weight before 

and after the heating process, the amount of surfactant that has been attached onto the 

particles` surface can be identified. Thermogravimetric analysis (TGA) was carried out with a 

SETARAM TG-DSC 1600 instrument (Caluire, France). For each test, approximately 10mg 

sample placed in an aluminium crucible was tested with a heating rate of 5 °C/min from 80 to 

500 °C in atmosphere. Prior to the tests, an accurate calibration using the melting points of 

highly pure metals as standard reference materials was conducted. 
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Figure 4–5 The thermo gravimetric analyser used in this study 

4.3.5 Zeta-potential & Dynamic light scattering 

Particle conglomerate size in organic solvent was measured using a Dynamic Light Scattering 

device (DLS) (Malvern Zetasizer-Nano Series) as shown in Figure 4–6. This method 

determines the particle size by the scattering of light caused by the Brownian motion of the 

particles in concentrated suspensions using an autocorrelation function [172]. Three repeat 

readings on each sample were taken to deliver an average diameters record.  

Zeta-potential, which is known as an important parameter that affects the stability of 

suspension, was also measured with the same device. When solid particles were dispersed in 

a solution, a rearrangement of local free ions in the solution will be initiated by the surface 

charge of solid particles. This rearrangement of ions gives a region of nonzero charge near 

the interface between the solid and the liquid. The zeta potential reflects the charge at the 

interface between the thin layer of immobile counter ions next to the solid and the mobile 

counter ions [173]. Zeta potential is related to electrostatic repulsion and high value of zeta 

potential can be the indication of stability for charge stabilised nanoparticles [174]. In current 
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study Zeta-potential of the suspensions that contain solid lubricant additive was obtained to 

reflect the magnitude of the repulsion or attraction between particles. Three repeat readings 

on each sample were taken to deliver an average value of Zeta-potential results. 

 

Figure 4–6 The Malvern Zetasizer-Nano Series used in this study 

4.3.6 Atomic force microscopy 

An atomic force microscope (AFM) was used to observe morphology of the tribo film 

generated on worn surfaces. The AFM used in this study was a MultiMode scanning probe 

microscope, ‘Nanosurf Easyscan 2’ from Nanosurf (Liestal, Switzerland) as shown in Figure 

4–7. In an observation, a three dimensional image of the object surface can be constructed via 

a tip scanning across the surface under static force in contact mode. Contact force was set to 

be 20nN to avoid any scratching damage when probe was driven crossing the object surface. 

A silicon probe with a 5 nm-diameter tip was used in the AFM observation and all images 

were captured at 512 ×512 pixel resolution at a scanning rate of 1 Hz. A measuring accuracy 

of 0.3nm was achieved with the current setup. 
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Figure 4–7 The atomic force microscope used in this study 

4.3.7 Scanning electron microscope 

The solid lubricant additives and wear scars of the pins (bearing balls) after the Pin-on-disc 

tests were inspected using scanning election microscopy (SEM JSM-6010LA) (Jeol Ltd., 

Tokyo, Japan) as shown in Figure 4–8. Tested bearing balls were first ultrasonically cleaned 

in acetone for five minutes, and then mounted onto SEM sample substrates using carbon 

conductive adhesive tabs.  

The typical accelerating voltage was set at 5-20 kV and the working distance between the 

electron gun and observing object was around 6 mm. A thin layer of gold coating on the 

examining object was sometime necessary to improve the conductivity of the sample. A 

sputter coater, Emitech SC7620 (Fig 52(b)), equipped with a gold target, was set at 75 mA 

for 30 seconds to do the coating process. Also conductive silver paint was used to ensure an 

electrical conductivity from the surface to the sample stub. 
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Figure 4–8 (a) The scanning election microscopy and (b) the sputter coater 

used in this study 

4.3.8 Nano-indentation 

Mechanical properties of the tribo-film were determined using a Nano indentation device, 

‘nano tester’, from Micro Material Ltd (Wrexham, UK) as shown in Figure 4–9. A 

Berkervich indenter with a tip diameter of 50nm was employed for the experiment. Supported 

by an on board microscope, the ‘nano tester’ is able to carry out indentation on a specific 

point. All indentation experiments were conducted inside an environmental chamber, and a 

constant temperature of 20 degree Celsius was maintained. The ‘nano tester’ is also capable 

of generating topography of a surface under ‘scanning mode’. This function was employed to 

determine the wear track depth in the first series of the experiments. Before a test, the force 

calibration of the device was carried out using standard weight, and the diamond area 

function of the indenter was achieved by applying a hundred of indents with various 

indentation forces on a piece of standard fused silica. 
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Figure 4–9 The nano indentation device used in this study 

4.3.9 Materials 

4.3.9.1 Base lubricants 

Water, sunflower oil and liquid paraffin were selected as the base lubricants in this study. The 

viscometric properties of these base lubricants are measured by author and listed in Table 4-2. 

Table 4-2 The viscometric properties of the base lubricants 

Description 

Viscosity at 

40 °C (m Pa s) 

Viscosity at 

100 °C (m Pa s) 

Water 0.6 0.2 

Sunflower oil 27.2 5.7 

Liquid paraffin 24.0 4.8 

4.3.9.2 Selection of solid particles 

The utilisation of nano sized or submicron sized particles as an inorganic lubricant additive 

has received much attention over recent years, owing to their outstanding tribological 
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properties and good environmental friendly feature compared with the traditional organic 

lubricant additives that contain P, S and Cl elements [1, 76, 79-82]. Tribological properties of 

metal oxide nanoparticles such as TiO2 [82, 150, 152], SiO2 [163], Al2O3 [175], Fe2O3 [134], 

ZnO [176], CuO [177] and ZrO2 [80] used as oil lubricant additives have all been 

investigated. Considerable improvement in the tribological performance of the base oils have 

been demonstrated when these nanoparticle additives are used. Furthermore some of the rare 

earth metal oxides have also been studied. Together with CaCO3 nanoparticles, CeO2 

nanoparticles were tested in 40CD oil [178]. It is reported that the additional CaCO3 and 

CeO2 nanoparticles in 40CD oil have improved anti wear property of 40CD oil by 33.5% and 

friction reduction property by 32% respectively [178]. However despite the fact that CeO2 

nanoparticles have the excellent wear resistance property, chemical erosion resistance and 

good polishing effect as abrasive [179, 180], information of the tribological properties of 

solely CeO2 nanoparticles in lubricants are still very limited.  

Many interests have also been put on the application of borate nanoparticles as solid lubricant 

additive. Particularly, tribological properties of titanium borate [156], ferrous borate, 

magnesium borate [91] and zinc borate [84] nanoparticles together with dispersing agent 

sorbitan monostearate have been investigated, and the outstanding lubricating performances 

were observed. However the expensive and complicated preparation process of nanoparticles 

hinders their mass application. Compared with nanoparticles, submicron sized particles have 

won their attention in industrial application due to relatively low cost and simple preparation 

process although submicron size particles are more thermodynamically unstable in liquid 

media. 

For above reasons, two types of solid particles, Ceria (CeO2) nanoparticles and Zinc borate 

ultrafine powders (ZB UFPs), were selected as solid lubricant additives in this study. 
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CeO2 nanoparticles of 10-40nm diameters and 99.9% purity (Shandong Yitong, China) are 

shown in Figure 4–10. ZB UFPs (Molecular Formula: 2ZnO 3B2O3 3.5H2O) with the particle 

size of 500-800nm (Shandong Jiqing Chemical Co.,Ltd, China) are shown in Figure 4–11. 

 

Figure 4–10 TEM micrograph of CeO2 

 

Figure 4–11 TEM micrograph of ZB UFPs 
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4.3.9.3 Surfactant and surface modification agents 

Based on the literature study of the surfactant and modification agents, Sorbitan monostearate 

and Oleic acid used in this study were supplied by Sigma-Aldrich Co. LLC, St. Louis, USA. 

The Chemical formulas of Sorbitan monostearate and Oleic acid (OA) are shown in Figure 4–

12 and Figure 4–13 

 

Figure 4–12 Chemical fomula of Sorbitan monostearate 

 

Figure 4–13 Chemical fomula of Oleic acid 

Hexadecyltrimethoxysilane (HDTMOS) used as the surface modification agent in this study 

was supplied by Gelest, Inc., (PA, USA). The Chemical formula of 

Hexadecyltrimethoxysilane is given in Figure 4–14. 

 

 

Figure 4–14 Chemical fomula of Hexadecyltrimethoxysilane 
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All surfactant and surface modification agent employed in this study have a distinguishing 

chemical structure. There are hydroxyl groups at one end of the molecules and a long carbon 

chain at the other end. During surface modification, the hydroxyl groups react with the –OH 

bondings on the surfaces of the solid particles and attach the carbon chains onto the surfaces. 

Eventually, the solid particles covered with organic substance (long carbon chains) can be 

synthesised. 

4.4 Summary 

This Chapter presented the main laboratory devices which were employed to characterise the 

prepared lubricants and the specimens lubricated with these lubricants. The test outline was 

briefly described. The base lubricants and solid lubricant additives involved in the tribology 

tests were also introduced, as well as the chemical agents employed in surface modification 

of solid lubricant additives. In the following Chapters, the experimental results for different 

lubricants modified with various solid lubricant additives will be discussed. 
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Chapter 5. Tribological Properties of Ceria Nanoparticles in Water 

5.1 Introduction 

This chapter presents the experimental results and observations which were obtained from 

tribology tests of using Cerium dioxide (CeO2) as the solid lubricant additive in water. Water 

as an important lubricant has rarely been studied in recent years, despite its great potential in 

engine cooling/vehicle thermal management, polymer, wood, metal, ceramic, glass 

machining and similar circumstances where oil contamination must be avoided. A stable 

dispersion of nanoparticles in the fluids was achieved with an appropriate percentage of 

surfactant Sorbitan monostearate. The stability of particle dispersion and additive 

conglomerate size in water were measured using a Malvern Zetasizer. It has been observed 

that the dispersibility of nanoparticles has a significant influence in their frictional properties. 

The tribological property of the water-based lubricant was evaluated using a pin-on-disc 

tester under different loading conditions. The worn surfaces of the contact elements were 

characterised using SEM and a Nano-tester. 

5.2 Preparation of lubricants 

The prepared lubricants were composed of the rare earth metal nanoparticles (Cerium Oxide) 

and deionised water with or without surfactant. Both CeO2 nanoparticles and a suitable 

amount of surfactant Sorbitan monostearate were added into the deionised water. The blend 

was firstly heated up to 55°C and dispersed with an ultrasonic homogenizer for two minutes. 

Subsequently, the mixture was heated up to 70°C and maintained at the temperature for one 

hour while stirring using a rotor–stator homogenizer (Sonics VC 750) with a speed of 10k 

rpm. Finally, the stable milky colour suspensions were achieved and these suspensions were 

employed for the tests within 10 minutes. One sample with low additive concentration of 
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water+0.05wt% CeO2+1% surfactant, was prepared for particle size and zeta-potential 

measuring in order to ensure a good accuracy (low additive concentration is required). For 

the tribology tests, the lubricant samples with different nanoparticle concentrations were 

prepared in order to investigate the effects of nanoparticle concentration on the tribological 

properties. The surfactant concentration was doubled to 2wt% in order to ensure a good 

stability of the suspensions when various amounts of CeO2 nanoparticles were applied. All 

additive concentrations in this study were presented in weight ratio. No sedimentation was 

observed in the prepared lubricants for four days. 

5.3 Pon-on-disc test conditions 

The anti-wear and friction reduction properties of the CeO2 nanoparticles as a lubricant 

additive in water with and without surfactant Sorbitan monostearate were evaluated using a 

POD-2 pin-on-disc Tester. A low sliding speed of 50mm/s was used for each test to achieve 

boundary lubrication. Tests were carried out at room temperature with duration of 30 minutes. 

The bearing balls of 5mm diameter used in the tests were made of AISI52100 chrome steel 

with HRc of 60 – 67, and has a surface roughness Ra of 20nm. The disc was made of the 

identical material, with 27mm in diameter and 12mm in thickness. The sample discs were 

polished using a p1200 abrasive paper to achieve a uniform surface roughness Ra of around 

30nm. Before and after each test, both bearing balls and discs were cleaned with acetone in 

an ultrasonic water bath for five minutes. 

5.4 Experimental results 

5.4.1 Friction coefficient of the nanofluids 

Figure 5–1 and Figure 5–2 illustrate how the different nanoparticle concentrations in the fluids 

affect the friction coefficients at the loads of 10N (1.54GPa Hertz pressure) and 20N (1.94GPa 
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Hertz pressure) without the surfactant. The friction coefficient of the pure deionised water was 

also obtained as a reference. Evidence collected has shown that at both loading conditions, 

without the surfactant, the water-based CeO2 nanofluids did not show any obvious effect on 

the friction coefficient. A high friction coefficient of more than 0.4 was obtained in all 

lubricant samples without surfactant. After the tests, the nanoparticle sedimentation was also 

found in all lubricant samples without the surfactant. It suggests that the agglomeration of 

nanoparticles accelerates their sedimentation in water, which hugely reduces the concentration 

of nanoparticles in the fluids. The agglomeration also causes nanoparticles to form much 

bigger sized clusters, which can increase the asperity level between the contacting surfaces 

[181]. 

 

Figure 5–1 Friction coefficient of the water-based nanofluids with different 

CeO2 nanoparticles concentration (without surfactant) under 10N load 
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Figure 5–2 Friction coefficient of the water-based nanofluids with different 

CeO2 nanoparticles concentration (without surfactant) under 20N load 

Friction coefficients of the water-based CeO2 nanofluids with 0.2wt% CeO2 nanoparticles 

dispersed with surfactant are shown in Figure 5–3 and Figure 5–4. It is evident that at both 

loading conditions of 10N and 20N, with 2wt% surfactant, the friction coefficients of the 

water-based CeO2 nanofluids with 0.2wt% CeO2 were reduced sharply to below 0.1. 

Compared with the friction coefficient of the same nanofluids without surfactant shown in 

Figure 5–1 and Figure 5–2, a reduction over 75% was observed. 

Because surfactants are used as an additive in the fluids, and very often they can also 

contribute to the tribological improvement [182]. Therefore, it is essential to clarify whether 

CeO2 nanoparticles are responsible to the reduction of friction coefficient shown in Figure 5–3 

and Figure 5–4. As illustrated in Figure 5–3, water+2wt% surfactant gives a friction 

coefficient around 0.079 at a load of 10N. All suspensions containing CeO2 nanoparticles 

demonstrate lower friction coefficients at the same condition. The lowest friction coefficient of 

around 0.067 was observed when water+0.2% CeO2+2wt% surfactant was tested, and 

compared with that of water+2wt% surfactant, a reduction of 15% in friction coefficient was 

achieved. Water+0.1% CeO2+2wt% surfactant delivered the similar friction reduction 

performance with water+0.2% CeO2+2wt% surfactant, however more fluctuations on friction 

coefficient were found in the experiment of using water+0.1% CeO2+2wt% surfactant. Under 
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a load of 20N, as shown in Figure 5–4, the similar friction reduction phenomenon was also 

observed. Water with both CeO2 nanoparticles and 2% surfactant has outperformed water with 

2% surfactant alone. Water+0.2wt% CeO2+2wt% surfactant demonstrated the best overall 

friction reduction property and a 10% reduction of friction coefficient was found in the first 

900 seconds, compared with water+2wt% surfactant. In the second duration of 900 seconds, 

the reduction went up to more than 20%. Much stronger fluctuations on friction coefficient 

were obtained in the experiments under 20N load due to the more intensified stress. It is 

evident that much less oscillation can be noticed for the lubricants with nanoparticles as shown 

in Figure 5–3 and Figure 5–4. This is possibly attributed to the third body effect of 

nanoparticles. Entrapped nanoparticles groups between two surfaces work like a cushion, 

which may help smoothen the rough surfaces, diminish direct contact and reduce adhesion 

friction.  

 

Figure 5–3 Comparison of friction coefficient of water with surfactant and the 

water-based CeO2 nanofluids with surfactant under 10N load 
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Figure 5–4 Comparison of friction coefficient of water with surfactant and the 

water-based CeO2 nanofluids with surfactant under 20N load 

5.4.2 Anti-wear Property 

The worn surface scanning with a nano-indentation tester was performed to measure the 

topography of the wear tracks of the sample discs in order to reflect the anti-wear ability of 

the fluids. The depth of the wear tracks was determined using the scanning mode of the 

Nano-indentation device. The contact load and scanning speed employed in the tests were 

0.1mN and 5µm/s respectively. The indenter used for scanning is a conical indenter with 60 

degrees head angle and a tip size of 5µm radius. Figure 5–5 illustrates the typical depth 

profiles of the wear tracks generated on the discs during a test. The central positive reading 

peaks in Figure 5–5 indicate the depths of two wear tracks on discs. 

The influence of CeO2 nanoparticles and surfactant on the depth of wear tracks is shown in 

Figure 5–6. It is evident that the existence of the nanoparticles considerably reduced the 

depth of the wear tracks. Without surfactant, the smallest track depths of 1365nm at a load of 

10N and 2495nm at 20N were found after the water-based CeO2 nanofluids with 0.1wt% 

CeO2 had been tested. Compared with the depth of wear track lubricated with water only, 49% 

and 38% reductions of the depth from the nanofluids were observed at the loading conditions 



Chapter 5. Tribological properties of Ceria Nanoparticles in Water 

97 

 

of 10N and 20N respectively. However, when the particle concentration of the nanofluids 

was increased further to 0.2wt%, without surfactant, the water-based nanofluids with 0.2wt% 

CeO2 caused even higher value of the track depth than that of the water-based nanofluids 

with 0.1wt% CeO2 at both loading conditions.  

When 2% surfactant was used, only slight reductions were obtained with the employment of 

CeO2 nanoparticles. However, the deterioration on the anti-wear performance caused by 

0.2wt% CeO2 was effectively limited with the utilization of surfactant. It is suggested that 

without surfactant, agglomeration caused by excessive content of nanoparticles is the possible 

reason for the increase of wear track depth. Agglomeration of particles may form abrasive 

clusters between the sliding pairs and results in an increase of wear. The improved disparity 

of the nanoparticles achieved by the application of surfactant reduced the extent of 

agglomeration, and therefore a better anti-wear performance can be observed. As a popular 

surfactant, Sorbitan monostearate itself has excellent friction and wear reduction ability when 

it is used as an additive in base lubricants [182-184]. This could be the reason for the 

overshadowed influence of CeO2 nanoparticles on the reduction of wear. 

 

Figure 5–5 Depth profiles of wear tracks: (a) tested in water-based nanofluids 

with 0.1wt% CeO2 and (b) tested in pure water  
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Figure 5–6 Depth of wear tracks versus different fluids with different CeO2 

nanoparticles concentration and surfactant 

 

5.5 Interpretation and discussion of the results 

5.5.1 Conglomerate size of ceria nanoparticles and zeta-potential 

It is well known that particle size in a lubricant makes a huge difference in most of lubrication 

applications. The Conglomerate size of CeO2 nanoparticles in water was measured by zeta-

potential apparatus. Figure 5–7 and Figure 5–8 illustrate the average conglomerate sizes of 

0.05wt% CeO2 nanoparticles in the deionised water with and without 1wt% surfactant. Before 

each measurement, the samples were stirred vigorously using an ultrasonic homogeniser 

(KINEMATICA PT 10-35 GT). The average conglomerate size of CeO2 nanoparticles 

dispersed in the fluids with 1wt% surfactant was around 110nm in radius. By contrast, the 

average conglomerate size of the CeO2 nanoparticles in water without surfactant was 193.7nm 

in radius. It is suggested that CeO2 nanoparticle clusters formedin the fluids with surfactant 

have a narrow size span. As shown in Figure 5–7, with surfactant, there is only one peak 

appeared in the distribution diagram, which suggests a uniform distribution. However, without 
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surfactant, CeO2 nanoparticle clusters in the fluids have a much wider size span. As shown in 

Figure 5–8, two peaks appear in the distribution diagram and, the second peak indicates a size 

distribution of nanoparticle cluster with more than 2000nm radius.  

 

Figure 5–7 Size distribution of particle conglomerate of water+0.05wt% 

CeO2+1wt% surfactant (Sorbitan monostearate) 

 

Figure 5–8 Size distribution of particle conglomerate of water + 0.05wt% 

CeO2 without surfactant 
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PDI (Polydispersity index) and correlation function intercept also confirmed the dispersibility 

improvement of nanoparticles in fluids using surfactant. PDI readings in Table 5-1 indicate the 

regularity of conglomerate size in the fluids. The lower PDI value confers a better consistency 

of conglomerate size. The PDI value of the fluids, water+0.05wt% +1wt% surfactant, was 

0.252 and is much lower than 0.415 of water+0.05wt% CeO2. Therefore, it is evident that with 

surfactant, conglomerate size of CeO2 in fluids was significantly reduced and also became 

more uniformly distributed. Correlation function intercept is the signal to noise ratio obtained 

for the measurement. Correlation function intercept of more than 0.8 for both suspensions 

indicates good data quality. 

Table 5-1 Dispersibiltiy of nanoparticles in the fluids with and without 

surfactant 

Water solution PDI test results Zeta-potential 

value 

Correlation 

function 

intercept 

Average 

conglomerate size 

(radius) 

Water+ 0.05wt% 

CeO2 

0.415 +19.7 mV 0.81 193.7nm 

Water+0.05wt% 

CeO2+1wt% 

surfactant 

0.252 +44.8 mV 0.88 110nm 

 

Absolute Zeta-potential value of the fluids, water+0.05wt% CeO2, was measured to be 

19.7mV. Comparatively, the number was increased to 44.8mV for the fluids of water+0.05wt% 

CeO2+1wt% surfactant. Surface charges caused by absorption of ions and molecules generate 

an electrostatic repulsion force between particles. For small particles, the electrostatic 

repulsion force can partially counteract gravitation and reduce agglomeration and 

sedimentation of particles [150]. Therefore, a higher absolute value of zeta-potential presents a 

better stability. A greater absolute Zeta-potential value for the fluids, water+0.05wt% 
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CeO2+1wt% surfactant, suggests that the stability of CeO2 nanoparticles in the water-based 

fluids has been greatly improved by an employment of surfactant. It was also observed that the 

stabilization of surfactant is reversible. As shown in Table 5-2, after 24 hours, the absolute 

Zeta-potential value of the prepared fluids, water+0.05wt% CeO2+1wt% surfactant, was 

reduced to 36.8mV and further reduced to 35.4mV after 96 hours. 

 

Table 5-2 Reduction of Zeta-potential value with time 

Hours after dispersion  0 hour 24 hours 96 hours 

Zeta potential reading +48.8mV +36.8mV +35.4mV 

5.5.2 SEM micrographs and EDS Analysis 

The morphology and the elemental distribution on the worn surface of the tested bearing balls 

were studied using JEOL-6100 scanning electron microscope (SEM) equipped with energy 

dispersive spectra (EDS). Figure 5–9 shows the SEM morphology of the worn surface tested 

with the water-based CeO2 nanofluids with 0.2wt% CeO2. The elemental distribution analysis 

was also performed using SEM equipped with EDS. As shown in Figure 5–9, CeO2 

nanoparticles were found on worn surface after the pin-on-disc experiment. Element mapping 

shown in Figure 5–10 has also confirmed the CeO2 nanoparticle distribution on the worn 

surface. Both Ce and O elements are consistently distributed in the worn area. Fe element 

indicates a relatively weaker signal in the area where Ce and O elements are densely 

accumulated. The irregular distribution of the elements is possibly due to the uneven contact 

stress distribution on worn surface introduced by the geometrical shape of the bearing ball. 

Figure 5–9 indicates that CeO2 nanoparticles were entrapped and accumulated between 

contacting surfaces during the tests.  
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Figure 5–9 SEM morphology and element analysis of worn surface 

 

Figure 5–10 Element distribution on worn surface: (a) SEM morphology (b) 

distribution of Ce element; (c) distribution of O element; (d) distribution of 

Fe element 

5.5.3 Discussion 

Experimental results displayed in Figures 5–1 - 5–6 have demonstrated the friction reduction 

and anti-wear performance of CeO2 nanoparticles as the lubricant additive in water. 

Dispersibility of solid lubricant additive in base media has been proven to be of great 

importance on the tribological performance. No noticeable contribution on a reduction of 
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friction was observed when CeO2 nanoparticles alone were added in water, regardless of the 

variation of additive concentrations. However friction coefficient was effectively reduced 

when surfactant sorbitan monostearate was employed to enhance the dispersibility of CeO2 

nanoparticles in water. The improved dispersibility, indicated by the higher Zeta potential and 

the smaller conglomerate size of CeO2 nanoparticles, was obtained with the application of 

Sorbitan monostearate.  

With improved dispersibility, the influence of particle concentration on friction coefficient 

can be noticed. Containing 2wt% surfactant, the water based lubricant exhibited a greater 

reduction on friction coefficient with higher concentration of CeO2 nanoparticles. 

The anti-wear property of CeO2 nanoparticles is independent with their friction performance. 

Although no reduction of friction was achieved by adding CeO2 nanoparticle in water alone, 

considerable reduction on wear track depth was found without the application of surfactant 

Sorbitan monostearate. 

SEM and EDS Analyses have clearly indicated that CeO2 nanoparticles embedded on the 

worn surface after sliding contact. Based on the above observations, it is logical to suggest 

that the third body effect of CeO2 nanoparticles is the dominant mechanism for their 

tribological performance in water. Under a friction force, CeO2 nanoparticles are firstly 

entrapped and then deposited on to the contact interfaces due to shear effect. The CeO2 

nanoparticles between the contact surfaces can reduce direct metal contact and surface 

adhesion. Moreover deposition of CeO2 can also fill up valleys on the surfaces, make up 

material loss and therefore, protect the contacting metal pairs. 



Chapter 5. Tribological properties of Ceria Nanoparticles in Water 

104 

 

5.6 Summary 

In this chapter, the tribological properties of CeO2 nanoparticles suspended in water with and 

without surfactant have been investigated. Base on the above test results, this chapter can be 

summarized as follow:  

 The dispersibility of CeO2 nanoparticles in water was improved by the employment of 

surfactant sorbitan monostearate. With surfactant, the average particle conglomerate size of 

0.05wt% CeO2 nanoparticles dispersed in water has been reduced from 193.7nm to 110nm. 

Measurement of the zeta-potential also confirmed the enhancement of the stability of 

suspension brought by surfactant. 

 With the employment of surfactant sorbitan monostearate, CeO2 nanoparticles in the 

water with improved dispersibility have demonstrated the considerable friction reduction 

performance. With 2wt% surfactant, the additive of 0.2wt% CeO2 in water delivered a 

reduction on friction coefficient of up to 20%. 

 Without surfactant, CeO2 nanoparticles did not indicate any ability to reduce friction 

in the lubrication system. The agglomeration and sedimentation of ceria nanoparticles may be 

responsible for their poor lubricating property in water. However the anti-wear property of 

water was improved effectively when 0.05% and 0.1% CeO2 nanoparticles were applied. A 

reduction of up to 49% on wear track depth was observed. 

 Third body effect is the possible explanation for excellent anti-wear performance of 

the CeO2 nanoparticles. Even when surfactant is not applied, a substantial anti-wear property 

was still demonstrated by the reduction of wear track depth of sample discs. 
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Chapter 6. The Preparation and Tribological Properties of Surface Ceria 

Nanoparticles as a Lubricant Additive in Liquid Paraffin 

6.1 Introduction 

In this chapter Cerium dioxide (CeO2) nanoparticles were studied as a lubricant additive in 

liquid paraffin and all experimental results as well as observations were presented. Oleic acid 

(OA) and Hexadecyltrimethoxysilane (HDTMOS) coupling agents were employed to modify 

CeO2 nanoparticle surfaces in order to improve the dispersibility in base lubricant. The 

surface modifications of CeO2 nanoparticles were successfully carried out and the chemical 

bondings between the nanoparticles and modification agents were verified by FTIR 

Spectrometer. The reduction in particle agglomeration size associated with the improved 

dispersibility of CeO2 nanoparticles in organic solvent was measured with a Malvern 

Zetasizer. The tribological properties of the original and modified CeO2 nanoparticles in 

liquid paraffin (LP) was evaluated and compared using a pin-on-disc tester. Worn surfaces 

were also examined by AFM and SEM equipped with EDS. 

6.2 Surface modification of Cerium oxide nanoparticles 

Surface modification techniques were employed in this part of the study to improve the 

stability of the solid lubricant additive in lubricant. Oleic acid (OA) and 

Hexadecyltrimethoxysilane (HDTMOS) were used as the surface modification agent The OA 

modified CeO2 nanoparticles and HDTMOS modified CeO2 nanoparticles were synthesized 

successfully in the following procedure. CeO2 nanoparticles of 3 g were firstly dispersed in 

40mL mixed solution of ethanol and water (volume ratio 1:1) using a high shear homogenizer 

at a rotary speed of 15K rpm for 10 minutes. A suitable amount of modifier (either OA or 

HDTMOS) dissolved in 10 mL of absolute alcohol was then added into the first dispersion 
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(mole ratio of CeO2 nanoparticles to modifier is 10:1). Subsequently, the mixture was heated 

to 70°C and maintained at this temperature with vigorous stirring for 4 hours. Then, the 

suspension was centrifuged at a speed of 8000 rpm for 10 minutes and the white precipitate 

was collected.  The obtained precipitate was rinsed with distilled water and ethanol 

alternately and centrifuged repeatedly in order to remove the excessive modifier. Finally the 

thoroughly washed precipitate was dried in a vacuum oven at 40°C for 6 hours and the 

surface modified CeO2 were obtained. 

6.2.1 Sample characterisation 

The surface structure and morphology of the original and surface modified CeO2 

nanoparticles are shown in Figure 6–1. It is clear that both surface modified CeO2 samples 

shared a similar particle size and morphology to the original CeO2 nanoparticles shown in 

Figure 6–1(a). However, compared with the original and OA modified CeO2 nanoparticles 

(Figure 6–1(a) and Figure 6–1(b)), less agglomeration was found in HDTMOS modified 

CeO2 nanoparticles shown in Figure 6–1(c). 
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Figure 6–1 SEM micrographs of (a) the original CeO2 nanoparticles, (b) OA 

modified CeO2 nanoparticles, (c) HDTMOS modified CeO2 nanoparticles 

Table 6-1 displays the conglomerate size and zeta-potential of the original and surface 

modified CeO2 nanoparticles in methanol. 0.05wt% samples were dispersed in methanol with 

an ultrasonic homogeniser (KINEMATICA PT 10-35 GT) for 5 minutes. The average 

conglomerate size of original CeO2 nanoparticles measured in methanol was 1385nm in 

diameter. Under the same condition, OA modified CeO2 nanoparticles demonstrated a 

smaller but still similar value of 1253nm in diameter. On the other hand, a considerable 

reduction on the conglomeration size of HDTMOS modified CeO2 nanoparticles to 540nm 

was observed. Zeta-potential of the original CeO2 nanoparticles dispersed in methanol was 

measured to be 4.7 mV. In comparison, both OA modified CeO2 nanoparticles and HDTMOS 
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modified CeO2 nanoparticles demonstrated the higher values of 26.0mV and 38.6mV 

respectively. It is well known that surface charges of the particles caused by absorption of 

ions and molecules generate an electrostatic repulsion force between particles. This 

electrostatic repulsion force can partially counteract gravitation and reduce agglomeration 

and sedimentation of particles. The physical stability of a colloidal system can be determined 

by the balance between the repulsive and attractive forces that are described quantitatively by 

the Deryaguin–Landau–Verwey–Overbeek (DLVO) theory [158]. Therefore, a higher 

absolute value of zeta-potential of a suspension presents a better stability. The Zeta potential 

results from this study shown in Table 6-1 suggest that surface modifications using OA and 

HDTMOS have effectively improved the stability of CeO2 nanoparticles in organic solvent. 

The highest zeta-potential value of HDTMOS modified CeO2 nanoparticles also suggests that 

they have better stability than OA modified CeO2 nanoparticles in methanol. 

Table 6-1 Conglomerate size and Zeta-potential of CeO2 nanoparticles 

despersed in methanol 

 Zinc borate ultrafine powders 

Original OA modified CeO2 

nanoparticles 

HDTMOS modified CeO2 

nanoparticles 

Conglomerate size (in 

methanol) 

1385nm 1253nm 672nm 

Zeta-potential 4.7 mV 26.0mV 38.6mV 

The composition and structure of the OA modified CeO2 nanoparticles and HDTMOS 

modified CeO2 nanoparticles were characterised with FT-IR spectroscopy as shown in Figure 

6–2. In the infrared spectrum of original CeO2 nanoparticles shown in Figure 6–2(a), the 



Chapter 6. The Preparation and Tribological properties of Surface Modified Ceria 

Nanoparticles as A Lubricant Additive in Liquid Paraffin 

109 

 

broad band at 3450cm
-1

 is assigned to stretching of –OH, which suggests the presence of –

OH groups on the surface of ceria particles and the existence superficial adsorbed water 

before modification. In the spectra of OA and HDTMOS displayed in Figure 6–2(b-c), two 

sharp peaks at 2923 and 2856 cm
−1

 are attributed to the asymmetric and symmetric –CH2 

stretching vibrations respectively. The same peaks were also be found in the spectra of OA 

modified CeO2 nanoparticles and HDTMOS modified CeO2 nanoparticles shown in Figure 

6–2(d-e). It is evident that the positions of peaks for the distinctive functional groups 

observed in the spectra of OA modified CeO2 nanoparticles and HDTMOS modified CeO2 

nanoparticles are identical with the pure modification agents of OA and HDTMOS. The 

infrared spectra result indicates that the surface of CeO2 nanoparticles have been successfully 

modified with OA and HDTMOS. 
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Figure 6–2 FT-IR spectra of (a) original CeO2 nanoparticles, (b) OA, (c) 

HDTMOS, (d) OA modified CeO2 nanoparticles, (e) HDTMOS modified 

CeO2 nanoparticles 

6.3 Preparation of lubricants 

Due to the small particle size of the solid lubricant additives, an additive concentration of as 

low as 0.5% can be considerably effective [80, 177]. In this study, a uniform concentration of 

0.5% in weight fraction was applied for all friction and wear tests when the additive powders 
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were employed. Additives were dispersed in liquid paraffin (LP) with an ultrahigh shear 

homogenizer at the speed of 20k rpm for 20 minutes. 

6.4 Pin-on-disc test conditions 

The tribological properties of all lubricant samples were evaluated using a POD 2 pin-on-disc 

tester (Teer Coatings Ltd.). All the tests were carried out with a sliding speed of 50mm/s for a 

testing period of 60 minutes at the ambient temperature of 22°C. The test load was set to be 

10N (1.54GPa Hertz pressure). Same bearing balls (pins) and disc samples as described in 

Chapter 5 were employed. Except that the thickness of the disc samples was reduced from the 

original 12mm to 3mm instead in order to meet the specification of the auto polishing device. 

Prior to each test, the disks were grounded and polished to a mirror finish and a uniform 

surface roughness Ra of 15nm was achieved. Before each test, both the pins (bearing balls) 

and the discs were cleaned with toluene in an ultrasonic water bath for five minutes to 

eliminate any potential grease on the surface, also a further cleaning with acetone was carried 

out for five minutes in the same way after this.  

6.5 Experimental results  

6.5.1 Friction coefficient 

Friction coefficients of different lubricant samples are illustrated in Figure 6–3. Lubricant 

specimens with 0.5% HDTMOS modified CeO2 nanoparticles have displayed the highest 

friction coefficient. Pure liquid paraffin (LP) delivered the lowest friction coefficient. 

Lubricant samples with HDTMOS and OA modified CeO2 nanoparticles have displayed 

higher friction coefficient compared with pure LP. Highest friction coefficient was found 

when LP with HDTMOS modified CeO2 nanoparticles were used as the lubricant. LP with 

original CeO2 nanoparticles delivered the lowest friction coefficient. Among all lubricant 
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samples, pure LP demonstrated the most stable friction coefficient, whereas all lubricants that 

contain CeO2 nanoparticles presented higher level of fluctuations. 

 

Figure 6–3 Effect of different lubricant additives on friction coefficient of LP 

6.5.2 Anti-wear behaviour  

Wear scar of the pins (bearing balls) used in pin-on-disc tests were firstly assessed using an 

optical microscope. The morphology and wear scar diameter (WSD) of the tested pins are 

shown in Figure 6–4. A smaller WSD implies a less material loss therefore the superior wear 

resistance. It is evident that the applications of OA and HDTMOS modified CeO2 

nanoparticles as lubricant additives in LP have effectively reduced the WSDs of the pins 

(bearing balls). Particularly, a WSD as small as 136 µm was obtained when LP with 

HDTMOS modified CeO2 nanoparticles was used as a lubricant, which is about 40% smaller 

than the wear scar obtained when the LP with OA-ZB UFPs was applied, and more than 45% 

smaller than that generated by pure LP. Quite the reverse, without surface modification of the 

solid lubricant additive, LP with original CeO2 nanoparticles delivered the biggest WSD of 
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284µm. A uniform and tenacious tribo-film was found on the wear scar lubricated with LP 

with HDTMOS modified CeO2 nanoparticles, as shown in Figure 6–4(d). The formation of 

this tribo-film appears to have played an important role in the outstanding anti-wear 

performance.  

Wear losses of the pins lubricated by different lubricant samples were also illustrated in 

Figure 6–5. The wear loss volume was calculated geometrically based on the assumption that 

wear scar is a flat surface. As shown in Figure 6–5, wear loss of the upper pin lubricated by 

LP with 0.5% HDTMOS modified CeO2 nanoparticles is more than 11 times smaller than 

that lubricated by pure LP. 

 

Figure 6–4 Optical micrographs of wear scars lubricated using: (a) LP, (b) LP 

with CeO2 nanoparticles, (c) LP with OA modified CeO2 nanoparticles (d) 

LP with HDTMOS modified CeO2 nanoparticles 
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Figure 6–5 Effect of different lubricant additives on wear loss volume of the 

bearing balls 

6.6 Interpretation and discussion of the results 

6.6.1 Characterisation of the worn surfaces 

Wear scars of the pins used in the pin-on-disc tests were observed using optical microscopy 

and scanning electron microscopy (SEM). Wear scar diameter of the pins were measured to 

the accuracy of 1µm. The topography of the wear scar surface was studied with atomic force 

microscopy (AFM).  

Energy dispersive X-ray spectroscopy (EDS) were conducted to examine the chemical 

features and elemental composition of the tribo-film generated on the worn surfaces of the 

pin. Mechanical properties of the tribo-film were determined with the Nano indentation 

facility. A Berkovich indenter with a tip diameter of 50nm was employed throughout the 

experiment. For all indentation tests, a constant maximum indentation depth of 110nm was 

applied with the loading/unloading duration of 15 seconds in order to avoid the effect of 
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substrate on the measured properties of tribo-film, and the initial load was set to be 0.05mN 

to minimise any initial damage to the surface. Distance between each indent was not less than 

15µm in order to avoid any possible interference between neighbouring indents.  

6.6.1.1 Physical and mechanical properties 

Figure 6–6(a) shows a magnified optical photo of the wear scar lubricated by LP with 0.5% 

HDTMOS modified CeO2 nanoparticles. Figure 6–6(b-c) present the AFM images of tribo-

film generated on wear scar surface as indicated in Figure 6–6(a). It appears that a tribo-film 

has a good coverage but is not entirely even distributed was observed. The average thickness 

of the tribo-film is measured to be around 190nm (see Figure A–1 in Appendix–2). The 

mechanical property of the tribo-film has been measured with nano-indentation. Indentations 

were made on both the tribo-film and the substrate. Corresponding load–depth curves are 

illustrated in Figure 6–7. Mechanical properties of the worn surface on the tested bearing 

balls were derived from further analysing the load–depth curves. The maximum indentation 

depth was set to be 110nm which is less than the thickness of the tribo-film. Although at this 

condition the mechanical properties of the tribo-film measured will receive some interference 

contributed by the substrate, the surface hardness and reduced modulus derived from this 

load-depth curve were only treated as the relative properties of the tribo-film in comparison 

with the substrate, and therefore the interference from the substrate will not affect the overall 

conclusions. In order to reach pre-set indentation depth, the indentation force required on 

tribo-film was 2.97mN (curve (b) in Figure 6–7), whereas under the same test conditions the 

indentation force required on substrate steel was 4.75 mN (curve (a) in Figure 6–7). A 

comparison of the surface hardness and reduced modulus of the tribo-film with those of the 

substrate steel is presented in Table 6-2. The test results suggest that the tribo-film is made of 

a softer material with lower stiffness compared with the substrate steel.  
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Figure 6–6 Morphologies of the tribo-film generated by LP with HDTMOS 

modified CeO2 nanoparticles: (a) optical image, (b) AFM surface 

topographic image, (c) 3D AFM surface topographic image 
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Figure 6–7 Inentation curves obtained at different domains on the worn 

surface lubricated by LP with HDTMOS modified CeO2 nanoparticles: (a) 

on substrate, (b) on tribo-film 

Table 6-2 A comparison of mechanical properties of the tribo-film and the 

substrate 

 

Figure 6–8 shows the AFM morphologies of the worn surfaces of the pins lubricated with 

different lubricant samples. Changes on the size and profile of the tribo-films were 

discovered when different lubricant samples were used. When pure LP was used as the 

lubricant as shown in Figure 6–8(a-b), no complete tribo-film but only small patchy pieces 

were found scattering over the worn surface and some ploughings can also be seen clearly. 

Similar phenomenon was also observed when LP with the original CeO2 nanoparticles was 

employed; very fine fragments of tribo-film can be seen spreading over the examined area.as 

shown in Figure 6–8(c-d). Heavy ploughings also took place on the worn surface lubricated 

Indentation position Indentation force Hardness Reduced modulus 

Tribo-film 2.97mN 8.3GPa 186GPa 

Substrate 4.75mN 13.2GPa 304GPa 
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by LP with the original CeO2 nanoparticles, which suggests the abrasion effect contributed by 

the additional CeO2 nanoparticles. The tribo-film generated on the wear scar lubricated by LP 

with OA modified CeO2 nanoparticles, as shown in Figure 6–8(e-f), has a bigger fragment 

size and elongated shape stretching along the direction of sliding. Among all the worn 

surfaces, surface lubricated by LP with HDTMOS modified CeO2 nanoparticles has the most 

widespread and tenacious tribo-film. Almost the whole scanned surface is covered with the 

tribo-film although the thickness of the tribo-film is not entirely uniform across the area as 

shown in Figure 6–8(h). It can be suggested that an employment of HDTMOS modified CeO2 

nanoparticles in LP enables to generate a more complete and durable tribo-film on the contact 

surface and this tribo-film can effectively protect the surface from wear damage. 
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Figure 6–8 AFM surface topographic images of the worn surfaces lubricated 

with different lubricants: (a, b) LP, (c, d) LP with CeO2 nanoparticles, (e, f) 

LP with OA modified CeO2 nanoparticles, (g, h) LP with HDTMOS 

modified CeO2 nanoparticles 
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6.6.1.2 SEM micrographs and EDS analysis 

The worn surfaces lubricated by LP with 0.5% HDTMOS modified CeO2 nanoparticles were 

analysed under a scanning electronic microscope (SEM) equipped with energy dispersive X-

ray spectroscopy (EDS). Typical SEM images and EDS analyses are shown in Figure 6–9. 

Distinctive topographical differences of the tribo-film and substrate can be seen clearly. The 

tribo-film displayed in Figure 6–9(a) appears in dark colour with a complex topography 

which makes a good contrast with the substrate displayed in brighter colour with smoother 

surface texture. The EDS patterns of the region highlighted on the tribo-film and the substrate 

are shown in Figure 6–9(d) and Figure 6–9(e) accordingly. Quantified elemental analysis 

results are given in Table 6-3. A considerable increase of Oxygen and Silicon contents was 

found on the tribo-film, compared with the element distribution on the substrate. The further 

amount of Oxygen and Silicon is possibly derived from Hexadecyltrimethoxysilane 

(HDTMOS). It is evident that HDTMOS modification agent is an important ingredient of the 

formation of the tribo-film. Cerium element from CeO2 nanoparticles was detected neither on 

the substrate nor on the tribo film, which suggests that CeO2 nanoparticles did not chemically 

contribute to the formation of tribo film. However at the same time the employment of CeO2 

nanoparticles is an essential factor to produce a tenacious and continuous tribo film with a 

good coverage on worn surface. Based on the test results obtained, a hypothesis can be made 

that although CeO2 nanoparticles are not chemically involved in the tribochemical reaction 

carried out on the worn surface during sliding process, they played a role as a physical carrier 

to effectively deliver the HDTMOS surfactant to contact surfaces. Due to the small particle 

size, the HDTMOS modified CeO2 nanoparticles can be easily entrapped into contact 

interface by shear effect [7]. Finally , the HDTMOS modified CeO2 nanoparticles deposit on 

the worn surface result in a high concentration (localised) of HDTMOS surfactant on the 

worn surface. Spontaneously, tribochemical reactions take place during a sliding process due 
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to the local high pressure and flash temperature caused by the collision and rupture of the 

asperities between the mating surfaces, and HDTMOS surfactant turns into a key ingredient 

for a healthy tribo film. 

 

Figure 6–9 SEM images and EDS patterns of worn surfaces lubricated with 

LP with HDTMOS modified CeO2 nanoparticles: (a) worn surface 

morphology, (b, c) magnified SEM image, (d) EDS patterns of the substrate, 

(e) EDS patterns of the tribo-film 
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Table 6-3 Quantified elemental analysis on worn surface shown in Figure 6-9 

Element Spectrum (d) (At%) Spectrum (e) (At%) 

C 20.56 16.28 

O 6.83 35.12 

Si 0.50 5.22 

Cr 1.36 1.08 

Fe 70.76 42.31 

6.6.2 Discussion 

Based on the experimental results, it is clear that surface modified CeO2 nanoparticles have 

demonstrated much better tribological properties as lubricant additives in LP than the original 

CeO2 nanoparticles. HDTMOS modified CeO2 nanoparticles have revealed a superior anti-

wear property to OA modified CeO2 nanoparticles. At the beginning of a pin-on-disc sliding 

test, direct metal contact and adhesion were reduced by the third body effect of CeO2 

nanoparticles, as the particles were entrapped into contact area as a result of friction force [7]. 

This is possible reason for the reduced initial friction coefficients of all lubricant samples that 

contain CeO2 nanoparticles, as shown in Figure 6–3.  

As the sliding continues, ploughings take place and debris is also produced. A tribo-film is 

formed on the contact surfaces as a result of interaction between chemical components of the 

lubricant with the lubricated surface. The formation of tribo-film is associated with the 

decrease of wear. At all times the high wear loss was associated with small and patchy tribo-

film fragments observed on the worn surface. On the contrary, the low wear loss was 

obtained when more complete tribo-films were formed. The test results suggest that the 

formation of tribo-film is greatly influenced by the surface modification conducted on CeO2 

nanoparticles. Original CeO2 nanoparticles may agglomerate in base lubricant and form 

clusters with big particle size. These clusters may sometime behave like abrasive particles, 



Chapter 6. The Preparation and Tribological properties of Surface Modified Ceria 

Nanoparticles as A Lubricant Additive in Liquid Paraffin 

123 

 

which will encourage the generation of debris and destruction of tribo-film and eventually 

increase wear. As a result, the original CeO2 nanoparticles demonstrated the highest wear loss 

due to its poor dispersibility in LP and the resultant abrasive effect. 

Due to the formation of a complete and tenacious tribo-film with a lower hardness and 

reduced modulus than substrate steel, the best anti-wear performance was delivered when the 

HDTMOS modified CeO2 nanoparticles were employed as the lubricant additive in LP. This 

outstanding anti-wear performance is very much coincide with the delamination theory of 

wear [105]. It is well understood that at the initial stage of sliding, wear occurs as the fatigue 

fracture of the deformed original asperities. This is then followed by a regime in which the 

wear loss is dominated by material delamination. For a homogeneous material the 

dislocations pile up beneath the surface layer, subsequently subsurface cracks nucleation and 

propagation take place when the critical shear stress is reached [185]. When the cracks reach 

a critical length and finally propagate to the surface, delamination (wear loss) begins. 

However, when a thin layer of tribo-film with low hardness and reduced modulus is 

generated on the hard substrate, dislocations will pile up at the interface between the tribo-

film and the substrate. As the sliding continues, these dislocations escape through the surface 

of the tribo-film due to its very small thickness [186]. On a surface without tribo-film, 

dislocations will be transferred and generated within the substrate material as a result of very 

high stresses. On the other hand, the transfer of dislocations from tribo-film to substrate metal 

will be considerably less owing to the lower tangential force transmitted. Therefore the wear 

of material protected by tribo-film will be remarkably reduced or delayed. 

EDS analysis showed that there were considerable amount Silicon content in the tribo-film, 

but no Cerium element could be detected. This suggests that the HDTMOS modification 

agent is a critical component for the formation of a robust tribo-film, but conversely CeO2 
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nanoparticles were not chemically involved in the tribochemical reaction carried out on the 

worn surface during the sliding process.  

The stability of additive particles in base oil also plays an important role in the formation of 

tribo-film. Compared with original CeO2 nanoparticles, OA modified CeO2 nanoparticles 

have better stability in LP although the particle size does not appear to be dramatically 

reduced. The HDTMOS modified CeO2 nanoparticles have demonstrated the best stability 

and the smallest conglomerate size in organic solvent. It can be suggested that HDTMOS 

modified CeO2 nanoparticles may have a better integration with base oil and easier access to 

the contact interface. 

6.7 Summary 

In this chapter, the tribological properties of the surface modified CeO2 nanoparticles 

employed as lubricant additives in liquid paraffin (LP) were investigated. Base on the test 

results demonstrated in this chapter, it can be summarised that:  

 Oleic acid (OA) and hexadecyltrimethoxysilane (HDTMOS) modified CeO2 

nanoparticles were successfully prepared. Without surface modification, the original CeO2 

nanoparticles did not demonstrate any noticeable friction reduction and anti-wear 

performance. 

 The modified CeO2 nanoparticles as lubricant additives in LP displayed much greater 

anti-wear performance than LP and LP with the unmodified CeO2 nanoparticles. Compared 

with the OA modified CeO2 nanoparticles, the HDTMOS modified CeO2 nanoparticles 

demonstrated much greater improvement on anti-wear property when they were used in LP, 

and they also exhibited better stability and smaller conglomerate size in organic solvent. 
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 The outstanding anti-wear performance of the HDTMOS modified CeO2 

nanoparticles can be attributed to the formation of a complete and tenacious tribo-film on 

worn surface. Modification agent HDTMOS is a crucial ingredient for the formation of the 

tribo-film which has a smaller hardness and reduced modulus than the substrate material.  

 The changes on the size and profile of the tribo-films were discovered when different 

lubricant samples were employed. It is evident that the coverage of the tribo-films on the 

worn surfaces has a good consistence with intensity of wear. A good coverage of tribo-film 

can protect the surface from wear effectively. Only small patchy pieces of film were found on 

the worn surfaces lubricated by LP and LP with the original CeO2 nanoparticles. Tribo film 

with larger fragment size was observed on the worn surface when LP with the OA modified 

CeO2 nanoparticles was used. The best coverage by tribo-film was achieved by using LP with 

the HDTMOS modified CeO2 nanoparticles as the lubricant. 
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Chapter 7. The Tribological Properties of Zinc Borate Ultrafine Powders as a 

Lubricant Additive in Sunflower Oil 

7.1 Introduction 

In recent years, many interests have also been put on the application of borate nanoparticles 

as solid lubricant additive. Particularly, tribological properties of titanium borate [115], 

ferrous borate, magnesium borate [49] and zinc borate [89] nanoparticles together with 

dispersing agent sorbitan monostearate have been investigated, and the outstanding 

lubricating performances were observed. However the expensive and complicated preparation 

process of nanoparticles hinders their mass application. Compared with nanoparticles, 

submicron sized particles have won their attention in industrial application due to relatively 

low cost and simple preparation process. In this chapter, a concept of “green” lubricant was 

investigated, friction reduction and anti-wear properties of decomposable sunflower oil with 

lubricant additive zinc borate ultrafine powders (ZB UFPs) were studied using pin-on-disc 

tribo tester. The morphology and mechanical properties of worn surface as well as the tribo 

film generated on the surface were analysed using scanning electron microscopy (SEM), 

atomic force microscopy (AFM) and Nano-indentation facility. 

7.2 Preparation of lubricants 

Based on literature study, the optimal concentration of the solid lubricant additives is often 

between 0.5% to 2% [80, 139, 149, 187]. In this chapter, uniform and stable suspensions with 

three additive concentrations in weight ratio of 0.5%, 1% and 2% were prepared using an 

ultrasonic homogenizer for two minutes. The sample code and composition are presented in 

Table 7-1 
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Table 7-1 Sample code and composition 

Sample code Constituent 

SF 
Sunflower oil 

SF + 0.5% ZB UFPs 
Sunflower oil with 0.5 wt% zinc borate 

ultrafine powders 

SF + 1% ZB UFPs 
Sunflower oil with 1 wt% zinc borate 

ultrafine powders 

SF + 2% ZB UFPs 
Sunflower oil with 2 wt% zinc borate 

ultrafine powders 

7.3 Pin-on-disc test conditions 

The friction reduction property of the ZB UFPs in sunflower oil was evaluated using a POD 2 

pin-on-disc tester (Teer Coatings Ltd.). All the tests were carried out with a sliding speed of 

50mm/s for 30 minutes under 50N load (2.63GPa Hertz pressure) at the ambient temperature 

of 22°C. The bearing balls (pins) and sample discs were prepared with the same 

specifications as described in Chapter 6. Both bearing balls and discs were cleaned with 

acetone in an ultrasonic water bath for five minutes before each test. 

7.4 Experimental results 

7.4.1 Friction reduction property 

Friction coefficients of sunflower oil with various additive concentrations are illustrated in 

Figure 7–1. The typical friction coefficient curve pattern of boundary lubrication, that has an 

initial temporary rise in friction caused by the original roughness or adhesion of the surface is 

quickly replaced by a drop in friction due to the reduction of adhesion friction or surface 
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conformity, was demonstrated by all lubricant samples. The highest rise in friction coefficient 

at the very beginning of the pin-on-disc tests was delivered by pure sunflower oil (SF). While 

the lubricants that contain ZB UFPs all showed lower friction coefficient values on that point. 

As sliding continued, the friction coefficients of SF, SF + 0.5% ZB UFPs and SF + 1% ZB 

UFPs were finally stabilized. However, for SF + 0.1% ZB UFPs, the descending of friction 

coefficient did not last long, the friction coefficient gradually climbed back up after 400 

seconds. Among all the lubricant samples, the highest fluctuations in the friction coefficient 

were observed when SF + 2% ZB UFPs was used. 

It can be seen in Figure 7–1 that pure sunflower oil exhibited the highest friction coefficient 

when tested using the pin-on-disc tester. SF + 0.5% ZB UFPs delivered the best friction 

reduction performance. Compared with using pure sunflower oil, more than 13% reduction 

on friction coefficient was observed by adding 0.5% ZB UFPs. SF + 1% ZB UFPs 

demonstrated the similar level of friction reduction to sunflower oil with 0.5% additive. 

When SF + 1% ZB UFPs was used as lubricant, the same friction reduction tendency was 

found in the first 380 seconds, and then friction coefficient gradually increased to the similar 

level to that when pure sunflower oil was used. Further increasing concentration of ZB UFPs 

to 2% did not yield any extra improvement; on the contrary, both an increase of friction 

coefficient and an unstable lubricating performance were obtained. 
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Figure 7–1 Friction coefficient as a  function of testing duration 

7.5 Interpretation and discussion of the results 

7.5.1 Characterisation of the worn surfaces 

The morphology and the elemental distribution on the wear track of the tested sample discs 

were studied using an optical microscope and a scanning electron microscope (SEM) 

equipped with energy dispersive spectra (EDS). Atomic force microscopy (AFM) was 

employed to characterise the tribo films generated on the worn surface. 

Mechanical properties of the worn surfaces were determined using the Nano-indentation 

facility. The same testing parameters mentioned in Chapter 6 were applied.  

7.5.1.1 Morphology analyses of the worn surfaces 

Wear tracks on AISI 52100 steel discs resulted from pin-on-disc tests were firstly assessed 

using an optical microscope. As shown in Figure 7–2, tribo-films appeared in dark colour can 

be observed on all the wear tracks of the discs. They demonstrate a clear contrast to substrate 

materials appeared in bright colour. A clear change of the morphology on the worn surfaces 

was observed when different concentrations of ZB UFPs were applied. Wear tracks (b) and (c) 
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in Figure 7–2 were produced using sunflower oil containing 0.5% and 1% ZB UFPs 

respectively. Compared with wear track (a), which was lubricated by pure sunflower oil, 

much less dark areas (tribo-films) can be found on tracks (b) and (c). A great amount of dark 

areas (tribo-films) were also observed on track (d) which is lubricated using SF + 2% ZB 

UFPs. It is evident that the appearance of dark area (tribo-films) is in coincidence with an 

increase of friction coefficient.  

 

Figure 7–2. Optical micrographs of wear tracks on the discs lubricated using: 

(a) pure SF (b) SF + 0.5% ZB UFPs (c) SF + 1% ZB UFPs (d) SF + 2% ZB 

UFPs 

Figure 7–3 shows the AFM morphologies of the tribo-films (dark area) generated on the wear 

tracks lubricated with different lubricant samples. The changes on the size and shape of the 
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tribo-films were discovered when different lubricants were used. The tribo-films generated on 

the worn surface lubricated with pure sunflower oil, as shown in Figure 7–3(a-b), have a 

relatively big fragment size and the measured thickness of the tribo-films was around 800nm 

(see Figure A–2 in Appendix-2). When SF + 0.5% ZB UFPs was used as the lubricant as 

shown in Figure 7–3(c-d), the tribo-films discovered on the worn surface established a 

reduced fragment size and small patchy pieces of tribo-films with irregular and stretched 

shapes were found scattering over the worn surface. The thickness of the measured tribo-

films was around 230nm (see Figure A–3 in Appendix–2). As shown in Figure 7–3(c-d), 

more homogenous and evenly spread tribo-films were found when SF + 1% ZB UFPs was 

employed as the lubricant. The tribo-films have a thickness of around 280nm (see Figure A–4 

in Appendix–2), which is similar to the one generated by SF + 0.5% ZB UFPs. The tribo-

films generated by SF + 2% ZB UFPs, as shown in Figure 7–3(e-f), also have considerably 

bigger fragment size compared with the tribo-films generated by SF + 0.5% ZB UFPs and SF 

+ 1% ZB UFPs. The thickness of the tribo-films around 360nm was recorded (see Figure A–5 

in Appendix–2). It is evident that, to the tribo-films generated by sunflower oil containing ZB 

UFPs, the growths of the fragment size and thickness of the tribo-films were consistent with 

an increase of the zinc borate additive concentration in the lubricant base oil.  
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Figure 7–3. AFM surface topographic images of the worn surfaces lubricated 

by sunflower oil with different additive concentrations: (a, b) 0%, (c, d) 

0.5%, (e, f) 1%, (g, h) 2% 
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7.5.1.2 Measurements of electrical contact resistance 

ECR (Electrical contact resistance) measuring technique has been employed to study the 

contact of the two moving surfaces on the pin-on-disc tribo tester. It is well understood that a 

low ECR value between metallic tribo-pairs is related to the occurrence of metallic contact 

and a tighter contact leads to a lower ECR value. Rough surface and the existence of non-

metallic substance between contact surfaces could all result in an elevated ECR value [79, 

136]. ECR measurements of contact surfaces lubricated with sunflower oil in various 

concentrations of ZB UFPs are shown in Figure 7–4. ECR measurements were recorded once 

per second for 30 minutes in situ with the pin-on-disc experiment. Blanks or disconnections 

in Figure 7–4 indicate the data out of range (too much resistance). Figure 7–4(a) illustrates 

the ECR value of using pure sunflower oil, compared with Figure 7–4(b) which is lubricated 

using SF + 0.5% ZB UFPs, the ECR value of using pure sunflower oil has relatively lower 

consistency and higher rate of disconnection. The possible reasons for this are an 

accumulation of wear debris and formation of tribo-films between contact surfaces. However, 

as shown in Figure 7–4(b), when the 0.5% ZB UFPs was applied in sunflower oil, the ECR 

measurement was out of range in roughly the first 200 seconds when the friction coefficient 

was high, and then reduced to about 0.7 ohm almost at the same time when friction 

coefficient started decreasing and stayed as stable as the value of friction coefficient 

throughout the rest of the experiment. Similar phenomenon can also be observed in the 

experiment of using SF + 2% ZB UFPs, as shown in Figure 7–4(c). The ECR measurements 

have a good consistency with the friction coefficient result. Discontinuity and immeasurable 

of ECR measurements appeared in the periods when the friction coefficients were high and 

measurable ECR values were obtained in the same period when a good reduction 

performance of friction was observed. The ECR measurements also show a logical 

relationship with the thickness, coverage and the fragment size of the tribo-films generated on 
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worn surfaces. Combined with the morphology analysis as shown in Figure 7–3, it is easy to 

understand that wear track lubricated by SF + 0.5% ZB UFPs has a smoother surface 

compared with that using sunflower oil. Both small coverage of the tribo-films and their 

insignificant thickness give less contribution to the electrical resistance between contact 

surfaces, and therefore a better contact between the upper pin and disc can be achieved and 

hence a low and stable ECR value has been measured. In the cases using pure sunflower oil 

and SF + 2% ZB UFPs, the relatively higher surface coverage and thickness of the tribo-films 

are believed to be the explanation of the high ECR measurements. 
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Figure 7–4. Friction coefficient and ECR value versus testing duration:  (a) in 

pure SF (b) in SF + 0.5% ZB UFPs (c) in SF + 2% ZB UFPs 

7.5.1.3 Effect of tribo-film on surface hardness 

The nano-indentation tests were carried out at randomly selected positions in the bright 

(substrate) and dark (tribo-films) areas on a wear track. Corresponding load–depth curves of 

samples lubricated using sunflower oil with different concentrations of ZB UFPs are 
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illustrated in Figure 7–5 to Figure 7–8. Surface hardness of the worn surface on the tested 

discs can be derived from further analysis of the load–depth curves. Hardness, in this case, 

was calculated from the results achieved. Hardness is reflected by the indentation depth when 

a fixed load applied. A higher value of indentation depth suggests a softer surface. As shown 

in Figure 7–2, the surface properties of the wear track are not homogenous across its width 

span. In all experiments, indents on the substrate have smaller indentation depth (Group A) 

than the indents performed on the tribo-films (Group B). Compared with load–depth curves 

of the surfaces lubricated using pure sunflower oil (Figure 7–8) and SF + 2% ZB UFPs 

(Figure 7–7), load–depth curves of the surface lubricated using sunflower oil with 0.5% 

(Figure 7–5) and 1% (Figure 7–6) zinc borate additive are less scattered. The fluctuation in 

local mechanical properties could be used to reflect the homogeneity of a worn surface on a 

contact track, since a good lubricant may reduce the variation or fluctuation in local 

mechanical properties and retain a relatively homogeneous worn surface [188]. The average 

hardness measurements of both the substrate and tribo-films of all the samples are presented 

in Figure 7–9. Substrate and tribo-films on the worn surface have higher hardness values 

when sunflower oil containing ZB UFPs was used as the lubricant than those when pure 

sunflower oil was employed. As shown in Figure 7–9, the hardness of the substrate on the 

worn surface lubricated by the sunflower oil with ZB UFPs is relatively consistent. Compared 

with the result in pure sunflower oil, an average increase of 26% in hardness was observed 

with the application of zinc borate additive. It is suggested that the hardness increase of the 

substrate is the result from the tribo-chemical reaction and the iron boride generated on worn 

surface substrate may effectively influence its mechanical properties [84, 138, 139]. The 

hardness measurements of the tribo-films, however, did not show the similar consistency. 

When ZB UFPs was applied, the hardness of the tribo-films reduced with an increase of zinc 

borate additive contents. The tribo-films generated in SF + 0.5% ZB UFPs demonstrated the 



Chapter 7. The Tribological properties of Zinc Borate Ultrafine Powders as a Lubricant

 Additive in Sunflower Oil 

137 

 

highest hardness measurement of 9.3GPa, which was followed by 7.3GPa, the hardness of the 

tribo-films generated by SF + 1% ZB UFPs. Tribo-films generated in pure sunflower oil held 

the lowest hardness measurement of 5.5 GPa, which was close to 5.7 GPa obtained with 

additional 2% ZB UFPs.  

A variation of the hardness values of the tribo-films was observed when different lubricants 

were used for the tests. Based on the morphology study of the worn surfaces, it is suggested 

that the thickness and continuity of the tribo-films are responsible for such variations. It is 

clear that tribo-films generated on the worn surface have a lower hardness than that on the 

substrate. Compared with the thicker tribo-films generated by pure sunflower oil and SF + 2% 

ZB UFPs, the hardness values of the tribo-films generated by SF + 0.5% ZB UFPs and SF + 

1% ZB UFPs are more likely to be interfered by the high hardness of the substrate due to 

their thin thickness. Therefore, a reduction of the measured hardness values of the tribo-films 

that associated with an increase of tribo-films’ thickness can be observed. 

 

Figure 7–5. Typical load depth curves of surface lubricated by SF + 0.5% ZB 

UFPs (with a maximum applied load of 5mN) 
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Figure 7–6. Typical load depth curves of surface lubricated by SF + 1% ZB 

UFPs (with a maximum applied load of 5mN) 

 

Figure 7–7. Typical load depth curves of surface lubricated by SF + 2% ZB 

UFPs (with a maximum applied load of 5mN) 
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Figure 7–8. Typical load depth curves of surface lubricated by pure SF (with a 

maximum applied load of 5mN) 

 

 

Figure 7–9. Surface hardness on the wear tracks of discs lubricated by 

sunflower oil with different additive concentrations (with a maximum 

applied load of 5mN) 
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7.5.1.4 SEM micrographs and elemental analysis 

The wear tracks on the discs were analysed under a scanning electronic microscope (SEM) 

equipped with energy dispersive X ray spectroscopy (EDS). Typical SEM images of the worn 

surface lubricated by SF + 2% ZB UFPs are shown in Figure 7–10, EDS analyses were also 

carried out on the worn surface lubricated by SF + 2% ZB UFPs because the highest contrast 

of the dark (tribo-films) and bright (substrate) areas were observed on this surface. The tribo-

films displayed in Figure 7–10(a) have a complex topography which make a good contrast 

with the substrate displayed in Figure 7–10(c) with smoother surface texture. The EDS 

patterns of the tribo-films and substrate are illustrated in Figure 7–10(b) and Figure 7–10(d) 

respectively and the associated quantified elemental analysis results are also given in Table 

7-2. It is well understood that it is generally difficult to achieve an accurate Boron quantity 

directly using EDS due to its low atom weight, and therefore Boron quantity is not given in 

the table. It can be seen that a great increase of content of Carbon, Oxygen and Zinc was 

found on the tribo-films compared with that on the substrate. The similar phenomenon was 

found on the wear tracks tested in all other lubricant samples with ZB UFPs. It is suggested 

that the Carbon is mainly contributed by decomposed lubricant base oil (sunflower oil). The 

Oxygen is possibly derived from zinc borate additive and metal oxides. The Zinc is also 

attributed to the ZB UFPs employed as the lubricant additive in sunflower oil. These results 

suggest that tribo-chemical reactions may have taken place during the sliding process due to 

the local high contact pressure and flash temperature caused by the collision and rupture of 

the asperities between the mating surfaces. Consequently the tribo-films appeared in dark 

colour were formed on the worn surface and ZB UFPs is proven to be an important ingredient 

of the tribo-film formation. 
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Figure 7–10. SEM micrographs and EDS patterns of worn surfaces lubricated 

by SF + 2% ZB UFPs: (a, b) dark area of the wear track (c, d) bright area of 

the wear track 

Table 7-2 EDS element analysis of the worn surface lubricated by SF + 2% 

ZB UFPs 

Element composition (wt%) Bright area Dark area 

C 11.21 29.65 

O 3.57 5.48 

Zn 0.39 2.86 

Si 0.45 0.58 

Cr 1.22 0.95 

Fe 83.16 60.49 
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7.5.2 Discussion 

Experimental data from the current study have demonstrated the excellent tribological 

properties of zinc borate ultrafine powders (ZB UFPs) employed as a lubricant additive in 

sunflower oil. Under a friction force, ZB UFPs is firstly entrapped and then deposit on to 

contact interfaces due to shear effect. The third body effect of the ultrafine particles between 

contact surfaces can reduce direct metal contact and consequently adhesion [7]. A reduction 

of adhesion is directly responsible for the reduction of friction and wear, especially at the 

beginning of the experiment when both friction and wear caused by adhesion were dominant. 

When ploughing and debris are generated at the contact interface, ZB UFPs entrapped in 

contact areas could deliver mechanical filling and polishing effects on the rubbed surface and 

reduce the mechanical lockup between contact surfaces.   

As the sliding continues, it is clear that tribo-chemical reactions took place due to the local 

high contact pressure and flash temperature caused by the collision and rupture of the 

asperities between the mating surfaces. Tribo-films appeared in dark colour were then 

generated on the worn surface, which have a lower hardness than that on the substrate 

material. It is evident that the properties of the tribo-films play an important role in the 

tribological performance. The best friction reduction and anti-wear performances were 

observed when sunflower oil with 0.5% and 1% zinc borate powder was used as the 

lubricants, accompanied with the thin and patchy tribo-films with small coverage on the worn 

surface. The friction reduction performance of the two lubricants can be attributed to the 

diboron trioxide and iron boride formed by tribo-chemical reactions [84, 138, 156, 166, 189]. 

The outstanding anti-wear performance can be associated with the high hardness of the 

substrate and the formation of trio-films [105]. As stated in the discussion section of Chpter 6, 



Chapter 7. The Tribological properties of Zinc Borate Ultrafine Powders as a Lubricant

 Additive in Sunflower Oil 

143 

 

when a thin layer of tribo-film with low hardness and reduced modulus is generated on the 

hard substrate, dislocations will pile up at the interface between the tribo-film and the 

substrate. As the sliding continues, these dislocations escape through the surface of the tribo-

film due to its small thickness [186]. As a result, the wear of material protected by tribo-film 

will be remarkably reduced or delayed. For the same reason, with an increase of additive 

concentration, the anti-wear performance of the lubricants containing ZB UFPs was further 

improved due to the formation of more healthy and complete tribo-films. Interestingly, an 

increase of additive concentration demonstrated different effects on the friction reduction 

performance. A slight rise on friction coefficient was detected after the additive concentration 

was increased from 0.5% to 1%. When the additive concentration was further raised to 2% 

the ability of friction reduction of the lubricant was weakened considerably. The possible 

reason for this is the intensified plastic deformation and mechanical lockup promoted by the 

thickened and better spread tribo-films. As a result of plastic flow, soft tribo-films easily pile 

up in front of the asperities and cause more resistance for manoeuvre. When sunflower oil 

with 2% zinc broate ultrafine powder was used as the lubricant, the big fluctuation in friction 

coefficient reflects the breakdown and replenishment process of the tribo-films. 

Without ZB UFPs, the pure sunflower oil demonstrated the highest friction coefficient and 

the worst anti-wear behaviour. The morphology of the tribo-films and low hardness of the 

substrate could be responsible for the bad performance. The complex surface topography 

introduced by very thick tribo-films may also cause a barrier effect which leads to local 

breakage of oil film [86, 190]. 

7.6 Summary 

This chapter presents an investigation on the tribological properties of zinc borate ultrafine 

powder employed as a lubricant additive in sunflower oil. The stable dispersions of 0.5 wt%, 
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1 wt% and 2 wt% zinc borate ultrafine powder in sunflower oil were achieved by using an 

ultrasonic homogeniser. A pin-on-disc tester was employed to evaluate friction reduction 

capability of zinc borate ultrafine powder. Post-test surface analyses of wear tracks on the 

rotating disc were conducted. Tribo-films with dark colour were generated on the worn 

surfaces and showed a good contrast with the substrate displayed in bright colour. The worn 

surface with different morphologies reflected as the colour alterations on the worn surface 

were observed when different lubricants were applied. The morphology and elemental 

analysis of the worn surfaces were studied using atomic force microscopy (AFM) and SEM 

equipped with EDS. Mechanical properties of the tribo-films and substrates were studied with 

a nano-indentation tester. Test results suggest that tribo-films generated on the worn surface 

have a relatively low hardness compared with the steel substrate. The substrates on the worn 

surfaces lubricated in sunflower oil with zinc borate ultrafine powder demonstrated higher 

hardness than that of the substrate lubricated with pure sunflower oil due to the possible 

tribo-chemical reaction between the zinc borate additive and substrate. The combination of 

sunflower oil with 0.5% zinc borate ultrafine powder has delivered the most balanced 

performance in friction and wear reduction. Base on the above results, this chapter can be 

summarized as follow: 

 Zinc borate ultrafine powder with a particle size of 500-800nm has demonstrated 

excellent friction reduction performance as a lubricant additive in sunflower oil. The most 

noticeable tribological improvement was observed when 0.5% zinc borate ultrafine powder 

was applied when more than 14% reduction of friction coefficient was found. 

 The outstanding tribological performance of zinc borate ultrafine powder as lubricant 

additive in sunflower oil can be attributed to the increased hardness of the substrate and the 

formation of tribo-films due to the tribo-chemical reactions occurred on the worn surfaces. 
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These tribo-films with content of Fe, O, C, Zn, and B elements have a smaller hardness than 

the substrate material.  

 The changes on the size and profile of the tribo-films were discovered when the 

different lubricant samples were employed. The physical and chemical properties of the tribo-

films play an important role in the tribological behaviour. 
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Chapter 8. The Preparation and Tribological Properties of Surface Modified 

Zinc Borate Ultrafine Powders as a Lubricant Additive in Liquid Paraffin 

8.1 Introduction 

The recent studies have shown that some of the submicron sized particles have demonstrated 

good advantages to be employed as the lubricant additives in oil. However, the poor 

dispersibility of these solid particles in base oil restrains from their tribological properties and 

development in practical applications. In this chapter, ZB UFPs were firstly surface modified 

with Oleic acid (OA) and Hexadecyltrimethoxysilane (HDTMOS) coupling agents to 

improve the dispersibility. Tribological properties of liquid paraffin with original and 

modified ZB UFPs were investigated and compared using a Pin-on-disc tribo tester. Post 

analysis of the worn surface and tribo film was carried out in a similar fashion as mentioned 

in Chapter 6. Moreover, surface modification of zinc borate ultrafine powder was verified 

using FTIR Spectrometer and Thermogravimetric analyser (TGA), also conglomerate size 

and stability of the original and modified samples in methanol were studied with a Malvern 

Zetasizer.  

8.2 Surface modification of zinc borate ultrafine powder 

The Oleic acid modified zinc borate ultrafine powder (OA-ZB UFPs) and 

Hexadecyltrimethoxysilane modified zinc borate ultrafine powder (HDTMOS-ZB UFPs) 

were synthesized in this study using the same technique described in Chapter 6. 

The surface structure and morphology of the original and surface modified ZB UFPs are 

shown in Figure 8–1. It can be seen that ZB UFPs modified by OA shown in Figure 8–1(b) 

shares a similar particle size and morphology to the original ZB UFPs shown in Figure 8–1(a). 

However, compared with the unmodified specimen, more complicated surface texture with 
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less sharp edges can be observed from the OA-ZB UFPs. The HDTMOS-ZB UFPs shown in 

Figure 8–1(c) demonstrates the smallest particle size. 

 

Figure 8–1. SEM micrographs of (a) the original ZB UFPs, (b)OA-ZB UFPs, 

(c) HDTMOS-ZB UFPs 

Table 8-1 displays the conglomerate size and zeta-potential values of the original and surface 

modified ZB UFPs in methanol. 0.05wt% samples were dispersed in methanol with an 

ultrasonic homogeniser (KINEMATICA PT 10-35 GT) running for 5 minutes. The average 

conglomerate size of original ZB UFPs measured in methanol was 2150nm in diameter. 

Under the same condition, OA-ZB UFPs demonstrated a similar value of 2470nm in diameter.  

By contrast, the conglomerate size of HDTMOS-ZB UFPs was reduced to 540nm when 

HDTMOS was employed as the modification agent. Zeta-potential of the original ZB UFPs 

dispersed in methanol was measured to be 6.81 mV. In comparison, both OA-ZB UFPs and 

HDTMOS-ZB UFPs demonstrated the higher values of 27.9mV and 35.8mV respectively. It 
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is well known that surface charges of the particles caused by absorption of ions and 

molecules generate an electrostatic repulsion force between particles. This electrostatic 

repulsion force can partially counteract gravitation and reduce agglomeration and 

sedimentation of particles. Based on the Deryaguin–Landau–Verwey–Overbeek (DLVO) 

theory [158], a higher absolute value of zeta-potential of a suspension presents a better 

stability. With the Zeta potential results from this study shown in Table 8-1, it can be 

suggested that surface modifications of the ZB UFPs carried out with OA and HDTMOS 

have effectively improved the stability of ZB UFPs in organic solvent. The highest zeta-

potential value of HDTMOS-ZB UFPs also suggests that it has better stability than OA-ZB 

UFPs in methanol. 

Table 8-1 Conglomerate size and Zeta-potential of zinc borate powders 

despersed in methanol 

 Zinc borate ultrafine powders 

Original OA-ZB UFPs HDTMOS-ZB UFPs 

Conglomerate size (in 

methanol) 

2150nm 2470nm 540nm 

Zeta-potential 6.81 mV 27.9mV 35.8mV 

The composition and structure of the OA-ZB UFPs and HDTMOS-ZB UFPs were 

characterised with FT-IR spectroscopy as shown in Figure 8–2. In the infrared spectrum of 

original ZB UFPs shown in Figure 8–2(a), the band at 3458cm
-1

 is assigned to stretching of –

OH. The band at 1650 cm
-1

 is attributed to the H–O–H bending mode, which indicates the 

existence of crystal water. The peaks observed between 1450–1300 cm
−1

 and 1200–1000 

cm
−1

 are related to asymmetric stretching vibrations of trihedral borate (BO3) and tetrahedral 
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borate (BO4) groups respectively and the peaks between 960–740 cm
-1

 are related to the 

symmetric stretching vibrations of (BO3) and (BO4) groups [191]. In the spectra of OA and 

HDTMOS displayed in Figure 8–2(b-c), two sharp peaks at 2923 and 2856 cm
−1

 are 

attributed to the asymmetric and symmetric –CH2 stretching vibrations respectively. The 

same peaks with lower intensity can also be found in the spectra of OA-ZB UFPs and 

HDTMOS-ZB UFPs shown in Figure 8–2(d-e). It is evident that the positions of peaks for the 

distinctive functional groups observed in the spectra of OA-ZB UFPs and HDTMOS-ZB 

UFPs are identical with the pure modification agent OA and HDTMOS. The infrared spectra 

result indicates that the surface of ZB UFPs has been successfully modified with OA and 

HDTMOS. 
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Figure 8–2. FT-IR spectra of (a) original ZB UFPs, (b) OA, (c) HDTMOS, (d) 

OA-ZB UFPs, (e) HDTMOS-ZB UFPs 

Thermal gravimetric (TG) analysis of OA-ZB UFPs and HDTMOS-ZB UFPs is 

demonstrated in Figure 8–3 in order to verify the surface modification conducted and to 

calculate the amount of organic substance covered on the surface of ZB UFPs. As shown in 

curve (a) of Figure 8–3, the weight of the original ZB UFPs reduced sharply with an increase 

of temperature due to the loss of crystal water. The decrease on sample weight started at 

140 °C and a weight loss of 15% was observed when the reduction stopped at 230 °C. Curves 
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b-c in Figure 8–3 show the TGA results of HDTMOS-ZB UFPs and OA-ZB UFPs 

respectively when they were heated from 80 °C -500 °C. It can be seen that the weight of 

both samples began to reduce at the almost same temperature about 95 °C and the reduction 

completed accordingly at 480 °C and 445 °C. Compared with the original ZB UFPs, 

HDTMOS-ZB UFPs and OA-ZB UFPs have a higher ratio of weight loss of 20% and 25% 

respectively because of the decomposition of the organic groups covered on the surface of the 

modified particles. The results of TG analysis confirm that ZB UFPs have been successfully 

covered with organic groups of HDTMOS and OA modification agents. Based upon the fact 

that OA-ZB UFPs have a higher weight loss in TG analysis compared with HDTMOS-ZB 

UFPs, it is suggested that a bigger coverage of organic groups on the surface of ZB UFPs has 

been achieved when OA is employed as the modification agent.  

 

Figure 8–3. Thermal gravimetric analysis (TGA) of (a) original ZB UFPs, (b) 

HDTMOS-ZB UFPs, (c) OA-ZB UFPs 

8.3 Preparation of lubricants 

In this study, a uniform concentration of 0.5% in weight fraction was applied for all friction 

and wear tests when the additive powders were employed (additive concentration was 

decided base on literature study). Additives were dispersed in LP with an ultrahigh shear 
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homogenizer at the speed of 20k rpm for 20 minutes. The lubricants prepared in this study are 

presented in Table 8-2. 

Table 8-2 The lubricants prepared in the tests 

Sample code Constituent 

LP Liquid paraffin 

LP + ZB UFPs 

Liquid paraffin with 0.5 wt% original zinc 

borate ultrafine powders 

LP + OA-ZB UFPs 

Liquid paraffin with 0.5 wt% oleic acid 

modified zinc borate ultrafine powders 

LP + HDTMOS-ZB UFPs 

Liquid paraffin with 0.5 wt% 

hexadecyltrimethoxysilane modified zinc 

borate ultrafine powders 

8.4 Pin-on-disc test conditions 

The tribological properties of all lubricant samples were evaluated using a POD 2 pin-on-disc 

tester (Teer Coatings Ltd.). All the tests were carried out with a sliding speed of 50mm/s for a 

testing period of 60 minutes at the ambient temperature of 22°C. The test load was set to be 

10N (1.54GPa Hertz pressure). The bearing balls (pins) and sample discs were prepared with 

the same specifications as described in Chapter 6.  

8.5 Experimental results  

8.5.1 Friction coefficient 

Friction coefficients of different lubricant samples are illustrated in Figure 8–4. The typical 

friction coefficient curve pattern of boundary lubrication was demonstrated by all lubricant 

samples. The highest rise in friction coefficient at the beginning of the pin-on-disc tests was 
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delivered by pure LP and it was followed by LP with ZB UFPs and LP with OA-ZB UFPs. 

As sliding continued, the friction coefficients for each lubricant sample were finally 

stabilized, except for LP with ZB UFPs. More fluctuations were observed in the friction 

coefficient curves of LP with OA-ZB UFPs and LP with ZB UFPs 

As shown in Figure 8–4, lubricant samples with HDTMOS-ZB UFPs and OA-ZB UFPs have 

displayed higher friction coefficient compared with pure LP. Highest friction coefficient was 

found when LP with HDTMOS-ZB UFPs was used as the lubricant. LP with ZB UFPs 

delivered the lowest friction coefficient. Among all the lubricant samples used in these tests, 

LP with ZB UFPs is the only one that failed to demonstrate a stable friction coefficient in the 

pin-on-disc tests. When LP with ZB UFPs was used as the lubricant, a clear descending 

tendency of friction coefficient against a testing period can be observed and at the end of the 

test, and a maximum reduction of 25% on friction coefficient was found compared with the 

pure LP. 

 

Figure 8–4. Effect of different lubricant additives on friction coefficient of LP 
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8.5.2 Anti-wear behaviour  

Wear scar of the pins (bearing balls) used in pin-on-disc tests were firstly assessed using an 

optical microscope. The morphologies and wear scar diameters (WSD) of the tested pins are 

shown in Figure 8–5. A smaller WSD implies a less material loss therefore the superior wear 

resistance. It is evident that with the employment of OA-ZB UFPs and HDTMOS-ZB UFPs, 

WSDs of the pins have been reduced. Particularly, a WSD of as small as 123µm was 

obtained when LP with HDTMOS-ZB UFPs was employed as a lubricant. This WSD of 

123µm is approximately 45% smaller than the wear scar obtained when the LP with OA-ZB 

UFPs was applied, and more than 50% smaller than that generated by pure LP. On the 

contrary, LP with ZB UFPs delivered the biggest WSD of 373µm. A uniform and tenacious 

tribo-film was found on the wear scar lubricated with LP with HDTMOS-ZB UFPs, as shown 

in Figure 8–5(d) and the formation of this tribo-film appears to have played an important role 

in the outstanding anti-wear performance.  

Wear losses of the pins lubricated by different lubricant samples were also presented in 

Figure 8–6. The wear loss volume was calculated geometrically based on the assumption that 

wear scar is a flat surface. As shown in Figure 8–6, the addition of 0.5% HDTMOS-ZB UFPs 

in LP has led to a more than 15 time decrease on wear loss of the upper pin.  
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Figure 8–5. Optical micrographs of wear scars lubricated using: (a) LP, (b) LP 

with ZB UFPs, (c) LP with OA-ZB UFPs (d) LP with HDTMOS-ZB UFPs 

 

Figure 8–6. Effect of different lubricant additives on wear loss volume of the 

bearing balls 
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8.6 Interpretation and discussion of the results 

8.6.1 Characterisation of the worn surfaces 

The same surface characterisation techniques used in Chapter 6 were applied. It involves the 

employment of optical microscopy, scanning electron microscopy (SEM), atomic force 

microscopy (AFM), Energy dispersive X-ray spectroscopy and Nano-indentation facility. 

8.6.1.1 Physical and mechanical properties 

Figure 8–7(a) shows a magnified optical photo of the wear scar of a pin (a bearing ball) 

lubricated by LP with HDTMOS-ZB UFPs. Figure 8–7(b-c) present the AFM images of 

tribo-film generated on wear scar surface as marked in Figure 8–7(a). Clearly a uniform and 

complete tribo-film was observed. The thickness of the tribo-film is measured to be around 

315nm (see Figure A–6 in Appendix–2). The mechanical property of the tribo-film has been 

measured with nano-indentation device. Indentations were made on both the tribo-film and 

the substrate steel. Figure 8–8(a) shows the patch of tribo-film that had the indentation on. 

Corresponding load–depth curves are illustrated in Figure 8–8(b). Mechanical properties of 

the worn surface on the tested bearing balls can be derived from further analysing the load–

depth curves. With a maximum indentation load of 5mN, the indentation depth on tribo-film 

reached 155nm (curve (ii) in Figure 8–8(b)) which is not greater than the thickness of the 

tribo-film. At this condition the mechanical property of the tribo-film measured will not 

receive much interference from the substrate. Therefore the surface hardness and reduced 

modulus derived from this load-depth curve only represent the property of the tribo-film 

alone. A comparison of the surface hardness and reduced modulus of the tribo-film and 

substrate steel is presented in Table 8-3. Based upon the test results, it can be suggested that 

tribo-film is made of a softer material with lower stiffness compared with substrate steel.  



Chapter 8. The Preparation and Tribological properties of Surface Modified Zinc Borate 

Ultrafine Powders as a Lubricant Additive in Liquid Paraffin 

157 

 

 

Figure 8–7. Morphologies of the tribo-film generated by LP with HDTMOS-

ZB UFPs: (a) optical image, (b) AFM surface topographic image, (c) 3D 

AFM surface topographic image 
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Figure 8–8 Morphology of a piece of tribo-film generated by LP + 

HDTMOS-ZB UFPs and corresponding inentation curves obtained from 

different domains: (i) on substrate, (ii) on tribo-film 

Table 8-3 A comparison of mechanical properties of the tribo-film and the 

substrate 

 

Figure 8–9 shows the AFM morphologies of the worn surfaces of the pins lubricated with the 

different lubricant samples. Changes on the size and profile of the tribo-films were 

discovered when the different lubricant samples were used. When pure paraffin was used as 

the lubricant as shown in Figure 8–9(a-b), no complete tribo-film but only small patchy 

pieces were found scattering over the worn surface, some ploughings were also seen clearly. 

Similar phenomenon was also observed when LP with the original ZB UFPs was employed, 

as shown in Figure 8–9(c-d). Very fine fragments of tribo-film can be seen spreading over the 

examined area. The tribo-film generated on the wear scar lubricated by LP with OA-ZB 

UFPs, as shown in Figure 8–9(e-f) have a bigger fragment size and elongated shape 

stretching along the direction of the sliding. Among all the samples, the tribo-film generated 

by LP with HDTMOS-ZB UFPs was the most widespread and tenacious. Almost the whole 

Indentation position Indentation depth Hardness Reduced modulus 

Tribo-film 155nm 7.2GPa 228GPa 

Substrate 132nm 9.8GPa 260GPa 
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scanned surface was covered with the tribo-film, and the thickness of the tribo-film was fairly 

uniform across the area. As marked in Figure 8–9(h), the main part of the tribo-film is 

continuous and smooth, while the other areas demonstrate the trace of disintegrating of the 

tribo-film. Cracks can be seen propagating in the tribo-film in this area and gradually 

breaking a complete piece of tribo-film into small fragments. No outstanding change of film 

thickness was found on a disintegrating part of the tribo-film compared with the other 

completely covered area. It is suggested that the employment of HDTMOS-ZB UFPs in LP 

enables to generate a more complete and durable tribo-film on the contact surface and this 

tribo-film can effectively protect the surface from wear damage. 
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Figure 8–9 AFM surface topographic images of the worn surfaces lubricated 

with different lubricants: (a, b) LP, (c, d) LP with ZB UFPs, (e, f) LP with 

OA-ZB UFPs, (g, h) LP with HDTMOS-ZB UFPs 



Chapter 8. The Preparation and Tribological properties of Surface Modified Zinc Borate 

Ultrafine Powders as a Lubricant Additive in Liquid Paraffin 

161 

 

8.6.1.2 SEM micrographs and EDS analysis 

The worn surfaces lubricated by LP with HDTMOS-ZB UFPs were analysed under a 

scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy 

(EDS). Typical SEM images and EDS analyses are shown in Figure 8–10. Distinctive 

topographical differences of the tribo-film and substrate can be seen clearly. The tribo-film 

displayed in Figure 8–10(a) appears in dark colour with a complex topography which makes 

a good contrast with the substrate displayed in brighter colour with smoother surface texture. 

The EDS patterns of the region highlighted on the tribo-film and the substrate are shown in 

Figure 8–10(b) and Figure 8–10(c) respectively. Quantified elemental analysis results are also 

given in Table 8-4. It is obvious that a considerable increase of Oxygen and Zinc contents 

was found on the tribo-film compared with the element distribution on the substrate. The 

Oxygen is possibly derived from ZB UFPs and metal oxides. The Zinc is attributed to the ZB 

UFPs. The elemental analysis also showed that slight more Born was found on substrate 

rather than on tribo-film and the reason for this is still not clear; however it is generally 

difficult to achieve an accurate Boron quantity by EDS due to its low atom weight. It is 

evident that HDTMOS-ZB UFPs are an important ingredient of the formation of the tribo-

film.  These results suggest that some tribochemical reactions may have taken place during 

the sliding process due to the local high pressure and flash temperature caused by the 

collision and rupture of the asperities between the mating surfaces. 
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Figure 8–10. SEM images and EDS patterns of worn surfaces lubricated with 

LP with HDTMOS-ZB UFPs: (a) worn surface morphology; (b) EDS 

patterns of the tribo-film; (c) EDS patterns of substrate 

Table 8-4 Quantified elemental analysis on worn surface shown in Figure 8–

10 

Element Spectrum (b) (At%) Spectrum (c) (At%) 

B 24.53 26.54 

C 25.10 22.78 

O 15.67 12.11 

Zn 4.63 1.78 

Cr 0.62 0.77 

Fe 29.45 36.02 



Chapter 8. The Preparation and Tribological properties of Surface Modified Zinc Borate 

Ultrafine Powders as a Lubricant Additive in Liquid Paraffin 

163 

 

8.6.2 Discussion 

Surface modified ZB UFPs have demonstrated the excellent tribological properties as 

lubricant additives in LP. HDTMOS-ZB UFPs have revealed a superior anti-wear property to 

conventional OA-ZB UFPs. Direct metal contact and adhesion were reduced by the third 

body effect of ZB UFPs, when the particles were entrapped into contact area as a result of 

friction force [7]. As discussed in Chapter 7, a reduction of adhesion is directly responsible 

for the reduction of friction and wear, especially at the beginning of the experiment when 

both friction and wear caused by adhesion were dominant. This explains why the initial 

friction coefficients of all lubricant samples that contain either original or modified ZB UFPs 

are lower than the friction coefficient of pure LP as shown in Figure 8–4.  

As the sliding continues, ploughings take place and debris is also produced. A tribo-film is 

formed on the contact surfaces as a result of interaction between chemical components of the 

lubricant with the lubricated surface. The formation of tribo-film is associated with a decrease 

of wear. At all times the high wear loss was associated with small and patchy tribo-film 

fragments observed on the worn surface. On the contrary, the low wear loss was obtained 

when more complete tribo-films were formed. The test results suggest that the formation of 

tribo-film is greatly influenced by the dispersibility of ZB UFPs in LP. Solid lubricant 

additives with big particle size may sometime behave like abrasive particles, which will 

encourage the generation of debris and destruction of tribo-film and eventually increase wear. 

Whereas an increase of the amount of debris and tribo-film fragments in the lubricant can be 

beneficial to a reduction of friction coefficient. As a result, original ZB UFPs demonstrated 

the highest wear loss due to its poor dispersibility in LP and still the lowest friction 

coefficient was observed when this lubricant sample was applied.  
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When HDTMOS-ZB UFPs were employed as the lubricant additive in LP, the best anti-wear 

performance was delivered due to the formation of a complete and tenacious tribo-film with a 

lower hardness and reduced modulus than substrate steel. This outstanding anti-wear 

performance can be explained with the delamination theory of wear [105]. As stated in the 

discussion section of Chapter 6, dislocations will pile up at the interface between the tribo-

film and the substrate, when a thin layer of tribo-film with low hardness and reduced modulus 

is generated on the hard substrate. As the sliding continues, these dislocations escape through 

the tribo-film on the surface due to its very small thickness [186]. For a surface without tribo-

film, the dislocations will be transferred and generated within the substrate material as a 

result of very high stresses, on the other hand, the transfer of dislocations from tribo-film to 

substrate metal will be considerably less owing to the lower tangential force transmitted. 

Therefore the wear of material protected by tribo-film will be remarkably reduced or delayed. 

EDS analysis suggests that zinc borate additive is a critical component for the formation of a 

robust tribo-film. For this reason, the stability of additive particles in base oil plays an 

important role in the formation of tribo-film. Compared with original ZB UFPs, OA-ZB 

UFPs have better stability in LP although the particle size does not appear to be reduced. 

HDTMOS-ZB UFPs have demonstrated the best stability and the smallest conglomerate size 

in organic solvent, which suggests that HDTMOS-ZB UFPs may have better integration with 

base oil and easier access to the contact interface. Therefore, the film forming ability and 

completeness of the tribofilm can be improved when HDTMOS-ZB UFPs are used as a 

lubricant additive. 

8.7 Summary 

This chapter presents the effects of surface modification of zinc borate ultrafine powders (ZB 

UFPs) on their tribological properties as lubricant additives in liquid paraffin (LP). ZB UFPs 
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were successfully modified with an employment of oleic acid (OA) and 

hexadecyltrimethoxysilane (HDTMOS). The modified ZB UFPs were characterised by means 

of infrared spectroscopy (IR) and Thermal gravimetric analysis (TGA). Compared with other 

additive samples, HDTMOS modified zinc borate ultrafine powder (HDTMOS-ZB UFPs) 

delivered a smaller conglomerate size and superior stability in the organic solvent. 

Tribological properties of LP with original and modified ZB UFPs were investigated using a 

pin-on-disc tribo tester. The highest wear reduction was observed when the HDTMOS–ZB 

UFPs were used in liquid paraffin. The worn surfaces of the tested pins were analysed by 

atomic force microscopy (AFM) and scanning electron microscopy (SEM). A continuous and 

tenacious tribo-film was generated on the worn surface when HDTMOS–ZB UFPs were 

employed as the lubricant additive in LP. The mechanical properties and elemental 

composition of the tribo-film were studied with nano-indentation and energy-dispersive X-

ray spectroscopy (EDS). The test results suggest that this tribo-film with content of Fe, O, C, 

Zn, and B elements has a smaller hardness and reduced modulus than substrate material. The 

formation of this tribo-film appears to have played an important role in the outstanding anti-

wear performance. This investigation suggests that with the appropriate surface modifications 

the tribological properties of zinc borate ultrafine powders as lubricant additives in liquid 

paraffin can be improved. Base on the above results, this part can be summarized as follow: 

 Oleic acid (OA) and hexadecyltrimethoxysilane (HDTMOS) modified UFPs were 

successfully prepared. Without surface modification, original ZB UFPs did not demonstrate 

any anti-wear performance although the friction coefficient of LP was considerably reduced 

with the employment of the unmodified lubricant additive. 

 The modified ZB UFPs as lubricant additives in LP displayed superior anti-wear 

performance to LP and LP with ZB UFPs. Compared with O-ZB UFPs, the HDTMOS-ZB 
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UFPs demonstrated much greater improvement on anti-wear property when it was used in LP, 

and it also exhibited better stability and smaller conglomerate size in organic solvent. 

 The outstanding anti-wear performance of HDTMOS-ZB UFPs is attributed to the 

formation of a complete and tenacious tribo-film on worn surface. This tribo-film with 

content of Fe, O, C, Zn, and B elements has a smaller hardness and reduced modulus than the 

substrate material.  

 The changes on the size and profile of the tribo-films were discovered when different 

lubricant samples were employed. It is evident that the coverage of the tribo-films on the 

worn surfaces has a good consistence with wear intensity. A good coverage of tribo-film can 

protect the surface from wear effectively. Only small patchy pieces of film were found on the 

worn surfaces lubricated by LP and LP with ZB UFPs. The larger fragments with elongated 

shape were observed on the worn surface when LP with OA-ZB was used. The best coverage 

by tribo-film was achieved by using LP with HDTMOS-ZB as the lubricant. 
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Chapter 9. Conclusions and Suggestion for Future Work 

9.1 Conclusions 

The work in this thesis was carried out to investigate the influence of solid particle additives 

on the tribological properties of lubricants. Two types of solid particles, Ceria nanoparticles 

and Zinc borate ultrafine powders, were employed as the lubricant additives in this study. 

Although extensive research has been done on the applications of solid lubricant additives in 

the past, information on these two types of solid particles, Ceria nanoparticles and Zinc 

borate ultrafine powders, is still very limited. Surface modification technique was employed 

to improve the dispersibility of these particles in base lubricants. Conventional modification 

agent Oleic acid (OA) and the novel modification agent Hexadecyltrimethoxysilane 

(HDTMOS) were used to modify the solid particle surfaces and their modification 

performances were also compared in this study. The friction and wear behaviours of these 

two types of solid lubricant additives (with or without surface modification) in different base 

lubricants were identified. The distinctive friction and wear behaviours of Ceria nanoparticles 

and Zinc borate ultrafine powders reflected the different functionalities of these two solid 

lubricant additives in base lubricants. 

This section concludes this study with regard to the tribological performance, the tribo film 

properties, surface modification of the solid lubricant additives, and the functionalities of the 

solid lubricant additives. 
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9.1.1 Tribological performance of ceria nanoparticles and zinc borate ultrafine 

powders 

9.1.1.1 Friction reduction 

9.1.1.1.1 Original solid particles without surface modification 

The two types of solid particles behave differently when they are used as lubricant additive 

without surface modification. In the application of Ceria (CeO2) nanoparticles, CeO2 

nanoparticles did not show a noticeable contribution to the reduction of friction when they 

were used alone. However when surfactant Sorbitan monostearate was employed to enhance 

the dispersibility of CeO2 nanoparticles in water, the application of this additive was capable 

of reducing friction coefficient of water effectively. Different phenomenon was found in the 

application of Zinc borate ultrafine powders (ZB UFPs) as lubricant additive. Evident friction 

reduction was observed when original ZB UFPs were added in sunflower oil and liquid 

paraffin. These differences in friction reduction performances of CeO2 nanoparticles and ZB 

UFPs can be attributed to the dissimilar properties that the two particles hold. As a metal 

oxide, CeO2 nanoaprticles are chemically inert and reactions with substrate and base 

lubricants are not expected. During friction, the agglomeration of CeO2 nanoparticles forms 

much bigger sized clusters, which can increase the asperity level between the contacting 

surfaces and cause more abrasive friction. On the other hand, it has be widely reported that 

when zinc borate particles were used as lubricant additive, diboron trioxide and iron boride 

can be formed by tribo-chemical reactions. These tribo chemical reactions that take place 

during sliding of two surfaces are possibly responsible for the reduction on friction 

coefficient observed when ZB UFPs were used as lubricant additive. 
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9.1.1.1.2 Surface modified solid particles 

An increase on friction coefficient was noticed when OA and HDTMOS modified CeO2 

nanoparticles and ZB UFPs were used as lubricant additives. The application of HDTMOS 

modified particles in base lubricant have resulted in the greatest growth in friction. The 

improved tribo film coverage and enlarged fragment size of tribo film are the possible 

explanation for this phenomenon. During sliding, as a result of plastic flow, soft tribo-films 

could easily pile up in front of the asperities and cause more resistance for manoeuvre. At the 

same time the change on surface topography introduced by the piled-up thick tribo-films may 

also cause a barrier effect and lead to local breakage of oil film. 

9.1.1.2 Antiwear performance 

Very consistent wear performances were observed for both types of solid particles. 

Unmodified solid particles caused the most severe wear when they were used as lubricant 

additives in liquid paraffin (LP), while the surface modified solid particle effectively 

improved the wear resistance of the base lubricant. Especially, LP with HDTMOS modified 

particles delivered the most remarkable antiwear performance. Also the antiwear 

performance is closely related with the morphology and coverage of the tribo-films generated 

on the contact interface. Outstanding antiwear performance is always associated with a 

tenacious tribo film of good surface coverage. 

9.1.2 Tribo film properties 

The mechanical property of the tribo-films generated on the surface lubricated by lubricant 

samples were analysed by a nano indentation device. It is evident that tribo-film is made of a 

softer material with lower stiffness compared with the substrate steel. The thickness of the 

tribo-films was also determined and was in the scale of few hundred nanometres. 
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9.1.3 Surface modification of solid particles 

Surface modification of the solid particles was involved in the study to improve the 

dispersibility of these particles in base lubricants. Oleic acid (OA) and 

Hexadecyltrimethoxysilane (HDTMOS) were selected as the modification agents. Compared 

with OA, HDTMOS has demonstrated a superior performance in stabilizing solid particles 

and reducing wear as the surface modification agent of solid lubricant additives. 

As demonstrated by the experimental results, surface modified particles have all given higher 

Zeta-potential measurements in organic solvent, which suggests that surface modification 

have successfully improved the stability of solid particles in an organic solvent. Between the 

two modification agents, HDTMOS modified solid particles revealed higher Zeta-potential 

values than OA modified solid particles. Furthermore, OA modified particles failed to show a 

consistent reduction of particle conglomerate size. However, the particle conglomerate size 

was considerably reduced when HDTMOS was used as the modification agent. Therefore, it 

can be concluded that HDTMOS performs better as a surface modification agent than the 

conventional OA. 

9.1.4 Functionality of solid lubricant additives 

In this study, CeO2 nanoparticles and ZB UFPs have all demonstrated the good potentials to 

be employed as solid lubricant additives. Depending on the intrinsic character of each type of 

particles, the way they perform as solid lubricant additive also varies. Third body effect is the 

common functionality shared by CeO2 nanoparticles and ZB UFPs. The phenomenons 

associated with this effect, particularly the reduction in adhesion friction, are mostly 

contributed by the physical characteristics of the two solid particles. As the sliding continues, 

ZB UFPs are capable of assisting in the tribochemical reaction with substrate steel and 
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surrounding lubricant, and form diboron trioxide and iron boride which are potentially 

important on improving the lubricating performance of a system. Although, no evidence was 

found to support that CeO2 nanoparticles would be able to encourage the tribochemical 

reaction directly, it is clearly demonstrated that CeO2 nanoparticles function as a physical 

carrier to effectively deliver the HDTMOS surfactant to contact surfaces and increase 

localised concentration of HDTMOS surfactant. In this way CeO2 nanoparticles become an 

essential ingredient for the generation of a healthy tribo film. 

9.2 Future work 

Although the present work have systematically investigated the tribological properties of the 

original and surface modified Ceria nanoparticles and Zinc borate ultrafine powders, there is still 

a plenty of work for further development. The recommendations are outlined below: 

Base lubricant 

In the present study, original and surface modified Ceria nanoparticles and Zinc borate ultrafine 

powders were used as the only lubricant additive in base lubricants. It is still an unknown 

question how they would behave in a commercial lubricant environment where a package of 

lubricant additives is used and the interactions of solid lubricant additives with other lubricant 

additives are inevitable.  

Surface modification 

Surface modifications of Ceria nanoparticles and Zinc borate ultrafine powders using 

modification agents, Oleic acid and Hexadecyltrimethoxysilane, were conducted and a 

consistent modification procedure was applied throughout the present study. Modification 

procedures and controlling parameters are of great importance to the performance of the final 
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products. However in current study it is still an open question that how these parameters 

affect the modification reaction. 

Chemical analysis of tribo-film 

Elemental analysis of the tribo-film was carried out with Energy-dispersive X-ray 

spectroscopy (EDS), however the accuracy of the spectrum can be easily affected by the 

nature of the sample such as homogeneity and roughness. Also not enough information can 

be provided by this analysis technique to identify a complex chemical compound. In 

comparison, X-ray photoelectron spectroscopy (XPS) and Secondary ion mass spectrometry 

(SIMS) are going to be particularly helpful on identifying the composition of a tribo film and 

its forming mechanisms. 

Influence of the experimental conditions 

Influences of the experimental conditions such as sliding speed, contact pressure are proven 

to be the important influential factors for the performance of solid lubricant additives. Further 

work in the future is required to identify the effect of sliding speed and contact pressure. 
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Appendix – 1 

Malvern Zetasizer-Nano Series device specifications 

Measurement type: Particle size Zeta potential 

Measurement type: 
Particle size and molecular 

size 

Zeta potential (and optional Protein 

Mobility) 

Measurement range: 
0.3nm – 10.0 microns 

(diameter). 
3.8nm – 100 microns (diameter) 

Measurement 

principle: 
Dynamic Light Scattering Electrophoretic Light Scattering 

Minimum sample 

volume: 
12µL 

150µL (20µL using diffusion barrier 

method) 

Accuracy: 
Better than +/-2% on NIST 

traceable latex standards 

0.12µm.cm/V.s for aqueous systems 

using NIST SRM1980 standard 

reference material 

Precision/Repeatabili

ty: 

Better than +/-2% on NIST 

traceable latex standards 
10mg/mL (BSA). 
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SETARAM TG-DSC 1600 device specifications 

Temperature Range Ambient to 1 600 °C 

Isothermal 

temperature accuracy 
+/- 1 °C 

Programmable 

temperature scanning 

rate (heating and 

cooling 

0.01 to 100 °C.min-1 

Furnace cooling 32 min (1600°C to 50°C) 

Maximum balance 

capacity 
20 g 

Weight range +/- 1 000 mg - +/- 200 mg 

Weighing precision +/- 0.01 % 

TG resolution 0.2 μg - 0.02 μg 

Auto Sampler 30 samples and 6 references 4-prong gripper 

DSC rod - Resolution 0.4 µW / 10 μW dependent on sensor 

3D Cp rod - Cp 

Accuracy 
< 2 % 

Vacuum < 10-1 mbar 

Evolved gas simultaneous MS, FTIR couplings (option) 

Gases 

Two inlets for gas scanning (inert or reactive) OR 3 carrier gases 

(option) (MFC from 4 to 200 ml/min) + 1 auxiliary or reactive 

gas (MFC from 0.3 to 16 ml/min) 

Weight 55 kg / 121 lbs 

Dimensions (Height / 

Width / Depth) 

56 closed, 76 opened / 53 / 58 cm (22.0 closed 29.9 opened / 20.8 

/ 22.8 in) 

Power requirements 230 V - 50/60 Hz 
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Appendix – 2 

In this section, the thickness measurements of the tribo-films generated by different 

lubricants samples are displayed. Morphologies of the tribo films were firstly constructed by 

an atomic force microscope (AFM) used in this study, ‘Nanosurf Easyscan 2’ from Nanosurf 

(Liestal, Switzerland). The 2-D cross section profiles of the tribo-films were later created 

using the dedicated softerware. The thickness of the tribo-films can then be measured as the 

distance from the top surface of the tribo-films to the bottom substrates. 

 

Figure A–1 The thickness of the tribo-film generated by liquid paraffin with 

0.5% HDTMOS modified CeO2 nanoparticles 
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Figure A–2 The thickness of the tribo-film generated by pure sunflower oil 

 

Figure A–3 The thickness of the tribo-film generated by sunflower oil with 

0.5% ZB UFPs 
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Figure A–4 The thickness of the tribo-film generated by sunflower oil with 1% 

ZB UFPs 

 

Figure A–5 The thickness of the tribo-film generated by sunflower oil with 2% 

ZB UFPs 
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Figure A–6 The thickness of the tribo-film generated by liquid paraffin with 

0.5% HDTMOS modified ZB UFPs 


