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Abstract

Some time ago the general tree-level scattering amplitudes of N = 4 Super Yang–Mills theory were 
expressed as certain Graßmannian contour integrals. These remarkable formulas allow to clearly expose 
the super-conformal, dual super-conformal, and Yangian symmetries of the amplitudes. Using ideas from 
integrability it was recently shown that the building blocks of the amplitudes permit a natural multi-
parameter deformation. However, this approach had been criticized by the observation that it seemed 
impossible to reassemble the building blocks into Yangian-invariant deformed non-MHV amplitudes. In 
this note we demonstrate that the deformations may be succinctly summarized by a simple modifica-
tion of the measure of the Graßmannian integrals, leading to a Yangian-invariant deformation of the 
general tree-level amplitudes. Interestingly, the deformed building blocks appear as residues of poles 
in the spectral parameter planes. Given that the contour integrals also contain information on the am-
plitudes at loop-level, we expect the deformations to be useful there as well. In particular, applying 
meromorphicity arguments, they may be expected to regulate all notorious infrared divergences. We also 
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point out relations to Gelfand hypergeometric functions and the quantum Knizhnik–Zamolodchikov equa-
tions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Motivation and results

Nature prefers Yang–Mills theory in exactly 1 + 3 dimensions. There has been much recent 
interest in a mathematically exceedingly rich four-dimensional Yang–Mills model, the nearly 
unique N = 4 supersymmetric theory [1]. In addition to its gauge and super-conformal symme-
tries, it exhibits, in the planar limit, the phenomenon of integrability, see the series of review 
papers [2]. What is special about 1 + 3 dimensions? One remarkable fact is that general space–
time events with Minkowski coordinates xμ ∈R

1,3 may be packaged into general 2 ×2 hermitian 
matrices. After Fourier-transforming to dual space–time, a momentum four-vector pμ ∈ R

1,3

may be written as the hermitian matrix

pαα̇ =
(

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)
. (1)

Massless particles satisfy p2 = pμpμ = detpαα̇ = 0. The matrix then has at most rank 1, 
and we can “factor” it into spinorial Weyl variables: pαα̇ = λαλ̃α̇ . For N = 4 super Yang–
Mills the spinors λα , λ̃α̇ are nicely complemented by the four Graßmann spinor variables ηA

with A = 1, 2, 3, 4. The resulting eight spinor-helicity variables (λα
j , ̃λα̇

j , ηA
j ) are highly effi-

cient for neatly expressing the general color-stripped tree-level amplitudes for the scattering of 
j = 1, . . . , n massless particles of the model. With total momentum P αα̇ = ∑

j λα
j λ̃α̇

j and super-

momentum QαA = ∑
j λα

j ηA
j and the brackets 〈pq〉 = εαβλα

pλ
β
q and [pq] = εα̇β̇ λ̃α̇

pλ̃
β̇
q the result 

is the distribution

An,k = δ4(P αα̇)δ8(QαA)

〈12〉〈23〉 . . . 〈n − 1, n〉〈n1〉Pn

({λj , λ̃j , ηj }
)
, (2)

see [3] and references therein. All external helicity configurations are generated by expansion 
in the ηA

j . Super-helicity k corresponds to the terms of order η4k . In the simplest, maximally-

helicity-violating (MHV) case we have k = 2, where Pn = 1. We may also define “nextness” k̂ =
k − 2. Then, for k > 2, An,k corresponds to the Nk̂MHV (pronounced “Next-to-the-k̂-MHV”) 
amplitude, where the Pn are recursively determined rational functions of the spinor helicity vari-
ables.

In [4] a remarkable reformulation of (2) was presented. It takes the form of an integral over 
a Graßmannian space Gr(k, n). The latter is the set of k-planes intersecting the origin of an 
n-dimensional vector space. Note that k = 1 is ordinary projective space. “Points” in Gr(k, n) are 
described by “homogeneous” coordinates, which are packaged into a k × n matrix C = (Caj ). 
Here C and A ·C with A ∈ GL(k) correspond to the same point in Gr(k, n). It is convenient to em-
ploy super-twistors WA = (μ̃α, ̃λα̇, ηA), where A = (α, α̇, A) and α, α̇ = 1, . . . , 2, A = 1, . . . , 4, 
j j j j

http://creativecommons.org/licenses/by/3.0/
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by performing a formal half-Fourier transform from λα
j to μ̃α

j . The Graßmannian integral then 
reads

An,k =
∫

dk·nC
vol(GL(k))

δ4k|4k(C ·W)

(1, ..., k)(2, ..., k + 1) . . . (n, ..., n + k − 1)
. (3)

The (i, i + 1, . . . , i + k − 1) are the n cyclic k × k minors of the coordinate matrix C. Note that 
(n, ..., n + k − 1) = (n, ..., k − 1). Integration is along “suitable contours”. The GL(k) symmetry 
is manifest. Fourier-transforming back to spinor-helicity space, all tree-level N(k−2)MHV am-
plitudes may then indeed be obtained if the contours are correctly chosen. The amplitudes An,k

enjoy super-conformal symmetry

JAB ·An,k = 0, with JAB ∈ psu(2,2|4). (4)

However, there is also a hidden dual super-conformal symmetry of the tree-level amplitudes

J̃AB ·An,k = 0, with J̃AB ∈ psu(2,2|4)dual. (5)

Commuting J and J̃ , one obtains Yangian symmetry [5]. The latter is generated by an infinite 
algebra consisting of the level-zero generators JAB and a set of level-one generators ĴAB, plus 
an infinite tower of further symmetry generators of higher levels, which satisfy certain Serre 
relations. Using psu(2, 2|4) generators in super-twistor form acting “locally” on the j -th particle

JAB
j =WA

j

∂

∂WB
j

− 1

8
(−1)BδAB ∑

C
(−1)CWC

j

∂

∂WC
j

, (6)

where the second term removes the supertrace from psu(2, 2|4) (this is related to the letter s in 
psu(2, 2|4)), one may succinctly summarize the Yangian algebra relevant to amplitudes as

JAB =
n∑

j=1

JAB
j and ĴAB = 1

2

∑
i<j

(−1)C
[
JAC

i J CB
j − JAC

j J CB
i

]
. (7)

This is how integrability first appeared in the planar scattering problem. To exhibit the hidden 
dual symmetry (5) of the Graßmannian integral (3), a clever change of variables was found in [6]. 
Employing 4|4 super-momentum-twistors ZA

j = (Zα
j , χA

j ) with A = (α, A) and α = 1, . . . , 4, 
A = 1, . . . , 4, one transforms (3) to an integral over the points of a dual Graßmannian space 
Gr(k̂, n) = Gr(k − 2, n)

An,k = δ4(P αα̇)δ8(QαA)

〈12〉〈23〉 . . . 〈n1〉
∫

dk̂·nĈ
vol(GL(k̂))

δ4k̂|4k̂(Ĉ ·Z)

(1, ..., k̂) . . . (n, ..., n + k̂ − 1)
, (8)

where the k = 2 MHV part neatly factors out. One has (n, ..., n + k̂ − 1) = (n, ..., k̂ − 1). This 
Graßmannian integral based on dual momentum-twistors had been independently discovered 
in [7]. Clearly it computes the function Pn({λj , ̃λj , ηj }) in (2).

Much of the above beautiful structure is intimately tied to four dimensions. At loop level, 
infrared divergences appear. These are commonly dealt with by dimensional regularization. How-
ever, deviation from four dimensions irretrievably destroys all of the above structure. One is 
then led to look for a more natural regulator, where natural means it should a) respect the fixed 
space–time dimensionality four and b) respect the Yangian symmetry, i.e. integrability. Such a 
regularization scheme was proposed in [8,9]. It may be understood as follows. We should look 
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at the ordinary (as opposed to super) trace in (6). Define the “local” and “overall” central charge 
operators, the minus sign being a convention, respectively as

Cj = −
∑
A

JAA
j = −

∑
A

WA
j

∂

∂WA
j

, C =
n∑

j=1

Cj . (9)

These are related to the letter p in psu(2, 2|4). We should “locally” or “overally” impose Cj = 0
and C = 0, respectively, to obtain local or overall psu(2, 2|4) symmetry, and not some central 
extension of it. The idea in [8,9] was to do away with local invariance, and to just impose the 
overall one. This maneuver has an interesting mathematical as well as physical interpretation. 
Mathematically, we are led to the so-called evaluation representation of the Yangian, where (7)
is modified to

JAB =
n∑

j=1

JAB
j and ĴAB = 1

2

∑
i<j

(−1)C
[
JAC

i J CB
j − JAC

j J CB
i

] −
n∑

j=1

vjJ
AB
j . (10)

“Switching on” non-zero eigenvalues cj for the deformed local central charges Cj results in non-
vanishing evaluation (or spectral) parameters vj . We will momentarily give the relation between 
the cj and the vj , see (14) below. Physically, we can interpret the procedure by rewriting the Cj

of (9) in terms of spinor-helicity variables. One finds

Cj = 2 + λα
j

∂

∂λα
j

− λ̃α̇
j

∂

∂λ̃α̇
j

− ηA
j

∂

∂ηA
j

= 2 − 2hj (11)

where hj is the super-helicity of particle j . So we are deforming the helicities of the scattering 
particles. This is algebraically, read “locally”, consistent, since the quantization of helicities to 
integer or half-integer values is due to global properties of the conformal group. One could 
then ask how the Graßmannian contour formulas are deformed. The final answer is exceedingly 
simple, and very natural. Let us define shifted spectral parameters [10]

v±
j = vj ± cj

2
. (12)

As we will prove in Section 3, one then finds that (3) is elegantly deformed to

An,k

({
v±
j

}) =
∫

dk·nC
vol(GL(k))

δ4k|4k(C ·W)

(1, ..., k)1+v+
k −v−

1 . . . (n, ... , k − 1)1+v+
k−1−v−

n

. (13)

Note that it is not really the Graßmannian space Gr(k, n) as such that is deformed, but the inte-
gration measure on this space. One easily sees that the GL(k) symmetry of (3) is also preserved: 
The measure times delta function factors are SL(k) invariant, and so are the minors. Finally, 
invariance under an overall scale transformation of C is ensured by the telescoping property of 
the deformation weights on the minors and the vanishing of overall central charge. We will show 
below that formula (13) is Yangian invariant, iff we impose n conditions on the 2n deformation 
parameters {v±

j }:
v+
j+k = v−

j for j = 1, . . . , n. (14)

One may then ask, whether the change of variables allowing to go from (3) to (8) still goes 
through under the deformation. Using the following relation from [6] between the minors of the 
matrices C and Ĉ
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(i + 1, ..., i + k̂)
Ĉ

= (i, ..., i + k − 1)C

〈i, i + 1〉 . . . 〈i + k − 2, i + k − 1〉 , (15)

where the subscripts indicate which matrix we consider when evaluating the minors, one easily 
proves that (8) deforms into

An,k

({
v±
j

}) = δ4(Pαα̇)δ8(QA
α )

〈12〉1+v+
2 −v−

1 . . . 〈n1〉1+v+
1 −v−

n

× An,k

({
v±
j

})
, (16)

with

An,k

({
v±
j

}) =
∫

dk̂·nĈ
vol(GL(k̂))

δ4k̂|4k̂ (Ĉ ·Z)

(1, ..., k̂)
1+v+

k̂+1
−v−

n
. . . (n, ..., k̂ − 1)

1+v+
k̂

−v−
n−1

. (17)

Note that both the MHV-prefactor and the contour integral are deformed. From (14), we see that 
the total number of deformation parameters is k-independent and equals n − 1, since (13), (16)
depend only on differences of the {v±

j }.

2. Meromorphicity lost and gained

Let us take a closer look at the deformed Graßmannian integrals (13) and (16), (17), and com-
pare them to their undeformed versions (3), (8). The latter have poles in the integration variables 
Caj or Ĉaj , related to the vanishing of the minors. Apart from the delta functions, the integrand is 
meromorphic, or even better, just a rational function. In contrast, choosing the parameters {v±

j }, 
constrained by (14), to be non-integer, we see that generically all poles turn into branch points. 
Meromorphicity is lost. This does not seem to cause a problem for the MHV amplitudes, where, 
at least formally, we simply obtain a deformed Parke–Taylor formula, namely the prefactor of the 
integral in (16). However, for non-MHV amplitudes with k̂ > 0, some integrations remain. In the 
undeformed case, these integrations are performed by the residue theorem. Here it is important to 
properly choose the contours in order to encircle the correct poles. This choice is dictated by the 
Britto–Cachazo–Feng–Witten (BCFW) recursion relations [11], which of course are also based 
on the residue theorem. The result is that the “top-cell” expressions (3), (8) decompose into spe-
cific linear combinations of residues. These are themselves Yangian-invariant, and correspond to 
on-shell diagrams of [12]. The important point now is to realize that the residue theorem is no 
longer available in the deformed case due to the appearance of branch cuts. So it does not make 
sense anymore to decompose the top-cell diagram into subsidiary on-shell components in a naive 
fashion, i.e. as though the residue theorem was still valid. Put differently, we have to give up the 
BCFW recursion relations, at least in the way we knew them. This is entirely consistent with 
the findings of [10,13,14], where it was shown that the deformed subsidiary Yangian-invariant 
on-shell diagrams in the non-MHV case cannot consistently be summed up to a deformed am-
plitude. However, this does not mean that non-MHV amplitudes cannot be deformed. It merely 
means that we cannot decompose them as in the undeformed case. Instead, we should take the 
deformed top-cell Graßmannian integrals seriously, and consider them to yield Yangian-invariant 
deformations of all Nk̂MHV tree-level amplitudes. We then have to perform the remaining inte-
grations in the presence of branch cuts. While this certainly complicates things, there are three, 
related, potential benefits. Firstly, if the contours are chosen appropriately, we may hope to gain 
meromorphicity in the deformation parameters {v±

j }, to compensate for the lost meromorphicity 
of the integrand on the Graßmannian manifold. This opens up an exciting perspective: We should 
look for a deformed analog of the BCFW relations in the space of spectral parameters. Secondly, 
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by way of conjecture, demanding complete analyticity of the deformed amplitude away from 
the poles in the {v±

j } should strongly constrain the contours. The contours of the Graßmannian 
integral would be determined from a powerful principle. Thirdly, we may hope that all proper 
contours will be compact, and will stay away from all branch points. At loop level, this should 
ensure the regularization of all notorious infrared divergences, as no minors on the Graßmannian 
will ever vanish along the contours.

Let us further motivate these ideas with a small mathematical Gedankenexperiment. Consider 
Euler’s integral of the first kind, or beta function

B(α1, α2) =
1∫

0

dc

c1−α1(1 − c)1−α2
. (18)

It is well defined if Reα1 > 0 and Reα2 > 0. Euler showed that it equals Γ (α1)Γ (α2)/Γ (α1 +
α2), where Γ (α) is his integral of the second kind, also known as the Gamma function. The 
result is actually a meromorphic function in both α1 and α2, a fact that is totally obscure from 
the integral representation (18). In order to render this double-analytic continuation manifest, 
Pochhammer [15], not being scared by passing several times through a cut, replaced (18) by

B̃(α1, α2) = 1

(1 − e2πiα1)(1 − e2πiα2)

∫
P

dc

c1−α1(1 − c)1−α2
, (19)

where the Pochhammer contour P is a closed path in the complex c plane going clockwise 
around c = 0, then clockwise around c = 1, then counterclockwise around c = 0, then coun-
terclockwise around c = 0, finally returning to the starting point. This continued function equals 
again Γ (α1)Γ (α2)/Γ (α1 +α2), but now allows for any complex values of α1, α2 �= Z. Poles and 
zeros are recovered by taking limits where the αj tend to integer values. Note that the poles at 
which the beta function diverges have neatly factored out; the prefactor-stripped contour integral 
in (19) is manifestly finite (we never come close to c = 0, 1) and manifestly analytic in the αj

(the contour is compact and does not care about the specific values of the αj ).
In summary, (18) should be a toy “positive Graßmannian” integral, while (19) should be the 

proper analytically continued complex version. Of course, given the integrand, meromorphicity 
is not sufficient. If we, e.g., take a big circle around both branch points such that, for simplicity, 
α1 + α2 = 0, we just get zero: Certainly a meromorphic function. But then we do not match the 
“positive Graßmannian” integral. This is how positivity properties might complement meromor-
phicity in order to completely constrain the contours.

3. Further details

In this section we present some details on the derivation of the deformed Graßmannian for-
mula (13) and prove that it is invariant under the action of the level-zero and the level-one Yangian 
generators (10). The deformed dual Graßmannian formula (16) then follows through the same 
change of variables used in [6]. As we have already pointed out, the GL(k) symmetry restricts 
possible deformations of (3) considerably. Let us make the following ansatz

An,k

({γj }
) =

∫
dk·nC

vol(GL(k))

(
n∏

(i, ..., i + k − 1)−1+γi

)
δ4k|4k(C ·W), (20)
i=1
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with 
∑

i γi = 0. It differs from the most general form by the fact that only cyclic minors are 
employed. However, we will see shortly that this suffices. Indeed, we may relate γj to the eval-
uation representation parameters vj and central charges cj by demanding Yangian invariance 
of (20). One way to proceed in order to verify this ansatz is to construct the Yangian invariants as 
presented in [16], see also [13]. The authors of these papers generalized the approach proposed 
in [17], similar to, but different from a standard Algebraic Bethe Ansatz, in order to find eigen-
vectors of the monodromy matrices acting on a suitable quantum space of an inhomogeneous 
spin chain. There is a natural classification of all such invariants by permutations σ , and we will 
be interested here only in the case where the invariants are associated to the shift

σn,k(i) = i + k (mod n). (21)

It corresponds to the aforementioned top-cell of the positive Graßmannian Gr+(k, n) of [12]. The 
permutation (21) admits the following decomposition into adjacent transpositions [13]

σn,k = (k, k + 1) . . . (n − 1, n)︸ ︷︷ ︸ . . . (23) . . . (n − k + 1, n − k + 2)︸ ︷︷ ︸
× (12) . . . (n − k,n − k + 1)︸ ︷︷ ︸, (22)

where (ij) denotes the transposition of the elements i and j . Using (22) one can construct Yan-
gian invariants |ψ〉n,k for top-cells as

|ψ〉n,k = Bn−k,n−k+1(yn−k,n−k+1) . . .B12(y1,n−k+1)︸ ︷︷ ︸
×Bn−k+1,n−k+2(yn−k,n−k+2) . . .B23(y1,n−k+2)︸ ︷︷ ︸ . . .

×Bn−1,n(yn−k,n) . . .Bk,k+1(y1,n)︸ ︷︷ ︸
k∏

i=1

δ4|4(Wi ), (23)

where yij = v−
i − v−

j , and the v−
i are given in (12). The operators Bij (u) are formally defined in 

terms of complex powers u of the product of super-twistor variables and their derivatives

Bij (u) = (−Wj · ∂Wi
)u = −Γ (u + 1)

2πi

∫
dα

(−α)1+u
eαWj ·∂Wi , (24)

where we abbreviated ∂WA
i

≡ ∂

∂WA
i

. The attentive reader should be puzzled by this complex 

power of a derivative operator. In fact, extensions of ordinary derivatives to operators with arbi-
trary powers are called fractional derivatives. They are more akin to integral operators and have 
manifold representations, which depend on the ranges of variables and parameters, see [18] for 
a review. We will not enter into any details here, but suggest that fractional calculus might play 
an important role in the construction of deformed amplitudes. Using the fact that the operators 
Bij (u) act as shift operators, we may rewrite (23) as a Graßmannian integral and read off the 
powers of the minors. In a case-by-case study up to a high number of particles n as well as 
various values for k, we obtained (13), up to a trivial normalization, along with the proper defor-
mation parameters written in terms of the vj and the cj subject to the relation (14). It is possible 
to prove (13) for all n and k by induction, using the approach presented above. However, the 
proof is very technical and is omitted here. Instead, we shall simply prove Yangian invariance by 
directly acting with the Yangian generators on the expressions (13), (14) generalized from the 
case-by-case results.
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To this purpose we will follow closely the steps of [19], appropriately adapted to our deformed 
case. Let us start from a Graßmannian integral deformed with generic powers, see again (20). 
We notice that invariance under the level-zero generators imposes restrictions equivalent to the 
requirement that the measure of the Graßmannian integral is GL(k) invariant. This leads to

n∑
i=1

γi = 0. (25)

Next, let us turn to the level-one generators Ĵ in (10) and rewrite their bilocal part as

1

2

∑
i<j

(−1)C
[
JAC

i J CB
j − (i ↔ j)

] = 1

2

(
2
∑
i<j

+
∑
i=j

−
∑
i,j

)
(−1)CJAC

i J CB
j . (26)

The last term is just a product of level-zero generators, and thus vanishes on the Graßmannian 
integral. A rearrangement of the other two terms leads to∑

i<j

(
WA

i ∂WB
j
WC

j ∂WC
i

−WA
i ∂WB

i

) +
∑

i

ciWA
i ∂WB

i
, (27)

where we again omitted level-zero generator contributions.
Along the lines of [19], the differential operators in the variables WA

i can be exchanged for 
operators in the variables cai when acting on the delta functions:

WC
j ∂WC

i
δ4k|4k(C ·W) =

(
k∑

a=1

cai

∂

∂caj

)
δ4k|4k(C ·W). (28)

The next and crucial step is to integrate by parts. Here we need to be sure that no boundary terms 
arise. This is ensured as long as the integration contours are closed. For open contours, one has 
to check that the boundary terms vanish. Proceeding under this assumption, we arrive, after some 
manipulations of the minors, at

ĴABAn,k

({γj }
) =

k∑
b=1

∫
dk·nC

vol(GL(k))

(
n∏

i=1

(i, ..., i + k − 1)−1+γi

)
(29)

×
[
−

∑
i<j

γj + 1

2

n∑
i=1

ci −
n∑

i=1

vi

]
WA

i cbi ∂Bδb

∏
m �=b

δm, (30)

where we have defined for sake of simplicity

δl := δ4|4
(

n∑
i=1

cliWA
i

)
. (31)

Since we require this expression to vanish, we need to impose, that the term inside the square 
bracket be proportional to a mutual constant for every i

−
n∑

γj + 1

2
ci − vi = β, i = 1, . . . , n. (32)
j=i+1
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Any such β simply multiplies a term proportional to level-zero generators, which leads to imme-
diate annihilation of the deformed amplitude. This system of equations, together with (25), has 
the solution

γj = v−
j − v−

j−1, j = 1, . . . , n, with v−
n = −β. (33)

This is exactly the same condition we found for a large number of n and k by using the B-operator 
method. By acting with the central charges Cj on (20) we easily arrive at the relation (14). This 
finishes the proof that (13) with (14) is Yangian invariant.

4. A first look at n = 6, k = 3

In this section our main focus will be on the simplest non-trivial example, namely the NMHV 
six-point amplitude. The emerging structure is already very rich and rather subtle. Here we 
present only a preliminary exploration, an in-depth study will be performed elsewhere.

As a warm-up exercise, let us start with the five-point NMHV amplitude, which was already 
successfully deformed in [9] in ordinary (as opposed to momentum) twistor space. In the present 
context it is given by (16) together with the integral (17), where n = 5 and k̂ = 1. One immedi-
ately sees that the number of delta functions equals the number of integrations and the integral is 
formally evaluated by localizing it on the support of the delta functions. This yields

A5,3
({

v±
j

})
= δ0|4(〈1234〉χ5 + 〈5123〉χ4 + 〈4512〉χ3 + 〈3451〉χ2 + 〈2345〉χ1)

〈1234〉1+v+
1 −v−

4 〈5123〉1+v+
5 −v−

3 〈4512〉1+v+
4 −v−

2 〈3451〉1+v+
3 −v−

1 〈2345〉1+v+
2 −v−

5

,

(34)

written in terms of 4 × 4 determinants of four momentum-twistors

〈ijkl〉 = εABCDZA
i ZB

j ZC
k ZD

l , A,B,C,D = 1,2,3,4. (35)

One observes that the result is a deformed version of the 5-cyclic so-called R-invariant

[ijklm] = δ0|4(〈ijkl〉χm + 〈jklm〉χi + 〈klmi〉χj + 〈lmij〉χk + 〈mijk〉χl)

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉 . (36)

Let us then proceed to the scattering of six particles. This corresponds to a Graßmannian 
integral (3) defined on Gr(3, 6) in super-twistor space or, equivalently, to a Gr(1, 6) integral in 
super-momentum-twistor variables (8). In the following we will focus on the latter. It is known 
[4] that in the undeformed case (8) may be reduced to an integral over one variable, and that the 
integrand is a rational function with six poles: the amplitude is a specific combination of three 
residues evaluated at these poles, accomplished by choosing a suitable contour of integration. It 
is fixed by the BCFW recursion relation. The answer is given by a sum of three 5-cyclic terms

A6,3 = [12 345] + [12 356] + [13 456]. (37)

This result is not manifestly 6-cyclic. However, using a six-term identity, which stems from the 
fact that a contour enclosing all six poles yields a vanishing integral due to the rationality of the 
integrand, one may alternatively rewrite it in 6-cyclic form as

A6,3 = 1([12 345] + [23 456] + [34 561] + [45 612] + [56 123] + [61 234]). (38)

2
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Let us study what happens once we introduce our deformation parameters. Since we have to 
abandon the BCFW recursion relations, which led to the particular combination of R-invariants 
in (37), we do not immediately have a first-principle prescription on how to define the deformed 
amplitude. However, we may study the properties of the integral (17) and analyze the emergence 
of (37) as all deformation parameters tend to zero. The Graßmannian integral (17) now reads

A6,3
({

v±
j

}) =
∫ 6∏

i=2

dc1i

c
1−αi

1i

δ4|4(Z1 + c12Z2 + ... + c16Z6), (39)

where we have fixed the GL(1) invariance by setting c1 = 1, and put for brevity αi = v−
i−1 −v+

i+1. 
Note again α1 + . . . + α6 = 0, which explains why the dependence on α1 has disappeared 
from (39). In order to render the integral (39) well defined we need to specify a contour of 
integration. As we know, (39) is a formal a solution of the Yangian invariance conditions. These 
take the form of second order differential equations in many variables, which means that there 
are many linearly independent solutions. These solutions will be specified by choosing different 
contours. We postpone the discussion of finding appropriate contours and treat the integral for-
mally for the moment. By saturating the four bosonic delta functions in (39), we can express any 
four of the variables c1i in terms of the remaining fifth one, which still remains to be integrated. 
We choose this w.l.o.g. to be c16 and find the following solution

c1i = ai + bic16 i = 2, ...,5, (40)

where ai and bi are given by ratios of momentum-twistor four-brackets (35). In explicit form,

a2 = −〈1345〉
〈2345〉 , a3 = −〈1245〉

〈3245〉 , a4 = −〈1235〉
〈4235〉 , a5 = −〈1234〉

〈5234〉 , (41)

b2 = −〈6345〉
〈2345〉 , b3 = −〈6245〉

〈3245〉 , b4 = −〈6235〉
〈4235〉 , b5 = −〈6234〉

〈5234〉 . (42)

The reader may easily convince herself that, after the change of variables c16 = − a5
b5

τ , the re-
maining one-variable integral becomes

I = 1

〈2345〉
( 〈1234〉

〈2346〉
)α6 5∏

i=2

a
−1+αi

i

∫
dττ−1+α6(1 − τ)−1+α5

4∏
i=2

(1 − ziτ )−1+αi

× δ0|4
(

χ1 +
5∑

i=2

(1 − ziτ )aiχi + 〈1234〉
〈2346〉τχ6

)
, (43)

with (note z5 = 1)

zi = a5bi

b5ai

. (44)

The fermionic delta function is a polynomial in τ of degree four, with Graßmann-valued coef-
ficients. The integrand has branch points at τ = ∞, z−1

2 , z−1
3 , z−1

4 , 1, 0 for α1, . . . , α6 /∈ Z. We 
notice that this integral is of hypergeometric type. It satisfies a supersymmetric version of the hy-
pergeometric differential equation, a statement which is equivalent to the Yangian invariance of 
NMHV amplitudes, see Section 5 below. So far we have not specified the contour, nor spelled out 
any possible boundaries of integration in (43). As we pointed out before, this integral is Yangian 
invariant only if all potential boundary terms vanish when integrating by parts as in Section 3. 
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This is trivially the case if we take a closed contour, and less trivially for open contours between 
any two branch points such that their associated exponents αj have positive real parts. Note that 
this is not simultaneously possible for all αj , since their sum vanishes. The five branch points at 
finite positions and the branch point at infinity divide the real line into six segments. For any two 
consecutive branch points τ1 < τ2 let us define I(τ1,τ2) to be the integral (43) integrated between 
τ1 and τ2. With a suitable change of coordinates all the allowed (i.e. positive real parts of the 
exponents at τ1 and τ2) integrals I(τ1,τ2) may be brought to the form of the type-D Lauricella 
hypergeometric function, which is defined as

FD(α,β1, β2, β3, γ ; z1, z2, z3) = Γ (γ )

Γ (α)Γ (γ − α)

×
1∫

0

uα−1(1 − u)γ−α−1
3∏

j=1

(1 − zju)−βj du, (45)

where convergence restricts this integral representation to Re(α) > 0, Re(γ − α) > 0. In order 
to uncover some of the analytic properties of our deformed integral, let us focus on I(0,1). After 
expanding the fermionic delta functions in (43) and using the definition (45), we can substitute 
the integral with the series expansion of the type-D Lauricella hypergeometric function

FD(α,β1, β2, β3, γ ; z1, z2, z3) =
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

(α)m1+m2+m3(β1)m1(β2)m2(β3)m3

(γ )m1+m2+m3m1!m2!m3!
× z

m1
1 z

m2
2 z

m3
3 , (46)

where (α)m is the (raising) Pochhammer symbol. We may now evaluate (43) as an expansion in 
the αi around zero. The result, up to the first subleading order, is given by

I(0,1) = 1

α6

δ0|4(〈1234〉χ5 + 〈5123〉χ4 + 〈4512〉χ3 + 〈3451〉χ2 + 〈2345〉χ1)

〈2345〉1−α1〈3451〉1−α2〈4512〉1−α3〈5123〉1−α4〈1234〉1−α5

+ 1

α5

δ0|4(〈1234〉χ6 + 〈6123〉χ4 + 〈4612〉χ3 + 〈3461〉χ2 + 〈2346〉χ1)

〈2346〉1−α1〈3461〉1−α2〈4612〉1−α3〈6123〉1−α4〈1234〉1−α6

+ ([12 345] + [12 346]) log〈1234〉 − [23 456] log
〈2346〉
〈2345〉 + [13 456] log

〈1346〉
〈1345〉

− [12 456] log
〈1246〉
〈1245〉 + [12 356] log

〈1236〉
〈1235〉 +O(αi), (47)

where the term proportional to 1
α6

is exact to all orders in αi for i = 1, . . . , 5, and similarly for 

the term proportional to 1
α5

. We notice that the residues in front of the leading divergent terms 
are the deformed R-invariants as in (34)! Clearly we could recover all possible R-invariants 
by focusing on other branch points. This is exciting, since we now see where the deformed 
lower-cell diagrams hide: They are no longer residues on the Graßmannian manifold as in the 
undeformed case, but instead sit in front of poles in the space of deformation parameters. This 
already points towards the dissolution of the no-go theorem derived in [10]. There it was shown 
that it is impossible to just add the deformed BCFW terms and to thereby obtain a Yangian 
invariant result without restricting the deformation parameters. The just derived result suggests 
instead, that the deformed BCFW terms should be multiplied by poles, appropriately summed, 
and then analytically completed by infinitely many further terms, see (47).
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While it is clear that we have not lost any relevant information by our deformation, of course 
the reader would presumably still like to know how to recover the undeformed amplitude from 
the deformed integral in practice. Let us sketch a possible procedure. From the point of view of 
the differential equations given by demanding Yangian invariance, the undeformed result follows 
directly from setting vi = 0 in the definition of Yangian generators (10). Let us try to take the 
same limit at the level of the solutions to those equations. We need to proceed very carefully 
here. To demonstrate subtleties of removing the deformation, let us consider the much simpler 
classic hypergeometric function 2F1 as an example. This function gives a basis of solutions to 
the second order ordinary differential equation

z(1 − z)
d2w(z)

dz2
+ (

c − (1 + a + b)z
)dw(z)

dz
− abw(z) = 0. (48)

For generic values of a, b, c there are two linearly independent solutions to that equation

2F1(a, b, c, z) and z1−c
2F1(a − c + 1, b − c + 1,2 − c, z). (49)

However, these two solutions do not span the solution space at the “resonant” values of the pa-
rameters, where either of the conditions c, c−a −b, a −b ∈ Z is satisfied. In that case one has to 
first take a particular combination of two generic solutions, and in a subsequent step take the limit 
to a resonant value. We expect a similar behavior in our case – removing the deformations cor-
responds to considering the resonant values of parameters. The proper combination of solutions 
should be given by a deformed version of the BCFW recursion relations, presumably transferred 
from the Graßmannian manifold to the set of spectral planes. This will be analyzed elsewhere.

Before closing this section let us point out that there exists a method to render the integrals 
I(τ1,τ2) manifestly meromorphic in the deformation parameters αi employing Pochhammer’s 
procedure described in Section 2. We just define the analytic continuation of I(τ1,τ2) by using 
Pochhammer cycles around the branch points τ1 and τ2. As a first example let us take again 
I(0,1). We may then define, confer (19),

Ĩ(0,1) = 1

(1 − e2πiα6)(1 − e2πiα5)

1

〈2345〉
( 〈1234〉

〈2346〉
)α6

×
5∏

i=2

a
−1+αi

i

∫
P(0,1)

dττ−1+α6(1 − τ)−1+α5

×
4∏

i=2

(1 − ziτ )−1+αi δ0|4
(

χ1 +
5∑

i=2

(1 − ziτ )aiχi + 〈1234〉
〈2346〉τχ6

)
, (50)

where P(0,1) is the Pochhammer contour snaking around the branch points at 0 and 1. This 
integral agrees with I(0,1) as long as Reα5 > 0 and Reα6 > 0. The question we have not fully 
analyzed yet is how to reassemble these building blocks into the “correct” multi-meromorphic 
function corresponding to the properly deformed amplitude. Here a matching to the “positive 
Graßmannian” with “positive” external data is presumably sufficiently constraining.

5. Further directions

In the previous section we have encountered the deformation of the A6,3 amplitude in terms of 
Lauricella hypergeometric functions. It turns out that there is a broader class of hypergeometric 
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functions, introduced by Gelfand [20], which are very closely connected to our deformations.1 In 
this section we will sketch possible relations between the two. General hypergeometric functions 
also make their appearance as solutions to the Knizhnik–Zamolodchikov equation. We suggest 
how the latter may be related to Yangian invariants.

First of all, let us emphasize that Yangian invariants are solutions to a particular set of dif-
ferential equations of first and second order. In the case of NMHV amplitudes2 written in 
momentum-twistor space these equations may be elegantly rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
A

ZA
j

∂

∂ZA
j

F = αjF,

∑
j

ZA
j

∂

∂ZB
j

F = −(−1)AδABF,

∂2

∂ZA
j ∂ZB

i

F = ∂2

∂ZA
i ∂ZB

j

F,

(51)

where F is the Gr(1, n) Graßmannian integral (17). The first set of equations is the statement 
of homogeneity of F in the ZA

j variables, where the αj are related to the representation la-
bels cj and vj . The second group of equations is the statement of gl(4|4) (or more generally 
gl(N |M)) invariance of F . The third set may be interpreted as the action of the level-one Yan-
gian generators when written in momentum-twistor space. A similar set of equations arises for 
the bosonic algebras gl(N) in the definition of the Gelfand hypergeometric functions, see [21]
for introductions to this subject. These are hypergeometric functions in several variables. They 
possess representations in terms of complex integrals of complex powers of polynomials, and 
are naturally associated to Graßmannians. Let us note that Nk̂MHV amplitudes for k̂ > 1 do not 
satisfy (51). It would be intriguing to find a more general version of these differential equations 
allowing for arbitrary k̂.

Another interesting observation is a link between Yangian invariants and the solutions to the 
quantum version of the Knizhnik–Zamolodchikov (qKZ) equation [22], which appears e.g. as 
a constraint on correlation functions of vertex operators in two-dimensional integrable con-
formal field theories. Let us consider a function Φ(z1, . . . , zn) with values in a tensor product 
V1 ⊗ . . . ⊗ Vn of highest weight gl(N |M)-modules. The qKZ equation is a system of difference 
equations satisfied by Φ of the form

Φ(z1, . . . , zi + p, . . . , zn) = Ki(z1, . . . , zn;p)Φ(z1, . . . , zn) (52)

with the qKZ operators Ki given by

Ki(z1, . . . , zn;p) = Lii−1(zi − zi−1 + p) . . .Li1(zi − z1 + p)

× L−1
ni (zn − zi) . . .L−1

i+1i (zi+1 − zi). (53)

The operators Lij (z) are intertwiners corresponding to pairs Vi , Vj and p ∈ C. The solutions 
to the system of Eqs. (52) can be found using the Algebraic Bethe Ansatz technique [23], since 
they are related to the eigenvectors of a suitable transfer matrix defined on an inhomogeneous 

1 The relevance of Gelfand hypergeometric functions, as described in [21], as well as the relation to the qKZ equations 
were independently noticed by Nils Kanning and Rouven Frassek.

2 We suspect that there exists an even larger class of hypergeometric differential equations satisfied by the general 
NkMHV amplitudes. However, we were not able to find these in the mathematical literature.
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spin chain. In [24] it was shown that also the Yangian invariance condition can be rewritten as 
an eigenproblem for such a spin chain, where the Yangian invariants are the eigenvectors of the 
monodromy matrix. Since the transfer matrix may be obtained from the monodromy matrix by 
taking the trace over an auxiliary vector space, this should result in a relation between Yangian 
invariants and the solutions Φ in (52). It would be very interesting to make this relation explicit.

Interestingly, the classical limit of the qKZ equation, the ordinary Knizhnik–Zamolodchikov 
(KZ) equation [25], appeared already in the context of scattering amplitudes in N = 4 SYM in 
the direct Feynman diagram calculations [26]. This is not surprising, since it is closely related 
to polylogarithm functions, which form a functional basis for loop-level results in any quantum 
field theory. It should be instructive to further investigate this relation.

One may suspect that the deformation of the N = 4 Yangian-invariant Graßmannian con-
tour integrals will also work in the case of the planar three-dimensional N = 6 super-conformal 
Chern–Simons model: A Yangian-invariant Graßmannian integral formula for this so-called pla-
nar ABJM theory was derived in [27], and much of the on-shell diagram formalism of [12] carries 
over from the four- to the three-dimensional model. This is indeed the case, as was very recently 
shown in [28]. The authors also report an independent derivation of our N = 4 expressions (13)
and (16), (17).

6. Outlook

Clearly, the integrable deformation of the Graßmannian approach to scattering amplitudes is 
of great mathematical interest. It is fairly obvious that the deformed integrals lead to generalized 
multi-variate hypergeometric functions. This is a rich subject intensively investigated by math-
ematicians from the mid-18th century all the way to the present. From the physics perspective, 
we need to establish that the deformed Graßmannian integrals are useful for loop calculations. 
We hope that they will lead to a deepened analytic understanding of all radiative corrections to 
the tree-level amplitudes, while staying in exactly 1 + 3 dimensions. We feel very encouraged 
by the interesting work of Penrose and Hodges, who considered the very same deformations 
already since the early days of the twistor approach, with the goal of regulating massless scatter-
ing processes in quantum field theory [29]. The only missing elements were supersymmetry and 
integrability. In this context the next step, apart from in-depth investigations of various special 
cases, might be to directly deform the amplituhedron of [30].
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