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Switched-current filter structure for synthesizing arbitrary characteristics 

based on follow-the-leader feedback configuration 

Wenshan Zhao·Yigang He·Yichuang Sun 

 

 

Abstract A switched-current (SI) filter structure with 

follow-the-leader feedback configuration has been 

proposed for synthesizing arbitrary transfer functions. 

The double-sampling fully-balanced SI bilinear integrator 

and current mirror are employed as the building cells in 

order to enhance overall performance and make circuit 

design more flexible. Also, explicit design formulas are 

derived by using coefficient matching. The third-order 

low-pass and band-pass filter are designed as the 

examples. Simulation results confirm that the presented 

filter structure is very suitable for the operation with high 

sampling-to-cutoff frequency ratio, and can synthesize 

arbitrary filter characteristics precisely and easily while 

keeping low sensitivity.  

 

Keywords Switched-current filter · Multiple-loop 

feedback · Bilinear transform · Double-sampling 

fully-balanced·Follow-the-leader feedback configuration 

1 Introduction 

Switched-current (SI) filter has attracted much attention 

over the past few decades [1]. Compared with 

continuous-time filter [2-9], the time constant of SI filter 

can be fabricated accurately in the IC process, since the 

time constant depends on the well-matched values of the 

same kind of components, i.e. MOSFET aspect ratio. 

Also, SI filter has been considered as an alternative to 

switched-capacitor (SC) filter in mixed signal systems, 

owing to the characteristic of compatibility with digital 
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VLSI technology. To date, several competitive SI basic 

cells have been presented [10-16]. However, the 

generation of SI filter structure has not been investigated 

well so far, which has greatly impeded the widespread 

application of SI technique. Till now, only a few SI filter 

structures have been proposed, among which the LC 

ladder simulation structure [17,18] is considered as the 

optimum choice due to the lower magnitude sensitivity 

compared with cascade [19] and parallel [20] structures. 

Albeit successful in many aspects, the ladder simulation 

methods are normally based on a particular passive RLC 

prototype and can only realize limited transmission zeros 

[21], thus being not general enough for synthesizing the 

transfer function with non-conventional zeroes. In 

addition, the ladder simulation methods need knowledge 

of passive RLC filters, and do not have explicit design 

formulas, which have become an obstacle for 

nonspecialist SI designers to conduct rapid and accurate 

filter realization. 

Under this background, this Letter aims to propose an 

SI filter structure with general applicability, simple 

synthesis procedure and explicit design formulas. To 

achieve this goal, the SI filter structure with 

follow-the-leader feedback (FLF) configuration is 

presented, and bilinear SI integrator is employed as the 

building cell. It should be noted that unlike in the 

continuous-time filter design, discrete-time multiple loop 

feedback SI filters have not been investigated as a general 

methodology. Although a FLF SI structure was first used 

in wavelet filter design [22], it has several shortcomings 

for practical implementation as will be commented later. 

This Letter proposes a novel realization structure by 

using several enhancement techniques, e.g. employing 

double-sampling fully-balanced configuration and 

introducing more design variables to obtain realizable 

circuit parameters. 

2 Proposed SI filter structure 

2.1 Building cells 



As the sampled-data technique, SI filters need to be 

synthesized through performing z-transform on the 

transfer function given in s-plane, i.e.  
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Bilinear z-transform can guarantee stability and avoid 

amplitude distortion, thus SI bilinear integrator (BI) is 

selected as the building block. Fig.1(a) gives the 

universal structure for employed double-sampling 

fully-balanced SI BI operated with two non-overlapping 

phase ϕ1 and ϕ2, in which Mi and its associated bias 

current source J constitute the integrator core. Herein, Mi 

is symbolized by black box for generality, and represents 

the elementary current memory, which samples input 

current on phase ϕi and sustains on the next phase. 

Simply, Mi can be realized by an NMOS transistor with 

associated switch closed on phase ϕi [10], the so-called 

second generation SI memory cell. But, for cancelling 

non-ideal behaviour, several enhancement techniques 

such as cascode and S2I can be used [10-16]. Particularly, 

when S2I technique is selected to realize Mi and J, 

Fig.1(a) can be specialized to the structure used in 

[17,18]. 

On phase ϕ1 of clock period (n-1), balanced input 

currents i+ and i- flow into the left and right single-ended 

integrator cell, respectively. M1 samples current and M2 

sustains the current stored on phase ϕ2 of clock period 

(n-2). Thus, the currents flowing in M1 and M2 have the 

relationship as below: 

1 2( 1) 2 ( 1) ( 1)L Li n J i n i n             (2) 
-

1 2( -1) 2 ( -1) - ( -1)R Ri n J i n i n         (3) 

On phase ϕ2 of clock period n, balanced input currents 

i+ and i- flow into the right and left single-ended 

integrator cell, respectively. M1 sustains the current 

stored on phase ϕ1 of clock period (n-1), i.e. 

1 1( ) ( -1)L Li n i n              (4) 

1 1( ) ( 1)R Ri n i n               (5) 

M2 samples current, which can be expressed as 

2 1( ) 2 ( ) ( )L Li n J i n i n            (6) 

 
2 1( ) 2 ( ) ( )R Ri n J i n i n            (7) 

Then, the balanced output currents iα
+ and iα

- can be 

given as 

2 1( ) 2 ( ) ( )L Ri n J i n i n               (8) 

1 2( ) 2 ( ) ( )L Ri n J i n i n               (9) 

where integrator coefficient α is defined by the current 

mirror ratio between the transistor in the integrator core 

and that at the output. 
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Fig.1 Building cells of SI filter (a) bilinear integrator,  

(b) current mirror, (c) phase sequence 

Substituting (2)-(7) into (8) and (9), one can deduce 

that 

( ) ( 1) [ ( ) ( 1)]i n i n i n i n                  (10) 

( ) ( 1) [ ( ) ( 1)]i n i n i n i n                  (11) 

Denoting iα
+= -iα

- =iα and i+= -i- =i, one can have that 
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Observed from (10) and (11), when input signal is 

common-mode (i.e. i+ =i-), the transfer function of BI 

cell can be given as  
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Fig.2 Double-sampling fully-balanced SI filter structure based on FLF configuration 

 

( )BIH z                (13) 

which means common-mode signal is not integrated but 

mirrored to the output with coefficient α. 

Another building cell used in this Letter is the 

double-sampling fully-balanced current mirror (CM). 

Fig.1(b) shows the universal structure of CM, which is 

constructed from Fig.1(a) by eliminating the input switches 

and changing the output connection. Conducting similar 

deduction as (2)-(9), the balanced output currents iα
+ and iα

- 

on phase ϕ2 of clock period n can be calculated as 

( ) ( )i n i n                 (14)  

( ) ( )i n i n                 (15) 

Thus, the transfer function of Fig.1(b) can be written as  
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2.2 Filter structure and synthesis 

Fig.2 shows the proposed double-sampling fully-balanced 

SI filter structure with FLF and output summation 

configuration, in which the BI cell has up to three pairs of 

balanced outputs, i.e. iα
±, iβ

± and ir
±. Fig.3 gives the 

universal structure of employed triple-output BI cell, 

realized by adding more output transistors with integrator 

coefficients β and γ in Fig.1(a). 
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Fig.3 Triple-output bilinear integrator cell 

 

Denoting the normalized output currents of BIj in Fig.2 

as ioj
± and assuming D(z)=(1+z-1)/(1-z-1), then one can have  
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Based on (17)-(19), the transfer function of Fig.2 can be 

obtained as 
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Meanwhile, applying bilinear transform
1

1

2 1

1s

z
s

T z









 to (1), 

one can have 

2 2

1 2 0

2 2

1 2 0

( ) ( ) ( ) ( ) ( )
2 2 2( )

1 ( ) ( ) ( ) ( ) ( )
2 2 2

n ns s s
n n

d
n ns s s

n n

T T T
A D z A D z A D z

H z
T T T

B D z B D z B D z

 

 

  



   

     (21) 

Using coefficient matching between (20) and (21), the 

design formulas for the parameters in Fig.2 can be obtained 

as  
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Compared with existing structures, the proposed 

structure has many advantages as below:  

First, the design method and formulas are 

straightforward and simple to use. Observed from (22), 

parameters αj, βj and γj are inter-related. By presetting αj to 

be a reasonable value, βj and γj can be easily determined. 

Herein, the ‘reasonable’ value for αj normally means 

decimal fraction, since common-mode input signal is 

mirrored to the outputs, and attenuation coefficient αj gives 

inherent common-mode rejection. In this way, the 
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common-mode feedback circuits will not be needed.  

Second, the proposed structure can realize arbitrary 

transfer function. For certain αj, any coefficients Aj (or 

zeros) and Bj (or poles) can be realized by selecting proper 

values of βj and γj based on (22), respectively. It is worth 

noting that negative βj can be simply realized by 

interchanging the related two output terminals with 

coefficient βj of BIj. Specially, if βj is zero, the related two 

output terminals of BIj should be removed. Furthermore, 

different from the FLF SI structure used in [22], a CM with 

coefficient α0 is introduced to make circuit design more 

flexible. Observed from (22), β1 and γ1 are not only 

determined by fixed values An-1 and Bn-1, but also by a 

design variable α0. Thus, choosing α0 properly can 

guarantee that the calculated β1 and γ1 are realizable. 

Moreover, due to the introduction of α0, the power of 

(Ts/2)j is just equal to the number of design variables, viz. 

αx (x=0,1,…, j-1), which means proper choice of αj can 

ensure that the calculated βj and γj are not too small to 

realize as j increases, especially when high 

sampling-to-cutoff frequency ratio is selected to obtain 

high-accuracy realization.  

Third, double-sampling fully-balanced configuration has 

superior performance over single-sampling single-ended 

configuration used in [22]. Unlike single sampling, double 

sampling processes two samples per clock period, thus can 

halve the clock frequency, lower memory cell’s bandwidth, 

and enhance signal-to-noise ratio [18]. In addition, 

single-ended SI filter proposed in [22] employs current 

mirrors to realize signal inversion, which would introduce 

excess phase errors and greatly compromise the advantages 

of bilinear z-transform [18]. Fully-balanced structure does 

not have this problem, since the signal inversion can be 

realized simply by interchanging the two input or output 

terminals of the SI integrator. 

3 Design examples 

3.1 Low-pass filter 

The third-order elliptic low-pass filter with normalized 

transfer function  

2

3 2
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( )
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s s s
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      (23) 

is selected as the example. The cutoff frequency of 10kHz 

and sampling frequency of 100kHz are chosen. To 

compensate for the distortion brought by bilinear transform, 

the specified cutoff frequency fo should be pre-warped by 

fp=(fs/π)tan(πfo/fs), where fp and fs are the pre-warped cutoff 

and sampling frequency, respectively [1]. For this example, 

fp=10.343kHz. Then, the denormalized transfer function 

has A2=5.9100×103, A1=0, A0=8.0813×1013, B2=3.7613×104, 

B1=4.0585×109, B0=8.0814×1013. 

Fig.4 shows the realization circuits using the proposed 

SI filter structure, in which the coefficients αj are preset to 

be α0=0.2, α1=0.6, α2=0.6. Thus, the circuit parameters in 

Fig.4 can be determined by (22): β1=0.1478, β2=0, 

β3=0.1403, γ1=0.9403, γ2=0.8455, γ3=0.1403. To testify the 

feasibility of proposed structure, the second generation SI 

memory cell is employed in Fig.4. Herein, the ASIZ 

program [23] is used, which can analyze the frequency 

response of SI, SC and any periodically switched network 

easily and conveniently. 

Setting the clock frequency 50kHz due to 

double-sampling operation, Fig.5 plots the magnitude 

frequency response simulated by ASIZ, along with the 

ideal response defined by (23). Apparently, the designed 

filter achieves the desired cutoff frequency, pass-band 

equiripple and stop-band attenuation. The deviation in high 

frequency is due to the aliasing effects, which can be 

reduced by an anti-aliasing filter or higher 

sampling-to-cutoff frequency ratio. As claimed in section 

2.2, the proposed filter structure is well suited for 

high-accuracy design with high sampling frequency. 

Selecting fs=200kHz, for example, the realizable circuit 

parameters can be obtained by setting α0=0.1, α1=0.3, 

α2=0.3, whose frequency response is shown in Fig.6. 

Obviously, the simulated magnitude response is almost the 

same as ideal response up to 30kHz.  

Since the time constant of SI bilinear integrator is in 

proportion to sampling frequency, the characteristic 

frequency of SI filter can be tuned precisely and easily by 

the sampling frequency. As shown in Fig.7, changing the 

sampling frequency from 200kHz to 100kHz and 400kHz 

for example, we can realize the SI filter at cutoff frequency 

of 5kHz and 20kHz, respectively.  
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Fig.4 SI structure for third-order low-pass filter 
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Fig. 5 Magnitude frequency response of low-pass SI 

filter (fs=100kHz) 

 

 

Fig. 6 Magnitude frequency response of low-pass SI 

filter (fs=200kHz) 

 

 

Fig. 7 Low-pass SI filter tuned by sampling frequency 

 

Also, the sensitivity analysis is simulated using ASIZ, 

computed by assuming 5% random errors in all the 

transistor transconductances, which is shown as the error 

margin above and below the nominal gain curve in the 

small window in Fig.5. Obviously, the proposed structure 

has low sensitivity in both pass-band and stop-band. The 

error peak at transmission zero is due to the artifact of 

computation errors created during sensitivity analysis [23]. 

3.2 Band-pass filter 

The third-order band-pass filter with normalized transfer 

function  

3 2

0.2403
( )

0.5775 0.9568 0.2925

s
H s

s s s

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      (24) 

is employed as the example. The center frequency of 

10kHz and sampling frequency of 100kHz are chosen. 

Then, the denormalized transfer function has A2=0, 

A1=1.1944×109, A0=0, B2=4.0714×104, B1=4.7557×109, 

B0=1.0250×1014.  

Fig.8 gives the SI band-pass filter based on the proposed 

structure. Presetting the coefficients αj to be identical 

values 0.4, one can determine the parameters in Fig.8 by 

(22): β2=0.1866, γ1=0.5089, γ2=0.7431, γ3=0.2002. Setting 

the clock frequency 50kHz, Fig.9 shows the magnitude 

frequency response along with the ideal response defined 

by (24). The simulated center frequency is almost the same 

as ideal value 10kHz. The simulated –3dB frequencies of 

this filter are 8.708kHz and 11.125kHz respectively, which 

are close to the ideal values (i.e. 8.583kHz and 11.250kHz). 

As claimed in section 3.1, the deviation in high frequency 

can be reduced by employing anti-aliasing filter or 

enhancing the sampling-to-center frequency ratio. The 

sensitivity analysis is depicted in the small window in Fig.9, 

which confirms that the proposed SI filter structure has 

relatively low sensitivity. 

By tuning the sampling frequency, one can adjust the 

center frequency of Fig.8 precisely and easily. Fig.10 

shows the magnitude frequency response simulated at 

sampling frequency of 50kHz, 100kHz and 200kHz, 

respectively. 
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Fig.8 SI structure for third-order band-pass filter 

 

Fig. 9 Magnitude frequency response of band-pass SI 

filter (fs=100kHz) 
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Fig. 10 Band-pass SI filter tuned by sampling frequency 

 

3.3 Analysis of excess phase error 

The SI filter structure based on single-ended FLF 

configuration has been investigated in [22], which requires 

current mirrors to produce signal inversion. It is well 

known that current mirrors would introduce excess phase 

errors. Thus, the sampling-to-cutoff frequency ratio should 

be larger in order to reduce the excess phase errors, which 

would introduce the magnitude distortion and nullify the 

advantages of bilinear z-transform. To overcome above 

shortcoming, this Letter proposes a fully-balanced SI filter 

structure based on FLF configuration, which can produce 

signal inversion simply by crossing over signal pairs. 

To testify the advantage of fully-balanced structure over 

single-ended structure at reducing excess phase error, this 

Letter uses the low-pass filter in Section 3.1 as an example. 

Following the design procedure described in Section 3.1, 

one can determine the parameters in Fig.4 at sampling 

frequency of 50kHz: α0=0.6, α1=0.9, α2=0.8, β1=0.1101, 

β2=0, β3=0.2614, γ1=0.7009, γ2=0.9395, γ3= 0.2614.  

Fig.11 shows the realization circuits of (23) by using the 

single-ended FLF SI filter structure proposed in [22]. The 

parameters in Fig.11 at sampling frequency of 50kHz can 

be obtained as: α1=0.7282, α2=0.7282, αc1=0.0661, 

αc3=0.2130, αf1=0.4205, αf2= 0.6967, αf3= 0.2130. 

Fig.12 gives the magnitude frequency response of 

fully-balanced and single-ended third-order elliptic 

low-pass filter at sampling frequency of 50kHz. The 

magnitude response of single-ended filter has been 

distorted, in which the maximum value exceeds 0dB. It can 

be seen that the single-ended filter has higher magnitude 

distortion compared with fully-balanced filter along with 

the decrease of sampling frequency.  
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Fig. 11 Single-ended SI structure for low-pass filter 

 

 

Fig. 12 Magnitude frequency response of fully-balanced 

and single-ended SI low-pass filter (fs=50kHz) 

 

4 Conclusions 

The generation of double-sampling fully-balanced FLF 

SI filter structure has been presented. The proposed 

structure can realize arbitrary transfer function with low 

sensitivity, the feature that is particularly useful in the 

applications which require non-conventional zeroes such as 

biomedical and communication systems using wavelet 

transforms. Also, the proposed structure has simple 

synthesis method and explicit design formulas, which 

enables IC designers to synthesize high performance SI 

filters rapidly and accurately.  
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