
Received July 18, 2018, accepted September 16, 2018, date of publication September 28, 2018, date of current version October 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872721

Dynamic Virtual Page-Based Flash Translation
Layer With Novel Hot Data Identification and
Adaptive Parallelism Management
QIWU LUO 1, (Member, IEEE), RAY C. C. CHEUNG 2, (Member, IEEE),
AND YICHUANG SUN 3, (Senior Member, IEEE)
1School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China
2Department of Electronic Engineering, City University of Hong Kong, Hong Kong
3School of Engineering and Technology, University of Hertfordshire, Hatfield ALl0 9AB, U.K.

Corresponding author: Qiwu Luo (luoqiwu@hfut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51704089, in part by the Anhui
Provincial Natural Science Foundation of China under Grant 1808085QF190, in part by the China Postdoctoral Science Foundation under
Grant 2017M621996, in part by the Fundamental Research Funds for the Central Universities of China under Grant JZ2018YYPY0296,
and in part by the Ph.D. Special Research Fund of HFUT under Grant JZ2016HGBZ1030.

ABSTRACT Solid-state disks (SSDs) tend to replace traditional motor-driven hard disks in high-end storage
devices in past few decades. However, various inherent features, such as out-of-place update [resorting
to garbage collection (GC)] and limited endurance (resorting to wear leveling), need to be reduced to a
large extent before that day comes. Both the GC and wear leveling fundamentally depend on hot data
identification (HDI). In this paper, we propose a hot data-aware flash translation layer architecture based
on a dynamic virtual page (DVPFTL) so as to improve the performance and lifetime of nand flash devices.
First, we develop a generalized dual layer HDI (DL-HDI) framework, which is composed of a cold data pre-
classifier and a hot data post-identifier. Those can efficiently follow the frequency and recency of information
access. Then, we design an adaptive parallelism manager (APM) to assign the clustered data chunks to
distinct resident blocks in the SSD so as to prolong its endurance. Finally, the experimental results from our
realized SSD prototype indicate that the DVPFTL scheme has reliably improved the parallelizability and
endurance of nand flash devices with improved GC-costs, compared with related works.

INDEX TERMS Solid-state drive (SSD), nand flash, flash translation layer (FTL), hot data identification,
garbage collection.

I. INTRODUCTION
NAND flash-based solid-state drive (SSD) has been trending
in various types of computers as well as in portable multi-
media products, due to its advantages of smart size, non-
volatility, energy-efficient and shockproof structure [1], [2].
Recently, many traditional hard disk drive (HDD) vendors
regard the SSD business as the most important economic
growth venue. This trend in the storage industry drives tech-
nological breakthroughs for both FTL and flash memory
chips.

However, NAND flash memory also encounters inherent
features that hinder its large-scale applications. The most
inconvenient one is that the in-place update is not allowed
due to the special organization of blocks and pages [3]. Once
a page is occupied, it cannot be programmed until the whole

residing block is erased. Such out-of-place update triggers
a large number of invalid pages, which will suppress the
performance of NAND flash devices. Another obvious pecu-
liarity is that flash memory has limited endurance. Once the
erase counts exceed the maximum level of a block, the ded-
icated storage unit will become unavailable. Consequently,
‘‘frequent-erase’’ will decrease the device lifetime. Further-
more, the data-intensive multi-level cell (MLC) flash mem-
ory draws increasing attention due to its cost-effectiveness.
Nevertheless, compared with single-level cell (SLC),
MLC has lower endurance. Thus the reliability and lifetime
of flash devices will continuously be hot and vital concerns
in the storage area [4], [5].

An FTL is commonly deployed to emulate an HDD-like
interface between the accessing host and physical

56200
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2822-5538
https://orcid.org/0000-0002-6764-0729
https://orcid.org/0000-0001-8352-2119

Q. Luo et al.: DVPFTL With Novel HDI and APM

flash memories. As for the former out-of-place update,
a recycling policy in FTL, namely garbage collection (GC),
will be activated to reclaim the blocks when the number of
invalid data hits the predefined threshold [6], [7]. Because
expensive operations (i.e., copies and erases) are involved,
frequent GC will result in significant computation over-
heads and random access memory (RAM) consumptions.
In addition, the GC further challenges limited endurance
of flash devices, then wear leveling (WL) is developed to
improve storage lifetime by impartially distributing erases
over whole flash memory [6], [8], [9]. Both the GC and WL
fundamentally depend on the hot data identification (HDI).
Various recent state-of-the-art HDI schemes focus on how
to effectively capture the frequency information and recency
information of write accesses by using reasonable runtime
overheads and memory consumptions [6], [7], [29]–[33].
Traditionally, nearly all of these approaches initially insert
all write accesses into the limited cache and then selectively
evict useless ones (with cold LBAs) from the cache after-
wards, by adopting special data structures. These accesses
of the real-world I/O traces follow a so-called ‘‘80/20’’ rule
reliably [33], which means recently accessed data will be
more likely to visit again in near future [25], [34]. In other
words, only a small fraction of memory space is frequently
referenced. Thus, the possession ratio of hot data is always
much lower than that of cold data. If the natures of temporal
localities and spatial distributions could be exploited fully,
then more lightweight HDI scheme would be achieved. This
standpoint has been preliminarily proved by the sampling-
based method in HotDataTrap [31]. Since mainly based on
random under-sampling, this scheme also incurs some degra-
dation on classification accuracy, especially when accesses
tend to be decentralized. Consequently, there still remain
imagination space on developing more efficient HDI scheme
by utilizing the behavior rules of accesses. Inspired by this
motivation, a generalized dual layer HDI (DL-HDI) frame-
work is developed in current work, which can assist many
HDI algorithms to selectively discard massive purified cold
data (i.e., 50% of the whole items) in advance. Also, this
paper considers only write accesses like MBF in [30].

Another significant aspect is how to expand the capacity
of SSD while improve the parallelizability, which basically
resorts to multi-channel and multi-way interleaving [17].
Generally, these approaches exploit parallelism of NAND
flash from the external or internal perspective. The architec-
tures in [10], [23], and [24] share a common starting point
to magnify the external parallelism via fully utilizing the
time slots between independent channels or between different
ways on a certain channel. However, the limited bandwidth
of the flash bus and the compact integration of consumer
electronics turn into the insurmountable ceilings. Further,
scholars start to take internal parallelism into consideration,
attempting to improve request response speed and wear lev-
eling performance, simultaneously [11], [12].

This paper presents a hot data-aware FTL architecture
based on dynamic virtual page (DVPFTL). Besides the

capacity and bandwidth of SSDs, the proposed DVPFTL
emphasizes GC overheads and WL performance from the
perspectives of HDI and internal parallelism. The major con-
tributions are as follows.
• A generalized HDI framework, namely DL-HDI, is pro-
posed to monitor the time-varying access behaviors
based on bloom filters. It can improve many other
HDI algorithms to discriminatively prevent massive cold
data from entering the HDI procedure. Therefore, hot
data can be accurately recognized with less runtime
overheads and memory consumptions.

• An adaptive parallelism management methodology
(APM) is developed to aggressively exploit the two-
plane program operations and to distribute hot/cold data
to appropriate resident places among flash memories.
Hence, the internal parallelism can be fully exploited
without ignoring wear leveling, while data migrations
are performed imperceptibly during channel selection
(external parallelism).

• The architecture of the DVPFTL is implemented on an
FPGA-based prototype, which provides a reference case
for the related studies on NAND flash devices.

Under a hardware configuration with 8 channels and
2 ways, the realized SSD prototype has achieved an aver-
age program rate of 120 MB/s and an average read rate
of 150 MB/s, respectively. Extensive experiments prove that
the DVPFTL scheme has reliably improved the paralleliz-
ability and endurance of NAND flash devices yet with
lightweight GC-costs.

The organization of the coming sections is as follows.
Section 2 briefly summarizes the typical construction of
NAND flash memory, FTL, HDI, and multi-interleaving.
Theoretical analysis and detailed design, including the basic
ideas and actualization procedures, are demonstrated thor-
oughly in Section 3. Details of experimental setup and perfor-
mance evaluation for the DVPFTL are illustrated in Section 4.
Finally, Section 5 concludes our research and outlines the
future work.

II. BACKGROUNDS AND RELATED WORKS
A. NAND FLASH MEMORY
A typical NAND flash memory chip (package) is constituted
of multiple dies, and each die is made up of several couples
of planes, each plane contains a set of blocks, and each of
them can be partitioned into a fixed number of pages, each
page could be further divided into a set of sectors which has a
user part and a spare part for storing user data and meta data
respectively, among of which meta data is for house-keeping
information like status flags, error correcting code (ECC) and
logical block addresses (LBAs). The most currently available
NAND flash consists of 1, 2, 4, or 8 dies, each die consists
of 2 planes, each plane is composed of 2048 blocks, and
every block consists of 64 or 128 pages with a size of 4 KB
or 8 KB, hence the block size is 512 KB or 2048 KB. Take
MT29F64G08AFAAAWP as an example in Fig. 1, it is a kind
of 8GB 2-Die-2-Plane SLC NAND flash chip [13]. For better

VOLUME 6, 2018 56201

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 1. Physical structure of a flash chip.

FIGURE 2. Flash operations: (a) page-read, (b) page-program,
(c) block-erase, (d) page-copy-back.

speed matching, data is moved from or to the NAND flash
memory array sequentially via data registers and cache regis-
ters. The program/read unit of NAND flash memory array is
page while the erasure unit is block. Read, program and erase
operations can be performed independently on each die, even
performing that operations simultaneously on two adjacent
planes is allowable, but all the two-plane commands at the
same time can only be carried out with the same operation on
the same die. These characteristics will be taken into account
during the current work although the technique is not limited
to that.

The four operations of read, program (write), erase and
copy-back are performed by flash memory controller, each of
them could be divided into three sequential phases: initiation,
busy, and completion phase, among of which, the time dura-
tion of busy phase indicates the latency of the corresponding
operation. For intuitive understanding, Fig. 2 illustrates the
work principles of these operations. Besides, two-plane com-
mands are universally supported by NAND flash vendors,
operating the paired planes on one die synchronously will
be propitious to the parallel response of visiting accesses.

It is worth emphasizing that concomitant side-effect, dummy
page overheads, should be carefully considered.

B. FLASH TRANSLATION LAYER
The FTL is built to support the downward interface obeying
the timing characteristics of typical flash memory, while
to provide an upward HDDs-like storage device interface,
so as to achieve the goal for tolerating the idiosyncrasies of
out-of-place update [14]. There are three main categories
of FTL: page- [15], [16], block- [18], and hybrid-level
mapping [19]–[21].
• Page-level mapping FTLs implement direct address-

mapping between the logical and physical page numbers
among the flash chip. When a new logical page visits, a free
page is allocated under the page-level mapping table to store
the supplied data before that table is updated. Due to its
one-to-one mapping relationship, the page-mapping FTL is
fairly flexible. For the same reason, however, its address map-
ping table is quite memory-consuming. Taking the above-
discussed 8 GB flash chip as an example, the consumption of
the mapping table is high up to 4 MB, not to mention the total
table consumption of the whole multi-chipped SSD system.
Consequently, page-levelmapping FTLs aremore suitable for
the flash memories with smaller capacity.
• Block-level mapping FTLs describe logical address of

file system request with two elements: one is logical block
numberwhichwill be translated into a physical block address,
and the other is page offset acting as unique index of loca-
tion among the corresponding physical block. It is not dif-
ficult to discover the drawbacks under this mechanism that
additional block erasure overheads would be incurred when
the indexed page referred to its offset has been executed
prior updates [19]. Consequently, although the memory-
consumption of block-level mapping is far less than that of
page-level mapping, it might increase the load of garbage
collection with the accumulation of invalid pages.
• Hybrid-level mapping FTLs are highly flexible but

more complex than the page-level and block-level mapping
FTLs, which obtain more balanced performance between
addressing complexity and memory expense. A consensus
had been reached from BAST (Block Associative Sector
Translation) in [20], that is, importing discriminative address
translating mechanism for block-level and page-level map-
ping could save resources for keeping mapping information.
The FAST (Fully Associative Sector Translation) pushed the
mapping performance and memory overheads of log blocks
to a new level through adopting fully-associative sector trans-
lations [21]. These log-buffer-based schemes can promote
the program performance dramatically by importing a small
quantity of log blocks. The BAST and FAST subsequently
become classics among hybrid-level mapping FTLs. How-
ever, the consumptions of valid data page copies of BAST
and FAST are inevitably increased, CFTL (Convertible Flash
Translation Layer) arrived to further improve both the read
andwrite performance by adopting its convertiblemechanism
and efficient caching strategy [22], [40], [41].

56202 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

C. HOT DATA IDENTIFICATION
Hot data identification is an essential procedure to achieve
efficient garbage collection and effective wear leaving, which
is a crucial measure to compensate the distinct characteris-
tics of out-of-place update and the endurance problem for
NAND flash devices.

Considerable efforts have been performed to handle
hot/cold separation in an efficient manner. Generally, these
HDI approaches can be categorized into direct type [7], [29]
and indirect type [6], [30]–[33]. The formerHDC [7] and two-
level LRU [29] build a counter for each page to record the
number of accesses (indexedwith LBAs)within a certain time
interval. However, these direct approaches consume large
memory spaces, since they assign one counter for each page.
And then, lots of compact HDI approaches, basically adopt-
ing numerical transformation or statistical theory, have arisen
subsequently to indirectly detect frequency and recency of
accesses. Hsieh et al. [6] proposed a Multiple Independent
Hash Function framework (MIHF), it adopts multi-hash func-
tions and one bloom filter to acquire both the frequency and
recency information. Park and Du [30] proposed a Multiple
Bloom Filter framework (MBF) with a Window-based Direct
Address Counting algorithm (WDAC), each bloom filter has
a discriminative weight for hot degree, thus, the MBF can
achieve more fine-grained recency as well as frequency.
Liu et al. [32] imported a Kernel Density Function (KDF)
into HDI for exploring the sparse information from proba-
bility distribution of accesses, this novel HDI-KDF scheme
has been reported with a better performance than MBF.
A new HotDataTrap (HDT) framework [31], which adopts
a two-level hierarchical hash indexing mechanism cooper-
ated by a sampling-based strategy, has achieved excellent
performance on both false identification rate and memory
overheads [35], [40], [41].

To sum up, an excellent HDI mechanism should effec-
tively capture both the frequency and recency information
of incoming accesses with lightweight memory consumption
and computational overheads.

D. PARALLELISM EXPLOITATION
A great amount of interleaving architectures have been
reported in current literatures to promote parallelizability of
NANDflashmemories [17], [23], [24]. As shown in Fig. 3(a),
a chip-level interleaving improves the program performance
dramatically through utilizing the inherent read latency effec-
tively, but it has a bandwidth limitation under single bus.
Further in Fig. 3(b), a bus-level interleaving can make full
use of the misaligned time-slots among different flash buses.
One of the most eye-catching findings in previous studies is
that designers of SSD devices should pay more attention to
the executing command latencies than to the bus frequency.

III. DESIGN AND ANALYSIS
A. DYNAMIC VIRTUAL PAGE FTL (DVPFTL)
In multi-chipped SSD design with multiple channels, two
planes of the same chip could be accessed simultaneously,

FIGURE 3. Chip-level interleaving (a), and bus-level interleaving (b).

FIGURE 4. Construction procedure of Virtual Pages (VPs).

chips from the same channel could also operate indepen-
dently, moreover, chips from separate channels could be
accessed in parallel. In order to make full use of the paral-
lelism in the multi-interleaving architecture and reduce the
address mapping table size of the FTL, we propose a virtual
page (VP) architecture demonstrated in Fig. 4 from micro
perspective. Assuming that there are I channels and J ways
in the designed SSD, each physical flash chip (PFC) is built
with N blocks, and each physical block (PB) is made up
of M physical pages (PPs). Particularly, it is assumed that
each of adjacent 2 ways reconstitute into one virtual flash
chip (VFC). Hence, a new VFC contains 2I PFCs which are
distributed in different channels. For better understanding,
the VFC (j) is made up of PFC (i, 2j) and PFC (i, 2j + 1),
where i ∈ [0, I − 1] and j ∈ [0, J/2 − 1], and the PFC (i, j)
denotes the jth PFC from the channel i. As the architecture
of PFC, each VFC is organized with virtual blocks (VBs),

VOLUME 6, 2018 56203

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 5. Internal constitution of virtual page.

and each VB contains a set of VPs, the difference is each of
VP is composed with 2I PPs. Accordingly, the VP (j, n,m)
consists of PP (i, 2j, n,m) and PP (i, 2j + 1, n,m), where
i ∈ [0, I − 1], j ∈ [0, J/2 − 1], n ∈ [0,N − 1] and
m ∈ [0,M − 1], and the PP (i, j, n,m) represents the mth

PP in the nth PB of the jth PFC from the channel i. It is
worth mentioning that the proposed virtual page architecture
is not limited by the multi-plane/die features of flash chip.
Based on the virtual page architecture, a two-layer address
translation mechanism can be turned into reality. The bottom
layer is in charge of the address mapping between the actual
PFCs and the predefined VFCs with block mapping scheme,
while the top layer translates LBAs requested from host file
system to the intermediate virtual block addresses (VBAs)
under log-based hybrid algorithm, the mapping tables are
kept in DDR3 SDRAM, besides, one backup is stored in a
private space on flash memory. Consequently, the peculiar-
ities of large RAM consumption caused by page mapping
and frequent copy operations caused by block mapping will
be hidden to a certain extent. An operation tip is worth
mentioning in the address mapping from LBAs to VBAs: an
arrived logical block data cannot be distributed as fragments
to different VFCs, which is to obey the inherent requirement
for issuing in-place copy-back operations.

Two rounds of flash interleaving are operated in the pro-
posed virtual page architecture. The first channel-level inter-
leaving expands the bus bandwidth of flash memories, and
the second chip-level interleaving further suppresses bus idle
time. As shown in Fig. 5, if suppose the channel-degree
I = 4, and the way-degree J = 2, then the sectors from
separated channels are combined in a round-robin modality.
Intuitively, in the left VP, sector groups 0 ∼ 7, 8 ∼ 15,
16∼ 23, and 24∼ 31 are obtained from channel 0, 1, 2, and 3,
sequentially. Under such configurations, each VP contains
8 sector sections (i.e. 8 PPs), and each sector section contains
8 distinct sectors.

Now, we make an attempt to demonstrate the multi-
level interleaving parallelism from the perspective of request
response. As shown in Fig. 6, when the hybrid address map-
ping layer receives a write request, its LBA will be translated
into VBA and VPA. Subsequently, the bottom block mapping
layer will allocate this request to the related PPs of the
VP under parallel accessing. Compared with conventional
FTL works (i.e., Hydra [23]), we only treat such parallel

FIGURE 6. Parallel request processing.

architecture as a basic hardware bench. Balanced perfor-
mance on GC-overheads and endurance are pursued by devel-
oping efficient HDI scheme and exploiting comprehensive
internal parallelism,whichwill be elaborated in the upcoming
Section III-B and Section III-C.

B. DUAL LAYER HOT DATA IDENTIFICATION (DL-HDI)
For the NAND flash-based storage system, it is widely
accepted that the hot data have a significant impact on its
performance as a result of GC activities in the FTL. In this
section, a generalized dual layer HDI (DL-HDI) scheme is
presented in detail. In particular, we first propose a pre-
classifier based on single bloom filter, it enables DL-HDI to
early discard massive cold data so as to reduce runtime over-
heads as well as to avoid a waste of memory spaces. Then,
we take one state-of-the-art HDI scheme (i.e., MBF [30]) as
its hot data post-identifier to accurately capture the hot items.
Finally, an improved HDI scheme, DL-MBF, is generalized
from the original MBF.

1) BASIC IDEA AND MOTIVATION
Temporal localities in data access are often observed in plenty
of daily applications [25].Many real-world workloads exhibit
a statistical nature that about 80% of accesses are directed
to no more than 20% of data and only touch about 1% of
the address space of the disk [6], [33]. Consequently, cold
data occupy a dominant position in the probability of occur-
rence. Handling all these accesses indiscriminately through
the cache-limited HDI procedure will undoubtedly result in
great waste on computational resources and memory spaces.
This motivates us to pursue an ultra-simple separation mech-
anism to accurately discard purified cold data before the main
HDI procedure.

Bloom filter (BF) is a space-efficient data structure which
specializes in probabilistically testing set membership with
allowable errors. Although a given key is not in the set,
a BF may provide a false positive, but it never trigger a false
negative. In recent studies (i.e., MIHF [6] and MBF [30]),
scholars devote themselves to achieve higher true positive
rate (TPR) with more lightweight space. However, to our best
knowledge, the zero false negative nature of BF has rarely
been applied in HDI. With converse thinking, we set up
a smart pre-classifier through utilizing this zero false
negative feature to capture a large majority of purified cold

56204 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 7. Data flow under the proposed DL-HDI framework.

FIGURE 8. Structures of the pre-classifier (Layer I) and post-identifier
(Layer II), with an instantiation of DL-MBF.

data with absolute confidence, so as to prevent the captured
cold data from entering the cache and HDI procedure. The
basic data flow is illustrated in Fig. 7, the pre-classifier
separated all the accesses in half: coarse hot data I and
purified cold data I. This process should consume negligi-
ble memory space and computational overheads compared
with the post-identifier. Then the replaceable post-identifier
(i.e., MBF [30], or HDT [31], etc.) executes the HDI opera-
tion as usual, outputting the hot data II (involving fewer false
positive) and cold data II.

2) SINGLE BLOOM FILTER-BASED PRE-CLASSIFIER
As shown in Fig. 8, in a certain decay duration (i.e., the win-
dow size = 29 [30]), whenever write requests are issued,
the bloom filter (BF0) is selected and the hash values (LBA)
are recorded to it. Different from the traditional usage of
bloom filter, the pre-classifier first maintains the unselected
LBAs (BF values remain ‘0’) to the category of cold data I,
then the remainder LBAs constitute the optimal LBAs_I,
which are treated as the coarse hot data I in Fig. 7. This
accesses with LBAs_I will be fed to the downstream post-
identifier, the MBF is chosen in this instantiation.

3) PARAMETERS SETTING AND ANALYSIS
Applications of a BF are required to configure three param-
eters: BF size (MBF), the number of hash functions (KBF)
and the number of unique elements (NBF), and the NBF
corresponds to the very decay duration. These key parameters
are closely related with each other and have crucial impacts
on the performance of BF. According to [36], an optimal
BF size (MBF) can be estimated using

MBF = −
NBF ln(fBF)

(ln2)2
(1)

where fBF is a permitted false positive rate (FPR), afterMBF is
determined, an optimal number of hash functions (KBF) can
be estimated from

KBF =
MBF (ln2)
NBF

(2)

As the pre-classifier focuses more on obtaining purified cold
data than achieving high TPR, the objective values of fBF
and NBF are loosely configured as to be 15% and 29, respec-
tively. Through (1) and (2), MBF = 2022 (choose 211), and
KBF = 2.77 (choose 2), these configurations are consistent
with those of MBF [30]. Further, the probability that any one
bit in the bitmap of a bloom filter is still ‘0’ (not selected) is

P0 = (1−
1

MBF
)KBFNBF ≈ e−

KBFNBF
MBF (3)

where the condition of the ‘‘approximation’’ isMBF →+∞.
The FPR is calculated as

f0→1 = (1− P0)KBF

≈ (1− e−
KBFNBF
MBF)KBF (4)

According to (3), under our parameter settings, P0 =
60.65%, it means that about 60% of bits of the BF0 will
remain ‘0’ after a decay duration (512 accesses). Conser-
vatively, suppose we only discard 256 items of the clus-
tered cold accesses, the FPR (f0→1) of the post-identifier
(original MBF) will be improved from the former 15.48%
to current 6.82% according to (4), obtaining this improve-
ment should afford an extra memory overhead of 0.25 KB
(refer to Fig. 8). Another technical route is to accept the
equal performance on FPR, our DL-HDI scheme requires
smaller BF size (MBF) for post-identifier, permitting at least
a half reduction in memory space for downstream BFs.
In other words, compared to the original MBF, the improved
DL-MBF can achieve the equal level of FPR, but consumes
only 75% memory space (0.75 KB vs. 1 KB). These results
theoretically support our initial motivation, that at least a half
of purified cold data can be indeed discarded at the very
beginning of HDI procedure, which is benefit to decrease
both the memory consumption and computational overheads,
our proposed DL-HDI framework is precisely produced for
such considerations. Meanwhile, we would like to emphasize
the remarkable generalized property of our proposedDL-HDI
scheme. The post-identifier is not limited to the originalMBF,
many other HDI algorithms such as MIHF [6], HDT [31],
HDI-KDF [32], etc. can obtain improvements under our
DL-HDI framework. Then various variants such as
DL-MIHF,DL-HDT,DL-HDI-KDF, etc. could be established
in turn.

C. ADAPTIVE PARALLELISM MANAGEMENT (APM)
The above Section III-B focuses on the identification mech-
anism of hot and cold data, while in the current section,
we concentrate more macroscopically on wear leveling
through adaptive parallelism management (APM), which can

VOLUME 6, 2018 56205

Q. Luo et al.: DVPFTL With Novel HDI and APM

improve the throughput by handling requests in parallel under
the multi-chipped SSD architecture.

Refer to Fig. 4, when using the type of flash chip
in Fig. 1, the storage device is consisted of I channels,
C0,C1, . . .CI−1, each channel Ci includes 2J dies,
Di,0,Di,1, . . .Di,2J−1, then each die Di,j contains Q planes,
PLi,j,0,PLi,j,1, . . .PLi,j,Q−1. Suppose block Bl has experi-
enced el times of erasure operations, the total erasure times
in the plane PLi,j,q can be defined as

ei,j,q =
∑

Bl∈PLi,j,q

el (5)

Taking a panoramic view of erasure counts among all flash
planes, the maximum minus the minimum is

1e = emax − emin

= max{ei,j,q} −min{ei,j,q} (6)

where, i ∈ [0, I − 1], j ∈ [0, 2J − 1], and q ∈ [0,Q− 1] are
respectively the indexes of channel, die, and plane.

The adaptive arrangement of program requests consists of
the following three stages.
• Stage 1: External parallelism via multi-interleaving.

Program requests from top layer are dispensed to indepen-
dent channels one after another through adopting multi-
interleaving mechanism. Therefore, the throughput can be
improved by overlapping flash operations in multiple inde-
pendent channels. This external parallelism method is pretty
traditional in the SSD design, so we will focus on the later
two stages.
• Stage 2: Internal parallelism via two-plane

operation. Each program request will be stripped into two
sub-requests (Sub_req1, Sub_req2), and then be dispensed to
a couple of planes on one die among the selected channel.
After two thresholds, Thdn and Thup (Thdn < Thup), based
on the erasure status are pre-defined, APM will distribute
Sub_req1 and Sub_req2 to the related channels. In partic-
ular, The Sub_req1 will be allocated to the plane with the
minimum number of valid pages in the designated channel
when 1e < Thdn, and will be allocated to the plane with the
minimum erasures in the designated channel when Thdn ≤
1e < Thup. Otherwise, if Thup ≤ 1e, they will be allocated
to the plane with the minimum erasures among all planes.
Besides, a state flag, Assign_Status, is updated in time to
record the current status of request assignment. The plane
allocation method issued by APM for the Sub_req2 is the
same as that of Sub_req1, except that the selected plane must
be among the same die of Sub_req1, which is for adapting the
essential characteristics of two-plane program commands.
• Stage 3: Discriminative strategy for two-plane program.
Generally, two-plane program commands benefit more to the
larger and more sequential requests. However, to random and
small program requests, it shows less (even no) advantages
to normal (non two-plane) program commands, since the
program expenses dramatically increase with the triggered
dummy pages. In our DVPFTL scheme, two-plane program

operations will not be issued if the improvement of response
time could not achieve the threshold α (0 < α < 1),
the quantitative analysis is described as follows.

Suppose the total number of pages to be written is Yreq
and the time consumption for normal program command
per one page is Tnomal , the total time required for serving
all the program requests without any two-plane operation
is Yreq × Tnom, while the final time spent on handling the
program request through executing two-plane operation is
Ydum × Tdum + Yreq/2 × T2plane, where Ydum and Tdum
are respectively the counts of triggered dummy pages and
the programming time consumption per dummy page, and
T2plane denotes programming time consumption per a couple
of pages through executing two-plane program operation.
Further, our DVPFTL would not gain from two-plane pro-
gram commands until (7) is matched.

Ydum × Tdum +
Yreq
2
× T2plane ≤ α × Yreq × Tnom (7)

In other words, APM will be aggressively exploiting
two-plane program operations as long as the ratio Ydum

Yreq
meets

Ydum
Yreq
≤
αTnom
Tdum

−
T2plane
2Tdum

(8)

otherwise, APM will dynamically convert to execute the
normal program commands. The greater1e, or the smaller α,
the higher probability of triggering wear leveling, otherwise,
the higher probability of issuing two-plane program opera-
tion. Tentatively, the value of α is set as 0.65 for the upcoming
experiments in current research.

D. PERFORMANCE SPEEDUP ANALYSIS
This section is meant to analyze the performance of parallel
speedup. If suppose {rk}, k ∈ [0,K − 1] is an incom-
ing sequence with K host requests, involving Kr reads,
Kp programs, and will trigger Ke erases, hence there exists
K = Kr + Kp. Further, suppose H is the maximum time-
slot between two requests which could be operated in parallel
in a real-world FTL. In particular, rk is a read or program
request, pr_p or pp_p is the respective probability that a request
could be operated with rk in parallel within H requests close
following rk . And tr , tp and te are the time costs for the read,
program and erase operations, respectively. The performance
speedup of a parallel flash memory can be estimated accord-
ing to Amdahl’s law

Pspeedup =
Ts + Tp

Ts +
Tp
β

=
1

1+ (1
β
− 1) Tp

Ts+Tp

(9)

where Ts and Tp are the time costs of serial and parallel
operations (total time consumption T = Ts+Tp), and β(≥ 1)
is the parallel degree of operations. In a general flash storage
system, the total time overhead of all parallel operations can
be summed as

Tp = Tr_p + Tp_p + Te_p (10)

56206 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

where Tr_p = Kr � pr_p � tr , Tp_p = Kp � pp_p � tp and Te_p =
Ke � pe_p � te, which are the time costs for parallel operations
of reads, programs and erases, respectively. Then (9) can be
rewritten to

Pspeedup =
1

1+ (1
β
− 1) Tr_p+Tp_p+Te_p

Ts+Tr_p+Tp_p+Te_p

(11)

For a certain request sequence, the values of Kr , Kp, tr ,
tp and te are previously determined. Based on the above
derivation, the larger Tp, β andH are, the higher is the perfor-
mance Pspeedup that can be obtained, among which, however,
H is limited to the upper ceiling of processing requests in a
definitized duration, while β is in the same situation as that
the limited resources can not support an endless increase in
parallelism. Consequently, threemeasures to improve parallel
performance are as follows (where ‘↑’ or ‘↓’ means value
increase or decrease).
• ‘‘pr_p ↑⇒ Tr_p ↑’’, the only measure to increase pr_p
is to set H to a relatively large number, which could
increase the probability of performing parallel read oper-
ations on NAND flash memories.

• ‘‘pp_p ↑⇒ Tp_p ↑’’, the FTL can help to increase pp_p
by effectively determining where and how to program
the data on NAND flash memories. Also, a larger H can
increase pp_p. Efficient FTLs can increase the probabil-
ity of performing parallel program operations by using
smart algorithms and lightweight data structures.

• ‘‘pe_p ↑⇒ Te_p ↑’’, the FTL completely determines
pe_p to let there are enough blocks (to be reclaimed) uni-
formly distributed on each plane, which could increase
the probability of performing parallel erase operations
according to the pigeonhole principle.

Based on the above analysis, DVPFTL is designed not only
to maximize parallelizability (Pspeedup), but also to improve
the GC efficiency and decrease the WL degree by taking the
following measures: (1) Omnidirectional parallel architec-
ture (refer to Section III-A), (2) Dual layer hot data identifi-
cation (refer to Section III-B), and (3) Adaptive parallelism
management(refer to Section III-C).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section provides diverse experimental results and com-
parative analyses. First, extensive experiments are carried
out to evaluate our proposed DL-HDI framework and APM
scheme. Second, the overall performance of DVPFTL-based
SSD is demonstrated on our implemented on-chip prototype.

A. PERFORMANCE SIMULATION RESULTS
1) SIMULATION SETUP
We compare our DL-HDI framework (DL-MBF as a
case here) with three other state-of-the-art HDI schemes,
MIHF [6], MBF [30], and the Window-based Direct Address
Counting (WDAC) [30]. The WDAC, which is an ideal
baseline scheme proposed in MBF, continues to be used as
the baseline for the following experiments. In particular, the
DL-MBF is instantiated to a standard version, DL-MBF_s,

TABLE 1. System parameters and values.

TABLE 2. Workload characteristics.

and a compact version, DL-MBF_c. Table 1 summarizes
their detailed system parameters. According to the dual layer
structure designed in Section III-B, our schemes (DL-MBF_s
and DL-MBF_c) utilize a half size decay duration for their
post-identifiers compared with MBF, but the former scheme
(DL-MBF_s) consumes an extra memory cost of 0.25 KB.
Hence, we also evaluate a more compact one (DL-MBF_c)
for clearer understanding. To be fair, we configure the param-
eters of the three contrastive schemes as same as those
in [30]. Also, we select identical hash functions for all the
five schemes in Table 1.
Similar to the testing procedure in [30], we adopted four

real workloads for objective evaluation. As shown in Table 2,
Financial1 is a write intensive trace file [37]. Distilled stands
for a general usage patterns in a PC [29] which was also
adopted in MIHF [6]. MSR represents typical workloads of
large enterprise servers [38]. Lastly, we employ a real-world
SSD trace file, MillSSD, from an industrial personal com-
puter (IPC: Intel X2 7400, 2G DDR3, Windows 7), which
provides image backup service for our defect inspection
instrument [39] for flat steel surface in a hot-rolling mill.
We installed Runcore’s RCS-V-T25 SSD (512GB, SATA2)
on the IPC to gather traces such as caching images, updating
image defect database, storage for daily report information,
etc. Because involves lots of storage operations, MillSSD is
quite write intensive.

2) PERFORMANCE EVALUATION OF DL-MBF
Four performance metrics, including hot ratio, false identi-
fication rate, runtime overhead, and memory consumption,
are observed in this section in Fig. 9, Fig. 10, Fig. 11, and
Table 1, respectively.

VOLUME 6, 2018 56207

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 9. Hot ratios under various workloads (read % : write %). (a) Financial1 (22% : 78%). (b) MSR (4.5% : 95.5%).
(c) Distilled (52% : 48%). (d) RealSSD (51% : 49%).

• Hot Ratio: As illustrated in Fig. 9, the MBF and its two
generalized schemes perform better than MIHF. Intuitively,
the MBF’s hot ratio curve fluctuates near the upside of the
baseline as expected in [30], while our DL-MBF_c scheme
draws a considerably similar trajectory, when it comes to
our DL-MBF_s scheme, its hot ratio curve even tends to
hit the baseline from the above direction most of the time.
Although the trajectories under four workloads are not iden-
tical, the aforementioned relative tendency exhibits reliably,
which proves that our proposed DL-HDI framework has
pushed the hot ratio of the MBF to a more objective level.
• False Identification Rate: For further quantitative evalu-

ation, we analyze false identification rates by comparing the
hot ratios of corresponding HDI scheme to the shared base-
line. MIHF is omitted in this test since we focus mainly on the
performance differences of the sameMBF-series of schemes.
As illustrated in Fig. 10, our DL-MBF_s scheme performs
coherent lower false identification rates than its original
MBF, with average performance improvements by 16.97%,
29.41%, 26.94%, and 32.71% under the four workloads
successively. Interestingly, even the compact DL-MBF_c
scheme exhibits a slightly advantage (about 2.21% average
improvement) to MBF. These results are basically consistent
with the derivation in Section III-B3, they indicate our simple
idea of eliminating most of the pre-classified cold data in
advance has worked well, and is indeed benefit to HDI.
• Runtime Overhead: Computational overhead is an impor-
tant metric to evaluate HDI scheme. For fair comparison,

we exhibit two most representative overheads namely
Checkup and Decay in Fig. 11, where Checkup counts the
CPU clock cycles spending on the hot data verification pro-
cess to check whether the data in the LBA are hot, and Decay
corresponds to the aforementioned aging process. All these
statistical results are carried out on an IPC (Intel X2 7400,
2G DDR3, Windows 7), and the exhibited records are the
average values through a series of repeated testings fed with
many write requests (i.e., 100 K numbers of write requests
from MSR). As shown in Fig. 11, compared with MIHF,
MBF scheme obtains considerable improvements both on
Checkup and Decay. It is noteworthy that the corresponding
scores are slightly better than those reported in [30], since our
test platform is equipped a CPU with higher performance.
Nevertheless, the comparison testing will not be impacted
since we concentrate on relative performance. For Checkup,
the runtime overheads of our two DL-MBF schemes are
comparable to that of MBF as a result of their similar
BF-based structures and identical hash functions. When it
turns to Decay, the DL-MBF_s and DL-MBF_c schemes
considerably reduce runtime overheads by an average of
about 12% and 46% compared to that of MBF, respec-
tively. However, substantially, both the DL-MBF_s and
DL-MBF_c scheme trigger more runtime overheads since
they need afford extra CPU clock cycles on checkup pro-
cedure and aging mechanism of the pre-classifier. Even in
this case, the final runtime overheads still decrease uncom-
promisingly, it is mainly attributed to the following reasons:

56208 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 10. False identification rates under various workloads (read %: write %). (a) Financial1 (22% : 78%). (b) MSR (4.5% : 95.5%).
(c) Distilled (52% : 48%). (d) RealSSD (51% : 49%).

FIGURE 11. Average runtime overhead per operations.

1) The abandon of half of the data in advance greatly coun-
teracts that expense generated by the pre-classifier. 2) The
dominant decay operation of the post-identifier completely
inherits the advantages of original MBF, while the rhythm of
the extra decay operation (of the pre-classifier) is only 1/8
of that of the post-identifier. 3) The half BF size
(210 vs. 211) of DL-MBF_c further reduces the involved data
bits for Checkup and Decay operations.
• Memory Consumption: In the third row of TABLE 1,
we has calculated the basic memory costs of our DL-MBF
schemes and the contrastive schemes. It is clear learned that
our DL-MBF_s contains 1 number and 4 numbers of 211 sizes
of 1-bit array for pre-classifier and post-identifier, respec-
tively. Thus, the total memory cost for maintaining these BFs
are 1.25 KB. With a more compact BF size, the DL-MBF_c

scheme consumes fewer memory of 0.75 KB. A thorough
investigation is presented in [30] regarding the approaches to
choose an appropriate size and number of BFs. Here the focus
is how to utilize limited memory resource (i.e., around 1 KB)
to achieve better performance. As analyzed above, taking
the state-of-the-art MBF’s performance as a new benchmark,
our DL-MBF_s obtains a competitive identification accuracy
but requires extra 0.25 KB memory expense. This scheme
is highly recommended for applications that focus more on
SSD performance than on memory expense (i.e. MillSSD).
Otherwise, we suggest DL-MBF_c scheme, especially
for the mini portable devices. Another advanced variant,
DL-MBF_a, is more specialized in handling random requests
than DL-MBF_s. It consumes the same quantity of memory,
but consists of 8 numbers of 210 sizes of 1-bit array for
post-identifier.

3) PERFORMANCE EVALUATION OF APM
It can be learned fromSection III-C that the frequency of wear
leveling will decrease in DVPFTL for larger values of Thdn
and Thup in most cases, while smaller values set to these two
thresholds will result in unnecessary block erasures, which
will increase the burden of garbage collection. Hence, we had
been testing and verifying these two parameters for a long
duration, and finally the balanced value combinationwas con-
firmed with Thdn and Thup being 100 and 200, respectively.

For the compatibility of testing, we continue to use the
aforementioned workload of Distilled (52%:48%) for the

VOLUME 6, 2018 56209

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 12. Comparative performance tests for APM. (a) Issued
two-plane write operations and incurred dummy pages.
(b) Accumulated program response time per requests interval.

performance evaluation of APM, and the flash type is the
unchanged 2-die-2-plane type (refer to Fig. 1). Here we
selected the Parallelism-aware Request Processing (PaRP)
scheme [11] as our learning benchmark, since it also consid-
ers both external and internal parallelism by exploiting two-
plane operations. As shown in Fig.12(a), we demonstrate the
contrastive total numbers of the arisen two-plane program
operations and the incurred dummy pages, respectively. It can
be observed that DVPFTL dispatched more two-plane pro-
gram operations than that of PaRP, the major reason is that
DVPFTL attaches great importance to internal parallelism,
utilizing the two-plane command for each program request.
When it comes to the PaRP, two-plane program operations
would not be issued until two successive program requests are
arriving. It can be also learned that the dummy page consump-
tions incurred fromDVPFTL are much less than that of PaRP,
the reason is that the pre-defined threshold α possesses dis-
criminative capability to return unnecessary two-plane pro-
gram operations in time. Furthermore, Fig. 12(b) illustrates
the contrastive situation of accumulated program response
time per requests interval between DVPFTL and PaRP. Intu-
itively, our DVPFTL outperforms PaRP by 13.49% on the
program latency reliably. The evaluation results in Fig.12
prove that the internal parallelism-aware mechanism can
arrange the program request adaptively, which benefits the
garbage collection for better wear leveling.

B. OVERALL ON-CHIP PERFORMANCE RESULTS
1) PROTOTYPE IMPLEMENTATION
We have implemented a multi-chipped SSD (MCSSD) pro-
totype for the test-bench, its hardware architecture is shown
in Fig. 13. Our proposed DVPFTL is marked in the gray box,

which is composed of two key modules: dual layer hot data
identifier (DL-MBF for test) and adaptive parallelism man-
ager. The FPGA (XC6VLX240T) on this in-house devel-
opment board has been pre-configured with an embedded
32-bit software processor, MicroBlaze [26], it has been
equipped with 512 MB mobile DDR3 SDRAM for keep-
ing mapping tables (of which only 16 MB is used by
our prototype implementation) and software codes. The
board is also equipped with interfaces of SATA, G-bit
Ethernet and UART for debugging and future extension.
In our test-bench, the multi-channel degree I and multi-
way degree J are set to 8 and 2, respectively, which
means 16 NAND flash memory chips (NFMCs) are mounted
through 8 independent flash buses. The selected NFMC
model is MT29F64G08AFAAAWP (refer to Fig. 1), its max-
imum operating frequency of one flash bus is 100 MHz,
in order to reserve certain engineering margin, the flash bus
is set to 60 MHz, providing a bandwidth of 60 MB/s. The
MCSSD controller ismade upwith theMicroBlaze processor,
the dual-buffer and the multiplexer. A SATA 3.0 interface
controller arranged between the external host and inter-
nal MCSSD controller, the maximal supporting bandwidth
of 600 MB/s is competent for the 480 MB/s data rate after
8-bus interleaving. All these embedded peripherals on FPGA
chip are managed by the MicroBlaze processor via processor
local bus (PLB), and they are implemented integratedly on
the Xilinx ISE and EDK tools. The realized MCSSD and its
test scene photo are presented in Fig. 14.
Apart from the multi-interleaving, we configure a pair

of buffers lying between the DVPFTL and Demux/Mux
to improve the interaction efficiency through so-called
‘‘ping-pong’’ operation. The operating frequencies of
Microblaze processor andDDR3 SDRAMare set to 150MHz
and 100MHz in the tests, respectively.

2) TEST-BENCH SETUP (PCMark05)
For the performance evaluation of multi-interleaving archi-
tecture, although the latest PCMark 10 has been released,
we continue to use a more classical version, PCMark05,
for fairer comparison especially to some of the previous
state-of-the-art works (i.e., Hydra in [23]). Its storage bench-
mark contains five types of workloads: OS Startup, Appli-
cation Loading, General Usage, Virus Scan, and File Write,
which can well emulate workloads of typical PC envi-
ronments [23], [27].OS Startup stands for a boot-up behavior
of Windows XP, the reading and writing operations occupy
about 90% and 10% of all the requests, respectively. Applica-
tion Loading involves launch and termination of application
programs, such as IE explorer, Skype, and Adobe softwares,
etc., it contains around 83% reads and 17% writes. General
Usage describes the daily usage of a PC, which consists
of about 60% reads and 40% writes. Virus Scan represents
host requests operated when scanning 600 MB of files for
viruses, and nearly all the requests (99.5%) are reads. Finally,
File Write contains host requests for writing 680 MB of
files while without any read requests. In addition, before the

56210 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

FIGURE 13. On-chip prototype of our DVPFTL-based SSD.

FIGURE 14. Prototype photo and testing scene. Note: FPGA and
another 8 NFMCs are welded on the bottom layer.

upcoming tests, the DL-HDI is instantiated as the standard
DL-MBF_s (refer to TABLE 1), and the two thresholds of
Thdn and Thup are set to 100 and 200, respectively (refer
to Section IV-A3).

3) OVERALL PERFORMANCE OF DVPFTL SSD
Fig. 15(a) shows the average access speeds of the DVPFTL
SSD for various combinations of bus-level and chip-
level interleaving. Once a certain interleaving configuration
is determined, the performance of Virus Scan, involv-
ing the most read requests, ranks the first among these
five components, followed by that of File Write as a result

FIGURE 15. On-chip scores with various workloads (read % : write %).

of the few erase and copy back operations. And the
average access speed (average value of the five compo-
nents) of 2-way-8-channel architecture is promoted from the
19.08 MB/s of 1-way-1-channel architecture to 99.80 MB/s.
As for the first three components, the improvements on access
speeds are suppressed in varying degrees, mainly because

VOLUME 6, 2018 56211

Q. Luo et al.: DVPFTL With Novel HDI and APM

frequent write requests trigger more merge and copy
operations, and then GC overheads increase. Nevertheless,
the growth trend of access speed is reliably promoted as the
interleaving-level increases.

To be fair, Hydra [23] is chosen for comparison since it is
a typical and state-of-the-art MCSSD architecture. With the
identical 2-way-4-channel architecture, Fig. 15(b) shows the
contrastive results between Hydra SSD and DVPFTL SSD.
Intuitively, except for the slightly unfair advantage of flash
bus frequency (40 MHz for Hydra SSD in [23], 60 MHz
for our prototype), our DVPFTL has achieved considerable
improvements compared with that of Hydra. Notably, the per-
formance ascensions of the former three components are
very significant, which prove that it is beneficial to handle
discrete and frequent accesses by making the best of tem-
poral and spatial localities. Furthermore, since our DL-MBF
scheme is generalized from MBF [30] which plays a key
role in the state-of-the-art CFTL [40], [41], the integration
of CFTL on our test-bench is in progress, hoping to observe
further optimization ideas for DVPFTL. Preliminary tests
indicate that, in most cases, our log-structured block level
mapping strategy of ‘‘DVP+DL-MBF_s+APM’’ performs
slightly better than the fundamentally page level mapping
strategy of ‘‘Convertible Scheme+MBF+Dual-Caching’’.
However, DVPFTL remains to be improved especially on
handling workloads interlaced with random reads and writes
(i.e., General Usage).

V. CONCLUSION
Herein, we have proposed a DVPFTL framework based on
dynamic virtual page to improve the throughput and life-
time of SSDs, which combines the following two aspects to
achieve a considerable overall performance.
• Accurate request identification: Inspired by a basic

idea that hot data always tend to small probability in real-
world workloads, we develop a generalized dual layer HDI
(DL-HDI) scheme to early discard massive cold items, so that
it can reduce runtime overheads as well as a waste of mem-
ory spaces. Performance tests of our two DL-HDI cases
(DL-MBF_s and DL-MBF_c) prove our proposed scheme
achieves considerably lower false identification rate while
consumes less resource and runtime consumptions, compared
with some recent state-of-the-art HDI schemes.
• Effective request allocation: Apart from the conven-

tional multi-interleaving (external parallelism) measures,
we design an adaptive parallelism manager (APM) to
aggressively exploit internal parallelism under the proposed
DVP structure. The APM is able to effectively issue two-
plane program operations while trigger few dummy pages.

Finally, we implement a DVPFTL-based SSD proto-
type on FPGA for a general test bench. The preliminary
results have verified the effectiveness and parallelizabil-
ity of our ‘‘DVP+DL-MBF+APM’’ strategy. In essence,
DVPFTL employs classical log-structured block level
mapping and emphasizes write accesses more than read
accesses. Although it achieves considerable performance

when handling write intensive accesses (i.e.,MillSSD), there
still remains much space to improve its versatility to adapt to
more variable access behaviors. Future work will concentrate
on developing more efficient address mapping mechanism,
with the hope of achieving a better flash access performance
under more cost-effective overheads.

ACKNOWLEDGMENT
The authors would like to express their gratitude to
Dr. Qiyou Xie, a senior engineer from RunCore Co., Ltd.,
who assisted in verifying the performance of the prototype in
this paper.

REFERENCES
[1] Y. Ryu, ‘‘A flash translation layer for NAND flash-based multimedia

storage devices,’’ IEEE Trans. Multimedia, vol. 13, no. 3, pp. 563–572,
Jun. 2011.

[2] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, ‘‘FlexLevel
NAND flash storage system design to reduce LDPC latency,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 7, pp. 1167–1180,
Jul. 2017.

[3] M.-L. Chiao and D.-W. Chang, ‘‘ROSE: A novel flash translation layer for
NAND flash memory based on hybrid address translation,’’ IEEE Trans.
Comput., vol. 60, no. 6, pp. 753–766, Jun. 2011.

[4] C.-C. Ho, Y.-P. Liu, Y.-H. Chang, and T.-W. Kuo, ‘‘Antiwear leveling
design for SSDs with hybrid ECC capability,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 488–501, Feb. 2017.

[5] C.-H.Wu,D.-Y.Wu,H.-M. Chou, andC.-A. Cheng, ‘‘Rethink the design of
flash translation layers in a component-based view,’’ IEEE Access, vol. 5,
pp. 12895–12912, 2017.

[6] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, ‘‘Efficient identification of hot
data for flash memory storage systems,’’ ACM Trans. Storage, vol. 2, no. 1,
pp. 22–40, Feb. 2006.

[7] M. Lin, S. Chen, G. Wang, and T. Wu, ‘‘HDC: An adaptive buffer replace-
ment algorithm for NAND flash memory-based databases,’’ Optik Int.
J. Light Electron Opt., vol. 125, no. 3, pp. 1167–1173, Feb. 2014.

[8] J. Hu, M. Xie, C. Pan, C. J. Xue, Q. Zhuge, and E. H.-M. Sha, ‘‘Low
overhead software wear leveling for hybrid PCM+ DRAMmain memory
on embedded systems,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no. 4, pp. 654–663, Apr. 2015.

[9] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, ‘‘Improving flash wear-leveling
by proactively moving static data,’’ IEEE Trans. Comput., vol. 59, no. 1,
pp. 53–65, Jan. 2010.

[10] S. K. Park, Y. Park, G. Shim, and K. H. Park, ‘‘CAVE: Channel-aware
buffer management scheme for solid state disk,’’ in Proc. ACM Symp. Appl.
Comput., Mar. 2011, pp. 346–353.

[11] S.-Y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, ‘‘Exploiting internal
parallelism of flash-based SSDs,’’ IEEE Comput. Archit. Lett., vol. 9, no. 1,
pp. 9–12, Jan. 2010.

[12] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, ‘‘Explor-
ing and exploiting the multilevel parallelism inside SSDs for improved
performance and endurance,’’ IEEE Trans. Comput., vol. 62, no. 6,
pp. 1141–1155, Jun. 2013.

[13] Micron. Accessed: Jul. 2018. [Online]. Available: https://
www.micron.com/products/nand-flash/slc-nand

[14] Y.Wang et al., ‘‘A real-time flash translation layer for NANDflashmemory
storage systems,’’ IEEE Trans. Multi-Scale Comput. Syst., vol. 2, no. 1,
pp. 17–29, Jan./Mar. 2016.

[15] A. Gupta, Y. Kim, and B. Urgaonkar, ‘‘DFTL: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,’’ ACMSIGARCHComput. Archit. News, vol. 37, no. 1, pp. 229–240,
Mar. 2009.

[16] Z. Xu, R. Li, and C.-Z. Xu, ‘‘CAST: A page-level FTL with compact
address mapping and parallel data blocks,’’ in Proc. IEEE 31st Int. Per-
form. Comput. Commun. Conf. (IPCCC), Austin, TX, USA, Dec. 2012,
pp. 142–151.

[17] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung, ‘‘Design and analysis
of flash translation layers for multi-channel NAND flash-based storage
devices,’’ IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1392–1400,
Aug. 2009.

56212 VOLUME 6, 2018

Q. Luo et al.: DVPFTL With Novel HDI and APM

[18] R. Chen, Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, ‘‘On-
demand block-level address mapping in large-scale NAND flash stor-
age systems,’’ IEEE Trans. Comput., vol. 64, no. 6, pp. 1729–1741,
Jun. 2015.

[19] Y. Hu et al., ‘‘Achieving page-mapping FTL performance at block-
mapping FTL cost by hiding address translation,’’ in Proc. IEEE 26th
Symp. Mass Storage Syst. Technol. (MSST), May 2010, pp. 1–12.

[20] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, ‘‘A space-efficient
flash translation layer for compactflash systems,’’ IEEE Trans. Consum.
Electron., vol. 48, no. 2, pp. 366–375, May 2002.

[21] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
‘‘A log buffer-based flash translation layer using fully-associative sector
translation,’’ ACM Trans. Embedded Comput. Syst., vol. 6, no. 3, Jul. 2007,
Art. no. 18.

[22] D. Park, B. Debnath, and D. H. C. Du, ‘‘A workload-aware adaptive hybrid
flash translation layer with an efficient caching strategy,’’ in Proc. IEEE
19th Annu. Int. Symp. Modelling, Anal. Simulation Comput. Telecommun.
Syst. (MASCOTS), Jul. 2011, pp. 248–255.

[23] Y. J. Seong et al., ‘‘Hydra: A block-mapped parallel flash memory solid-
state disk architecture,’’ IEEE Trans. Comput., vol. 59, no. 7, pp. 905–921,
Jul. 2010.

[24] D. Liu et al., ‘‘Durable address translation in PCM-based flash storage
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 475–490,
Feb. 2017.

[25] L.-P. Chang and T.-W. Kuo, ‘‘Efficient management for large-scale flash-
memory storage systems with resource conservation,’’ ACM Trans. Stor-
age, vol. 1, no. 4, pp. 381–418, Nov. 2005.

[26] DS150 (v2.3): Virtex-6 Family Overview, Datasheet1, Xilinx, San Jose,
CA, USA, Jan. 2012.

[27] S. Niemelä. PCMark 05 Whitepaper. Futuremark. Accessed:
Feb. 2018. [Online]. Available: http://s3.amazonaws.com/download-
aws.futuremark.com/pcmark05-whitepaper.pdf

[28] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song,
‘‘A survey of flash translation layer,’’ J. Syst. Archit., vol. 55, nos. 5–6,
pp. 332–343, 2009.

[29] L.-P. Chang and T.-W. Kuo, ‘‘An adaptive striping architecture for
flash memory storage systems of embedded systems,’’ in Proc.
8th IEEE Real-Time Embedded Technol. Appl. Symp., Sep. 2002,
pp. 187–196.

[30] D. Park and D. H. C. Du, ‘‘Hot data identification for flash-based storage
systems using multiple bloom filters,’’ in Proc. IEEE 27th Symp. Mass
Storage Syst. Technol. (MSST), May 2011, pp. 1–11.

[31] D. Park, B. Debnath, Y. J. Nam, D. H.-C. Du, Y. Kim, and Y. Kim,
‘‘HotDataTrap: A sampling-based hot data identification scheme for flash
memory,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput. (SAC), Trento,
Italy, Mar. 2012, pp. 1610–1617.

[32] J. Liu, S. Chen, T. Wu, and H. Zhang, ‘‘A novel hot data identification
mechanism for NAND flash memory,’’ IEEE Trans. Consum. Electron.,
vol. 61, no. 4, pp. 463–469, Nov. 2015.

[33] Y. Li, B. Shen, Y. Pan, Y. Xu, Z. Li, and J. C. S. Lui, ‘‘Workload-
aware elastic striping with hot data identification for SSD RAID arrays,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 5,
pp. 815–828, May 2017.

[34] A.Miranda and T. Cortes, ‘‘CRAID:Online RAID upgrades using dynamic
hot data reorganization,’’ in Proc. 12th USENIX FAST, Santa Clara, CA,
USA, 2014, pp. 133–146.

[35] C. H. Wu, P. H. Wu, K. L. Chen, W. Y. Chang, and K. C. Lai, ‘‘A hotness
filter of files for reliable non-volatile memory systems,’’ IEEE Trans.
Dependable Secure Comput., vol. 12, no. 4, pp. 375–386, Jul. 2015.

[36] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, ‘‘Longest prefix
matching using bloom filters,’’ IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[37] UMASS. (2002). OLTP Trace From UMass Trace Repository. [Online].
Available: http://traces.cs.umass.edu/index.php/Storage/Storage

[38] Microsoft. (2007). SNIA IOTTA Repository: MSR Cambridge Block I/O
Traces. [Online]. Available: http://iotta.snia.org/traces/list/BlockIO

[39] Q. Luo and Y. He, ‘‘A cost-effective and automatic surface defect inspec-
tion system for hot-rolled flat steel,’’ Robot. Comput.-Integr. Manuf.,
vol. 38, pp. 16–30, Apr. 2016.

[40] D. Park, B. Debnath, and D. Du, ‘‘CFTL: A convertible flash translation
layer adaptive to data access patterns,’’ in Proc. SIGMETRICS, Jun. 2010,
pp. 365–366.

[41] D. Park, B. Debnath, and D. H. C. Du, ‘‘A dynamic switching flash
translation layer based on page-level mapping,’’ IEICE Trans. Inf. Syst.,
vol. E99-D, no. 6, pp. 1502–1511, Jun. 2016.

QIWU LUO (M’17) received the B.S. degree
in communication engineering from the National
University of Defense Technology, Changsha,
China, in 2008, and the M.Sc. degree in elec-
tronic science and technology and the Ph.D. degree
in electrical engineering from Hunan University,
Changsha, in 2011 and 2016, respectively.

He was a Senior Engineer of instrumentation
with Wasion Group Co., Ltd., Changsha, and a
Deputy Technical Director with Hunan RAMON

Technology Co., Ltd., Changsha. He is currently a Lecturer with the School
of Electrical Engineering and Automation, Hefei University of Technology,
Hefei, China. His research interests include the research of real-time infor-
mation processing, automatic optical inspection, parallel hardware architec-
ture design and reconfigurable computing, and machine learning.

RAY C. C. CHEUNG (M’05) received the B.Eng.
degree in computer engineering and the M.Phil.
degree in computer science and engineering from
the ChineseUniversity of HongKong, HongKong,
in 1999 and 2001, respectively, and the Ph.D.
and D.I.C. degrees in computing from Imperial
College London, London, U.K., in 2007.

After completing the Ph.D. work, he received
the Hong Kong Croucher Foundation Fellowship
for his post-doctoral study at the Electrical Engi-

neeringDepartment, University of California at LosAngeles. In 2009, hewas
a Visiting Research Fellow with the Department of Electrical Engineering,
Princeton University, Princeton, NJ, USA. He is currently an Associate
Professor with the Department of Electronic Engineering, City University
of Hong Kong (CityU). He has authored over 100 journal and conference
papers. His research team, CityU Architecture Lab for Arithmetic and Secu-
rity, focuses on the research topics, such as reconfigurable trusted computing,
applied cryptography, and high-performance biomedical VLSI designs.

YICHUANG SUN (M’90–SM’99) received the
B.Sc. and M.Sc. degrees from Dalian Maritime
University, Dalian, China, in 1982 and 1985,
respectively, and the Ph.D. degree from the Uni-
versity of York, York, U.K., in 1996, all in com-
munications and electronics engineering.

He is currently a Professor and the HoDwith the
School of Engineering and Technology, Univer-
sity of Hertfordshire, U.K. He has published over
300 papers and contributed 10 chapters in edited

books. He has also published four text and research books: Continuous-time
Active Filter Design (CRC Press, USA, 1999), Design of High frequency
Integrated Analogue Filters (IEE Press, U.K., 2002), Wireless Communi-
cation Circuits and Systems (IET Press, 2004), and Test and Diagnosis of
Analogue, Mixed-signal and RF Integrated Circuits—the Systems on Chip
Approach (IET Press, 2008). His research interests are mainly in the areas of
wireless and mobile communications and RF and analogue circuits.

He was a Series Editor of the IEE Circuits, Devices and Systems Book
Series from 2003 to 2008. He has been Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS from 2010 to
2011, from 2016 to 2017, and from 2018 to 2019. He is also an Editor of
the ETRI Journal, Journal of Semiconductors, and some others. He was
a Guest Editor of eight IEEE and IEE/IET journal special issues: High-
frequency Integrated Analogue Filters in IEE Proc. Circuits, Devices and
Systems (2000), RF Circuits and Systems for Wireless Communications
in IEE Proc. Circuits, Devices and Systems (2002), Analogue and Mixed-
Signal Test for Systems on Chip in IEE Proc. Circuits, Devices and Systems
(2004), MIMO Wireless and Mobile Communications in IEE Proc. Com-
munications (2006), Advanced Signal Processing for Wireless and Mobile
Communications in IET Signal Processing (2009), CooperativeWireless and
Mobile Communications in IET Communications (2013), Software-Defined
Radio Transceivers and Circuits for 5G Wireless Communications in IEEE
Transactions on Circuits and Systems-II (2016), and IEEE International
Symposium on Circuits and Systems in IEEE Transactions on Circuits
and Systems-I (2016). He has also been widely involved in various IEEE
technical committee and international conference activities.

VOLUME 6, 2018 56213

	INTRODUCTION
	BACKGROUNDS AND RELATED WORKS
	NAND FLASH MEMORY
	FLASH TRANSLATION LAYER
	HOT DATA IDENTIFICATION
	PARALLELISM EXPLOITATION

	DESIGN AND ANALYSIS
	DYNAMIC VIRTUAL PAGE FTL (DVPFTL)
	DUAL LAYER HOT DATA IDENTIFICATION (DL-HDI)
	BASIC IDEA AND MOTIVATION
	SINGLE BLOOM FILTER-BASED PRE-CLASSIFIER
	PARAMETERS SETTING AND ANALYSIS

	ADAPTIVE PARALLELISM MANAGEMENT (APM)
	PERFORMANCE SPEEDUP ANALYSIS

	EXPERIMENTAL RESULTS AND DISCUSSIONS
	PERFORMANCE SIMULATION RESULTS
	SIMULATION SETUP
	PERFORMANCE EVALUATION OF DL-MBF
	PERFORMANCE EVALUATION OF APM

	OVERALL ON-CHIP PERFORMANCE RESULTS
	PROTOTYPE IMPLEMENTATION
	TEST-BENCH SETUP (PCMark05)
	OVERALL PERFORMANCE OF DVPFTL SSD

	CONCLUSION
	REFERENCES
	Biographies
	QIWU LUO
	RAY C. C. CHEUNG
	YICHUANG SUN

