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Abstract 7 

The relationship between exercise intensity and time to task-failure (P-T relationship) is 8 

hyperbolic, and characterised by its asymptote (critical power, CP) and curvature constant 9 

(W’). The determination of these parameters is of interest for researchers and practitioners, 10 

but the testing protocol for CP and W’ determination has not yet been standardised. 11 

Conventionally, a series of constant work-rate tests (CWR) to task-failure have been used to 12 

construct the P-T relationship. However, the duration, number, and recovery between 13 

predictive CWR, and the mathematical model (hyperbolic or derived linear models) are known 14 

to affect CP and W’. Moreover, repeating CWR may be deemed as a cumbersome and 15 

impractical protocol. Recently, CP and W’ have been determined in field and laboratory 16 

settings using time-trials, but the validity of these methods has raised concerns. Alternatively, 17 

a 3-min all-out test (3MT) has been suggested, as it provides a simpler method for the 18 

determination of CP and W’, whereby power output at the end of the test represents CP, and 19 

the amount of work performed above this end-test power equates to W’. However, the 3MT 20 

still requires an initial incremental test, and may overestimate CP. The aim of this review is, 21 

therefore, to appraise current methods to estimate CP and W’, providing guidelines and 22 

suggestions for future research where appropriate.  23 
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1. Introduction  26 

The relationship between exercise intensity and time to task-failure (Tlim) (i.e. the P-T 27 

relationship) has received extensive research attention. The first attempts to model the P-T 28 

relationship date back to the beginning of the 20th century when Kennelly (69) and Hill (50) 29 

studied the speed of humans and animals over various distances. However, Scherrer and 30 

Monod (95) formally described the P-T relationship as hyperbolic in a single-joint muscle 31 

action. The P-T relationship appears to be highly conserved, and has subsequently been 32 

observed in various forms of whole body exercise, in individuals with different levels of fitness, 33 

and across animal species (90).  34 

The hyperbolic P-T relationship is characterised by two parameters. The asymptote of the 35 

hyperbola is defined as critical power (CP), and the curvature constant is notionally 36 

abbreviated as W’. Briefly, it has been suggested that CP demarcates the highest exercise 37 

intensity at which metabolic and systemic responses attain a steady state (61,90,91). Where 38 

power is directly measurable (e.g. cycling), CP is typically expressed as a mechanical power 39 

output (PO). However, factors which affect the relationship between oxygen consumption 40 

(V̇O2) and PO, such as cadence, are known to also affect CP (8), and indeed some authors 41 

have proposed to use the term ‘critical intensity’ and to express CP as a V̇O2 equivalent (118). 42 

However, as expressing CP as a PO may be more applicable (86) and freely chosen cadence 43 

is relatively consistent within individuals (47), this review will consider CP as a mechanical 44 

PO. With regards to W’, it represents the amount of work that can be performed above CP, 45 

and was originally considered to represent anaerobic energy production (51,81). However, it 46 

is now accepted that the precise aetiology of W’ is more complex, and affected by factors such 47 

as accumulation/depletion of intramuscular substrates and fatigue-related metabolites (90). 48 

Further details on the aetiology of CP and W’ are discussed elsewhere (59,90,108). 49 

The determination of CP and W’ is of interest to researchers and practitioners alike. For 50 

instance, prescribing exercise intensities relative to CP may elicit a more homogenous 51 

response than other approaches to normalise the intensity of exercise, such as a percentage 52 



of maximum oxygen consumption (V̇O2max) (4,71,74). Secondly, exercise within the ‘severe’ 53 

domain, above CP, results in a progressive depletion of W’, so that when W’ is depleted, 54 

exercise is either terminated or the intensity reduced to <CP. The determination of CP and W’ 55 

therefore allows prediction of the time to reach Tlim during exercise above CP. These 56 

predictions are typically within 15% of the actual Tlim , and actual and predicted Tlim are strongly 57 

correlated (r ≥ 0.87) (29,41,62,68,84,87,114). Thirdly, CP is strongly associated with 58 

endurance performance, and it has been shown to account for 69-86% of the variance in 59 

sporting events lasting ~2.2 to ~59 min (17,20,70,99). Similarly, running events lasting longer 60 

than 1 h, such as the marathon, are also strongly correlated with the running equivalents of 61 

CP (termed critical speed (CS)), and completed at an intensity close to, but fractionally below, 62 

CP (41,59).. Moreover, the combination of CS and the running equivalent of W’ (D’) predicts 63 

5000-m running performance within 1% (85). Finally, with the advantages of the 64 

aforementioned applications, it is not surprising that the P-T relationship has been used to 65 

evaluate and monitor performance, and proposed as a tool for anti-doping (37,93,116). 66 

The determination of CP and W’, however, is not standardised. In most laboratories, CP and 67 

W’ have been determined using a series of square-wave constant work-rate tests to task-68 

failure (CWR), in which Tlim is recorded. These CWR are usually interspersed with 24 h of 69 

recovery, making this method cumbersome and impractical. Several attempts have been 70 

made to simplify the protocol, including reducing the number of CWR required, or shortening 71 

the 24-h recovery duration between CWR. In addition, advancements in the development of 72 

power meters and ergometers have facilitated the determination of CP and W’ using time-73 

trials (TT), both in the field and the laboratory. Alternatively, CP and W’ may be determined 74 

using a 3-min all-out test (3MT), whereby the mean PO during the final 30 s of the test 75 

represents CP, and the amount of work performed above that mean end-test PO represents 76 

W’. However, the above approaches have limitations, and there are methodological 77 

challenges that need to be considered. The estimation of CP and W’ is influenced by the 78 

testing protocol and, as a result, research findings between studies are difficult to compare. 79 



This review aims to draw attention to these issues and, where appropriate, to state relevant 80 

recommendations for the determination of CP and W’.  81 

2. Conventional approach to determine CP and W’: mathematical models, 82 

and duration, number, and recovery between tests. 83 

The conventional approach to determine CP and W’ in a laboratory setting requires the 84 

performance of 3–5 CWR, where PO and Tlim are recorded. From these data, total work 85 

performed (i.e. 𝑊𝑜𝑟𝑘 = 𝑃𝑂 ×  𝑇𝑙𝑖𝑚) and the inverse of Tlim (i.e. 𝑇𝑙𝑖𝑚
−1) can be calculated 86 

(Table 1); with subsequent linear and non-linear models applied to estimate CP and W’ 87 

(43,49,51,60,81). 88 

***Figure 1 near here*** 89 

***Table 1 near here*** 90 

PO and Tlim derived from each CWR can be fitted using a hyperbolic function (Figure 1A). The 91 

asymptote of the hyperbola represents CP, and the curvature constant denotes W’. For any 92 

given PO above CP, the duration of exercise to task-failure (i.e. Tlim) is determined as: 93 

𝑇𝑙𝑖𝑚  =  
𝑊’

𝑃𝑂−𝐶𝑃
       [1]  94 

The non-linear equation [1] can be rearranged to a linear function by plotting PO against the 95 

inverse time (𝑇𝑙𝑖𝑚
−1). Here, the slope of the line represents W’, and the y-intercept represents 96 

CP (Panel 1B): 97 

𝑃𝑂 =  𝐶𝑃 +  𝑊′ × 𝑇𝑙𝑖𝑚
−1     [2]  98 

An alternative linear function of the P-T relationship may be obtained by plotting the work 99 

accomplished in each CWR against Tlim (Figure 1C). The y-intercept of this line represents W’, 100 

and the slope represents CP:  101 

𝑊𝑜𝑟𝑘 =  𝑊′ + 𝐶𝑃 × 𝑇𝑙𝑖𝑚     [3]  102 



Fitting the P-T relationship with a 2-parameter function (non-linear or derived linear functions) 103 

has some limitations. For instance, as Tlim approaches zero, PO becomes infinite. To 104 

overcome this limitation, a third parameter, 𝑘, has been introduced (80):  105 

 𝑇𝑙𝑖𝑚  =  (
𝑊’

𝑃𝑂−𝐶𝑃
) + 𝑘      [4] 106 

where 𝑘 is interpreted as the maximum instantaneous PO (POmax). Hence, with the inclusion 107 

of 𝑘, as Tlim approaches zero, PO approaches POmax. CP and W’ can be determined from a 3-108 

paramter model, in which 𝑘 is substituted as: 109 

   𝑇𝑙𝑖𝑚  =  (
𝑊’

𝑃𝑂−𝐶𝑃
) + (

𝑊’

𝐶𝑃− 𝑃𝑂𝑚𝑎𝑥
)     [5] 110 

Another limitation of 2-parameter models is the assumption that, for any intensity below CP, 111 

there is no contribution of W’ at the onset of exercise. However, with a demonstrated link 112 

between CP and V̇O2 on-kinetics (46,83), some authors have suggested that W’ contribution 113 

at the onset of exercise may be somewhat underestimated (60,82). Wilkie (117) proposed 114 

accounting for V̇O2 on-kinetics through the use of a rather fast time constant of 10 s for all 115 

individuals. While the inclusion of the time constant of V̇O2 on-kinetics appears to be 116 

physiologically sound, it seems a cumbersome addition and is currently not used. Further 117 

research may investigate whether the inclusion of an individually-derived time constant 118 

improves the precision of CP and W’ estimations.  119 

An area of concern is the test-retest reliability of the estimates of CP and W’ derived from 120 

CWR. Using the linear Tlim
-1 model (Equation [2]), the coefficient of variation (CV) and 121 

correlation coefficient (r) of CP have been reported at 3% and 0.96, respectively; whereas the 122 

corresponding values for W’ were 10.3% and 0.79, respectively (44). It is worth noting that a 123 

10-15% variability in Tlim has been observed in CWR (5,72,82). A large variation in W’ may 124 

occur as a result of the nature of the mathematical model, since small changes in Tlim during 125 

exhaustive CWR have a negligible effect on CP, but a much larger effect on W’ (93,105,107). 126 

Nonetheless, the test-retest reliability seems to be poorer for W’ than CP using other 127 



methodological approaches (e.g. TT or all-out tests, see discussion below). Furthermore, 128 

studies comparing different approaches to determine CP and W’ typically report a closer 129 

agreement between methods for estimating CP than for W’ (e.g. (65,85,96,103,109,119)), 130 

although a high reliability for both parameter estimates (ICC of 0.94 and 0.95 for CP and W’, 131 

respectively) was reported after a familiarization trial when using TT under controlled 132 

laboratory conditions (103). Overall, however, W’ appears to exhibit a greater variability than 133 

CP, though the reason(s) for this phenomenon are not yet completely understood.  134 

2.1. Effect of the mathematical modelling on CP and W’ estimations 135 

The equations described above typically fit the data with a high degree of accuracy (R2 ≥ 0.82) 136 

(14,23,43). However, they result in different estimations of CP and W’, even though some of 137 

these equations [1-3] are mathematically equivalent (14,19,20,22,23,43,56,94). Depending on 138 

the model, estimations of CP typically are, from highest to lowest, in the following order: linear 139 

Tlim
-1 model (equation [2]), linear total work model (equation [3]), 2-parameter hyperbolic model 140 

(equation [1]), and 3-parameter model (equation [5]); with estimations of W’ following the 141 

reverse order (Figure 2). It is important to note that in some studies no differences between 142 

mathematical models were reported (e.g. (19,31,105)). Nonetheless, irrespective of whether 143 

estimations of CP derived from different mathematical models reach statistical significance, 144 

large Tlim differences have been observed during exercise at respective CP intensities, ranging 145 

~20-60 min (21,23,51,77,85,87).  146 

The question of which mathematical model should be used to determine CP and W’ remains 147 

unresolved. The 3-parameter model consistently produces lower estimates of CP and greater 148 

estimates of W’ than 2-parameter models (14,20,22,28,43). Furthermore, the 3-parameter 149 

protocol, suggested by Morton (80), requires a relatively large number of trials, including some 150 

with low (<1 min) and high (>15 min) Tlim, which in turn can affect the estimation of CP and W’ 151 

(see section 2.2). Moreover, the 3-parameter model may produce non-physiological estimates 152 

of POmax, and the parameter exhibits large inter-subject variability (28,43,80). These issues 153 

may explain why most recent studies have indeed used 2-parameter models (e.g. 154 



(61,63,79,91)). An alternative approach has been proposed by Hill (51), and recently adopted 155 

by some researchers (18,19,101), whereby the model producing the lowest standard error of 156 

estimate (SEE) is used. We therefore recommend that the P-T relationship should be 157 

characterised with the 2-parameter model that results in the lowest SEE. 158 

2.2. Effect of duration of predictive trials on CP and W’ 159 

The characteristics of the tests used to define the P-T relationship have a profound effect on 160 

CP and W’ estimates. For instance, the duration of CWR is known to affect CP and W’ 161 

(16,26,57,75,102,106,115). If data from five tests to task-failure is rearranged, and only the 162 

three tests with the shortest durations are considered, CP has been shown to be 14-20% 163 

greater than that derived from the three longest durations, irrespective of the overall range of 164 

duration of all five exhaustive CWR (16,57). Moreover, W’ appears to be notably more 165 

sensitive to the duration of the trials, with the three shortest exhaustive trials producing W’ 166 

estimates ~70% greater than those derived from the three longest trials (16). The effect of trial 167 

duration on CP and W’ is shown in Figure 3.  168 

Scherrer and Monod (95) stipulated that the work-Tlim relationship (equation [3]) loses linearity 169 

for exercise durations <2 min, with di Prampero (92) specifying that the range of test durations 170 

should be such that V̇O2max is elicited, and that W’ is fully depleted during each trial. However, 171 

the first requirement is not always verified (48,53,75,81), and a complete depletion of W’ may 172 

be difficult to assess. At very high intensities (i.e. short Tlim), W’ may contribute more than the 173 

model predicts due to the relatively slow increase in V̇O2 (16,81,107). Moreover, at such high 174 

intensities, it is possible that exercise terminates before V̇O2max has been reached 175 

(27,52,92,105). Therefore, trials with a Tlim <2 min should be considered too short and not 176 

included in the determination of CP and W’ (16,60,91,92). On the other hand, exercise 177 

performed above CP and continued for >2 min should lead to maximal values of V̇O2 and 178 

blood lactate concentration (19,25,88). However, some studies have reported that V̇O2 did not 179 

reach its maximum at task-failure during the longest predictive trials, which corresponded to 180 

intensities slightly (~10%) above CP (11,94). The reason(s) for this phenomenon remain 181 



unknown, but it is likely to be multifactorial, including physiological and/or psychophysiological 182 

factors (1,11,94). Therefore, it is recommended that exhaustive trials which result in Tlim >15 183 

min should be avoided as V̇O2max may not be reached. Furthermore, whenever possible, and 184 

at least for research purposes, we recommend that the attainment of V̇O2max should be verified 185 

for all predictive trials.  186 

The range in the duration of the trials should also be considered when investigating alternative 187 

testing protocols (i.e. duration of criterion versus experimental trials) (104). In order to 188 

minimise such effects, it is now common that CP and W’ are determined from trials with Tlim 189 

ranging between 2 and 15 min, with a minimum of at least 5 min between the longest and 190 

shortest trial (e.g. (67,105,112)). Nonetheless, it has been shown recently that the duration of 191 

the predictive trials may still affect the estimation of CP and W’, even when these trials are 192 

performed within the recommended Tlim range of 2-15 min. Triska et al. (102) determined CS 193 

and D’ from two protocols: three TT of 12, 7, and 3 min and three TT of 10, 5, and 2 min. The 194 

former protocol resulted in ~3% lower CS and ~14% higher D’ compared to the latter protocol. 195 

It is unclear if these findings can be extrapolated to other forms of exercise such as cycling, 196 

but these data suggest that a consistent protocol should be used to assess or monitor 197 

performance using the CP model.   198 

In summary, 2-15 min is the recommended duration of trials, and exhaustive trials resulting in 199 

a Tlim <2 min or >15 min should be excluded from calculations. The specific duration of 200 

predictive trials should also be considered, even if the overall range of durations falls within 201 

the target of 2-15 min. Alternatively, research investigating the effects of a treatment may 202 

employ the same duration (i.e. TT). Furthermore, the attainment of V̇O2max should be verified 203 

wherever possible before including respective trials in the calculation of CP and W’. 204 

2.3. Effect of the number of trials on CP and W’ 205 

Critical power and W’ can be determined from just two trials. Indeed, CP determined from two 206 

exhaustive trials with relatively different Tlim (>15 min) was only ~1.1% greater than that 207 



determined using four trials (55). More recently, Simpson and Kordi (97) determined CP and 208 

W’ in experienced cyclists using a protocol consisting of two laboratory-based TT of 3 and 12 209 

min, interspersed with 40 min of passive rest. The authors noted that, after two familiarisation 210 

sessions, the addition of a third trial of intermediate duration (5 min) did not affect CP or W’. A 211 

potential limitation of this approach is that using only two exhaustive trials always results in a 212 

perfect fitting of the model, and therefore SEE cannot be determined. Instead, to ensure a 213 

high quality of the model, particularly for research purposes, the P-T relationship is most 214 

commonly determined from three or more CWR to task-failure (51).  Indeed, a recent approach 215 

proposes performing trials until the model falls within a certain SEE; for example, less than 216 

2% (36,40,102) or 5% (18,19) for CP, and less than 10% for W’ (18,19,36,40,102). In 217 

summary, using only two exhaustive trials may seem an attractive option to determine CP and 218 

W’ in the interest of a short protocol. However, where possible and at least for research 219 

purposes, we recommend using three or more trials, so that the P-T relationship provides 220 

estimates within predetermined SEE’s for CP and W’.  221 

2.4. Duration of the recovery between exhaustive trials  222 

The duration of the recovery between exhaustive trials is usually at least 24 h, which makes 223 

the determination of the P-T relationship cumbersome. To address this issue, some authors 224 

have investigated whether a shorter recovery between trials affects CP and/or W’ 225 

(15,45,63,85,97,105). Karsten et al. (64) compared the conventional 24 h method with two 226 

experimental recovery durations of 3 h and 30 min. The authors observed that, in comparison 227 

with the standard 24-h-recovery protocol, the two shorter recovery protocols were sufficient to 228 

not affect CP (prediction error of 2.5% and 3.7% for the 3 h and 30 min recovery protocols, 229 

respectively, compared to 24 h). However, the prediction error inherent in the experimental 230 

protocols was higher for W’ (25.6% and 32.9% for the 3-h and the 30-min protocols, 231 

respectively). The authors proposed a couple of reasons to explain these findings. Firstly, the 232 

shorter recovery protocols might have led to only a partial reconstitution of W’; although W’ 233 

may be restored within ~25 min following exhaustive exercise (33,39,98). Secondly, high-234 



intensity exercise can affect the V̇O2 on-kinetics and increase (i.e. ‘prime’) performance in 235 

subsequent exercise performed up to 45 min after the initial bout (3,24). However, Karsten et 236 

al. (63) more recently showed that V̇O2 on-kinetics were not significantly different between 237 

repeated CWR and TT following a 60-min recovery period, suggesting that, at least for the 3-238 

h recovery intervention, the argument does not hold. In summary, a single-day determination 239 

of CP can be achieved by reducing the inter-trial recovery time to 30 minutes. However, at 240 

present, a more conservative recovery of 60-min is preferred to determine both CP and W’, in 241 

order to minimise any potential priming effect and to allow for a full reconstitution of W’.  242 

3. Determination of CP and W’ using time trials under laboratory and field 243 

conditions 244 

3.1. Laboratory and field determination of critical power and W’ 245 

With the popularisation of power meters PO data is readily available, which allows analysis of 246 

the P-T relationship in the field. For instance, PO data from elite cyclists over a competitive 247 

season have been reported for exercise durations ranging from 1 s to 4 h and, unsurprisingly, 248 

mean PO decreases nonlinearly as the duration increases (89). Indeed, a translation of 249 

laboratory-based determination of CP and W’ into the field was attempted by Karsten et al. 250 

(65). The study compared CP and W’ results, using three laboratory CWR (resulting in task-251 

failure times of ~12, 4, and 2.5 min) with those determined from three track-based TT where 252 

participants had to produce the highest possible PO for 12, 7 and 3 min. All tests were 253 

performed on separate days and the authors reported a close agreement between laboratory 254 

and field CP values (prediction error of 7 W). However, field values of W’ were ~5 kJ higher 255 

than those obtained in the laboratory, irrespective of the mathematical model used. In a follow 256 

up study (67), a shortened testing protocol (i.e. a 30 min intra-trial recovery period; see Section 257 

2.4) was used to investigate whether CP and W’ could be reliably determined from road PO 258 

data. The study comprised three experimental protocols and a criterion protocol to determine 259 

CP and W’. The criterion protocol consisted of three laboratory-based CWR interspersed with 260 

30-min recovery; and the experimental protocols were: i) a TT field-based protocol consisting 261 



of three maximal exhaustive efforts over 12, 7 and 3 min, interspersed with 30-min recovery; 262 

ii) a field-based protocol consisting of three TT over the same durations, but interspersed with 263 

24-h recovery; and iii) non-intentional TT maximal efforts (i.e. highest PO over the three 264 

durations obtained at any point during a single training session). The results demonstrated a 265 

high agreement for all experimental CP values with a mean prediction error of ~11, 17 and 14 266 

W for protocols i, ii, and iii, respectively. However, results for W’ showed an unacceptably high 267 

prediction error of ~3, 4, and 3 kJ, respectively. All experimental protocols were repeated three 268 

times with a mean within-protocol CV for CP of 2.4%, 6.5%, and 3.5%, respectively. Of note 269 

is that protocol ii is at the upper end of what is considered as acceptable reliability for 270 

physiological variables in sports science research  (2,54). With regards to W’, only protocol iii, 271 

the non-intentional efforts, provided a relatively low CV for W’ (~17%) when compared to 272 

protocol i (~46%) and protocol ii (~45%). Triska et al. (105) compared a single-day field test 273 

to estimate CP and W’ (three TT of 12, 6, and 2 min) with a laboratory-based protocol using a 274 

cadence dependent (i.e. linear) mode to mimic ‘real-world’ exercise. The authors reported 275 

similar mean values between conditions for CP (laboratory: ~280 W vs. field: ~281 W), and a 276 

95% LoA of -55 – 50 W. In contrast, W’ was significantly higher under laboratory conditions 277 

(~21.6 vs. ~16.3 kJ) with a correspondingly poor agreement (95% LoA: -3.5 – 16.4 kJ) 278 

between protocols. Altogether, these data suggest that CP can be determined with reasonable 279 

precision in the field, or by simulating field conditions (i.e. using TT). However, W’ appears to 280 

be under- (single-day approach, (105)) or over-estimated (multi-day approach, (65)) using 281 

these tests; though reasons have not yet been elucidated.  282 

3.2. Time-trial versus constant work-rate tests 283 

There are a number of methodological differences between laboratory- and field-based tests 284 

that need to be considered within the context of CP and W’ determination. First, laboratory-285 

based protocols typically use open-end tests (i.e. CWR), whereas field tests typically employ 286 

maximal effort over a fixed time or distance (i.e. TT). Time-trials exhibit less test-retest 287 

variation than CWR (72), and therefore resulting in significantly lower SEE for CP and W’ 288 



estimates (63). Secondly, TT are self-paced, and pacing has been shown to affect the P-T 289 

relationship (18,62). Black et al. (18) compared estimations of CP and W’ derived from 4-6 290 

CWR prediction trials performed on different days with work-matched TT in the laboratory. 291 

Despite being equalled for work, mean PO was higher, and therefore Tlim shorter during TT, 292 

possibly due to the fast-start commonly adopted in TT (18). As a result, CP was ~7% higher 293 

using TT, whereas W’ was not affected by the type of exhaustive trials; though there was a 294 

negative correlation (r = -0.74) between the relative change in CP and W’ in CWR and TT (18). 295 

In contrast, Karsten et al. (63) compared non time-matched CWR with TT in the laboratory, 296 

with a recovery time of 60 min between efforts to avoid a possible V̇O2 priming effect evident 297 

with shorter recovery periods (see Section 2.4). The results demonstrated a low prediction 298 

error for CP (2.7%; 8 W), but a high prediction error for W’ (18.8%; 2.5 kJ); though it is likely 299 

that the latter was influenced by the relatively short recovery period between efforts. It is also 300 

worth noting that Black et al. (18) utilised self-paced TT, where the ergometer was set in linear 301 

mode with a fixed resistance (i.e. cadence-dependent mode) allowing PO to be regulated by 302 

cadence only, whereas Karsten et al. (63) utilised self-paced TT, where the ergometer allowed 303 

PO to be self-regulated using changes in gear ratio (virtual) and cadence, in an attempt to 304 

better replicate real-world cycling. Thirdly, TT are not constrained by cadence, whereas CWR 305 

are commonly performed at a predetermined cadence (105), and pedalling rate is known to 306 

affect CP and W’ (8,34,73,110). Fourthly, the duration of CWR is variable, whereas it can be 307 

standardised for TT. As a result, there might be differences in the duration of exhaustive trials 308 

(18), which, as discussed above, can affect CP and W’. Further evidence for the effects of 309 

time differences also comes from other exercise modes. In running, Galbraith et al. (45) 310 

reported that estimations of CS derived from three TT interspersed with either 30 or 60 min of 311 

passive rest between trials were not significantly different from three CWR performed in the 312 

laboratory using a multi-day protocol (typical error 0.14 m·s-1 and 0.16 m·s-1 for 30 or 60-min 313 

rest, respectively). In contrast, field-based estimations of D’ were significantly lower (typical 314 

error 88 m and 84 m for 30 or 60-min rest protocols, respectively) than those derived from a 315 

laboratory-based test. The field-based approach also exhibited comparable test-retest 316 



variability to that obtained from the conventional laboratory-based approach (0.4% and 13% 317 

for CS and D’, respectively). Triska et al. (104) attempted to address the issues surrounding 318 

the values of D’ by time-matching the laboratory and the field trial durations. The authors 319 

reported no differences and positive correlations for CS and D’ between the two conditions, 320 

and LoA of ±0.24  m∙s-1 and ±75.5 m.  These studies seem to indicate that reasons other than 321 

that of trial duration are responsible for the conundrum surrounding D’. Fifthly, there appear to 322 

be a number of factors during field-based TT protocols that might affect CP and W’ such as 323 

standing vs. rolling starts, overcoming inertia and acceleration, increased air resistance, or 324 

differences in terrain (78,88,105). The precise role of each of these factors warrants further 325 

investigation. On the other hand, field based-based tests can offer a more ecologically valid 326 

approach to estimate CP and W’. This is particularly true if CP and W’ are to be used in the 327 

field, where the above issues of acceleration, pacing or air resistance, remain present. A final 328 

point to consider is the test-retest reliability of estimations of CP and W’ using TT. Recently, 329 

Triska et al. (103) performed three identical TT to determine CP and W’ using a single-day 330 

protocol with the first TT used as familiarisation. The authors noted that the CV of CP and W’ 331 

between the familiarisation and the first subsequent TT were 4.1% and 25.3%, respectively. 332 

However, the analysis of the two consecutive TT performed after familiarisation produced 333 

closer estimates in both CP and W’ (2.6% and 8.2%, respectively). Therefore, the authors 334 

concluded, familiarisation is advisable to determine CP and W’ from TT using a single-day 335 

protocol.  336 

In summary, although laboratory-based TT can be used to determine CP and W’, some 337 

discrepancies in the estimation of CP and, in particular, W’ are evident. Nonetheless, and even 338 

though there are methodological differences between CWR and TT protocols, TT may be 339 

preferable over CWR, particularly if the data are to be used under field conditions. If CP and 340 

W’ are determined from TT, performing a familiarisation trial is advisable to increase the 341 

reliability of the estimates.        342 



4. The 3-min all-out test  343 

The conventional approach to determine CP and W’ requires the performance of repeated 344 

maximal efforts, which may compromise the practical application of the model. It has been 345 

hypothesised that the parameters of the P-T relationship may be obtained from a single all-346 

out test. The rationale is that, at the start of all-out efforts, W’ is heavily utilised; however, as 347 

the exercise continues and PO decreases, so does W’. If the duration of exercise is sufficiently 348 

long, W’ becomes fully depleted and, therefore, the PO at or towards the end of an all-out 349 

effort should represent CP. Dekerle et al. (35) first explored this idea using an all-out effort 350 

lasting 90 s; but the authors noted that at the end of the test, PO was greater than CP, and 351 

that W’ was not fully depleted. Burnley et al. (25) extended the duration to 180 s, and observed 352 

that the decrease in PO had stabilised in the final 30 s of the test (defined as ‘end-test power 353 

output’ [EP]) (Figure 4). In a follow-up study, a close agreement was reported between the 354 

conventionally determined CP and the EP obtained during a 3MT (r = 0.99; SSE = 6.4 W) 355 

(109). Moreover, the work performed above EP (WEP) was similar to W’ (r = 0.84; SEE = 2.6 356 

kJ). For the purpose of this review we will use CP and W’ when referring to results derived 357 

from the conventional protocol using CWR or TT, and EP and WEP when referring to the 3MT.  358 

The original 3MT still requires two testing days, as a prior exhaustive incremental maximal test 359 

is a prerequisite for the subsequent ergometer setting, using values of gas exchange threshold 360 

(GET), preferred cadence, and  V̇O2max (25,109). The 3MT starts with a period of unloaded 361 

cycling after which participants are instructed to accelerate their cadence up to 110–120 rpm 362 

at which point the cycle-ergometer switches into the linear mode. The linear factor is set so 363 

that at the participant’s preferred cadence, the PO corresponds to halfway between GET and 364 

V̇O2max (50%∆; Equation [6]), which is suggested to approximate CP (25): 365 

  𝐿𝑖𝑛𝑒𝑎𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑃𝑂 𝑎𝑡 50%∆

𝐶𝑎𝑑𝑒𝑛𝑐𝑒2      [6]  366 

As fatigue develops during all-out exercise, cadence drops resulting in a decline in PO and 367 

the typical curvilinear 3MT power profile. To prevent pacing, participants are blinded to 368 



elapsed time, and strong verbal encouragement is required throughout the test. To provide 369 

reliable results, a familiarisation 3MT trial is also commonly performed, increasing the overall 370 

time required to determine EP and WEP. Performing a GXT, a familiarisation trial and the 371 

actual 3MT necessitates more than one laboratory visit, which in turns lengthens a protocol 372 

that benefits from an otherwise short testing methodology.  373 

There are no formal criteria to verify the validity of the 3MT. However, some authors reported 374 

that PO plateaus towards the end of the 3MT, as determined using consecutive 30-s bins 375 

(25,42). It has been also reported that PO peaks within the first 10 s (109), and subsequently 376 

decreases rapidly so that 90% of WEP is depleted within the first 90 s of the test (110). In 377 

addition, as an all-out effort is required, a decrease in PO greater than 5% of EP (see 378 

discussion below on reliability) for 5 s may denote pacing and cause some reconstitution of 379 

WEP, and therefore an overestimation of this parameter.  An accurate selection of the linear 380 

factor is crucial, since relatively small alterations in preferred cadence by ±10 rpm can 381 

significantly affect EP and/or WEP and end test cadence (110). To reflect the maximal (i.e. all-382 

out) nature of the test, V̇O2 has been suggested to attain its maximum during a 3MT 383 

(25,42,109); and blood lactate concentration reaches >8 mmol·L-1 (25,110,113). In summary, 384 

the following criteria may be proposed to ensure a true 3MT all-out effort: i) a plateau in PO in 385 

the last 30 s of the test; ii) the attainment of peak PO within the first 10 s of the test; iii) rapid 386 

initial decrease of PO, so that 90% of WEP is depleted within the first 90 s of the test; iv) no 387 

decrease in PO >5% EP for >5 s during the test; v) an end-test cadence within 10 rpm of 388 

preferred cadence; vi) the attainment of V̇O2max; and vii) a blood lactate concentration >8 389 

mmol·L-1. With regards to the reliability of EP and WEP, both parameters show a similar 390 

degree of reliability to those derived from the conventional testing approach. Specifically, the 391 

reliability of EP has consistently been shown to be better (CV of 3-7%) than that of the WEP 392 

(8-21%) (25,38,58,73).  393 



4.1. Single-day alternatives of the original 3MT 394 

As the original 3MT requires two laboratory visits, several authors have attempted to shorten 395 

or to simplify the original 3MT. For instance, Johnson et al. (58) proposed that the resistance 396 

of the 3MT may be determined relative to body mass, somewhat similar to the Wingate 397 

anaerobic test. Bergstrom et al. (10) reported that a modified 3MT, performed on a 398 

mechanically-braked ergometer, with resistances set at 4.5% body mass, could be used to 399 

determine EP and WEP. However, if the resistance was set at 3.5% body mass the modified 400 

3MT produced different estimates of EP and WEP than those derived from the original 3MT 401 

and from the conventional approach (10); although the error was not reported, and agreement 402 

between methods was identified using a test of difference.  In a similar study, Clark et al. (31) 403 

performed a 3MT on a mechanically braked ergometer using loads of 3, 4, or 5% of body mass 404 

for recreationally active, anaerobic and aerobic athletes, and endurance athletes, respectively. 405 

There were no significant differences in either EP or WEP determined from the 3MT, 406 

irrespective of whether values were determined using linear factors based upon body mass or 407 

using the conventional linear factor of 50%∆. The authors, however, reported a large individual 408 

variation between the methods in estimates of EP and, particularly, WEP (4.2% and 39.4%, 409 

respectively). Dicks et al. (38) calculated the linear factor based on age, gender, body mass 410 

and self-reported physical activity levels. The authors reported no differences in either EP or 411 

WEP between the original 3MT and the alternative 3MT. Moreover, there were no differences 412 

between the parameters of the P-T relationship derived from the alternative 3MT, and those 413 

derived from three CWR using linear models (Eqs. [2,3]). However, the CV between methods 414 

was again much higher for WEP (≥ 21.8%) than for EP (≤ 4.8%) (38). In addition, Dicks et al. 415 

(38) used CWR lasting ~3, 4, and 5 min to model the P-T relationship; possibly overestimating 416 

CP and underestimating W’ (see Section 2.2). Constantini et al. (33) evaluated the effects of 417 

performing the incremental test and 3MT in a single testing session. The authors reported that 418 

a 3MT performed 20 min after the incremental test resulted in EP and WEP values similar to 419 

those obtained when the 3MR and incremental test were performed over different days (SEE 420 

5 W and 1.81 kJ for EP and WEP, respectively). Clark et al. (30) evaluated the merits of 421 



performing a 3MT on the CompuTrainer, a training ergometer often used by cyclists. The 422 

results showed a good agreement between conventional (linear work and Tlim
-1 models) and 423 

3MT approaches for determining CP and EP (2.8% and 3.1%, respectively). However, a poor 424 

agreement between WEP and W’ derived from the linear Work-Tlim (CV of 24.4%) and PO-425 

Tlim
-1 (CV of 26.3%) models was also reported.  426 

In summary, various alternatives have been proposed to simplify the conventional 3MT. 427 

Overall, alternative approaches of the 3MT discussed above seem to produce similar EP 428 

values compared to the original 3MT. However, since WEP seems to exhibit large variation, 429 

alternative protocols to the 3MT warrant caution, and as such, the conventional approach is 430 

preferred.    431 

Most of research focusing on the 3MT has been performed in healthy and athletic populations; 432 

most likely because of the challenging nature of sustaining an all-out effort for three minutes. 433 

It is nonetheless worth noting that the 3MT has been performed by adolescents (14-15 years), 434 

who might have a reduced anaerobic fitness compared to adults (7). No significant differences 435 

were observed between the conventional and 3MT approaches to estimate CP/EP and 436 

W’/WEP values in adolescents; though a large variation (~20%) within-individuals prevented 437 

the 3MT and conventional approaches from being used interchangeably (6). Future research 438 

should consider whether the 3MT is a feasible option for non-athletic populations, particularly 439 

those with limited fitness. 440 

4.2. Critical appraisal of the 3-min all-out test 441 

Other approaches have been adopted to determine CP and W’ using a 3MT, which provide 442 

further insight into the validity of EP and WEP for estimation of CP and W’. For instance, 443 

several studies have investigated the 3MT using isokinetic cycling exercise. Dekerle et al. (34) 444 

reported that the isokinetic 3MT produced measures of CP and W’ that were not significantly 445 

different from those derived using the traditional approach; although the large intra-subject 446 

variability, in particular for WEP, led the authors to caution against the use of the isokinetic 447 



3MT. Karsten et al. (66) reported a greater EP (~7%) and smaller WEP (~25%) derived from 448 

an isokinetic 3MT than those obtained from the conventional approach, with poor levels of 449 

agreement between these two approaches. In contrast to the above, Wright et al. (119) 450 

conducted the only study to date comparing the conventional CWR with the 3MT method in 451 

both, linear and isokinetic mode, and reported that the 3MT provided a better agreement in 452 

isokinetic mode (LoA=4 ± 30 W; SEE=5%) than in linear mode (LoA=30 ± 47 W; SEE=8%). 453 

Moreover, the authors noted significant differences and low LoA between W’ and WEP derived 454 

from both isokinetic mode 3MT (LoA -7 ± 9 kJ; SEE 27%), and linear-mode 3MT (LoA 9±9 kJ; 455 

SEE=26%) (119).  456 

The ‘gold-standard’ approach to determine CP and W’ is still a series of CWR in the laboratory 457 

(51,60), and therefore is the method chosen to validate the 3MT (12,96,109,110). However, 458 

while several studies have reported a close agreement between traditional and 3MT derived 459 

measures of CP and EP (12,96,109,110), others have reported that EP overestimates CP, 460 

irrespective of the mathematical model used to determine CP (9,14,84). Indeed, whilst 461 

exercise at CP can be sustained for >20 min, exercise at EP was only maintained for 12–15 462 

min (12,13,76). However, EP has demonstrated a strong positive correlation with a various 463 

thresholds, such as the lactate threshold (r = 0.79), the maximal lactate steady state (MLSS; 464 

r = 0.93), and the onset of blood lactate accumulation (r = 0.85) (100); and Black et al. (17) 465 

observed that performance in a 16.1 km cycling TT was strongly correlated with EP (r = 0.83). 466 

However, the PO associated with the MLSS was 24 W (11%) (42) to 54 W (21%) (100) lower 467 

than EP. Moreover, the difference between EP and MLSS showed heteroscedasticity, as the 468 

difference between these two parameters increased in highly trained individuals (100). Indeed, 469 

the use of the 3MT has been criticised for elite cyclists as EP overestimated CP by ~50 W, 470 

and WEP underestimated W’ by ~8.8 kJ (9), and the difference between actual performance 471 

and the estimated performance derived from the 3MT increases with   Nonetheless, 3MT is 472 

able detect changes in CP following four weeks of high-intensity training, as both CP and EP 473 

increased by a similar (r = 0.77) magnitude, and the agreement between CP and EP was 474 



good, pre- and post-training (typical error 4.6 W and 4.3 W, respectively) (111). Furthermore, 475 

Clark et al. (32) demonstrated that a 3MT is able to detect fatigue-induced changes in EP and 476 

WEP during prolonged cycling. These authors found that 2 hours of heavy exercise causes a 477 

decrease of 8% and 20% for CP and W´, respectively, suggesting EP and WEP may be able 478 

to assess fatigue. In summary, although 3MT may offer a time-efficient approach to estimate 479 

CP and W’ and an ability to monitor training adaptations and fatigue, these studies suggest 480 

that a degree of caution is warranted when assuming that EP and WEP represent CP and W’, 481 

respectively, particularly in elite athletes. 482 

5. Conclusions 483 

The non-linear P-T relationship is well described by a hyperbolic function, which results in two 484 

parameters: the asymptote (CP), and the curvature constant (W’). Conventionally, several 485 

CWR to task-failure are required to determine CP and W’, using various modelling techniques. 486 

However, the mathematical model used, and the characteristics of the exhaustive trials such 487 

as duration, rest between trials, and mode (TT vs. CWR) have been shown to affect CP and 488 

W’ estimations. It is recommended that CP and W’ should be determined using the the two-489 

parameter model that results in the lowest SEE. Regarding the exhaustive trials, a minimum 490 

of three CWR or TT is recommended with a duration spanning 2 min to 15 min. Trials which 491 

fall outside of this time range should not be used to estimate CP and W’, and the attainment 492 

of V̇O2max should be verified where possible. Moreover, if the individual SEE exceeds 2-5% for 493 

CP and/or 10% for W’, further trials should be included in the calculation. Whilst recovery 494 

between exercise bouts of ≥60 mins appears to be sufficient to avoid V̇O2 priming effects, the 495 

inability to determine W’ suggests that at present 24 h recovery periods between trials are 496 

best. The use of TT has recently been used to determine the P-T relationship from the field. 497 

Although there are a number of factors that might confound laboratory- vs. field-based tests, 498 

such as seating positions, acceleration and inertia, air resistance, or differences in terrain; field 499 

tests seem to provide similar CP values than those established in the laboratory whilst also 500 

offering an ecologically valid and practical approach to determine CP and W’. Field-based 501 



tests can be integrated into daily training, which in turn reduces the need for laboratory access 502 

and equipment. Similarly, CP testing in the laboratory can now be performed using TT. 503 

However, whilst this testing method provides highly reliable results for both parameters, it still 504 

requires further research to investigate validity of W’ values. The 3MT allows the determination 505 

of EP and WEP, which are considered to represent CP and W’, respectively. Although a good 506 

agreement between estimates of CP and W’ derived from the conventional approach and 3MT 507 

has been used to validate the latter; recent research suggests that EP may overestimate CP, 508 

especially in elite athletes. The original 3MT requires repeated laboratory visits: an initial GXT 509 

to determine gas exchange threshold and V̇O2max, and a subsequent visit to perform the actual 510 

3MT. A number of alternatives have been proposed to further reduce the protocol to a single-511 

day test. Though some of these alternatives have shown good agreement between methods, 512 

further research should also investigate the physiological responses at EP, determined from 513 

these alternatives 3MT protocols. The recommendations given in the current review should 514 

be applied to cycling, but, where possible, might be extended to other modes of exercise, such 515 

as running, swimming, rowing, or kayaking.   516 

  517 
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7. Tables and Figures 818 

Table 1. Example of data collected from five constant-work rate bouts to task-failure in a trained 819 

cyclist. Power and Duration are recorded during the test, and work and Time-1 subsequently 820 

calculated. ‘Max’ represents peak power output. 821 

   822 

Trial Power (W) Duration (s) Work (kJ) Time-1 (s-1) 

1 415 135 56.03 0.0074 

2 360 240 86.40 0.0042 

3 340 408 138.72 0.0025 

4 320 600 192.00 0.0017 

5 310 930 288.30 0.0011 

Max 1100 

   

     
   823 



Figure Legends 824 

 825 

Figure 1. Different modelling approaches to determine critical power and the curvature constant 826 

W’ from data presented in Table 1.  Panel A represents the 2-parameter hyperbolic power-duration 827 

relationship. Panel B represents the 3-parameter hyperbolic power-duration relationship. Panel C 828 

represents the 2-paremeter linear work-Tlim relationship. Panel D represents the 2-parameter linear 829 

power output- Tlim
-1 relationship. Tlim represent duration until task-failure.  830 

 831 

Figure 2. The effect of the different mathematical modelling approaches to determine critical power 832 

and W’ on the relationship between power output and time to task-failure. Data from Table 1.      833 

 834 

Figure 3. The effect of the duration of the trial on critical power (CP) and W’. Data from Table 1.      835 

 836 

Figure 4. Outline of the 3-min all-out test. Panel A represents data from 30 seconds before the 837 

start of the test (start at time = 0 s). Panel B represents 30-seconds averages through the test. 838 

Filled circles (●) denote power output, and open circles (○) represent oxygen consumption (V̇O2). 839 

Note that power output initially increases, reaching a peak in the first few seconds of the test, and 840 

then progressively decreases until, eventually levels off in the final 30 s of the test (i.e. end-test 841 

power output).  842 
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