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Abstract:

Software defect prediction is motivated by the huge costs incurred as a result of
software failures. In an effort to reduce these costs, researchers have been utilising
software metrics to try and build predictive models capable of locating the most
defect-prone parts of a system. These areas can then be subject to some form of
further analysis, such as a manual code review. It is hoped that such defect predic-
tors will enable software to be produced more cost effectively, and/or be of higher
quality.

In this dissertation I identify many data quality and methodological issues in
previous defect prediction studies. The main data source is the NASA Metrics
Data Program Repository. The issues discovered with these well-utilised data sets
include many examples of seemingly impossible values, and much redundant data.
The redundant, or repeated data points are shown to be the cause of potentially
serious data mining problems. Other methodological issues discovered include the
violation of basic data mining principles, and the misleading reporting of classifier
predictive performance.

The issues discovered lead to a new proposed methodology for software defect
prediction. The methodology is focused around data analysis, as this appears to
have been overlooked in many prior studies. The aim of the methodology is to be
able to obtain a realistic estimate of potential real-world predictive performance, and
also to have simple performance baselines with which to compare against the actual
performance achieved. This is important as quantifying predictive performance
appropriately is a difficult task.

The findings of this dissertation raise questions about the current defect predic-
tion body of knowledge. So many data-related and/or methodological errors have
previously occurred that it may now be time to revisit the fundamental aspects of
this research area, to determine what we really know, and how we should proceed.
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Chapter 1

Introduction

Contents
1.1 Overall Summary . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Software defect prediction involves the use of algorithms to predict whereabouts
in a software system non-syntactic implementational errors are most likely to

occur. These predictions are made based on software product and/or process met-
rics. In this dissertation both metric types are used and discussed. The product
metrics used are static code metrics; these are measures of physical software source
code that can be extracted at compile time. The process metrics used are fault
measurements, which relate to past faults and are used as an indicator of software
quality. Both these metric types are explained and formally defined in Chapter 2.

Defect prediction is motivated by the huge costs that are caused by software
failures [Levinson 2001]. Although the growing complexity of software means that
fault-free systems are typically impossible to guarantee, the objective of software
developers is often to produce high quality code in a timely fashion. However, there
is a trade-off between quality and timeliness. Traditional methods of improving
software quality, such as independent quality reviews, are a good example of this.
Sommerville states that: “Quality reviews are expensive and time-consuming and
inevitably delay the completion of a software system. Ideally, it would be possible to
accelerate the review process by using tools to process the software design or program
and make some automated assessments of the software quality. These assessments
could check that the software had reached the required quality threshold and, where
this has not been achieved, highlight areas of the software where the review should
focus.” [Sommerville 2006] This is the task of software defect predictors, tools that
are built for the purpose of automatically prioritising which parts of a software
system should be subject to further examination before release. In this dissertation
the focus is on using static code metrics in conjunction with historic fault data to
gain insight into past software quality. From here predictions can be made regarding
the quality of future code units using only their static code metrics, which can be
collected cheaply, quickly and easily. It is hoped that such tools will enable software
to be produced more cost effectively, and/or be of higher quality.
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1.1 Overall Summary

In this dissertation many data quality and methodological issues are discovered in
the current defect prediction literature. The primary data source in my experiments
is the NASA Metrics Data Program Repository, which is introduced in Chapter 4.
These data sets have been heavily used in prior studies; however, they contain many
data quality issues, some of which have received little attention from the defect
prediction community. At the most fundamental level, there is so little information
available regarding how the data was constructed that it is impossible to know
what the primary error data actually describes. More practically, there are many
data points containing seemingly impossible values, and also many data points that
are redundant (repeated). As shall be demonstrated in Chapter 6, repeated data
points can be the cause of serious problems in classification experiments. Obtaining
accurate data that is suitable for defect prediction experiments is very difficult (see
Chapter 7); this has led to the prosperity of public-domain fault data repositories.
However, many of the data sets in these repositories, prior to the work described in
this dissertation, seemed to be lacking a substantial analysis. The findings of this
dissertation indicate that the blind faith in the quality of these data sets may have
been a substantial error.

In addition to data quality issues, problems relating to machine learning method-
ology are also discovered. On many occasions fundamental machine learning as-
sumptions have been broken, often relating to models being built with prior knowl-
edge of the data they will later be assessed on. Another problematic area is that of
quantifying predictive performance; as will be shown in Chapter 6, the characteris-
tics of many fault data sets make this task potentially more difficult than may be
initially perceived.

All of these issues lead to a new proposed methodology for software defect pre-
diction, and the realisation that the findings from much prior work may be com-
promised. The aim of the methodology is to be able to obtain a realistic estimate
of potential real-world predictive performance, and also to have simple performance
baselines with which to compare against the actual performance achieved. The
methodology includes approaches that can be used to address many of the issues
previously described; however, serious questions regarding the quality and suitability
of the data remain.

1.2 Dissertation Outline

The following is an overview of each subsequent chapter in this dissertation:

• Chapter 2 gives an overview of software metrics and defects, including an
introduction on how to go about collecting data that is suitable for defect
prediction experiments.
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• Chapter 3 gives an overview of machine learning, with particular focus on su-
pervised learning, where classifiers learn from examples of previously labelled
data.

• Chapter 4 presents a literature review of the studies most relevant to this
dissertation. In this literature review I begin detailing the shortcomings of
many well-cited studies, as one of my major contributions is highlighting the
extent to which methodological errors have been made in prior work.

• Chapter 5 describes the first two major experiments carried out during my
PhD study. Both these experiments made use of support vector machine
classifiers, which feature heavily throughout the dissertation. The first ex-
periment aimed to provide an estimate of current, state-of-the-art predictive
performance, while the second aimed to analyse the inner workings of these
state-of-the-art classifiers. This chapter contains details of methodological
shortcomings made in my own early work.

• Chapter 6 contains details of the data quality issues that I have discovered
regarding the NASA Metrics Data Program data sets, which have been heavily
used in prior studies. I present a novel data cleansing algorithm to address
these issues, and also show how one of the issues in particular (namely: the
issue of repeated data points) may have compromised much prior research. I
then go on to contribute to the current discussion regarding the use of various
classifier performance measures, showing that the exclusion of one measure in
particular (namely: precision) may lead to misleading results. This chapter
ends with a repeat of the classification experiment described in Chapter 5,
where many of the major issues described thus far are addressed.

• Chapter 7 gives a description of a study to try and obtain new fault data
suitable for defect prediction from an open-source system. The motivation
for this study came from the data quality issues found with the NASA data
sets described in Chapter 6. The findings from this experiment highlight how
extremely difficult it is to obtain accurate software fault data, and how the
lack of documentation available for public-domain fault data sets is a big issue.

• Chapter 8 presents a new methodology for software defect prediction, which
is mainly a synthesis of points raised earlier in the dissertation. This method-
ology includes a novel approach to dealing with genuine repeated data points
in classification experiments.

• Chapter 9 concludes this dissertation, reviews my contributions to knowl-
edge, and highlights potential avenues of future work that should now be
explored.
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1.3 Contributions

The main contributions made in this dissertation include highlighting the issues with
much prior work in this area, especially with studies that have made use of the NASA
Metrics Data Program data sets. Many issues with these data sets are documented,
and approaches to deal with them explained. The methodology proposed in Chapter
8 contains guidelines that can be used in future studies irrespective of the data used.
It is hoped that this methodology will increase the rigour with which future studies
are performed. A more detailed list of the contributions made in this dissertation is
given in Section 9.2.
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Software Metrics & Defects

Contents
2.1 Static Code Metrics . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Software Defects . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Software Defects & Defect Prediction . . . . . . . . . . . . . 9

2.2.2 Defect Measurement . . . . . . . . . . . . . . . . . . . . . . . 10

Software metrics are direct or indirect measurements of either a software artefact
or a software development process. The two main types of software metrics are

product metrics and process metrics. Product metrics, such as static code metrics,
are based on a software artefact. Process metrics, such as fault measurements, are
based on a software development process. In this dissertation both metric types are
used and discussed.

This chapter begins with a discussion of the most widely used product source
metrics, static code metrics. These can be extracted from source code at compile
time. The motivation to introduce these metrics is that they typically comprise the
independent variables used during defect prediction. Following on from this is a
discussion regarding software defects and their measurement. This is because such
measures typically comprise the dependent variable used during defect prediction.

2.1 Static Code Metrics

Static code metrics are direct measurements of source code that can be used in
an attempt to quantify various software properties. These are properties that may
potentially relate to code quality, and therefore to defect-proneness. Measurement in
software engineering has been motivated by many factors, including that “you cannot
control what you cannot measure” [DeMarco 1986], and that precise and frequently
used metrics are commonplace in many other scientific domains [Halstead 1977].
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1 #include <stdio.h>
2

3 int main(int argc , char* argv [])
4 {
5 int return_code = 0;
6

7 if (argc < 2) {
8 printf("No Arguments Given\n");
9 return_code = 1; }
10

11 // print each command line argument
12 int x;
13 for(x = 1; x < argc; x++)
14 printf("'%s '\n", argv[x]);
15

16 return return_code;
17 }

Figure 2.1: An example C program.

Perhaps the most well-known static code metrics are based on lines of code
(LOC) counts, and give an indication of software size. Consider the C program
shown in Figure 2.1. Here there is a single function called main. This function oc-
cupies 15 consecutive lines of the containing file; however: 3 of the lines are empty, 2
of the lines contain only a single bracket, and 1 of the lines contains only comments.
For these reasons, there are various types of LOC-counts; examples of these include:
LOC total, LOC executable, LOC comments and LOC non-blank. Unfortunately,
details on precisely what has been measured are often omitted, leading to ambi-
guity when LOC-count values are given [Jones 2008]. Problems with traditional
LOC-counts also include that they are sensitive to coding style. Looking at Figure
2.1, one or more of the brackets used in the if statement could have been placed
on their own line, potentially affecting LOC-count-based measurements. However,
such differences may not be of practical importance so long as coding style remains
consistent [Rosenberg 1997]. In practice this often leads to code-indentation tools
being used prior to metrics collection. Despite the issues with LOC-counts, they
are the most frequently used static code metrics, and if measured consistently can
provide some insight into software size [Fenton 1998].

While LOC-count-based measures aim to provide insight into software size, an-
other set of metrics, proposed by Maurice Halstead in 1977, also aim to provide
insight into code complexity and developer effort [Halstead 1977]. The Halstead
metrics are based on the following four base measures:
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• The number of unique operators: n1

• The number of unique operands: n2

• The total number of operators: N1

• The total number of operands: N2

Using these base measures the following derived measures can be calculated:

• Halstead Length: N = N1 + N2

• Halstead Vocabulary: n = n1 + n2

• Halstead Volume: V = N ∗ log 2(n)

• Halstead Difficulty: D = (n1 / 2) ∗ (N2 / n2)

• Halstead Level: L = 1 / D

• Halstead Effort: E = D ∗ V

• Halstead Content: C = L ∗ V

• Halstead Error Estimate (number of validation bugs): B = V / 3000

• Halstead Programming Time (seconds): T = E / 18

The length metric is the sum of all operators and operands, and is an alternate
size measure to those based around LOC-counts. The vocabulary metric is the sum
of all unique operators and operands; code with a high vocabulary is thought to
be hard to read and therefore difficult to maintain. The volume metric describes
information content in bits, and is another size related measure. The difficulty
metric was claimed to measure how difficult the code was to write, and therefore
how error-prone it is likely to be. The complement of this is the level metric, with
a lower level thought to indicate less error-prone code. The effort metric is used to
measure the effort to comprehend and therefore maintain code, while the content
metric was claimed to be a language independent complexity measure. Perhaps
the most unjustified of these measures are the error estimate and time to program
ones, as both include unfounded constants. For the error estimate measure, the
proportion of defects within all systems is assumed to be constant, whereas for the
time to program measure, the number of programmer elementary mental decisions
per second is assumed to be constant. For reasons such as these, the Halstead metrics
have been repeatedly and heavily scrutinised [Hamer 1982, Shen 1983, Fenton 1998].
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Metrics concerned solely with code complexity were proposed by Thomas Mc-
Cabe in 1976 [McCabe 1976]. The most well-used of these is known as the cyclomatic
complexity, and is based on program control flow. This metric measures linearly in-
dependent paths, and is equal to the upper bound of required unit tests for basis path
coverage. Basis path coverage is a white-box testing technique where it is ensured
that all executable statements have been run at least once. This is a good starting
point when building automated test suites, meaning that cyclomatic complexity has
practical worth. Although cyclomatic complexity has direct practical implications,
its use as a complexity measure has been widely questioned [Shepperd 1988, Fen-
ton 1998]. The main arguments are that it is based on poor theoretical foundations,
and that it does not fully capture what is intuitively perceived as complexity.

Other metric suites have been proposed, such as those specifically designed for
the object-oriented paradigm [Sommerville 2006, Chidamber 1994]. Such metrics are
typically based around degrees of coupling and cohesion, as well as the depth and
suitability of inheritance trees. Although defect prediction studies have been carried
out using these metrics [Catal 2007], they are not used within this dissertation.

When analysing static code metrics, it is important to know the level of gran-
ularity at which they were captured. Common granularities include the file and
package level, as well as the module level. In this dissertation the term module is
used as a generic term to refer to the function or method level. However, it is worth
noting that the term module has different interpretations between authors, which
can result in ambiguity during meta-analysis of studies [Hall 2012]. An additional
necessity when analysing metrics is to know the programming language of the mea-
sured code. This can be more problematic than initially perceived, as many systems
comprise more than one language. The varied abstraction levels of programming
languages mean that metrics are typically language dependent; for instance, a line
of a high-level language (such as Python) will typically achieve more than a line of
a low-level language (such as C).

Because static code metrics are calculated through the parsing of source code,
their collection can be automated. Thus it is computationally and resourcefully
feasible to calculate the metrics of entire software systems, irrespective of their size.
Sommerville points out that such collections of metrics can be used in the following
contexts [Sommerville 2006]:

• To make general predictions about a system as a whole. For example,
has a system reached a required quality threshold?

• To identify anomalous components. Of all the modules within a soft-
ware system, which ones exhibit characteristics that deviate from the overall
average? Modules thus highlighted can then be used as pointers to where
developers should be focusing their efforts.
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2.2 Software Defects

Throughout this dissertation the terms: defect, fault and bug are all used inter-
changeably. These terms refer to the manifestation of an error in source code,
where an error is an erroneous action made by a developer. Faults can be the cause
of failures, which occur when users experience undesirable system behaviour at a
specific point in time. In general, syntax errors are not regarded as faults; this is
because they can be found with far more efficiency by parsers and/or basis path
testing. These definitions are based on those given in [iee 1990], although it is worth
noting that they are not universally agreed upon [Fenton 1999].

Recording the number of faults found within a unit of software provides a sim-
plistic method of partly assessing its quality. However, there are many different
types of fault measurement. During software development, the number of bugs
found during the testing phase can be recorded. This is an example of pre-release
fault measurement; however, post-release (or latent) fault measurement is also pos-
sible. The most prevalent form of post-release fault measurement is to record how
many failures were experienced up until a specific point in time after a release. It
is worth pointing out that such measures are to be used with caution, as the total
number of faults within a unit of software (discovered defects + residual defects) is
typically never known. This is because of the computational time and complexity
required to determine such a value. Therefore, it is folly to assume that a unit of
software with many defects removed will be less fault-prone than another with few
defects removed, or the converse. Additional problems with such fault counts are
that fault severity is not always considered. Although distinguishing fault sever-
ity is a challenging task, it is dangerous to have no distinction between trivial and
life-threatening faults.

2.2.1 Software Defects & Defect Prediction

In defect prediction experiments, a single fault variable, such as ‘the number of faults
discovered during system testing’, is typically the dependent variable. In regression
experiments, such measurements are often used as is, and the number of faults
within each software unit predicted. Note that it is not necessary for the predicted
number of faults within each unit to be highly accurate in order for the classifier to
be of practical worth. This is because the numbers of predicted faults can be ranked
in descending order, producing a ranked list of the seemingly most defect-prone
components. Code inspections can then be prioritised around this ordering. It is
also possible to normalise the predicted numbers of faults by a size estimator such
as LOC total, and then rank the software units in descending order of predicted
defect density.
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As well as regression experiments, classification experiments are also increas-
ingly popular. Classification experiments involve software units being grouped into
categories or classes. Although there is theoretically no limit to the number of
classes used in such experiments, two class (or binary) classification experiments
are most common. There is typically a ‘defective class’ and a ‘non-defective’ class.
Because of this, a pre-processing transformation of the fault count measurements
is often required. The most common transformation is to map all software units
with no reported faults to the non-defective class, and map all others to the de-
fective class. Such a mapping has been carried out in many studies, including:
[Menzies 2007b, Lessmann 2008, Elish 2008]. Note that as well as the issue regard-
ing fault severity mentioned previously, there is now additionally the issue of fault
quantity information being lost. This is clearly a radical simplification, and one
that is made solely for the benefit of the learning technique. Although classifica-
tion experiments produce categorical predictions, it is often still possible to produce
a defect-proneness ranked list of software units, as is the case with regression ex-
periments. This is achieved by extracting some internal classifier confidence value
associated with each prediction, and then ranking the software units accordingly.
There will be more discussion on this in Section 5.2.

2.2.2 Defect Measurement

As opposed to static code metrics that can be accurately, quickly and easily ex-
tracted, fault measurements are more challenging to obtain. This is because fault
measurements are often indirect, rather than direct measurements. A user of a
system may be a developer, a tester, or an end user. When such a (human or auto-
mated) user experiences a software failure, the occurrence can be recorded. While
this typically provides an overall measure of error for the system or subsystem in
question, it is often more desirable to obtain fault measurements at a lower level of
granularity. This involves the failure inducing fault(s) being isolated and localised,
in order to find the offending code unit(s). The level of localisation required de-
pends on the level of granularity required. As with static code metrics, common
granularities include the package, file, class and module level. Note that it is often
possible to aggregate low-level granularity measures to obtain higher level ones.

The most common methods for localising faults involve analysis of the system
history recorded in revision control systems. Revision control systems, such as con-
current versions system (CVS), record who changed what, when, how, and (ideally)
why [Śliwerski 2005]. Such systems enable users to submit a textual message with
each commit (set of file changes). The purpose of this message is to describe the
changes being made, although there are no guarantees regarding its accuracy. De-
spite this, in cases where such messages are consistently entered and of reasonable
quality, it is often possible to use them to determine when and where supposed
fault-fixes have occurred. This has been carried out in previous studies using sim-
ple text-based searches [Mockus 2000, Śliwerski 2005]. After identifying a supposed
fault-fix, an assumption can be made that the previous revision to the one in question
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contains faulty code. A more advanced approach than simple text-based searching is
known as the SZZ algorithm, and involves progressively working backwards through
each previous revision. A search is carried out for the most recent revision(s) to
have changed the code being ‘fixed’ in the current revision. If any such revision is
found, it is known as a fix-inducing change: a change that caused a ‘problem’ that
later needed to be ‘fixed’. The SZZ algorithm was first proposed in [Śliwerski 2005]
and later extended in [Kim 2006] & [Williams 2008].

Rather than using revision control log messages alone, the SZZ algorithm was
originally proposed to additionally make use of bug reports. Such reports are often
maintained throughout the lifetime of a project using purpose built database-backed
bug-tracking software. An example of such a software system is Bugzilla1. For
projects that have utilised such a system, the process for localising faults described
above can be extended. Searching for all bug reports that have been assigned the
‘fixed’ status results in a set of unique bug identifiers. As it is common practice
for developers to include a bug report number in the commit message of a ‘bug fix’
[Śliwerski 2005], commit messages can be searched for these identifiers, in addition to
other indicators of a fault-fix (such as the word: ‘fixed’). This is claimed to increase
the precision achieved when using log messages alone [Śliwerski 2005], resulting in
more confidence as to whether or not a commit was an intended fault-fix.

An alternative method for identifying fault-fixing revisions was proposed in [Os-
trand 2005], following a recommendation by developers. This simple approach clas-
sifies revisions using information regarding the number of files changed in each com-
mit. Commits containing one or two changed files are classified as fault-fixing, all
others are considered not so. Although this method is very simplistic, it was claimed
to work well with a sample of the proposing authors’ data [Ostrand 2005]. The main
advantage of this method is that it can be used in cases where commit messages
have not been entered appropriately.

Perhaps the most accurate way to determine whether or not a commit is an
intended fault-fix is to manually classify the textual difference between it and its
previous revisions. This method requires an expert and is labour intensive, often
making it infeasible even for small systems. The automated methods previously
described were motivated by this frequently encountered infeasibility. Although
manual classification is likely the most accurate way to classify commits, “it is very
difficult to reliably extract fault-fixing data from change repositories” [Hall 2010].
This is because of the expertise required to do so, the subjective nature of manually
classifying fault-fixes, and also because the historical data may be lacking in quality.

The issues involved in extracting fault data from change repositories are revisited
in Chapter 7, which contains a description of the work undertaken to extract fault
data from the Barcode open-source system.

1http://www.bugzilla.org/

http://www.bugzilla.org/
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Machine learning, which is closely related to data mining, is a broad area
of computer science regarding algorithms that enable computers to learn

[Segaran 2007]. This often involves “the extraction of implicit, previously unknown,
and potentially useful information from data” [Witten 2005]. Perhaps the most
popular area of machine learning is supervised learning, where predictions are made
regarding future events based on knowledge of past events. Another popular area of
machine learning is unsupervised learning, which is concerned with finding hidden
structure within data. Machine learning is possible because almost all non-random
data contains underlying patterns [Segaran 2007]. When these patterns are discov-
ered they can then be exploited.

This chapter begins with an introduction to supervised learning, or learning by
example. Basic supervised learning techniques are then described, those most rele-
vant to this dissertation. Methods to assess the predictive performance of classifiers
are discussed in Section 3.3, where the main difficulties are introduced. Section 3.4
leads on from this with a brief introduction to the class imbalance problem. The
process of classification model optimisation is detailed in Section 3.5, a process key
to successful utilisation of many classification methods. A family of such classifica-
tion methods are described in Section 3.6, namely, support vector machines. These
highly sophisticated classifiers have been heavily used and are extensively referred
to throughout this dissertation.

3.1 Supervised Learning

Supervised learning is a sub-discipline of machine learning, which is in turn a sub-
discipline of artificial intelligence. Supervised learning algorithms are trained using
labelled data. Such data (x) comprises p features (or attributes) and q feature
vectors (vectors hereafter). Additionally, there are q class labels (labels hereafter),
each one corresponding to a single vector. The concatenation of a vector with its
label is known as an instance or data point. Although it is possible for a label
to comprise multiple values, this is not considered in this dissertation. If the labels
within a data set form a set of nominal values, then this is considered a classification
problem, whereas if the labels form a set of continuous values, this is considered a
regression problem. In this dissertation the main focus is on classification problems
where the cardinality of the set of labels is two. This is known accordingly as binary
classification. Example training data suitable for a binary classifier is shown in Table
3.1. This data comprises: two features (lines of code and cyclomatic complexity),
six feature vectors, and their six corresponding labels. Each data point describes
two quantitative features of a software unit (the independent variables), as well as
whether or not that software unit caused any operational failures (the dependent
variable). This data is suitable for a two class (binary) classifier, as the set of labels
consists of two elements.
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Lines of Code Cyclomatic Complexity Defects?

7 1 No
500 31 Yes
5 2 No
12 3 Yes
84 6 No
90 13 No

Table 3.1: Example data suitable for a supervised learning algorithm.

The aim of supervised classification learning methods is to use labelled data to
generate a mapping function f(x) such that when a vector is presented, its correct
label is returned. Minimising the error of this process is often the most important
learning algorithm criteria. The data used in this process should be a representative
sample from the specific problem domain. However, only a very small proportion
of all possible instance combinations (the input space) is typically contained within
the available data. Therefore, learning methods are required to generalise in order
to successfully predict unseen data, data that was not used while constructing the
classifier, but that will almost certainly be found in the real world. Generalisation
is therefore very often the key to successful data mining.

3.2 Basic Learning Techniques

3.2.1 Instance-Based Learning

Instance-based (or case-based) learning requires each and every training instance to
be stored verbatim [Witten 2005]. Such algorithms are said to be lazy, as rather
than building a classification model during initial training from which all predictions
are based, the original training data must instead be consulted for each prediction.
The main advantage of this is that training data can be added, removed or modified
dynamically. Disadvantages are that large data sets can result in slow algorithm
operation, and that there is no classification model from which new knowledge can be
easily extracted (as can be the case with decision trees (Section 3.2.3), for example).

For all but the most simple forms of instance-based learning, generalisations can
occur. This is via a search for the most similar vector(s) to the one being classified.
Similarity is typically determined by a distance function, with the corresponding
label(s) of the nearest vector(s) to the one being classified used to determine the
prediction made. The assumption is that instances of the same class will be rela-
tively nearby in the feature space. The distance function used depends on the type
of features contained within the data. For numeric features (such as those used
throughout this dissertation), the most common distance function is the Euclidean
distance. This is defined in Equation 3.1, where the distance between two vectors
(xi and xj) is calculated using all p features.
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Euclidean_Distance(xi,xj) =
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d=1
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j

)2
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3.2.1.1 Rote Learning

Rote learning, or learning by memorisation, is one of the simplest forms of supervised
learning [Noyes 1992]. Rote learning involves the storage of training data into some
form of database. When required this data can then be recalled, potentially with
great efficiency. The limitation of rote learning is that only vectors included in
the training data can be classified. This is because the training data has only
been stored, no attempt to infer or generalise has been made. For this reason
rote learning systems are mainly used where the correct label for every possible
combination of features is known beforehand. This situation is not stereotypical of
machine learning problem domains. However, rote learning systems can additionally
be used as components of ensemble learning methods, perhaps to efficiently classify
parts of the input space where the correct labels are known.

3.2.1.2 Nearest-Neighbour-Based Learning

An extended and far more robust classification method than rote learning is nearest-
neighbour-based learning. The most basic nearest-neighbour-based learning algo-
rithm is one-nearest-neighbour. This algorithm performs the same outward function
as rote learning for cases where the test vector is included in the training data.
When this is not the case, the training data is searched for the instance whose dis-
tance to the test vector is minimal. The test vector is predicted as belonging to the
same class as the instance found, its nearest-neighbour (see Figure 3.1).

The more general form of this concept is k-nearest-neighbour, where k ≥ 1 nearest
training instances are found, and a majority vote is taken on the class of the test
vector. Accordingly, k should be defined as an odd number for binary classification
problems, to prevent ties during voting. The potential benefit of using a higher
value of k is that it results in a clearer picture of whereabouts in the data space
the test vector lies. This is because more information regarding the test vector’s
surrounding instances is taken into account (see Figure 3.2). The optimal value
of k is data specific, and typically cannot be known a priori. However, a model
optimisation phase (see Section 3.5) may be used to aid its estimation.

Although intuitive and easily comprehensible, nearest-neighbour-based learning
methods are very sensitive to both noise (incorrect or erroneous data) and irrel-
evant attributes (those that are uncorrelated with the class). This is because all
features typically have an equal weight when similarity is determined (see Equation
3.1). Because of this, data cleansing is often a prerequisite to successfully using
such techniques, and cleansing methods specific to instance-based learners have
been proposed [Segata 2010, Segata 2009]. An additional problem with nearest-
neighbour-based learners is that they are very sensitive to the class distribution of
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Figure 3.1: An example of the (one) nearest-neighbour algorithm. Here is a plot
of genuine and fraudulent mobile phone usage. The two features are call cost and
call duration. Fraudulent calls are represented by diamonds whereas non-fraudulent
calls are represented by squares. The test data (represented by a circle) is predicted
as belonging to the non-fraudulent class, as this is the class of its nearest data point.
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Figure 3.2: Another k-nearest-neighbour example. Although the test vector (rep-
resented by a circle) appears to be more similar to the non-fraudulent class, k will
need to be 3 or more for this to be the prediction. Note that the fraudulent example
nearest to the test vector is an outlier, as it is not representative of its class. It may
be that this data point has an incorrect label, perhaps due to a data quality issue.
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Figure 3.3: Some of the possible separating lines of a linear separator.

the training data. If the majority class (the class that appears most often in the
training data) contains 90% of instances, the probability of having a majority class
nearest-neighbour is higher than the probability of having a minority class nearest-
neighbour. In such cases, the majority class will usually be over-predicted, meaning
that potentially all test vectors will be predicted as belonging to the majority class.

3.2.2 Linear Separators

Linear separation techniques usually involve using linear combinations of numeric
features to separate classes. An example of this is shown in Figure 3.3. In this
figure, several possible linear separators are shown, all of which separate both classes
without error. An example of an algorithm that can generate such separators is the
perceptron [Rosenblatt 1958]. It follows that this is a non-deterministic algorithm,
as there are many possible solutions shown in Figure 3.3. In fact, there are an
infinite number of solutions to this problem.

Although each of the separators shown in Figure 3.3 separate both classes with-
out error, we ideally wish to maximise performance on unseen data, not simply the
training data. The most intuitive way to try and ensure best performance on un-
seen data is to have a separator with a large margin, a large distance between both
classes. Having a large-margin separator, as opposed to a small-margin separator,
generally results in improved performance on unseen data.
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Because margin size is so influential to generalisation ability, it may be beneficial
for predicting unseen data to have a non-perfect separator. This is a separator where
there are training instances which fall on the wrong side, the side that is not shared
with the majority of their class. Methods which do not allow this to occur produce
hard-margin separators, whereas methods which do allow this to occur produce soft-
margin separators. The difference between these two types of separators is shown
in Figure 3.4.

Hard-margin separators generally do not involve parameters; however, soft-
margin separators typically require a slack parameter to determine the trade-off
between minimising the training error and maximising the size of the margin. This
is known as the cost or c parameter, and is tunable to user requirements. A low cost
value generally results in many training errors and a large margin, whereas a high
cost value generally results in few training errors and a small margin. In fact, cases
where c = ∞ are conceptually identical to hard-margin separators. The optimal
value of c is data dependent, and is often estimated using a systematic search (see
Section 3.5).

The main disadvantage of linear separators is that they are limited to linearly
separable problems. However, many problems are linearly separable, especially when
there are a large number of features (resulting in a high-dimensional space). The
main advantages of linear separators are that they are easily comprehensible and
computationally efficient, in that they are suitable for huge data sets with large
numbers of features.

3.2.3 Tree-Based Learning

Tree-based (or decision tree) learning algorithms produce a structured classification
model during initial training on which all predictions are based. Such methods are
said to be eager, as all computation regarding future predictions is made in the
training period (the raw training data is not revisited at classification time). A
recursive, top-down method is usually employed to construct trees. This is known
as the divide-and-conquer approach [Witten 2005], and can be solved recursively.
The top (or root) node branches (or splits) at the feature which best separates
the data into homogeneous subsets with the same label. Various methods exist for
determining this feature; however, the most well-known decision tree algorithms
use either entropy [Quinlan 1993] or Gini index [Ceriani 2011] based measures. An
example graphical representation of a decision tree is shown in Figure 3.5. This
figure shows a possible decision tree that sailors could use to determine whether or
not it is safe to sail under certain conditions. In this figure it can be seen that Wind
Speed (mph) is the feature at the root node, and that its test condition is whether
or not it is greater than 22. If it is, a prediction of Don’t Sail is made. If it is not,
the test condition at the following node is evaluated. This process continues until
a prediction is made. Therefore, each prediction can be seen as the conjunction of
one or more simple test conditions.
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(a) Hard margin. All training data is correctly classified, but with a small margin.

(b) Soft margin. By allowing training error, the size of the margin is increased.

Figure 3.4: Hard versus soft-margin linear separators.
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Wind Speed (mph)

> 22 Don't Sail

<= 22

Temperature (°C)

Don't Sail

<= 6

Sail
> 6

Figure 3.5: An example decision tree.

3.2.3.1 Random Forests

Random forest classifiers are strictly an ensemble classification method, but they
are introduced in this section as they are comprised solely of multiple decision trees.
A random forest classifier comprises two or more CARTs (classification and re-
gression trees) and utilises a bootstrap aggregating (or bagging) ensemble approach
[Breiman 2001]. Additionally, each of the trees are said to be randomised, as they
only train on a random subset of a < p features (where p is the total number of
features available). The mode classification across all individual classifiers is taken
as the final prediction for each test vector.

Bagging is an ensemble approach whereby each individual node (or tree in this
case) is equally weighted in the final prediction [Breiman 1996]. Other ensemble
approaches, such as boosting, differ from this as they weight each node judging
by past performance. To encourage variation in the results of nodes, the bagging
approach provides each node with a sampled version of the training data. This
bootstrap sample is both uniform and of the same size as the original sample. It is
also made by replacement, resulting in many training instances being repeated, and
some not making it into the new sample. Separate to bagging, but also designed to
encourage variation in results, is the method of passing a random subset of training
features to each node. This technique is known as randomisation. Combining the
power of multiple decision trees by using random forests “often produces excellent
predictors” [Witten 2005].

3.2.4 Bayesian Classifiers

A Bayesian (or Bayes) classifier is a linear classification technique based on Thomas
Bayes’ theorem. This theorem (presented in Equation 3.2) is concerned with prob-
ability theory, and provides a method to determine conditional probabilities.
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Pr(hypothesis|evidence) = Pr(evidence|hypothesis)× Pr(hypothesis)

Pr(evidence)
(3.2)

Perhaps the most popular Bayes classifier is the naïve Bayes algorithm, so-called
because of the simple but often false assumption of conditional independence, where
every feature is assumed to be fully independent. Despite this assumption, naïve
Bayes classifiers have been reported to perform competitively with far more sophis-
ticated techniques [Huang 2003]. Similar to instance-based learners, naïve Bayes
classifiers can be updated over time, allowing model evolution. Unlike instance-
based learners however, naïve Bayes models are independent of the training data
(it does not require storage). Because of this, and low computational demands,
naïve Bayes is a suitable method for potentially huge, constantly evolving domains,
where timely execution may be required. An example of such a domain is that of
spam email classification, where naïve Bayes classifiers have been extensively used
[Vangelis Metsis 2006].

During training, naïve Bayes classifiers use basic statistical properties of each
feature to determine their probabilities of association with each class. The advantage
of this is that models can be easily interpreted, as the probabilities for each feature
are stored explicitly. This ease of human interpretation of the inner workings of
the model makes naïve Bayes a white-box classification method. This is similar to
both tree-based and instance-based learners, amongst others. White-box methods
are typically preferable to black-box methods, as it is always possible to discover the
reasoning for each prediction made. Additionally, new knowledge can potentially
be discovered via model analysis. In the case of naïve Bayes, this would involve
examining the probabilities associated with each feature.

Naïve Bayes classifiers determine, for each test vector, a probability of associ-
ation with each class. Note that these are not strictly probabilities, but can be
conceptualised as them nonetheless. In the simplest of implementations, the class
with the highest probability will be the predicted class. However, many implementa-
tions include a user-tunable decision threshold parameter. For binary classification
tasks, this is described as follows. If the probability of association with the class of
most interest is greater than the decision threshold, then this will be the predicted
class. Otherwise, a prediction of the opposing class is made. Therefore, the decision
threshold effectively controls how eager (or not) the classifier is to make predictions
of a certain class.
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3.3 Assessing Predictive Performance

Assessing the predictive performance of a classifier is more complicated than may be
initially perceived. For rote learning methods where no generalisation takes place,
the quality of predictions is clearly a direct result of the quality of the training data.
For this reason, algorithm speed is often the performance criteria assessed, rather
than predictive ability. As this is not a focus of this dissertation, it is not discussed
further. This section instead describes ways in which the predictive performance of
a classifier can be quantified.

3.3.1 Training & Testing Sets

When assessing the performance of a classifier, the most common aim is to acquire
an estimate of how well it could potentially perform in the real world. Because (as
mentioned at the start of this chapter) only a very small proportion of the input
space is typically contained within the available data, it is often entirely unrealistic
to assume that a classifier deployed in the real world would be required to classify
vectors included in the training data. For this reason, classifiers are required to be
tested on unseen data: data that was not used in any way during classifier construc-
tion. Failure to adhere to this principle often results in an optimistic approximation
of potential real-world performance [Witten 2005]. This is because the classifier has
already learnt from the ‘correct’ label of each seen test vectors, and therefore has
an unfair and often unrealistic advantage.

A classifier deployed in the real world would usually be constructed using all
available data for the specific problem domain. Each prediction made by the system
would then have to be (often manually) validated, which is typically a resource
intensive task. To avoid this resource intensive process while classifier feasibility is
being explored, an estimate of potential real-world performance is obtained instead,
using only the data already available. A simple method of doing this is known as a
holdout, where x% of available data is used for constructing a classifier, while the
remaining (100−x)% is kept separate during classifier construction, and used to test
how well the classifier can generalise. Thus, these subsets of data become known as
a training set and a testing set, respectively (note that these are not mathematical
sets). For both these sets to be fully independent of each other, and contextually
valid, they must share no common instances. The classifier is trained on the training
set, and performance on the independent test set is used as the estimate of potential
real-world performance. Some of the various methods of measuring performance will
be explained in the next few sections. In order to defend against statistical bias, the
holdout process is often repeated many times, with different training and testing
set samples pseudo-randomly chosen. The average performance for each holdout
experiment is then reported as the final, overall performance.

A more sophisticated method than a simple holdout is known as a stratified
holdout, where the training and testing sets both maintain an approximately equal
class distribution to the one in the original sample. Imagine there are 1000 labelled
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data examples available in the domain of jet engine failure prediction. There are
only 100 examples where the engines failed, all others are examples of non-failures.
With a two-thirds training, one-third testing holdout, it is possible (as an extreme
example) that the 667 training instances contain none of the engine failure exam-
ples. Supervised learners, by definition, require labelled examples in order to learn.
Therefore, a classifier trained on such data would have little chance at predicting
any engine failures, and would instead be expected to predict every test vector as
belonging to the majority class (non-failures). A stratified holdout would be much
more effective in such an imbalanced domain. With a stratified holdout, two thirds
of each class would be contained in the training data, and one third of each class in
the testing data. As long as the original data sample is representative of the prob-
lem domain, this is a much more effective way of obtaining estimates of potential
real-world performance.

Although repeating the stratified holdout process many times alleviates the bias
issue, potential problems remain. Repeating the process too few times may result in
some instances never being included in a testing set. Additionally, testing sets will
overlap, meaning that classifiers will be presented with some test vectors more times
than others. Both of these issues can introduce bias. To address these issues, k-fold
cross-validation can be used. In k-fold cross-validation, k > 1 approximately equal
sized and mutually exclusive sub-samples (or folds) are created from the original
sample [Kohavi 1995]. Then, k holdout-style experiments are carried out, where
one of the folds is the testing set, and all others combined are the training set. Each
fold has one turn as the testing set, and final performance is reported as the average
across all k folds (see [Forman 2010] for important details on how this average should
be calculated). Stratified k-fold cross-validation is an extension to this method,
where each fold maintains a similar class distribution to the original sample, as
previously described. To further reduce bias, the stratified cross-validation process
can be repeated many times, with different sub-samples pseudo-randomly chosen.
Final performance is then calculated as the average of all individual cross-validation
averages. Although cross-validation is computationally expensive, it is fairly stable
and unbiased for adequately sized data sets, where k is reasonably large (10 folds
has been recommended [Kohavi 1995]).

3.3.2 Categorising & Quantifying Predictions

Because the testing sets in such classification experiments are artificial (they are
not real unknown vectors, but simulations of them), the label for each test vector is
already known. Clearly, to make the task of a classifier worthwhile, these test labels
are not used during the classification process. After this process is complete however,
they are used to assess how well the classifier has performed, or in other words, how
the predictions made by the classifier correspond with the ‘correct’ labels.

Perhaps the most intuitive way to quantify predictive performance is to deter-
mine the proportion of correct classifications. The pseudo-code for this is shown in
Figure 3.6. This figure shows an attractive as well as intuitive solution, as it scales
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no_correct = 0 # initialise the no. of correct classifications

for test_vector in test_set:
if test_vector.real_label == test_vector.predicted_label:

no_correct += 1

print no_correct / test_set.size

Figure 3.6: Pseudo-code for calculating the correct classification rate.

robustly regardless of the number of classes in the data. The metric describing the
proportion of correct classifications is known as accuracy, or correct classification
rate (CCR). Its complement is known as error rate, and is defined as (1−accuracy).
These correct/incorrect classification rate measures are suitable when the class dis-
tribution of the test data is equal (or balanced), and when the misclassification cost
for each class is also equal. An example of such a domain is optical transmission
error detection, where a classifier attempts to detect bit-errors in the transmission
of a digital signal. In this domain it is assumed that there will be an equal number
of zeros and ones transmitted over a communication medium over time. It is also
assumed to be illogical to favour the correct transmission of a zero over the correct
transmission of a one. For these reasons, overall correct/incorrect classification rate
measures are suitable in such a domain, and a value of approximately 0.5 is the
threshold for a classifier of any practical worth. This is because when there are an
equal number of test vectors originally labelled as belonging to each class, predicting
all test samples solely as being in either one class or the other will result in such a
performance figure. Additionally, any such performance figure (not equal to 0 or 1)
provides no information toward whether there were more errors in one class than
another, which is not a necessity in such a domain.

Accuracy and error rate are both measures which favour the majority class.
Because of this, they are not suitable in domains where there is an imbalanced
class distribution. To demonstrate, we will revisit the jet engine failure prediction
scenario described earlier in this section, where there were 1000 examples of which
only 100 were in the minority class. If this data set were a test set, a classifier
predicting every test vector as belonging to the majority class would achieve a near-
optimal accuracy (0.9), even though the classifier is of no practical worth. This
scenario is also appropriate for demonstrating the other limitation of such measures.
Mistakenly predicting a jet engine that is not about to fail as being about to fail will
result in unnecessary servicing of the engine, which is a waste of resources. However,
mistakenly predicting a jet engine which is about to fail as not being about to fail
could result in an operational failure, with far more serious consequences. Accuracy-
like measures give no information toward class-specific error, only overall error. For
these two reasons, they would be entirely unsuitable in such a domain.
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3.3.3 Measuring Class-Specific Error

To overcome the problems of accuracy-like measures, class-specific error must be
measured. In a binary classification task, the two classes are commonly referred to
as the positive class and the negative class. There is a symmetry between these
classes; however, the positive class typically refers to the class of most interest,
which is often the minority class. For each test vector predicted during a binary
classification experiment, there is exactly one of four possible outcomes:

• A true positive (TP) occurs when a data point labelled as positive is correctly
predicted as positive.

• A true negative (TN) occurs when a data point labelled as negative is correctly
predicted as negative.

• A false positive (FP) occurs when a data point labelled as negative is incor-
rectly predicted as positive.

• A false negative (FN) occurs when a data point labelled as positive is incor-
rectly predicted as negative.

Collections of these values can be put into a confusion matrix, as shown in Figure
3.7. Such a confusion matrix forms the basis of how the predictive performance of
binary classifiers are often quantified (see Figure 3.8). Most classifier performance
measures are based on simple equations of the four comprising raw measures (TP,
TN, FP and FN). In addition to determining predictive performance, these values
can also provide contextual insight into the test data. Imagine a confusion matrix
generated during a single holdout experiment. Using the values in the confusion
matrix alone, the number of test vectors originally labelled as belonging to the
positive class can be determined as POS = TP + FN . It follows that the number
of test vectors originally labelled as belonging to the negative class is determined
as NEG = TN + FP . Therefore, the total number of vectors in the test set is
determined as |Test| = NEG+ POS = TP + TN + FP + FN .

labelled positive labelled negative
predicted positive TP FP
predicted negative FN TN

Figure 3.7: A confusion matrix.

To provide a more concrete example of a confusion matrix, we will again use the
jet engine failure prediction example. There are 100 positive (minority) class data
points in this data set and 900 negative (majority) class data points. If this data
set were a test set and we predicted everything as being in the majority class, we
would obtain the confusion matrix shown in Figure 3.9. As already stated, accuracy
is not a suitable measure for this example; however, using the confusion matrix
alone, we can compute accuracy as (TP +TN)/(TP +TN +FP +FN). Although
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Predicted Class Label Actual Class Label
− >>> − X
+ >>> + X
+ >>> − 7
− >>> + 7
− >>> − X
+ >>> + X
+ >>> − 7
− >>> − X
− >>> − X
+ >>> − 7

labelled positive labelled negative
predicted positive TP = 2 FP = 3

predicted negative FN = 1 TN = 4

Figure 3.8: The confusion matrix for a toy example.

the near-optimal accuracy of 0.9 may intuitively appear as though our classifier has
performed very well, in this domain we need to examine class-specific performance to
determine potential real-world performance. One such suitable measure to aid with
this is known as sensitivity (or recall or true positive rate). This measure describes
the proportion of test vectors originally labelled as belonging to the positive class
that were correctly classified. To calculate sensitivity we use TP/(TP+FN). In this
example this yields a sensitivity of 0, showing that no minority class test vectors were
correctly predicted. We can work out a similar measure for the negative class, known
as specificity (or true negative rate). We determine this using TN/(TN + FP ). In
this example the specificity is 1, showing that all majority class test vectors were
correctly predicted. Perfect classification is achieved when there is a sensitivity
and specificity of 1, which implies that there is also an accuracy of 1. A trade-off
typically exists between sensitivity and specificity, and is explained as follows. To
achieve an optimal sensitivity, all test vectors appearing to belong to the positive
class must be predicted as such. However, for every prediction made, there is a
risk of misclassification. Making an incorrect positive prediction means a data point
originally labelled as negative has been incorrectly predicted as positive. Such a
false positive will lower the specificity, which we are aiming to maximise along with
sensitivity. Thus, trying to optimise one of these measures often compromises the
other. It is worth pointing out that these measures, which originate from the medical
sciences, are designed to be used together and complement each other. As shown
in this example, obtaining an optimal specificity is simply a case of making only
negative predictions. Similarly, an optimal sensitivity can be achieved by making
only positive predictions. Both such predictors clearly have little practical worth.
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labelled positive labelled negative
predicted positive TP = 0 FP = 0
predicted negative FN = 100 TN = 900

Figure 3.9: A confusion matrix with only negative-class predictions.

The trade-off between sensitivity and specificity can be visualised using a receiver
operating characteristic (ROC) graph. ROC graphs were first used duringWorld War
II to analyse radar signals; there use in machine learning began much later in 1989
[Spackman 1989]. A ROC graph is a two-dimensional plot, with sensitivity on the
y-axis and (1− specificity) on the x-axis. The use of (1− specificity), also known
as the false positive rate or type 1 error rate, means that an optimal classifier will
be shown on a ROC graph as having a sensitivity (or true positive rate) of 1, and
a false positive rate of 0. Imagine a naïve Bayes classifier tested on the same test
set three times. Each time the classifier will use a different decision threshold (see
Section 3.2.4) taken from the set {0.4, 0.5, 0.6}. After this process, there will be
three sets of results, all in the form of confusion matrices. From these confusion
matrices, we can plot three points on a ROC graph, as shown in Figure 3.10. If
we continued this process for every possible decision threshold, we would end up
with a ROC curve, as shown in Figure 3.11. This figure demonstrates the trade-off
between sensitivity and specificity for this particular classifier on this particular test
set, as the decision threshold is varied. An interesting point in ROC space is point
{0,0}, where the classifier makes no positive predictions, and therefore has no true or
false positives. The complement of this is at point {1,1}, where the classifier makes
only positive predictions, and therefore has no true or false negatives. As already
stated, optimal performance is at point {0,1}. In practice, classifiers rarely achieve
such performance; however, curves often bend upwards towards this ideal point.
Also worthy of discussion in Figure 3.11 is the straight, x = y dashed line. Any
point situated below this line demonstrates performance that is worse than random
[Flach 2003]. In fact, inverting the predictions made by such a classifier yields better
performance, and moves the point to its corresponding position (reflection) above
the dashed line.

ROC curves can be useful for classifier comparisons; if two classifiers often have
similar performance in a specific domain, inspection of their ROC curves can il-
luminate which one performs best in specific regions of ROC space. Additionally,
ROC curves can show which method is more sensitive to decision threshold setting.
To compare multiple classifiers in terms of their ROC curve performance without
the need for visual inspection, the area under the ROC curve (AUC-ROC, or more
commonly simply AUC) can be computed. This is a value between 0 and 1, with 1
indicating optimal performance.
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Figure 3.10: A ROC graph containing three points. The true positive rate, also
known as sensitivity or recall, is on the y-axis. The false positive rate, also known
as type 1 error rate or (1− specificity), is on the x-axis.
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Figure 3.11: A ROC curve. The three points from Figure 3.10 are shown for ref-
erence. Each pixel comprising the solid line corresponds to the classifier’s perfor-
mance with a unique decision threshold. The performance for every possible decision
threshold is shown on this line.
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In addition to sensitivity and specificity, other commonly used performance mea-
sures, which come from the domain of information retrieval, are recall and precision.
Recall is the same as sensitivity (or true positive rate), and as previously stated, de-
scribes the proportion of test vectors originally labelled as belonging to the positive
class that were correctly classified. Precision is dissimilar to any of the measures
discussed so far, and describes the proportion of positive predictions made that were
correct. Precision is calculated as TP/(TP +FP ). Often reported along with these
two measures is the f-measure, which is most commonly defined as the harmonic
mean of the two. An f-measure of 1 would therefore describe perfect classification,
where recall and precision are both equal to 1. As the motivation behind the use of
these performance measures comprises a major part of this dissertation, discussion
on this subject will commence again in Chapter 6. For reference to the confusion
matrix derived statistics described so far (and others described later), see Table 3.2.

3.4 The Class Imbalance Problem

Class-imbalanced data, as well as introducing a requirement for more complex per-
formance measures, also poses an extra challenge for classifiers. When there is only
a sparse proportion of labelled minority class samples, many classifiers tend to over-
predict the majority class, essentially ignoring the minority class [Chawla 2004].
This is known as the class imbalance problem, and occurs for several reasons. One of
these reasons is that learners are typically designed to maximise the predictive accu-
racy (or CCR), which, as previously explained, favours the majority class. Therefore,
when classifiers have only a small proportion of minority class samples to learn from,
for example, when there is only one positive instance in every hundred training in-
stances, the most reasonable option may be to make only negative predictions. This
is because it is often the safest method of trying to ensure a low error rate on the
test set.

Methods for alleviating the class imbalance problem include:

• Modifying algorithm success criteria: Configuring learners so that a more
suitable performance metric, such as f-measure, is used instead of accuracy.

• Modifying algorithm parameters: Tweaking parameters to, for example,
increase the cost of a minority class misclassification. More details on param-
eter tuning will given in Section 3.5.

• Re-sampling the training data: Prior to learning, the training data can
be re-sampled to try and obtain a more balanced distribution. This typically
involves removing majority class samples (undersampling) and/or adding mi-
nority class samples (oversampling). Discussion on this will commence again
in Chapter 5.
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Alias / Aliases Defined As

Test Set No. Instances TP + TN + FP + FN

No. Instances in Positive Class TP + FN

No. Instances in Negative Class TN + FP

Accuracy (+)
(TP + TN)

(TP + TN + FP + FN)
Correct Classification Rate

1 − Error Rate

Error Rate (−)
(FP + FN)

(TP + TN + FP + FN)
Incorrect Classification Rate

1 − Accuracy

True Positive Rate (+)

TP

(TP + FN)

Recall
Sensitivity

Probability of Detection (pd)
1 − False Negative Rate

True Negative Rate (+)
TN

(TN + FP )
Specificity

1 − False Positive Rate

False Positive Rate (−)
FP

(FP + TN)

Type 1 Error Rate
Probability of False Alarm (pf)

1 − True Negative Rate

False Negative Rate (−)
FN

(FN + TP )
Type 2 Error Rate

1 − True Positive Rate

Precision (+)
TP

(TP + FP )

F-Measure (+) (2 ∗Recall ∗ Precision)
(Recall + Precision)F-Score

Balance (+)
1−

√
(0− pf)2 + (1− pd)2√

2Distance from ROC optimal point

Table 3.2: A subset of statistics that can be derived from a confusion matrix.
Measures marked with ‘(+)’ have an optimal value of 1.
Measures marked with ‘(−)’ have an optimal value of 0.
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3.5 Model Optimisation

Model optimisation is the process of tuning model parameters to try and improve
predictive performance. As previously stated, we desire classifiers that generalise
on labelled training data to successfully predict new, unlabelled data. However, in
order for classifiers to generalise successfully, both underfitting and overfitting must
be avoided. Underfitting occurs when consistently poor performance is obtained
because the built model is not complex enough, or is too loosely fit to the under-
lying structure of the data. At the other extreme, overfitting occurs when good
performance is obtained on the training data, but poor performance on unseen test
data. This is because the built model is too complex, too rigidly fit to the training
data. Overfitting is generally regarded as the more problematic case, as obtaining
good performance on only the training data can be misleading for the inexperienced
practitioner. Most classification algorithms have parameters that can affect the fit
of the model (and in turn the predictive performance), examples include:

• The number of decision trees comprising a random forest.

• The soft-margin cost parameter used in many linear separators.

• The number of neighbours (value of k) in the k-nearest-neighbour algorithm.

• The number of hidden layers and nodes comprising an artificial neural network.

Additionally, note that many classifiers have parameters that do not affect the fit of
the model, but can nonetheless affect classifier performance. These are parameters
that are often (conceptually or otherwise) specified after the model construction
process. An example is the decision (or discrimination) threshold for a naïve Bayes
classifier.

Model optimisation is typically a systematic process where parameter settings
are varied. The purpose of this is to determine which parameters (of the ones tested)
maximise predictive performance on data that is representative of the test set. The
actual test set must not be used in any part of this process however, to avoid
inaccurate (and often highly optimistic) final estimates of performance. The data
used in this process, instead of coming from the test set, comes from the training set.
The assumption is that when building the final model, the best parameter set found
during model optimisation will also be best for the real, unseen test set. Recall
that both sets should be independent and representative samples from the specific
problem domain.
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Training Set'

Testing Set

Validation Set

{Training
Set

Figure 3.12: In a simple holdout experiment there is a training set and a testing set.
During model optimisation, the training set is divided into a training subset and a
validation set. This is to allow classification experiments to be carried out for each
parameter set to evaluate. Because the testing set must not be used in any part of
the optimisation process, the unseen data for the model optimisation experiments
comes from the validation set.

To evaluate the suitability of a given set of parameters, a classification experi-
ment must be carried out. This involves the data, which (as stated) comes from the
training set, being re-sampled (see Figure 3.12). This can be achieved via any of the
methods described in Section 3.3.1, for example by a simple holdout or by stratified
cross-validation. The purpose of this is to have one or more unseen data sets to use
during model optimisation. Thus, just as with the training and testing data divide,
there must be a similar divide during model optimisation. The test data used dur-
ing model optimisation comes from the validation set (see Figure 3.12), so-called to
distinguish it from the final test set. The training data used during model optimi-
sation (referred to here as the training subset) is the original training set minus the
validation set. As with the training and testing set, it should be ensured that the
training subset and validation set share no common instances.

After re-sampling the training data, a classification experiment is carried out for
each set of parameters to try. The performance for each parameter set is recorded,
and the best performing set is declared as optimal. Often it will be the best per-
forming parameter set on average that is declared as optimal, for instance if the
model optimisation process involves cross-validation (see [Forman 2010] for impor-
tant details on how this average should be calculated). The pseudo-code for a typical
classification experiment, involving repeated cross-validation and model optimisa-
tion (also with cross-validation), is shown in Figure 3.13.
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M = 25 # no. of cross-validation repetitions
N = 10 # no. of cross-validation folds

DATA_SETS = ( x, y, z ) # not mathematical sets

PARAMS_TO_TRY = ( p1, p2, p3 ) # during optimisation

results = ( ) # an empty list

for data_set in DATA_SETS:
repeat M times:

data_set.randomise_instance_order(get_random_number_seed())
folds = create_stratified_cv_folds(data_set, N)
for fold in folds:

testing_set = fold
training_set = data_set - testing_set
assert testing_set.union(training_set) == {}
params = optimise_params(training_set, N)
model = train(training_set, params)
results += predict(testing_set, model)

report_final_results(results)

--- --- ---

def optimise_params(opt_training_set, no_folds):

opt_results = ( ) # an empty list

folds = create_stratified_cv_folds(opt_training_set, no_folds)

for param_to_try in PARAMS_TO_TRY:
for fold in folds:

validation_set = fold
training_set_prime = opt_training_set - validation_set
assert validation_set.union(training_set_prime) == {}
model = train(training_set_prime, param_to_try)
opt_results += predict(validation_set, model)

return best_average_params(opt_results)

Figure 3.13: Pseudo-code for a typical classification experiment involving repeated,
stratified cross-validation and model optimisation.
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3.6 Support Vector Machines

Support Vector Machines (SVMs) are a set of closely related and highly sophis-
ticated machine learning algorithms that can be used for both classification and
regression [Schölkopf 2001]. Their high-level of sophistication made them the clas-
sification method of choice in this dissertation. SVMs are maximum-margin linear
separators; they construct a separating hyperplane between two classes subject to
zero or more slack variables (see Section 3.2.2). The hyperplane is typically con-
structed deterministically, such that the distance between the classes is maximised
(see Figure 3.14). This differs from the linear separators discussed in Section 3.2.2,
which are non-deterministic and often produce sub-optimal separators. Ensuring
a maximum-margin separator is intended to lower the generalisation error during
testing. Note that SVMs can be used to classify data with any number of classes
via recursive application.

Figure 3.14: A binary classification toy problem solved by an SVM. The solid line is
the separator. The distance between the dashed lines is the margin. The three data
points situated upon the dashed lines are known as support vectors. It is these data
points only that determine the separator, all others are not recorded in the model.
Typically only a small proportion of data points will end up as support vectors.
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Although originally only suitable for linear classification problems [Vapnik 1963],
SVMs can now also be used successfully for non-linear classification [Boser 1992].
This is achieved by use of a kernel function. A kernel function is used to implicitly
map the data points into a higher-dimensional feature space, and to take the inner-
product in that feature space. The benefit of using a kernel function is that the data
is more likely to be linearly separable in the higher feature space. Additionally, the
explicit mapping to the higher-dimensional space is never needed.

There are several different kinds of kernel function (any continuous symmet-
ric positive semi-definite function will suffice) including: polynomial, Gaussian and
sigmoidal. Each has varying characteristics and is suitable for different problem
domains. The one used throughout this dissertation is the Gaussian radial basis
function (RBF), as it requires fewer hyperparameters than the remaining afore-
mentioned kernels [Hsu 2003]. In fact, this kernel implicitly maps the data into
an infinite-dimensional feature space whereby any consistent, finite data set will be
linearly separable.

Further enhancements were made to the SVM algorithm to enable a soft margin
[Cortes 1995], where misclassification errors are allowed in the model (see Figure
3.15 and refer back to Section 3.2.2 for a more detailed explanation). This greatly
improved the generalisation ability of SVMs. It also introduced a hyperparameter,
known as cost or c, to determine the trade-off between minimising the training error
and maximising the margin (see Figure 3.15).

When SVMs are used with a Gaussian RBF kernel there are two user-specified
hyperparameters, c and γ (gamma). As already mentioned, c is the error cost hy-
perparameter, and determines the trade-off between minimising the training error
and maximising the margin. While c is an SVM hyperparameter, γ is a kernel
hyperparameter, and controls the width (or radius) of the Gaussian RBF. The per-
formance of SVMs is largely dependent on these hyperparameters, and the optimal
values, the pair of values which yield best performance while avoiding both under-
fitting and overfitting, should ideally be estimated for each training set. The most
common method for doing this is via a systematic optimisation search (see Section
3.5), known as a grid-search.

SVMs have been reported to be highly effective methods in many classification
domains, including: text categorisation [Joachims 1998], DNA binding site predic-
tion [Bradford 2005, Rezwan 2011] and face recognition [Osuna 1997, Shenoy 2011].
However, such methods do have drawbacks. The biggest potential drawback of
SVMs is that their classification models are black-box, making it very difficult to
work out precisely why a classifier makes the predictions it does. This is different
to white-box classification algorithms such as decision trees, where the classification
model is easy to interpret. Additional difficulties are that optimal hyperparameter
values differ greatly depending on the data, and that the grid-search process (an
exhaustive search) is computationally demanding. A related problem is that SVMs
often perform poorly when appropriate hyperparameter tuning has not been car-
ried out [Soares 2004]. This can result in inexperienced researchers obtaining poor
performance.
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(a) A two-dimensional plot of a data set. Note the outlier belong-
ing to the purple class that is situated amongst the blue class.

(b) High cost value - potential overfitting. (c) Low cost value.

Figure 3.15: In Figure 3.15a, a non-linearly separable data set is shown. Figure
3.15b shows an SVM’s resulting separator with a high cost value. Figure 3.15c
shows an SVM’s resulting separator with a low cost value.
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This chapter is concerned with the defect prediction literature that is most rele-
vant to this dissertation. In the sections that follow, a limited set of the most

influential studies are discussed in detail. After this, the main findings from a sys-
tematic literature review (SLR) on the performance of software defect predictors are
presented. I was directly involved in this SLR, which was a substantial, collaborative
piece of work between Brunel University and the University of Hertfordshire.

The influential studies described in the following sections are: [Menzies 2007b],
as this is a very well-cited defect prediction study; [Lessmann 2008], as this involved
perhaps the largest-scale defect prediction experiment to date; [Elish 2008], as this is
focused on defect prediction with SVMs; and [Liebchen 2008], as this highlights data
quality awareness as an issue in modern, empirical software engineering research.

4.1 Menzies et al. 2007

The study carried out by Menzies et al. in 2007 [Menzies 2007b] is perhaps the most
well-cited piece of modern defect prediction literature. It involved many defect
prediction experiments, with various learners and publicly available data sets. The
source of these data sets was the NASA Metrics Data Program Repository1.

1Previously available at http://mdp.ivv.nasa.gov/ and currently available in a more basic,
less documented form at http://filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b.

http://mdp.ivv.nasa.gov/
http://filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b
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4.1.1 The NASA Metrics Data Program Repository

The NASA Metrics Data Program (MDP) Repository currently contains 13 module-
level data sets2 explicitly intended for software metrics research. Each data set
represents a NASA software system/subsystem and contains the static code metrics
and fault data for each comprising module. The static code metrics recorded include:

• LOC-count measures such as the number of lines of code and comments.

• Halstead measures such as unique operand and operator counts.

• McCabe measures such as the cyclomatic complexity.

All such non-fault related software metrics within each of the data sets were
generated using McCabeIQ 7.1, a commercial tool for the automated collection of
static code metrics. The primary fault data in these data sets takes the form of
an error-count metric. This metric was reportedly calculated from the number of
error reports issued for each module via a bug-tracking system. From the details
given at the original NASA MDP Repository, it is unclear precisely how these error
reports were mapped back to the individual modules; however, it was stated that:
“If a module is changed due to an error report (as opposed to a change request),
then it receives a one up count. It cannot receive more than a one up for a given
error report.” It was also stated that the error-count metric describes “the number
of changes due to error.”

Because the error-count metric is discrete, it is often binarised by those using
these data sets in classification experiments. Note that if this is not the case,
there will typically need to be a class for each unique error-count value. This will
potentially result in tiny quantities of data representing some of the classes, which
may be problematic for learners (because of the class imbalance problem, see Section
3.4). The most common binarisation process used with the NASA MDP data sets
(NASA data sets hereafter) was defined in [Menzies 2007b] as in Equation 4.1:

defective? = (error_count ≥ 1). (4.1)

This process, despite its drawbacks (see Section 2.2.1), was carried out in each of the
NASA-based studies described in this chapter. A thorough analysis of the NASA
data sets is provided in Section 6.1, where many data quality issues are highlighted.

2Note that there is evidence to suggest the existence of a 14th data set, known as KC2. To the
best of my knowledge this data set has never been openly hosted at the NASA MDP Repository.
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4.1.2 Experiments & Findings

There were three classifiers used in [Menzies 2007b]: OneR, C4.5 (J48) and naïve
Bayes. OneR (one rule) is a decision stump, a classification method similar to a
decision tree but which can only split on a single attribute. The C4.5 algorithm is a
well-known decision tree. An explanation of both this and the naïve Bayes method
can be found in Section 3.2. The implementation used for each of these algorithms
came from the popular data mining tool: Weka3. In addition to these learning
techniques, this study also utilised a feature selection method. Such methods aim
to reduce the number of features in a data set by locating and removing those
that contain irrelevant information. The method used in this study: InfoGain, is
concerned with information content in bits.

With 10 repetitions of a 10-fold cross-validation experiment using 8 of the NASA
data sets, the individual performance of all three learners were compared. Naïve
Bayes was identified as the best method, with statistically better performance than
the other classifiers. With regard to the ‘best’ features chosen by InfoGain, the
claimed results were that using only the 2 or 3 ‘best’ features gave equal performance
to that of when all 38 features were used. Furthermore, the frequencies of the ‘best’
features varied heavily between data sets. This led to the following two conclusions:
Firstly, that there is no single set of ‘best’ metrics. Secondly, that defect prediction
experiments should be carried out using all available metrics, and that these should
then be passed on to a feature selection technique such as InfoGain.

Classifier performance in this study was measured using the two metrics used in
receiver operating characteristic (ROC) analysis, the true positive rate and the false
positive rate (see Section 3.3.3). In the journal these measures were referred to as the
probability of detection (pd) and the probability of false alarm (pf), respectively. The
performance obtained by the naïve Bayes classifiers, a mean pd of 0.71 and a mean
pf of 0.25, was described as being “demonstrably useful”. This claim was questioned
later the same year by Zhang and Zhang however, who demonstrated the choice of
performance metrics to be inappropriate in the context of the class-imbalanced data
[Zhang 2007]. As this subject comprises a major part of this dissertation, discussion
on it will commence again in Section 6.2.

As well as the choice of performance measures used in [Menzies 2007b], aspects
of the experimental design have also been called into question. A recent study
by Song et al. involved a meticulous examination of the feature selection process
[Song 2011]. It was found that the feature selection process used in [Menzies 2007b]
violated the assumption of unseen data (see Chapter 3). This is because feature
selection was carried out for each whole data set (not just the training set) using
a method (InfoGain) which utilises class label data. Therefore, data which would
not exist in the real world (the test set labels) was used in the model construction
process, invaliding the experiment.

3http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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4.2 Lessmann et al. 2008

Approximately a year and a half after [Menzies 2007b], Lessmann et al. undertook
a large-scale classifier benchmarking study using 10 of the NASA data sets [Less-
mann 2008]. The purpose of this study was to document and apply “a framework
for comparative software defect prediction experiments”. This study was motivated
by prior studies yielding inconsistent results regarding the superiority of various
classifiers. In this study, 22 classifiers were tested in either the same or very similar
contexts, and statistical tests were carried out. The classifiers used included:

• Statistical classifiers: such as naïve Bayes and logistic regression.

• Nearest-neighbour methods: k-nearest-neighbour and k-star.

• Neural network approaches: multi-layer perceptrons and radial basis func-
tion networks.

• SVM-based classifiers: such as least squares SVM, Lagrangian SVM and
linear programming.

• Decision tree approaches: such as C4.5 and CART.

• Meta-learning schemes: logistic model tree and random forest.

For each data set and classifier, an experiment was carried out where two-thirds
of the data was used for training, and the remaining one-third was used for testing.
For each classifier with tunable parameters, optimal parameter values were estimated
via a 10-fold cross-validation optimisation search on the training set. Performance
on the final test set was assessed using the area under the ROC curve (AUC-ROC)
metric. This metric was introduced in Section 3.3.3, and its suitability in this domain
will be discussed in detail in Section 6.2.

The statistical approach used in this study began with a Friedman test. This
particular test was chosen as it is a non-parametric alternative to ANOVA that relies
on less restrictive assumptions [Demšar 2006]. The rank-based Friedman test was
used to test (and in this case reject) the null hypothesis that all algorithms perform
alike. Following on from this, a post-hoc pairwise Nemenyi test was carried out for
all pairs of classifiers, to test the null hypothesis that their respective mean ranks
are equal. The results showed that the best performing 17 classifiers (out of the
original 22) had statistically indistinguishable performance (α = 0.05).

The main conclusions from this study, which corresponded with the main conclu-
sions from [Menzies 2007b], included that the overall level of predictive performance
obtained demonstrated the worth of defect prediction systems. Additionally, the
statistical results suggested “that the importance of the classification model may
have been overestimated in the previous research”. The recommendation was there-
fore made that when selecting classification techniques, factors other than predictive
performance should be highly influential. These factors include: comprehensibility,
computational efficiency, and ease of use.
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4.3 Elish & Elish 2008

In 2008, Elish and Elish carried out what is perhaps the currently most well-cited
defect prediction study that is both based on the NASA data sets and focused on sup-
port vector machines (SVMs) [Elish 2008]. The purpose of this study was to compare
the performance of SVMs with 8 other classification techniques. These techniques
are similar to the ones listed previously that were used in [Lessmann 2008].

Correlation-based feature selection was carried out in this study, to reduce the
number of features in each of the 4 data sets used. However, similar to the previ-
ously described problem in [Menzies 2007b] (originally reported by [Song 2011]), this
was carried out for each whole data set, violating the assumption of unseen data
(see Chapter 3). Additionally, unlike the experimental design reported in [Less-
mann 2008] where model optimisation was carried out, a fixed value was used for
each SVM-related hyperparameter. SVMs are known to be very sensitive to parame-
ter settings, with unsuitable parameters often resulting in substandard performance
[Soares 2004].

Despite these issues, the level of predictive performance reported for each clas-
sifier was substantially higher than for any classifier in any other study based on
these data sets. Analysing the reported results from 100 repetitions of a 10-fold
cross-validation experiment, the poorest performance was that of the Bayesian be-
lief network for data set KC1. The reported precision was 0.92, recall was 0.78, and
resultant f-measure was 0.85. In this domain this means that 78% of faulty modules
were identified, and that of those modules predicted as defective, 92% turned out
to be defective. To contrast these results, [Ma 2006] report best performance for
data set KC1 using a K-Star classifier with a precision of 0.53, recall of 0.51, and
f-measure of 0.52.

Further analysis of the reported data statistics and performance results illumi-
nate the reason for these ‘exceptional’ results. The first two columns of Table 4.1
show, for each data set used, the reported class distribution C (the percentage of
modules belonging to the defective/minority class). The third column is calculated
as 100−C, and is the accuracy (or correct classification rate) percentage that would
be obtained by a classifier making only majority class predictions. The final column
shows the reported SVM mean accuracy percentage for each data set. Observe that
the values in this column and column three are very similar, with the largest dif-
ference being just 0.42. This indicates that the SVMs may be over-predicting the
majority class, which is a common problem when using them with imbalanced data
sets [Sun 2006]. Although this is an interesting observation, it does not explain the
high figures obtained for recall and precision. The authors define these measures
according to the standard definitions given in Equation 4.2:

recall =
TP

TP + FN
precision =

TP

TP + FP
(4.2)
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Data Set
Alias

% of Defective
Modules

% Accuracy if Majority
Class Predicted

% SVM Mean
Accuracy

CM1 09.7 90.3 90.69 ± 1.074
PC1 06.9 93.1 93.10 ± 0.968
KC1 15.4 84.6 84.59 ± 0.714
KC3 06.3 93.7 93.28 ± 1.099

Table 4.1: Data statistics and performance results from Elish & Elish 2008. The
third column is the only one not taken directly from the journal. It shows the
accuracy that would be obtained by making only majority class predictions, and is
calculated as 100 − percentage of defective modules (shown in the second column).

However, following on from the observation regarding accuracy rates, further anal-
ysis of the SVM results suggested that performance was in fact being reported for
the majority class, using the definitions shown in Equation 4.3. Note that in this
equation, recall_majority could also be referred to as the true negative rate.

recall_majority =
TN

TN + FP
precision_majority =

TN

TN + FN
(4.3)

The evidence that these were the equations being used in the study comes from
the minimum reported SVM mean ‘recall’ percentage being 99.4 ± 0.006. Addi-
tionally, the reported SVM mean ‘precision’ results are very similar to the accuracy
results, with the largest difference being just 0.43%. Both these findings are what
would be expected if the classifiers were almost exclusively predicting the majority
class, and the measures shown in Equation 4.3 were being used. These findings,
when taken alongside the observation regarding accuracy rates, provide conclusive
evidence that the classifiers were almost exclusively making majority class predic-
tions (also see [Bowes 2012]). Therefore, the reported results in this study are
dangerously misleading, and great care should be taken when interpreting them.

4.4 Liebchen & Shepperd 2008

A study concerned solely with data quality in software engineering was carried out
by Liebchen and Shepperd in 2008 [Liebchen 2008]. This study involved an SLR
of empirical software engineering studies. The search criteria for this SLR specified
that studies must contain both phrases: “data quality” and “software”. Of the “many
hundreds” of studies returned by this search, just 23 satisfied the inclusion criteria
by explicitly addressing data quality. These alarming findings suggest that the
software engineering community may not have been taking data quality seriously.
An interesting point raised in this study is that the community “may be wasting
research effort on data sets that contain such levels of noise as to prevent meaningful
conclusions.”
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4.5 An SLR on Fault Prediction Performance

In August 2011 the IEEE Transactions on Software Engineering accepted [Hall 2012]
for publication. I was a co-author of this journal, along with 3 other co-authors
and the lead author. My primary role was to review many studies; this included
validating their claimed results, and potentially extracting data from them that
would later be used for synthesis. The main purpose of this study was to answer
the following three research questions:

• How does context affect fault prediction performance?

• Which independent variables should be used for fault prediction?

• Which data mining techniques perform best for fault prediction?

This study involved an SLR of fault prediction studies published between Jan-
uary 2000 and December 2010. The ACM Digital Library, IEEExplore and ISI Web
of Science search engines were used, with the search term given in Figure 4.1. In
addition to identifying papers using these search engines, a manual, paper-by-paper
search was carried out for 5 relevant journals and 13 relevant conferences. The
works of the 5 most prolific defect prediction authors (according to DBLP4) were
also manually searched, as were the references from all identified studies. Therefore,
this was a large-scale and thorough search.

Figure 4.1: The search term used with each search engine.

(fault* OR bug* OR defect* OR errors OR corrections
OR corrective OR fix*) in title only
AND (software) anywhere in study

This process led to there being approximately 2000 studies identified, of which
208 satisfied our inclusion criteria by claiming to be empirical fault prediction stud-
ies. These included studies were subjected to a four stage, contextual quality check,
to ensure that they were:

• A prediction study: It must have been either directly or indirectly claimed
that learners were being tested against unseen data.

• Reporting sufficient application context information: In order to confi-
dently interpret a fault prediction study, basic contextual information must be
given. This includes the application(s): domain, maturity and programming
language(s).

4http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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• Reporting sufficient data mining information: This included the learn-
ing technique(s) and variables used being clearly reported.

• Reporting sufficient data acquisition information: How the dependent
and independent variable(s) data was collected must have been either: re-
ported directly, referenced accordingly, or be available in the public domain.

Surprisingly, 172 (83%) of the 208 included studies failed this basic quality check.
By far the most common cause of failure was studies not reporting sufficient appli-
cation context information. Of the 114 such studies, 58 were based on NASA data.
All exclusively NASA-based studies failed the quality check, as there is no maturity
information available for these data sets in the public domain. It was therefore de-
cided that these studies should not be brought forward for synthesis. The reasoning
for this was because of our first research question being explicitly focused on the
effect of context in fault prediction.

The synthesis for this SLR was therefore carried out on the 36 studies which
passed the quality check. Within these 36 studies, 23 were classification-based and
the remaining 13 were regression-based. Of the 23 classification studies, 19 were
based on binary classification and used standard, confusion matrix derived perfor-
mance measures. It is these 19 studies that comprise the main synthesis, as the other
studies were not as directly comparable. Therefore, we extracted the quantitative
performance data from these 19 studies, which resulted in 206 unique performance
reports for various learners using a variety of data sets. The performance data ex-
tracted from these studies was, where necessary, converted to common measures.
The measures we chose were: recall, precision and f-measure (see Section 3.3.3).
This gave us common performance indicators with which to reason about the per-
formance of studies and help us answer our research questions.

4.5.1 Findings

With regard to our research question concerning the effect of application context
on fault prediction, we found some evidence that performance generally improves as
applications grow. This was reported by studies using Eclipse5 data, and a possible
and intuitive explanation is that learners perform better when there is more training
data available (as applications grow, there is more historical data to utilise). Note,
however, that we had limited findings regarding context because there seems to
be a gap in the current body of knowledge. Studies scarcely investigate context
directly, and often fail to report even basic context details. We therefore feel that it
is important for studies to report such details, which will allow for a more thorough
meta-analysis in future.

5http://www.eclipse.org/

http://www.eclipse.org/
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When analysing which independent variables were being used in studies, we fre-
quently found claims that using LOC-count-based measures alone provided equal
and if not greater performance than using complexity or object-oriented (OO) met-
rics. This finding corresponds with the findings in [Oram 2010], where the complex-
ity metrics of thousands of open-source C projects were statistically analysed, and
all found to be highly correlated with LOC-count. This led to the conclusion that
“lines of code should be considered as the first and only metric for (defect prediction)
models”. Despite this, there were studies in the SLR claiming that product metrics
other than LOC-count, such as various OO metrics (see [Chidamber 1994]), were
useful. It is worth noting that care must be taken when comparing the results of
studies using exclusively OO-based or exclusively complexity-based metrics, as they
are often predicting faults at different levels of granularity (see Chapter 2). The
studies in the SLR reporting best performance initially used all available metrics,
but then used a feature selection technique to use only a subset of the features
estimated as most useful for classification.

With regard to which learning methods are best for defect prediction, our find-
ings are in agreement with the findings reported in [Lessmann 2008] that there is no
universal ‘best’ method. However, an interesting observation is that simple methods,
such as naïve Bayes and logistic regression, seem to be performing very competi-
tively. Conversely, complex, state-of-the-art methods, such as SVMs, seem to be
performing fairly poorly. This may be because of a lack of data mining expertise in
this domain.

4.6 Summary

To summarise the key findings described in this chapter: [Menzies 2007b] claimed
their naïve Bayes predictors were “demonstrably useful”, with a mean TPR (or pd)
of 0.71 and a mean FPR (or pf ) of 0.25. These claims were swiftly questioned by
[Zhang 2007] however, who demonstrated that the choice of performance measures
was inappropriate in the context of the data. The experimental design in [Men-
zies 2007b] was also recently questioned by [Song 2011], who highlighted the flawed
feature selection process.

Perhaps the largest-scale defect prediction experiment to date was carried out
by [Lessmann 2008], who found the best 17 of 22 classifiers to have statistically
indistinguishable performance. This led to the conclusion that choice of classifi-
cation technique may not be as important as previously thought. The same year,
[Elish 2008] carried out a defect prediction study intended to demonstrate the capa-
bility of SVMs for defect prediction. This study contained several major technical
shortcomings. The technical shortcomings in both this study and [Menzies 2007b]
indicate that defect prediction is an immature research area, which may be lacking
the necessary skills. In addition to technical problems, [Liebchen 2008] have high-
lighted data quality awareness as an issue in modern, empirical software engineering
research.
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The most up-to-date SLR on defect prediction was carried out by [Hall 2012].
The focus of this SLR was predictor performance. A contextual quality check of the
208 identified studies resulted in 172 (83%) being rejected for further synthesis. The
most common cause for rejection was that basic application context information had
not been reported. This was problematic as investigating the effect of such context
was a key research question. The main findings from this study include that:

• Simple learners tend to perform competitively, while more sophisticated tech-
niques tend to perform poorly.

• Using LOC-count-based measures alone often yields predictors that are com-
petitive with those built using additional metrics.

• Best performance is obtained by studies using feature selection.
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In this chapter I describe two experiments where support vector machines (SVMs)
were used for defect prediction. These experiments, despite their shortcomings

(which were discovered after their completion and will be discussed in full), were the
beginning of a learning process regarding methodological issues in fault prediction.
The experience gained from these studies was substantial, and a key influence on
the methodology proposed in Chapter 8.

The first experiment, which involved using SVMs to predict defects in the NASA
data sets (see Section 4.1.1), led to publication in the 2009 International Conference
on Engineering Applications of Neural Networks (EANN) [Gray 2009]. It was during
this study that I first identified data quality issues. Details are given in Section 5.1,
and the full paper can be found in Appendix A. The second experiment, concerned
with classification model analysis and described in Section 5.2, led to publication in
the 2010 International Joint Conference on Neural Networks (IJCNN) [Gray 2010].
The full paper can be found in Appendix B. Note that for both these experiments
the SVM software used was LIBSVM [Chang 2001], an excellent, open-source library
for support vector classification.

5.1 Initial Classification Experiment

To gain experience at machine learning, a classification experiment was undertaken
utilising 11 of the 13 NASA data sets (described in chapters 4 & 6). These data
sets were chosen as they have been heavily used in defect prediction research. The
classifiers used in this study were SVMs (see Section 3.6); these were chosen as,
at that time, SVMs had not been widely used for defect prediction. Additionally,
SVMs are highly sophisticated classifiers, and (with suitable parameters) often work
as well as, or if not better than many other learning techniques [Segaran 2007].
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Analysis of the data sets prior to classification led to the discovery of many data
quality issues. The most severe of these issues was that after basic pre-processing
(described in Section 6.1.2.1), many of the data sets contained large proportions of
non-unique, or repeated data points. Such data points can be conceptualised as re-
peated rows in a spreadsheet. The major potential problem caused by repeated data
points is that after the data set divide into training set and testing set, it becomes
possible for both sets to contain common data points. Recall that the term ‘set’ in
all terms: ‘data set’, ‘training set’ and ‘testing set’ does not correspond to the math-
ematical notion of the term; therefore, it is possible for these collections (perhaps
most suitably thought of as mathematical lists) to contain duplicate elements. Thus,
when data set S contains duplicate elements and is divided (using one of the meth-
ods described in Section 3.3.1) into training set R and testing set E, it is possible
for the intersection of R and E to not equal the empty set (R∩E 6= ∅). A standard
classification experiment based on R and E will therefore be compromised, as the
test data contains seen data points: data points that were used in the construction
of the model. The assumption of unseen data will therefore have been violated in
such an experiment (more clarification on this is provided in chapters 3 & 6).

There are many more data quality issues specific to the context of machine
learning with the NASA data sets: these are covered in great detail in Section
6.1. For this experiment significant quantities of suspicious/problematic data was
removed from each data set during initial pre-processing. This included the removal
of all data points with non-unique feature vectors, such that each unique, consistent
data point was only represented once (there is more on this in Chapter 6).

After binarisation of the error-count data (see chapters 4 & 6), the NASA data
sets exhibit various levels of class imbalance: there are typically many more data
points labelled as ‘non-defective’ than there are that are labelled as ‘defective’.
Precise details will be given in Chapter 6 during a full analysis of the data sets;
however, to alleviate the class imbalance problem in this experiment, I used an
undersampling technique (see Section 3.4). This simple technique involves pseudo-
randomly discarding majority class data points until there is an equal number of data
points representing each class. In this experiment, undersampling was carried out
during initial pre-processing, prior to any separation into training and testing sets.

After pre-processing, the experiment involved 10 repetitions of 5-fold cross-
validation for each data set. A further 5-fold cross-validation was carried out for each
training set, for the purpose of model optimisation (see Section 3.5). This model
optimisation process yielded a cost and gamma value-pair estimated as optimal for
each (withheld) test set, which was subsequently used to train each corresponding
final model.

Because undersampling was carried out on each whole data set during initial
pre-processing, all data sets had a precisely balanced class distribution (an equal
number of instances representing each class). This led to accuracy being the selected
performance measure used to assess predictive performance (see Section 3.3.2). The
results from this initial experiment are not presented here, for reasons described in
the following section.
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5.1.1 Issues & Shortcomings

The major shortcoming of this initial experiment was the methodology of the under-
sampling. Recall that undersampling was carried out during initial pre-processing,
prior to any separation into training and testing sets. This meant that, indirectly,
the data that would end up comprising the test sets was being modified. As test sets
should be entirely unseen, this kind of pre-processing is unreasonable, and violates
the assumption of unseen data (see Chapter 3). Sampling methods should typically
be used on only the training data after the divide into training and test set: they
should not be used on a whole data set prior to data separation. Note that this is-
sue is similar to that described in Section 4.1.2, where a feature selection technique
(which utilises class label data) was applied to whole data sets as opposed to only
the training data.

A second shortcoming of this experiment is a consequence of that just described.
Because undersampling was carried out on each whole data set until there was a
precisely balanced class distribution, and because stratified cross-validation was used
(see Section 3.3.1), this meant that each test set had a balanced class distribution.
This is what led to accuracy being the selected performance measure; however,
note the broken assumption of equal misclassification costs (see Section 3.3.2). A
similar experiment utilising more suitable and sophisticated performance measures
is described in Section 6.3.

Similar to the undersampling methodological issue described where majority
class data points were removed during initial pre-processing, repeated data points
were also removed during initial pre-processing. Again, this meant that data which
would end up comprising test sets was being indirectly modified when it should have
been unknown. The issue of how to deal with repeated data points is a thorny one,
and is discussed in detail in chapters 6 & 8.

The results of this initial experiment are not presented here, because of the
aforementioned methodological flaws which render them invalid. The interested
reader can find them within the full paper in Appendix A. Section 6.3 contains
details and results of an improved version of the experiment described here; these
results provide more meaningful estimates of predictive performance than those
obtained in this study.

5.2 Examining Predictive Models

Although there are many published defect prediction studies, few of them include an
analysis of the predictive model(s) used. Such an analysis can illuminate what has
been learnt by the classifiers, and in turn highlight the reasons why they make the
predictions they do. Ideally, this would lead to new knowledge in the specific prob-
lem domain. Predictive model analysis is relatively simple for white-box learners
where classifier internals are readily comprehensible (see Chapter 3); however, for
black-box learners (such as SVMs) more complicated analysis methods are required
[Núñez 2002]. One such method is described in detail in this section.
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The aim of this study was to analyse the predictive models of SVMs. There
were 13 models built in total, one for each of the NASA data sets. Analysis was
made by observing, for each data point comprising the training data, whether or
not it was placed on the ‘correct’ side of the separator, and its distance from the
separator. Training data points placed on the ‘wrong’ side of the separator comprise
the training error. As described in Section 3.6, SVMs allow a variable amount of
training error in order to increase the size of the margin. The amount of training
error to allow is determined by the cost (or c) parameter, and optionally any kernel
parameters (in this case: gamma). A sufficiently high error cost will typically result
in no training error (as the separator will be rigidly fit to the data); therefore, to
make the experiment worthwhile, each model was optimised for best performance
on unseen data. This model optimisation process was similar to the one described
in the previous section and in Section 3.5. Note that to differentiate between the
‘correct’ and ‘incorrect’ placement of positive and negative data points (with respect
to an SVM’s implicit decision boundary), the following standard terms were used:
true positive, true negative, false positive and false negative (these were described in
Section 3.3.3).

In addition to observing whether or not each training data point was placed on
the ‘correct’ side of the separator, it was also interesting to analyse the distance
between each data point and the separator. This is possible using decision values.
A decision value1 is a scaled version of the distance between a data point and the
separator (in the feature space), such that all free support vectors have an absolute
decision value of 1 (see Figure 5.1). More specifically, a decision value is a signed
real number; a positive value indicates a data point on one side of the separator,
while a negative value indicates a data point on the other side of the separator. A
value nearing zero indicates a data point that is very close to the separator, and can
therefore be conceptualised as a difficult data point to classify (see Figure 5.1). The
benefit of using decision values as opposed to raw distance values is that because of
the way they are scaled, they are more comparable across data sets.

All 13 of the NASA data sets were used in this study; however, one of the data
sets (namely: PC2 ) was subjected to a more thorough analysis than the others. This
was because it had the fewest instances (post pre-processing), and was therefore the
least labour intensive to manually analyse. The data pre-processing carried out in
this study was very similar to that described in Section 5.1. More details regarding
data pre-processing will be given in Chapter 6. Note that undersampling was carried
out during initial pre-processing, as previously described.

1Note that the definition of decision value used in this dissertation differs from the formal
definition (which can be found in [Bottou 2007]). The most notable difference with this version
is that using it alone, all bounded support vectors (see Figure 5.1) may not be identifiable. This
was not a problem in this study as the decision values used were primarily only for quantifying the
distance between each data point and the separator.
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Figure 5.1: An SVM’s feature space where each data point is labelled with its
corresponding decision value. The final separator is shown by the solid line. The
data points situated on the boundaries of the margin (shown by the two dashed
lines) are those data points whose corresponding absolute decision value is equal
to one. These data points are known as free support vectors. Data points with an
absolute decision value less than one are known as bounded support vectors (although
there may be other bounded support vectors with an absolute decision value greater
than one). A decision value nearing zero indicates a data point located close to the
separator, which can be conceptualised as a data point that is difficult to classify.
Note that in this figure, solid and hollow dots are used only to differentiate between
data points located on either side of the separator; they do not differentiate between
whether or not the data points are located on the ‘correct’ side of separator. In fact,
the data point nearest the separator (with a decision value of +0.4) belongs to the
opposing class (those data points situated on the left of the separator), it is a low
cost value that has resulted in its placement with the ‘wrong’ class. This is because
a low cost value indicates that training error is tolerable for the sake of increasing
the size of the margin.



56 Chapter 5. SVMs for Defect Prediction

Because data set PC2 would be the primary focus of analysis, an initial ex-
amination of this data set (post pre-processing) was undertaken. This examination
involved principal components analysis (PCA), a dimensionality reduction technique
which can be useful for data visualisation [Pearson 1901]. PCA involves an orthog-
onal transformation, where features are converted into a set of linearly uncorrelated
features, known as principal components. The first principal component is the fea-
ture with the largest variance, the second principal component is the feature with
the second largest variance, and so on. The number of principal components (fea-
tures in the transformed data) will be less than or equal to the original number of
features. Note, however, that it is possible for a significant proportion of the total
variance within a data set to be contained within the first few principal components:
this makes PCA a valuable data visualisation tool. For data set PC2, there was 65%
of the total variance contained within the first two principal components; these are
shown in Figure 5.2. This figure shows that in general, the data is highly intermin-
gled, and as such this appears to be a very difficult classification task. There are
several outliers shown, the most notable of which are the two ‘defective’ data points
located in the bottom right corner. These were the two largest modules in terms of
LOC total, and also had the two highest no. unique operators, no. unique operands,
and cyclomatic complexity feature values (amongst others). Note that these outliers
will be revisited later in this section during predictive model analysis.

After pre-processing, PCA, and hyperparameter tuning (see the previous section
and Section 3.5), SVM models were built for each of the 13 data sets. Spreadsheets
were then constructed for each data set, containing the original data, as well as the
following additional columns:

• Training Classification Result: Whether or not each data point was placed on
the ‘correct’ side of the separator. This field will contain one of the following
values: true positive (TP), true negative (TN), false positive (FP) or false
negative (FN).

• Decision Value: As previously described and shown in Figure 5.1, this is the
measure used to quantify the distance between a data point and the separator.
Positive values belong to data points classified as defective; negative values
belong to data points classified as non-defective.

For each spreadsheet, rows were ranked by decision value. The mean decision
value was also computed for each of the TP, TN, FP and FN groups. For data set
PC2, a thorough manual examination of each row was carried out. For all other
data sets, the decision value averages were examined to see if any patterns emerged.
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Figure 5.2: The two main principal components from data set PC2. Crosses repre-
sent modules labelled as defective while circles represent modules labelled as non-
defective. Observe the highly intermingled data, and the two extreme outliers be-
longing to the defective class in the bottom right corner.

The training classification result and corresponding decision value for each of
the 42 data points comprising data set PC2 are shown in Figure 5.3. Analysis
of these values showed that the mean decision value of the TPs (0.86) was higher
than the mean decision value of the FPs (0.60). This means that the TPs were
generally further away from the separator than the FPs. The mean decision value
of the TNs (-0.81) was similar to, but slightly greater than that of the FNs (-0.88),
meaning that the FNs were generally slightly further from the separator than the
TNs. Examining the averages for the remaining 12 data sets showed that the SVMs
again had the TPs placed generally further away from the separator than the FPs,
by an average of 49%. Unlike for data set PC2 however, the SVMs for the remaining
data sets had the TNs placed generally further away from the separator than the
FNs, by an average of 51%. An interesting avenue of further research would be
to analyse the decision values obtained when classifying unseen test sets. This is
because the TPs and TNs in such an experiment may also be located further from
the separator, on average, than the FPs and FNs, respectively. Therefore, these
findings would suggest that when using SVMs for defect prediction, the subsequent
code inspections should be prioritised in descending order of decision value.
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Table 5.1 contains a subset of the metrics which comprise the modules labelled
in Figure 5.3, as well as their corresponding classification result and decision value.
Note that there were 36 metrics in total but only four are shown here due to space
limitations. Module 1 (as labelled in Figure 5.3) is the data point farthest from the
separator. The defective-class classification made does appear fairly well-motivated
however (from the limited information available from the metrics), as the module
exhibits defect-prone characteristics. The most notable of these are the 76 unique
operands and 15 linearly independent paths in just 68 lines of C code. Modules
2 and 3 are the outliers identified during PCA. These modules were classified with
above average decision values (for the TPs), which is reassuring as they appear to be
very large and may benefit from functional decomposition. It may be surprising that
these two modules did not have the two largest decision values, however, this shows
that the SVM in this case was not being dominated entirely by LOC-count-based
measures. This suggests that there may be worth in the other metrics.

At first sight when looking at the FPs, it may appear as though the classification
for module 4 is unfounded, as none of the metrics shown suggest a module that
is particularly defect-prone. This looks suspicious as the instance is located far
from the separator. On closer inspection, however, this module had an essential
complexity value (which relates to the number of unstructured constructs within
a module) of 3, and in the 42 instances passed to the classifier, 78% of modules
with an essential complexity greater than 1 were defective. Unstructured constructs
have been known to be problematic with regard to code quality for over 40 years
[Dijkstra 1968], and the SVM classified 89% of modules with an essential complexity
greater than 1 (the metrics minimum) as defective. Module 5 is the instance that
is located closest to the separator, it was classified as defective but only by a very
small margin. This classification appears more immediately understandable than
the classification for module 4, as although the module contains only 7 LOC it
contains 16 unique operands.

All of the modules classified as non-defective (modules 6 to 9) appear very small
and simple from what can be deduced from the metrics. This highlights the diffi-
culty of this classification domain, and calls into question the suitability of using
such metrics to predict defects. None of the four modules had defect-prone char-
acteristics detectable by the metrics available, yet two of them were defective. The
problem is that the metrics used can provide only a limited insight into software
defect-proneness, not actual defectiveness. A defect-prone module is one that ex-
hibits characteristics which make it likely to be defective, such as being extremely
large and/or complex. It is a fair assumption that the majority of defective modules
within a software system will exhibit defect-prone characteristics, although these
are difficult to define precisely and programming-language specific. The findings in
this study suggest a limiting factor on the performance achievable by defect predic-
tors. This limiting factor appears to be in the correlation between defect-proneness
and defectiveness. The stronger this correlation, the higher the potential predic-
tive performance. Note that the strength of this correlation is likely to fluctuate
substantially between data sets.
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Figure 5.3: The decision value and classification result for each module in PC2.
Note that the modules are grouped horizontally according to classification result.

Module
ID No.

LOC
Total

v(g)
No. Uni.
Operands

No. Uni.
Operators

Classification
Result

Decision
Value

1 68 15 76 16 TP 1.67

2 316 54 111 37 TP 1.31

3 294 84 94 88 TP 1.00

4 10 3 9 11 FP 1.13

5 7 2 16 9 FP 0.03

6 2 1 5 9 TN -1.00

7 3 2 2 8 TN -0.08

8 2 1 5 8 FN -1.00

9 6 1 5 5 FN -0.75

Table 5.1: A subset of the metrics for each of the modules labelled in Figure 5.3.
Note that v(g) is McCabe’s cyclomatic complexity [McCabe 1976].
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The findings from examining all 42 of the modules comprising data set PC2
indicated that in general, the classifications made appeared consistent with current
software engineering beliefs. These beliefs include that modules with metrics in-
dicating larger, more complex code are more likely to be defective (as they have
defect-prone characteristics). Moreover, it appeared that the training error in the
model occurred mainly because of the data points labelled as defective which did
not exhibit defect-prone characteristics (and the converse). Therefore, it appears
that the model may have been doing far better at classifying defect-proneness than
it was at classifying actual defectiveness. Because it is possible for a module with-
out defect-prone characteristics to contain a defect (a programmer typing a ‘==’
instead of a ‘ !=’ in a small single-line module for example), the biggest limiting
factor on the performance of defect prediction systems may be in the strength of
the correlation between defect-proneness and defectiveness. Interestingly, although
it is also possible for a module with defect-prone characteristics to not contain a
defect, the fact that the module exhibits such characteristics may be a sign that
it is nonetheless a suitable target for refactoring [Fowler 1999]. Therefore, in this
domain, it may be that FNs are generally more serious misclassifications than FPs.

5.2.1 Issues & Shortcomings

Similar to the initial classification experiment described at the beginning of this
chapter, the major shortcoming of this experiment was the methodology of the un-
dersampling. Recall that undersampling was carried out during initial pre-processing,
typically resulting in large proportions of non-defective labelled data points be-
ing removed from each data set. Although there was no unseen testing phase in
this experiment, and therefore no assumption of unseen data to break, there was
still the bias caused by the undersampling as to which non-defective labelled data
points would remain. This issue was worsened for the originally highly imbalanced
data sets, where very large proportions of non-defective labelled data points were
removed. Removing such quantities of data points threatens the validity of this
experiment, as those chosen to remain may not comprise a representative sample.
Additionally, even if the undersampled subset is representative of the original sam-
ple (for the non-defective, majority class), the new data set as a whole may still be
unrepresentative in terms of the original class distribution.

Another issue caused by the premature undersampling was that, for the highly
imbalanced data sets, so much data was removed that the SVMs were being trained
on very few instances. For data set PC2, there were just 42 instances remaining after
pre-processing, 21 in each class. Having such a small sample size introduces another
source of bias. Therefore, the findings from this study cannot be extrapolated to the
original (unmodified) versions of the NASA data sets, or any other software fault
data set.
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5.3 Conclusions

The issues highlighted in these studies and in the work of others (see Chapter 4)
motivated most of the experiments described in this remainder of this dissertation.
In fact, these issues culminated in a new proposed methodology for software defect
prediction. The details of this methodology are presented in Chapter 8.
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Perhaps the most substantial finding of those described in the previous chapter
is that of the data quality issues with the NASA data sets. This is because the

NASA data sets have been the basis of much prior research; therefore the validity
of this research is potentially threatened. As mentioned in Chapter 4, there is a
current debate regarding the suitability of various classifier performance measures
used in this domain. Effective quantification of predictive performance is clearly a
key factor in determining the worth of a prediction system; therefore, I believe the
use of inappropriate (and often highly misleading) performance measures to be a
major methodological pitfall.
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In this chapter I begin by describing the data quality issues with the NASA
data sets. I do this while presenting a novel data cleansing process to address
these issues. The data cleansing process has been incrementally developed over
the course of my PhD study, and was published as described here in the 2011
International Conference on Evaluation and Assessment in Software Engineering
(EASE) [Gray 2011b]. The full paper can be found in Appendix C. Following
on from this in Section 6.2, I go into detail on the current debate regarding the
suitability of various classifier performance measures. This involves an explanation
of why the use of the performance measure precision is so important when using
imbalanced data. This study also led to publication in EASE 2011 [Gray 2011a]; the
full paper can be found in Appendix D. Lastly, I describe a repeated classification
experiment of the one described in Section 5.1, where all of the issues described in
both this chapter and the previous chapter are addressed.

6.1 Data Quality Issues

In order to carry out a software defect prediction experiment there is a requirement
for reasonable quality data. However, software fault data is very difficult to obtain.
Commercial software development companies often do not have a fault measurement
program in place. Moreover, even if such a program is in place, it is typically
undesirable from a business perspective to publicise fault data. This is particularity
true for systems where quality has been a serious problem, that is, where it would be
most useful to publicise such data and give researchers an opportunity to discover
why this was the case.

Open-source systems are frequently used by researchers to construct their own
fault data sets [Kim 2008, Schröter 2006, Shivaji 2009, Śliwerski 2005, Kim 2006].
Such systems are often developed whilst using a bug-tracking system to record
the faults encountered by developers. If bug information has been correctly and
consistently entered into version control commit messages, it is then possible to
autonomously locate the fault-fixing revisions. From here it is possible to (fairly
accurately) map fault-fixing revisions back to where the fault was first introduced
(the bug-introducing change, see [Śliwerski 2005, Kim 2006, Williams 2008]). The
major problem with constructing fault data from open-source systems is that it can
be a very time consuming task to do accurately. This is because human intervention
is often required to check the validity of the automated mappings. For systems of
even moderate size, the quantity of these mappings can make this task infeasible.

Thus difficulty in obtaining software fault data is the major factor why public-
domain fault data repositories, such as those hosted by NASA and PROMISE,
have become so popular amongst researchers. These repositories host numerous
data sets, which require no data analysis and little or no pre-processing, before
machine learning tools such as Weka will classify them. The ease of this process
can be dangerous to the inexperienced researcher. Results can be obtained without
any scrutiny of the data. Furthermore, researchers may naïvely assume the NASA
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Metrics Data Program (MDP) data sets are of reasonable quality for data mining.
This issue is worsened by the hosting sites not indicating the main problems, and
by so many researchers using these data sets inappropriately. The aim of this study
is therefore to illuminate the data quality issues present in these data sets, and
the problems that can arise when they are used (as they often are) in a binary
classification context. It is hoped that this study will encourage researchers to take
data quality seriously, and to question the results of some studies based on these
data sets.

An introduction to the NASA MDP Repository was given in Section 4.1.1. Re-
call that there are currently 13 module-level data sets stored in the repository,
each one explicitly intended for software metrics research. The originating source
code for these data sets is entirely closed-source, making the validation of data in-
tegrity more difficult. A substantial amount of research based wholly or partially on
these data sets has been published over the last decade, including: [Song 2011, Men-
zies 2004b, Menzies 2004a, Menzies 2007b, Menzies 2008, Menzies 2010, Zhang 2009,
Zhang 2010, Guo 2003, Guo 2004, Jiang 2007, Jiang 2008c, Jiang 2008b, Jiang 2008a,
Jiang 2009, Khoshgoftaar 2004, Zhong 2004, Seliya 2005, Liu 2010, Lessmann 2008,
Turhan 2007, Turhan 2009b, Turhan 2009a, Boetticher 2006, Mende 2009, Mende 2010,
Koru 2005b, Koru 2005a, Tosun 2009, Bezerra 2007, Singh 2008, Challagulla 2005,
Challagulla 2006, Pelayo 2007, Kutlubay 2007, Ma 2006, Oral 2007, Rodriguez 2007,
Vandecruys 2008, Mertik 2006, Cong 2010, de Carvalho 2010, Tao 2010, Li 2007, Vi-
vanco 2010, Elish 2008, Lu 2012]. Note that in this study I focus solely on the data
sets just described, because they are widely used; I do not make use of the available
object-oriented metrics data set, or any other data set affiliated with NASA.

The most common usage for the NASA MDP data sets (as reported in the
literature) is in binary classification experiments. Typically a classifier is trained
on binary-labelled data, and then each new set of module metrics is predicted as
belonging to either a ‘faulty’ module, or a ‘non-faulty’ module. This is clearly a
huge simplification of the real world, for two main reasons. Firstly, fault quantity
is disregarded: there is typically no distinction between a module with 1 reported
fault and a module with 31 reported faults, they are both simply labelled as ‘faulty’.
Secondly, fault severity is disregarded: there is typically no distinction between a
trivial fault and a life-threatening fault. Despite these crude simplifications, binary
classification defect prediction studies continue to be very prolific.

It is widely accepted by the data mining community that in order to accurately
assess the potential real-world performance of a classification model, the model
must be tested against entirely different data from that upon which it was trained
[Witten 2005]. This is why there is a distinction between a training set and a testing
set (see Section 3.3.1). A testing set is also referred to as an independent test set, as
it is intended to be independent from the training set (i.e. models should be tested
against ‘unseen data’, see [Witten 2005]). This is very basic data mining knowledge,
and is no surprise to the defect prediction community. In 2004 Menzies et al. state:
“if the goal of learning is to generate models that have some useful future validity,
then the learned theory should be tested on data not used to build it. Failing to do
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so can result in a excessive over-estimate of the learned model. . . ” [Menzies 2004b].
Despite this fact being well known, numerous studies based on the NASA MDP
data sets (henceforth, NASA data sets) have potentially had high proportions of
data points common to both their training and testing sets. This is because the
NASA data sets contain varied quantities of repeated data points, observations of
module metrics and their corresponding fault data occurring more than once. Thus,
when this data is used in a classification context, the separation into training and
testing sets may result in both sets containing large proportions of common data
points. This can yield the aforementioned excessive estimate of performance, as
classifiers can memorise rather than generalise. This is very serious, as when data
mining “it is important that the test data was not used in any way to create the
classifier.” [Witten 2005]

In this study I thoroughly analyse all 13 of the original NASA data sets. I
am interested in data quality in terms of noise, inaccurate/incorrect data (see
[Liebchen 2008]). Additionally, because these data sets are typically used in bi-
nary classification experiments, I am also interested in the issues specific to this
context. Firstly, I highlight the data quality problems via my novel data cleansing
process. This process is for removing noise, and for preparing the data sets for
binary classification. Next, I discuss at length the potential problems caused by
repeated data points when data mining, and why using lower-level metrics (such
as character counts) in fault data sets may alleviate these problems, by helping to
distinguish non-identical modules.

The rest of this study is presented as follows: In the next section I discuss
related work, papers where problems with the NASA data sets have been docu-
mented or discussed. In Section 6.1.2 I document my novel data cleansing process
in incremental stages. Section 6.1.3 contains a demonstration of the potential ef-
fects of repeated data points during classification experiments. My conclusions are
presented in Section 6.1.4.

6.1.1 Related Studies

The major problem when using the NASA data sets in a classification context is
that repeated data points may result in training data inadvertently being included
in testing sets, potentially invalidating the experiment. This is not a new finding;
however, I believe it needs spelling out to researchers, as previous studies mentioning
this issue seem to have been ignored. In this section the most relevant studies
surrounding this issue are discussed.
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The earliest mention of repeated data points in NASA data sets that I can find
was made in [Kaminsky 2004]. The authors state that they eliminated “redundant
data”, but give no further explanation as to why. The data set used was NASA data
set KC2, which is not available from the NASA MDP Repository. Although this
data set is currently available from the PROMISE Repository1, I did not use it in
this study in an effort to use only the original, unmodified data.

In [Boetticher 2006] five NASA data sets were used in various classification
experiments. The author states that “data pre-processing removes all duplicate
tuples from each data set along with those tuples that have questionable values
(e.g. LOC equal to 1.1).” Interestingly, it is only the PROMISE versions of the
NASA data sets that contain these clearly erroneous non-integer LOC-count values.
The author goes into detail on repeated data points, stating that “to avoid building
artificial models, perhaps the best approach would be not to allow duplicates within
datasets.” One of the experiments carried out was intended to show the effect of
the repeated data points in the five NASA data sets used. This was in a 10-fold
cross-validation classification experiment with a C4.5 decision tree. The claimed
result was that the data sets with the repeats included achieved significantly better
performance than those without. Although this result may be expected, there was an
unfortunate technical shortcoming in the experimental design. When reporting the
performance of classifiers on test sets with imbalanced class distributions, ‘accuracy’
(or its inverse: ‘error rate’) should not be used (see [Nickerson 2001] and Section
3.3.2). In addition to this, care is required when performing such an experiment,
as the proportion of repeated data points in each class is not related to the class
distribution. Therefore, post the removal of repeated data points, the data sets could
have substantially different class distributions. This may boost or reduce classifier
performance, because of the class imbalance problem (see [Chawla 2004, He 2009]
and Section 3.4).

Classification experiments utilising probabilistic outputs were carried out in
[Bezerra 2007]. Here the authors used 5 of the original NASA data sets and state
that they removed both “redundant and inconsistent patterns”. Inconsistent data
points are another of the problems when data mining with the NASA data sets.
They occur when repeated feature vectors (module metrics) describe data points
with differing class labels. Thus in this domain they occur where the same set of
metrics is used to describe both a module labelled as ‘defective’ and a module la-
belled as ‘non-defective’. I believe the removal of such instances was first carried
out in [Khoshgoftaar 2004].

The work described in the remainder of this section differs from that previously
described, as it is not based on classification experiments. It is instead based on the
analysis and cleansing of data. This study demonstrates: the poor quality of the
NASA data sets; the extent to which repeated data points disseminate into training
and testing sets; and the potential effect of testing sets containing seen data points
during classification experiments.

1Formerly at http://promisedata.org/ and now at http://code.google.com/p/promisedata/.

http://promisedata.org/
http://code.google.com/p/promisedata/
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6.1.2 Method - Data Cleansing

The NASA data sets are available from the aforementioned NASAMDP and PROMISE
repositories. For this study I used the original versions of the data sets from the
NASA MDP Repository (see Section 4.1.1). Note, however, that the main issues
also apply to the PROMISE versions of these data sets, which are for the most part
simply the same data in a different format2.

6.1.2.1 Initial Pre-Processing: Binarisation of Class Variable & Removal
of Module Identifier and Extra Error-Data Attributes

In order to be suitable for binary classification, the error-count attribute is com-
monly reported in the literature (see [Menzies 2007b, Lessmann 2008, Elish 2008]
for example) as being binarised as follows:

defective? = (error_count ≥ 1). (6.1)

It is then necessary to remove the ‘unique module identifier’ attribute, as this gives
no information toward the defectiveness of a module. Lastly, it is necessary to
remove all other error-based attributes, to make the classification task worthwhile.
This initial pre-processing is summarised in Figure 6.1. As the NASA data is often
reportedly used post this initial pre-processing, an overview of each data set is given
in Table 6.1. In this table the number of original recorded values is defined as the
number of attributes (features) multiplied by the number of instances (data points).
For simplicity missing values are given no special treatment. The number of recorded
values metric is used to quantify how much data comprises a data set. These values
will be revisited later on to help determine how much of the original data has been
removed during data cleansing.

Figure 6.1: Initial pre-processing pseudo-code.

rmAttributes = [ MODULE, ERROR_DENSITY, ERROR_REPORT_IN_6_MON,
ERROR_REPORT_IN_1_YR, ERROR_REPORT_IN_2_YRS ]

for dataSet in dataSets:
for rmAttribute in rmAttributes:

if rmAttribute in dataSet:
dataSet = dataSet - rmAttribute

dataSet.binarise(ERROR_COUNT)
dataSet.rename(ERROR_COUNT, DEFECTIVE)

2Note this is no longer the case; since the publication of [Gray 2011b] updated versions of the
data sets have been uploaded at PROMISE addressing many of the issues pointed out in this work.
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Name Language Features Instances
Recorded
Values

% Defective
Instances

CM1 C 40 505 20200 10

JM1 C 21 10878 228438 19

KC1 C++ 21 2107 44247 15
KC3 Java 40 458 18320 9
KC4 Perl 40 125 5000 49

MC1 C & C++ 39 9466 369174 0.7
MC2 C 40 161 6440 32

MW1 C 40 403 16120 8

PC1 C 40 1107 44280 7
PC2 C 40 5589 223560 0.4
PC3 C 40 1563 62520 10
PC4 C 40 1458 58320 12
PC5 C++ 39 17186 670254 3

Table 6.1: Details of the NASA data sets post initial pre-processing.

6.1.2.2 Stage 1: Removal of Constant Attributes

A numeric attribute which has a constant/fixed value throughout all instances is
easily identifiable as it will have a variance of zero. Such attributes contain no in-
formation with which to discern modules apart, and are at best a waste of classifier
resources. Each data set had from 0 to 10 percent of their total attributes removed
during this stage, with the exception of data set KC4. This data set has 26 con-
stant attributes out of a total of 40, thus 65 percent of available data contains no
information with which to train a classifier.

This stage removes data that may be genuine, but in the context of machine
learning it is of no use and is therefore discarded. Regarding data set KC4, it
appears as though many of the metrics have not been collected; instead of leaving
them out of the data set originally however, they were instead included with all
values equal to zero.

An additional note regarding data set KC4 is that two of its attributes: ‘essential
complexity’ and ‘essential density’, have two unique values each, but in each case,
one of the values occurs just once. This data may be valid, but after the data divide
into training and testing set, it may be that the training data contains a constant
attribute. This can be problematic for some learning techniques, and is therefore
something that researchers should be aware of.
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6.1.2.3 Stage 2: Removal of Repeated Attributes

In addition to constant attributes, repeated attributes occur where two or more at-
tributes have identical values for each instance. Such attributes are therefore fully
correlated, which may effectively result in a single attribute being over-represented.
Amongst the NASA data sets there are two repeated attributes (post stage 1),
namely the ‘number of lines’ and ‘loc total’ attributes in data set KC4. The differ-
ence between these two metrics was poorly defined at the NASA MDP Repository.
However, they may be identical for this data set as (according to the metrics) there
are no modules with any lines either containing comments or which are empty. For
this data cleansing stage I removed one of the attributes so that the values were
only being represented once. I chose to keep the ‘loc total’ attribute label as this is
common to all 13 NASA data sets.

This stage again removes data that may be genuine, because it can be prob-
lematic when data mining. It is interesting that data set KC4 has had so much
data removed in these first two stages. Table 6.1 shows that KC4 is unique in that
it is the only data set based on Perl code. Therefore, it may be that the metrics
collection tool (McCabeIQ 7.1) was more limited in the metrics it could collect for
this language.

6.1.2.4 Stage 3: Replacement of Missing Values

Missing values may or may not be problematic for learners depending on the classi-
fication method used. However, dealing with missing values within the NASA data
sets is very simple. Seven of the data sets contain missing values, but all in the same
single attribute: ‘decision density’. This attribute is defined as ‘condition count’ di-
vided by ‘decision count’, and for each missing value both these base attributes have
a value of zero. It therefore appears as though missing values have occurred because
of a division by zero error. In the remaining data set which contains all three of the
aforementioned attributes but does not contain missing values, all instances with
‘condition count’ and ‘decision count’ values of zero also have a ‘decision density’
of zero. Because of this I replace all missing values with zero, ensuring consistency
between data sets. Note that in [Bezerra 2007] all instances which contained missing
values within the NASA data sets were discarded. It is more desirable to cleanse
data than to remove it, as the quantity of possible information to learn from will
thus be maximised.

This stage adds data via the replacement of missing values, because they are
problematic for many learning techniques. Note, however, that some researchers
may not wish to carry out this stage, if they are using a learning method that is
resilient to missing values (such as naïve Bayes). Additionally, some researchers
may wish to exclude derived features (such as ‘decision density’) altogether. There
is more discussion on this in Section 6.1.2.7.
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6.1.2.5 Stage 4: Enforce Integrity with Domain-Specific Expertise

The NASA data sets contain varied quantities of attributes derived from simple
equations of other attributes, which are useful for checking data integrity. Addi-
tionally, it is possible to use domain-specific expertise to validate data integrity, by
searching for theoretically impossible occurrences. The following is a non-exhaustive
list of checks that can be carried out for each data point:

• Halstead’s length metric (see [Halstead 1977]) is defined as: ‘number of oper-
ators’ + ‘number of operands’.

• Each token that can increment a module’s cyclomatic complexity (see [Mc-
Cabe 1976]) is counted as an operator according to the original NASA MDP
Repository. Therefore, the cyclomatic complexity of a module should not be
greater than the number of operators + 1. Note that the minimum cyclomatic
complexity is 1.

• The number of function calls within a module is recorded by the ‘call pairs’
metric. A function call operator is counted as an operator according to the
original NASA MDP Repository, therefore the number of function calls should
not exceed the number of operators.

These three simple rules are a good starting point for removing noise in the
NASA data sets. Any data point which does not pass all of the checks contains
noise. Because the original NASA software systems/subsystems from where the
metrics are derived are not publicly available, it is impossible for us to investigate
this issue of noise further. The most viable option is therefore to discard each
offending instance. Note that a prerequisite of each check is that the data set must
contain all of the relevant attributes (post stage 1). Six of the data sets had data
removed during this stage, between 1 to 12 percent of their data points in total.

During this stage it is possible to not only remove noise (inaccurate/incorrect
data), but also problematic data. A module which (reportedly) contains no lines
of code and no operands and operators should be an empty module containing no
code. Should such a data point be discarded? As it is impossible for us to check
the validity of the metrics against the original code, this is a grey area. An empty
module may still be a valid part of a system, it may just be a question of time
before it is implemented. Furthermore, a module missing an implementation may
still have been called by an unaware programmer (one who does not know of the
missing implementation). As the module is unlikely to have carried out the task its
name implies, it may also have been reported to be faulty. Despite this, researchers
need to decide for themselves what to do with data that cannot be proved to be
noisy, but is nonetheless strange. For example, the original data set MC1 (according
to the metrics) contains 4841 modules (51% of modules in total) with no lines of
code. I feel that it would therefore not be unreasonable to remove such data points,
or even reject the entire data set altogether.
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6.1.2.6 Stage 5: Removal of Repeated and Inconsistent Instances

The most severe issue when using the NASA data sets for classification experiments
is that of repeated data points. Unfortunately, this issue is often ignored in the defect
prediction literature. Repeated, redundant, or duplicate data points are data points
(or instances) that appear more than once within a data set. They are either noise,
most probably caused by a faulty data collection process, or, if they are genuine, they
occur (in this domain) when many modules have the same values for all measured
metrics; for example, when they have the same number of: lines of code, lines of
comments, blank lines, operands, operators, unique operands, unique operators,
function calls, and so on. Additionally, these modules have also been assigned the
same class label referring to whether they are or are not ‘defective’. This situation
is clearly possible in the real world; for example, in an object-oriented system, there
may be many simple accessor and mutator methods that share identical metrics and
have not been reported as faulty. However, such data points may be problematic in
the context of machine learning, where is it imperative that classifiers are tested upon
data points independent from those used during training [Witten 2005]. The issue
is that when data sets containing repeated data points are split into training and
testing sets (for example by an x% training, 100−x% testing split, or n-fold cross-
validation), it is possible for there to be instances common to both sets. With test
data included in the training data, the learning task is either simplified or reduced
entirely to a task of recollection. Ultimately however, if the experiment is intended
to show how well a classifier could generalise upon future, unseen data points, the
results will be erroneous as the experiment is invalid. This is because the assumption
of unseen data has been violated, due to the test data being contaminated with
training data. Note that because of the closed-source nature of the NASA data sets,
it is impossible to know whether the repeated data points are genuine or are noise.

Inconsistent (or conflicting) instances are another issue, and are very similar
to repeated instances in that both occur when the same feature vectors describe
multiple modules. The difference between repeated and inconsistent instances is
that with the latter, the class labels differ, thus (in this domain) the same metrics
would describe both a ‘defective’ and a ‘non-defective’ module. This is again possible
in the real world, and while not as serious an issue as the repeated instances (in the
case of the NASA data sets), inconsistent data points can be problematic during
binary classification tasks. When building a classifier which outputs a predicted
class set membership of either ‘defective’ or ‘non-defective’, it is illogical to train
such a classifier with data instructing that the same set of features is resultant in
both classes. I focus more on repeated data points than inconsistent ones in this
study, as for most data sets the proportion of repeated instances is considerably
larger. Note, however, that it is possible for a data point to be both repeated and
inconsistent.
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Adding all data points into a mathematical set is the simplest way of guaran-
teeing that each one is unique. This ensures that classifiers will be tested on unseen
data, regardless of how the data is divided. From here it is possible to remove all
inconsistent pairs of modules, to ensure that all feature vectors (data points irrespec-
tive of class label) are unique. The proportion of instances removed from each data
set during this stage is shown in Figure 6.2. All data sets had instances removed
during this stage, and in some cases the proportion removed was very large (90, 79
and 75 percent for data sets PC5, MC1 and PC2, respectively). Note that for most
data sets the proportion of inconsistent instances removed was negligible. This is
partly due to the methodology of removing all repeated instances first, and then in-
consistent pairs second, as some of the inconsistent instances are also repeated ones.
Looking at Figure 6.2, it appears highly unlikely that all of the repeated data points
are genuine; for example, I find it extremely difficult to believe that more than 60%
of modules within a large software system would share the same number of: lines of
code, lines of comments, blank lines, operands, operators, unique operands, unique
operators, function calls, and so on.

Figure 6.2: The proportion of instances removed during stage 5.
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6.1.2.7 Other Issues

The most well-known issue regarding use of the NASA data sets in classification
experiments is that of the varied levels of class imbalance (see Table 6.1). The
table shows that data set KC4 has an almost balanced class distribution, whereas
data set PC2 has only 0.4% of data points belonging to the minority class. This
is an issue that researchers should be aware of. Learning from imbalanced data
is an active area of research within the data mining community, I therefore refer
readers to standard texts [Witten 2005, Chawla 2004, He 2009, Batista 2004]. Note,
however, that defect prediction researchers need to be very careful in the way they
assess the performance of their classifiers when using highly imbalanced data (see
[Davis 2006, Zhang 2007, Gray 2011a] and Section 6.2).

Another issue is that, as mentioned previously, there are attributes within the
NASA data sets that are simple equations of other attributes. While useful for
checking data integrity, they can be problematic (or simply a waste of computa-
tional resources) depending on the learning technique used. For example, support
vector machines utilising a Gaussian radial basis kernel will typically not benefit
from the inclusion of such attributes, as they will be implicitly calculated. Ad-
ditionally, other highly correlated attributes can be found within the data sets,
which are known to harm classification performance with many learning techniques
[Hall 1999, Howley 2006]. Therefore, in some contexts, researchers may wish to ad-
dress these issues. This usually involves removing attributes during pre-processing
and/or utilising a feature selection technique on the training data.

6.1.3 Findings

Figure 6.3 shows the proportion of recorded values removed from the 13 NASA data
sets (after basic pre-processing, see Table 6.1) post the 5 stage data cleansing process
just defined. Stages 1 and 2 of this process can remove attributes (features), stage
3 can replace values, and stages 4 and 5 can remove instances (data points). This
was the motivation to use the number of recorded values (attributes ∗ instances)
metric, as it takes both attributes and instances into account. Figure 6.3 shows that
between 6 to 90 percent of recorded values were removed from each data set in total.

Of the data cleansing processes with the potential to reduce the quantity of
recorded values, it is the removal of repeated instances that is, by far, responsible
for the largest average proportion of data removed (see Figure 6.2). This raises
the following questions: Is the complete removal of such instances really necessary?
Why are there so many repeated data points and how can they be avoided in future?
What proportion of seen data points could end up in testing sets when this data is
used in classification experiments? What effect could having such quantities of seen
data points in testing sets have on classifier performance? Each of these questions
are addressed in the sections that follow.
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Figure 6.3: The proportion of recorded values removed during data cleansing.

6.1.3.1 Is the complete removal of repeated instances really necessary?

Removing all repeated instances during initial pre-processing is a simple way to
prevent the problems they can cause. The most serious of these problems is test set
contamination, the potential effects of which will be discussed in detail in Section
6.1.3.4. An additional issue with repeated data points, separate to the problem of
test set contamination, may occur as a result of model construction (training and
optimisation). Training a model on data containing small proportions of repeated
data points is typically non-problematic. For example, a simple oversampling tech-
nique is to duplicate minority class data points in the training set(s). Using training
data which contains repeated data points is reasonable, as long as training and test-
ing sets share no common instances. Note, however, that the issue with excessive
oversampling: overfitting, may also occur here. Overfitting can be identified when a
model obtains good training performance, but poor performance on unseen test data
[He 2009]. It is also possible to cause overfitting by optimising model parameters
using a validation set (a withheld subset of the training set, see Section 3.5) contain-
ing duplicate data points. It is for this reason that [Kołcz 2003] recommend “tuning
a trained classifier with a duplicate-free sample”. Note that this also applies when
optimising using multiple validation sets, for example via n-fold cross-validation. It
is also worth noting that feature selection techniques can be negatively affected by
duplicates [Kołcz 2003].
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Following the data cleansing process to remove the repeated instances, researchers
will be able to use off-the-shelf data mining tools (such as Weka) to carry out exper-
iments that yield meaningful results (or at least, far more meaningful results than
had such instances been included blindly). However, the problems with this method
(which were introduced in Chapter 5) are based around the fact that such instances
can occur in the real world. Although in the case of these data sets it is impossible
to tell whether or not these instances are genuine (I believe there to be mix of both
genuine data and noise), the possibility that these instances are genuine cannot be
ignored. This is especially true for those data sets with low rates of duplication.

If researchers believe that the repeated instances are noise, then the method of
removing them during pre-processing, as described in the data cleansing process
just defined, is a suitable approach. Conversely, if researchers believe that these in-
stances are genuine, then this approach is not suitable. The main reason for this, as
described in Chapter 5, is that by removing these instances during pre-processing,
data that would eventually comprise the test set(s) is being removed. Thus, the
assumption of unseen data is being broken. Therefore, to prevent the issues caused
by repeated data points in cases where they are believed to be genuine, a different
approach is required. One such approach was proposed by [Boetticher 2006], and is
to add an extra attribute: number of duplicates. This will ensure that data points
are unique, and help prevent potentially useful information being lost. Another,
more sophisticated approach, is proposed in Section 8.3.1. This novel approach pre-
vents the issues caused by repeated data points while keeping test sets unmodified,
enabling more-meaningful estimates of potential real-world predictive performance
to be obtained.

6.1.3.2 Why are there so many repeated data points and how can they
be avoided in future?

As previously stated, the NASA data sets are based on closed-source, proprietary
software, so it is impossible for us to validate whether the repeated data points are
truly a representation of each software system/subsystem, or whether they are noise.
Despite this, a probable factor in why the repeated (and inconsistent) data points are
a part of these data sets is because of the poor differential capability of the metrics
used. Intuitively, 40 metrics describing each software module seems like a large set.
However, many of the metrics are simple equations of other metrics. Because of
this, it may be highly beneficial in future to also record lower-level metrics, such as
character counts. These will help to distinguish modules apart, particularly small
modules, which statistically result in more repeated data points than large modules.
Additionally, learners should be able to utilise such low-level data for helping to
detect potentially troublesome modules (in terms of defect-proneness).
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The size of the input space in these data sets and fault data sets in general has
not been previously discussed in detail to the best of my knowledge. All base at-
tributes (attributes not derived from simple equations of other attributes) in these
data sets contain only discrete values ≥ 0. Therefore, the probability of a re-
peated data point in these data sets is much greater than, for example, a data
set with real-valued measurements for the same number of attributes. This is why
I believe that in future, researchers should additionally record lower-level metrics
(such as character counts), to alleviate the issues with repeated data points by
helping to distinguish non-identical modules. An interesting avenue of further re-
search would be to investigate the repetition levels found in other fault data sets,
to see if they are comparable with the levels of repetition found in the NASA data
sets.

6.1.3.3 What proportion of seen data points could end up in testing sets
when this data is used in classification experiments?

In order to find the answer to this question, a small Java program was devel-
oped utilising the Weka machine learning tool’s libraries (version 3.7.5). These
libraries were chosen as they have been heavily used in defect prediction research
(see [Menzies 2007b, Boetticher 2006, Koru 2005b], for example). In this exper-
iment a standard stratified 10-fold cross-validation was carried out. During each
of the 10 folds, the number of instances in the testing set which were also in the
training set were counted. After all 10 folds, the average number of shared in-
stances in each testing set was calculated. This process was repeated 10000 times
with different pseudo-random number seeds to defend against order effects. For
this experiment I used the NASA data sets post basic pre-processing (see Table
6.1). I did this because it was as representative as possible of what will have hap-
pened in many previous studies. It is for the same reason that I chose stratified
10-fold cross-validation, the Weka default. The results from this experiment are
shown in figures 6.4a & 6.4b. These figures show that for each data set, the av-
erage proportion of seen data points in the testing sets was greater than the pro-
portion of repeated data points in total. Additionally, this relationship can be
seen in Figure 6.4b to have a strong positive correlation. It is worth emphasising
that in some cases the average proportion of seen data points in the testing sets
was very large (91, 84 and 82 percent for data sets PC5, MC1 and PC2, respec-
tively).
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Figure 6.4: The dispersion of repeated data points in the NASA data sets.

(a) Proportions of repeated data and seen data in testing sets.

(b) Proportions of repeated data versus seen data in testing sets.
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6.1.3.4 What effect could having such quantities of seen data points in
testing sets have on classifier performance?

To answer this question I do not use the NASA data sets because of the point regard-
ing class distributions mentioned in Section 6.1.1. Instead, for clarity, I construct
an artificial data set, with 10 numeric features and 1000 data points. All features
were generated by a uniform pseudo-random number generator and have a possible
range between 0 and 1 inclusive. The data set has a balanced class distribution,
with 500 data points representing each class. Note that artificially producing data
is a technique that has been used in prior studies (see [Guyon 2003] for example).

Using the Weka Experimenter, I ran 10 repetitions of a stratified 10-fold cross-
validation experiment with the data set just described, and the following variations
of it:

• 25% repeats from each class, an extra copy of 125 unique instances in each
class, 1250 instances in total.

• 50% repeats from each class, an extra copy of 250 unique instances in each
class, 1500 instances in total.

• 75% repeats from each class, an extra copy of 375 unique instances in each
class, 1750 instances in total.

• 100% repeats, two copies of every instance, 2000 instances in total.

I used random forest learners for this experiment (see Section 3.2.3.1), with 500
trees and all other parameters set to the Weka defaults. I chose 500 trees as this
was the number used in [Guo 2004, Jiang 2008c, Jiang 2008b]. The results of this
experiment are shown in Figure 6.5. The mean accuracy levels for each data set:
original, 25% repeats, 50% repeats, 75% repeats and 100% repeats were: 47.84,
67.38, 80.22, 88.37 and 95.00. This clearly shows that seen data points can have
a huge influence on the performance of classifiers, even with pseudo-random data.
As the percentage of duplicates increases, so does the performance of the classifiers.
There are several major factors why this is the case, including that each node (or
tree) comprising a random forest is:

• Unpruned: Meaning that the training data is essentially memorised. There-
fore, in cases where the test data contains seen data points, these points are
highly likely to be classified correctly, provided they are consistent in the
training data.
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Figure 6.5: Random Forest classifiers with repeated data points.

• Trained on a bootstrap sample of the original training data: Such
samples are made with replacement, meaning that many original training in-
stances will be repeated, and some not chosen at all. Clearly, if the original
training data contains duplicates to begin with, the proportion of repeated
instances trained on by each node will likely increase dramatically.

• Trained on a subset of available features: Meaning that, with the input
space of each data point reduced due to this subset, there is a greater likelihood
of repeated (and inconsistent) data.

The results from this experiment are very interesting, as random forests have
been reported to work well with the NASA data sets [Guo 2004, Jiang 2007, Jiang 2008c,
Jiang 2008b]. Note that random forests have also been reported to struggle with
imbalanced data [Chen 2004, Segal 2004, Dudoit 2003]. This makes them not
the obvious choice for use with the NASA data sets, as most of them are imbal-
anced (see Table 6.1). Despite this, favourable performance has been observed
[Guo 2004, Jiang 2007, Jiang 2008c, Jiang 2008b], which I believe is partly due to
the reasons just described. Note that I have confirmed these findings using version
5.1 of Breiman and Cutler’s original Fortran code3.

3http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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Figure 6.6: Naïve Bayes classifiers with repeated data points.

It is worth pointing out that the effect of learning on repeated data points is
algorithm specific. For example, naïve Bayes classifiers have been reported to be
fairly resilient to duplicates [Kołcz 2003]. I confirm this by repeating the experiment
just described with naïve Bayes classifiers. The results are shown in Figure 6.6.
Although these results are not as striking as those for the random forests, I believe
they are still noteworthy, and that in practice the effect may be significant.

6.1.4 Conclusions

Regardless of whether repeated data points are, or are not noise, it is unsuitable
to have seen data in testing sets during experiments intended to show how well a
classifier could potentially perform on future, unseen data. This is because seen
data points can result in an excessive estimate of performance, occurring because
classifiers can, to varying degrees, memorise rather than generalise. There is an
important distinction between learning from and simply memorising data: only if
you learn the structure underlying the data can you be expected to correctly predict
unseen data.
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Some researchers may argue that repeated data points should be tolerated and
subject of no special treatment, as it is possible for modules with identical metrics
to be contained within a software system. However, I have demonstrated that ma-
chine learning experiments based on data containing repeated data points can lead
to invalid results. This is because it is possible for the test data to be (perhaps
inadvertently) contaminated with training data, violating the assumption of unseen
data. Even if researchers choose to ignore this fact, it is folly to report the per-
formance of classification experiments with no distinction between performance on
seen and unseen data. This is because the generalisation ability of classifiers may
be far worse than the performance obtained implies.

If, in the real world, you happen to have a feature vector in your test set which
is also contained in your training set, a simple lookup may be all that is required for
best performance. A system could therefore be implemented where training data is
stored in a hash table, and each test vector checked to see if it is contained within
the hash table prior to classification. If so, the class label to predict could be looked-
up directly with the classification model being unneeded (or some form of ensemble
method used). A confidence interval could be derived using the lookup method, with
a weight assigned to each training data point based on the number of times it occurs
(due to replication) in the training data. This could also be extended to deal with
inconsistent instances, perhaps by predicting the most frequently occurring of the
classes. If the number of copies of the inconsistent instance in each class is equal,
it may be best to report this, and/or make independent use of the classification
model(s).

A simple approach to address the issues caused by repeated data points is to
discard them prior to classification. A more sophisticated approach will be proposed
in Chapter 8, which keeps test sets unmodified, and which may be a more realistic
approach. Another possible option was proposed in [Boetticher 2006], and is to use
an extra attribute: number of duplicates. This will help to ensure that information
is not lost, and is most viable when repeats are believed to be genuine.

A possible reason why there are so many repeated (and inconsistent) data points
within the NASA data sets is because of the poor differential power (and the small
input space) of the metrics used. It may be highly beneficial in future to also record
lower-level metrics (such as character counts), as these will help to distinguish non-
identical modules, reducing the likelihood of modules sharing identical metrics. In
addition to having lower-level metrics to begin with, researchers should be careful
when discarding attributes, as this typically reduces the size of the input space,
increasing the probability of repeated feature vectors. For example, [Menzies 2007b]
used 8 of the NASA data sets with just 2 or 3 of the original 38 features. Removing
over 92% of the available features in each of these data sets typically yields dramatic
increases in the proportions of repeated and inconsistent instances.
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“Data cleaning is a time-consuming and labor-intensive procedure but one that
is absolutely necessary for successful data mining . . . Time looking at your data
is always well spent.” [Witten 2005] I believe the data cleansing process defined
in this study will increase the accuracy of the NASA data sets, and make them
more suitable for machine learning. This process may also be a good starting point
when using other software fault data sets. Experiments based on the NASA data
sets which blindly included the repeated data points may have led to erroneous
findings. This is because results are often reported as if they were based on un-
seen data, when in fact (to varying degrees) they were not. The impression given
from the literature is that many defect prediction researchers using this data have
not been aware of this issue. Future work may be required to (where possible) re-
peat these studies with appropriately processed data. Other areas of future work
include:

• Extending the list of integrity rules described in stage 4 (Section 6.1.2.5) of the
cleansing process. This will help to catch as many infeasible feature vectors,
sets of metric values that can be proved to be noisy, as possible.

• Analysing other fault data sets to see whether the proportions of repeated
data points in the NASA data sets are typical of fault data sets in general.
This will help to determine the extent of this problem.

6.2 Performance Metric Problems

It is surprisingly difficult to characterise appropriately the performance of data min-
ing classification algorithms from the field of machine learning. Deciding which per-
formance measures to use involves taking several factors into account, including: the
costs associated with misclassification, and the class distribution of the data. As
was briefly discussed in Section 4.1.2, there has been much debate over the suitabil-
ity of various performance measures used in this domain. This subject is revisited
here.
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In January 2007, the Menzies et al. paper ‘Data Mining Static Code Attributes
to Learn Defect Predictors’ was published in the IEEE Transactions on Software
Engineering [Menzies 2007b]. In this study many defect prediction experiments
were carried out (as described in Section 4.1). Classifier performance was reported
using the two metrics used in receiver operating characteristic (ROC) analysis, the
true positive rate and the false positive rate. In the journal these metrics were
referred to as the probability of detection (pd) and the probability of false alarm
(pf), respectively. The use of these metrics motivated a comments paper by Zhang
and Zhang [Zhang 2007]. They argued that the prediction “models built in [Men-
zies 2007b] are not satisfactory for practical use”. This was because the precision,
the proportion of modules predicted as being defective which were also originally la-
belled as being defective, was low for 7 out of the 8 data sets (between around
2.02 and 31.55 percent). Although the achieved precision values were omitted
from [Menzies 2007b], Zhang and Zhang derived them using the available perfor-
mance metrics and class distribution data. They conclude [Zhang 2007] by sug-
gesting that, for reporting on the performance of software defect prediction models,
the true positive rate be used with precision rather than with the false positive
rate.

The Zhang and Zhang comments paper motivated a response by two of the
original journal authors and two others [Menzies 2007a]. Here the main arguments
were that “detectors learned in the domain of software engineering rarely yield high
precision”, and that low-precision predictors can be useful in practice. While it is
true that low-precision predictors can be useful in certain contexts, and that lowering
precision in order to increase the true positive rate may be desirable depending on
your objectives, this is not enough to justify disregarding precision completely in
such a domain.

In this section I demonstrate that when using data with a highly imbalanced
class distribution, relying on true positive rates and false positive rates alone (this
includes ROC analysis) may provide an overly optimistic view of classifier perfor-
mance. I demonstrate this by showing that even when pairs of values for these
measures appear to be near optimal, there is still considerable room for improve-
ment in practical terms. This is not a novel finding. However, many defect pre-
diction researchers have continued to report their classification results inappropri-
ately since the publication of [Zhang 2007]. The contribution made here is the
intuitive and easily comprehensible presentation of the examples given in Section
6.2.2.

The rest of this section is laid out as follows: Section 6.2.1 provides a back-
ground to machine learning classifier performance metrics. Section 6.2.2 describes
the problem at hand, and why precision is required to describe classifier perfor-
mance appropriately in highly imbalanced domains. The conclusions and advice for
researchers are presented in Section 6.2.3.
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6.2.1 Background

This section presents an overview of machine learning classifier performance metrics.
A more thorough treatment was given in Section 3.3.3, which some readers may wish
to revisit. In this study the scope is limited to that of binary classification problems,
where performance is often quantified using a confusion matrix (see Figure 3.7). It
is worth pointing out that in a confusion matrix, there is a symmetry between the
positive and negative classes. However, the positive class typically refers to the class
of most interest (‘defective’ modules), which is commonly (in this domain and many
others) the minority class. Note that in this domain, a common assumption is that
all modules predicted as defective will be subject to a manual code review.

Useful data statistics and commonly used classifier performance metrics can be
derived from a confusion matrix; a subset of these were defined in Table 3.2. Note
that in this table, the last two measures defined (f-measure and balance) are in
their most commonly used form. It is however possible to weight them in order to
favour either of their comprising measures [Jiang 2008a]. Additionally note that the
balance measure was defined in [Menzies 2007b], it is a measurement of distance
from a point on a ROC curve to the ideal point, which is typically defined as where
the true positive rate is 1 and the false positive rate is 0.

The three measures of most interest in this study are: the true positive rate, the
false positive rate, and precision. The true positive rate describes the proportion of
data points labelled as positive which were correctly predicted as such; the optimal
value is 1. The false positive rate describes the proportion of data points labelled
as negative which were incorrectly predicted as positive; the optimal value is 0.
Precision describes the proportion of data points predicted as positive which were
correct (they were originally labelled as positive); the optimal value is 1.

In addition to observing classifier performance with a single, fixed set of param-
eters, it may also be desirable to observe how performance varies across a range of
parameters. Doing so can be especially beneficial when performing classifier compar-
isons. ROC-curve analysis is commonly used for this task, and involves exploring the
relationship between the true positive rate and the false positive rate of a classifier
while (typically) varying its decision threshold [Witten 2005]. A trade-off commonly
exists between the true positive rate and the false positive rate, and this is demon-
strated by ROC analysis via a two-dimensional plot of the false positive rate on the
x-axis and the true positive rate on the y-axis (see Figure 3.11). The area under the
ROC curve (AUC-ROC) is commonly used to summarise a ROC curve in a single
measure. The optimal AUC-ROC value is 1.

Precision and recall curves (PR curves) can be used in the same manner as
ROC curves. On a PR curve, recall is on the x-axis and precision on the y-axis.
A trade-off commonly exists between these two measures, and is thus shown on a
PR curve. Note that recall is another alias for the true positive rate used in ROC
analysis. PR curves are “an alternative to ROC curves for tasks with a large skew
in the class distribution” [Davis 2006]. The area under the PR curve (AUC-PR) can
be computed and used similarly to AUC-ROC. The optimal AUC-PR value is 1.
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6.2.2 How Class Distribution Affects Performance Metrics

6.2.2.1 Example 1

Consider a perfectly balanced test set with 1000 data points, 500 in each class. If we
achieve classification performance of true positive rate (TPR) = 1 and false positive
rate (FPR) = 0.01, it appears as though our classifier has performed very well. All
of the data points in the positive class have been correctly classified (TPR = 1),
and only 1 percent of data points in the negative class (5 data points) have been
incorrectly classified (FPR = 0.01). If we calculate the precision of such a classifier,
it works out to 0.99 (to two significant figures). Therefore, approximately 99 percent
of data points predicted to be in the positive class turned out to be correct. In this
first example, where we have a balanced class distribution, using the TPR and FPR
provided an honest and accurate representation of classifier performance, as a near-
optimal pair of values likewise resulted in a near-optimal precision. A confusion
matrix for this example is presented in Figure 6.7.

labelled positive labelled negative
predicted positive TP = 500 FP = 5
predicted negative FN = 0 TN = 495

Figure 6.7: TPR = 1, FPR = 0.01, Precision ≈ 0.99

6.2.2.2 Example 2

Now consider a test set with a highly imbalanced class distribution, as before with
1000 data points in total but this time with only 10 data points in the positive class
(1 percent). If we again achieve TPR = 1 and FPR = 0.01, classifier performance
may appear to be equal to that of the previous classifier. This is inappropriate,
misleading, and exaggerates the classifier’s real performance, as the precision of this
classifier is 0.50 as opposed to around 0.99. Thus, because of the imbalanced class
distribution (there being much more data in one class than the other), the same
supposedly near-optimal TPR and FPR (or point on a ROC curve) represent vastly
different performance. In the first example approximately 99 of every 100 positive
predictions were correct, whereas in the second example, the same TPR and FPR
represent a classifier for which only half of all positive predictions were correct. Note
that because of rounding error, the FPR in this example was in fact 0.010102 (to
six significant figures). A confusion matrix for this example is presented in Figure
6.8.

labelled positive labelled negative
predicted positive TP = 10 FP = 10
predicted negative FN = 0 TN = 980

Figure 6.8: TPR = 1, FPR ≈ 0.01, Precision = 0.50
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6.2.2.3 Example 3

Turning attention toward the domain of software defect prediction, researchers often
use data sets where the minority class represents less than 1 percent of data points
in total (see [Menzies 2007b], [Lessmann 2008] & [Jiang 2009] for example). Thus,
I now present an example using the most imbalanced of the NASA data sets: PC2.
In original, unprocessed form this data set contains 5589 data points. Just 23
of the data points are labelled as ‘defective’, around 0.4 percent of data points
in total. Thus, with a TPR of 1, all 23 data points labelled as ‘defective’ were
correctly classified. An FPR of 0.01 means that 1 percent of the 5566 data points
labelled as ‘non-defective’ were incorrectly classified. With approximately 56 false
positives, a total of 79 (23 + 56) modules were predicted to require further attention.
This works out to a precision of 0.29 (to two significant figures), despite the other
metrics implying near-optimal performance. A confusion matrix for this example is
presented in Figure 6.9.

labelled positive labelled negative
predicted positive TP = 23 FP = 56
predicted negative FN = 0 TN = 5510

Figure 6.9: TPR = 1, FPR ≈ 0.01, Precision ≈ 0.29

In the domain of software defect prediction, where the cost of false positives
is typically not prohibitively large (see [Menzies 2007a]), such a classifier would,
in most environments, be very attractive. However, my next observation is that,
because of the highly imbalanced class distribution, small changes in the FPR have
a large effect on the actual number of false positives.

6.2.2.4 Example 4

If, in the previous example, the FPR were to increase from 0.01 to 0.05, the number
of false positives would increase from approximately 56 to approximately 278. The
precision would subsequently drop to 0.08 (to two significant figures). In some
environments examining 100 modules to find 8 of them to be defective would not
be feasible. A confusion matrix for this example is presented in Figure 6.10.

labelled positive labelled negative
predicted positive TP = 23 FP = 278
predicted negative FN = 0 TN = 5288

Figure 6.10: TPR = 1, FPR ≈ 0.05, Precision ≈ 0.08
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6.2.2.5 Example 5

As defect predictors do not reportedly achieve performance even close to TPR =
1 and FPR = 0.05, are these theoretical experiments valid? Zhang and Zhang
[Zhang 2007] indirectly answer this question by highlighting the precision achieved
in [Menzies 2007b] on data set PC2. Here, despite results that may initially appear
acceptable (TPR = 0.72, FPR = 0.14), and claims of the naïve Bayes classifiers
being “demonstrably useful”, the precision was just 2.02 percent (to three significant
figures). The classifier predicted that approximately 796 modules were in the ‘defec-
tive’ class, of which only approximately 17 actually were. This highlights the poor
predictive performance achieved, and raises the question of whether such a classi-
fier could be of any practical worth. An optimistic approximation of the confusion
matrix for the entire data set (the results in [Menzies 2007b] were generated after
10 repeated runs of 10-fold cross-validation) is presented in Figure 6.11.

labelled positive labelled negative
predicted positive TP = 17 FP = 779
predicted negative FN = 6 TN = 4787

Figure 6.11: TPR ≈ 0.74, FPR ≈ 0.14, Precision ≈ 0.02

Note that an identical confusion matrix to the one in Figure 6.11 can be obtained
simply by ranking all data points in data set PC2 by their lines of code total attribute
(descending order), and predicting the first n = 796 data points as defective. It is
a similar case for 2 more of the 8 data sets used in [Menzies 2007b], where n is
the approximate average number of ‘defective’ predictions made. This is known
as LOC module-order modelling (see [Khoshgoftaar 2003] & [Mende 2009]), and in
this case highlights both the poor actual predictive performance of the classifiers,
and that research into making defect predictors ‘effort aware’ is worthwhile (see
[Arisholm 2007] & [Mende 2010]).

6.2.2.6 Final Examples

Table 6.2 presents statistics for each of the 13 NASA data sets. The table shows
class distribution details for each data set as well as the precision when TPR = 1,
FPR = 0.01 and when TPR = 1, FPR = 0.05. Note that the false positives in
these calculations were rounded to the nearest integer. The data sets are ranked
in ascending order of the percentage of modules in the positive (minority) class.
From the table it can be seen that for the three data sets with the highest class
imbalance (namely: PC2, MC1 and PC5), near-optimal values of TPR and FPR
result in classifiers which are far from optimal in terms of precision, and hence
in practical terms. The table also shows, as was demonstrated in Example 6.2.2.1,
that the TPR and FPR are suitable measures when using data with a predominantly
balanced class distribution (as is the case for data set KC4).
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Thus, relying solely on TPR and FPR or methods based around them, including:
ROC analysis, AUC-ROC, and the balance metric, “can present an overly optimistic
view of an algorithm’s performance if there is a large skew in the class distribution”
[Davis 2006]. Precision is required to give a more accurate representation of true
performance in this context.

6.2.3 Conclusions

Precision matters, especially when the class distribution of the data is highly skewed.
When performing any kind of data mining experiment it is very important to doc-
ument the characteristics of the data being used: where it came from, what pre-
processing has been carried out, how many data points and features are present,
what is the class distribution, etc. This makes it more accessible for other re-
searchers to check the validity of the claimed results. For example, if such data
characteristics are given, it is often possible to derive measures that are not explic-
itly reported, as was done here (and more recently in [Bowes 2012]). The inspiration
for the work carried out here came from [Zhang 2007], where precision values omit-
ted in [Menzies 2007b] were derived using the TPR, FPR, and class distribution
data.

If classifier performance is to be reported with a single set of (hopefully opti-
mised and thus suitable) parameters, I believe defect prediction researchers should
be reporting a minimum of recall (TPR) and precision, in addition to the data char-
acteristics just described. It is of no harm to also report the false positive rate. Note
that it is necessary to take both recall and precision into account when assessing
performance, a single one of these measures will not suffice. This is because an
optimal recall can be achieved simply by predicting all data points as belonging to
the positive class, and an optimal precision can be achieved by making only a single
positive prediction, which turns out to be correct. The f-measure (see Table 3.2)
is commonly used to combine both measures into a single value, and can simplify
performance quantification effectively. When classifier performance is to be reported
over a range of parameters, I believe precision and recall (PR) curves to be more
suitable in this domain than ROC curves. This is because class distributions are
often highly skewed [Menzies 2007a].

As described in Section 4.2, Lessmann et al. carried out a large-scale benchmark-
ing defect prediction experiment with 22 classifiers [Lessmann 2008]. The top 17
of these classifiers were reported to have statistically indistinguishable performance
using the AUC-ROC performance measure, and a statistical approach proposed
by [Demšar 2006]. The data used in the study came from 10 of the NASA data
sets. Davis and Goadrich point out that in highly imbalanced domains, PR curves
are more powerful at distinguishing the performance of classification methods than
ROC curves [Davis 2006]. Thus, I think it would be interesting for the experiment
by Lessmann et al. to be replicated with PR curves and AUC-PR.
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In a recent paper by Menzies et al. [Menzies 2010], it is stated that the “stan-
dard learning goal” of defect predictors is to maximize AUC-ROC. I argue that this
should not be the standard learning goal of defect predictors. As shown here, by
[Davis 2006], and by [Zhang 2007], precision needs to be taken into account in a
typically highly imbalanced domain. Moreover, [Davis 2006] prove “that an algo-
rithm that optimizes the area under the ROC curve is not guaranteed to optimize
the area under the PR curve”.

In addition to the comments made about defect predictor learning goals, the
Menzies et al. paper [Menzies 2010] also states “that accuracy and precision are
highly unstable performance indicators for data sets . . . where the target concept
occurs with relative infrequency”. In my view this assertion is only partly correct.
While it is commonly reported within the data mining literature that accuracy
is not a suitable measure when using imbalanced test sets, this is not the case
for precision (when reported along with recall). To further clarify this, He and
Garcia state that “when used properly, precision and recall can effectively evaluate
classification performance in imbalanced learning scenarios” [He 2009]. It should be
noted, however, that in the context of experiments to explore the class imbalance
problem (see Section 3.4), the FPR is more suitable than precision [Batista 2004].

6.3 SVMs for Defect Prediction Revisited

Here, I present the results from a similar classification experiment to the one de-
scribed in Section 5.1, but in this experiment all the major issues that have been
discussed in both this chapter and Chapter 5 are addressed. An assumption made
in this experiment was that the repeated and inconsistent instances are noise; there-
fore, the full data cleansing process defined in Section 6.1.2 was carried out. To avoid
the undersampling issues described in the previous chapter, no such sampling was
undertaken, and the original class distributions (post data cleansing) were used in
all training and testing sets. This was realised by using stratification in the 10-fold
cross-validation process. After pre-processing, the experimental design used in this
study was very similar to that shown in Figure 3.13, with the following differences:

• The value of M was 10, meaning that results were averaged over 10 repetitions
of stratified 10-fold cross-validation.

• All 13 of the pre-processed NASA data sets were used.

• The parameter range used during model optimisation was as follows (start,
stop, step, all log2): cost -5, 15, 2 : gamma 3, -15, -2. More clarification on
this is provided in sections 3.5 & 3.6.
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Name Features Instances
No. Defective
Instances

% Defective
Instances

CM1 37 454 46 10

JM1 21 7722 1612 21

KC1 21 1163 294 25
KC3 39 324 42 13
KC4 13 113 57 50

MC1 38 1978 36 2
MC2 39 156 51 33

MW1 37 376 28 7

PC1 37 949 63 7
PC2 36 1389 21 2
PC3 37 1433 150 10
PC4 37 1286 176 14
PC5 38 1699 459 27

Table 6.3: Details of the NASA data sets post data cleansing.

The updated data set statistics post the full data cleansing process are given in
Table 6.3. Recall that the data set statistics prior to data cleansing were given in
Table 6.1. Interesting observations regarding the new statistics include that there
are large class-distribution changes in some of the data sets. For data set PC5,
27% of data points comprise the minority class compared to 3% before cleansing.
The level of imbalance has also been reduced for many other data sets. Another
interesting point to note is that for data set KC4, there is now one more instance
in the ‘defective’ class than there is in the ‘non-defective’ class. This means the
‘defective’ class is now the majority class in this data set, albeit by a very narrow
margin.

The results from this experiment are given in Table 6.4. The last column in this
table contains a measure that has not been previously described, namely: Matthew’s
Correlation Coefficient (MCC) [Matthews 1975]. This measure is defined as follows:

MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6.2)

The MCC, which is particularly popular in the field of bioinformatics, gives a value
between -1 and 1, with 1 representing perfect classification. A notable property of
MCC is that a value of 0 represents classification that is no better than random.
Therefore, a simple baseline check regarding the worth of a classifier is to make sure
its MCC is positive. The MCC equation takes all four components of the confusion
matrix into account, and provides a high-level, overall view of classifier performance.
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Name Recall Precision F-Score FP Rate MCC

CM1 .28 .30 .29 (.18) .07 .22

JM1 .19 .49 .28 (.35) .05 .21

KC1 .38 .51 .43 (.40) .12 .29

KC3 .29 .34 .31 (.23) .09 .22

KC4 .82 .67 .74 (.67) .41 .42

MC1 .09 .13 .11 (.04) .01 .10

MC2 .45 .57 .50 (.49) .17 .30

MW1 .31 .45 .37 (.14) .03 .33

PC1 .31 .34 .32 (.12) .04 .28

PC2 .07 .10 .08 (.03) .01 .07

PC3 .28 .31 .29 (.19) .07 .21

PC4 .50 .69 .58 (.24) .04 .53

PC5 .43 .56 .49 (.43) .13 .34

Table 6.4: The classification results from this experiment. The values in brackets
after the f-score values show the f-score that would be achieved by making only
defective-class predictions. Observe that the actual performance achieved for data
set JM1 is worse than this simple baseline predictor.

The results presented in Table 6.4 show that there is a positive MCC value for
each data set. This indicates that overall predictive performance is better than
random; however, in the case of data sets PC2 and MC1 (with MCC values of .07
and .10, respectively), performance is only slightly better than random. The reason
for this is almost certainly because these are the two data sets with the highest
level of class imbalance: only around 2% of data points comprise the minority class
in each case. Although overall predictive performance is better than random (as
shown by the MCC values), of most interest in this typically imbalanced domain
is performance on the ‘defective’ class. For this reason, all performance measures
in Table 6.4 other than MCC are specific to this class. As previously discussed,
the f-score (or f-measure) is often used to effectively combine precision and recall
into a single value. It is most commonly defined as the harmonic mean of these
two comprising metrics, as is the case here. A trivial baseline that can be used
regarding f-score is to compare the actual f-score achieved with the f-score that
would be obtained by making only positive-class predictions. Recall that in a binary-
classification context, making only positive-class predictions would result in a recall
of 1, and a precision that is equal to the proportion of positive data points in the
test data. If we call this proportion d, then the resultant f-score would be equal to:
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Baseline_F - score =
(2d)

(1 + d)
(6.3)

This trivial baseline is a good starting point for assessing the worth of a predictor,
particularly in imbalanced classification domains. The results in Table 6.4 show
that with the exception of JM1, all data sets improved on this baseline, although
in some cases the improvement was very small. The poor performance achieved for
data set JM1 is surprising when considering that it is the largest of the data sets (in
terms of instances), and that it is not highly imbalanced (around 21% of instances
comprise the minority class). Best performance was achieved with data set PC4,
which had both the greatest performance increase over the baseline f-score and the
highest MCC value. The recall was .50, meaning that half of all faults were found
in the modules predicted as defective, and the precision was .69, meaning that there
was around a 70% chance that a module predicted as defective would contain one
or more faults. Notice that the general level of performance in terms of recall and
precision is low, even with the use of such highly sophisticated classifiers.

Confusion matrix-based performance measures can only go so far in describing
the worth of a classifier. For example, such measures may not take domain-specific
technicalities into account, such as the fact that, if a manual code review were
to be undertaken for each module predicted as defective, then predicting a large
module as defective would consume more resources than predicting a small module
as defective. Moreover, it may be more cost effective to predict many small modules
than few large modules. Work to address this problem has been undertaken (see
[Arisholm 2007, Mende 2010]), but none of the proposed techniques are yet well-
established. Furthermore, to truly assess the worth of such predictors, it would be
necessary for the technical details regarding the severity of each and every known
fault to be available. This highlights the suitability of open-source systems for use
in defect prediction studies, as the bug history for such systems should be freely
available for analysis.
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Because of the data quality issues described in the previous chapter, I decided
to undertake the manual construction of a new fault data set that would be

suitable for defect prediction. This was considered a better option than using public-
domain data sets, as these are often unverifiable and based on closed-source systems.
Initially the new data was intended to come from the open-source Apache HTTP
server; however, this system was deemed too large for a first attempt. Therefore,
a smaller system was chosen instead, namely: Barcode (described in the following
section). Although initial progress at constructing the new data set was satisfactory,
it soon became apparent that determining whether or not a source file contains an
intended fault-fix is a non-trivial task (see Section 7.1.3). In light of this, data
set construction was halted for a more thorough investigation on the intricacies of
constructing fault data. The findings from this investigation led to the casting of
more doubts on the worth of many public-domain data sets, and in particular the
NASA data sets. The next sections describe: the Barcode system, the database used
in this study, the method used for categorising source file revisions, the findings and
the conclusions.
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7.1 Barcode

Barcode1 is a C library for creating barcode labels which includes a command-
line front-end. It is an open-source system released under the GNU General Public
License, and has been utilised in prior research studies (such as [Meyers 2007]). Over
the project’s public life span of around 7 years, concurrent versions system (CVS)
has been used as its revision control system. An interrogation of the CVS server2

reveals that there have been 359 revisions (or check-ins) within 137 transactions (or
change-sets). The Barcode CVS server stores the history of 58 regular files and 6
directories, the distribution of regular file types is shown in Table 7.1. Barcode was
chosen for this study as it is:

• Open source. One of the major problems with public-domain fault data sets
is that they are often based on commercial, closed-source systems. Thus it
is not always possible for users of such data sets to access the original source
code on which they are based. Access to the original source code is beneficial
as it helps to confirm data integrity, which is especially useful with regard to
outliers, data points which substantially differ from the rest of the population
from which they are drawn. Because Barcode is open source, access to its
original source code is free to the public via a CVS server allowing ‘anonymous’
checkouts. The main drawback of basing this study on an open-source system
is that the conclusions derived from the gathered data may not be generalisable
to proprietary projects [Wright 2010].

• Well documented. Barcode is well documented in that a change log is
rigorously updated by the authors. A change log is a plain-text file containing
concise, but typically more detailed information on what was changed, by
whom, why, and where than is available in CVS commit messages alone. The
change log is the most commonly edited file in the barcode project, with 58
separate revisions stored by the CVS server. Examining change log entries can
be invaluable when trying to determine the reasoning behind file modifications.

• Small. Barcode is small in terms of the number of: source files (see Table
7.1), revisions (359), lines of code (approximately 4000), and CVS commit-
ting developers (two). This reduces the amount of time required to categorise
revisions (see Section 7.1.2), which is desirable as this is both a labour inten-
sive and cumbersome process. Additionally, having a small number of CVS
committers reduces change history complexity.

1http://ar.linux.it/software/#barcode
2In June 2010, although no changes have been made between then and now.

http://ar.linux.it/software/#barcode
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File Type Quantity Percentage Total

C Source File 16 28%

C Header File 3 5%

Python Source File 1 2%

Compressed Archive 4 7%

Make File 5 9%

Readme File 12 21%

Miscellaneous 17 29%

Table 7.1: Details of the regular file types comprising Barcode.

7.1.1 Database Initialisation

Using the open-source tool: CVSanaly23, it is possible to extract most of the infor-
mation held by a CVS server and store it in a database. A shortcoming of CVS is
that commits are not atomic, thus it is not always clear as to which revisions are a
part of which transactions. To alleviate this problem, I developed a Python script
to group revisions into transactions. This involved modifying the CVSanaly2 gen-
erated database. The method used for grouping revisions to transactions was based
on that described in [Zimmermann 2004]. This method involves sorting revisions
by author, timestamp and log message. It uses a sliding time window approach
between revisions, so can deal with transactions of arbitrary size and cases where
network communication is slow.

The aforementioned Python script was also used to create a ‘change category’
table, which is a foreign key for each revision in each transaction. This table contains
a set of possible reasons describing the intended purpose of the modifications made.
The change category labels are shown in Table 7.2. Labelling each source code
revision into one of these categories is the starting point for obtaining accurate
fault data. Some of this task was carried out using automated methods, while the
remaining revisions were classified manually.

3http://forge.morfeo-project.org/projects/libresoft-tools/

http://forge.morfeo-project.org/projects/libresoft-tools/
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ID No. Change Category

1 Definite Fault-Fix

2 Probable Fault-Fix

3 Unsure

4 Probable Non-Fault-Fix

5 Definite Non-Fault-Fix

6 Outlier

7 Not A Chosen File Type

8 Initial Revision

9 Yet To Be Assessed

Table 7.2: Each of the possible change categories.

7.1.2 Categorising Revisions

Initially each revision will have its change category assigned to one of the following
three categories:

• Not A Chosen File Type

• Initial Revision

• Yet To Be Assessed

Table 7.1 shows that there are 16 C source files partially comprising Barcode.
It is from the history of these files that function (or module) based fault data can
be extracted. Module-level fault data is the most common granularity of fault
data reportedly used within the literature. This is probably because module-level
predictions, if accurate, would be far more useful in practice than package, file or
class level ones (see Chapter 2). This is due to there being typically less code to
search through and comprehend for each ‘defective’ prediction made, assuming a
manual code review is the resulting action taken.

When initialising the Barcode fault database, all files not ending with a ‘.c’
extension were labelled as “Not A Chosen File Type”. This included C header files,
as although they may contain faults, they do not contain module implementations.
It also included the single Python file; it was decided not to include this file as it is
not a main part of the system. Additionally, having to focus on another language
as well as C would have increased complexity later on.
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By definition, the first/initial revision of a file (revision 1.1 in CVS) cannot
include a fault-fix of a previous version of the same file (that exists in the revision
control system). Therefore, the initial revision of each Barcode file (as long as it is a
‘chosen file type’) is automatically labelled with the “Initial Revision” category. This
category can conceptually be seen to imply the “Definite Non-Fault-Fix” category,
as even if the new file contains code intended to rectify faults contained in other
files, it cannot contain code intended to rectify faults contained in a previous version
of the same file (that exists in the revision control system). Such within-file fault-
fixes are of main interest in this study, as they are the most suitable when trying
to determine the fix-inducing changes (see Chapter 2). It is worth mentioning that
CVS has no native notion of file renaming; therefore, a problem with this method
is that a renamed file containing a fault-fix will be missed.

All revisions which had file names ending in ‘.c’ and which were not initial
revisions were thus labelled as “Yet To Be Assessed”. It was these files that would
be manually examined to determine the intended purpose of their modifications.
There were 110 such revisions, 31% of all revisions in total.

The first 5 categories shown in Table 7.2 are on an ordinal scale. They describe
the degree of membership a revision has with respect to being an intended fault-fix.
The first category on this ordinal scale is “Definite Fault-Fix”, the last is “Definite
Non-Fault-Fix”, and “Unsure” is the midpoint. The result of manually examining
each revision is typically a classification into one of these five categories. If part of
the changes to a revision are to a module, and those changes are deemed to be an
intended fault-fix, then the revision is labelled as either a “Definite Fault-Fix” or a
“Probable Fault-Fix”, depending on the experts degree of certainty. Additionally,
the module header where the fix is thought to have occurred is recorded in a textual
database field (there can be multiple entries if required). All headers not recorded
in this field are therefore implied to be in the “Definite Non-Fault-Fix” category for
that particular revision.

The final category to be discussed: “Outlier”, is used in circumstances where:

• There are no module (function) changes. Because the module level is
the chosen fault granularity level in this study, any revision with no module
changes should not be considered with respect to module-based faults. This
can occur when, for example, a global variable change is the only modification
made in a revision.

• The only change is a syntax-error fix. This occurs when developers
commit their code to the server without first checking that it successfully
compiles. Syntax errors in compiled languages (such as C) cannot affect end
users as they prevent successful compilation. Software defect predictors are
not intended to detect such errors as they can be found with far more efficiency
by compilers.
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Figure 7.1: The main screen of the revision-labelling front-end.

When labelling each of the revisions it was often possible to examine not only the
source code and corresponding commit message, but also the previously mentioned
change log. The change log is well maintained and typically contains concise details
on what has been changed, by whom, why, and where. For example:

2000-01-26 Alessandro Rubini <rubini@morgana.systemy.it>
* code128.c (Barcode_128_encode): new encoding: full-featured code128

Here it is shown that on the 26th of January 2000, Alessandro Rubini commit-
ted the ‘code128.c’ source file. The changes made were to the ‘Barcode_128_encode’
function, and the purpose of this modification was to add a new encoding (‘code128’ ).
Such textual notes can be invaluable when trying to determine the intention of
modifications, especially for individuals who did not take part in the development
process.

To simplify the process of manually labelling revisions, I developed a graphical
Java front-end to the modified CVSanaly2 MySQL database. This front-end was
used as the interface for the entire labelling process. A screenshot of the front-end
main screen is shown in Figure 7.1. The figure shows that after selecting a repository
name and a transaction (change-set) number, the following information is displayed:
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• The transaction committer name.

• The number of transaction-comprising revisions (check-ins).

• The transaction commit message.

• And for each revision: its unique identification number, timestamp, relative
filepath, change category, and corresponding note. Only the change category
and note fields are editable by the user. The change category options are the
same as those in Table 7.2, and are presented to the user via a combo box. The
note field is for entering either the suspected fault-fix module header(s) (‘+’
separated list), or the justification for an outlier label (either ‘NO MODULE
CHANGES’ or ‘SYNTAX ERROR FIX ONLY’).

In the table at the bottom of the window (in Figure 7.1) where each of the
revision details are displayed, there will always be precisely one of the revisions
highlighted. The highlighted revision indicates which revision the user is interested
in when they select the tabs (at the top of the window) to display: the file source,
the textual diff against revision n−1, or the fully annotated source, where each line
is labelled with the revision number at which it was last modified.

The process for categorising revisions defined above was carried out twice. The
first iteration was a trial run where all of the available categories were utilised. The
second iteration was more rigorous than the first, and a more definitive classification
was given to each revision. Thus, by the end of the second iteration, only three of
the categories from Table 7.2 were used to classify the required source files: “Definite
Fault-Fix”, “Definite Non-Fault-Fix” and “Outlier”.

7.1.3 Findings

The process of manually labelling each of the 110 Barcode source revisions typically
involved examining the diff of both the source file and the change log (if present in the
transaction), as well as the corresponding commit message. This was a lengthy and
highly cumbersome process, and there were many failed attempts that resulted in
the whole process having to be started afresh. The main problems were: difficulties
in determining what was and was not a fault-fix, difficulties in being consistent
with labellings across all revisions, and discovering part way through the labelling
process that a database structure modification was required. The latter problem
is understandable when considering that this was a first attempt at collecting fault
data. This highlights the benefit of starting with a small system such as Barcode, as
with a larger system having to restart the labelling process several times may have
consumed too much time.
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The failed labelling attempts, although highly demotivating and time consuming,
did have the positive outcome of helping to more clearly define precisely what was
considered a fault-fix. By the final labelling iteration a fault-fix was defined as:
A module-based non-syntactic modification intended to rectify undesired program
behaviour caused by one or more previous versions of the containing module. Note
that ‘undesired program behaviour’ in this case is considered from the end-users
perspective. Changes such as replacing the following line:

i f ( ! s t r l e n ( characterArray ) )

with:

i f ( characterArray [ 0 ] == '\0 ' )

to remove the unnecessary function call were not counted as a fault-fix because they
should not affect an end user (in the context of the Barcode system). Note that
in this context the tiny increase in execution speed and decrease in memory usage
should not be a factor. Furthermore note that the strlen function is a part of the
1989 ANSI C (C89) standard, so compatibility issues should also not be a factor.

The distribution of file change categories for the 110 manually classified revisions
is shown in Figure 7.2. This figure shows that the category for the fault-fixes had the
highest number of revisions (50), the category for the non-fault-fixes had the least
number of revisions (29), and there were a surprisingly large number of outliers (31).
Most of these outliers (94%) were due to there being no module changes within the
modified file. If it had been known beforehand that such a large number of revisions
were to contain no module changes, such revisions would have been assigned their
own exclusive category, and a tool for their automated classification would have
been developed. This is potential future work.

There were many issues when trying to determine what was and was not consid-
ered a fault-fix. To revisit the example just described involving the strlen function,
it could be reasonably argued that this was a fault-fix rather than a refactoring, as
it resulted in more computationally efficient code. A second example is a revision
involving the replacement of the snprintf function with the sprintf function, as the
former does not conform to C89. I did not consider this to be a fault-fix as I was
only interested in faults that could affect end users, and my definition of an end user
is not someone who has to compile the software. It would be entirely reasonable
to have a different definition where end users where expected to have to compile
the software however, especially for open-source systems. A third example is that
of revisions involving only minor output-formatting changes. Although I classified
these as fault-fixes because they rectified undesired program behaviour, others may
believe that such trivial output-formatting issues do not constitute a fault.
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Figure 7.2: The distributions of the manually classified revisions.

The potential subjectivity of the fault-fix categorisation process is highlighted
further by the findings in [Hall 2010], where three researchers independently labelled
the Barcode source revisions and were found to have low inter-rater reliability. These
findings suggest that detailed documentation of the labelling process is a prerequisite
of reasonable quality fault data, especially if that data is publicly available. Without
such documentation (and ideally the originating data sources) it is difficult to have
a satisfactory level of confidence in the labels of the data points.

Although the issue of subjectivity was partly mitigated in this study because of
the clear fault-fix definition (given previously) and the details of each categorisation
being recorded, data set construction ceased because of a lack of domain expertise.
I had no prior experience of barcode-label programming and was not especially fa-
miliar with such low-level C. This meant that for revisions where the change log
was not particularly detailed, it was often very difficult to have confidence in a clas-
sification. This leads me to believe that perhaps categorising past revisions should
be undertaken only by those who actively develop(ed) a system, or who are par-
ticularly knowledgeable in the application domain. Better still, more sophisticated
support for documenting the intended purpose of modifications could be integrated
into revision control software. This would help automate the process of data set
construction, and could potentially increase the accuracy of fault data sets made in
future.
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7.2 Conclusions

The work described in this chapter illuminated that constructing accurate software
fault data is far more difficult than may be initially perceived. This is especially true
for those who did not take part in the development of the system being studied. A
major difficulty when constructing fault data is the process of categorising whether
or not a past revision contained a fault-fix. Along with the technical difficulties of
comprehending the intended purpose of the modifications, there is also the subjec-
tivity as to the definition of a fault. Therefore, to produce accurate and meaningful
fault data, strict definitions must be made, documented, and consistently adhered
to.

These findings bring back into light the lack of documentation available for the
NASA and PROMISE data sets. It may be that this is a much more severe problem
than previously thought. The sparse documentation available for the NASA data
sets was described in Section 4.1.1. For the PROMISE data sets, there is typically
even less documentation, if any is provided at all. For data sets such as the NASA
ones where the original data sources (code and revision control archives) are not
publicly available, the importance of data set documentation is magnified. This is
because there is little opportunity for future data integrity checks. Thus, the worth
of the NASA data sets is called into question once more.
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In this chapter I propose a new methodology for software defect prediction. Much
of the content in this chapter has been previously discussed, thus there are many

backward references. The methodology is proposed in four main parts: the first
part is discussed in Section 8.1 and concerns the obtaining of fault data; the second
part is discussed in Section 8.2 and concerns the analysis and potential cleansing
of fault data; the third part is discussed in Section 8.3 and concerns the process of
defect prediction; the fourth part is discussed in Section 8.4 and concerns quantifying
predictive performance.

8.1 Obtaining Fault Data

This section is aimed at those wanting to gather primary data for use in defect
prediction experiments. The software system from which to obtain this data may
be either open or closed source. The following proposals are heuristics gathered
from my experiences described in Chapter 7:

• Ensure the chosen system has documentation of known faults available in some
form of bug repository.

• Ensure it is possible to obtain input from individuals who are experienced with
the system’s source code and/or the application domain.
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• Make, document, and consistently adhere to a detailed definition of precisely
what constitutes a fault. This definition should be used when determining
whether or not each past revision contains one or more fault-fixes. If the
final data set is made available to others as secondary data, the fault defi-
nition should be made available with it, even if the source code and/or bug
repository cannot be distributed. In fact, as much documentation as possible
regarding the chosen system and the data construction process should be made
available. This is so that those either interpreting results based on the data
(see [Hall 2012]) or making use of the physical data (if it is distributed) have
sufficient contextual information.

• Record very many low-level static code metrics (such as the number of char-
acters in total, number of assignment statements in total, and so on) all the
way up to standard, high-level metrics (such as the number of lines in total).
This will reduce the possibility of code units sharing identical metrics, which
is beneficial as this leads to duplicate and inconsistent instances. Ideally, the
size of the input space should be powerful enough to uniquely identify each
data point (where this is possible). Recall that not all of these features will
necessarily need using during classification, as using too many features may il-
luminate the curse of dimensionality, “the apparent intractability of accurately
approximating a general high-dimensional function” [Donoho 2000].

8.2 Analysing & Cleansing Fault Data

Prior to undertaking a prediction experiment, it is imperative for a substantial data
analysis to have been carried out. Although the former statement may appear
obvious, it is worth noting that on many previous occasions this has not been the
case (see chapters 4 & 6). Much in the same way that it is folly to begin the
implementation of a software system without a sufficient requirements specification,
it is folly to carry out a prediction experiment without an analysis of the data1.
Witten and Frank [Witten 2005] correctly state: “Data cleaning is a time-consuming
and labor-intensive procedure but one that is absolutely necessary for successful data
mining . . . Time looking at your data is always well spent.” Interestingly, they also
state: “Preparing input for a data mining investigation usually consumes the bulk
of the effort invested in the entire data mining process.”

1The only exception to this could be in cases where some of the data is removed early on to serve
as the test data, and in an effort to ensure that this data is entirely unseen and that there is no
possibility of overfitting it, it is not included in data analysis and only the training data is analysed.
In which case a retrospective analysis should be performed on the test data post experimentation.
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A good starting point when analysing data is to discover where it came from and
what was its intended purpose. Using data for a different purpose from that what
it was originally intended may be problematic, and in some cases could introduce
legal issues. Another important factor is whether the data is first-hand or second-
hand. Typically, being further removed from the data means there must be more
blind faith; however, utilising a well-used, publicly available data set does have the
benefit of there being a greater chance that it has already been thoroughly analysed
(although this was not previously the case for the well-used NASA data sets). If
details of a prior analysis are available, then the analysis should be repeated to
ensure consistency. This can be a good method of checking whether the version of
the data set being used is the same as the version used by those who carried out the
prior analysis. Possible avenues for extending the analysis should then be examined,
some of these will be detailed later in this section.

After obtaining the background and context information regarding the data, a
logical next step is to gather some basic statistics for each attribute (or feature). The
type of statistics that can be recorded will vary depending on the attribute’s data
type. For numeric attributes there will be many commonly used statistics that can
be recorded; however, there are some statistics that should be recorded regardless
of attribute type. These include the number and proportion of both missing and
distinct values. Missing values were discussed in Section 6.1.2.4, along with a data
cleansing procedure to address them in the NASA data sets. For distinct values
it should be ensured that each feature contains more than one, as otherwise this
indicates a constant attribute. Constant attributes are of no use to a classifier for
discriminating against instances during training, and should typically be removed
as described in Section 6.1.2.2. Domain expertise is invaluable when analysing
the general properties of attributes, as it is important to clarify that each attribute
describes what it is thought to describe. This is something that has previously been,
but should not be taken for granted. A good example was mentioned in Section 6.1.1,
where some former PROMISE data sets had a value of 1.1 in an attribute supposedly
describing a LOC count. Such a clearly erroneous attribute value indicates that its
corresponding data point needs to be validated (where possible) and/or removed.

In addition to analysing features individually, correlations between features should
also be analysed. As discussed in sections 6.1.2.3 & 6.1.2.7, repeated attributes, cases
where two or more features have the same value for each instance, are typically ei-
ther problematic or simply a waste of computational resources. A simple way to
address such attributes is to remove all duplicates, thus ensuring the feature is only
being represented once. Other, less trivial correlations between attributes may exist
in the data. Section 6.1.2.5 gave examples of integrity checks that can be carried
out for each data point to ensure that attribute relationships hold. For example,
if attribute A should be equal to the sum of attributes B and C, then checking
this is a simple method of trying to discover erroneous data. Domain expertise may
illuminate other potential checks that can be made whereby certain combinations
of features should be impossible. The more of these integrity checks there are the
better. Lastly, as described in Section 6.1.2.7, highly correlated attributes can be
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harmful to classifier performance. Therefore, it may be that computed attributes
such as those just mentioned, although initially useful for validating data integrity,
are not always required when training a classifier.

As shown in Section 6.1, repeated data points can lead to serious problems in
classification experiments; therefore, it is important to check if they are present in
the data. If they are, then the first task is to try and determine their provenance,
that is, whether or not there really are multiple quantities of modules with the same
metrics in the software system. This is important as the repeated data points could
have originated from a problem in the data construction process. Validating the
data should be a trivial task if the originating data sources are accessible; however,
if this is not the case, then such validation is typically impossible. If primary
data is being used and the repeated data points are found to be genuine, then this
may indicate that more metrics should be recorded for each module, so that they
are potentially better differentiated. If secondary data is being used and it is not
possible to validate the source code, then a decision must be made as to whether or
not the repeats are genuine. This decision should be made in light of the repeated
data point’s features; for example, many repeats of a module with 2 LOC may be
more plausible than many repeats of a module with 200 LOC. If the repeated data
points are assumed to be noise (incorrect data) then the method of removing them
(along with inconsistent instances) described in Section 6.1.2.6 is a viable approach.
However, if the repeated data points are believed to be genuine, then a different
approach is required. Details of such an approach will be given in Section 8.3.1.

During data analysis, is it important to be aware of the class distribution of
the data. The background to this was given in sections 3.4 & 6.1.2.7. Perhaps
the biggest problem presented by heavily imbalanced data is that if there is only a
scarce amount of data available for a class, then a classifier may struggle to learn
from it. Although the class distribution is something to be aware of, note that at
this stage it is typically unsuitable to carry out any form of sampling to address the
class imbalance problem. This is because such sampling, if performed at this time,
could potentially lead to the assumption of unseen data being broken later on (see
Chapter 5).

Data visualisation is a valuable tool when trying to get a ‘feel for’ your data. In
Section 5.2, principal components analysis was used to show the two main principal
components of a pre-processed NASA data set (Figure 5.2). PCA was extremely
valuable in this case as it showed there to be little correlation between the features
and the class label (other than for a few outliers). This finding was then confirmed
by analysing an SVM classifier trained on the data, as it built a very complex
model (one with many support vectors). Data visualisation techniques also have
the potential to enable the discovery of natural clusters in the data. For these
reasons, they should be used as a matter of course during data analysis.
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Data analysis may indicate that data cleansing is required, in which case the
data cleansing process defined in Section 6.1 may be a good starting point. Data
cleansing may be necessary both to remove noise (erroneous data) and to prepare
the data sets for experimental use. It is worth noting that it may not be sufficient to
carry out a single data cleansing process prior to experimentation. It may be that,
during a 10-fold cross-validation experiment for example, each of the 10 training sets
will need to be individually pre-processed. This may be because the size of each
training subset is smaller than the size of the full data set, thus there may be issues
in a training subset that did not exist in the full data set. For example, a constant
attribute may appear in a training subset if there were only a few distinct values for
that attribute in the original data set to begin with. Also, as described in the next
section, repeated data points may require pre-processing in each training subset.

8.2.1 Summary

To summarise this section, when analysing and cleansing fault data:

• Ensure a substantial data analysis is undertaken prior to experimentation.

• Discover where the data came from and its intended purpose. If details of a
prior analysis are available then this should be repeated and validated.

• Analyse each attribute individually; include in the recorded statistics the num-
ber and proportion of both missing and distinct values. It is important to try
and verify that each attribute describes what it is thought to describe.

• Analyse correlations between attributes; start by looking for redundant at-
tributes, then validate relationships between attributes to try and discover
erroneous data. Look for any other highly correlated features.

• Search for repeated and inconsistent data points; if they are present in the
data then they need to be addressed. If such data points are believed to be
noise (incorrect data) then they should be removed (as described in Section
6.1.2.6), whereas if they are believed to be genuine then the new approach
proposed in Section 8.3.1 may be suitable.

• Be aware of the class distribution of the data; having a heavily imbalanced
data set could lead to problems when trying to build a suitable classifier.

• Utilise a data visualisation technique (such as PCA) to get a ‘feel for’ the data.

• Carry out any data cleansing that has been identified as necessary during the
prior stages of analysis. The data cleansing process defined in Section 6.1 may
be a good starting point.
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8.3 The Process of Defect Prediction

This section is concerned with the process of defect prediction: the construction and
use of classifiers that are intended to predict the presence of defects in future code
units. As discussed in Chapter 3, when trying to obtain an estimate of potential
real-world predictive performance, it is crucial for classifiers to be tested on unseen
data, data that was not used during model construction. Therefore, the original
data sample should typically be re-sampled into one or more training and testing
set pairs. Some of the methods of doing this were described in Section 3.3.1, a
good method would usually be stratified 10-fold cross-validation. As discussed in
the previous section, each training set may require its own pre-processing. It is
often a necessity that this pre-processing is carried out on only the training data,
as otherwise the assumption of unseen data could be broken (see chapters 4 & 5).
For example, if a high-level of class imbalance was identified during data analysis, it
may be that an undersampling and/or oversampling technique should be utilised on
only the training data (see Section 3.4). Also, as will be shown in the next section,
repeated data points may require addressing in only the training data.

When trying to produce as good a classification model as possible, it is impor-
tant to carry out a model optimisation phase (see Section 3.5). Note that this is
not always possible for some simple classifiers, and that there are other, more so-
phisticated classification methods (random forests for example) that can perform
competitively without such tuning; these methods typically do not require an addi-
tional, explicit model optimisation phase, although one can often be carried out if
desired. Nevertheless, for many classifiers (such as SVMs) an explicit model optimi-
sation phase is often a prerequisite for obtaining a satisfactory classification model.
The pseudo-code for a typical, full classification experiment which includes model
optimisation was given in Figure 3.6. Note that during this process it is imperative
for the test data to remain entirely unseen. Also note that it is good practice for a
coarse parameter search to be undertaken to begin with, and then a finer search on
the area identified as best by the coarse search [Hsu 2003].

8.3.1 How to address the issues caused by repeated data points

As already mentioned, the simplest way to address the issues caused by repeated
data points is to discard them as part of the contextual data cleansing process,
making each consistent data point unique (for details see Section 6.1.2.6). However,
carrying out such a pre-processing step may not be the best approach, as repeated
data points may occur in the real world. For this reason, I propose the following
method for addressing the issues caused by repeated data points in artificial (as
opposed to real-world) classification experiments. This method was first proposed in
an EASE journal paper [Gray 2012], which was an extended version of the conference
paper described in Section 6.1. The full journal paper can be found in Appendix E.
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1. After the initial divide into training and testing set, discard all training data
points with feature vectors common to the testing set. This ensures that per-
formance is measured on unseen data, while the test set remains unmodified.

2. If the class distribution of the training set is adversely altered as a consequence
of step 1, consider sampling techniques (see [He 2009, Chawla 2002]) to help
maintain the original (or a more balanced) distribution. If oversampling is re-
quired, I recommend the synthetic minority oversampling technique (SMOTE
[Chawla 2002]) rather than oversampling by duplication, as it reduces the
likelihood of overfitting [Chawla 2002, Chawla 2003, Cieslak 2006].

3. During model optimisation/tuning (if performed), remove all duplicates from
the validation set, as recommended by [Kołcz 2003]. Next, discard all valida-
tion set data points with feature vectors common to the corresponding training
set (the training subset). If the class distribution of the validation set is ad-
versely altered, consider the use of sampling techniques, as described in step
2. The purpose of this step is to help avoid overfitting.

This proposed approach is most suitable when researchers believe the repeated
data points to be genuine, not noise. This is because test sets remain unmodified.
With the simple approach of removing all repeated data points during data cleans-
ing, test sets are indirectly modified before the data separation process has occurred.
Note that a possible addition to the proposed approach is to remove all duplicates
from the training set, to further reduce the possibility of overfitting. The best place
for this to occur would be in-between steps 1 and 2.

8.3.2 Summary

To summarise this section, during the process of defect prediction:

• Help ensure that classifiers will be tested against unseen data by partitioning
the data into one or more training and testing set pairs. Stratified 10-fold
cross-validation is typically a good method of doing this (see Section 3.3.1).

• Carry out a model optimisation phase if suitable to do so based on the clas-
sification method being used (see Section 3.5). Good practice is for a coarse
parameter search to be undertaken to begin with, and then a finer search on
the area identified as best by the coarse search [Hsu 2003].

• As discussed in the previous section, if there are genuine repeated data points
present in the data that cannot be addressed by gathering more features (to
better discriminate them), then a suitable approach is described in Section
8.3.1. This approach keeps test sets unmodified, while preventing any con-
tamination of training and testing data.
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8.4 Quantifying Predictive Performance

To assess the predictive performance of classifiers, that is, how accurately they can
predict the labels of previously unseen data points, several factors should be taken
into account. The required background to this topic was given in Section 3.3. Firstly,
when describing classifier performance results of any kind, it is imperative to present
the characteristics of the data being used: where it came from, what pre-processing
has been carried out, how many data points and features are present, what is the
class distribution, etc. This will give those interpreting the results a basic overview
of the data, and allow them to independently validate the consistency of the results
(as done in [Zhang 2007, Gray 2011a, Bowes 2012]).

As demonstrated in Section 6.2, if the class distribution of the data (in a binary-
classification context) means that less than around 5 to 10 percent of data points
comprise the minority class, then the recall and precision achieved on the minority
class should be reported. These measures should either be reported directly or
via the area under the PR curve (AUC-PR). As class distributions become more
balanced, it becomes more permissible to use other measures, such as to report the
false positive rate instead of precision. Personally, I find precision to be the more
immediately informative of these two measures, and would typically still choose
to report it (along with recall) in my headline figures. Note that in cases where
it is reasonably practical, it is worthwhile to report other performance measures
in addition to recall and precision, such as the false positive rate and the correct
classification rate (accuracy). The main reason for this is that it is helpful to have
access to such measures when validating the consistency of results. In fact, the best
way to report results that can be easily externally validated is to report the full
confusion matrix (or an averaged approximation of it).

Regardless of the class distribution of the data, one measure that should always
be examined is Matthew’s Correlation Coefficient (MCC, see Equation 6.2 and Sec-
tion 6.3). MCC takes all four components of the confusion matrix into account,
and yields a value between −1 and +1. Perhaps the most attractive feature of this
metric is that a value of 0 represents classification that is no better than random.
Therefore, an initial benchmark regarding the worth of a classifier is to ensure its
performance yields an MCC greater than 0.

Although estimating the real-world benefit of a classification system (perhaps
by using some sort of cost-benefit analysis) is a very challenging task, and one
that is beyond the scope of this dissertation, simple performance baselines (such as
the one involving MCC just described) are useful in aiding to quantify predictive
performance. A second simple baseline, this time involving recall and precision, is
to determine the f-score (often defined as the harmonic mean of recall and precision)
that would be achieved by a classifier that always makes positive-class predictions.
Such a classifier would therefore achieve a recall of 1, and a precision equal to the
proportion of positive class data points in the test data. This baseline f-score can
be calculated using Equation 6.3. A predictor that is of any potential worth should
achieve a real f-score that is greater than the baseline f-score.
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There are other simple performance baselines that can be used to give indication
toward the worth of a classifier, such as comparing the performance achieved with
the performance that would be achieved by a very simple predictor. An example of
this was given in Section 6.2.2.5, where, firstly, the average number of positive-class
predictions made by a classifier during a 10-fold cross-validation experiment was
determined. This number is denoted n. A predictor was then built which ranked
the test data on a single attribute (in this case LOC total in descending order) and
predicted the first n data points as being in the positive (defective) class. It turned
out that, for 3 out of the 8 data sets used in [Menzies 2007b], this simple predictor
achieved very similar performance to the actual (naïve Bayes) predictors used. This
is known as LOC module-order modelling (see [Khoshgoftaar 2003] & [Mende 2009]),
and in this case highlights both the poor actual predictive performance of the clas-
sifiers, and that research into making defect predictors ‘effort aware’ is worthwhile
(see [Arisholm 2007] & [Mende 2010]). An ‘effort aware’ defect predictor is one that
takes into consideration that predicting a module with 1000 lines of code will typ-
ically result in more required effort to manually examine than predicting a module
with 10 lines of code. Furthermore, it may be more cost-effective to predict many
small modules than few large modules. The worth of comparing performance with
that of simple classifiers was highlighted many years ago in the machine learning
community [Holte 1993].

8.4.1 Summary

To summarise this section, when quantifying predictive performance:

• Ensure the characteristics of the data are available; these include: origin, size,
class distribution, and details of any pre-processing that has been carried out.

• For binary-classification tasks, report the recall and precision of the positive
class. Where reasonably practical it is also worthwhile reporting other perfor-
mance measures (such as the false positive rate), or the full confusion matrix.

• Compare the performance achieved against simple baselines. Firstly, it should
be ensured the MCC (Matthew’s Correlation Coefficient) is greater than 0.
Secondly, the f-score achieved should be greater than the f-score that would
be achieved by a predictor that makes only positive-class predictions. Lastly,
it is worthwhile to compare performance with that of very simple classifiers.
An example of such a classifier is one that makes judgements based solely on
a linear ranking of a single attribute (such as LOC total).
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This is the concluding chapter of the dissertation; it contains a summary of each
of the preceding chapters, and my claimed contributions to knowledge. After

this, areas of future work that follow on from the dissertation are examined. A
closing discussion is given in Section 9.4, followed by a list of publications in Section
9.5. Finally, there is a short note on personal reflection in Section 9.6.

9.1 Summary of Chapters

• Chapter 1 gave an introduction to software defect prediction and an outline
of this dissertation.

• Chapter 2 gave the required background to software metrics and defects,
with particular focus on static code metrics. An introduction to collecting
fault data was also given, a subject revisited in Chapter 7.

• Chapter 3 gave the required background to machine learning, with particular
focus on supervised learning, or learning by example. Support vector machines
were introduced in this chapter, as they are the most well-utilised classifier in
my experiments.
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• Chapter 4 gave summaries of the most relevant publications to this dis-
sertation; major methodological shortcomings in some of these studies were
highlighted. These shortcomings included the breaking of the assumption of
unseen data, and the reporting of grossly misleading performance figures.

• Chapter 5 gave descriptions of the first two major experiments carried out
during my PhD study. Both of these experiments utilised support vector
machine classifiers. The first experiment was to obtain an estimate of current,
state-of-the-art predictive performance; the second experiment was to explore
the inner workings of these sophisticated classifiers. The experience gained
during these early experiments was substantial, and a key influence on the
methodology proposed in Chapter 8.

• Chapter 6 gave details of the issues with the NASA MDP data sets that were
discovered during the experiments described in Chapter 5. A data cleansing
protocol to address these issues was presented, and the main problems caused
by repeated data points in classification experiments discussed. Following on
from this, the topic of classifier performance measures was revisited. Practical
examples were given demonstrating why precision is often required to quan-
tify predictive performance effectively in this domain, and how omitting this
measure can lead to misleading results. Lastly, the results from a similar clas-
sification experiment to the one described in Chapter 5 were presented. This
experiment addressed all of the main issues discussed in both chapters 5 & 6.

• Chapter 7 gave details of a study where the aim was to construct a new fault
data set from an open-source system. The motivation for this study came
from there being so many data quality issues with the well-used NASA MDP
data sets. The findings indicated that constructing fault data is a very difficult
and intricate task. This was mainly due to the problems encountered while
categorising whether or not a past revision contains a fault-fix. It appears that
for this task to be completed successfully, a strict definition of precisely what
constitutes a fault must be made, documented, and consistently adhered to.
If this is not the case, it will be difficult (often impossible) to know what the
dependent variable in the new data actually describes. As no such documenta-
tion is available for the NASA MDP data sets (and most other public-domain
data sets), it follows that they are of limited value, and that the findings from
results based on them should be treated with caution.

• Chapter 8 gave details of the new proposed methodology for software defect
prediction. This methodology was mainly a synthesis of points raised earlier
in the dissertation, although it also included a novel approach to dealing with
genuine repeated data points in classification experiments.
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9.2 Contributions to Knowledge

The contributions to knowledge I have made in this dissertation include:

• Highlighting the issues with much prior work. In chapters 4, 5 &
6, I have identified many methodological problems in much previous work
(including my own). This includes the incorrect application of data min-
ing techniques, and the misleading reporting of classifier performance. Such
methodological mistakes threaten the validity of the findings presented in stud-
ies, often rendering them void. In this domain, the quantity and severity of
previous shortcomings is damning.

• Highlighting the issues with the NASA MDP data sets. As shown in
Section 6.1, these well-utilised data sets contain many quality problems. The
most severe of these problems is that of the repeated data points. This is an
issue that is not specific to the NASA data sets, and one that requires further
research, particularly in the context of this research area. A data cleansing
process for the NASA data sets was presented in Section 6.1.2; this may also
be a good starting point when using other software fault data sets. In addition
to these low-level data quality issues, the lack of documentation available for
the NASA data sets is another major concern. Chapter 7 demonstrated how
difficult the construction of fault data can be, and how important it is for
the process to be properly documented. Without such documentation, it can
be difficult (perhaps impossible) to determine what the dependent variable
actually describes. The current lack of readily available, reasonable quality
data is another considerable issue in this domain.

• Proposing a new methodology for software defect prediction. The
methodology was proposed in Chapter 8, and includes details regarding: ob-
taining fault data, data analysis and cleansing, the process of constructing
defect prediction models, and quantifying predictive performance. The moti-
vation for the methodology, the aim of which is to be able to obtain a realistic
estimate of potential real-world predictive performance, came from there being
so many methodological mistakes made in prior research (see the first contribu-
tion). The methodology is centred around data analysis, as this seems to have
been largely ignored in the past, with serious repercussions (see the second
contribution).
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9.3 Future Work

A clear direction of future study opened-up by the work described in this disser-
tation is to further analyse the effect that repeated data points can have during
classification experiments. As discussed in Chapter 6, a good starting point would
be to analyse other software fault data sets, to see whether the proportions of re-
peated data points in the NASA data sets are typical of fault data sets in general.
This will help to determine the extent of the problem, and provide some (albeit
limited) indication as to the likelihood of the rates of duplication in the NASA data
sets being legitimate. A different direction to explore would be to test the new
approach of addressing the issues caused by repeated data points in classification
experiments (proposed in Section 8.3.1). This approach is yet to be subject of inde-
pendent scrutiny, and will almost certainly require improving and refining. In fact,
the same can be said for the entire methodology proposed in Chapter 8.

A challenging but highly fruitful task that leads on mainly from the work de-
scribed in Chapter 7 is to construct some accurate software fault data from an
open-source system. The main benefit of using such a system is that the source
code for each module will be readily available, leading to transparency and enabling
the external validation of the data. Also, the availability of the source code would
make it possible to extract additional metrics at a later date if desired. As detailed
in chapters 7 & 8, it would be extremely beneficial to have access to individuals who
know the code well. This is because it is often extremely difficult to comprehend
the reasons behind code modifications if the corresponding commit message (in the
revision control archive) is sparse and/or complex. Therefore, a direct working rela-
tionship with the system’s developers would be highly beneficial. Lastly, recall that
the importance of documenting a detailed definition of precisely what constitutes a
fault cannot be overstressed (see chapters 7 & 8).

9.4 Discussion

The findings presented in this dissertation demonstrate current software defect pre-
diction research to be plagued by technical shortcomings and data quality issues.
Such methodological problems are extremely serious, as they threaten the validity
of studies. Moreover, I believe the number of prior studies that have contained
technical failings, when coupled with the typically appalling quality of the data sets
used in this area, mean that serious questions must now be asked. These questions
are much bigger than simply whether or not individual studies are at fault; they
relate to the current body of knowledge as it stands, and whether or not we really
know what we think we know.
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Interestingly, some of the findings in this dissertation are echoes of the past.
Over 13 years ago in 1999, Fenton & Neil carried out a critique of defect prediction
research [Fenton 1999]. In their conclusions they state that “many methodological
and theoretical mistakes have been made. Many past studies have suffered from
a variety of flaws from model misspecification to use of inappropriate data.” It
appears then that little has changed in the last 13 years. Regarding the many
methodological mistakes, there have been many concrete examples presented in
chapters 4, 5 & 6. The most persistent offence is the violation of the assumption
of unseen data, whether that be by test set contamination or otherwise. Regarding
the use of inappropriate data, recall the study of Liebchen & Shepperd (described
in Section 4.4) where an SLR of empirical software engineering studies spanning
from 1995 to early 2008 was carried out [Liebchen 2008]. The focus of the SLR
was data quality, and the findings indicated this as a topic of little interest in the
software engineering community. An interesting point raised in the study is that the
community “may be wasting research effort on data sets that contain such levels of
noise as to prevent meaningful conclusions.” In this dissertation the case study was
the well-used 13 NASA data sets, some of which, especially in unprocessed form, I
do believe to contain such levels of noise. Note that it could be reasonably argued
that these noise levels mean that some of the data sets should be rejected outright,
with no cleansing attempt made. For example, the original data set MC1 (according
to the metrics) contains 4841 modules (51% of modules in total) with no lines of
code.

I believe repeated data points to be highly problematic in classification experi-
ments, especially in this domain. The experiments described in Section 6.1 showed
the effect that test set contamination can have on classifier performance, which pro-
vided empirical evidence to confirm the well known, intuitive and obvious fact that
training and testing set pairs must be completely disjunct to prevent potentially un-
realistic performance results. In cases where there are genuine repeated occurrences
of the artefact being modelled in the data, which cannot be easily distinguished by
adding extra, directly relevant features, then there are two suitable approaches. The
first approach is better suited to artificial classification experiments (as opposed to
real-world use), and is to use the method described in Section 8.3.1. This method
keeps test sets unmodified and prevents test set contamination, thus helping en-
sure test sets are representative while at the same time guaranteeing that classifiers
are tested against unseen data. The second approach is better suited to real-world
classifier use, and is to have a distinction in the reported performance figures be-
tween performance achieved on seen data (data used during model construction) and
performance achieved on unseen (novel) data. This ensures that the performance
figures appropriately describe the extent to which the classifier has learnt and is
successfully generalising. Clearly, in the real world the test set labels would not
be readily available following classification (and in fact may never be discovered);
however, the proportion of seen feature vectors would be immediately determinable,
and would describe the extent to which the classifier was being used to predict novel
input patterns.
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Recall that repeated feature vectors may be the artefact of too few features
(attributes) being recorded for each occurrence in the data. Therefore, a straight-
forward way to avoid these complications may be, where possible, to simply record
more features. This should hopefully lead to a reduction in the quantity of repeated
feature vectors, as each occurrence may become more distinguishable. When con-
structing a new data set it is important to keep in mind the proportion of unique
feature vectors, as ideally the feature set chosen should be able to uniquely identify
each point. Note that although this is the ideal case it may not always be possible.
Also note that in some domains (this one included) it is possible for the same feature
vector to occur in more than one class (i.e. for there to be inconsistent data points).

An observation regarding repeated data points that has not been previously
mentioned and is specific to this domain is related to fault data that is collected
at different versions during the lifetime of a software system. Imagine an example
project P where fault data has been recorded for versions 3.0 and 3.1. In such an
example, it may be tempting to train a classifier on version 3.0 and test it on version
3.1. However, there may be many code units that have remained unchanged between
these two versions, and as such will share identical metrics. These identical metrics
are likely to yield repeated feature vectors in the data set for each version, potentially
leading to the problems described in Section 6.1. In such a situation, it could be that
the predictive performance appears impressive from the raw performance figures,
when in fact the high performance is merely an artefact of the similarity between
the training data (version 3.0) and the testing data (version 3.1).

9.5 Publications

During my PhD study I have been the lead author of 4 conference papers [Gray 2009,
Gray 2010, Gray 2011a, Gray 2011b] and a journal paper [Gray 2012]. Each of these
are presented in full in the appendix. The first two conference papers were discussed
in Chapter 5, the two remaining were discussed in Chapter 6. The journal paper
was an extended version of one of the conference papers [Gray 2011b], and was
discussed in chapters 6 & 8. I have also been the co-author of 2 conference papers
[Sun 2010, Bowes 2012] and 2 journal papers [Hall 2012, Hall 2011]. The latter of
the conference papers was based on recomputing classifier performance measures
that have been omitted from studies; it won the best paper award at PROMISE
2012, and more formally proved the main shortcomings in [Elish 2008] (described
in Section 4.3). The journal papers were based on a systematic literature review
(SLR) of fault prediction performance, as described in Section 4.5.
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9.6 Personal Reflection

I was first introduced to defect prediction by David Bowes while studying the highly
enjoyable Software Engineering Practice & Experience module on my MSc at the
University of Hertfordshire. Having been handed what then seemed a dauntingly
complex paper, I set about trying defect prediction for myself, knowing almost
nothing about it, and far less about machine learning. With the help of my excellent
supervision team (and notable others), the distance I have come on since then
is profound. For me, the biggest highlight (other than successful completion) is
that after many paper rejections and negative reviews, much perseverance (and the
stubbornness of a mule) resulted in the research community finally beginning to pay
attention to the data quality issues I had first discovered back in 2008. Although
others had discovered several of these issues before, I believe I was the first to realise
their potential severity, and to want to publicise this in the pursuit of better science.
Data quality should never be underestimated in an empirical study; as the classic
saying goes: garbage in, garbage out. My main hope now is that this dissertation
will lead to a better standard of work in this area.
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Abstract. The automated detection of defective modules within soft-
ware systems could lead to reduced development costs and more reliable
software. In this work the static code metrics for a collection of modules
contained within eleven NASA data sets are used with a Support Vector
Machine classifier. A rigorous sequence of pre-processing steps were ap-
plied to the data prior to classification, including the balancing of both
classes (defective or otherwise) and the removal of a large number of re-
peating instances. The Support Vector Machine in this experiment yields
an average accuracy of 70% on previously unseen data.

1 Introduction

Software defect prediction is the process of locating defective modules in
software and is currently a very active area of research within the software

engineering community. This is understandable as “Faulty software costs busi-
nesses $78 billion per year” ([1], published in 2001), therefore any attempt to
reduce the number of latent defects that remain inside a deployed system is a
worthwhile endeavour.

Thus the aim of this study is to observe the classification performance of the
Support Vector Machine (SVM) for defect prediction in the context of eleven
data sets from the NASA Metrics Data Program (MDP) repository; a collection
of data sets generated from NASA software systems and intended for defect
prediction research. Although defect prediction studies have been carried out
with these data sets and various classifiers (including an SVM) in the past, this
study is novel in that thorough data cleansing methods are used explicitly.

The main purpose of static code metrics (examples of which include the
number of: lines of code, operators (as proposed in [2]) and linearly independent
paths (as proposed in [3]) in a module) is to give software project managers
an indication toward the quality of a software system. Although the individual
worth of such metrics has been questioned by many authors within the software
engineering community (see [4], [5], [6]), they still continue to be used.

Data mining techniques from the field of artificial intelligence now make
it possible to predict software defects; undesired outputs or effects produced by
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software, from static code metrics. Views toward the worth of using such metrics
for defect prediction are as varied within the software engineering community
as those toward the worth of static code metrics. However, the findings within
this study suggest that such predictors are useful, as on the data used here they
correctly classify modules with an average accuracy of 70%.

2 Background

2.1 Static Code Metrics

Static code metrics are measurements of software features that may potentially
relate to quality. Examples of such features and how they are often measured
include: size, via lines of code (LOC) counts; readability, via operand and oper-
ator counts (as proposed by [2]) and complexity, via linearly independent path
counts (as proposed by [3]).

Consider the C program shown in Figure 1. Here there is a single function
called main. The number of lines of code this function contains (from opening
to closing bracket) is 11, the number of arguments it takes is 2, the number of
linearly independent paths through the function (also known as the cyclomatic
complexity [3]) is 3. These are just a few examples of the many metrics that can
be statically computed from source code.

Fig. 1. An example C program.

#include <stdio.h>

int main(int argc, char *argv[])

{

int return_code = 0;

if (argc < 2) {

printf("No Arguments Given\n");

return_code = -1;

}

int x;

for(x = 1; x < argc; x++)

printf("’%s’\n", argv[x]);

return return_code;

}

Because static code metrics are calculated through the parsing of source code
their collection can be automated. Thus it is computationally feasible to calculate
the metrics of entire software systems, irrespective of their size. [7] points out
that such collections of metrics can be used in the following contexts:
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– To make general predictions about a system as a whole. For example,
has a system reached a required quality threshold?

– To identify anomalous components. Of all the modules within a soft-
ware system, which ones exhibit characteristics that deviate from the overall
average? Modules highlighted as such can then be used as pointers to where
developers should be focusing their efforts. [8] points out that this is common
practice amongst several large US government contractors.

2.2 The Support Vector Machine

A Support Vector Machine (SVM) is a supervised machine learning algorithm
that can be used for both classification and regression [9]. SVMs are known as
maximum margin classifiers as they find the best separating hyperplane between
two classes. This process can also be applied recursively to allow the separation
of any number of classes. Only those data points that are located nearest to this
dividing hyperplane, known as the support vectors, are used by the classifier.
This enables SVMs to be used successfully with both large and small data sets.
Moreover, the process of finding the decision boundary is a convex optimisation
problem, so there are no problems with local minima.

Although maximum margin classifiers are strictly intended for linear clas-
sification, they can also be used successfully for non-linear classification (such
as the case here) via the use of a kernel function. A kernel function is used to
implicitly map the data points into a higher-dimensional feature space, and to
take the inner-product in that feature space [10]. The benefit of using a kernel
function is that the data is more likely to be linearly separable in the higher
feature space. Additionally, the actual mapping to the higher-dimensional space
is never needed.

There are a number of different kinds of kernel functions (any continuous
symmetric positive semi-definite function will suffice) including: linear, polyno-
mial, Gaussian and sigmoidal. Each have varying characteristics and are suitable
for different problem domains. The one used here is the Gaussian radial basis
function (RBF), as it can handle non-linear problems, requires fewer parame-
ters than other non-linear kernels and is computationally less demanding than
the polynomial kernel [11]. In fact, this kernel implicitly maps the data into an
infinite dimensional feature space.

When an SVM is used with a Gaussian RBF kernel, there are two user-
specified parameters, C and γ. C is the error cost parameter; a variable that
determines the trade-off between minimising the training error and maximizing
the margin (see Fig. 2). γ controls the width / radius of the Gaussian RBF.
The performance of an SVM is largely dependant on these parameters, and the
optimal values need to be determined for each training set via a systematic
search.
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Fig. 2. The importance of optimal parameter selection. The solid and hollow dots
represent the training data for two classes. The hollow dot with a dot inside is the test
data. Observe that the test dot will be misclassified if too simple (underfitting, the
straight line) or too complex (overfitting, the jagged line) a hyperplane is chosen. The
optimum hyperplane is shown by the oval line.

2.3 Data

The data used within this study was obtained from the NASA Metrics Data
Program (MDP) repository1. This repository currently contains thirteen data
sets, each of which represent a NASA software system / subsystem and contain
the static code metrics and corresponding fault data for each comprising module.
Note that a module in this domain can refer to a function, procedure or method.
Eleven of these thirteen data sets were used in this study: brief details of each are
shown in Table 1. A total of 42 metrics and a unique module identifier comprise
each data set (see Table 5, located in the appendix), with the exception of MC1
and PC5 which do not contain the decision density metric.

1 http://mdp.ivv.nasa.gov/
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Table 1. The eleven NASA MDP data sets that were used in this study. Note that
KLOC refers to thousand lines of code.

Name Language
Total
KLOC

No. of
Modules

% Defective
Modules

CM1 C 20 505 10

KC3 Java 18 458 9
KC4 Perl 25 125 49

MC1 C & C++ 63 9466 0.7
MC2 C 6 161 32

MW1 C 8 403 8

PC1

C

40 1107 7
PC2 26 5589 0.4
PC3 40 1563 10
PC4 36 1458 12
PC5 C++ 164 17186 3

All the metrics shown within Table 5 with the exception of error count and
error density, were generated using McCabeIQ 7.1; a commercial tool for the
automated collection of static code metrics. The error count metric was calcu-
lated by the number of error reports that were issued for each module via a bug
tracking system. Each error report increments the value by one. Error density
is derived from error count and LOC total, and describes the number of errors
per thousand lines of code (KLOC).

3 Method

3.1 Data Pre-processing

The process for cleansing each of the data sets used in this study is as follows:

Initial Data Set Modifications Each of the data sets initially had their
module identifier and error density attribute removed, as these are not required
for classification. The error count attribute was then converted into a binary
target attribute for each instance by assigning all values greater than zero to
defective, non-defective otherwise.

Removing Repeated and Inconsistent Instances Repeated feature vectors,
whether with the same (repeated instances) or different (inconsistent instances)
class labels, are a known problem within the data mining community [12].

Ensuring that training and testing sets do not share instances guarantees
that all classifiers are being tested against previously unseen data. This is very
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important as testing a predictor upon the data used to train it can greatly over-
estimate performance [12]. The removal of inconsistent items from training data
is also important, as it is clearly illogical in the context of binary classification
for a classifier to associate the same data point with both classes.

Carrying out this pre-processing stage showed that some data sets (namely
MC1, PC2 and PC5) had an overwhelmingly high number of repeating instances
(79%, 75% and 90% respectively, see Table 2). Although no explanation has
yet been found for these high number of repeated instances, it appears highly
unlikely that this is a true representation of the data, i.e. that 90% of modules
within a system / subsystem could possibly have the same number of: lines,
comments, operands, operators, unique operands, unique operators, conditional
statements, etc.

Table 2. The result of removing all repeated and inconsistent instances from the data.

Name
Original
Instances

Instances
Removed

% Removed

CM1 505 51 10

KC3 458 134 29

KC4 125 12 10

MC1 9466 7470 79

MC2 161 5 3

MW1 403 27 7

PC1 1107 158 14

PC2 5589 4187 75

PC3 1563 130 8

PC4 1458 116 8

PC5 17186 15382 90

Total 38021 27672 73

Removing Constant Attributes If an attribute has a fixed value throughout
all instances then it is obviously of no use to a classifier and should be removed.

Each data set had between 1 and 4 attributes removed during this phase with
the exception of KC4 that had a total of 26. Details are not shown here due to
space limitations.

Missing Values Missing values are those that are unintentionally or otherwise
absent for a particular attribute in a particular instance of a data set. The only
missing values within the data sets used in this study were within the decision
density attribute of data sets CM1, KC3, MC2, MW1, PC1, PC2, and PC3.
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Manual inspection of these missing values indicated that they were almost
certainly supposed to be representing zero, and were replaced accordingly.

Balancing the Data All the data sets used within this study, with the excep-
tion of KC4, contain a much larger amount of one class (namely, non-defective)
than they do the other. When such imbalanced data is used with a supervised
classification algorithm such as an SVM, the classifier will be expected to over
predict the majority class [10], as this will produce lower error rates in the test
set.

There are various techniques that can be used to balance data (see [13]). The
approach taken here is the simplest however, and involves randomly undersam-
pling the majority class until it becomes equal in size to that of the minority
class. The number of instances that were removed during this undersampling
process, along with the final number of instances contained within each data
set, are shown in Table 3.

Table 3. The result of balancing each data set.

Name
Instances
Removed

% Removed
Final no. of
Instances

CM1 362 80 92

KC3 240 74 84

KC4 1 1 112

MC1 1924 96 72

MC2 54 35 102

MW1 320 85 56

PC1 823 87 126

PC2 1360 97 42

PC3 1133 79 300

PC4 990 74 352

PC5 862 48 942

Normalisation All values within the data sets used in this study are numeric,
so to prevent attributes with a large range dominating the classification model
all values were normalised between -1 and +1. Note that this pre-processing
stage was performed just prior to training for each training and testing set, and
that each training / testing set pair were scaled in the same manner [11].
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Randomising Instance Order The order of the instances within each data
set were randomised to defend against order effects, where the performance of a
predictor fluctuates due to certain orderings within the data [14].

3.2 Experimental Design

When splitting each of the data sets into training and testing sets it is important
to ameliorate possible anomalous results. To this end we use five-fold cross-
validation. Note that to reduce the effects of sampling bias introduced when
randomly splitting each data set into five bins, the cross-validation process was
repeated 10 times for each data set in each iteration of the experiment (described
below).

As mentioned in Section 2.2, an SVM with an RBF kernel requires the selec-
tion of optimal values for parameters C and γ for maximal performance. Both
values were chosen for each training set using a five-fold grid search (see [11]), a
process that uses cross-validation and a wide range of possible parameter values
in a systematic fashion. The pair of values that yield the highest average accu-
racy are then taken as the optimal parameters and used when generating the
final model for classification.

Due to the high percentage of information lost when balancing each data set
(with the exception of KC4), the experiment is repeated fifty times. This is in
order to further minimise the effects of sampling bias introduced by the random
undersampling that takes place during balancing.

Pseudocode for the full experiment carried out in this study is shown in Fig
3. Our chosen SVM environment is LIBSVM [15], an open source library for
SVM experimentation.

Fig. 3. Pseudocode for the experiment carried out in this study.

M = 50 # No. of times to repeat full experiment
N = 10 # No. of cross-validation repetitions
V = 5 # No. of cross-validation folds

DATASETS = ( CM1, KC3, KC4, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5 )

results = ( ) # An empty list

repeat M times:
for dataSet in DATASETS:

dataSet = pre_process(dataSet) # As described in Section 3.1
repeat N times:

for i in 1 to V:
testerSet = dataSet[i]
trainingSet = dataSet - testerSet
params = gridSearch(trainingSet)
model = svm_train(params, trainingSet)
results += svm_predict(model, testerSet)

FinalResults = avg(results)
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4 Assessing Performance

The measure used to assess predictor performance in this study is accuracy. Ac-
curacy is defined as the ratio of instances correctly classified out of the total
number of instances. Although simple, accuracy is a suitable performance mea-
sure for this study as each test set is balanced. For imbalanced test sets more
complicated measures are required.

5 Results

The average results for each data set are shown in Table 4. The results show an
average accuracy of 70% across all 11 data sets, with a range of 64% to 82%.
Notice that there is a fairly high deviation shown within the results. This is to be
expected due to the large amount of data lost during balancing and supports the
decision for the experiment being repeated fifty times (see Fig. 3). It is notable
that the accuracy for some data sets is extremely high, for example with data
set PC4, four out of every five modules were being correctly classified.

The results show that all data sets with the exception of PC2 have a mean
accuracy greater than two standard deviations away from 50%. This shows the
statistical significance of the classification results when compared to a dumb
classifier that predicts all one class (and therefore scores an accuracy of 50%).

Table 4. The results obtained from this study.

Name
% Mean
Accuracy

Std.

CM1 68 5.57

KC3 66 6.56

KC4 71 4.93

MC1 65 6.74

MC2 64 5.68

MW1 71 7.3

PC1 71 5.15

PC2 64 9.17

PC3 76 2.15

PC4 82 2.11

PC5 69 1.41

Total 70 5.16
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6 Analysis

Previous studies ([16], [17], [18]) have also used data from the NASA MDP
repository and an SVM classifier. Some of these studies briefly mention data
pre-processing, however we believe that it is important to explicitly carry out all
of the data cleansing stages described here. This is especially true with regard to
the removal of repeating instances, ensuring that all classifiers are being tested
against previously unseen data.

The high number of repeating instances found within the MDP data sets was
surprising. Brief analysis of other defect prediction data sets showed a repeating
average of just 1.4%. We are therefore suspicious of the suitability of the data
held within the MDP repository for defect prediction and believe that previous
studies which have used this data and not carried out appropriate data cleansing
methods may be reporting inflated performance values.

An example of such a study is [18], where the authors use an SVM and four of
the NASA data sets, three of which were used in this study (namely CM1, PC1
and KC3). The authors make no mention of data pre-processing other than the
use of an attribute selection algorithm. They then go on to report a minimum
average precision, the ratio of correctly predicted defective modules to the total
number of modules predicted as defective, of 84.95% and a minimum average
recall, the ratio of defective modules detected as such, of 99.4%. We believe that
such high classification rates are highly unlikely in this problem domain due to
the limitations of static code metrics and that not carrying out appropriate data
cleansing methods may have been a factor in these high results.

7 Conclusion

This study has shown that on the data studied here the Support Vector Machine
can be used successfully as a classification method for defect prediction. We hope
to improve upon these results in the near future however via the use of a one-
class SVM; an extension to the original SVM algorithm that trains upon only
defective examples, or a more sophisticated balancing technique such as SMOTE
(Synthetic Minority Over-sampling Technique).

Our results also show that previous studies which have used the NASA data
may have exaggerated the predictive power of static code metrics. If this is not
the case then we would recommend the explicit documentation of what data
pre-processing methods have been applied. Static code metrics can only be used
as probabilistic statements toward the quality of a module and further research
may need to be undertaken to define a new set of metrics specifically designed
for defect prediction.

The importance of data analysis and data quality has been highlighted in this
study, especially with regard to the high quantity of repeated instances found
within a number of the data sets. The issue of data quality is very important
within any data mining experiment as poor quality data can threaten the validity
of both the results and the conclusions drawn from them [19].
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8 Appendix

Table 5. The 42 metrics originally found within each data set.

Metric
Type

Metric Name

McCabe

01. Cyclomatic Complexity
02. Cyclomatic Density
03. Decision Density
04. Design Density
05. Essential Complexity
06. Essential Density
07. Global Data Density
08. Global Data Complexity
09. Maintenance Severity
10. Module Design Complexity
11. Pathological Complexity
12. Normalised Cyclomatic Complexity

Raw
Halstead

13. Number of Operators
14. Number of Operands
15. Number of Unique Operators
16. Number of Unique Operands

Derived
Halstead

17. Length (N)
18. Volume (V)
19. Level (L)
20. Difficulty (D)
21. Intellegent Content (I)
22. Programming Effort (E)
23. Error Estimate (B)
24. Programming Time (T)

LOC
Counts

25. LOC Total
26. LOC Executable
27. LOC Comments
28. LOC Code and Comments
29. LOC Blank
30. Number of Lines (opening to closing bracket)

Misc.

31. Node Count
32. Edge Count
33. Branch Count
34. Condition Count
35. Decision Count
36. Formal Parameter Count
37. Modified Condition Count
38. Multiple Condition Count
39. Call Pairs
40. Percent Comments

Error
41. Error Count
42. Error Density
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Software Defect Prediction Using Static Code Metrics
Underestimates Defect-Proneness

David Gray, David Bowes, Neil Davey, Yi Sun and Bruce Christianson

Abstract— Many studies have been carried out to predict the
presence of software code defects using static code metrics.
Such studies typically report how a classifier performs with
real world data, but usually no analysis of the predictions is
carried out. An analysis of this kind may be worthwhile as it
can illuminate the motivation behind the predictions and the
severity of the misclassifications. This investigation involves a
manual analysis of the predictions made by Support Vector
Machine classifiers using data from the NASA Metrics Data
Program repository. The findings show that the predictions
are generally well motivated and that the classifiers were, on
average, more ‘confident’ in the predictions they made which
were correct.

I. INTRODUCTION

A growing number of studies have been carried out on
the subject of automated software defect prediction

using static code metrics ([1], [2], [3], [4] and [5] for
example). Such studies are motivated by the tremendous cost
of software defects (see [6]) and typically involve observing
the performance achieved by classifiers in labelling software
modules (functions, procedures or methods) as being either
defective or otherwise. Although such a binary labelling
toward module defectiveness is clearly a simplification of the
real world, it is hoped that such a classification system could
be an effective aid at determining which modules require
further attention during testing. An accurate software defect
prediction system would thus result in higher quality, more
dependable software that could be produced more swiftly
than was previously possible.

The predictions that are made in typical defect prediction
studies are usually assessed using confusion matrix related
performance measures, such as recall and precision. Rarely
in the research literature are these predictions mapped back
to the original corresponding modules for further analysis.
An examination of this kind may be worthwhile as it can
illuminate the motivation behind the predictions and the
severity of the misclassifications. For example, a module
that is incorrectly predicted as defective (a false positive)
which consists of 1000 lines of code (LOC) may be a far
more logical (and forgivable) mistake for a classifier to
make than a false positive which consists of 5 LOC. The
former misclassification may even be desirable, as a module
with highly defect-prone characteristics should probably be
subjected to some kind of further inspection in the interests
of code quality.

All authors are with the Computer Science Department at the University
of Hertfordshire, UK. Respective email addresses are: {d.gray, d.h.bowes,
n.davey, y.2.sun, b.christianson}@herts.ac.uk

In this study a defect prediction experiment was carried
out to allow a manual analysis of the classifications made
in terms of each module’s: original metrics, corresponding
classification result (one of either: true positive, true negative,
false positive or false negative) and corresponding decision
value; a value output by the classifier which can be inter-
preted as its certainty of prediction for that particular module.
The experiment carried out involved assessing the perfor-
mance of Support Vector Machine (SVM) classifiers against
the same data with which they were trained. The purpose of
this was to gain insight into how the classifiers were sepa-
rating the training data, and to see whether this separation
appeared consistent with current software engineering beliefs
(i.e. that larger, more complex modules are more likely to
be defective). Additionally it was interesting to examine the
modules that were misclassified in the experiment, to try
and see why the classifiers associated these modules with
the opposing class.

The data used in this study was taken from the NASA
Metrics Data Program (MDP) repository1, which currently
contains 13 data sets intended for software metrics research.
Each of these data sets contains the static code metrics and
corresponding fault data for each comprising module. One
of the data sets (namely, PC2) was the main focus of this
study as it contained the fewest modules (post data pre-
processing) and was therefore the least labour intensive to
manually examine. The remaining 12 data sets were all used
in the experiment but were not subjected to the same level
of scrutiny.

Initial analysis of data set PC2 involved the collection and
examination of basic statistics for each of the metrics in each
class (the class labels were: {defective, non-defective}) to
observe the distribution of values amongst classes. Principal
Components Analysis was then used as a data visualisation
tool to see how the classes were distributed within the
feature space, and if any patterns emerged. This enabled
the detection of outliers; data points which substantially
differ from the rest of their class. These outliers were later
cross-examined to see how they correlated with the SVMs
predictions.

The findings from this study are that the predictions
for the modules comprising data set PC2 were generally
well motivated; they seemed logical given current software
engineering beliefs. Also, each of the classifiers for all 13
NASA MDP data sets had higher average decision values for
the defective predictions they made which were correct (the

1http://mdp.ivv.nasa.gov/
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true positives) than were incorrect (the false positives). This
information could be exploited in a real world defect predic-
tion system where the predicted modules could be inspected
in decreasing order of their decision values. The findings
in this study indicate that defect prediction systems may be
doing far better at predicting module defect-proneness than
they are at predicting actual defectiveness. This highlights
one of the fundamental issues with current defect prediction
experiments - the assumption that all modules predicted as
having defect-prone characteristics are in fact defective.

The rest of this paper is presented as follows: Section
II begins with a brief introduction to static code metrics,
followed by a description of the data used in this study
and then an overview of our chosen classification method,
Support Vector Machines. Section III describes the data pre-
processing carried out and the experimental design. The
findings are shown in Section IV in two parts, firstly the
initial data analysis is presented and then the classification
analysis. The conclusions are given in Section V.

II. BACKGROUND

A. Static Code Metrics

Static code metrics are measurements of software features
that may potentially relate to defect-proneness, and thus
to quality. Examples of such features and how they are
often measured include: size, via LOC counts; readability,
via operand and operator counts (as proposed by [7]) and
complexity, via linearly independent path counts (also known
as the cyclomatic complexity [8]).

Consider the C program shown in Figure 1. Here there is
a single function called main. The number of lines of code
this function contains (from opening to closing bracket) is
11, the number of arguments it takes is 2, the number of
linearly independent paths through the function is 3. These
are just a few examples of the many metrics that can be
statically computed from source code.

#include <stdio.h>

int main(int argc, char* argv[])
{
int return_code = 0;
if (argc < 2) {

printf("No Arguments Given\n");
return_code = -1;

}
int x;
for(x = 1; x < argc; x++)

printf("’%s’\n", argv[x]);
return return_code;
}

Fig. 1. An example C program.

Because static code metrics are calculated through the
parsing of source code, their collection can be automated.
Thus it is computationally feasible to calculate the metrics
of entire software systems, irrespective of their size. Som-
merville points out that such collections of metrics can be
used in the following contexts [9]:

• To make general predictions about a system as a
whole. For example, has a system reached a required
quality threshold?

• To identify anomalous components. Of all the modules
within a software system, which ones exhibit character-
istics that deviate from the overall average? Modules
thus highlighted can then be used as pointers to where
developers should be focusing their efforts. This is
common practice amongst several large US government
contractors [2].

B. Data

The data used in this study was obtained from the NASA
MDP repository. This repository currently contains 13 data
sets intended for software metrics research. All 13 of these
data sets were used in this study: brief details of them are
shown in Table I. Each of the MDP data sets represents a
NASA software system/subsystem and contains the static
code metrics and corresponding fault data for each com-
prising module. Note that “module” can refer to a function,
procedure or method. Between 23 to 42 metrics and a unique
module identifier comprise each data set, a subset of the
metrics are shown in Table II.

All non-fault related metrics within each of the data sets
were generated using McCabeIQ 7.1; a commercial tool for
the automated collection of static code metrics. The error
count metric was calculated by the number of error reports
issued for each module via a bug tracking system. It is
unclear precisely how the error reports were mapped back
to the software modules, however the MDP homepage states

Name Language Total
KLOC

No. of
Modules

% Defective
Modules

CM1 C 20 505 10

JM1 C 315 10878 19

KC1 C++ 43 2107 15
KC3 Java 18 458 9
KC4 Perl 25 125 49

MC1 C & C++ 63 9466 0.7
MC2 C 6 161 32

MW1 C 8 403 8

PC1

C

40 1107 7
PC2 26 5589 0.4
PC3 40 1563 10
PC4 36 1458 12
PC5 C++ 164 17186 3

TABLE I
BRIEF DETAILS OF THE 13 NASA MDP DATA SETS. NOTE THAT KLOC

REFERS TO THOUSAND LINES OF CODE.
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Metric Name Metric Definition

Cyclomatic Complexity # of linearly independant paths (see [8])
Essential Complexity Related to the # of unstructured constructs

No. Operators # of operators (‘==’, ‘!=’, keywords, etc)
No. Operands # of operands (variables, literals, etc)

No. Unique Operators # of unique operators
No. Unique Operands # of unique operands

LOC Blank # of blank lines
LOC Comments # of lines containing only comments
LOC Executable # of lines containing only executable code

LOC Code & Comments # of code and comments on the same line

TABLE II
A SMALL SUBSET OF THE METRICS CONTAINED WITHIN EACH OF THE

NASA MDP DATA SETS.

that “if a module is changed due to an error report (as
opposed to a change request), then it receives a one up
count”.

The NASA MDP data has been used extensively by the
software engineering research community. There are cur-
rently more than 20 published studies that have used data
which first originated from this repository. The motivation
for using these data sets is often due to the difficulty in
obtaining real world fault data. Using the NASA MDP data
can be problematic however as access to the original source
code is not possible, making the validation of data integrity
difficult. This is especially problematic as the NASA MDP
data sets appear to have quality issues with regard to their
accuracy (briefly described in Section III-A). These issues
may not have been taken into account during previous fault
prediction studies based on this data.

C. Support Vector Machines

Support Vector Machines (SVMs) are a set of closely
related and highly sophisticated machine learning algorithms
that can be used for both classification and regression [10].
Their high level of sophistication made them the classifica-
tion method of choice for this study, although they have been
used previously within the software engineering community
(see [1], [3] and [5]).

SVMs are maximum-margin classifiers, they construct a
separating hyperplane between two classes subject to zero
or more slack variables. The hyperplane is constructed such
that the distance between the classes is maximised. This is
intended to lower the generalisation error when the classifier
is tested. Note that SVMs can also be used to classify any
number of classes via recursive application.

Although originally only suitable for linear classification
problems, SVMs can now also be used successfully for non-
linear classification by replacing each dot product with a
kernel function. A kernel function is used to implicitly map
the data points into a higher-dimensional feature space, and
to take the inner-product in that feature space. The benefit of
using a kernel function is that the data is more likely to be
linearly separable in the higher feature space. Importantly,
the actual explicit mapping to the higher-dimensional space
is never needed.

There are a number of different kinds of kernel functions
(any continuous symmetric positive semi-definite function
will suffice) including: linear, polynomial, Gaussian and
sigmoidal. Each has varying characteristics and is suitable
for different problem domains. The one used here is the
Gaussian radial basis function (RBF), as it can handle non-
linear problems and requires fewer hyperparameters than
the remaining aforementioned non-linear kernels [11]. In
fact, this kernel implicitly maps the data into an infinite
dimensional feature space whereby any finite data set will
be linearly separable.

When SVMs are used with a Gaussian RBF kernel there
are two user-specified hyperparameters, C and γ. C is the
error cost hyperparameter - a variable that determines the
trade-off between minimising the training error and maximis-
ing the margin. γ is a kernel hyperparameter and controls
the width (or radius) of the Gaussian RBF. The performance
of SVMs is largely dependant on these hyperparameters,
and the optimal values; the pair of values which yield best
performance while avoiding both underfitting and overfitting,
should ideally be determined for each training set via a
systematic search.

The biggest potential drawback of SVMs is that their
classification models are black box, making it very difficult
to work out precisely why the classifier makes the predictions
it does. This is very different to white box classification
algorithms such as Bayesian networks and decision trees,
where the classification model is easy to interpret.

Although SVMs are black box algorithms, classification
analysis can still be carried out upon them by analysing their
performance on individual instances. This involves mapping
the predictions made back to each instance. An analysis can
then take place according to each instance’s: original module
metrics, achieved classification result, and corresponding
decision value. The decision value is a real number output by
the SVM which corresponds to the instance’s distance from
the separating hyperplane in the feature space. The decision
value can be interpreted as the SVM’s certainty of prediction
for a particular instance.

As this studies main focus is on classification analysis
rather than classification performance, it was decided to
classify the training data rather than having some form
of tester set. The instances misclassified in the experiment
would thus be outliers, as they were not placed with their
corresponding class post hyperparameter optimisation. These
instances occur mainly because of the SVM’s cost hyperpa-
rameter, as they are deemed too costly to place on the correct
side of the decision hyperplane. Thus it is of interest to see
why these instances are more similar to those in the opposing
class. For an investigation into the performance of SVMs for
software defect prediction see [1].

III. METHOD

A. Data Pre-processing
1) Initial Data Set Modifications: Each of the data sets

had their module identifier and error density attributes re-
moved, as well as all attributes with zero variance. The

158



error count attribute was then converted into a binary target
attribute for each instance by assigning all values greater than
zero to defective, non-defective otherwise. Note that this is
the same as was carried out in [1], [2], [3] and [5].

2) Removing Repeated and Inconsistent Instances: In-
stances appearing more than once in a data set are known as
repeated (or redundant) instances. Inconsistent instances are
similar to repeated instances, however the class labels differ.
So in this domain inconsistent instances would occur where
identical metrics were used to describe (for example) two
different modules, of which one had been reported as faulty
and the other had not.

The effect of being trained using data containing repeated
and/or inconsistent instances is classification algorithm de-
pendant. SVMs for example can be affected by repeated
data points because the cost value for those data points
may be being over-represented. More importantly however
(and independent of classification algorithm) is that when
dividing a data set into training and testing sets, a data set
containing repeated data points may end up with instances
common to both sets. This can lead to a classifier achieving
unrealistically high performance.

Analysis of the MDP data sets showed that some of them
(namely MC1, PC2 and PC5) contained an overwhelmingly
high number of repeating instances (79%, 75% and 89%
respectively). Although no explanation has yet been found for
these high numbers of repeated instances, it appears highly
unlikely that this is a true representation of the software,
i.e. that 75% of the modules within a system/subsystem
could possibly have the same number of: lines, operands,
operators, unique operands, unique operators, linearly in-
dependent paths, etc. Although in this experiment the data
is never divided into training and testing sets, it was still
decided to remove these instances in order to defend against
the potential SVM difficulties previously described. The
pre-processing stage involved the removal of all repeated
instances so they were only represented once, and then the
complete removal of all inconsistent pairs.

3) Missing Values: Missing values are those that are
unintentionally or otherwise absent for a particular attribute
in a particular instance of a data set. The only missing
values within the data sets used in this study were within
the decision density attribute of data sets CM1, KC3, MC2,
MW1, PC1, PC2 and PC3. Decision density is calculated as:
condition count ÷ decision count and each instance with a
missing value had a value for both of these attributes of zero,
therefore all missing decision density values were replaced
with zero.

4) Balancing the Data: All the data sets used within this
study with the exception of KC4 contain a much larger
amount of one class (namely, non-defective) than they do the
other (see Table I). When such imbalanced data is used with
a machine learning algorithm the classifier will typically be
expected to overpredict the majority class. This is because the
classifier will have seen more examples of this class during
training.

There are various techniques that can be used to deal

with imbalanced data (see [12] and [13]). The approach
taken here is very simple however and involves randomly
undersampling the majority class until it becomes equal in
size to that of the minority class. The number of instances
that were removed during this undersampling process varied
amongst the data sets, however for data set PC2 it was
a total of 97%. Removing such a large proportion of the
data does threaten the validity of this study as the instances
randomly chosen to remain in the non-defective class may
not be representative of that class. To defend against this
problem the experiment was repeated several times with
different versions of the balanced data sets. The result of
this showed that although the predictive accuracy changed for
each different sample of the data, the concluding statements
that are made in Section 5 remained unchallenged.

5) Normalisation: All values within the data sets used in
this study are numeric. To prevent attributes with a large
range dominating the classification model, all values were
normalised between -1 and 1.

B. Experimental Design
Section II-C described how SVMs require the selection

of optimal hyperparameter values in order to balance the
trade-off between underfitting and overfitting. The two hy-
perparameters required in this study (C and γ) were chosen
for each data set using a grid search; a process that uses n-
fold (here n = 5) stratified cross-validation and a wide range
of possible hyperparameter values in a systematic fashion
(see [11] for more details). The pair of values that yields the
highest average accuracy across all 5-folds is taken as the
optimal hyperparameters and used when generating the final
model for classification.

After the optimal hyperparameters had been found for each
data set, an SVM was trained and classified using that same
data. This enabled the production of 13 spreadsheets (one
for each data set) containing the original module metrics for
each instance as well as the following additional columns:

• Classification Result: Either a true positive (TP), false
positive (FP), true negative (TN) or false negative (FN).

• Decision Value: As described in Section II-C. Negative
values are instances predicted as non-defective while
positive values are instances predicted as defective.

For each spreadsheet the rows were ranked by their
decision value. The averages for each of the original metrics
were then calculated for the instances predicted as defective
and the instances predicted as non-defective. The average
decision values were also computed, but this time for each
of the TP, TN, FP and FN instances respectively. For data set
PC2, a thorough manual examination of each of the rows in
the spreadsheet was carried out. For all other data sets, the
decision value averages were examined to see if any patterns
emerged.

IV. FINDINGS

A. Raw Data Analysis
After pre-processing, the raw statistics for data set PC2

were examined (see Fig. 2). This process revealed that the
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Fig. 2. A box plot showing basic statistics for data set PC2. Boxes on the
left in each column are the defective instances while boxes on the right are
the non-defective instances.

Fig. 3. Principal Components Analysis on data set PC2. Crosses represent
modules labelled as defective while circles represent modules labelled as
non-defective. Observe the extreme outliers belonging to the defective class
in the bottom right corner.

modules labelled as defective have higher average values
across all 36 attributes other than: cyclomatic density, design
density, maintenance severity, Halstead level and normalised
cyclomatic complexity. However, the only attributes which
were statistically significant (to .95 confidence) between the
two classes were: design density, branch count and percent
comments. Definitions of these metrics can be found at the
NASA MDP website. These findings show that the data is
highly intermingled between classes.

Principal Components Analysis (PCA) is a popular dimen-
sionality reduction / data visualisation tool which transforms
data into a lower dimensional space whilst maximising the
variance. For data set PC2, 36 features were mapped down
to 2 whilst keeping 65% of the variance. The plot generated
from this process is shown in Fig. 3 and clearly shows
that the data is highly intermingled, but has two extreme
outliers amongst the defective instances (bottom right cor-
ner). Locating these two instances revealed that they were
the two largest modules (in terms of LOC total) within the
data set and that they also had the two highest no. unique
operands, no. unique operators and cyclomatic complexity
attribute values (amongst others).

B. Classification Analysis

The classification result and corresponding decision value
for each of the 42 instances which comprise data set PC2 are
shown in Fig. 4. Examination of these values revealed that
the SVM had a higher average confidence in the instances
predicted as defective which were correct (the TPs with an
average decision value of 0.86) than were incorrect (the FPs
with an average of 0.60). The average decision value for
the instances predicted as non-defective were very similar,
but the incorrectly classified modules (the FNs) were being
predicted with slightly more confidence (an average of -0.88
as opposed to -0.81).

Examining the averages computed for the remaining 12
data sets showed the SVMs again had more confidence in the
TPs than the FPs, by an average of 49%. Unlike data set PC2
however, the remaining data sets also had more confidence
in the TNs than the FNs, by an average of 51%.

Table III contains a subset of the metrics for PC2 which
comprise the modules that are labelled in Fig. 4, as well as
their corresponding classification result and decision value.
Note that data set PC2 contains 36 of these metrics but only
4 are shown here due to space limitations. Module 1 (as
labelled in Fig. 4) is the module that is furthest from the
decision hyperplane. The high level of confidence associated
with this defective prediction does seem logical however,
due to there being 76 unique operands and 15 linearly
independent paths within only 68 LOC. Modules 2 and 3
are the outliers identified during PCA (see Section IV-A).
These modules were predicted with above average decision
values (for the TPs), which is reassuring as they appear to
be very large and may benefit from decomposing. It may be
surprising that these modules were not predicted with the two
highest decision values, however this shows that the SVM
in this case is not being dominated entirely by size related
metrics. This is reassuring as it suggests there is worth in
the other metrics.

At first sight when looking at the FPs it appears that
module 4 is on the wrong side of the separating hyperplane as
it is only comprised of 10 LOC. This looks suspicious as the
classifier has so much confidence in the prediction. On closer
inspection however this module had an essential complexity
value (which relates to the number of unstructured constructs
within a module) of 3; and in the 42 instances passed to
the classifier 78% of modules with an essential complexity
greater than 1 were defective. Unstructured constructs have
been known to be problematic with regard to code quality
for over 40 years [14], and the SVM predicted that 89%
of modules with an essential complexity greater than 1
(the metrics minimum) were defective. Module 5 is the
module that is closest to the separating hyperplane, it was
predicted as defective but only by a very small margin. This
classification appears more immediately understandable than
module 4, as although the module contains only 7 LOC it
contains 16 unique operands.
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Fig. 4. The decision value and classification result for each of the 42 modules in data set PC2.

Module
ID No.

LOC
Total v(G) No. Unique

Operands
No. Unique
Operators

Prediction
Result

Decision
Value

1 68 15 76 16 TP 1.67

2 316 54 111 37 TP 1.31

3 294 84 94 88 TP 1.00

4 10 3 9 11 FP 1.13

5 7 2 16 9 FP 0.03

6 2 1 5 9 TN -1.00

7 3 2 2 8 TN -0.08

8 2 1 5 8 FN -1.00

9 6 1 5 5 FN -0.75

TABLE III
A SUBSET OF THE METRICS FOR THE MODULES LABELLED IN FIG. 4. NOTE THAT V(G) IS MCCABE’S CYCLOMATIC COMPLEXITY [8].
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All of the modules predicted as non-defective (6 to 9)
contain very low values for the four metrics shown in Table
III, and (from what can be deduced from the metrics) appear
very small and simple. This highlights the difficulty of this
classification domain. None of the four modules had defect-
prone characteristics, yet two of them did indeed turn out
to be defective. This is problematic when data mining with
static code metrics as they can provide only a limited insight
into software defect-proneness, not actual defectiveness. It
is a fair assumption that the majority of defective modules
within a software system will exhibit defect-prone character-
istics however, be them difficult to define precisely and pro-
gramming language specific. This is the primary reason that
software defect prediction is worthy of the growing research
surrounding it. The findings in this study seem to suggest a
limiting factor in the performance achievable by such defect
prediction systems however. This limitation appears to be in
the proportion of defective modules containing defect-prone
characteristics.

The misclassified instances labelled in Fig. 4 have already
been discussed. The remaining misclassified instances also
all appeared to be well motivated, with the FPs generally
having defect-prone metrics and the FNs not so. This shows
that there is a low severity for the misclassifications in this
data set, i.e. that a further examination of module 4 may in
fact be worthwhile and that modules 8 and 9 would be very
difficult to correctly predict, as they do not possess defect-
prone characteristics.

V. CONCLUSION

In this study SVM classifiers were found to consistently
have more confidence in the defective predictions they made
which were correct than were incorrect, as the average
decision value for the TP predictions was significantly greater
than that of the FP predictions for all 13 of the NASA MDP
data sets. These findings could be exploited in a real world
classification system, where the predicted modules could be
ranked in decreasing order of their decision values. Code
inspections could then be prioritised around this ordering.
Note that taking the decision values into account as well as
the binary classifications also helps to alleviate the concep-
tual problems with using a binary classifier in this problem
domain, where the defectiveness of a module would be more
of a fuzzy value than a binary one.

A more in depth manual examination of the predictions
made for one of the NASA data sets (namely, PC2) showed
that the classifications were generally well motivated; that the
SVM was separating the data according to current software
engineering beliefs. Moreover it appeared that the classifiers
were doing far better at predicting defect-proneness than they
were at predicting actual defectiveness. Because it is easily
possible for a module without defect-prone characteristics
to contain a defect (a programmer typing a ‘==’ instead of
a ‘!=’ in a single line module for example), the proportion
of defective modules containing defect-prone characteristics
may be the biggest limiting factor on the performance of
defect prediction systems.
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The Misuse of the NASA Metrics Data Program
Data Sets for Automated Software Defect Prediction

David Gray, David Bowes, Neil Davey, Yi Sun and Bruce Christianson

Abstract—
Background: The NASA Metrics Data Program data sets have
been heavily used in software defect prediction experiments.
Aim: To demonstrate and explain why these data sets require
significant pre-processing in order to be suitable for defect
prediction.
Method: A meticulously documented data cleansing process
involving all 13 of the original NASA data sets.
Results: Post our novel data cleansing process; each of the data
sets had between 6 to 90 percent less of their original number
of recorded values.
Conclusions:
One: Researchers need to analyse the data that forms the basis
of their findings in the context of how it will be used.
Two: Defect prediction data sets could benefit from lower level
code metrics in addition to those more commonly used, as
these will help to distinguish modules, reducing the likelihood
of repeated data points.
Three: The bulk of defect prediction experiments based on the
NASA Metrics Data Program data sets may have led to erroneous
findings. This is mainly due to repeated data points potentially
causing substantial amounts of training and testing data to be
identical.

I. INTRODUCTION

AUTOMATED software defect prediction is a process where
classification and/or regression algorithms are used to

predict the presence of non-syntactic implementational er-
rors (henceforth; defects) in software source code. To make
these predictions such algorithms attempt to generalise upon
software fault data; observations of software product and/or
process metrics coupled with a level of defectiveness value.
This value typically takes the form of a number of faults
reported metric, for a given software unit after a given amount
of time (post either code development or system deployment).

The predictions made by defect predictors may be continu-
ous (level of defectiveness) or categorical (set membership
of either: {‘defective’, ‘non-defective’}). The current trend
by researchers is typically to report the latter (categorical
predictions) only. However, this may not be the best approach,
as continuous predictions allow software units to be ranked
according to their predicted quality factor (this is known as
module-order modelling, see (Khoshgoftaar & Allen 2003)).
A software quality ranking system has the real world benefit
of producing an ordered list of the seemingly most error-prone
code units. These code units can then be subjected to some
form of further inspection, in descending order of predicted
level of defectiveness, for as long as resources allow.

All authors are with the Computer Science Department at the University
of Hertfordshire, UK. Respective email addresses are: {d.gray, d.h.bowes,
n.davey, y.2.sun, b.christianson}@herts.ac.uk

In order to carry out a software defect prediction experiment
there is naturally a requirement for reasonable quality data.
However, software fault data is very difficult to obtain. Com-
mercial software development companies often do not have
a fault measurement program in place. And, even if such a
process is in place, it is typically undesirable from a business
perspective to publicise fault data. This is particularity true
for systems where quality has been a serious problem, i.e.
where it would be most useful to publicise such data and give
researchers an opportunity to discover why this was the case.

Open-source systems are a good place for researchers to
construct their own fault data sets. This is simplest when
the system has been developed whilst using a bug tracking
system to record the faults encountered by developers. If
bug information has been correctly and consistently entered
into version control commit messages, it is then possible to
autonomously locate the fault-fixing revisions. From here it is
possible to (fairly accurately) map fault-fixing revisions back
to where the fault was first introduced (the bug-introducing
change, see (Kim, Zimmermann, Pan & Whitehead 2006)).
The major problem with constructing fault data from open-
source systems is that it can be a very time consuming task
to do accurately. This is because human intervention is often
required to check the validity of the automated mappings.

Thus difficulty in obtaining software fault data is the major
factor why public domain fault data repositories, such as
those hosted by NASA1 and PROMISE2, have become so
popular among researchers. These repositories host numerous
data sets, which require no data analysis and little or no pre-
preprocessing, before machine learning tools such as Weka3

will classify them. The ease of this process can be dangerous to
the inexperienced researcher. Results can be obtained without
any scrutiny of the data. Furthermore, researchers may naively
assume the NASA Metrics Data Program (MDP) data sets are
of reasonable quality for data mining. This issue is worsened
by the hosting sites not indicating the main problems, and by
so many previous researchers using these data sets without
appropriate pre-processing. The aim of this study is to illu-
minate why the NASA MDP data sets require significant pre-
processing; or contextual data cleansing, before they become
suitable for data mining. It is hoped that this paper will
encourage researchers to take data quality seriously, and to
question the results of some studies based on these data sets.

1http://mdp.ivv.nasa.gov/
2http://promisedata.org/
3http://www.cs.waikato.ac.nz/∼ml/weka/
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The NASA MDP repository currently consists of 13 data
sets explicitly intended for software metrics research. Each
data set represents a NASA software system/subsystem and
contains the static code metrics and corresponding fault data
for each comprising module. Note that ‘module’ in this case
can refer to a function, procedure or method. A substantial
amount of research based wholly or partially on these data sets
has been published over the last decade, including: (Menzies,
Stefano, Orrego & Chapman 2004), (Menzies & Stefano
2004), (Menzies, Greenwald & Frank 2007), (Menzies, Milton,
Turhan, Cukic, Jiang & Bener 2010), (Jiang, Cukic & Menzies
2008), (Jiang & Cukic 2009), (Khoshgoftaar & Seliya 2004),
(Seliya, Khoshgoftaar & Zhong 2005), (Lessmann, Baesens,
Mues & Pietsch 2008), (Boetticher 2006), (Mende & Koschke
2009), (Koru & Liu 2005), (Tosun & Bener 2009), (Bezerra,
Oliveira & Meira 2007), (Turhan, Menzies, Bener & Di
Stefano 2009), (Pelayo & Dick 2007), (Li & Reformat 2007)
and (Elish & Elish 2008).

It is widely accepted by the data mining community that in
order to accurately assess the potential real world performance
of a classification model, the model must be tested against
different data from that upon which it was trained (Witten
& Frank 2005). This is why there is a distinction between a
training set and a testing set. A testing set is also referred to
as an independent test set; as it is intended to be independent
from the training set (i.e. models should be tested against
unseen data, see (Witten & Frank 2005)). This is very basic
data mining knowledge, and is no surprise to the defect
prediction community. In 2004 Menzies et al. state: “if the
goal of learning is to generate models that have some useful
future validity, then the learned theory should be tested on data
not used to build it. Failing to do so can result in a excessive
over-estimate of the learned model. . . ” (Menzies et al. 2004).
Despite this fact being well known, numerous studies based
on the NASA MDP data sets (henceforth, NASA data sets)
have potentially had high proportions of identical data points
in their training and testing sets. This is because the NASA
data sets contain varied quantities of repeated data points; i.e.
observations of module metrics and their corresponding fault
data occurring more than once. Thus, when this data is used in
a machine learning context, training and testing sets potentially
have large proportions of identical data points. This will result
in the aforementioned excessive estimate of performance, as
classifiers can memorise rather than learn.

In this study we develop and carry out a meticulously
documented data cleansing process involving all 13 of the
original NASA data sets. The purpose of this data cleansing
is both to make the data sets suitable for machine learning,
and to remove noise (i.e. inaccurate/incorrect data points, see
(Liebchen & Shepperd 2008)). We show that after this process
each of the data sets had between 6 to 90 percent less of
their original recorded values. We then discuss at length the
problems caused by repeated data points when data mining,
and why using lower level metrics in fault data sets (such as
character counts) may alleviate this problem, by helping to
distinguish non-identical modules.

The rest of this paper is presented as follows: in the next
section we discuss related work; papers where issues with
the NASA data sets have been documented or discussed. In
Section III we document our novel data cleansing process in
incremental stages. Section IV contains our findings, which
include a demonstration of the effect of repeated data points
during an artificial classification experiment. Our conclusions
are presented in Section V.

II. RELATED STUDIES

The major issue with the original NASA data sets is that
when they are used in a machine learning context, repeated
data points may result in training data inadvertently being
included in testing sets, potentially invalidating the experiment.
This is not a new finding. However, we believe it needs
spelling out to researchers, as previous studies mentioning
this issue seem to have been ignored. In this section the most
relevant studies surrounding this issue are discussed.

The earliest mention of repeated data in NASA data sets
that we can find was made in (Kaminsky & Boetticher 2004).
In this study the authors state that they eliminated “redundant
data”, but give no further explanation as to why. The data set
used in this study was NASA data set KC2, which is no longer
available from the NASA MDP repository. Although this data
set is currently available from the PROMISE repository, we
did not use it in our study in an effort to use only the original,
unmodified data.

In (Boetticher 2006) five NASA data sets were used in
various classification experiments. The author states that “data
pre-processing removes all duplicate tuples from each data set
along with those tuples that have questionable values (e.g.
LOC equal to 1.1).” Interestingly, it is only the PROMISE
versions of the NASA data sets that contain these clearly
erroneous non-integer LOC values. The author goes into detail
on repeated data points, stating that “to avoid building artificial
models, perhaps the best approach would be not to allow
duplicates within datasets.” One of the experiments carried out
in this study was intended to show the effect of the repeated
data in the five NASA data sets used. This was in the context
of a 10-fold cross-validation classification experiment with
a C4.5 decision tree. The claimed result was that the data
sets with the repeats included achieved significantly higher
performance than those without. Although this result is to be
expected, there was an unfortunate technical shortcoming in
the experimental design. When reporting the performance of
classifiers on data sets with imbalanced class distributions,
‘accuracy’ (or its inverse: ‘error rate’) should not be used
(Nickerson, Japkowicz & Milios 2001). In addition to this,
care is required when performing such an experiment, as the
proportion of repeated data in each class is not related to the
class distribution. Therefore, post the removal of repeated data
points, the data sets could have substantially different class
distributions. This may boost or reduce classifier performance,
because of the class imbalance problem (see (Chawla, Japkow-
icz & Kolcz 2004)).
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Classification experiments utilising probabilistic outputs
were carried out in (Bezerra et al. 2007). Here the authors
used all 13 of the original NASA data sets and state that
they removed both “redundant and inconsistent patterns”.
Inconsistent data points are another of the problems when data
mining with the NASA data sets. They occur when repeated
feature vectors (module metrics) describe data points with
differing class labels. Thus in this domain they occur where the
same set of metrics is used to describe both a module labeled
as ‘defective’ and a module labeled as ‘non-defective’. We
believe the removal of such instances was first carried out in
(Khoshgoftaar & Seliya 2004).

The work described here differs from that previously de-
scribed, as it is not based on classification experiments. It is
instead based on the analysis and cleansing of data. This study
demonstrates: the poor quality of the NASA data sets; the
extent to which repeated data points disseminate into training
and testing sets; and the effect of testing sets containing seen
data during classification experiments.

III. METHOD

The NASA data sets are available from the aforementioned
NASA MDP and PROMISE repositories. For this study we
used the original versions of the data sets from the NASA
MDP repository. Note however that the same issues also apply
to the PROMISE versions of these data sets, which are for the
most part simply the same data in a different format.

A. Initial Pre-processing: Binarisation of Class Variable &
Removal of Module Identifier and Extra Error Data Attributes

In order to be suitable for binary classification, the error
count attribute is commonly reported in the literature (see
(Menzies, Greenwald & Frank 2007), (Lessmann et al. 2008)
and (Elish & Elish 2008) for example) as being binarised as
follows:

defective = (error count ≥ 1)

It is also necessary to remove the ‘unique module identifier’
attribute as this gives no information toward the defectiveness
of a module. Lastly, it is necessary to remove all other error
based attributes to make the classification task worthwhile.
This initial pre-processing is summarised as follows:

attributes = [ MODULE, ERROR_DENSITY,
ERROR_REPORT_IN_6_MON,
ERROR_REPORT_IN_1_YR,
ERROR_REPORT_IN_2_YRS ]

for dataSet in dataSets:
for attribute in attributes:

if attribute in dataSet:
dataSet = dataSet - attribute

dataSet.binarise(error_count)
dataSet.rename(error_count, defective)

The NASA data is often reportedly used in defect prediction
experiments post this initial pre-processing. We therefore
present an overview of each data set in Table I. In this table the
number of original recorded values is defined as the number
of attributes (features) multiplied by the number of instances
(data points). For simplicity we do not take missing values into
account. We use the number of recorded values as a method
of quantifying how much data is available in each data set. We
shall come back to these values post data cleansing to judge
how much data has been removed.

B. Stage 1: Removal of Constant Attributes

An attribute which has a constant/fixed value throughout
all instances is easily identifiable as it will have a variance
of zero. Such attributes contain no information with which to
discern modules apart, and are at best a waste of classifier
resources. Each data set had from 0 to 10 percent of their
total attributes removed during this stage, with the exception
of data set KC4. This data set has 26 constant attributes out
of a total of 40, thus 65 percent of available recorded values
contain no information upon which to data mine.

C. Stage 2: Removal of Repeated Attributes

In addition to constant attributes, repeated attributes occur
where two attributes have identical values for each instance.
This effectively results in a single attribute being over-
represented. Amongst the NASA data sets there is only one
pair of repeated attributes (post stage 1), namely the ‘number
of lines’ and ‘loc total’ attributes in data set KC4. The
difference between these two metrics is poorly defined at the
NASA MDP repository. However, they may be identical for
this data set as (according to the metrics) there are no modules
with any lines either containing comments or which are empty.
For this data cleansing stage we removed one of the attributes
so that the values were only being represented once. We chose
to keep the ‘loc total’ attribute label as this is common to all
13 NASA data sets.

TABLE I
DETAILS OF THE NASA MDP DATA SETS POST INITIAL PRE-PROCESSING.

Name Language Features Instances Recorded
Values

% Defective
Instances

CM1 C 40 505 20200 10

JM1 C 21 10878 228438 19

KC1 C++ 21 2107 44247 15
KC3 Java 40 458 18320 9
KC4 Perl 40 125 5000 49

MC1 C & C++ 39 9466 369174 0.7
MC2 C 40 161 6440 32

MW1 C 40 403 16120 8

PC1

C

40 1107 44280 7
PC2 40 5589 223560 0.4
PC3 40 1563 62520 10
PC4 40 1458 58320 12
PC5 C++ 39 17186 670254 3
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D. Stage 3: Replacement of Missing Values

Missing values may or may not be problematic for machine
learners depending on the classification method used. How-
ever, dealing with missing values within the NASA data sets
is very simple. Seven of the data sets contain missing values,
but all in the same single attribute: ‘decision density’. This
attribute is defined as ‘condition count’ divided by ‘decision
count’, and for each missing value both these base attributes
have a value of zero. In the remaining NASA data set which
contains all three of the aforementioned attributes but does not
contain missing values, all instances with ‘condition count’
and ‘decision count’ values of zero also have a ‘decision
density’ of zero. This appears logical, and it is clear that
missing values have occurred because of a division by zero
error. Because of this we replace all missing values with zero.
Note that in (Bezerra et al. 2007) all instances which contained
missing values within the NASA data sets were discarded. It
is more desirable to cleanse data than to remove it, as the
quantity of possible information to learn from will thus be
maximised.

E. Stage 4: Enforce Integrity with Domain Specific Expertise

The NASA data sets contain varied quantities of correlated
attributes, which are useful for checking data integrity. Ad-
ditionally, it is possible to use domain specific expertise to
validate data integrity, by searching for theoretically impos-
sible occurrences. The following is a non-exhaustive list of
possible checks that can be carried out for each data point:

• Halstead’s length metric (see (Halstead 1977)) is defined
as: ‘number of operators’ + ‘number of operands’.

• Each token that can increment a module’s cyclomatic
complexity (see (McCabe 1976)) is counted as an oper-
ator according to the NASA MDP repository. Therefore,
the cyclomatic complexity of a module should not be
greater than the number of operators + 1. Note that 1 is
the minimum cyclomatic complexity value.

• The number of function calls within a module is recorded
by the ‘call pairs’ metric. A function call operator should
be counted as an operator, therefore the number of
function calls should not exceed the number of operators.

These three simple rules are a good starting point for
removing noise in the NASA data sets. Any data point which
does not pass all of the checks contains noise. Because the
original NASA software systems/subsystems from where the
metrics are derived are not publicly available, it is impossible
for us to investigate this issue of noise further. The most viable
option is therefore to discard each offending instance. Note
that a prerequisite of each check is that the data set must
contain all of the relevant attributes. Six of the data sets had
data removed during this stage, between 1 to 12 percent of
their data points in total.

During this stage it may be tempting to not only remove
noise (i.e. inaccurate/incorrect data points), but also outliers.
A module which (reportedly) contains no lines of code and no
operands and operators should be an empty module containing
no code. So at this stage of data cleansing, should such a
module be discarded? As it is impossible for us to check the
validity of the metrics against the original code, this is a grey
area. An empty module may still be a valid part of a system,
it may just be a question of time before it is implemented.
Furthermore, a module missing an implementation may still
have been called by an unaware programmer. As the module
is unlikely to have carried out the task its name implies, it
may also have been reported to be faulty.

F. Stage 5: Removal of Repeated and Inconsistent Instances

As previously mentioned, repeated/redundant instances oc-
cur when the same feature vectors (module metrics) describe
multiple modules with the same class label. While this situ-
ation is clearly possible in the real world, such data points
are problematic in the context of machine learning, where
is it imperative that classifiers are tested upon data points
independent from those used during training (see (Witten &
Frank 2005)). The issue is that when data sets containing
repeated data points are split into training and testing sets (for
example by a x% training, 1-x% testing split, or n-fold cross-
validation), it is possible for identical instances to appear in
both sets. This either simplifies the learning task or reduces
it entirely to a task of recollection. Ultimately however, if the
experiment was intended to show how well a classifier could
generalise upon future, unseen data points, the results will be
erroneous as the experiment is invalid.

Inconsistent instances are similar to repeated instances,
as they also occur when the same feature vectors describe
multiple modules. The difference between repeated and in-
consistent instances is that with the latter, the class labels
differ, thus (in this domain) the same metrics would describe
both a ‘defective’ and a ‘non-defective’ module. This is again
possible in the real world, and while not as serious an issue as
the repeated instances, inconsistent data points are problematic
during binary classification tasks. When building a classifier
which outputs a predicted class set membership of either
‘defective’ or ‘non-defective’, it is clearly illogical to train such
a classifier with data instructing that the same set of features
is resultant in both classes.

Adding all data points into a mathematical set is the simplest
way of ensuring that each one is unique. This ensures classi-
fiers will be tested on unseen data. From here it is possible
to remove all inconsistent pairs of modules, to ensure that
all feature vectors (data points irrespective of class label) are
unique. The proportion of instances removed from each data
set during this stage is shown in Figure 1. All data sets had
instances removed during this stage, and in some cases the
proportion removed was very large (90, 78, and 74 percent
for data sets PC5, MC1, and PC2, respectively). Note that for
most data sets the proportion of inconsistent instances removed
is negligible.
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Fig. 1. The proportion of instances removed during stage 5.

IV. FINDINGS

Figure 2 shows the proportion of recorded values removed
from the 13 NASA data sets (after basic pre-processing, see
Table I) post our 5 stage data cleansing process. Stages 1 and
2 of this process can remove attributes, stage 3 can replace
values, and stages 4 and 5 can remove instances (data points).
This was the motivation to use the number of recorded values
(attributes∗ instances) metric, as it takes both attributes and
instances into account. Figure 2 shows that between 6 to 90
percent of recorded values in total were removed from each
data set during our data cleansing process.

The purpose of our data cleansing process is to ensure that
all data sets are suitable for machine learning (stages 1, 2, 5,
and to some extent stage 3), and to remove or repair what can
be confidently assumed to be noise (stage 4, and to some extent
stage 3). Note however that there are almost certainly noisy
data points in the NASA data sets that can not be confidently
assumed to be erroneous using such simple methods. But, as
the data sets are based on closed source, commercial software,
it is impossible for us to investigate the potential issues further.
For example, the original data set MC1 (according to the
metrics) contains 4841 modules (51% of modules in total)
with no lines of code.

Of the data cleansing processes with the potential to reduce
the quantity of recorded values, it is the removal of repeated
and inconsistent instances (stage 5) that is responsible for the
largest average proportions of data removed (see Figure 1).
This raises the following questions: Is the complete removal
of such instances really necessary? Why are there so many
repeated data points and what can be done in future to avoid
them? What proportion of seen data points could end up in
testing sets if this data was used in classification experiments?
What effect could having such quantities of seen data points
in testing sets have on classifier performance? Each of these
questions are addressed in the sections that follow.

Fig. 2. The proportion of recorded values removed during data cleansing.

A. Is the complete removal of repeated and inconsistent in-
stances prior to classification really necessary?

Our data cleansing method is a work in progress. Post data
cleansing, researchers will be able to use off the shelf data
mining tools (such as Weka) to carry out experiments that yield
meaningful results (or at least, far more meaningful results
than had the issues described not been addressed). However,
not every part of the cleansing process will be required in all
contexts. In this section we describe the issues that researchers
should be aware of with regard to addressing the repeated and
inconsistent instances.

Figure 1 shows that the proportion of inconsistent in-
stances removed during stage 5 is negligible. This is partly
a consequence of repeated instances being removed before
inconsistent ones however, as it is possible for a data point to
be both repeated and inconsistent. The complete removal of
inconsistent instances prior to classification may not always
be necessary or desirable. Because defect prediction data
sets typically have an imbalanced class distribution (Menzies,
Dekhtyar, Distefano & Greenwald 2007), some researchers
may wish to retain each inconsistent minority class data
point, in order to keep as much data as possible regarding
the minority class (typically modules labeled as ‘defective’).
During training, some learning methods (such as various prob-
abilistic learners) may be able to robustly handle conflicting
information. Therefore, the inclusion of inconsistent instances
in training sets would not be problematic in this context.
During testing, some researchers may feel that it is more
appropriate to include inconsistent data points, as they may
occur in the real world. Note that the inclusion of inconsistent
data points in testing sets would typically introduce an upper
bound on the level of performance achievable.
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The training of learning methods on data containing re-
peated data points is typically not overly problematic. For
example, a very simple oversampling technique is to duplicate
minority class data points during training. Using training sets
which contain repeated data points is reasonable, as long as
no training data points are included in the testing set. The
same also applies if researchers feel that testing sets should
include repeated data points. There are potentially serious
issues to be aware of when training sets contain repeated
data points however, as pointed out in (Kołcz, Chowdhury
& Alspector 2003). When optimising model parameters us-
ing a validation set (a withheld subset of the training set)
that contains duplicate data points, over-fitting may occur,
potentially harming performance during assessment. It is for
this reason that (Kołcz et al. 2003) recommend “tuning a
trained classifier with a duplicate-free sample”. Note that this
also applies when using multiple validation sets, for example
via n-fold cross-validation. Kołcz et al. also point out that
feature selection techniques can be affected by duplicate data
points. An approach to repeated data points proposed by
(Boetticher 2006) is to add an extra attribute: number of
duplicates. This will ensure data points are unique, and help
reduce information being lost.

B. Why so much repeated data and how can it be avoided?

As previously stated, the NASA data sets are based on
closed source, commercial software, so it is impossible for
us to validate whether the repeated data points are truly a
representation of each software system/subsystem, or whether
they are noise. Despite this, a probable factor in why the
repeated (and inconsistent) data is a part of these data sets
is because of the poor differential capability of the metrics
used. Intuitively, 40 metrics describing each software module
seems like a large set. However, many of the metrics are simple
equations of other metrics. Because of this, it may be highly
beneficial in future to also record lower level metrics, such
as character counts. These will help to distinguish modules
apart; particularly small modules, which statistically result in
more repeated data points than large modules. Additionally,
machine learners may be able to utilise such low level data
for helping to detect potentially troublesome modules (in terms
of error-proneness).

C. What proportion of seen data points could end up in testing
sets if this data was used in classification experiments?

In order to find the answer to this question, a small Java
program was developed utilising the Weka machine learning
tool’s libraries (version 3.7.1). The Weka libraries were cho-
sen because they have been heavily used in defect predic-
tion experiments (see (Menzies, Greenwald & Frank 2007),
(Boetticher 2006) and (Koru & Liu 2005), for example). In
this experiment a standard stratified 10-fold cross-validation
was carried out. During each of the 10 folds, the number of
instances in the testing set which were also in the training set
were counted. After all 10 folds, the average number of shared
instances in each testing set was calculated. This process was

repeated 1000 times with different pseudo-random number
seeds to defend against order effects. For this experiment we
used the NASA data sets post basic pre-processing (see Table
I). We did this because it was as representative as possible of
what will have happened in some previous studies. It is for the
same reason that we chose 10-fold cross-validation, the Weka
Explorer default. The results from this experiment are shown
in Figures 3 and 4. From these figures can be seen that for
each data set, the proportion of seen data points in the testing
sets is larger than the proportion of repeated data points in
total. Additionally, this relationship can be seen in Figure 4
to have a strong positive correlation. It is worth emphasising
that in some cases the average proportion of seen data points
in the testing sets was very large (91, 84, and 82 percent for
data sets PC5, MC1, and PC2, respectively).

Fig. 3. Proportions of repeated data and seen data in testing sets.

Fig. 4. Proportions of repeated data verses seen data in testing sets.

169



D. What effect could having such quantities of seen data
points in testing sets have on classifier performance?

To answer this question we do not use the NASA data sets
because of the point regarding class distributions mentioned
in Section II. Instead, we construct an artificial data set.
This data set has 10 numeric features and 1000 data points.
The numeric features were all generated by a pseudo-random
number generator and have a range between 0 and 1 inclusive.
The data set has a balanced class distribution, with 500 data
points representing each class.

Using the Weka Experimenter, we ran 10 repetitions of
a 10-fold cross-validation experiment with the data set just
described, and the following variations of it:

• 25% repeats from each class, an extra copy of 125
instances in each class, 1250 instances in total.

• 50% repeats from each class, an extra copy of 250
instances in each class, 1500 instances in total.

• 75% repeats from each class, an extra copy of 375
instances in each class, 1750 instances in total.

• 100% repeats, two copies of every instance, 2000 in-
stances in total.

We used a random forest meta decision tree learner for this
experiment, with 100 trees and all other parameters set to
the Weka defaults. The results from this experiment showed
accuracy levels for each data set: original, 25% repeats, 50%
repeats, 75% repeats and 100% repeats of 48.30, 65.20, 80.47,
87.49 and 93.50. This clearly shows that repeated data points
can have a huge influence on the performance of classifiers,
even with pseudo-random data. As the proportion of repeated
information increases, so does the performance of the classi-
fier. It is worth pointing out that the severity of repeated data
points is algorithm specific. Naive Bayes classifiers have been
reported to be fairly resilient to duplicates (Kołcz et al. 2003).

V. CONCLUSIONS

Regardless of whether repeated data points are, or are
not noise, it is unsuitable to have seen data in testing sets
during defect prediction experiments intended to show how
well a classifier could potentially perform on future, unseen
data points. This is because having identical data points in
training and testing sets can result in an excessive estimate
of performance, occurring because classifiers can, to varying
degrees, memorise rather than learn. There is an important
distinction between learning from and simply memorising
data: only if you learn the structure underlying the data can
you be expected to correctly predict unseen data.

Some researchers may argue that as it is possible for
modules with identical metrics to be contained within a
software system, such data points should be tolerated rather
than removed. While the initial part of this argument is true,
if, in the real world, you happen to have a data point in your
testing set which is also contained in your training set, chance
is on your side. However, it is not scientific for chance to be
on the side of every researcher experimenting with the NASA
data sets, as when unseen data is presented to the classifiers,
performance may plummet from the expected.

If researchers believe that repeated data points are a correct
representation of the software system (i.e. not noise), there
are two options available. Firstly, it is possible to use data
containing repeated data points, so long as there are no
common instances shared between training and testing sets.
This may lead researchers to designate the task of ensuring no
seen data is contained within testing sets to machine learning
software (i.e. during the data separation process; for example
during cross-validation). Note however that this complicates
the task of stratification. The second option, proposed in
(Boetticher 2006), is to use an extra attribute: number of
duplicates. This will help to ensure that information is not
lost, and is most useful when data sets are believed to be of
high quality.

A possible reason why there are so many repeated (and
inconsistent) data points within the NASA data sets is because
of the poor differential power of the metrics used. It may be
highly beneficial in future to also record lower level metrics
(such as character counts), as these will help to distinguish
non-identical modules, reducing the likelihood of modules
sharing identical metrics.

Data quality is very important during any data mining
experiment, time spent analysing data is time well spent. We
believe the data cleansing process defined in this paper will
ensure that the NASA data sets become suitable for machine
learning. This process may also be a good starting point when
using other software fault data sets. Experiments based on the
NASA data sets which included the repeated data points may
have led to erroneous findings. Future work may be required
to (where possible) repeat these studies with appropriately
processed data. Other areas of future work include extending
the list of integrity rules described in stage 4 of the cleansing
process, and analysing other fault data sets to see whether the
proportions of repeated data points in the NASA data sets are
typical of fault data sets in general.
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Abstract—
Background: There has been much discussion amongst auto-
mated software defect prediction researchers regarding use of
the precision and false positive rate classifier performance metrics.
Aim: To demonstrate and explain why failing to report precision
when using data with highly imbalanced class distributions may
provide an overly optimistic view of classifier performance.
Method: Well documented examples of how dependent class
distribution affects the suitability of performance measures.
Conclusions: When using data where the minority class repre-
sents less than around 5 to 10 percent of data points in total,
failing to report precision may be a critical mistake. Furthermore,
deriving the precision values omitted from studies can reveal
valuable insight into true classifier performance.

I. INTRODUCTION

It is surprisingly difficult to characterise appropriately the
performance of data mining classification algorithms from
the field of machine learning. Deciding which performance
measures to use involves taking several factors into account,
including the costs associated with misclassification, and the
class distribution. We believe the inappropriate use of classifier
performance measures to be a current problem in the reporting
of defect prediction research, and this short paper explains
why.

In January 2007 the Menzies et al. paper ‘Data Mining
Static Code Attributes to Learn Defect Predictors’ was pub-
lished in the IEEE Transactions on Software Engineering
(Menzies, Greenwald & Frank 2007). In this study many
defect prediction experiments were carried out. Classifier
performance was reported using the two metrics used in
receiver operating characteristic (ROC) analysis, the true
positive rate and the false positive rate. In the journal these
metrics were referred to as the probability of detection (pd)
and the probability of false alarm (pf), respectively. The use
of these metrics motivated a comments paper by Zhang and
Zhang (Zhang & Zhang 2007). They argued that the prediction
“models built in (Menzies, Greenwald & Frank 2007) are not
satisfactory for practical use”. This was because the precision;
the proportion of modules predicted as being defective which
were also originally labeled as being defective, was low for
7 out of the 8 data sets (between 2.02 and 31.55 percent).
The authors conclude by suggesting that, for reporting on the
performance of software defect prediction models, the true
positive rate be used with precision rather than with the false
positive rate.

All authors are with the Computer Science Department at the University
of Hertfordshire, UK. Respective email addresses are: {d.gray, d.h.bowes,
n.davey, y.2.sun, b.christianson}@herts.ac.uk

The Zhang and Zhang comments paper motivated a response
by two of the original journal authors and two others (Menzies,
Dekhtyar, Distefano & Greenwald 2007). Here the main argu-
ments were that “detectors learned in the domain of software
engineering rarely yield high precision”, and that low precision
predictors can be useful in practice. While it is true that low
precision predictors can be useful in certain contexts, and that
lowering precision in order to increase the true positive rate
may be desirable depending on your objectives, it is clearly
inappropriate in a classification domain to disregard precision
completely.

In this paper we demonstrate that when using data with
a highly imbalanced class distribution, relying on true pos-
itive rates and false positive rates alone (this includes ROC
analysis) may provide an overly optimistic view of classifier
performance. We demonstrate this by showing that even when
pairs of values for these measures appear to be near optimal,
there is still considerable room for improvement in practical
terms. This is not a novel finding. However, many defect
prediction researchers have continued to report their classifi-
cation results inappropriately since the publication of (Zhang
& Zhang 2007). The contribution made here is the intuitive
and easily comprehensible presentation of the examples given
in Section III.

The rest of this paper is laid out as follows: Section II
provides a background to machine learning classifier perfor-
mance metrics. Section III describes the problem at hand, and
why precision is required to appropriately describe classifier
performance in highly imbalanced domains. Our conclusions
and advice for researchers is presented in Section IV.

II. BACKGROUND

This section presents an overview of machine learning
classifier performance metrics. In this study we limit our scope
to that of binary classification problems. For each data point
predicted during binary classification, there can be only one
of four possible outcomes:

• A true positive (TP) occurs when a data point labeled as
positive (typically ‘defective’ in this domain) is correctly
predicted as positive.

• A true negative (TN) occurs when a data point labeled
as negative (typically ‘non-defective’ in this domain) is
correctly predicted as negative.

• A false positive (FP) occurs when a negative labeled data
point is incorrectly predicted as positive.

• A false negative (FN) occurs when a positive labeled data
point is incorrectly predicted as negative.

These values can be put into a confusion matrix (Figure 1).
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labeled positive labeled negative
predicted positive TP FP
predicted negative FN TN

Fig. 1. A confusion matrix.

It is worth pointing out that there is a symmetry between
the positive and negative classes. However, the positive class
typically refers to the class of most interest (‘defective’ mod-
ules), which is commonly (in this domain and many others)
the minority class.

Useful data statistics and commonly used classifier perfor-
mance metrics can be derived from a confusion matrix. A
subset of these are defined in Table I. Note that in this table,
the last two measures defined (f-measure and balance) are
in their most commonly used form. It is however possible
to weight them in order to favour either of their comprising
measures (Jiang, Cukic & Ma 2008). Additionally note that
the balance measure was defined in (Menzies, Greenwald &
Frank 2007), it is a measurement of distance from a point on
a ROC curve to the ideal point, which is typically defined as
where the true positive rate is 1 and the false positive rate is
0.

The three measures of most interest in this paper are:
the true positives rate, the false positive rate, and precision.
The true positive rate describes the proportion of data points
labeled as positive which were correctly predicted as such;
the optimal value is 1. The false positive rate describes the
proportion of data points labeled as negative which were in-
correctly predicted as positive; the optimal value is 0. Precision
describes the proportion of modules predicted as defective
which were correct; the optimal value is 1.

In addition to observing classifier performance with a fixed
set of parameters, it may also be desirable to observe how
performance varies across a range of parameters. Doing so can
be especially beneficial when performing classifier compar-
isons. ROC curve analysis is commonly used for this task, and
involves exploring the relationship between the true positive
rate and the false positive rate of a classifier while (typically)
varying its decision threshold. A trade-off commonly exists
between the true positive rate and the false positive rate, and
this is demonstrated by ROC analysis via a two dimensional
plot of the false positive rate on the x-axis and the true positive
rate on the y-axis. The area under the ROC curve (AUC-ROC)
is commonly used to summarise a ROC curve in a single
measure. The optimal AUC-ROC value is 1.

Precision and recall (PR) curves can be used in the same
manner as ROC curves. On a PR curve, recall is on the x-
axis and precision on the y-axis. A trade-off commonly exists
between these two measures, and is thus shown on a PR curve.
Note that recall is another alias for the true positive rate used
in ROC analysis. PR curves are “an alternative to ROC curves
for tasks with a large skew in the class distribution” (Davis &
Goadrich 2006). The area under the PR curve (AUC-PR) can
be computed and used similarly to AUC-ROC.

Alias / Aliases Defined As

Testing Set No. Instances TP + TN + FP + FN

No. Instances in Class 1 (Positive Class) TP + FN

No. Instances in Class 2 (Negative Class) TN + FP

Accuracy + TP + TN

TP + TN + FP + FN
Correct Classification Rate

1 - Error Rate

Error Rate - FP + FN

TP + TN + FP + FN
Incorrect Classification Rate

1 - Accuracy

True Positive Rate +
TP

TP + FN

Recall
Sensitivity

Probability of Detection (pd)
1 - False Negative Rate

True Negative Rate + TN

TN + FP
Specificity

1 - False Positive Rate

False Positive Rate -
FP

FP + TN

Type 1 Error Rate
Probability of False Alarm (pf)

1 - True Negative Rate

False Negative Rate - FN

FN + TP
Type 2 Error Rate

1 - True Positive Rate

Precision +
TP

TP + FP

F-Measure + 2 ∗Recall ∗ Precision

Recall + PrecisionF-Score

Balance +
1−
√

(0−pf)2+(1−pd)2√
2Distance from ROC optimal point

TABLE I
A SUBSET OF STATISTICS DERIVED FROM A CONFUSION MATRIX.
MEASURES MARKED WITH ‘+’ HAVE AN OPTIMAL VALUE OF 1.
MEASURES MARKED WITH ‘-’ HAVE AN OPTIMAL VALUE OF 0.

III. WHY CLASS DISTRIBUTION AFFECTS THE
SUITABILITY OF MEASURES

Consider a perfectly balanced data set with 1000 data points,
500 in each class. If we achieve a classification performance
of true positive rate (TPR) = 1 and false positive rate (FPR)
= 0.01, it appears as though our classifier has performed very
well. All of the data points in the positive class have been
correctly classified (TPR = 1), and only 1 percent of data
points in the negative class (5 data points) have been incor-
rectly classified (FPR = 0.01). If we calculate the precision
of such a classifier, it works out to 0.99 (to two significant
figures). Thus 99 percent of data points predicted to be in the
positive class turned out to be correct. In this first example,
where we have a balanced class distribution, using the TPR
and FPR provided an honest and accurate representation of
classifier performance, as a near optimal pair of values likewise
resulted in a near optimal precision. A confusion matrix for
this example is presented in Figure 2.
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labeled positive labeled negative
predicted positive TP = 500 FP = 5
predicted negative FN = 0 TN = 495

Fig. 2. TPR = 1, FPR = 0.01, Precision = 0.99

Now consider a data set with a highly imbalanced class
distribution, 1000 data points in total but with only 10 data
points in the positive class (1 percent). If we again achieve
TPR = 1 and FPR = 0.01, classifier performance appears to
be equal to that of the previous classifier. This is inappropriate,
misleading, and exaggerates the classifiers real performance, as
the precision of this classifier is 0.50 as opposed to 0.99. Thus,
because of the imbalanced class distribution (i.e. much more
data in one class than the other), the same supposedly near
optimal TPR and FPR (or point on a ROC curve) represented
vastly different performance. In the first example 99 of every
100 positive predictions were correct, whereas in the second
example, the same TPR and FPR represented a classifier where
only half of all positive predictions were correct. A confusion
matrix for this example is presented in Figure 3.

labeled positive labeled negative
predicted positive TP = 10 FP = 10
predicted negative FN = 0 TN = 980

Fig. 3. TPR = 1, FPR = 0.01, Precision = 0.50

Turning attention toward the domain of software defect
prediction, researchers often use data sets where the minority
class represents less than 1 percent of data points in total (see
(Menzies, Greenwald & Frank 2007), (Lessmann, Baesens,
Mues & Pietsch 2008) and (Jiang & Cukic 2009), for exam-
ple). We now present an example using the most imbalanced
of the NASA Metrics Data Program data sets1, PC2. This
data set contains 5589 data points, each consisting of module
product metrics and the associated fault data. Just 23 of the
data points are labeled as ‘defective’, 0.4 percent of data points
in total. Thus, with a TPR of 1 all 23 data points labeled
as ‘defective’ would be correctly classified. An FPR of 0.01
means that 1 percent of the 5566 data points labeled as ‘non-
defective’ were incorrectly classified. With approximately 56
false positives, a total of 79 modules would be predicted to
require further attention. This works out to a precision of 0.29
(to two significant figures), despite the other metrics implying
near optimal performance. A confusion matrix for this example
is presented in Figure 4.

labeled positive labeled negative
predicted positive TP = 23 FP = 56
predicted negative FN = 0 TN = 5510

Fig. 4. TPR = 1, FPR = 0.01, Precision = 0.29

1http://mdp.ivv.nasa.gov/

In this domain, where the cost of false positives is typically
not prohibitively large (see (Menzies, Dekhtyar, Distefano &
Greenwald 2007)), such a classifier would, in most environ-
ments, be very attractive. Observe however that because of
the highly imbalanced class distribution, small changes in the
FPR have a large effect on the actual number of false positives.
Thus if classifier performance changes to TPR = 1 and FPR
= 0.05, the number of false positives increases to 280. The
precision in turn drops to 0.08 (to two significant figures). In
some environments examining 100 modules to find 8 of them
to be defective would not be feasible. A confusion matrix for
this example is presented in Figure 5.

labeled positive labeled negative
predicted positive TP = 23 FP = 280
predicted negative FN = 0 TN = 5286

Fig. 5. TPR = 1, FPR = 0.05, Precision = 0.08

As defect predictors do not achieve performance even close
to TPR = 1 and FPR = 0.05, are these theoretical experiments
valid? Zhang and Zhang (Zhang & Zhang 2007) indirectly
answer this question by highlighting the precision achieved
in (Menzies, Greenwald & Frank 2007) on data set PC2.
Here, despite results appearing to be acceptable (TPR = 0.72,
FPR = 0.14), and claims of the naive Bayes classifiers being
“demonstrably useful”, the precision was just 2.02 percent.
The classifier predicted that approximately 796 modules were
in the ‘defective’ class, of which only approximately 17
actually were. This highlights the poor predictive performance
achieved, and raises the question of whether such a classifier
could be of any practical worth. An optimistic approximation
of the confusion matrix for the entire data set (the results in
the study were generated after 10 repeated runs of 10-fold
cross-validation) is presented in Figure 6.

labeled positive labeled negative
predicted positive TP = 17 FP = 779
predicted negative FN = 6 TN = 4787

Fig. 6. TPR = 0.74, FPR = 0.14, Precision = 0.02

Note that an identical confusion matrix to the one in Figure
6 can be obtained by simply ranking all data points in data set
PC2 by their lines of code total attribute (descending order),
and predicting the first n = 796 data points only as defective.
It is a similar case for 2 more of the 8 data sets used in
(Menzies, Greenwald & Frank 2007), where n is the approxi-
mate average number of ‘defective’ predictions made. This is
known as LOC module-order modelling (see (Khoshgoftaar &
Allen 2003) and (Mende & Koschke 2009)), and highlights
both the poor predictive performance of the classifiers, and
that research into making defect predictors ‘effort aware’ is
worthwhile (see (Arisholm, Briand & Fuglerud 2007) and
(Mende & Koschke 2010)).

Table II presents statistics for each of the 13 NASA Metrics
Data Program data sets. These data sets were chosen as they
have been heavily used in software defect prediction research.
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NASA Data
Set Alias

No. Data
Points

No. Positive (Minority)
Class Data Points

Percentage of Positive
Class Data Points

Percentage Precision @
TPR=1, FPR=0.01

Percentage Precision @
TPR=1, FPR=0.05

PC2 5589 23 0.4 29.11 7.64

MC1 9466 68 0.7 41.98 12.64

PC5 17186 516 3.0 75.55 38.22

PC1 1107 76 6.9 88.37 59.38

MW1 403 31 7.7 88.57 62.00

KC3 458 43 9.4 91.49 67.19

CM1 505 48 9.5 90.57 67.61

PC3 1563 160 10.2 91.95 69.57

PC4 1458 178 12.2 93.19 73.55

KC1 2107 325 15.4 94.75 78.50

JM1 10878 2102 19.3 95.98 82.72

MC2 161 52 32.3 98.11 91.23

KC4 125 61 48.8 98.39 95.31

TABLE II
EACH OF THE NASA METRICS DATA PROGRAM DATA SETS RANKED IN ASCENDING ORDER OF PERCENTAGE DATA POINTS IN MINORITY CLASS.

The table shows class distribution details for each data set as
well as the precision when TPR = 1, FPR = 0.01 and when
TPR = 1, FPR = 0.05. Note that the false positives in these
calculations were rounded to the nearest integer. The data sets
are ranked in ascending order of the percentage of modules
in the positive (minority) class. From the table it can be seen
that for the three data sets with the highest class imbalance
especially, near optimal values of TPR and FPR results in
classifiers which are far from optimal in practical terms, or in
terms of precision.

Thus, relying on TPR and FPR or methods based around
them, including: ROC analysis, AUC-ROC, and the balance
metric, “can present an overly optimistic view of an algo-
rithm’s performance if there is a large skew in the class
distribution” (Davis & Goadrich 2006). Precision is required
to give a more accurate representation of true performance in
this context.

IV. CONCLUSIONS

Precision matters, especially when class distributions are
highly skewed. When performing any kind of data mining
experiment we believe it is very important to document the
characteristics of the data being used: where it came from,
what pre-processing has been carried out, how many data
points and features are present, what is the class distribution,
etc. This makes it more accessible for other researchers to
check the validity of the claimed results. For example; if such
data characteristics are given, it is often possible to derive
measures that are not explicitly reported, as done here. The
inspiration for the work carried out here came from (Zhang
& Zhang 2007), where precision values omitted in (Menzies,
Greenwald & Frank 2007) were derived using the TPR, FPR,
and class distribution data.

If classifier performance is to be reported with a single
set of (hopefully validated and thus suitable) parameters, we
believe defect prediction researchers should be reporting a
minimum of recall (TPR) and precision, in addition to the data
characteristics just described. It is of no harm to also report
the false positive rate. Note that it is necessary to take both
recall and precision into account when accessing performance,
a single one of these measures will not suffice. This is because
an optimal recall can be achieved by simply predicting all
data points as belonging to the positive class, and an optimal
precision can be achieved by only making a single positive
prediction, which turns out to be correct. The f-measure (see
Table I) is commonly used to combine both measures into
a single value, and can simplify performance quantification.
When classifier performance is to be reported over a range
of parameters, we believe precision and recall (PR) curves to
be more suitable in this domain than ROC curves. This is
because class distributions are often highly skewed (Menzies,
Dekhtyar, Distefano & Greenwald 2007).

Lessmann et al. carried out a large scale benchmarking
defect prediction experiment with 22 classifiers (Lessmann
et al. 2008). The top 17 of these classifiers were reported
to have statistically indistinguishable performance using the
AUC-ROC performance measure, and a statistical approach
proposed by (Demšar 2006). The data used in the study came
from 10 of the NASA Metrics Data Program data sets. Davis
and Goadrich in (Davis & Goadrich 2006) point out that with
highly imbalanced data sets, PR-curves are more powerful at
distinguishing the performance of classification methods than
ROC curves. Thus, we think it would be interesting for the
experiment by Lessmann et al. to be replicated with PR-curves
and AUC-PR.
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In a recent paper by Menzies et al. (Menzies, Milton,
Turhan, Cukic, Jiang & Bener 2010), it is stated that the “stan-
dard learning goal” of defect predictors it to maximize AUC-
ROC. We would argue that this should not be the standard
learning goal of defect predictors. As shown here, by (Davis
& Goadrich 2006) and by (Zhang & Zhang 2007), precision is
required in a typically imbalanced domain. Moreover, (Davis
& Goadrich 2006) prove “that an algorithm that optimizes the
area under the ROC curve is not guaranteed to optimize the
area under the PR curve”.

In addition to the comments made about defect predictor
learning goals, the Menzies et al. paper also states “that accu-
racy and precision are highly unstable performance indicators
for data sets . . . where the target concept occurs with relative
infrequency”. While it is commonly reported within the data
mining literature that accuracy is not suitable for imbalanced
data sets, the same can not be said (at all) for precision. This
is true other than in the context of experiments to explore the
class imbalance problem (see (Batista, Prati & Monard 2004)),
where the FPR is better suited than precision.

REFERENCES

Arisholm, E., Briand, L. C. & Fuglerud, M. (2007), Data mining techniques
for building fault-proneness models in telecom java software, in ‘ISSRE
’07: Proceedings of the The 18th IEEE International Symposium on
Software Reliability’, IEEE Computer Society, Washington, DC, USA,
pp. 215–224.

Batista, G. E. A. P. A., Prati, R. C. & Monard, M. C. (2004), ‘A study of
the behavior of several methods for balancing machine learning training
data’, SIGKDD Explor. Newsl. 6, 20–29.

Davis, J. & Goadrich, M. (2006), The relationship between precision-recall
and roc curves, in ‘Proceedings of the 23rd international conference on
Machine learning’, ICML ’06, ACM, New York, NY, USA, pp. 233–240.
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Abstract: Background: The NASA metrics data program (MDP) data sets have been heavily used in software defect prediction
research. Aim: To highlight the data quality issues present in these data sets, and the problems that can arise when they are used in
a binary classification context. Method: A thorough exploration of all 13 original NASA data sets, followed by various
experiments demonstrating the potential impact of duplicate data points when data mining. Conclusions: Firstly researchers
need to analyse the data that forms the basis of their findings in the context of how it will be used. Secondly, the bulk of
defect prediction experiments based on the NASA MDP data sets may have led to erroneous findings. This is mainly because
of repeated/duplicate data points potentially causing substantial amounts of training and testing data to be identical.

1 Introduction

Modern software defect prediction research typically involves
classification and/or regression algorithms being used to
predict the presence of non-syntactic implementational
errors in software source code. To make these predictions
such algorithms attempt to generalise upon software fault
data, observations of software product and/or process
metrics coupled with a ‘level of defectiveness’ value. This
value typically takes the form of a ‘number of faults
reported’ metric, for a given software unit after a given
amount of time (either post code development or system
deployment). Note that in this paper we use the following
terms interchangeably: defect, error, fault and bug.

The predictions made by defect predictors may be
continuous (level of defectiveness) or categorical [often set
membership of either: (‘defective’, ‘non-defective’)]. The
current trend by researchers is typically to report the latter
(categorical predictions) only. However, this may not be the
best approach, as continuous predictions allow software
units to be ranked according to their predicted quality factor
(this is known as module-order modelling, see [1]). A
software quality ranking system has the real-world benefit of
producing an ordered list of the seemingly most error-prone
code units. These code units can then be subjected to some
form of further inspection, in descending order of predicted
level of defectiveness, for as long as resources allow.

In order to carry out a software defect prediction
experiment there is a requirement for reasonable quality
data. However, software fault data is very difficult to
obtain. Commercial software development companies often
do not have a fault measurement program in place.
Moreover, even if such a program is in place, it is typically
undesirable from a business perspective to publicise fault
data. This is particularity true for systems where quality has
been a serious problem, that is, where it would be most

useful to publicise such data and give researchers an
opportunity to discover why this was the case.

Open-source systems are frequently used by researchers to
construct their own fault data sets [2–6]. Such systems are
often developed while using a bug-tracking system to
record the faults encountered by developers. If bug
information has been correctly and consistently entered into
version control commit messages, it is then possible to
autonomously locate the fault-fixing revisions. From here it
is possible to (fairly accurately) map fault-fixing revisions
back to where the fault was first introduced (the bug-
introducing change, see [5–7]). The major problem with
constructing fault data from open-source systems is that it
can be a very time consuming task to do accurately. This is
because human intervention is often required to check the
validity of the automated mappings. For systems of even
moderate size, the quantity of these mappings can make this
task infeasible.

Thus difficulty in obtaining software fault data is the major
factor why public domain fault data repositories, such as
those hosted by NASA and PROMISE, have become so
popular among researchers. These repositories host
numerous data sets, which require no data analysis and little
or no pre-preprocessing, before machine learning tools such
as Weka will classify them. The ease of this process can be
dangerous to the inexperienced researcher. Results can be
obtained without any scrutiny of the data. Furthermore,
researchers may naively assume the NASA metrics data
program (MDP) data sets are of reasonable quality for data
mining. This issue is worsened by the hosting sites not
indicating the main problems, and by so many researchers
using these data sets inappropriately. The aim of this study
is therefore to illuminate: the data quality issues present in
these data sets, and the problems that can arise when they
are used (as they often are) in a binary classification
context. It is hoped that this study will encourage
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researchers to take data quality seriously, and to question the
results of some studies based on these data sets.

The NASA MDP Repository was previously available at
http://mdp.ivv.nasa.gov/ and is currently available in a more
basic, less documented form at http://filesanywhere.com/fs/
v.aspx?v=896a648c5e5e6f799b. The repository currently
contains 13 module-level data sets explicitly intended for
software metrics research. Each data set represents a NASA
software system/subsystem and contains static code metrics
and fault data for each comprising module. Note that
‘module’ in this case refers to either a function, procedure
or method. The static code metrics recorded include lines-
of-code (LOC)-count, Halstead [8] and McCabe [9]-based
measures. The primary fault data takes the form of an error-
count metric, which was reportedly calculated from the
number of error reports issued for each module via a bug-
tracking system. From the details given at the original
NASA MDP Repository, it is unclear precisely how these
error reports were mapped back to the individual modules;
however, it was stated that ‘If a module is changed due to
an error report (as opposed to a change request), then it
receives a one up count. It cannot receive more than a one
up for a given error report.’ It was also stated that the error-
count metric describes ‘the number of changes due to
error’. The originating source code for these data sets is
entirely closed-source, making the validation of data
integrity more difficult. A substantial amount of research
based wholly or partially on these data sets has been
published over the last decade, including [10–55]. Note
that in this study we focus solely on the data sets just
described, because they are widely used; we do not make
use of the available object-oriented metrics data set, or any
other data set affiliated with NASA.

The most common usage for the NASA data sets (as
reported in the literature) is in binary classification
experiments. Typically, a classifier is trained on binary-
labelled data, and then each new set of module metrics is
predicted as belonging to either a ‘faulty’ module, or a
‘non-faulty’ module. This is clearly a huge simplification of
the real world, for two main reasons. Firstly, fault quantity
is disregarded: there is typically no distinction between a
module with one reported fault and a module with 31
reported faults, they are both simply labelled as ‘faulty’.
Secondly, fault severity is disregarded: there is typically no
distinction between a trivial fault and a life-threatening
fault. Despite these crude simplifications, binary
classification defect prediction studies continue to be very
prolific.

It is widely accepted by the data mining community that in
order to accurately assess the potential real-world
performance of a classification model, the model must be
tested against entirely different data from that upon which it
was trained [56]. This is why there is a distinction between
a training set and a testing set. A testing set is also referred
to as an independent test set, as it is intended to be
independent from the training set (i.e. models should be
tested against ‘unseen data’, see [56]). This is very basic
data mining knowledge, and is no surprise to the defect
prediction community. In 2004 Menzies et al. [11] state: ‘if
the goal of learning is to generate models that have some
useful future validity, then the learned theory should be
tested on data not used to build it. Failing to do so can
result in a excessive over-estimate of the learned model. . .’.
Despite this fact being well-known, numerous studies based
on the NASA MDP data sets (henceforth, NASA data sets)
have potentially had high proportions of data points

common to both their training and testing sets. This is
because the NASA data sets contain varied quantities of
repeated data points, observations of module metrics and
their corresponding fault data occurring more than once.
Thus, when this data is used in a classification context, the
separation into training and testing sets may result in both
sets containing large proportions of common data points.
This can yield the aforementioned excessive estimate of
performance, as classifiers can memorise rather than
generalise. This is very serious, as when data mining ‘it is
important that the test data was not used in any way to
create the classifier’ [56].

In this study we thoroughly analyse all 13 of the original
NASA data sets. We are interested in data quality in terms
of noise, inaccurate/incorrect data (see [57]). Additionally,
because these data sets are typically used in binary
classification experiments, we are also interested in the
issues specific to this context. Firstly, we highlight the basic
data quality problems via our novel data cleansing process.
This process is for removing noise, and for preparing the
data sets for binary classification. Next, we present the
more complex issues still remaining after the cleansing
process, including the issue of repeated data points. We
discuss at length the potential problems caused by repeated
data points when data mining, and why using lower level
metrics (such as character counts) in fault data sets may
alleviate these problems, by helping to distinguish non-
identical modules.

The rest of this paper is presented as follows: in the next
section we discuss related work, papers where problems
with the NASA data sets have been documented or
discussed. In Section 3 we document our novel data
cleansing process in incremental stages. Section 4 contains
a discussion of the issues still remaining after our cleansing
process, including a demonstration of the potential effects
of repeated data points during classification experiments. A
new method to address these issues is proposed at the end
of Section 4. Our conclusions are presented in Section 5.

2 Related studies

The major problem when using the NASA data sets in a
classification context is that repeated data points may result
in training data inadvertently being included in testing sets,
potentially invalidating the experiment. This is not a new
finding; however, we believe it needs spelling out to
researchers, as previous studies mentioning this issue seem
to have been ignored. In this section the most relevant
studies surrounding this issue are discussed.

The earliest mention of repeated data points in NASA data
sets that we can find was made in [58]. The authors state that
they eliminated ‘redundant data’, but give no further
explanation as to why. The data set used was NASA data
set KC2, which is not available from the NASA MDP
Repository. Although this data set is currently available
from the PROMISE Repository, we did not use it in our
study in an effort to use only the original, unmodified data.

In [33] five NASA data sets were used in various
classification experiments. The author states that ‘data pre-
processing removes all duplicate tuples from each data
set along with those tuples that have questionable values
(e.g. LOC equal to 1.1).’ Interestingly, it is only the
PROMISE versions of the NASA data sets that contain
these clearly erroneous non-integer LOC-count values. The
author goes into detail on repeated data points, stating that
‘to avoid building artificial models, perhaps the best
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approach would be not to allow duplicates within datasets’.
One of the experiments carried out was intended to show
the effect of the repeated data points in the five NASA data
sets used. This was in a 10-fold cross-validation
classification experiment with a C4.5 decision tree. The
claimed result was that the data sets with the repeats
included achieved significantly better performance than
those without. Although this result is to be expected, there
was an unfortunate technical shortcoming in the
experimental design. When reporting the performance of
classifiers on test sets with imbalanced class distributions,
‘accuracy’ (or its inverse: ‘error rate’) should not be used
[59]. In addition to this, care is required when performing
such an experiment, as the proportion of repeated data
points in each class is not related to the class distribution.
Therefore, post the removal of repeated data points, the data
sets could have substantially different class distributions.
This may boost or reduce classifier performance, because of
the class imbalance problem (see [60, 61]).

Classification experiments utilising probabilistic outputs
were carried out in [39]. Here the authors used five of the
original NASA data sets and state that they removed both
‘redundant and inconsistent patterns’. Inconsistent data
points are another of the problems when data mining with
the NASA data sets. They occur when repeated feature
vectors (module metrics) describe data points with differing
class labels. Thus, in this domain they occur where the
same set of metrics is used to describe both a module
labelled as ‘defective’ and a module labelled as ‘non-
defective’. We believe the removal of such instances was
first carried out in [25].

The work described here differs from that previously
described, as it is not based on classification experiments. It
is instead based on the analysis and cleansing of data. This
study demonstrates: the poor quality of the NASA data sets;
the extent to which repeated data points disseminate into
training and testing sets; and the effect of testing sets
containing seen data during classification experiments.

3 Method: data cleansing

The NASA data sets are available from the aforementioned
NASA MDP and PROMISE repositories. For this study, we
used the original versions of the data sets from the NASA
MDP Repository. Note, however, that the main issues also
apply to the PROMISE versions of these data sets
(available at http://promisedata.org/), which are for the most
part simply the same data in a different format. Also note
that updated versions of the data sets have recently been
uploaded at PROMISE. These new versions address many
of the issues pointed out in our earlier work (see [62]).

3.1 Initial pre-processing: binarisation of class
variable and removal of module identifier and extra
error data attributes

In order to be suitable for binary classification, the error-count
attribute is commonly reported in the literature (see [13, 29,
55] for example) as being binarised as follows

defective? = (error count ≥ 1)

It is then necessary to remove the ‘unique module
identifier’ attribute, as this gives no information towards the
defectiveness of a module. Lastly, it is necessary to remove
all other error-based attributes, to make the classification

task worthwhile. This initial pre-processing is summarised
in Fig. 1. As the NASA data are often reportedly used post
this initial pre-processing, we present an overview of each
data set in Table 1.

3.2 Stage 1: removal of constant attributes

A numeric attribute which has a constant/fixed
value throughout all instances is easily identifiable as it will
have a variance of zero. Such attributes contain no
information with which to discern modules apart, and are at
best a waste of classifier resources. Each data set had from
0 to 10% of their total attributes removed during this stage,
with the exception of data set KC4. This data set has 26
constant attributes out of a total of 40, thus 65% of
available data contains no information with which to train a
classifier.

This stage removes data that may be genuine, but in
the context of machine learning it is of no use and
is therefore discarded. Regarding data set KC4, it appears
as though many of the metrics have not been collected;
instead of leaving them out of the data set originally
however, they were instead included with all values equal
to zero.

An additional note regarding data set KC4 is that two of its
attributes: ‘essential complexity’ and ‘essential density’ have
two unique values each, but in each case, one of the values
occurs just once. This data may be valid, but after the data
divide into training and testing set, it may be that the
training data contains a constant attribute. This can be
problematic for some learning techniques, and is therefore
something that researchers should be aware of.

Fig. 1 Initial pre-processing pseudo-code

Table 1 Details of the NASA data sets post initial pre-processing

Name Language Features Instances Defective

instances, %

CM1 C 40 505 10

JM1 C 21 10 878 19

KC1 C++ 21 2107 15

KC3 Java 40 458 9

KC4 Perl 40 125 49

MC1 C and C++ 39 9466 0.7

MC2 C 40 161 32

MW1 C 40 403 8

PC1 C 40 1107 7

PC2 C 40 5589 0.4

PC3 C 40 1563 10

PC4 C 40 1458 12

PC5 C++ 39 17 186 3
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3.3 Stage 2: removal of repeated attributes

In addition to constant attributes, repeated attributes occur
where two or more attributes have identical values for each
instance. Such attributes are therefore fully correlated,
which may effectively result in a single attribute being
over-represented. Among the NASA data sets there are two
repeated attributes (post stage 1), namely the ‘number of
lines’ and ‘loc total’ attributes in data set KC4. The
difference between these two metrics is poorly defined at
the NASA MDP Repository. However, they may be
identical for this data set as (according to the metrics) there
are no modules with any lines either containing comments
or which are empty. For this data-cleansing stage we
removed one of the attributes so that the values were only
being represented once. We chose to keep the ‘loc total’
attribute label as this is common to all 13 NASA data sets.

This stage again removes data that may be genuine,
because it can be problematic when data mining. It is
interesting that data set KC4 has had so much data removed
in these first two stages. Table 1 shows that KC4 is unique
in that it is the only data set based on Perl code. Therefore
it may be that the metrics collection tool (McCabeIQ 7.1)
was more limited in the metrics it could collect for this
language.

3.4 Stage 3: replacement of missing values

Missing values may or may not be problematic for learners
depending on the classification method used. However,
dealing with missing values within the NASA data sets is
very simple. Seven of the data sets contain missing values,
but all in the same single attribute: ‘decision density’. This
attribute is defined as ‘condition count’ divided by
‘decision count’, and for each missing value both these
base attributes have a value of zero. It therefore appears as
though missing values have occurred because of a division
by zero error. In the remaining data set which contains all
three of the aforementioned attributes but does not contain
missing values, all instances with ‘condition count’ and
‘decision count’ values of zero also have a ‘decision
density’ of zero. Because of this we replace all missing
values with zero, ensuring consistency between data sets.
Note that in [39] all instances which contained missing
values within the NASA data sets were discarded. It is
more desirable to cleanse data than to remove it, as the
quantity of possible information to learn from will thus be
maximised.

This stage adds data via the replacement of missing values,
because they are problematic for many learning techniques.
Note, however, that some researchers may not wish to carry
out this stage, if they are using a learning method that is
resilient to missing values (such as naive Bayes).
Additionally, some researchers may wish to exclude derived
features (such as ‘decision density’) altogether. There is
more discussion on this in Section 4.

3.5 Stage 4: enforce integrity with domain-specific
expertise

The NASA data sets contain varied quantities of attributes
derived from simple equations of other attributes, which are
useful for checking data integrity. In addition, it is possible
to use domain-specific expertise to validate data integrity,
by searching for theoretically impossible occurrences. The

following is a non-exhaustive list of checks that can be
carried out for each data point:

† Halstead’s length metric (see [8]) is defined as ‘number of
operators’ + ‘number of operands’.
† Each token that can increment a module’s cyclomatic
complexity (see [9]) is counted as an operator according to
the original NASA MDP Repository. Therefore the
cyclomatic complexity of a module should not be greater
than the number of operators + 1. Note that the minimum
cyclomatic complexity is 1.
† The number of function calls within a module is recorded
by the ‘call pairs’ metric. A function call operator is counted
as an operator according to the original NASA MDP
Repository, therefore the number of function calls should
not exceed the number of operators.

These three simple rules are a good starting point for
removing noise in the NASA data sets. Any data point
which does not pass all of the checks contains noise. As the
original NASA software systems/subsystems from where
the metrics are derived are not publicly available, it is
impossible for us to investigate this issue of noise further.
The most viable option is therefore to discard each
offending instance. Note that a prerequisite of each check is
that the data set must contain all of the relevant attributes
(post stage 1). Six of the data sets had data removed during
this stage, between 1 and 12% of their data points in total.

During this stage, it is possible to not only remove noise
(inaccurate/incorrect data), but also problematic data. A
module which (reportedly) contains no lines of code and no
operands and operators should be an empty module
containing no code. Should such a data point be discarded?
As it is impossible for us to check the validity of the
metrics against the original code, this is a grey area. An
empty module may still be a valid part of a system, it may
just be a question of time before it is implemented.
Furthermore, a module missing an implementation may still
have been called by an unaware programmer. As the
module is unlikely to have carried out the task its name
implies, it may also have been reported to be faulty.
Despite this, researchers need to decide for themselves what
to do with data that cannot be proved to be noisy, but is
nonetheless strange. For example, the original data set MC1
(according to the metrics) contains 4841 modules (51% of
modules in total) with no lines of code. We feel that it
would therefore not be unreasonable to remove such data
points, or even reject the entire data set altogether.

4 Further issues

Our data-cleansing process demonstrates issues with the
NASA data sets in terms of noise (stage 4) and
classification-specific problems (stages 1–3). Although
there are almost certainly more noisy data points that could
not be identified using such simple methods, it is difficult
for us to explore this further because of the closed-source,
proprietary nature of the software. However, there are
additional, more serious classification-specific problems,
which we now discuss.

The most well-known issue regarding use of the NASA
data sets in classification experiments is that of the varied
levels of class imbalance (see Table 1). The table shows
that data set KC4 has an almost balanced class distribution,
whereas data set PC2 has only 0.4% of data points
belonging to the minority class. This is an issue that
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researchers should be aware of. Learning from imbalanced
data is an active area of research within the data mining
community, we therefore refer readers to standard texts [56,
60, 61, 63]. Note, however, that defect prediction
researchers need to be very careful in the way they assess
the performance of their classifiers when using highly
imbalanced data (see [64–66]).

Another issue is that, as mentioned previously, there are
attributes within the NASA data sets that are simple
equations of other attributes. Although useful for checking
data integrity, they can be problematic (or simply a waste of
computational resources) depending on the learning
technique used. For example, support vector machines
utilising a Gaussian radial basis kernel will typically not
benefit from the inclusion of such attributes, as they will be
implicitly calculated. Additionally, other highly correlated
attributes can be found within the data sets, which are
known to harm classification performance with many
learning techniques [67, 68]. Therefore in some contexts,
researchers may wish to address these issues. This usually
involves removing attributes during pre-processing and/or
utilising a feature selection technique on the training data.

The most severe issue when using the NASA data sets for
classification experiments is that of repeated data points.
Unfortunately, such data points are often ignored in the
defect prediction literature. Repeated, redundant or duplicate
data points are data points (or instances) that appear more
than once within a data set. They occur either because of a
data quality problem (a faulty data collection process), or
(in this domain) when many modules have the same values
for all measured metrics; for example, when they have the
same number of: lines of code, lines of comments, blank
lines, operands, operators, unique operands, unique
operators, function calls and so on. Additionally, these
modules have also been assigned the same class label
referring to whether they are or are not ‘defective’. This
situation is clearly possible in the real world; for example,
in an object-oriented system, there may be many simple
accessor and mutator methods that have not been reported
as faulty and share identical metrics. However, such data
points may be problematic in the context of machine
learning, where is it imperative that classifiers are tested
upon data points independent from those used during
training [56]. The issue is that when data sets containing
repeated data points are split into training and testing sets
(e.g. by a x% training, 100 2 x% testing split, or n-fold
cross-validation), it is possible for there to be instances
common to both sets. With test data included in the training
data, the learning task is either simplified or reduced
entirely to a task of recollection. Ultimately however, if the
experiment is intended to show how well a classifier could
generalise upon future, unseen data points, the results will
be erroneous as the experiment is invalid. This is because
the assumption of unseen data has been violated, as the test
data has been contaminated with training data.

Inconsistent (or conflicting) instances are another issue,
and are very similar to repeated instances in that both occur
when the same feature vectors describe multiple modules.
The difference between repeated and inconsistent instances
is that with the latter, the class labels differ, thus (in this
domain) the same metrics would describe both a ‘defective’
and a ‘non-defective’ module. This is again possible in the
real world, and while not as serious an issue as the repeated
instances (in the case of the NASA data sets), inconsistent
data points can be problematic during binary classification
tasks. When building a classifier which outputs a predicted

class set membership of either ‘defective’ or ‘non-
defective’, it is illogical to train such a classifier with data
instructing that the same set of features is resultant in both
classes. We focus more on repeated data points than
inconsistent ones in this study, as for most data sets the
proportion of repeated instances is considerably larger.
Note, however, that it is possible for a data point to be both
repeated and inconsistent.

The proportion of repeated data points in each data set
(post initial pre-processing, as this is how they are most
frequently used) is shown in Fig. 2. Note that in some cases
the proportion is very large (89, 79 and 75% for data sets
PC5, MC1 and PC2, respectively). In an earlier study [62],
we recommended the removal of such instances as part of
our data cleansing process, ensuring that each consistent
data point is unique. This is a simple and acceptable way to
address the issues caused by repeated data points, which
has been carried out in prior studies (see [39, 58]).
However, in this study we propose a novel and robust
approach, where test sets remain unmodified. We come
back to this at the end of this section, after addressing the
following, more immediate questions: Why are there so
many repeated data points and what can be done in future
to avoid them? What proportion of seen data points could
end up in testing sets if this data were to be used in
classification experiments? What effect could having such
quantities of seen data points in testing sets have on
classifier performance? Each of these questions are
addressed in the sections that follow.

4.1 Why are there so many repeated data points
and how can they be avoided in future?

As previously stated, the NASA data sets are based on closed-
source, proprietary software, so it is impossible for us to
validate whether the repeated data points are truly a
representation of each software system/subsystem, or
whether they are noise. Despite this, a probable factor in
why the repeated (and inconsistent) data points are a part of
these data sets is because of the poor differential capability
of the metrics used. Intuitively, 40 metrics describing each
software module seem like a large set. However, many of
the metrics are simple equations of other metrics. Because
of this, it may be highly beneficial in future to also record
lower level metrics, such as character counts. These will
help to distinguish modules apart, particularly small

Fig. 2 Proportion of repeated data points in each NASA data set
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modules, which statistically result in more repeated data
points than large modules. Additionally, learners should be
able to utilise such low-level data for helping to detect
potentially troublesome modules (in terms of error-
proneness).

The size of the input space in these data sets and fault data
sets in general has not been previously discussed in detail to
the best of our knowledge. All base attributes (attributes not
derived from simple equations of other attributes) in these
data sets contain only discrete values ≥ 0. Therefore the
probability of a repeated data point in these data sets is
much greater than, for example, a data set with real-valued
measurements for the same number of attributes. This is
why we believe that in future, researchers should
additionally record lower level metrics (such as character
counts), to alleviate the issues with repeated data points by
helping to distinguish non-identical modules.

4.2 What proportion of seen data points could end
up in testing sets if this data were to be used in
classification experiments?

In order to find the answer to this question, a small Java
program was developed utilising the Weka machine
learning tool’s libraries (version 3.7.5). These libraries were
chosen as they have been heavily used in defect prediction
research (see [13, 33, 36], for example). In this experiment
a standard stratified 10-fold cross-validation was carried
out. During each of the 10-folds, the number of instances in
the testing set which were also in the training set were
counted. After all 10-folds, the average number of shared
instances in each testing set was calculated. This process
was repeated 10 000 times with different pseudo-random
number seeds to defend against order effects. For this
experiment, we used the NASA data sets post basic pre-
processing (see Table 1). We did this because it was as
representative as possible of what will have happened in
many previous studies. It is for the same reason that we
chose stratified 10-fold cross-validation, the Weka default.
The results from this experiment are shown in Figs. 3a and
3b. These figures show that for each data set, the average
proportion of seen data points in the testing sets was greater
than the proportion of repeated data points in total.
Additionally, this relationship can be seen in Fig. 3b to
have a strong positive correlation. It is worth emphasising
that in some cases the average proportion of seen data
points in the testing sets was very large (91, 84 and 82%
for data sets PC5, MC1 and PC2, respectively).

4.3 What effect could having such quantities of
seen data points in testing sets have on classifier
performance?

To answer this question we do not use the NASA data sets
because of the point regarding class distributions mentioned
in Section 2. Instead, for clarity, we construct an artificial
data set, with 10 numeric features and 1000 data points. All
features were generated by a uniform pseudo-random
number generator and have a possible range between 0 and
1 inclusive. The data set has a balanced class distribution,
with 500 data points representing each class.

Using the Weka Experimenter, we ran 10 repetitions of a
stratified 10-fold cross-validation experiment with the data
set just described, and the following variations of it:

† 25% repeats from each class, an extra copy of 125 unique
instances in each class, 1250 instances in total.
† 50% repeats from each class, an extra copy of 250 unique
instances in each class, 1500 instances in total.
† 75% repeats from each class, an extra copy of 375 unique
instances in each class, 1750 instances in total.
† 100% repeats, two copies of every instance, 2000 instances
in total.

We used random forest learners for this experiment, with
500 trees and all other parameters set to the Weka defaults.
We chose 500 trees as this was the number used in [19, 21,
22]. The results of this experiment are shown in Fig. 4. The
mean accuracy levels for each data set: original, 25, 50, 75
and 100% repeats were 47.84, 67.38, 80.22, 88.37 and
95.00. This clearly shows that seen data points can have a
huge influence on the performance of classifiers, even with
pseudo-random data. As the percentage of duplicates
increases, so does the performance of the classifiers. There
are several major factors why this is the case, including that
each node (or tree) comprising a random forest is

† Unpruned: Meaning that the training data is essentially
memorised. Therefore in cases where the test data contains
seen data points, these points are highly likely to be
classified correctly, provided they are consistent in the
training data.
† Trained on a bootstrap sample of the original training
data: Such samples are made with replacement, meaning
that many original training instances will be repeated and
some not chosen at all. Clearly, if the original training data
contains duplicates to begin with, the proportion of repeated
instances trained on by each node will likely increase
dramatically.
† Trained on a subset of available features: Meaning that,
with the input space of each data point reduced because of
this subset, there is a greater likelihood of repeated (and
inconsistent) data.

The results from this experiment are very interesting, as
random forests have been reported to work well with the
NASA data sets [19–22]. Note that random forests have
also been reported to struggle with imbalanced data [69–
71]. This makes them not the obvious choice for use with
the NASA data sets, as most of them are imbalanced (see
Table 1). Despite this, favourable performance has been
observed [19–22], which we believe is partly because of
the reasons just described. Note that we have confirmed
these findings using version 5.1 of Breiman and Cutler’s
original Fortran code (available at http://www.stat.berkeley.
edu/~breiman/RandomForests/cc_home.htm).

It is worth pointing out that the effect of learning on
repeated data points is algorithm specific. For example,
naive Bayes classifiers have been reported to be fairly
resilient to duplicates [72]. We confirm this by repeating the
experiment described previously with naive Bayes
classifiers. The results are shown in Fig. 5. Although these
results are not as striking as those for the random forests,
we believe they are still noteworthy, and that in practice the
effect may be significant.

4.4 How to address the issues caused by repeated
data points

An additional issue with repeated data points, separate to the
problem of test set contamination, may occur as a result of
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model construction (training and optimisation). Training a
model on data containing small proportions of repeated data
points is typically non-problematic. For example, a simple
oversampling technique is to duplicate minority class data
points. Using training sets which contain repeated data
points is reasonable, as long as training and testing sets
share no common instances. Note however that the issue
with excessive oversampling: overfitting, may also occur
here. Overfitting can be identified when a model obtains
good training performance, but poor performance on unseen
test data [61]. It is also possible to cause overfitting by

optimising model parameters using a validation set (a
withheld subset of the training set) containing duplicate
data points. It is for this reason that [72] recommend
‘tuning a trained classifier with a duplicate-free sample’.
Note that this also applies when optimising using multiple
validation sets, for example via n-fold cross-validation. It is
also worth noting that feature selection techniques can be
negatively affected by duplicates [72].

As already mentioned, the simplest way to address the
issues caused by repeated data points is to discard them as
part of the contextual data-cleansing process, making each

Fig. 3 Dispersion of repeated data points in the NASA data sets

a Proportions of repeated data and seen data in testing sets
b Proportions of repeated data against seen data in testing sets
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consistent data point unique (for details see our earlier paper
[62]). However, carrying out such a pre-processing step may
not be the best approach, as repeated data points may occur in
the real world. For this reason, we propose the following
method for addressing the issues caused by repeated data
points in classification experiments:

1. After the initial stratified-divide into training and testing
set, discard all training data points with feature vectors
common to the testing set. This ensures that performance is
measured on unseen data, while the test set remains
unmodified.
2. If the class distribution of the training set is adversely
altered as a consequence of step 1, consider sampling
techniques (see [61, 73]) to help maintain the original (or a
more balanced) distribution. If oversampling is required, we
recommend the synthetic minority oversampling technique
(SMOTE [73]) rather than oversampling by duplication, as
it reduces the likelihood of overfitting [73–75].
3. During model optimisation/tuning (if performed), remove
all duplicates from the validation set, as recommended by
[72]. Next, discard all validation set data points with feature
vectors common to the corresponding training set (the
training subset). If the class distribution of the validation set
is adversely altered, consider the use of sampling

techniques, as described in step 2. The purpose of this step
is to help avoid overfitting.

This proposed approach is most suitable when researchers
believe the repeated data points to be genuine, not noise. This
is because test sets remain unmodified. With the simple
approach of removing all repeated data points during data
cleansing, test sets are indirectly modified before the data
separation process has occurred. Therefore researchers who
believe the rates of duplication in the NASA data sets to be
feasible may wish to use this new approach, whereas
researchers believing otherwise may wish to use the more
simple approach (described in our earlier paper [62]). Note
that a possible addition to the proposed approach is to
remove all duplicates from the training set, to further reduce
the possibility of overfitting. The best place for this to occur
would be between steps 1 and 2.

5 Conclusions

Regardless of whether repeated data points are, or are not
noise, it is unsuitable to have seen data in testing sets
during experiments intended to show how well a classifier
could potentially perform on future, unseen data. This is
because seen data points can result in an excessive estimate
of performance, occurring because classifiers can, to
varying degrees, memorise rather than generalise. There is
an important distinction between learning from and simply
memorising data: only if you learn the structure underlying
the data can you be expected to correctly predict unseen data.

Some researchers may argue that repeated data points
should be tolerated and subject of no special treatment, as it
is possible for modules with identical metrics to be
contained within a software system. However, we have
demonstrated that machine learning experiments based on
data containing repeated data points can lead to invalid
results. This is because it is possible for the test data to be
(perhaps inadvertently) contaminated with training data,
violating the assumption of unseen data. Even if researchers
choose to ignore this fact, it is folly to report the
performance of classification experiments with no
distinction between performance on seen and unseen data.
This is because the generalisation ability of classifiers may
be far worse than the performance obtained implies.

If, in the real world, you happen to have a feature vector in
your test set which is also contained in your training set, a
simple lookup may be all that is required for best
performance. A system could therefore be implemented
where training data is stored in a hash table, and each test
vector checked to see if it is contained within the hash table
prior to classification. If so, the class label could be looked
up directly with the classification model being unneeded (or
some form of ensemble method used). A confidence
interval could be derived using the lookup method, with a
weight assigned to each training data point based on the
number of times it occurs (because of replication) in the
training data. This could also be extended to deal with
inconsistent instances, perhaps by predicting the most
frequently occurring of the classes. If the number of copies
of the inconsistent instance in each class is equal, it may be
best to report this, and/or make independent use of the
classification model(s).

A simple approach to address the issues caused by repeated
data points is to discard them prior to classification (for details
see our earlier paper [62]). A more sophisticated approach
was proposed in this paper (see Section 4.4), which keeps

Fig. 4 Random Forest classifiers with repeated data points

Fig. 5 Naive Bayes classifiers with repeated data points
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test sets unmodified, and may be a more realistic approach.
Another possible option was proposed in [33], and is to use
an extra attribute: number of duplicates. This will help to
ensure that information is not lost, and like the approach
proposed in this paper, is most viable when repeats are
believed to be genuine.

A possible reason why there are so many repeated (and
inconsistent) data points within the NASA data sets is
because of the poor differential power (and the small input
space) of the metrics used. It may be highly beneficial in
future to also record lower level metrics (such as character
counts), as these will help to distinguish non-identical
modules, reducing the likelihood of modules sharing
identical metrics. In addition to having lower level metrics
to begin with, researchers should be careful when
discarding attributes, as this typically reduces the size of the
input space, increasing the probability of repeated feature
vectors. For example, [13] used eight of the NASA data
sets with just two or three of the original 38 features.
Removing over 92% of the available features in each of
these data sets typically yields dramatic increases in the
proportions of repeated and inconsistent instances.

‘Data cleaning is a time-consuming and labor-intensive
procedure but one that is absolutely necessary for
successful data mining . . . Time looking at your data is
always well spent.’ [56] We believe the data cleansing
process defined in this paper will increase the accuracy of
the NASA data sets, and make them more suitable for
machine learning. This process may also be a good starting
point when using other software fault data sets.
Experiments based on the NASA data sets which blindly
included the repeated data points may have led to erroneous
findings. This is because results are often reported as if they
were based on unseen data, when in fact (to varying
degrees) they were not. The impression given from the
literature is that many defect prediction researchers using
this data have not been aware of this issue. Future work
may be required to (where possible) repeat these studies
with appropriately processed data. Other areas of future
work include

† Extending the list of integrity rules described in stage 4 of
the cleansing process. This will help to catch as many
infeasible feature vectors, sets of metric values that can be
proved to be noisy, as possible.
† Analysing other fault data sets to see whether the
proportions of repeated data points in the NASA data sets
are typical of fault data sets in general. This will help to
determine the extent of this problem.
† Experimenting with, improving and refining the proposed
new method of addressing the issues caused by repeated data
points.

6 References

1 Khoshgoftaar, T.M., Allen, E.B.: ‘Ordering fault-prone software
modules’, Softw. Qual. Control, 2003, 11, pp. 19–37

2 Kim, S., James, E., Whitehead, J., Zhang, Y.: ‘Classifying software
changes: clean or buggy?’, IEEE Trans. Softw. Eng., 2008, 34, (2),
pp. 181–196
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5 Śliwerski, J., Zimmermann, T., Zeller, A.: ‘When do changes induce
fixes?’, SIGSOFT Softw. Eng. Notes, 2005, 30, (4), pp. 1–5

6 Kim, S., Zimmermann, T., Pan, K., Whitehead, E.J.J.: ‘Automatic
identification of bug-introducing changes’. ASE’06: Proc. 21st
IEEE/ACM Int. Conf. on Automated Software Engineering,
Washington, DC, USA, 2006, pp. 81–90

7 Williams, C., Spacco, J.: ‘SZZ revisited: verifying when changes
induce fixes’. Proc. 2008 Workshop on Defects in Large Software
Systems. DEFECTS’08, New York, USA, 2008, pp. 32–36

8 Halstead, M.H.: ‘Elements of software science (operating and
programming systems series)’ (Elsevier Science Inc., New York,
USA, 1977)

9 McCabe, T.J.: ‘A complexity measure’. ICSE’76: Proc. Second Int.
Conf. on Software Engineering, Los Alamitos, CA, USA, 1976, p. 407

10 Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: ‘A general software
defect-proneness prediction framework’, IEEE Trans. Softw. Eng.,
2011, 37, (3), pp. 356–370

11 Menzies, T., Stefano, J.S.D., Orrego, A., Chapman, R.: ‘Assessing
predictors of software defects’. Proc. Workshop on Predictive
Software Models, 2004

12 Menzies, T., Stefano, J.S.D.: ‘How good is your blind spot sampling
policy?’. Proc. Eighth IEEE Int. Symp. on High Assurance Systems
Engineering, 2004, pp. 129–138

13 Menzies, T., Greenwald, J., Frank, A.: ‘Data mining static code
attributes to learn defect predictors’, IEEE Trans. Softw. Eng., 2007,
33, (1), pp. 2–13

14 Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.:
‘Implications of ceiling effects in defect predictors’. Proc. Fourth Int.
Workshop on Predictor Models in Software Engineering.
PROMISE’08, New York, USA, 2008, pp. 47–54

15 Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.:
‘Defect prediction from static code features: current results, limitations,
new approaches’, Autom. Softw. Eng., 2010, 17, (4), pp. 375–407

16 Zhang, H.: ‘An investigation of the relationships between lines of
code and defects’. IEEE Int. Conf. on Software Maintenance, 2009.
ICSM 2009, 2009, pp. 274–283

17 Zhang, H., Nelson, A., Menzies, T.: ‘On the value of learning from
defect dense components for software defect prediction’. Proc. Sixth
Int. Conf. on Predictive Models in Software Engineering.
PROMISE’10, New York, USA, 2010, p. 14:1–14:9

18 Guo, L., Cukic, B., Singh, H.: ‘Predicting fault prone modules by the
Dempster–Shafer belief networks’. Proc. 18th IEEE Int. Conf. on
Automated Software Engineering, 2003, pp. 249–252

19 Guo, L., Ma, Y., Cukic, B., Singh, H.: ‘Robust prediction of fault-
proneness by random forests’. 15th Int. Symp. on Software
Reliability Engineering. ISSRE 2004, 2004, pp. 417–428

20 Jiang, Y., Cukic, B., Menzies, T.: ‘Fault prediction using early lifecycle
data’. 18th IEEE Int. Symp. on Software Reliability, 2007. ISSRE’07,
2007, pp. 237–246

21 Jiang, Y., Cukic, B., Menzies, T., Bartlow, N.: ‘Comparing design and
code metrics for software quality prediction’. Proc. Fourth Int.
Workshop on Predictor Models in Software Engineering.
PROMISE’08, New York, USA, 2008, pp. 11–18

22 Jiang, Y., Cukic, B., Menzies, T.: ‘Can data transformation help in the
detection of fault-prone modules?’. DEFECTS‘08: Proc. 2008
Workshop on Defects in Large Software Systems, New York, USA,
2008, pp. 16–20

23 Jiang, Y., Cukic, B., Ma, Y.: ‘Techniques for evaluating fault
prediction models’, Empir. Softw. Eng., 2008, 13, (5), pp. 561–595

24 Jiang, Y., Cukic, B.: ‘Misclassification cost-sensitive fault prediction
models’. Proc. Fifth Int. Conf. on Predictor Models in Software
Engineering. PROMISE’09, New York, USA, 2009, p. 20:1–20:10

25 Khoshgoftaar, T.M., Seliya, N.: ‘The necessity of assuring quality in
software measurement data’. METRICS’04: Proc. Software Metrics,
10th Int. Symp., Washington, DC, USA, 2004, pp. 119–130

26 Zhong, S., Khoshgoftaar, T.M., Seliya, N.: ‘Unsupervised learning for
expert-based software quality estimation’. Proc. Eighth IEEE Int.
Symp. on High Assurance Systems Engineering, 2004, pp. 149–155

27 Seliya, N., Khoshgoftaar, T.M., Zhong, S.: ‘Analyzing software quality
with limited fault-proneness defect data’. Ninth IEEE Int. Symp. on
High-Assurance Systems Engineering, 2005. HASE 2005, 2005,
pp. 89–98

28 Liu, Y., Khoshgoftaar, T.M., Seliya, N.: ‘Evolutionary optimization of
software quality modeling with multiple repositories’, IEEE Trans.
Softw. Eng., 2010, 36, (6), pp. 852–864

29 Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: ‘Benchmarking
classification models for software defect prediction: a proposed
framework and novel findings’, IEEE Trans. Softw. Eng., 2008, 34,
(4), pp. 485–496

30 Turhan, B., Bener, A.: ‘A multivariate analysis of static code attributes
for defect prediction’. QSIC’07: Proc. Seventh Int. Conf. on Quality
Software, Washington, DC, USA, 2007, pp. 231–237

IET Softw., pp. 1–10 9
doi: 10.1049/iet-sen.2011.0132 & The Institution of Engineering and Technology 2012

www.ietdl.org188



31 Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: ‘On the relative
value of cross-company and within-company data for defect
prediction’, Empir. Softw. Eng., 2009, 14, pp. 540–578

32 Turhan, B., Kocak, G., Bener, A.: ‘Data mining source code for
locating software bugs: a case study in telecommunication industry’,
Expert Syst. Appl., 2009, 36, (6), pp. 9986–9990

33 Boetticher, G.D.: ‘Improving credibility of machine learner models in
software engineering’. Advanced Machine Learner Applications in
Software Engineering (Series on Software Engineering and
Knowledge Engineering), 2006, pp. 52–72

34 Mende, T., Koschke, R.: ‘Revisiting the evaluation of defect prediction
models’. Proc. Fifth Int. Conf. on Predictor Models in Software
Engineering. PROMISE’09, New York, USA, 2009, pp. 7:1–7:10

35 Mende, T., Koschke, R.: ‘Effort-aware defect prediction models’.
European Conf. on Software Maintenance and Reengineering, 2010,
pp. 107–116

36 Koru, A.G., Liu, H.: ‘An investigation of the effect of module size on
defect prediction using static measures’, ACM SIGSOFT Softw. Eng.
Notes, 2005, 30, (4), pp. 1–5

37 Koru, A.G., Liu, H.: ‘Building effective defect-prediction models in
practice’, IEEE Softw., 2005, 22, (6), pp. 23–29

38 Tosun, A., Bener, A.: ‘Reducing false alarms in software defect
prediction by decision threshold optimization’. Proc. 2009 Third Int.
Symp. on Empirical Software Engineering and Measurement.
ESEM’09, Washington, DC, USA, 2009, pp. 477–480

39 Bezerra, M.E.R., Oliveira, A.L.I., Meira, S.R.L.: ‘A constructive RBF
neural network for estimating the probability of defects in software
modules’. Int. Joint Conf. on Neural Networks, 2007. IJCNN 2007,
2007, pp. 2869–2874

40 Singh, Y., Kaur, A., Malhotra, R.: ‘Predicting software fault proneness
model using neural network’. Proc. Ninth Int. Conf. on Product-
Focused Software Process Improvement. PROFES’08, Berlin,
Heidelberg, 2008, pp. 204–214

41 Challagulla, V.U.B., Bastani, F.B., Yen, I.L., Paul, R.A.: ‘Empirical
assessment of machine learning based software defect prediction
techniques’. WORDS’05: Proc. 10th IEEE Int. Workshop on Object-
Oriented Real-Time Dependable Systems, Washington, DC, USA,
2005, pp. 263–270

42 Challagulla, V.U.B., Bastani, F.B., Yen, I.L.: ‘A unified framework for
defect data analysis using the mbr technique’. ICTAI’06: Proc. 18th
IEEE Int. Conf. on Tools with Artificial Intelligence, Washington,
DC, USA, 2006, pp. 39–46

43 Pelayo, L., Dick, S.: ‘Applying novel resampling strategies to software
defect prediction’. Annual Meeting of the North American Fuzzy
Information Processing Society, 2007. NAFIPS’07, 2007, pp. 69–72

44 Kutlubay, O., Turhan, B., Bener, A.B.: ‘A two-step model for defect
density estimation’. 33rd EUROMICRO Conf. Software Engineering
and Advanced Applications, 2007, pp. 322–332

45 Ma, Y., Guo, L., Cukic, B.: ‘A statistical framework for the prediction
of fault-proneness’, in ‘Advances in machine learning application in
software engineering’ (Idea Group Inc., 2006, vol. 1), pp. 237–265

46 Oral, A.D., Bener, A.B.: ‘Defect prediction for embedded software’.
22nd Int. Symp. on Computer and Information Sciences, 2007.
ISCIS 2007, 2007, pp. 1–6

47 Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J.:
‘Detecting fault modules applying feature selection to classifiers’.
IEEE Int. Conf. on Information Reuse and Integration. IRI 2007,
2007, pp. 667–672

48 Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M.,
Haesen, R.: ‘Mining software repositories for comprehensible software
fault prediction models’, J. Syst. Softw., 2008, 81, (5), pp. 823–839

49 Mertik, M., Lenic, M., Stiglic, G., Kokol, P.: ‘Estimating software
quality with advanced data mining techniques’. Int. Conf. on
Software Engineering Advances, 2006, p. 19

50 Cong, J., En-Mei, D., Li-Na, Q.: ‘Software fault prediction model
based on adaptive dynamical and median particle swarm
optimization’. 2010 Second Int. Conf. on Multimedia and
Information Technology (MMIT), 2010, vol. 1, pp. 44–47

51 de Carvalho, A.B., Pozo, A., Vergilio, S.R.: ‘A symbolic fault-
prediction model based on multiobjective particle swarm
optimization’, J. Syst. Softw., 2010, 83, (5), pp. 868–882

52 Tao, W., Wei-hua, L.: ‘Naive Bayes software defect prediction model’.
2010 Int. Conf. on Computational Intelligence and Software
Engineering (CiSE), 2010, pp. 1–4

53 Li, Z., Reformat, M.: ‘A practical method for the software fault-
prediction’. IEEE Int. Conf. on Information Reuse and Integration.
IRI 2007, August 2007, pp. 659–666

54 Vivanco, R.A., Kamei, Y., Monden, A., Matsumoto, K.-i., Jin, D.:
‘Using search-based metric selection and oversampling to predict
fault prone modules’. IEEE CCECE, 2010, pp. 1–6

55 Elish, K.O., Elish, M.O.: ‘Predicting defect-prone software modules
using support vector machines’, J. Syst. Softw., 2008, 81, (5),
pp. 649–660

56 Witten, I.H., Frank, E.: ‘Data mining: practical machine learning tools
and techniques’, in ‘Morgan Kaufmann series in data management
systems’ (Morgan Kaufmann, 2005, 2nd edn.)

57 Liebchen, G.A., Shepperd, M.: ‘Data sets and data quality in software
engineering’. PROMISE’08: Proc. Fourth Int. Workshop on
Predictor Models in Software Engineering, New York, USA, 2008,
pp. 39–44

58 Kaminsky, K., Boetticher, G.: ‘Building a genetically engineerable
evolvable program (GEEP) using breadth-based explicit
knowledge for predicting software defects’. IEEE Annual Meeting of
the Fuzzy Information, 2004. Processing NAFIPS’04, 2004, vol. 1,
pp. 10–15

59 Nickerson, A.S., Japkowicz, N., Milios, E.: ‘Using unsupervised
learning to guide resampling in imbalanced data sets’. Proc. Eighth
Int. Workshop on AI and Statistics, 2001, pp. 261–265

60 Chawla, N.V., Japkowicz, N., Kolcz, A.: ‘Special issue on learning
from imbalanced datasets’, SIGKDD Explor. Newsl., 2004, 6, (1),
pp. 1–6

61 He, H., Garcia, E.A.: ‘Learning from Imbalanced Data’, IEEE Trans.
Know. Data Eng., 2009, 21, pp. 1263–1284

62 Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: ‘The misuse
of the NASA metrics data program data sets for automated software
defect prediction’. Evaluation and Assessment in Software
Engineering (EASE), 2011, pp. 96–103

63 Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: ‘A study of the
behavior of several methods for balancing machine learning training
data’, SIGKDD Explor. Newsl., 2004, 6, pp. 20–29

64 Davis, J., Goadrich, M.: ‘The relationship between Precision-Recall
and ROC curves’. Proc. 23rd Int. Conf. on Machine Learning.
ICML’06, New York, USA, 2006, pp. 233–240

65 Zhang, H., Zhang, X.: ‘Comments on “data mining static code
attributes to learn defect predictors”’, IEEE Trans. Softw. Eng., 2007,
33, pp. 635–637

66 Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: ‘Further
thoughts on precision’. Evaluation and Assessment in Software
Engineering (EASE), 2011, pp. 129–133

67 Hall, M.A.: ‘Correlation-based feature subset selection for machine
learning’. Department of Computer Science, University of Waikato,
Hamilton, New Zealand, 1999

68 Howley, T., Madden, M.G., O’Connell, M.L., Ryder, A.G.: ‘The effect
of principal component analysis on machine learning accuracy with
high-dimensional spectral data’, Knowl.-Based Syst., 2006, 19, (5),
pp. 363–370

69 Chen, C., Liaw, A., Breiman, L.: ‘Using random forest to learn
imbalanced data’, Technical report 666, Department of Statistics,
University of California, Berkeley, 2004

70 Segal, M.R.: ‘Machine learning benchmarks and random forest
regression’ (Centre for Bioinformatics and Molecular Biostatistics,
UC, San Francisco, 2004)

71 Dudoit, S., Fridlyand, J.: ‘Classification in microarray experiments’, in
‘Statistical analysis of gene expression microarray data’ (Chapman and
Hall/CRC, 2003)

72 Kołcz, A., Chowdhury, A., Alspector, J.: ‘Data duplication: an
imbalance problem?’. ICML 2003 Workshop on Learning from
Imbalanced Datasets, 2003

73 Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
‘SMOTE: synthetic minority over-sampling technique’, J. Artif.
Intell. Res., 2002, 16, pp. 321–357

74 Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.:
‘SMOTEBoost: improving prediction of the minority class in
boosting’. Proc. Principles of Knowledge Discovery in Databases
(PKDD-2003), 2003, pp. 107–119

75 Cieslak, D.A., Chawla, N.V., Striegel, A.: ‘Combating imbalance in
network intrusion datasets’. 2006 IEEE Int. Conf. Granular
Computing, 2006, pp. 732–737

10 IET Softw., pp. 1–10

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-sen.2011.0132

www.ietdl.org 189


	Introduction
	Overall Summary
	Dissertation Outline
	Contributions

	Software Metrics & Defects
	Static Code Metrics
	Software Defects
	Software Defects & Defect Prediction
	Defect Measurement


	Machine Learning
	Supervised Learning
	Basic Learning Techniques
	Instance-Based Learning
	Linear Separators
	Tree-Based Learning
	Bayesian Classifiers

	Assessing Predictive Performance
	Training & Testing Sets
	Categorising & Quantifying Predictions
	Measuring Class-Specific Error

	The Class Imbalance Problem
	Model Optimisation
	Support Vector Machines

	Literature Review
	Menzies et al. 2007
	The NASA Metrics Data Program Repository
	Experiments & Findings

	Lessmann et al. 2008
	Elish & Elish 2008
	Liebchen & Shepperd 2008
	An SLR on Fault Prediction Performance
	Findings

	Summary

	SVMs for Defect Prediction
	Initial Classification Experiment
	Issues & Shortcomings

	Examining Predictive Models
	Issues & Shortcomings

	Conclusions

	Major Methodological Issues
	Data Quality Issues
	Related Studies
	Method - Data Cleansing
	Findings
	Conclusions

	Performance Metric Problems
	Background
	How Class Distribution Affects Performance Metrics
	Conclusions

	SVMs for Defect Prediction Revisited

	Obtaining Fault Data
	Barcode
	Database Initialisation
	Categorising Revisions
	Findings

	Conclusions

	Finalising the Methodology
	Obtaining Fault Data
	Analysing & Cleansing Fault Data
	Summary

	The Process of Defect Prediction
	How to address the issues caused by repeated data points
	Summary

	Quantifying Predictive Performance
	Summary


	Conclusions
	Summary of Chapters
	Contributions to Knowledge
	Future Work
	Discussion
	Publications
	Personal Reflection

	Bibliography
	Appendices
	International Conference on Engineering Applications of Neural Networks 2009: Using the Support Vector Machine as a Classification Method for Software Defect Prediction with Static Code Metrics
	International Joint Conference on Neural Networks 2010: Software Defect Prediction Using Static Code Metrics Underestimates Defect-Proneness
	International Conference on Evaluation and Assessment in Software Engineering 2011: The Misuse of the NASA Metrics Data Program Data Sets for Automated Software Defect Prediction
	International Conference on Evaluation and Assessment in Software Engineering 2011: Further Thoughts on Precision
	Selected Papers Special Issue on Evaluation and Assessment in Software Engineering 2011: Reflections on the NASA MDP Data Sets

