Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars
We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with −1.5 < [Fe/H] < −0.8. We also measure the iron-peak element Sc. These stars separate into three populations (low- and high-α halo and thick-disc stars) based on the [α/Fe] abundance ratio and their kinematics as discovered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundance ratios of [Sc/Fe], [Zr/Fe], [La/Zr], [Y/Eu] and [Ba/Eu] when including Y and Ba from Nissen & Schuster. For all ratios except [La/Zr], the low-α stars have a lower abundance compared to the high-α stars. The low-α stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-α stars. These distinct chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-α population. By comparing the low-α population with AGB stellar models, we place constraints on the mass range of the AGB stars.
Item Type | Article |
---|---|
Additional information | This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. |
Keywords | astro-ph.sr, astro-ph.ga |
Date Deposited | 15 May 2025 13:50 |
Last Modified | 31 May 2025 00:16 |
-
picture_as_pdf - 1701.02423.pdf
-
subject - Submitted Version
- ['licenses_description_other' not defined]
- Available under ['licenses_typename_other' not defined]