
reverse accumulation and attractive

fixed points

Bruce Christianson

School of Information Sciences� University of Hertfordshire

Hat�eld� Herts AL�� �AB� England� Europe

Numerical Optimisation Centre Technical Report ��	� March ����

published Optimization Methods and Software
�����
�
���
��

Abstract

We apply reverse accumulation to obtain automatic gradients and error estimates of func�
tions which include in their computation a convergent iteration of the form y �� ��y� u��
where y and u are vectors	

We suggest an implementation approach which allows this to be done by a fairly routine
extension of existing reverse accumulation code	 We show how to re�use the computational
graph for the
xed point constructor � so as to set explicit stopping criteria for the itera�
tions� based on the gradient accuracy required	

Our construction allows the gradient vector to be obtained to the same order of accuracy
as the objective function values �which is in general the best we can hope to achieve�� and
the same order of computational cost �which does not explicitly depend upon the number
of independent variables	� The technique can be applied to functions which contain several
iterative constructions� either serially or nested	

�

�� Introduction� Automatic di�erentiation
��
��� is a set of techniques for obtaining
derivatives of numerical functions to the same order of accuracy as the function values
themselves� but without the labour of forming explicit symbolic expressions for the deriv�
ative functions	 Automatic di�erentiation works by repeated use of the chain rule� but
applied to numerical expressions rather than to symbolic values	

The forward accumulation technique of automatic di�erentiation associates with each
program variable a vector containing partial derivatives of that variable with respect to
the independent variables	 The reverse accumulation technique builds a computational
graph for the function evaluation� with one node for each value ever held by a program
variable� and associates with each node an adjoint value containing the partial derivative
of the function value with respect to the node	 The adjoint values are calculated in the
opposite order to the function evaluation� whence the term �reverse accumulation�	 Reverse
accumulation is of particular interest when the gradient �or sensitivities� of a single target
�loss� function is required� as it will allow the evaluation of the entire gradient vector of a
scalar function at a computational cost of three function evaluations in total� regardless of
the number of independent variables	 For further details� see
���
��� and the references
therein	

Many functions include in their computation a convergent iteration of steps of the form
y �� ��y� u�� where u and y are �column� vectors	 We can regard the iterative process �
with starting point �y��u�� u� as the constructive evaluation at u of a branch of the function
y��u� de
ned by ��y��u�� u� � y��u�� corresponding to the appropriate basin of attraction
for y�	 This
xed point construction for y� is typically part of a larger computation of a
dependent variable z � f�x� y�� where the x are the independent variables� y � y��u�� and
the u are also functions of the x	

It is clearly desirable to extend the automatic di�erentiation techniques so as to de�
termine such quantities as the Jacobean derivative matrix ru y��u� and the gradient �row�
vector rx z	 It is well known that convergence of function values to a given tolerance
does not imply convergence of the corresponding derivative values to the same tolerance
�or indeed at all� and so the question of determining convergence conditions and stopping
criteria is nontrivial	

The paper
�� addresses these issues and proposes an approach to the automatic eval�
uation of
rst derivatives	 In the context of reverse accumulation� the paper raises the
problem of adapting the number of iterations so as to obtain the desired degree of accur�
acy for the derivative values	 It is our purpose to address this problem here	

In this note we give a simple technique for using reverse accumulation to obtain the

rst derivatives of functions which include iterative
xed points in their construction� and
we show how to adjust the number of iterations on the reverse pass so as to satisfy an
appropriate stopping criterion based upon the derivative accuracies required	

In the next section� following some mathematical preliminaries� we show that the ad�
joint quantities �u also satisfy a
xed point equation with appropriate convergence prop�
erties	 In section �� we use this to suggest an implementation approach which could be
built on top of existing code	 In section � we show how to obtain accurate roundo� and
truncation error bounds on objective function values which are calculated with a
xed
point constructor� and in section � we apply this to show how to adjust the number of
iterations on the forward and reverse passes so as to obtain the desired accuracy for the

�

gradient values	 The implications of this for the implementation of self�adapting code are
brie�y discussed in section �	 Our conclusions are summarized in the
nal section	

�� Adjoint Fixed Point Equation� In what follows� we assume a norm kbk for
column vectors b� and denote by the same symbol the corresponding operator norm kAk �
supfkAbk st kbk � �g	 We write kak for the norm of a row vector a considered as a
linear operator on column vectors� so that kak � kaTkadj where T denotes the adjoint
�transpose�	 Usually we shall be using the Euclidean norm� in which case kak� � kaTk��
and the corresponding operator norm is the spectral norm	 But when working with interval
bounds� it is frequently convenient to use instead a weighted� norm for column vectors� in
which case kak will be the corresponding counter�weighted � norm and the operator norm
kAk can be easily calculated from the matrix representation of A	 Because we are dealing
with
nite dimensional spaces� all complete norms are equivalent and we can speak without
ambiguity of an open �neighbourhood� of a point	 However the equivalence bounds can
be arbitrarily large	

We regard the gradient operator r as an adjoint operation� mapping scalars into row
vectors and column vectors into Jacobean matrices	

If � is an iterative mapping of the form ��y� u� � Rq � Rp � Rq then we write �y��u

to denote ry��ru� respectively� when these derivatives exist	 At any such point �y� u��
���y� u� � ��y�y� u���u�y� u�� is a map Rq � Rp � L�Rq � Rp � Rq�	 In this case we say
that �� is Lipschitz with respect to a given norm if the map �y� u�� ���y� u� is Lipschitz
with respect to the induced norm	

De�nition ��� Fix the norm k�k on Rq�Rp� this induces norms on Rq � Rq�f�g� Rp �
f�g � Rp and on L�Rq � Rp � Rq�	 Let U� Y be bounded open convex subsets of Rp� Rq

respectively� and let y��u� be a continuous function U � Y 	 Since we are interested in
local behaviour with respect to u� we lose nothing by restricting our attention to domains
of this form	

We say that � � Y � U � Y is a well behaved iterative constructor for the function y�
if the following four conditions are satis
ed�
�a� y��u� � ��y��u�� u� for all u in U
�b� � is continuously di�erentiable throughout Y � U
�c� �� is Lipschitz with constant C throughout Y � U for some constant C
�d� y� is an attractive
xed point of � for the domain Y � U �
ie there is some constant � � � called the attraction constant such that k�y�y� u�k � � for
all u in U and y in Y

Note that under these conditions there will always exist a constant � with k�u�y� u�k �
� for all u in U and y in Y 	 Note also that some de
nitions of attraction only require
k�y�y��u�� u�k � � for u in U 	 However� by �c� this condition is equivalent to our condition
�d� for a larger � � � and �possibly� smaller convex sets Y and U containing the point of
interest	

In practice� these conditions are not unduly restrictive� since in a su�ciently close
neighbourhood of a given point �y��u�� u� �which is all we require�� they will frequently be
satis
ed by some �smallish� power �n of � �iterated on the
rst argument�� even if not by

�

� itself	 It is also worth pointing out that the results we give here remain true in the case
where �� is uniformly continuous �rather than Lipschitz� throughout Y �U 	 The methods
of proof are the same� but the construction of bounds is notationally more cumbersome	

Theorem ��� Suppose � a well behaved iterative constructor for y� on the open domain
Y �U � with �� Lipschitz with constant C� and k�yk� k�uk bounded throughout Y �U by
�� � respectively	

Then y��u� is continuously di�erentiable with respect to u� with gradient given by

ru y��u� �
�y�
�u

�u� � �I � �y�y��u�� u��
���u�y��u�� u�

Furthermore
kru y��u�k �

�

�� �
for all u in U�

the map �y� u�� �I � �y�y� u��
���u�y� u� is Lipschitz with constant

C
�� � � �

��� ���

and the map u�ru y��u� is Lipschitz with constant

C
��� � � ���

��� ���

Finally� for any function y� � U � Y �whether continuous or not� we have for all u in U

ky��u�� yn���u�k � �ky��u�� yn�u�k

and hence

ky��u�� yn�u�k �
kyn�u�� yn���u�k

�� �
� ky��u�� y��u�k �

�n

�� �

where yn���u� � ��yn�u�� u�

Proof� Since y� is a continuous function of u it is easy to show that

�y� � �y�y��u�� u��y� � �u�y��u�� u��u

to
rst order in �u� and hence

�y�
�u

�u� � �I � �y�y��u�� u��
���u�y��u�� u�

provided the inverse exists	 Since we have assumed that k�y�y��u�� u�k � � � �� we can
establish the existence of the inverse directly�

�I � �y�y��u�� u��
�� � I � �y � ��

y � ��

y � � � �� �n
y � � � �

�

where the RHS must converge to an operator with norm at most �	�� � ��	 Since
k�u�y��u�� u�k � �� the bound on kru y��u�k follows	

Now suppose u�� u in U � y�� y in Y with k�y� u�� �y�� u��k �
 and de
ne

� � �y�y� u�� �� � �y�y�� u��� �� � ����

Since the map �� � �y� u� � ��y�y� u���u�y� u�� is Lipschitz with constant C throughout
Y � U � we have k��k � C
	 Now clearly

�n � �n
� � ����n�� ��n���� � � � ����n��

� ��n��
� �

so
k�n � �n

�k � n�n��k��k � nC
�n��

and so

k�I � �y�y� u��
�� � �I � �y�y�� u���

��k � k�I � ���� � �I ����
��k

�
�X
n��

k�k � �k
�k �

�X
n��

nC
�n�� �
C

��� ���

Now de
ne
� � �u�y� u�� �� � �u�y�� u��� �� � �� ��

Since also
k��k � k�u�y� u�� �u�y�� u��k � C

we have that

k�I � ������ �I ����
����k � k�I �����k � k��k� k�I ����� � �I � ���

��k � k��k

�
C

�� �
�

C
�

��� ���
� C

�
�� � � �

��� ���

�

A line integral of ru y��u� from u� to u shows that

k�y��u�� u�� �y��u��� u��k � ky��u�� y��u��k� ku� u�k �
�

�

�� �
� �
�
ku� u�k

�
� � �� �

�� �
ku� u�k

which with the previous result gives the Lipschitz constant for the map u � ru y��u��
while a line integral of �y�y� u� from �yn�u�� u� to �y��u�� u� establishes the next part	 The

nal equation follows by induction since

ky��u�� y��u�k � ky��u�� y��u�k� ky��u�� y��u�k � �ky��u�� y��u�k� ky��u�� y��u�k

QED�

Theorem ��� Suppose � a well behaved iterative constructor for y� on U � with attrac�
tion constant � � and let r be a
xed arbitrary adjoint �row� vector in L�Rq � R� � �Rq�T 	

�

Given u and y in U and Y respectively� let ���y� u� be the �unique�
xed point of the
equation � � r � ��y�y� u� and set for the given u� y

�� � �� �n�� � r � �n�y�y� u�

Then

k�� � �nk � k�n � �n��k �
�

�� �

and

k�� � �nk � krk �
�n

�� �

uniformly for y and u	
In particular� if y � y��u� then the value of rru �y��u�� is given by ���y��u�� u��u�y��u�� u��

so that

kr ru�y��u�� u�� �n�y��u�� u��u�y��u�� u�k � k�n�y��u�� u�� �n���y��u�� u�k �
�

�� �

Finally� if second order derivatives of � exist and are Lipschitz� and Z is the open ball
in Rq with centre f�g and radius krk	��� ��� then the map Z � U � Z �

��T � u��
r � ��y�y��u�� u��
T

is a well behaved iterative constructor for �T
�
�y��u�� u� on Z � U � and also has attraction

constant � 	

Proof� If r is an adjoint �row� vector� then

�� � r � r�y � r��

y � � � � � r�I � �y�
��

is the
xed point of the equation � � r � ��y	
If we set �� � �� �n�� � r � �n�y then

k�n � ��k � k�n � �n��k� k�n�� � ��k

k�n�� � ��k � k�r � �n�y�� �r � ���y�k � k�n � ��kk�yk � �k�n � ��k

��� ��k�n � ��k � k�n � �n��k

whence k�� � �n�uk � k�n � �n��k � �	��� ��	 Similarly

k�n � �n��k � �k�n�� � �nk � �nk�� � ��k � �nkrk

whence k�� � �nk � krk � �n	��� ��	
From Theorem �	� we have that

r ru �y��u�� � r�I � �y�y��u�� u��
���u�y��u�� u� � ���y��u�� u��u�y��u�� u�

The
nal assertion �which we shall not use in the rest of this paper� is now straightfor�
ward	

�

QED�

This result shows that� under fairly mild assumptions� the �uniform� rate of convergence
of the derivative
xed point is the same as the asymptotic rate of �uniform� convergence
for y� itself	 This is also true in the particular case of quadratic convergence of yn to y��
since in this case �y�y��u�� u� � �	

�� Implementation Strategy� We seek to use the technique of reverse accumulation
to calculate row vectors of the form r ru y��u� for
xed row �adjoint� vectors r	

We can use the construction in Theorem �	� to do this� since a reverse pass through
the graph of � is a way of forming adjoint vectors of the form r�y and r�u� and we can
expand r ru y� as

r �
�y�
�u

� r�u � r�y�u � r��

y�u � r��

y�u � � � �� r�n
y�u � � � �

This leads to the following	

Algorithm ��� Suppose as before that � a well�behaved iterative constructor for y��
and assume now that the
xed point construction for y� is part of a larger computation
of a dependent variable z � f�x� y�� where the x are the independent variables� y � y��u��
and the u are also functions of the x	

To evaluate rx z proceed as follows�
Step �� Build the part of the computational graph corresponding to the calculation of u
from the independent variables x	
Step �� Switch o� building the graph and perform the iterations which construct y��u�
from some starting values y� until the convergence criterion is met	 �We shall discuss the
convergence criterion further below	 The starting values y� are irrelevant to the further
analysis	�
Step �� Set yinitial to the calculated value for y��u�� and switch on graph construction
through one further iteration yfinal � ��yinitial� u�� where we treat yinitial as additional
independent variables	 We should have yfinal � yinitial � y��u� to the desired level of
accuracy �which we quantify in x��	
Step �� Continue building the rest of the graph for the dependent variable z � f�x� yfinal�	

To reverse accumulate the gradient rx z proceed as follows�
Step �� Initialize �z to � as usual	
Step 	� Reverse through the graph from z to yfinal� accumulating the adjoint quantities
�yfinal � r� say	
Step
� Reverse through the portion of the graph corresponding to �� accumulating the
adjoint values �u� �yinitial	
Step �� If �yinitial � r is su�ciently close to �yfinal then go to step ��� else go to step 	 �We
shall quantify what �su�ciently close� means in x�	�
Step �� Set �yfinal � r � �yinitial� set �u � �yinitial � � and go to step �	 �This will require us
to reverse through the same portion of the graph again	�
Step �
� Reverse through the graph from u to x� accumulating the adjoints �x of the
independent variables x	

�

Pseudocode for this algorithm will be given in x�	

At the start of step ��� �u will be a good approximation for r ru y��u�	 To see this�
assume for the moment that yinitial � yfinal � y��u�� then �in the notation of Theorem �	��
after the n�th reverse pass through the graph for � we have

�yfinal � �n� �yinitial � �n �y� �u � �n �u

so convergence is established by Theorem �	�	
Since �as observed in x�� the forward and reverse constructions have the same rate of

convergence� we should expect to see roughly the same number of iterations in Step � as of
Step �	 In the event that the
xed point construction has quadratic convergence to y�� the
reverse accumulation Step � should converge after a single pass through � since under this
assumption �y�y��u�� u� � �	 If this is not the case� and � � � is signi
cantly greater than
zero� then we can make an optimization of the algorithm by not bothering to accumulate
�u on any but the
nal invocation of Step � �analogous to throwing away all but the
nal
forward iteration in Step �	�

Alternatively� we can use the convergence of �u as the stopping criterion in Step !�
without estimating or interpolating values for � and �� but this heuristic is dangerous
because it cannot guarantee convergence from an arbitrary start point as the following
example shows	

Example ���

y � R�� u � R���yi� yj� yk� u� �
�
�

�
yj�

�

�
yk� ��u

�
� y��u� � �u

r � ei� r
�y�
�u

� �� but r�u � �� �r � r�y��u � �

which falsely appears to have converged �although the next iteration gives the correct
value	�

QED

It is important to note that the constructor � need not be used in Step � of Algorithm
�	� to
nd the
xed point y�	 The
xed point may be constructed by any means at all�
even using non�di�erentiable operations� so long as a single iteration of a well�behaved
constructor is included at the end in Step �	

There are a number of potential sources of truncation error in Algorithm �	�	 In Step
� we may have truncated iteration of the operator � before y has converged to y�	 This
will mean that the value of z will be slightly perturbed� which in turn will have an e�ect
upon r and hence upon �u and �x	 Provided we can quantify the error in y� the propagation
e�ects of these perturbations can be analysed in the same way as rounding error	

Also� the values of ��y and ��u will be repeatedly evaluated at perturbed y�values in
Step �� and this will also a�ect �u and hence �x	 However� the crucial point is that �by
Theorem �	�� the adjoint constructor for �u is Lipschitz in y� and so the error growth is
contained	

!

A second truncation e�ect arises in Step !� if we terminate the reverse
xed point
iteration before �u has converged	 Again� this will a�ect the values calculated for �x� in a
fashion similar to the propagation of rounding error	

We investigate further the e�ects of these errors and their e�ect upon setting an ap�
propriate stopping criterion in the following sections	

We conclude this section by noting that an implementation of an algorithm essentially
equivalent to Algorithm �	� is described in
��	

�� Error Estimates for Function Values� We begin by investigating the e�ect of
truncation in Step � in Algorithm �	� upon the calculated value for the target function�
and the interaction of this with the propagation of roundo� error	

Lemma ��� Let z be a dependent scalar variable produced by a sequence of elementary
operations� which includes a subsequence representing a
xed point constructor � for the
intermediate variables y � y��u�� just as in Algorithm �	�	 As usual� we assume � is a
well�behaved iterative constructor for y� with attraction constant � 	

Then an approximate worst case forward truncation error bound� ie a measure of the
maximum impact on the value of z of the fact that yinitial 	� y��u�� is given by

�

�� �
krkkyfinal � yinitialk

where r � �z	�y is calculated just as in Algorithm �	�	

Proof� From Theorem �	� we have

��� ��kyinitial � y�k � kyfinal � yinitialk

Now �to
rst order� the e�ect on z of a change in y from yinitial to y� is at most

�zy � k�ry f�x���yinitial� u���yinitial � y��k � krkk�y�yinitial� u�kkyinitial � y�k

� �krk
kyfinal � yinitialk

��� ��

QED�

An important application of reverse accumulation is in the analysis of roundo� error	
The conventional method of reverse accumulation allows an analysis of the roundo� error
in a dependent variable to be made automatically	 We summarize these results in the
following	

Proposition ��� Let z be a scalar dependent variable produced by a sequence of ele�
mentary operations� indexed by i	 �We assume for convenience that the indexing includes
the independent variables at the beginning and z itself at the end	� For each node vi in
the computational graph of the calculation for z� let �vi � �z	�vi be the corresponding

adjoint quantity calculated by reverse accumulation� and let �i be an upper bound on the
rounding error in vi introduced by the elementary operation i which produced vi	

Then an approximate worst case upper bound on the rounding error for z is given by
the quantity e �

P
i �i � j�vij	

Proof� Omitted� For further details see
�� x���
��� and the references cited there	

We now show how to extend Lemma �	� in the style of Proposition �	� so as to provide
a combined analysis of rounding and forward truncation error where the computation of z
involves a
xed point construction	

Lemma ��� Under the conditions of Lemma �	�� assume that we have available an
accurate upper bound "
 for k"yfinal � yinitialk where "yfinal denotes the true value �with no
rounding error� of ��yinitial� u�	 Then an approximate worst case error bound for the entire
calculation of z� including both rounding and truncation error� is given by e� e� where e
is calculated as in Proposition �	�� including the graph for � but treating the values for
yinitial as exact� and

e� �
� "

�� �
krk

Proof� In Lemma �	� we ignored rounding error	 Replacing yfinal by "yfinal in Lemma
�	� gives the truncation error bound e�	 This accounts �to
rst order� for the e�ect on z
of the fact that yinitial 	� y��u�	 The rounding errors �including those for � on yfinal� are
contained in e by Proposition �	�	

QED�

If the norm k�k is di�erentiable �for example if we use the Euclidean norm k�k��� then
we can use Proposition �	� recursively to develop an estimate for "
 as follows	

Algorithm ��� Under the conditions of Lemma �	�� and assuming that k�k is di�er�
entiable� proceed as follows�
Step �� Augment the graph for � by adding an explicit calculation of
 � kyfinal�yinitialk	
Step �� Use Proposition �	� �recursively� to perform an automatic rounding error analysis
for
 on the �augmented� graph for �	 For the purpose of this analysis� regard the values
for yinitial as exact	
Step �� Add the error estimate e� from Step � to the calculated value for
 from Step � to
obtain "
 �
 � e�	

Now "
 is an estimated upper bound for k"yfinal � yinitialk	

See also
��� x��	

�� Setting the Stopping Criterion� Once we have a value for "
 for use in Lemma
�	�� we can also use it to estimate on the truncation errors introduced by Algorithm �	� in

��

the calculated values �u for r ru y��u�� and hence to provide a stopping criterion for the
forward and reverse passes of Algorithm �	�	

Lemma ��� The forward truncation error in the calculated value of �u due to the
di�erence between yinitial and y��u� at the end of Step � is at most

C
�� � � �

��� ���
krkk"yfinal � yinitialk

where "yfinal denotes the true value �with no rounding error� of ��yinitial� u�	
The reverse truncation error in �u due to stopping after a
nite number of passes through

Step � is at most
�

�� �
k�yinitial � r � �yfinalk

Proof� The
rst part is a direct consequence of Theorem �	�	 The second part follows
from Theorem �	�	

QED�

Now we can determine the optimal stopping criterion in the light of this error analysis	
If the desired accuracy is that kru r � y��u�� �uk � �krk� where � � �� then it su�ces to
ensure that

kyfinal � yinitialk �
���� ���

�C��� � � ��
and

k�yinitial � r � �yfinalk

krk
�

���� ��

��

where �� � respectively are bounds for k�yk� k�uk in a neighbourhood of �y��u�� u� including
�yinitial� u�� and C is the Lipschitz constant for the map �� � ��yj�u� in this neighbourhood	
Note that after n reverse iterations we are guaranteed to have k�yinitial�r� �yfinalk � �nkrk	

The criterion and estimates given here should be compared with the convergence char�
acteristics of forward accumulation� for which

ky�k � y�
�
k �

ky�k � y�k��k

�� �
�
kyk � yk��k

��� ���
C�� � ky�kk�

For further details the reader is referred to the comprehensive analysis of the forward case
given in
 �	

In our analysis we have treated r as if it were a constant� and taken no account of
the e�ect of truncation errors in yfinal on r	 �This corresponds to the assumption in the
forward case that the values of u� are correct	� These e�ects can be subjected to essentially
the same analysis as for rounding errors in gradient propagation
�� � given appropriate
knowledge of the Lipschitz constants for f � �respectively u� in the forward case	�

The criterion given here requires upper bounds to be estimated for the Lipschitz con�
stant C as well as for � and �	 In many cases� in particular optimal control problems
involving the solution of ODE�s� techniques such as those described in
!� and
�� combined
with suitable preaccumulation strategies
�� x�� allows e�cient direct evaluation of the

��

required constants under a weighted ��norm	 This is of particular utility in the case of
quadratic convergence where second derivatives are used in the construction of the
xed
point	 We do not pursue this approach further here	

However� it is rare for a function to be evaluated only once in a neighbourhood of
interest	 Since the computational graph of the target function z is available� an alternative
approach is to estimate the constants we require from measured convergence behaviour�
and to re
ne our estimates for convergence parameters as we proceed	 We brie�y describe
this approach in the next section	

	� Self
adapting Code� The development so far can be summarized as follows	 A

xed point construction contained in an algorithm is coded �either by the programmer� or
by a preprocessing tool� or by a purpose built compile�time environment� as follows�

y �� fix��� y�� u� norm� normadj� ��

This is transformed into the following code on the forward pass

mark graph�begin fix��� ��
declare u� �� make copy�u�
declare yi �� make copy�y��
graph build�turn off�
declare yf �� ��yi� u��
declare
 �� norm�yf � yi�
mark graph�end variables� yi� u��
while �
C��� � � �� � ���� ��� do

yi �� yf
yf �� ��yi� u��

 �� norm�yf � yi�

end do
graph build�turn on�
yf �� ��yi� u�

 �� norm�yf � yi�
mark graph�end fix� yf �
�
y �� make copy�yf�

In addition� the following adjoint code is inserted on the reverse pass�

in case graphnode�type � end fix �
r �� �y
�yf �� r
�yi �� �

 �� normadj��yi � r � �yf�	normadj�r�
while �
� � ���� �� do

�yf �� �yi � r
�yi �� �
�u� �� �

��

reverse accumulate�end fix� end variables�

 �� normadj��yi � r � �yf�	normadj�r�

end do
�u �� �u�

In this pseudocode� mark graph is a function which returns a pointer to the �current� end�
of�graph position	 This pointer points at a special graph node created to record the mark	
The reverse accumulate routine accumulates adjoint values for independent variables in a
sparse vector �of pointers to graph nodes� associated with the marked node	

To the forward code may be added code to reverse accumulate the rounding error in

�Algorithm �	��� or to pre�accumulate estimates for � and �
�� x��� or even to interpolate
estimates for the Lipschitz constant C	

Following Theorem �	�� the adjoint code could itself be represented in the form of a
xed
point construction for � using ����� y� u� � r���y�y� u� followed by the step �u � ��u�y� u��
where the derivative multiplications are performed by nested calls to reverse accumulate	
This would allow the techniques of
�� to be applied to obtain values for higher derivatives	

Once the graph containing the
xed point construction has been built� the
xed point
can be automatically re�constructed with a
ner tolerance �	 A similar tightening tech�
nique to that suggested here is described in detail in
���	 If the function �and gradient�
calculation is part of an iterative algorithm� for instance solving an optimization or optimal
control problem� then this allows the tolerance to be adaptively tightened �using adjoint
values from previous outer iterations� as the algorithm nears a solution� thus avoiding un�
necessary inner iterations of the
xed point constructors in the early outer stages	 This is
especially signi
cant when such constructors are nested	 In particular� forward and adjoint
values from previous function evaluations at nearby points can be used as starting points
for the forward and reverse
xed point iterations� and in order to contain the e�ects of
forward truncation of inner iterations on the value of the target function to a level which
is acceptable in the light of the improvement sought	

Once a trial solution has been reached� the calculation can be automatically re�executed
to check its own tolerances� by reverse accumulating rounding error estimates to check that
the chosen values for � are satisfactory and that the
xed point iterations have converged
to the limit of machine accuracy for the given constructor	 This technique can be combined
with exact interval arithmetic �see for example
��� to validate the estimates for �� �� C�
and to provide tight interval error bounds on the solution� but this requires more analytical
machinery than we have developed here	

�� Conclusion� We have considered the problem of applying reverse accumulation
to obtain automatic gradients and error estimates for objective functions which include
in their construction the use of iterative
xed point constructors	 We suggest an imple�
mentation approach which would allow this to be done by a fairly routine extension of
existing reverse accumulation code	 It is known that� under fairly mild assumptions on the

xed point constructor � �namely that� in a neighbourhood of the
xed point� �y � �u is
Lipschitz and k�yk � ��� if the
xed point construction converges to the correct value� then
the reverse gradient construction converges to the correct value also �see
���
��� x���	 We

��

have shown here how to re�use the graph for the constructor � so as to set explicit stopping
criteria for the forward and reverse passes based on the gradient accuracy required	 Our
construction allows the gradient values to be obtained to the same order of accuracy as
the objective function values� which is in general the best we can hope for	 Indeed� our
construction shows that the forward and the reverse iteration passes converge at the same
rate	

The technique described here� applied in conjunction with a run�time stack of pointers
to the computational graph� allows several
xed point constructions to be used either
serially or hierarchically in any combination when de
ning the objective function values� as
for example when solving numerically a system of di�erential equations by Picard iteration	
The appropriate gradients will be extracted automatically	

References�

�� Bruce Christianson� � �� Automatic Hessians by Reverse Accumulation� IMA
Journal of Numerical Analysis ��� ���#���

�� Bruce Christianson� � �� Reverse Accumulation and Accurate Rounding Error Es�
timates for Taylor Series Coe�cients� Optimization Methods and Software �����
!�# �

�� Bruce Christianson� � �� Reverse Accumulation of Functions containing Gradi�
ents� Theory Institute on Combinatorial Challenges in Automatic Di�erentiation�
Argonne National Laboratories� Illinois �extended abstract�� also Technical Report
��!� Numerical Optimisation Centre� University of Hertfordshire� England Europe
�full text�

�� Bruce Christianson and Laurence Dixon� � � Reverse Accumulation of Jacobians
and Optimal Control� Technical Report ���� Numerical Optimisation Center� Uni�
versity of Hertfordshire� England Europe

�� Ralf Giering� � �� Adjoint Model Compiler� Manual Version �	�� Max Planck In�
stitute fur Meteorologie� Hamburg� Germany

�� Jean Charles Gilbert� � �� Automatic Di�erentiation and Iterative Processes� Op�
timization Methods and Software ����� ��#��

�� Andreas Griewank� � ! � On Automatic Di�erentiation� in Mathematical Program�
ming !!� Kluwer Academic Publishers� Japan

!� Andreas Griewank� � �� Some Bounds on the Complexity of Gradients� Jacobians
and Hessians in Complexity in Numerical Optimization� ed P	M	 Pardolos� World
Scienti
c

 � Andreas Griewank et al� � �� Derivative Convergence for Iterative Equation Solvers�
Optimization Methods and Software� to appear

��� Masao Iri� � �� History of Automatic Di�erentiation and Rounding Error Estima�
tion� in Automatic Di�erentiation of Algorithms� SIAM� Philadelphia

��

��� Gershon Kedem� � !�� Automatic Di�erentiation of Computer Programs� ACM
Transactions on Mathematical Software 	���� �������

��� E	A	 Musaev� � �� Wave Computations� A Technique for Optimal Quasi�concurrent
Self�validation� Interval Computations ����� ��#��

��

