On Maltsev digraphs

Carvalho, Catarina, Egri, L., Jackson, M. and Niven, T. (2011) On Maltsev digraphs. pp. 181-194. ISSN 0302-9743
Copy

We study digraphs preserved by a Maltsev operation, Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. (This was observed in [19] using an indirect argument.) We then generalize results in [19] to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a O(V G4)-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation.

picture_as_pdf

picture_as_pdf
905679.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads