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Abstract

In this thesis, we investigate methods of finding a local minimum for uncon-

strained problems of non-convex functions with n variables, by following the

solution curve of a system of ordinary differential equations.

The motivation for this was the fact that existing methods (e.g. those based on

Newton methods with line search) sometimes terminate at a non-stationary point

when applied to functions f(x) that do not a have positive-definite Hessian (i.e.

∇2f ≻ 0) for all x. Even when methods terminate at a stationary point it could

be a saddle or maximum rather than a minimum. The only method which makes

intuitive sense in non-convex region is the trust region approach where we seek a

step which minimises a quadratic model subject to a restriction on the two-norm

of the step size. This gives a well-defined search direction but at the expense of

a costly evaluation.

The algorithms derived in this thesis are gradient based methods which require

systems of equations to be solved at each step but which do not use a line search

in the usual sense. Progress along the Continuous Steepest Descent Path (CSDP)

is governed both by the decrease in the function value and measures of accuracy

of a local quadratic model.

Numerical results on specially constructed test problems and a number of stan-

dard test problems from CUTEr [38] show that the approaches we have considered

are more promising when compared with routines in the optimization tool box of

MATLAB [46], namely the trust region method and the quasi-Newton method.

In particular, they perform well in comparison with the, superficially similar,

gradient-flow method proposed by Behrman [7].
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Chapter 1

Introduction

1.1 Preliminaries

In this thesis, we are concerned with finding a local solution of the unconstrained

optimization problem

minimise
x

f(x), x = (x1, x2, ..., xn)
T ∈ R

n, (1.1)

where f(x) is a single real valued function assumed to be twice continuous differ-

entiable. Problems of this type arise in many practical situations such as Finance,

Economics, Commerce, Science, Engineering, Management as well as Mathemat-

ics itself.

As is well known, the first order necessary condition for the optimal solution x∗

to (1.1) is given by solving the n non-linear system of equations

∇f(x∗) = 0. (1.2)

A number of algorithms have been proposed over the years for solving (1.1) to

fulfil this optimality condition. Many methods are appropriate only for certain

types of these problems. Thus, it is important to be able to recognise the char-

acteristics of the problem in order to identify an appropriate solution technique.

Within each class of problems there are different minimisation methods, varying

1



in computational requirements, convergence properties, and so on. A discussion

on the relative strength and weaknesses of the available techniques within a given

class of problems can be found in many of the excellent textbooks ([1],[4], [6], [8],

[22], [43], [33], [36], [44]).

Solving the non-linear system of equations (1.2) usually involves generating a

sequence of iterates {xk}∞k=0 which converge to the solution x∗. We usually ap-

proach this type of optimization problem assuming that x∗ exists, is unique and

can be located to some desired accuracy, by the chosen method in a finite number

of steps. While this is often the case, it is important to realize this ideal situation

may fail to hold such as when the function is unbounded below (e.g. f(x) = x3),

or even when f(x) is bounded (e.g. f(x) = e−x). It may also not have a unique

solution as in f(x) = sin(x), x ∈ R. In general, it is often only important to find

a local minimum. Solving for a global minimum can have considerable difficulties

(see Dixon and Szego [29]).

In this thesis we are only interested in local optimization and not global opti-

mization. There are many iterative numerical optimization techniques (mainly

gradient methods) which can be applied to (1.1). Most of these methods use an

iteration of the form

xk+1 = xk + αkpk, (1.3)

where pk is a descent search direction (i.e. pTk∇f < 0 ) and αk is a step length

obtained by a one-dimensional search to ensure the decrease of the function i.e.

f(xk+1) < f(xk).

Sometimes these techniques enter a region where the Hessian (∇2f) is not posi-

tive definite and they may fail or exhibit slow convergence when they do. As an

example the Newton search direction

p = −(∇2f)−1∇f,

may point towards a saddle or a local maximum if ∇2f is not positive definite.

Quasi-Newton methods, which use a positive definite approximation to the Hes-
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sian, cannot perform a standard update to revise their estimate of the Hessian

when a step is taken along a direction of negative curvature. In fact, in a non-

convex region, none of the iterative methods whose search direction is based

on minimising a quadratic model function have much theoretical validity. One

method which does make sense in this case is the trust region method ([23], [33]).

The strategy, we are going to follow for solving (1.1), is also a gradient method

and is related to the trust region method. It follows the Continuous Steepest De-

scent Path (CSDP). Basically we associate an ordinary differential equation with

(1.1). This approach has already been looked at by a number of authors, ([6],

[7], [9], [10], [11], [15], [16], [55]). It has not been as widely used as other meth-

ods, such as Conjugate Gradient, Steepest Descent, Newton and Quasi-Newton,

mainly because of the difficulties inherent in solving a system of non-linear ordi-

nary differential equations. However computational speed and size of computer

memory have greatly increased since CSDP methods were first proposed and their

disadvantages may not now be so significant.

1.2 Unconstrained optimization

Given a twice differentiable function f of n variables x1, x2, · · · , xn, we define the

partial derivative relative to variable xi, written as
∂f

∂xi

, to be the derivative of

f with respect to xi treating all variables except xi as constant.

Let x denote the vector (x1, x2, · · · , xn)
T , with this notation the gradient of f(x)

can be written as

∇f(x) =
(

∂f

∂x1

,
∂f

∂x2

, · · · , ∂f

∂xn

)T

,

and the Hessian as

∇2f(x) =















∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2

· · · ∂2f
∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n















.
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Given a smooth function, an unconstrained optimization problem is

minimise
x

f(x) subject to x ∈ R
n

where f(x) : Rn → R.

Definition 1.2.1 x ∈ R
n is a local minimum of f(x) if there exists ǫ > 0 such

that f(x) ≤ f(y) for all y such that ‖x− y‖ < ǫ.

Definition 1.2.2 x ∈ R
n is a global minimum of f(x) if f(x) < f(y) for all

y ∈ R
n.

Definition 1.2.3 x ∈ R
n is a strict local minimum of f(x) if there exists ǫ > 0

such that f(x) < f(y) for all y such that ‖x− y‖ < ǫ, y 6= x.

Definition 1.2.4 x ∈ R
n is a strict global minimum of f(x) if f(x) < f(y) for

all y ∈ R
n, y 6= x.

We will also recall some useful facts from linear algebra that we refer to in later

chapters.

Any real symmetric matrix A is diagonalisable. More precisely, if A is symmetric,

then there is an orthogonal matrix R such that D = RTAR = R−1AR is diagonal.

Definition 1.2.5 An n× n matrix A is called

• positive definite if xTAx > 0 for all x ∈ R
n, x 6= 0,

• positive semi-definite if xTAx ≥ 0 for all x ∈ R
n.

In order to know that a given point x∗ of a given function f(x) is a minimum,

local or a global, we need the so called optimality conditions . They provide tests

for optimality, and are the basis for most algorithms.
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First order necessity

Suppose that x∗ is a local minimum of f(x),

• no perturbations about x∗ will result in function decrease,

• first order function approximation can be used to derive necessary condi-

tions (i.e., if x∗ minimises f(x), then ∇f(x∗) = 0).

Note that if ∇f(x∗) = 0, then x∗ is a stationary point, but not necessarily a

minimiser, which means that the first order necessary condition does not distin-

guish maximum, minimum, or saddle points. To discriminate between them we

need more information from the function, e.g. second order derivatives of f(x).

With second order derivatives we can build necessary and sufficient condition for

a minimum.

Second order sufficiency

Suppose that x∗ is a local minimum of f(x),

• no perturbations about x∗ will result in a function decrease,

• second order function approximation can be used to derive necessary con-

ditions (i.e., if ∇2f is positive definite at x∗, then x∗ minimises f(x)).

In unconstrained optimization, we can always solve the problem (1.1) using the

necessary conditions, i.e. by solving the nonlinear system ∇f(x∗) = 0. One of

the drawbacks in using this method however is that we might lose some impor-

tant information related to f(x). A better approach of course would be to use

all the given function information and try to build iterative procedures where

we start from a point x0 and then compute a sequence of points {xk} such that

f(xk+1) ≤ f(xk), until convergence.

There are two main prototypes of unconstrained optimization methods that are

often used this way, mainly the line search methods and the trust region methods.

Both of these types are based on quadratic approximation of f(x), but they differ

in the order in which they choose the search direction and step sizes.

5



1.2.1 Line search methods

A generic algorithm for solving unconstrained minimisation problems (1.1), using

this iterative method is as follow:

Algorithm 1.2.1 (Line Search Algorithm)

Step 1 Given an initial estimate x0,

Step 2 determine a direction of search pk along which f decreases, i.e.

pTk∇f(xk) < 0,

Step 3 find a step size αk such that f(xk + αkpk) decreases sufficiently, for ex-

ample in as in a weak line search sense

f(xk + αkpk) < f(xk)− δk for some δk > 0.

Alternatively choose αk to give the biggest decrease in f(x) by an exact

line search (using this type of step can be rather expensive).

f(xk + αkpk) = min
α∈R

f(xk + αpk),

Step 4 set xk+1 = xk + αkpk,

Step 5 repeat until convergence

Different methods correspond to different ways of computing the direction pk in

step (2) and the step size αk in step (3).

Step (3) includes the one-dimensional minimization problem which may not be

solved exactly. In fact most of the modern methods implement the weak (inexact)

line-search mainly to ensure steps are neither ‘too long’ nor ‘too short’, and try

to pick a useful initial step size for fast convergence.

1.2.2 Trust region methods

The trust region method is an alternative to the line search method. In this

method we first pick a step size ∆, say, and the choose pk to reduce a model of

f(xk + p) subject to the restriction ‖pk‖ ≤ ∆. We then accept xk+1 = xk + pk,

6



if the decrease predicted by the model compares well with the actual value of

f(xk + pk). If the existing model produces a poor step however then then ‘trust

region radius’ ∆ is reduced and the iteration is repeated.

Consider the quadratic model of f(xk + p)

f(xk + p) ≈ Q(p) = f(xk) +∇f(xk)
Tp+

1

2
pTBp, (1.4)

where B is a symmetric approximation of the Hessian ∇2f(xk).

The trust region sub-problem is therefore to

min
p∈Rn

Q(p) = f(xk) +∇f(xk)
Tp+

1

2
pTBp, subject to ‖p‖ ≤ ∆k (1.5)

where ∆k is a suitably chosen radius for the step.

To solve (1.5) is equivalent to finding a vector p which satisfies

‖p‖ ≤ ∆k,

and there should exist a scalar µ ≥ 0 such that

(B + µI)p = −∇f(xk),

µ = 0 or ‖p‖ = ∆k,

B + µI is positive semi-definite ,

(see Nocedal and Wright, [52]).

We then compute the ratio of the expected and the actual reduction of the func-

tion by using

r =
f(xk)− f(xk + p)

Q(0)−Q(p)
. (1.6)

This ratio is used to decide whether to increase or decrease the trust region

radius. If the ratio is close to 1.0, then we can say that there is a good benefit in

7



increasing the radius for future iterations. If on the other hand this is not the case

(i.e. there is poor agreement between the predicted and the actual decrease), then

the current step should be rejected and we reduce ∆k in the next iterations. This

technique avoids the difficulty caused by non-positive definite Hessian matrices

in line searches.

Algorithm 1.2.2 (Trust Region Algorithm)

Step 1 Given initial point x0, ∆̄, ∆0 ∈ (0, ∆̄), ǫ ≥ 0, 0 < η1 ≤ η2 < 1 and

0 < γ1 < 1 < γ2, k := 0,

Step 2 if ‖∇f(x)‖ ≤ ǫ, stop,

Step 3 approximately solve the subproblem (1.5) for pk

Step 4 Compute f(xk + pk) and rk from (1.6).

xk+1 =

{

xk + pk, if rk ≥ η1,

xk, otherwise

Step 5 If rk < η1, then ∆k+1 ∈ (0, γ1∆k]

If rk ∈ [η1, η2), then ∆k+1 ∈ [γ1∆k,∆k]

If rk ≥ η2, then ∆k+1 ∈ [∆k, min {γ2∆k, ∆̄}]
Step 6 generate Bk+1, update Qk, set k = k + 1 and go to Step 2.

1.2.3 Rate of convergence

Consider a sequence {xk} of estimates to a minimizer x∗. If lim
k→∞

xk = x∗ then we

say that the convergence is

(a) linear if there is a constant 0 < r < 1 such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= r;

(b) superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0;
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(c) quadratic if there is a constant C > 0 such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2

= C.

These ratios show how fast the iterates converge in the neighbourhood of the

minimiser x∗. In general linear convergence is only satisfactory if the constant r

is small say r ≤ 1
4
. However, in most methods the aim is for a better convergence

rate.

1.2.4 Convexity and minimization

In general, optimization has its mathematical foundation from linear algebra and

multivariate calculus. However the area of convexity is also very important. Here

we only summarise some of the concepts and results. For an in depth study of

the properties and proofs of the theorems in this area, see [12].

Definition 1.2.6 If x, y ∈ R
n, then points of the form λx+(1−λ)y for λ ∈ [0, 1]

are called convex combinations of x and y.

Definition 1.2.7 A set S ∈ R
n is called a convex set if for all x, y ∈ S and for

all λ ∈ [0, 1] it holds that λx+ (1− λ)y ∈ S.

Definition 1.2.8 Function f(x) : S → R, where S is a nonempty convex set, is

a convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ S and for all λ ∈ [0, 1].

Theorem 1.2.1 Suppose S is a convex set, f(x) : S → R is a convex function,

and x∗ is a local minimum of f(x). Then x∗ is a global minimum of f(x) over S.

Theorem 1.2.2 Suppose S is a non-empty open convex set, and f(x) : S → R

is differentiable. Then f(x) is a convex function if and only if f(x) satisfies the

following gradient inequality:

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ S.
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Theorem 1.2.3 Suppose S is a non-empty open convex set, and f(x) : S → R is

twice differentiable. Let ∇2f(x) denote the Hessian of f(x). Then f(x) is convex

if and only if ∇2f(x) is positive semi-definite for all x ∈ S.

Theorem 1.2.4 Suppose f(x) : S → R is convex and differentiable on S, then

x ∈ S is a global minimum, if and only if ∇f(x) = 0.

In general, convex functions are relatively easy to minimize because they can

be modelled reasonably well by a positive definite quadratic. But many real-life

minimisations involve functions which are not convex for all x. They may have a

minimum in a convex region, but a search for this minimum from a bad starting

guess may have to pass through a region of non-convexity. It is important to be

able to traverse such regions efficiently and the main focus of this thesis is on

algorithms which can do this.

1.3 Thesis outline

The structure of this thesis is as follows. In the next Chapter we introduce the

idea of Continuous Steepest Descent Path (CSDP) methods for unconstrained

optimization and give a brief literature review. In Chapter three we look at the

approximation of the CSDP and algorithms for solving problems of the form (1.1).

Numerical results are compared with the well known methods for solving such

problems such as trust regions and quasi-Newton methods implemented in MAT-

LAB. In the fourth Chapter we look at further algorithmic investigations mainly

by varying some of the parameters involved in the curvilinear search and consider-

ing some selected test problems as well as results from the CUTEr Test problems.

In Chapter 5 we describe the use of updates to replace the actual Hessian. Three

standard methods are used (BFGS, DFP and SR1) but without the need for

preserving positive definiteness. Two diagonal approximation methods are also

considered. All these methods use the same curvilinear search as in Chapter 4.

There will be a full set of CUTEr results for all these algorithms.
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In Chapters 3 - 5 all our methods have treated convex regions the same as non-

convex ones. Chapter 6 considers a hybrid approach which follows a CSDP in

non-convex regions but reverts to a conventional method near a solution when

the function is convex. We test these algorithms on our own specially constructed

test problems as well as the CUTEr ones.

Chapter 7 proposes a curvilinear search method that offers substantial reduc-

tion in overhead cost per iteration. This is based on solving the steepest descent

equation by an explicit second order Runge Kutta (RK) approach and this lets

us avoid the matrix computations needed by the algorithms in Chapters 3 - 6.

We report some results on specially constructed test problems. The conclusion

will be given in the last Chapter.
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Chapter 2

The Continuous Steepest Descent

Path

2.1 Introduction to CSDP

Consider the unconstrained optimization problem (1.1). We suppose it involves a

nonlinear twice continuously differentiable objective function f(x) with the gra-

dient vector g(x) = ∇f(x) and the Hessian matrix denoted by G(x) = ∇2f with

G−1 representing the inverse of the Hessian and H will denote an updated ap-

proximation to its inverse.

As mentioned in Chapter 1 a basic general algorithm to find a local minimum

using iterative techniques for solving unconstrained minimisation problem is as

follows.

Algorithm 2.1.1 (Basic Algorithm)

Step 1 A starting point x0 is chosen

Step 2 For k = 0, 1, 2, 3... until convergence.

(a) Calculate a search direction pk

(b) Determine a step length α to ensure f(xk + αpk) < f(xk)

(c) Set xk+1 = xk + αpk

Step 3 Test for convergence.

Different methods corresponds to different ways of choosing pk in step (2.a), based
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on information available in the problem. Step (2.b) is the line search subproblem.

The three most used techniques based on the line search methods are the

Steepest Descent ,

xk+1 = xk − αkg(xk), (2.1)

Newton,

xk+1 = xk − αkG
−1(xk)g(xk), (2.2)

and Quasi-Newton

xk+1 = xk − αkH(xk)g(xk). (2.3)

where H denotes a positive definite approximation of G−1(x) which is updated

at the end of each iteration. From a given point x0, and the scalar step length

αk, (normally chosen to ensure f(xk+1) < f(xk)) these iterative schemes gener-

ate a sequence of points (xk+1) and search directions (xk+1 − xk), constructed to

converge to the true solution x∗.

The Continuous Steepest Descent Path (CSDP) which is related to (2.1) can

be defined as the solution to the initial value problem

dx

dt
= −g(x(t)), x(0) = x0. (2.4)

This could also be derived by rearranging (2.1) as

xk+1 − xk

αk

= −g(xk).

In the limit as αk → 0, this reduces to (2.4) where αk is the time step in the

forward Euler discretisation. The idea of finding a local minimum by following

the solution path of (2.1) was first proposed by Arrow, Hurwitz & Uzawa [3].

These authors do not discuss practical implementations of the idea; but a good

many authors have subsequently looked at optimization methods based on (2.4)

and a review of some of these techniques appears below as section 2.5.
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Similarly continuous versions to (2.2) and (2.3) can respectively be defined by

dx

dt
= −G−1(x(t))g(x(t)) (2.5)

dx

dt
= −H(x(t))g(x(t)) (2.6)

with initial condition x(t) = x0 specified at t = 0.

The solution curve x(t) for t > 0 such that lim
t→∞

x(t) = x∗ to any of the above

systems of ordinary differential equations, if it exists, can be followed to give x∗

as a stationary point of f(x) ([7], [15], [11], [55]). Since this point is reached by a

path of continuous descent then x∗ must be a local minimum or a saddle point,

depending on whether or not G(x∗) is positive definite.

The methods that we will be considering in this thesis are based on equation

(2.4). From x(0) = x0, let p(t) be a curve that is an approximation to the in-

tegral curve x(t) of the vector field from this point using the solution to (2.4)

with p(0) = 0. We then search along this curve p(t) for t > 0, continuing to

increase t as long as the objective function is being sufficiently reduced and p(t)

is remaining sufficiently close to x(t). We shall discuss these criteria in more

detail later on in Chapter 3. If the search along p(t) is terminated at a point

x1 (e.g. because p(t) seems too far from x(t)) then another search path p(t) is

constructed as an approximate solution of problem (2.4) with initial condition

changed to x(0) = x1. A search along p(t) will then yield a new point x2; and

this process is repeated until a point is found that satisfies certain convergence

criteria such as ‖g(x∗)‖ < ǫ, where ǫ is some specified tolerance.

2.2 Gradient flow method

A gradient flow method of the kind just described has been proposed by Behrman

[7] for (2.4) which is based upon the solution of a system of n linear ordinary

differential equations, where n denotes the number of independent variables in

the objective function.
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The k-th iteration of Behrman’s algorithm uses the Taylor series approximation

of the vector field −g about x = xk and then uses the integral curves of the

approximating vector fields. The linearised CSDP can then be written as

dx

dt
= −g(xk)−G(xk)(x− xk) (2.7)

where xk denotes the starting point of the kth iteration. Equation (2.7) has an

analytical solution, passing through xk given by

x(t) = xk + pk(t) where pk(t) = −RΛRT gk (2.8)

and R = R(xk) is the matrix whose columns are the normalised eigenvectors of

G(xk) while Λ is a diagonal matrix whose elements are derived from the eigen-

values λ1, ..., λn via

Λii =

{

1
λi

(

e−λit − 1
)

for λi 6= 0

t for λi = 0
(2.9)

From any given point, Behrman’s algorithm calculates a curve that is initially tan-

gential to the negative gradient. Hence f(xk+pk(t)) is initially decreasing as t in-

creases. A new point xk+1 is found along xk+pk(t) such that f(xk + pk(t)) < f(xk)

(and also certain other criteria are met) and the process is repeated until conver-

gence.

2.3 Solving systems of first order ODEs

We shall in this section focus our attention exclusively on solving the system of

first order linear differential equations of the form

x′(t) = Ax(t) + b.

where x′ denotes
dx

dt
and x and b are (n×1) vectors and A is an (n×n) symmetrical

matrix.
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2.3.1 The Homogeneous system

If b = 0, then x′(t) = Ax(t) is homogeneous.

Theorem 2.3.1 Let x′ = Ax be a homogeneous linear first-order system. If

x = veλt is a solution to this system (where v = [v1, v2, ..., vn]
T ), then λ is an

eigenvalue of A and v is the corresponding eigenvector.

Theorem 2.3.2 If A is a real n×n matrix with n distinct eigenvalues, λ1, λ2, ..., λn

and associated eigenvectors, v1, v2, ..., vn, then

x(t) =
n

∑

i=1

civie
λit

is also a solution to the homogeneous system x′ = Ax, where c1, ..., cn are arbi-

trary, possibly complex, constants.

The proofs of theorems 2.3.1 and 2.3.2 can be found in any standard textbook

see [31].

If the eigenvalues are not distinct, the solution to this differential equation might

not be easy to get, but nonetheless, as repeated roots are not robust, or “struc-

turally unstable” (i.e. do not survive small changes in the coefficients of A), then

these can be generally ignored for practical purposes [51].

Recall that a matrix A is “diagonalizable” if there is a matrix, R, such that

R−1AR is a diagonal matrix.

It is also worth noting that Taylor’s expansion of the function f(t) = eat around

t = 0 is

f(t) = eat = 1 + at/1! + a2t2/2! + a3t3/3! + ...

This is fundamental to the proofs of the following theorems, see [31].

Theorem 2.3.3 An n × n matrix is diagonalizable if and only if it has n inde-

pendent eigenvectors.
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Theorem 2.3.4 The solution of x′(t) = Ax(t), x(0) = x0 is x(t) = eAtx0.

Proof: Taylor’s expansion of x(t) around t = 0 yields:

x(t) = x(0) + x′(0)t/1! + x′(0)t2/2! + x′′′(0)t3/3! + ...

As x′(t) = Ax(t), then x′′(t) = Ax′(t) = AAx(t) = A2x(t).

Similarly, x′′′(t) = A3x(t) and so on.

Thus, at t = 0, we have x′(0) = Ax(0) = Ax0,

x′′(0) = A2x(0) = A2x0,

x′′′(0) = A3x(0) = A3x0, etc.

Using the initial condition x(0) = x0, and replacing these in the Taylor’s expan-

sion

x(t) = x0 + Ax0t/1! + A2x0t
2/2! + A3x0t

3/3! + ...

factorising out by x0

x(t) = [I + At/1! + A2t2/2! + A3t3/3! + ...]x0

where I is the identity matrix. But, we know that

eAt = I + At/1! + A2t2/2! + A3t3/3! + ...

hence we get the required answer x(t) = eAtx0. ♦

Computing the exponential of a matrix is an expensive operation and plays a key

role in solving the differential equation. Moler and Van Loan carefully reviewed

up to nineteen different numerical algorithms for computing the exponential of a

matrix in their classic paper [48]. They looked at all methods that appear to be

practical and assessed their effectiveness.

The conclusion reached was that all of the methods have some strengths as well

as weaknesses, leaving the choice of a particular method to depend on circum-

stances - none was clearly and unfailingly superior to all the others.
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The method we have chosen to use is based on a matrix factorisation which in-

cludes eigenvalue eigenvector calculation. This is shown in Theorem 2.3.5 and

works particularly well for symmetric matrices as the eigenvectors will be orthog-

onal. Some difficulties, however, could occur in the case when the matrix does not

have a complete set of linearly independent eigenvectors and is thus defective. If

the matrix is close to being singular, the calculation of its inverse is numerically

unstable. Such possible difficulties need not concern us because the main ideas in

this thesis involves numerical rather than analytical solutions to the differential

equation which defines the CSDP and hence do not involve the calculations of

the exponentials of the matrices.

Theorem 2.3.5 The solution of x′(t) = Ax(t), x(0) = x0, where A is diagonal-

izable, is

x(t) = eAtx0 = ReΛtR−1x0

where R = [v1, v2, ..., vn] is the modal matrix whose columns are eigenvectors of

A and Λ is a diagonal matrix whose diagonal elements are distinct eigenvalues of

A.

Proof: Distinct eigenvalues ensure linearly independent eigenvectors and hence

non-singularity of R and, by our previous theorem, the diagonalizability of A.

Thus, R−1AR = Λ or A = RΛR−1.

and A2 = AA = (RΛR−1)(RΛR−1) = RΛIΛR−1 = RΛ2R−1.

Similarly, A3 = RΛ3R−1 and so on.

Now, recall that

eAt = I + At/1! + A2t2/2! + A3t3/3! + ...

By substituting for A,A2, etc. and recalling that I = RR−1, then

eAt = RR−1 + (RΛR−1)t/1! + (RΛ2R−1)t2/2! + (RΛ3R−1)t3/3! + ...

by factorising out R to the left and R−1 to the right

eAt = R
[

I + Λt/1! + Λ2t2/2! + Λ3t3/3! + ...
]

R−1.
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By definition

eΛt = I + Λt/1! + Λ2t2/2! + Λ3t3/3! + ...

Thus this reduces to

eAt = ReΛtR−1

hence

x(t) = eAtx0 = ReΛtR−1x0

as required. ♦

2.3.2 The Non-homogeneous system

Let us now turn to the non-homogeneous system of linear first order differential

equations. Consider the system

x′(t) = Ax(t) + b

where b 6= 0 and is not a function of t.

Theorem 2.3.6 The solution to x′ = Ax+ b with initial condition x(0) = x0 is

x(t) = eAtk − A−1b

where k = x0 + A−1b or, if A is diagonalizable,

x(t) = ReΛtR−1k − A−1b.

Proof: Let y = x + A−1b, then, as b is independent of t, taking the derivative

gives, y′ = x′. Thus by substitution we get

y′ = Ax+ b = Ax+ AA−1b = A(x+ A−1b) = Ay,

i.e. we obtain a homogeneous system y′ = Ay.

We know the solution to this homogeneous system is

y(t) = eAty0 = ReΛtR−1y0.
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Using y = eAty0 implies

x(t) + A−1b = eAt[x(0) + A−1b]

or simply

x(t) = eAt
[

x(0) + A−1b
]

− A−1b

and so by the definition of k,

x(t) = eAtk − A−1b.

Using y(t) = ReΛtR−1y0 implies

x(t) + A−1b = ReΛtR−1
[

x(0) + A−1b
]

or

x(t) = ReΛtR−1
[

x(0) + A−1b
]

− A−1b,

or, once again, by definition of k,

x(t) = ReΛtR−1k − A−1b.♦

2.4 The exact integral curve

We know the solution to

x′ = Ax+ b (2.10)

is

x(t) = ReΛtR−1
[

x(0) + A−1b
]

− A−1b, (2.11)

where x = xk at t = t0 and A = RΛR−1 ⇒ A−1 = RΛ−1R−1.

So now consider the equation (2.7), restated as

x′ = −g(xk)−G(xk)(x− xk). (2.12)
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Comparing equations (2.10) and (2.12) and putting x(0) = xk and using

A = G(xk) = R(−Λ)R−1, (where the diagonal of Λ are the eigenvalues of G and

the columns of R are its associate eigenvectors)

and b = G(xk)xk − g(xk) = RΛR−1xk − g(xk)

we get the solution to (2.12) as

x(t) = Re−ΛtR−1
[

xk +R(−Λ)−1R−1 [RΛR−1xk − g(xk)]
]

−
R(−Λ)−1R−1 [RΛR−1xk − g(xk)]

= Re−ΛtR−1
[

xk + (R(−Λ)−1R−1)(RΛR−1)xk −R(−Λ)−1R−1g(xk)
]

−
R(−Λ)−1R−1RΛR−1xk +R(−Λ)−1R−1g(xk)

= Re−ΛtR−1
[

xk − xk +R(Λ)−1R−1g(xk)
]

+ xk −R(Λ)−1R−1g(xk)

= Re−ΛtR−1R(Λ)−1R−1g(xk) + xk −R(Λ)−1R−1g(xk).

Thus, we obtain

x(t) = xk +R
(

e−Λt − I
)

(Λ)−1R−1g(xk) (2.13)

This equation is the basic equation for Behrman’s method [7] and it can also be

written as

x(t) = xk +
(

e−tG − I
)

G−1g(xk). (2.14)

We now write gk = g(xk) and Gk = G(xk) and we note that if t∗ corresponds

to a minimum of f(x) along p(xk, t) =
(

e−tGk − I
)

G−1
k gk, it must be a root of

df/dt = 0. But since, by (2.14),

df

dt
= gT (x(t))

dx(t)

dt
= −gT (x(t))e−tGkgk

we have

gT (x(t∗))e
−t∗Gkgk = 0 or gTk+1e

−t∗Gkgk = 0, (2.15)

i.e. the tangent vector to the curve p(xk, t) at t = t∗ , e−t∗ Gkgk and gk+1 are

orthogonal.
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Consider the case where f(x) is quadratic and of the form

f(x) = a+ bTx+
1

2
xTQx,

with Q positive definite, having a unique minimum at

x∗ = −Q−1b.

Then g(x) = Qx+ b, and so at any point x(t) given by (2.14)

[

Q
[

xk +
(

e−t∗Q − I
)

Q−1(Qxk + b)
]

+ b
]T

e−t∗Q(Qxk + b) = 0,

or

[e−t∗Q(Qxk + b)]T [e−t∗Q(Qxk + b)] = 0.

This equation is satisfied when Qxk + b = 0, i.e. xk = −Q−1b or when e−t∗Q = 0

which is true t∗ → +∞.

From the exact solution (2.14) we see that, when t∗ → +∞ and Hessian G = Q

is positive definite, then

xk+1 = xk −Q−1gk = xk −Q−1(Qxk + b) = −Q−1b = x∗.

Which means that for quadratic functions we can approach the solution to arbi-

trarily high accuracy if we chose t large enough.

Theorem 2.4.1 Let x(t) be the solution to (2.7). For a fixed t0 ≥ 0 if g(x(t)) 6= 0

for all t > t0, then f(x(t)) is strictly decreasing with respect to t, for all t > t0.

Proof (as given in [7])

We know

df(x(t))

dt
= g(x(t))T

dx(t)

dt
(2.16)

= −g(x(t))Tg(x(t)) (2.17)

= −‖g(x(t))‖22. (2.18)
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Since g(x(t)) 6= 0 when t > t0, it follows that
df(x(t)

dt
< 0.

i.e. f(x(t)) is strictly decreasing with respect to t > t0. ♦

From (2.18) we see that f(x(t)) is strictly decreasing in Euclidean norm as t

increases along any solution of the Ordinary Differential Equations (ODE), un-

less of course g(x(t)) = 0. Hence solving for a large t might be considered as

finding the local minimum of f .

It can be seen from (2.7) that if the only information given about f at xk is

its gradient g(xk), then we can use pk(t) = −tg(xk) as the solution to (2.7). In

this case using the ray xk + pk(t) to search for a new point that satisfies certain

search criteria and repeating the process is just the steepest descent method.

For a quadratic objective function, the curve that Behrman’s algorithm calcu-

lates is the exact integral curve, and for positive-definite quadratic the algorithm

finds the minimiser in one step. This is identical to the Newton step.

If at xk the gradient g(xk) and the Hessian G(xk) for a general function f(x)

are known, we can use the the first order approximation of the gradient so that

g(x) = g(xk) +G(xk)(x− xk)

and then use the readily available solution using (2.8). This is done by using

the quadratic approximation of the function about xk. Starting at point x0, we

compute p0(t) and find x1 along the curve x0 + p0(t). The search is continued in

this way to find other points xk and paths pk(t). By joining these curves pk(t)

together and pasting parts of them to form a piecewise-smooth curve p(t) that

connects the initial point x0 with a critical point x∗ of f as shown in Figure (2.1).

One important point we could make here is that the minimum could be reached in

one step for any function if the actual solution curves to the differential equations

were available. (The dotted curves in Figure 2.1 represent the CSDP that would

be obtained by solving (2.4) exactly.)

23



On each iteration, the algorithm’s search curve is initially tangent to the negative

gradient, and if the Hessian at the initial point of the search curve is positive def-

inite, then the search curve will be bounded and the step to the end of the curve

is a Newton step. Hence, we can obtain quadratic convergence near the solution.

The objective function value of an indefinite quadratic is unbounded below. We

shall see in the next section how to deal with this case.

Figure 2.1: Following approximate CSDPs

An important point to make about the piecewise descent path illustrated in Fig-

ure 2.1 is that it exists and is computable even if f(x) is not convex in the region

around one of the iterates xk. Hence the CSDP provides an effective search

direction until the search for a minimum enters a convex region within which

a solution x∗ is to be found. In this respect therefore, CSDP provides a pow-

erful alternative to minimization methods such as Newton, quasi-Newton and

conjugate gradient algorithms which are all based on approximating f(x) by a
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convex quadratic model. The steepest descent method implemented as a search

direction/line search method is also known to be slow (classic example given in

[4]) because it ignores curvature. The CSDP approach allows it to maintain de-

scent until the search re-enters a convex region in which a minimum can be found.

We have looked at one particular CSDP method which uses the analytical solution

of the gradient equation. Many other approaches use numerical approximations

to the solution of
dx

dt
= −g(x). In the next section we briefly review some of the

proposals that have been made.

2.5 Literature review

We are concerned in this thesis with methods for solving the unconstrained min-

imisation problem

minimise
x

f(x), x = (x1, x2, ..., xn)
T ∈ R

n,

by following the solution curve of ordinary differential equations. We have intro-

duced one possible ODE-based minimisation algorithm by describing the ideas of

Behrman [7], who described gradient flow algorithms by solving systems of linear

first order differential equations. He also showed that his method could scale

large problems by projecting the linear ODE onto a space spanned by a small

number of Lanczos vectors of the Hessian matrix H. Del Gatto further improved

on this in his PhD thesis [35] by proving convergence in the case where the ODE

is projected onto two dimensional subspaces. These are just two methods which

have been published in the area of our research. We now summarise some further

proposals.

Equation (2.12) has been discussed extensively by Botsaris and Jacobson [11],

and also by Botsaris [10], [9]. Brown and Bartholomew-Biggs [16] gave a brief

review for minimising functions by following solution curve of system of differ-

ential equations and have shown by using variety of algorithms, that the ODE

approach can be competitive with traditional or more conventional techniques.
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Vial and Zang [55] have suggested a gradient path algorithm, requiring the first

derivative of the objective function and using a rank-one correction which main-

tains and updates approximate second order information. This results in a quasi-

Newton type algorithm for minimising a differentiable function based on the

explicit solution (2.8) of quadratic function f . Vial and Zang also used a formula

for the step size with an Armijo-type rule to give a sufficient decrease in the

function when using inexact minimisation along the integral curve. Like many

authors however, they ignore the case of non-convexity in the problem and the

process of updating the second order information is quite involved. Zang, [62]

used a traditional positive definite Hessian approximation and a search along the

integral curve which is in two phases. In the first stage the function being min-

imised corresponds to some local quadratic approximation. This method initially

attempts a curvilinear search with the step size being reduced until a suitable

reduction is obtained. The second phase consists of a conventional search along

a straight line. Again the case of non-convexity in the problem is ignored.

Shi and Shen, [59] used a descent algorithm with curve search rule for uncon-

strained minimization problems, so that at each iteration the search direction

and the step size are determined simultaneously using a method that resembles

Wolfe’s line search rule [60],[61]. They also used a feature similar to the conjugate

gradient method which avoids the use of matrices. Luo et al. [45] have consid-

ered a combination of the Trust Region technique and a second order Rosenbrock

method to select the time step for the IVP. These are a special class of Runge-

Kutta methods and very efficient for stiff problems. This technique is different

from the local error approach. In this approach the first order Rosenbrock step

calculation is derived from the implicit Euler method (which we consider in sec-

tion (3.1)). The two-stage Rosenbrock solves the following system

(I + hk r Gk) dk = −hk g(xk)

(I + hk r Gk)pk = −hk g(xk + a dk)

xk+1 = xk + b1dk + b2pk

(2.19)

where r, a, b1, b2 are constants, with r = 1−
√
2/2, a = (

√
2−1)/2, b1 = 0, b2 = 1
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and the time step is adjusted via a trust region technique. This method works

with the exact Hessian and recognizes that it may be non positive definite. But

it only deals with this by making h very small. There seems to be no search

procedure in this algorithm. Instead we just accept or reject a new point and

adjust h for the next iteration. In the algorithm the search step pk has to satisfy

some given conditions similar to the Wolfe condition.

Ou, Zhou and Lin, [53] combined the trust region technique, with ODE-based

method, using the implicit Euler approach. In this method, a system of linear

equations is solved to obtain a trial step. When this is not accepted, the method

generates an iterative point whose step length is defined by a formula. Under

some standard assumptions, it is proven that the algorithm is globally conver-

gent and locally superlinear convergent. Ou, [54] also proposed a method for

solving a class of non-linear equations, which combines the Trust Region tech-

nique and ODE-based methods, and claimed numerical examples show that this

method is efficient and reliable.

In his PhD thesis Mohr, [47] combined low-order implicit Runge-Kutta meth-

ods for gradient systems and quasi-Newton type updates of the Jacobian matrix

were considered to find local minimisers. These hybrid algorithms numerically

approximate the gradient flow, but the exact Jacobian matrix is not used to solve

the non-linear system at each step. Instead, a quasi-Newton update approximates

the Hessian matrix and matrix-vector multiplications are performed in a limited

memory setting to reduce storage, computations and the need to calculate Jaco-

bian information. These hybrid algorithms are based on RK methods of at least

order two, and a curvilinear search is implemented instead of the standard line

search used in quasi-Newton algorithms. Step size control techniques are also

performed to control the step size associated with the underlying Runge-Kutta

methods.

All the methods considered in the preceding paragraphs are based on different

ways of computing (approximate) solutions to the continuous steepest descent

equation (2.4). Before concluding this section we mention an interesting ap-
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proach devised by Branin & Hoo [14] which uses the differential equation (2.5)

and hence follows a continuous Newton path. It might appear at first that a good

numerical solution of (2.5) would involve the use of third derivatives and hence

be quite expensive. However [14] shows that an effective and relatively cheap

solution method can be employed using the fact that at every point along the

solution curve x(t) of (2.5) the gradient vector g(x(t)) remains parallel to the

initial gradient g(x(0)). This observation motivates Branin & Hoo to propose a

simple predictor-corrector version of the explicit Euler method for computing a

good approximation to the continuous Newton trajectory. Branin & Hoo also

suggest a quasi-Newton version of their approach which uses (2.6) where H is an

updated approximation to the true inverse Hessian.

The Branin & Hoo approach does not make any significant distinction between

the cases where G (or H) is positive definite or non positive definite. This is

because the authors intend it to be a method of global optimization which works

by finding all stationary points of a function. The idea is for the algorithm to

proceed from an initial point via the continuous Newton path until any stationary

point is reached whether this is a maximum, minimum or saddle point. Branin &

Hoo then propose that the existing trajectory is projected through the stationary

point and that the calculation is continued with a reversal of sign on the right

hand side of (2.5) (or (2.6) until another stationary point is found. Repeated ap-

plication of this process can sometimes result in a trajectory that does indeed pass

through all stationary points. In practice however the outcome is not always so

straightforward and [14] includes a restarting procedure that is sometimes needed

when a trajectory diverges to infinity. These issues are outside the scope of this

thesis since our objective is simply to find a local minimum.

This reference list is by no mean exhaustive, as there are many other authors

who are continuing to work in this area; but it gives some indication of research

activity in minimising functions by solving system of ordinary differential equa-

tions.
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Chapter 3

Approximating the CSDP

In the previous Chapter we introduced the idea of solving a minimization prob-

lem by following the solution path of the continuous steepest descent equation.

In particular we have described an algorithm proposed by Behrman [7] which

uses an analytic solution to the CSDP equation. Many other trajectory-following

methods have also been proposed but most of them involve numerical solutions

of the gradient equation. In this Chapter we shall outline an approach of this

kind that we propose to develop further in this thesis. A review of some other

methods of a broadly similar nature appeared in the previous Chapter.

In this Chapter we seek to develop practical algorithms for solving (1.1), by ap-

proximating the CSDP. As has been mentioned already, iterative methods for

unconstrained minimization can experience difficulties, when the search enters a

non-convex region of the objective function f(x), i.e. when the Hessian matrix of

the function is not positive definite. In this situation, methods based on minimis-

ing a convex quadratic model of the objective function become inappropriate. In

the Newton method, for instance, the search direction

p = −G−1g

may lead to a saddle point or a local maximum rather than a local minimum.

Quasi-Newton methods, which rely on a positive definite estimate of the Hessian

matrix cannot make a suitable update in the non-convex regions and so progress

may be no better than the steepest descent approach.
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One optimization technique which makes intuitive sense in non-convex regions

is the trust region method. This uses a step which minimises a local quadratic

model subject to some restriction on the two-norm of the step size. This gives

a well defined search direction, whether or not the Hessian is positive definite.

This method can be related to the Continuous Steepest Descent Path (CSDP)

method, as we show in the next section.

3.1 Solving the continuous gradient equation

The Continuous Steepest Descent Path is defined as the solution of the initial

value problem (2.4) - i.e.

dx

dt
= −g(x(t)), x(0) = x0.

Suppose that the point xk is an estimate of the local minimum obtained after

k-iterations of the algorithm. We have already mentioned that solving this ODE

can lead to the classical Newton step when the function is locally convex [7].

However it can also be a logical choice of search away from this point when xk is

in the non-convex region of the function. In practice there are key questions that

need to be addressed, regarding the accuracy with which the solution path x(t)

needs to be obtained and the computational cost of doing so. Useful surveys of

these questions have been given in the PhD theses of Brown [15] and Behrman [7].

In this thesis, we will consider a number of minimisation algorithms which use

search directions based on the solution of (2.4). We shall also present some pos-

sible novel variations involving search along curvilinear directions.

Applying Euler’s method to (2.4), a new estimate of a point on the gradient

trajectory corresponding to t = h can be given by

xk+1 = xk − hgk (3.1)

where gk = g(xk). This of course gives the steepest descent method.

30



On the other hand by using the Implicit Euler method we get a different estimate

xk+1 = xk − hgk+1. (3.2)

If Gk, denotes G(xk), then (3.2) can be approximated by

xk+1 = xk − h (gk +Gk(xk+1 − xk)) .

Hence xk+1 = xk + pk where pk can be found by solving the following system of

equations

(I + hGk)pk = −hgk. (3.3)

In this case, even when Gk is non-positive definite, (3.3) gives a step pk which

decreases f , so long as h is sufficiently small.

We can also consider calculating xk+1 by a second order method which combines

(3.1) and (3.3) in mixed explicit/implicit Euler step so that

xk+1 = xk −
h

2

[

gk + (I + hGk)
−1gk

]

. (3.4)

This can be written as

xk+1 =
1

2
(xE

k+1 + xI
k+1)

where xE
k+1 comes from (3.1) and xI

k+1 comes from (3.3).

It is important to observe that equation (3.3) also gives a step similar to that of

the trust region methods which calculate search directions by solving

(µI +Gk)pk = −gk (3.5)

where µ in (3.5) is effectively the reciprocal of the step length h in (3.3). Equation

(3.3) gives the Newton step as h → ∞ while (3.5) gives the Newton step when

µ = 0. Also equation (3.3) makes pk parallel to −gk when h = 0 while (3.5)

makes pk tend to a steepest descent step as µ → ∞. The equation (3.5) will

always give a descent direction pk, even when Gk is not positive definite, as long

as µ is chosen sufficiently large.
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The derivation of (3.5) is that it gives a pk as the step that minimises the quadratic

model function i.e.

minimise
p

1

2
pTGkp+ pT gk + fk subject to ‖p‖2 ≤ ∆ (3.6)

where the step size limit ∆ is a function of µ. In the trust region method, ∆

is chosen on each iteration and the parameter µ has to be adjusted so that the

solution to (3.5) satisfies ‖p‖2 ≤ ∆. At the next iteration the value ∆ is increased

if the new point xk+1 = xk + pk gives an acceptable function decrease. On the

other hand if f(xk+1) ≥ f(xk) then ∆ is reduced and the sub-problem is solved

again to give a better step pk. One of the difficulties of solving the sub-problem

(3.6) by varying the parameter µ in (3.5) is that the relationship between ∆ and

µ is highly nonlinear and iterative adjustment to find an appropriate µ may not

be easy. Practical trust region algorithms may therefore deal with (3.6) in a

different way – for instance by treating it directly as a constrained optimization

calculation. For a major survey of trust region methods see [23].

There is a strong connection between equations (3.3) and (3.5) and this will allow

us to state that, whether Hessian matrix Gk is positive definite or not, (3.3) will

give us a step pk such that f(xk + pk) < f(xk) as long as h is sufficiently small.

(3.5) will give us a step pk such that f(xk+pk) < f(xk) as long as µ is sufficiently

large.

We shall be concerned with tracing out a curved path away from xk by solving

(3.5) for various values of µ. The value of µ is not adjusted in order to cause ||pk||
to be less than or equal to some pre-set limit ∆; instead µ is used like a search

parameter to obtain a satisfactory decrease in the objective function. When Gk

is non-positive definite we can trace out a path away from xk by using a sequence

of µ values chosen in a range 0 < µmin < µ <∞, where µmin is the absolute value

of the most negative eigenvalue of Gk. In the case when Gk is positive definite

it is natural to use µ = 0 and obtain pk as the classical Newton step. This gives

the quadratic convergence near the minimum. However, we shall also show that

we can sometimes use negative values of µ to extrapolate beyond a Newton step
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when xk is not sufficiently near a minimum for for a quadratic convergence to

occur.

It is important to note that the points xk+pk obtained by solving (3.5) for varying

µ will in general lie on a curved path. Hence a feature of the methods we are

discussing is that they involve curvilinear searches rather than the more usual

line search. When solving (3.5) for several different values of µ, we can

(i) use a fresh Cholesky factorisation of the coefficient matrix for each µ, or

(ii) simplify the solution of (3.5) for second and subsequent values of µ by deter-

mining the eigensystem of Gk via the orthogonal factorisation G = RDRT .

In case (ii) since RRT = I, the system (3.5) can be written

R(µI +D)RTpk = −gk

and to solve for each value of µ we may use

ĝk = RT gk;

p̂k,i =
ĝk,i

µ+ di
, i = 1, ..., n;

pk = −Rp̂k.

(3.7)

This calculation has something in common with the correction step used by

Behrman’s gradient flow method outlined in equation (2.8) of the previous Chap-

ter. It is important to emphasise that (3.7) uses the diagonal matrix D which

contains the eigenvalues of Gk while Behrman’s method uses the matrix Λ defined

in (2.9) which involves exponentials of these eigenvalues. Behrman’s method is

derived from the analytical solution to a linearisation of the gradient equation

(2.4) whereas the correction step (3.7) is based on an implicit Euler approximate

solution to a linearised form of (2.4).

For a single solution of (3.5), the eigenvalue calculation is more expensive than

a Cholesky factorisation. But if several values of µ are tried then subsequent

solutions via (3.7) or (2.9) may be cheaper than re-factorisation. Therefore the
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practical merit of using (ii) in the CSDP method depends on how far and how

accurately we want to pursue a curved path solution of (2.4).

When Gk is positive definite we have a choice between using (3.5) with a curvi-

linear search or reverting to a standard Newton step coupled with a line search.

The latter will work well on functions that are nearly quadratic; but in certain

cases the former may be more effective.

3.2 Searching along the curved path

We consider first the case when Gk is non positive definite. The Newton step

with µ = 0 in (3.5) is not appropriate because it is likely to lead towards a max-

imum or saddle point. Hence we try a sequence of values for µ > µmin where

µmin = |dp|, the most negative element in D.

To trace out an approximate CSDP from xk we may first select a suitably large

initial value of µ, - i.e. one which gives a quite small step in a near steepest

descent direction. We continue to try µ values decreasing towards µmin so long

as (3.5) yields a new point xk + pk close enough to the CSDP. Our intention is to

make significant progress along this path to reach an acceptable new point xk+pk

where the Hessian will be recomputed.

Our aim is to determine µ in (3.5) so as to ensure that p is a downhill step which

produces an “acceptable reduction” in the objective function. We can do this by

imitating the Wolfe condition for a conventional line search [33] - i.e. we want µ

to imply that f(xk + pk) < f(xk) and also both |f(xk + pk)− f(xk)| and ‖pk‖ are
bounded away from zero by a multiple of ‖gk‖. This might be done by comparing

the actual change in F with a first or second-order predicted change.

Suppose we choose

µ = αµmin for some α > 1, (3.8)

and compute the corresponding p from (3.5). Then Evaluate f+ = f(x + p),
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g+ = g(x+ p) and calculate one or more of the test ratios.

D1 =
f+ − f

pT g
, (3.9)

D2 =
|f+ − (f + pTg + 1

2
pTGp)|

|pT g + 1
2
pTGp| , (3.10)

D3 =
(g +Gp)Tg+

‖g +Gp‖‖g+‖ . (3.11)

Note that subscript (k) has been suppressed on the right hand side of the above

equations.

D1 compares the actual change in f with a first order prediction.

Now if,

• D1 ≈ 1 this suggests that the step is too short.

• D1 < 0 indicates the search has gone too far past the one-dimensional

minimum.

• D1 = 0.5 corresponds to the one dimensional minimum along p if f is

quadratic.

D2 compares the actual reduction in f with the quadratic prediction and if the

difference is relatively small (i.e. D2 ≈ 1) then we can suppose that x+ p is quite

close to the true solution path of (2.4). Hence it seems reasonable to continue to

extrapolate along the CSDP (so long as D1 exceeds some positive threshold).

D3 compares the actual gradient with the quadratic model gradient (in terms of

cosine of the angle between them). Thus it is reasonable to keep extrapolating if

D3 is close to 1 (again provided D1 > 0). In this case we may deduce that there

is progress to be made with decreasing values of µ. Once we have computed the

test ratios then we shall find either

(i) x+ p is acceptable as a stopping point for the iteration

(ii) x+ p is acceptable but it is worth extrapolating further by decreasing µ

(iii) x+ p is unacceptable and we must interpolate by increasing µ.
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3.3 Algorithm for searching along CSDP

The algorithm for a single iterative step can now be formalised.

Algorithm 3.3.1 (Outline CSDP algorithm for non-convex regions)

Step 1 Given the parameters are: α > 1, β < 1, γ < 1, Dmin
1 , Dmax

1 , Dmax
2

and Dmax
3 .

If Gk is positive definite go to Step 7. Otherwise ...

Step 2 Set µ = αµmin

Step 3 Compute p from (3.5) and hence get x+ p, f+, g+, D1, D2, D3.

Step 4 If D1 < Dmin
1 set µ = µ+ γ(µ− µmin) (to interpolate) and go to step 3

Step 5 If D1 > Dmax
1 and |1−D2| < Dmax

2 and |1−D3| < Dmax
3

set µ = µ− β(µ− µmin) (to extrapolate) and go to step 3

Step 6 Otherwise x+ p is acceptable and the iteration is compete.

Step 7 Set an initial value of µ = 0 and then compute p, x+p and f = f(x+ p).

Step 8 Compute the test ratio D1.

Step 9 If D1 is too small or negative then x+p is unacceptable and µ is replaced

by

µ← µ+ γ(µ− µmin)

where in this case µmin is the negative of the smallest eigenvalue of G.

Step 10 If D1 is close to 1, extrapolate by decreasing µ below zero, and this is

done by replacing µ by

µ← µ− β(µ− µmin) (3.12)

The curvilinear search algorithm sketched above can be combined with several

different ways of calculating pk.

• the calculation of p from (3.3) and (3.7) gives the algorithm Nimp1 or

• the calculation of p from (3.4) gives the algorithm Nimp2 or

• the calculation of p from (2.8) and (2.9) gives the algorithm UNMIN.
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3.3.1 Nimp1 and Highams trust-region method

We have mentioned previously that using (3.5) to solve the trust region sub-

problem (3.6) can be difficult because of the nonlinear relationship between µ

and the trust region radius ∆. Higham [41] has proposed a trust-region method

which works with µ directly and does not use ∆ at all. It simply uses the fact that

increasing µ implies a decrease in ||pk|| while a decrease in µ implies an increase

in ||pk||.

Because Higham’s method works only with µ it resembles Nimp1 more closely

than most other trust-region methods. In order that we can discuss the similari-

ties and differences between these two methods we first state Higham’s algorithm

using the notation of the present Chapter.

Algorithm 3.3.2 (Outline of Higham’s trust region algorithm)

Compute fk = f(xk), gk = ∇f(xk) and Gk = ∇2f(xk)

If λmin(Gk + µkI) ≥ ǫ

Solve (Gk + µkI)pk = −gk
Compute δfk = fk − f(xk + pk)

Compute δqk = fk − qk(pk)

Compute rk = δfk/δqk

Set µk+1 = V (rk, µk) using (3.13)

else

set rk = −1, µk+1 = 2µk (and regard pk as zero)

end if

If rk ≤ 0

set xk+1 = xk

else

set xk+1 = xk + pk

end if

The algorithm involves the function

V (r, µ) =











2µ, r < 1
4

µ, 1
4
≤ r ≤ 3

4
1
2
µ, 1

4
< r.

(3.13)
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An important difference between the above algorithm and Nimp1 is that the

Higham method usually employs only one value of µ per iteration because ad-

justment of µ takes place between iterations. Thus, for instance, if the step pk

produces a ‘good’ reduction in objective function there is no attempt at extrap-

olation by using a reduced µ with the current values of gk and Gk. Instead a

reduced value of µ is employed on the next iteration. Similarly, if the reduction

in objective function is merely ‘acceptable’, the value of µ is left unchanged by

Higham’s method. In contrast, Nimp1 typically uses a different value of µ on

each iteration and can therefore be thought of as being more flexible. The situa-

tion in which Higham’s method most resembles Nimp1 is when the current value

of µ produces an increase (or an unacceptably small decrease) in the objective

function. In this case both methods would repeat the solution of (3.5) with the

same gk and Gk but with an increased value of µ.

Higham [41] does not quote any numerical experience with his method and so we

cannot comment directly on performance differences between his approach and

ours. He is able to prove some convergence properties for his algorithm and we

shall consider these, and their implications for Nimp1 in Chapter 8 of this thesis.

3.4 Initial trials

We have written three MATLAB codes Nimp1, Nimp2 and UNMIN to implement

the algorithms mentioned at the end of the previous section. UMINH is a version

of Behrman’s gradient flow method but using a different curvilinear search from

[7].

3.4.1 Numerical results for test problem T1

As a simple test problem we consider the function T1 given by

f(x1, x2) = x1x2 + (x2
1 + 2x2

2 − 10)2/100
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with the initial condition x0 = (2.05, 1.6)T . Contours of this function are shown

in Figure 3.1. We look at the CSDP solutions using the following values for the

parameters in the algorithm given in section 3.3,

α = 2, β = 0.75, γ = 0.5, Dmin
1 = 0.1,

Dmax
1 = 0.6, Dmax

2 = 0.1 and Dmax
3 = 0.75.

The results in Table 3.1 were obtained using MATLAB implementations of Nimp1,

Nimp2 and UNMIN where the execution of these algorithms is terminated once

‖g(xk+1‖ < 10−6. The trust region and quasi-Newton methods were implemented

using fminunc in the MATLAB optimization toolbox [46]. We denote these by

TR and QN respectively.

The method in fminunc is described in [13], [19] and it is comparable with Nimp1

in that it uses the exact Hessian of the objective function and works with a trust

region sub-problem on every iteration. The approach differs from Nimp1 how-

ever in not obtaining an exact solution to the trust region sub-problem but rather

to restricting itself to a two-dimensional subspace. This subspace is defined by

the negative gradient −gk together with either an approximate Newton direction,

p ≈ −G−1gk or a direction of negative curvature d, such that dTGkd < 0. Ob-

taining the Newton direction or a direction of negative curvature could involve

the solution of (3.5) with µ = 0 or the calculation of the eigensystem of Gk.

However the method in fminunc seeks to avoid doing as much work as Nimp1 on

each iteration and hence it finds p or d, by applying a preconditioned conjugate

gradient (PCG) method see [18] to the system Gkp = −gk. When the search is far

from the optimum the PCG method may be terminated with quite a low accuracy

approximation to the Newton direction; and, in particular, if Gk is found to be

non positive definite the PCG method returns a direction of negative curvature,

rather than an approximate Newton direction.
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Method No of Its No of fcn calls
Nimp1 7 10
Nimp2 7 13
UNMIN 18 25

TR 8 9
QN 12 19

Table 3.1: Results for the function x1x2 + (x2
1 + 2x2

2 − 10)2/100

We can observe that Nimp1 and Nimp2 need fewer iterations than other methods

and -perhaps more significantly- they appear to be more efficient than UNMIN.

We also note of course that the CSDP methods use more function evaluations

than the trust region method approach. This is plainly due to the step size used

in tracing out the CSDP - and this, in turn, depends on the rules for adjusting

µ. We can surmise that a smaller value of α in step 2 of algorithm 3.3.1 or a

larger value of β in step 5 would have given the same solution in fewer function

calls. The important point to be drawn from this first example is that the use

of curvilinear searches can reduce the number of iterations and hence reduce the

associated cost of computing second derivatives. We recall that, once the cost of

calculating the eigensystem has been accepted, each new point in the curvilinear

search is relatively inexpensive.

Clearly the results in Table 3.1 correspond to a single set of parameter values in

the outline CSDP algorithm. We shall consider the variation of some of these

parameters on a wider selection of problems in the next Chapter. The CSDP

convergence paths for Nimp1, Nimp2 and UNMIN are shown in Figures 3.1 - 3.3.

The circled points mark the starts and ends of iterations and the dots indicate

points obtained with different values of µ. It is clear from the Figures that the

solution by all the three methods follows a different curvilinear path through the

non-convex region.

Our experience with problem T1 encourages us to look further at the algorithm

Nimp1, Nimp2 and UMINH to consider how they perform on a wider set of

test problems and to explore their sensitivity to various parameter choices in the

curvilinear search.

40



 Iterations of nimp1

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.1: The solution path for Nimp1 on problem T1.
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Figure 3.2: The solution path for Nimp2 on problem T1.
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 Iterations of UNMIN
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Figure 3.3: The solution path for UNMIN on problem T1.
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Chapter 4

Further Algorithmic

Investigation

4.1 Preliminaries

Results from problem T1 given in Chapter 3 suggest that the CSDP techniques are

worth further investigation. The algorithm stated in section 3.3 involves several

parameters and certain features within it are somewhat tentative, for instance the

decision to base interpolation and extrapolation only on the ratio D1 in section

3.2 when G is positive definite is based purely on observation of numerical results

rather than any form of theoretical analysis. Similarly the formula for adjusting µ

does not take into account whether D1 and/or D3 are close to their limits. In the

next sections we shall consider the sensitivity of the methods to certain parameter

values in the algorithm and how performance can be affected by different choices

for some of them.

4.1.1 Choosing an initial µ for each iteration

We first look at the value of α in (3.8) which is involved in determining an initial

value and the subsequent adjustment of µ on each iteration in order to ensure

that the function value is “sufficiently less” than the previous one. As in trust

region methods we could relate this to an estimate of the size of the step pk.
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Suppose δk = ‖xk−xk−1‖2 is the size of the step taken to reach the current point

xk (δ0 must be set arbitrarily). Suppose also that the Hessian Gk at the current

point has factors given by

Gk = RDRT where RRT = I and D is a diagonal matrix.

The elements of D are the eigenvalues of Gk and the system (3.5) can be written

R(µI +D)RTpk = −gk.

Hence the solution of (3.5) for each value of µ can be found via

ĝk = RT gk; p̂k =
ĝk

µ+ di
, i = 1, ..., n; pk = −Rp̂k.

Because of the orthogonality of the matrix R, we deduce that

‖pk‖2 ≤
1

µ+ λmin

‖gk‖2

and in order to give ‖pk‖2 < δk, we require

1

µ+ λmin

≤ δk
‖g‖2

and so µ ≥ ‖gk‖2
δk
− λmin.

Since we must have µ > µmin, an initial µ for iteration can be obtained from the

safeguarded formula

µ = maximum

(

αµmin,
‖gk‖2
δk
− λmin

)

(4.1)

for some α > 1 when the Hessian G is non-positive definite and

µ = maximum

(

0,
‖gk‖2
δk
− λmin

)

when G is positive definite - i.e. we put an initial restriction on the Newton step

too. So now we have a modified algorithm for a CSDP step in which δ0 is defined

arbitrarily on the first iteration and is the last successful step length on all other
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iterations. Acceptability of the new point xk + pk is also based on the values of

one or more of the test ratios as described in section 3.2.

Some results with this safeguarded formula are given in Table (4.1). The first

rows of the table show what happens when the CSDP methods are applied to

problem T1 using µ = αµmin for a fixed value of α on each iteration while the

last row uses the formula (4.1) with α = 2. The other parameter values in the

algorithm (3.3.1) are

δ0 = 1, β = 0.5, γ = 0.25, Dmin
1 = 0.1

Dmax
1 = 0.6, Dmax

2 = 0.1 and Dmax
3 = 0.5

α = Nimp1 Nimp2 UNMIN
Its/Fcs Its/Fcs Its/Fcs

1.5 7/10 5/9 17/33
2 7/12 7/13 13/30
3 7/14 7/15 18/37
4 7/16 5/14 17/35
5 7/16 7/17 16/36
10 7/18 6/19 18/37
15 5/18 6/19 17/40
20 6/20 6/20 18/41
30 6/21 5/20 17/43
50 7/24 5/22 18/45
100 7/25 5/24 17/48
200 7/27 5/26 17/52
1000 6/31 7/33 18/61
(4.1)α 6/13 6/13 18/30

Table 4.1: Results using different values of α in CSDPmethods applied to problem
T1

It is clear that varying α has an appreciable effect on the numbers of function

evaluations and, to a lesser extent, on the numbers of iterations. It is also clear

that we cannot use α = 1 since this would make (3.5) a singular system. How-
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ever it is interesting that we can take α fairly close to 1 without encountering

difficulties. On the other hand, large values of α may reduce the number of it-

erations but also imply that more steps are taken along the curvilinear path at

each iteration, giving a corresponding increase in function calls. The automatic

choice (4.1) seems to yield a good compromise.

4.2 Varying the parameter Dmax
3 .

We can also consider varying the threshold on the accuracy parameter D3 which

controls how far the search is pursued along the approximate CSDP. Using the

parameter value Dmax
3 = 0.75 on test problem T1, the same results as in Table

4.1 were obtained.

Figures 4.1 – 4.3 relate to problem T1 and show how the Nimp1 path varies as

Dmax
3 changes.
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Figure 4.1: The solution path for Nimp1 on problem T1 using Dmax
3 = 0.5
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Figure 4.2: The solution path for Nimp1 on problem T1 using Dmax
3 = 0.05
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Figure 4.3: The solution path for Nimp1 on problem T1 using Dmax
3 = 0.01
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Figure 4.1 shows that, in some sense, the test |1−D3| < 0.5 lets the first iteration

go ”too far” and obtains a point x1 lying some way off a direct route to the

minimum. On the other hand, insisting that |1 −D3| < 0.05 or |1 −D3| < 0.01

(Figure 4.2 and 4.3) may not let the first search go far enough, leaving the second

iteration with some work still to do to escape from the non-convex region. In

fact, if we count the dots, we find that Figure 4.1 represents the solution using

the fewest function evaluations.

4.3 Behaviour close to the the saddle point

We now consider how Nimp1 behaves on problem T1,

f(x1, x2) = x1x2 + (x2
1 + 2x2

2 − 10)2/100

as starting point x0 moves closer and closer to the saddle point, which in this case

is xs = [0, 0]T . Evaluating the function, its gradient and Hessian at this point we

get,

f = 1, g =

[

0

0

]

, G =

[

−0.4 1.0

1.0 −0.8

]

The eigenvalues of G, at this point are d1 = −1.6198 and d2 = 0.4198 with

corresponding eigenvectors

v1 =

[

−0.6340
0.7733

]

and v2 =

[

0.7733

0.6340

]

respectively. Now we choose starting values in the non-convex region that lie on

the first eigenvector, e.g.

x0 =

[

1

0.8199

]

,

[

0.1

0.0819

]

,

[

0.01

0.0081

]

,

[

0.001

0.0008

]

.

Figures 4.4-4.7 show the corresponding CSDP solutions.
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 Iterations of nimp1
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Figure 4.4: The solution path for Nimp1 on T1 using x0 = [1, 0.8199]T

 Iterations of nimp1

−5 0 5

−4

−3

−2

−1

0

1

2

3

4

Figure 4.5: The solution path for Nimp1 on T1 using x0 = [0.1, 0.0819]T
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 Iterations of nimp1
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Figure 4.6: The solution path for Nimp1 on T1 using x0 = [0.01, 0.0081]T
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Figure 4.7: The solution path for Nimp1 on T1 using x0 = [0.001, 0.0008]T
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x0 Its Fcs
(1, 0.8199)T 7 13

(0.1, 0.0.819)T 9 18
(0.01, 0.0081)T 9 18
(0.001, 0.0008)T 9 19

Table 4.2: Results using Nimp1 on problem T1 with different initial conditions

It can be seen from Figures (4.4) - (4.7) that even when starting very close to the

saddle point (i.e. in the non-convex region where the gradient of the function ∇f
is very close to zero) Nimp1 can find the minimum of the function and avoid the

saddle point. This may be at a cost of more function evaluations the nearer x0 is

closer to the saddle, see Table (4.2). This was also noticed when using the other

methods (see Table (4.3)).

α = Nimp2 UNMIN
x0 Its/Fcs Its/Fcs

(1, 0.8199)T 5/12 20/32
(0.1, 0.0819)T 6/18 26/50
(0.01, 0.0081)T 6/18 27/51
(0.001, 0.0008)T 6/18 28/55

Table 4.3: Results using Nimp2 and UNMIN in problem T1 with different initial
conditions

4.4 Numerical results on specially constructed

test problems

We now consider the performance of CSDP methods on a wider range of problems.

These have been specially chosen to test the features of the CSDP methods and

hence they involve functions with large non-convex regions - and sometimes saddle

points - which are close to local minima. The problems are given in Appendix D.

The functions of the form F (x) = −1/(1+φ(x)) are suggested by the shape of the

famous Runge function used to show the inadequacies of polynomial interpolation.

F (x) will have a local minimum at the same point as φ(x), but as x moves
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away from this minimum the function can be expected to become non-convex

and to flatten out. Figure 4.8 illustrates this behaviour by showing the surface

corresponding to problem T4 2. If an optimization search is started in a flattened

non-convex region of the kind shown in Figure (4.8) then a significant test of the

CSDP approach will be to consider how effectively it is able to make progress

towards the convex area near the minimum.
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Figure 4.8: Surface Plot for Problem T4 2.
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Fctns Methods Nimp1 Nimp2 UNMIN TR QN UMINH
α = Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

T1 2 7/10 7/13 18/25
100 6/16 6/19 17/33 8/9 12/19 8/49
a 6/10 6/10 18/26

T1r 2 5/8 6/10 15/22
100 6/16 7/21 14/37 9/10 11/28 F
a 7/14 6/11 16/24

T1r2 2 9/12 6/10 14/21
100 5/12 7/21 14/37 9/10 11/32 10/31
a 8/14 7/12 15/23

T1a 2 5/8 5/11 15/20
100 5/12 4/12 17/32 9/10 10/13 8/30
a 5/10 4/8 17/24

T1b 2 5/10 5/12 19/29
100 6/19 5/14 20/42 9/10 10/22 F
a 7/11 5/12 19/29

T1ar 2 7/14 6/11 16/32
100 7/24 7/20 16/43 9/10 11/31 11/32
a 8/14 6/11 16/26

T2 2 8/13 8/15 18/23
100 8/21 7/17 18/30 9/10 14/27 F
a 8/13 7/12 19/27

T2r 2 6/9 7/13 15/21
100 8/20 8/19 15/30 9/10 12/23 F
a 7/15 7/10 13/18

T3 2 9/17 7/16 24/38
100 8/28 6/23 21/54 14/15 14/15 F
a 9/17 7/17 24/38

Table 4.4: Results on special test problems from nimp1, nimp2, UNMIN, TR,
QN and UMINH
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Fctns Methods Nimp1 Nimp2 UNMIN TR QN UMINH
α = Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

T4 2 2 5/6 6/11 14/17
100 11/25 12/31 19/33 8/9 7/18 6/31
a 7/10 8/10 17/19

T4 4 2 7/24 8/15 11/18
100 12/31 13/32 15/33 22/23 17/30 F
a 12/16 10/14 13/15

T4 10 2 7/15 9/15 11/14
100 14/36 14/39 20/43 12/13 16/31 7/28
a 15/19 15/18 18/19

T4 20 2 12/24 9/15 13/22
100 17/43 17/45 21/48 12/13 17/44 F
a 9/15 19/26 21/24

T4 50 2 11/25 12/39 14/26
100 18/48 19/51 24/54 15/16 23/61 F
a 10/13 21/27 27/33

T4 100 2 12/35 16/45 18/33
100 21/56 22/62 25/60 17/18 26/74 F
a 14/17 24/37 30/40

T4r 20 2 9/16 9/17 10/16
100 17/47 18/50 19/47 12/13 14/41 F
a 9/15 19/26 18/21

T5 2 7/11 9/14 20/25
100 8/21 10/26 20/36 9/10 6/11 8/36
a 7/11 8/15 20/26

T5a 2 9/14 14/44 22/29
100 10/27 17/44 22/44 18/19 9/14 F
a 10/20 9/21 22/32

Table 4.5: Further results on special test problems from nimp1, nimp2, UNMIN,
TR, QN

In Tables 4.4 and 4.5 we summarise some results for these test problems using the

parameter values δ0 = 1, β = 0.5, γ = 0.25, Dmin
1 = 0.1, Dmax

1 = 0.6, Dmax
2 = 0.1

and Dmax
3 = 0.5.

(It is worth noting, in view of the comments in section 4.2, that the results

were very little changed when Dmax
3 was set to 0.25.)
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The second column of Tables 4.4 and 4.5 shows the value of α used to choose an

initial µ = αµmin on each iteration. The symbol ’a’ denotes the use of formula

(4.1) with α = 2. The tables also show the numbers of iterations and function

calls needed by the truncated Newton/trust region method from the MATLAB

optimization toolbox. For each problem in these tables we highlight in bold the

entry which gives the best performance measured primarily in terms of the num-

bers of iterations. Whenever the entry which represents the best performance in

terms of function evaluations is different from the one marked in bold, we dis-

tinguish it by italics. Finally, to reflect the fact that we are usually interested

in both these measures, we underline the entry which gives the smallest sum of

iterations and function calls. (We recognize of course, that these are rather unso-

phisticated ways of assessing performance which overlook the overall algorithmic

costs in computing search directions etc.)

The results in Tables 4.4 and 4.5 show that Nimp1 consistently does better than

Nimp2 and UNMIN. In particular, it seems that UNMIN is rarely competitive.

Nimp1 also usually outperforms the Trust Region method in terms of iteration

count - appreciably so on problems T1 group and T2. The choice of α does

not greatly affect the numbers of iterations needed by CSDP methods. We may

also note that Nimp2 and Nimp1 behave in a rather similar way on T1 problems

while Nimp2 does slightly better on problems T2 and T3 on all other examples

the performance of Nimp2 is not as competitive. Nimp1 is also less competitive

with the quasi-Newton method on T5 problems.

It is not particularly surprising to observe that Nimp1 can often outperform the

quasi-Newton routine (QN) from the MATLAB optimization toolbox [46] since

this method does not use exact second derivatives. It is probably more significant

to note that the pilot version of Nimp1 appears quite competitive with the trust

region routine TR (also from [46]).

The code UNIMH in the final column of the tables represents an implementa-

tion of Behrman’s gradient flow method [7] which uses his step control procedure
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rather than our curvilinear search. Unfortunately, during the testing, we had to

guess values for some of the search parameters which were not given in his thesis

[7] and we have not been able to obtain very good performance. As can be seen

from the results in Tables 4.4 and 4.5, UMINH failed on most of the problem and

this may be due to the fact that the algorithm does not perform adequately in

non-convex region for these specially selected test problems.

In the next section we consider the performance CSDP algorithms on a wider set

of test problems.

4.5 Using the CUTEr test problems

We have tried our algorithms on 139 unconstrained problems taken from the Con-

strained and Unconstrained Test Environment revisited version (CUTEr). This

offers a large set of optimization test problems and is created and maintained by

Gould, Orban and Toint [38]. The algorithms and the test problems have been

implemented using MATLAB for Linux with the starting point x0 provided by

CUTEr.

An important aspect of any algorithm is the convergence test for terminating

the iterations. We have used the gradient norm ‖∇f‖2 ≤ 10−6 as the stopping

criterion, and taken 10000 as the maximum permitted number of iterations. The

experiments compare Nimp1, Nimp2, UNMIN (this is identical to Behrman’s

algorithm but using our own curvilinear search), UMINH, TR and QN the MAT-

LAB trust region and quasi-Newton methods respectively. Note that QN method

here does not use the exact Hessian and so the under performance is to be ex-

pected. QN will be looked at in more detail when compared with the similar

CSDP methods in Chapter 5.

The CUTEr results are summarised in Appendix A. It can be seen that Nimp1

matches or improves on the performance of most other methods, in over 25%

of cases. It beats the TR method on over half the problems. TR fails to reach

the minimum on 9 problems, but Nimp1 finds a solution in all cases. Nimp2 also
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does well on around 30% of the examples. However it fails on 6 problems.UNMIN

wins in 20% of cases and it did really well on problems such as the PALMER*C

set, SENSOR and SPARSINE. But it fails on 11 problems which include the

QUARTC and DENSCHNB problems. This may be due to some small curvilin-

ear steps being taken or even to cycling within the iterations.

TR did best on 28% of the problems. However it often seems to terminate pre-

maturely at points that do not satisfy the first order optimality conditions. The

MATLAB optimization toolbox uses a stopping rule based on the size of change

in the objective function and this seems to be activated too soon on problems

HEART8LS, HYDC20LS and LOGHAIRY for example.

Overall therefore the performance of CSDP methods is quite encouraging. One

negative aspect of the results however is that all the methods, including Nimp1,

can sometimes do badly compared with the best result. There is a degree of

inconsistency in behaviour that still needs investigation. One way of trying to

counteract such inconsistencies is to compare methods using performance profiles

as proposed by Dolan & Moré [30] and we shall now use this approach based on

two performance metrics, the number of iterations needed to attain the desired

accuracy and the corresponding number of function evaluations. These both give

information on a solver’s robustness and efficiency.

As in Dolan and Moré [30], given a set of problems P and a set of solvers S ,

a performance profile of a solver, s ∈ S, is a plot of the probability distribution

function

ρs(τ) =
1

np

size {p ∈ P : rp,s ≤ τ}

for a given performance metric, where np ∈ P is the number of problems, rp,s is

the performance ratio

rp,s =
tp.s

min{tp,s : s ∈ S}
and tp,s denotes the number of iterations (number of function evaluations) to solve

problem p ∈ P with solver s to the required accuracy of convergence. It is easily

seen that the fastest solver has rp,s = 1 and if the solver fails then rp,s = ∞ . It
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was suggested by Dolan and Moré [30] that if a method does not solve a problem,

rp, s is simply given a large value.

ρs(τ) represents the overall probability that the performance of solver s on any

problem will be within a factor τ of the best possible performance. If we plot

ρs(τ) for a number of solvers then the most efficient method will be the one for

which ρs is highest on the left hand side of the plot. On the other hand the

method for which ρs is highest on the right-hand side of the plot may be consid-

ered the most reliable.

Performance profiles will be now used to compare the solvers Nimp1, Nimp2,

UNMIN, UMINH, TR and QN on 139 test problems from the CUTEr collection.

Figures 4.9 and 4.10 correspond to the use of iteration count as performance

metric while Figures 4.11 and 4.12 show performance profiles based on numbers

of function evaluations.
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Figure 4.9: Full Hessian: Comparison of the methods based on iterations for
1 ≤ τ ≤ 10.
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Figure 4.10: Full Hessian: Comparison of the methods based on iterations for
1 ≤ τ ≤ 100.
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Figure 4.11: Full Hessian: Comparison of the methods based on function calls for
1 ≤ τ ≤ 10.
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Figure 4.12: Full Hessian: Comparison of the methods based on function calls for
1 ≤ τ ≤ 100.

For small to moderate values of τ , Nimp1 and TR appear to outperform the other

methods. When iteration count is the metric then Nimp1 seems to do better, but

TR is more successful when performance is measured in terms of function calls.

This suggests that TR often gets a good step at first attempt on each iteration

while Nimp1 needs several trial steps of its curvilinear search.

For larger values of τ the picture becomes more confused and all methods - with

the clear exception of UMINH - appear quite competitive in terms of its itera-

tion count. UMINH also performs quite poorly in terms of function calls (except

rather surprisingly when 1 < τ < 2). The fact that UNMIN usually outper-

forms UMINH suggests that our form of curvilinear search is an improvement on

Behrman’s step length strategy in [7].

QN on the other hand does unexpectedly well when τ > 50; but Nimp2 seems

usually to be inferior to Nimp1 and we shall not develop this approach in the

work that follows.
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We note that the codes TR and QN are MATLAB library routines and we can

neither fine-tune nor comment on any details of their calculations.
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Chapter 5

Approximating the Hessian

The algorithm Nimp1 described in the previous chapter can be viewed as a version

of Newton’s method in which the correction step δk on the k-th iteration is given

by

δk = −(µI +Gk)
−1gk (5.1)

where µ ≥ 0 is chosen so as to ensure an acceptable decrease in the objective

function via a condition such as

f(xk + δk) < f(xk) + νδTk gk (5.2)

for some positive constant ν. The correction step (5.1) is a variation on the

classical Newton correction

δk = −αG−1
k gk (5.3)

where α > 0 is chosen in order to satisfy a condition such as (5.2). As is well

known, the basic Newton step (5.3) is only guaranteed to be a descent direction

when Gk is positive definite; but equation (5.1) will yield a downhill step even

when Gk is not positive definite (providing µ is chosen sufficiently large).

One of the drawbacks with any form of Newton method is the need to calcu-

late second derivatives, which may be a non-trivial process for large-scale prac-

tical problems. Since the 1960s, therefore, much work has been done to develop
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quasi-Newton methods which calculate a correction step of the form

δk = −αB−1
k gk (5.4)

where Bk is a positive definite approximation to the actual Hessian Gk. The

calculation of each Bk is intended to be computationally cheaper than the cal-

culation of the second derivatives in Gk. And by keeping Bk positive definite

we avoid the difficulties encountered by Newton’s method when the true Hessian

loses positive definiteness. The next section gives a brief outline of some current

methods of calculating suitable approximating matrices Bk for use in (5.4).

5.1 Quasi-Newton methods

Quasi-Newton methods are based on Newton’s method but use an updated sym-

metric matrix Bk to approximate the Hessian matrix of the objective function on

each iteration. The initial matrix B0 is chosen arbitrarily to be positive definite

e.g. as the unit matrix. In this section we look at some existing quasi-Newton

(QN) methods for solving problem (1.1). We suppose it involves a differentiable

objective function f(x) with the gradient vector g(x) = ∇f(x).

Quasi-Newton methods are motivated by some drawbacks in the Newton method

which is extremely fast near the minimum, but is also expensive and can be in-

effective away from the solution. A typical quasi-Newton iteration calculates a

correction step from (5.4) with α chosen to satisfy (5.2). The iteration is then

completed by an updating process for obtaining a new Hessian approximation

Bk+1 for use on the next iteration. (Some quasi-Newton methods work with an

approximation to the inverse of G or hold Bk in factored form in order to avoid

the O(n3) operations involved in (5.4). These versions are not relevant to our

present work.)

Quasi-Newton updates are designed to make Bk+1 satisfy the secant condition

63



(quasi-Newton condition)

Bk+1δk = γk = g(xk+1)− g(xk). (5.5)

This gives Bk+1 a property which would also hold for the true Hessian if the

objective function were quadratic.

There are many well known updating formulae that satisfy (5.5). In this study,

we focus on the three most popular updates namely the DFP, BFGS, and SR1

formulae.

The DFP updating formula was proposed by Davidon [27] and Fletcher and

Powell [34] independently. Its form is

BDFP
k+1 = Bk +

(

1 +
δTBkδ

γT δ

)

γγT

γT δ
−
(

Bkδγ
T + γδTBk

γT δ

)

. (5.6)

The BFGS method was developed by Broyden [17], Fletcher [32], Goldfarb [37]

and Shanno [58], and is

BBFGS
k+1 = Bk −

Bkδδ
TBk

δTBkδ
+

γγT

γT δ
. (5.7)

The symmetric Rank 1 (SR1) formula was suggested independently by many

authors [33],

BSR1
k+1 = Bk +

(γ − Bkδ)(γ − Bkδ)
T

(γ −Bkδ)T δ
. (5.8)

(The subscript k has been omitted from δ and γ in the right hand sides of these

formulae for ease of writing and reading.)

It can be shown that both the DFP and BFGS formulae will give positive defi-

nite Bk+1 provided Bk is positive definite and δTk γk > 0. (If δTk γk ≤ 0 the k-th

iteration has passed through a non-convex region of the objective function, see

Fletcher [33] and Denis and Schnabel [42].)
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The BFGS update is the most successful of the quasi-Newton methods. Com-

pared with the DFP method it has some good properties as far as round-off is

concerned and is better behaved if the line searches are not exact [26]. It is well-

liked for its robustness and for its self-correcting properties, as well as for the

super-linear convergence it achieves.

The DFP method has some theoretical properties similar to BFGS and when it

was first discovered, it revolutionised the field of non-linear optimization. How-

ever it has been found in practice to be less effective than BFGS at self-correcting

the Hessian and it can sometimes fail to converge or else stop at saddle points.

Through studying the eigenvalues of the Hessian matrix, Powell [57] found that

the DFP algorithm can be highly inefficient at correcting erroneously large eigen-

values of matrices, and this is probably one reason why it does not perform as

well as the BFGS and other methods. More analysis on this update can be found

in Ding [28].

The SR1 formula has one major drawback that it may not preserve positive defi-

niteness of the Hessian approximation even if δTk γk > 0. However it has been used

successfully in the context of trust region methods (with some safeguards) when

it is not essential to have the Hessian approximation positive definite. Indeed

there is some evidence, see Conn, Gould and Toint [24], that the matrices Bk can

sometimes converge more rapidly to ∇2f when the SR1 update is used.

5.2 Modifying Nimp1 to use an approximate

Hessian

In this chapter we want to investigate a quasi-Newton method that is based on

(5.1) rather than (5.3). That is, we consider an algorithm whose correction step

is of the form

δk = −(µI + Bk)
−1gk (5.9)

where Bk is an approximation to the Hessian calculated by methods similar to

those outlined in section 5.1.
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Conventional quasi-Newton methods based on (5.4) depend upon Bk being pos-

itive definite on each iteration, otherwise δk may not be a descent step. This

means that the BFGS or DFP updates can only be applied when δTk γk is positive.

Whenever this condition does not hold the Hessian approximation will not be

updated; and hence it is possible that several successive iterations may go by

without any new second derivative information being incorporated into Bk. If

the SR1 update is used then it cannot be guaranteed that Bk+1 will be positive

definite even if δTk γk > 0.

Bearing the above remarks in mind we now consider whether there could be

some benefit in updating Bk on every iteration (rather than sometimes leaving

it unchanged) even if this results in the Hessian approximation losing positive-

definiteness. Just as Nimp1 is able to use (5.1) to make progress whether or not

the exact Hessian is positive-definite so we can use correction (5.9) in a quasi-

Newton context to yield a descent step whether or not the matrix Bk is positive

definite. (Indefiniteness of Bk need not of course imply that the k-th iteration is

in a non-convex region of the objective function; it only means that the current

quadratic model is non-convex.)

5.3 A Quasi-Newton Algorithm involving a

non-convex quadratic model

We now propose an algorithm which uses correction step (5.9) and which up-

dates Bk on every iteration without attempting to ensure positive definiteness is

retained. Such an algorithm is particularly suitable for use with the SR1 update

which can allow Bk to become indefinite even when the simple test condition

δTk γk > 0 is satisfied.

It is important to say that, at this stage, we make no claim for the convergence

properties of such an algorithm. We shall simply implement and test it in order

to look for experimental evidence which might shed light on two important ques-
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tions:

(a) is there any practical advantage (particularly when minimizing non-convex

functions) in updating Bk on every iteration even if this causes our quasi-Newton

Hessian estimate to lose positive-definiteness?

(b) if a quasi-Newton Hessian estimate becomes indefinite can we expect it to

regain positive-definiteness when standard updates like BFGS are used in the

convex region round the solution?

Question (a) might be judged to have been adequately answered if our algorithm

based on (5.9) can outperform a conventional quasi-Newton method on a suitably

large number of examples. More importantly, a negative answer to question (b)

would make it unlikely that we could claim similar convergence results to those

established for existing quasi-Newton methods. Properly to establish the answer

’yes’ to question (b) would involve theoretical arguments; but our purpose in

this chapter is only to see if there is any computational evidence to that would

encourage the belief that such arguments exist.

The top-level outline of the algorithm is as follows

Algorithm 5.3.1 (a quasi-Newton CSDP technique)

Step 1 Set k = 0, and make an initial guess x0 of the minimum

Initialize B0 = I, the n × n identity matrix (or some other positive

definite choice)

Step 2 for k = 0, 1, 2, 3... until convergence

Calculate a correction δk from (5.9) using a curvilinear search in terms

of µ so that xk+1 = xk + δk produces a satisfactory reduction in the

objective function f .

Step 3 If convergence has not occurred, use δk and γk = gk+1 − gk to generate

an updated matrix Bk+1

In the next section we shall say more about how the curvilinear search is per-

formed in Step 2 and about the updating formulae that we can use in Step 3.
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5.4 The curvilinear step and matrix updating

strategies for Algorithm 5.3.1

The curvilinear search algorithm below is very similar to that used in Nimp1 and

it involves the calculation of the eigensystem of the approximate Hessian Bk. We

are not however assuming that the eigensystem of Bk tells us anything about

the eigensystem of the true Hessian. We perform this calculation partly to sim-

plify the repeated calculations (5.9) for varying µ and partly in order to obtain a

suitable initial value of µ. We recognize that this is probably an expensive and

inefficient approach! We justify its use here on the grounds that the algorithm

we are considering is merely a test-bed for exploring the effectiveness of allowing

Hessian approximations to become indefinite.

We have given reasons why we believe the quasi-Newton approach described in

this chapter is worth investigation; but for completeness, we should also mention

other ways in which use of explicit second derivatives can be avoided. For in-

stance, a finite-difference approximation can replace the exact Hessian within the

framework of Nimp1; and this should perform well provided the finite-difference

estimates are accurate enough. On the other hand it is also possible to generate a

descent direction using first-order methods that do not involve the quasi-Newton

Hessian approximation, or its expensively computed eigenvalues. In this chapter

we choose not to consider such first-order techniques but rather to pursue the

quasi-Newton approach in order to maintain consistency with the ideas intro-

duced in previous chapters. We shall, however, propose an updating strategy

which makes it easy to compute the eigensystem of Bk. (We do, in fact, consider

first-order methods later in this thesis when we discuss a matrix-free approach

for constructing an approximate CSDP see chapter 7.)

Algorithm 5.4.1 (Curvilinear search within Algorithm 5.3.1)

Step 1 Choose parameters α > 1, β and γ < 1, Dmin
1 and Dmax

i for i = 1, 2, 3

Step 2 Determine the eigenvalues of Bk as λi, ..., λn in descending order.

If λn > 0 set µmin = 0; otherwise µmin = −λn

Set µ = 0 if λn > 0;
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otherwise set µ = max(αµmin, ||gk||/δk − λn) as in section 4.1.1

Step 3 Compute p by solving (µI +Bk)p = −gk and hence calculate

x+ = xk + p, f+, g+ and the test ratios Di, i = 1, 2, 3 using (3.9)-(3.11)

Step 4 If D1 < Dmin
1 set µ = µ+ γ(µ− µmin)

(to interpolate) and return to step 3

Step 5 If D1 > Dmax
1 and EITHER λn > 0 or (λn < 0 and |1−Di| < Dmax

i , i = 2, 3)

set µ = µ− β(µ− µmin) (to extrapolate) return to step 3

Step 6 Otherwise xk + p is acceptable and the search is complete.

We shall implement Algorithm 5.3.1/ 5.4.1 using the DFP, BFGS and SR1 updat-

ing formulae described in Section 5.2; and we shall denote these implementations

by the names DFPimp, BFGSimp and SR1imp. One drawback of these three

methods is that they must go to the expense of computing the eigensystem of

an approximate Hessian. This expense can be much reduced if Bk is forced to

have some special form for which eigenvalues are easy to obtain for instance, to

be a diagonal matrix. Prescribing the form of Bk in this way is likely to restrict

the accuracy of the Hessian approximation but in the context of Algorithm 5.4.1

it may have the compensating advantage of significantly reducing computational

costs. We can obtain a diagonal form Hessian approximation to satisfy the secant

condition (5.5) by setting

Bii =
1

xk+1,i − xk,i

[

∂f(xk+1)

∂xi

− ∂f(xk)

∂xi

]

for i = 1, ..., n. (5.10)

When (5.10) is used in algorithms 5.3.1/ 5.4.1 we denote it by ApproxHess. As

a further comparison we denote by DiagHess the use of an approximate Hessian

containing only the diagonal terms of the true Hessian.

5.5 Numerical results on test problem T1

Consider the function,

f(x1, x2) = x1x2 + (x2
1 + 2x2

2 − 10)2/100,
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with the initial guess x0 = (2.05, 1.6)T . We use the CSDP algorithm parameters

α = 2, β = 0.75, γ = 0.5, Dmin
1 = 0.1, Dmax

1 = 0.6, Dmax
2 = 0.1 and Dmax

3 = 0.75.

The initial Hessian B0 = I and initial step pmax = 1, after which it will be defined

as pmax = norm(xk+1 − xk).

The following Table 5.1 gives the results obtained by applying the approach de-

scribed in section 5.3 and 5.4. All methods managed to solve this problem suc-

cessfully to an accuracy of ‖g‖2 < 10−6. On comparing BFGSimp, DFPimp,

SR1imp, DiagHess and ApproxHess with the MATLAB toolbox quasi-Newton

method QN we observe that SR1imp and BFGSimp do quite well as regards

number of iterations. We also observe that DiagHess, DFPimp and ApproxHess

are a little less successful.

Method No of Its No of fcn calls

DiagHess 15 19
ApproxHess 12 24
BFGSimp 11 22
DFPimp 14 34
SR1imp 11 34
QN 12 19

Table 5.1: Results on problem T1 from DiagHess, Approxhess, BFGSimp, DF-
Pimp, SR1imp, QN
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 Iterations of BFGS
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Figure 5.1: Solution path for problem T1 by BFGSimp from x0 = (2.05, 1.6)T
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Figure 5.2: Solution path for problem T1 by DFPim from x0 = (2.05, 1.6)T
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 Iterations of SR1
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Figure 5.3: Solution path for problem T1 by SR1imp from x0 = (2.05, 1.6)T

It is clear from the figures 5.1–5.3 that the solution follows a curved path, which

differs for each algorithm. Different curvilinear search parameter values could fur-

ther change the paths for each of the methods, as well as the number of iterations

and function evaluations.

5.6 Numerical results on specially constructed

test problems

Next we show results using test problems from section 4.4. On some of the prob-

lems the performance of SR1imp and BFGSimp is comparable with the standard

quasi-Newton approach in QN. However the behaviour of DFPimp and diago-

nalised Hessian approximations can sometimes be markedly inferior. Generally

speaking therefore, it appears from this test set that following a CSDP is less

successful when an approximate Hessian is used. If second derivatives are not

available then a standard quasi-Newton method seems to do better.
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Fctns DiagHess BFGSimp DFPimp SR1imp ApproxHess QN

Its/fcs Its/fcs Its/fcs Its/fcs Its/fcs Its/fcs

T1 15/19 11/22 14/34 11/34 12/24 12/19

T1r 15/19 21/71 2812/16727 15/36 15/32 11/28

T1r2 14/21 26/98 ** 16/44 13/36 11/32

T1a 15/16 10/21 12/30 10/15 19/43 10/13

T1b 16/20 14/35 123/580 9/21 22/47 10/22

T1ar 19/27 19/82 ** 10/25 15/39 11/31

T2 40/58 13/26 13/31 14/30 41/87 14/27

T2r 1/4* 13/42 4801/32192 15/49 44/110 12/23

T3 16/24 15/25 23/66 16/38 25/49 14/27

T4 2 66/108 12/29 21/71 11/29 70/184 7/18

T4 3 268/361 18/50 87/379 16/49 100/219 10/24

T4 4 182/268 26/101 155/695 18/49 674/1763 17/30

T4 10 385/500 39/125 346/1760 26/60 130/375 16/31

T4 20 493/632 55/184 1253/7760 28/73 51/167 17/44

T4r 20 251/318 84/375 ** 1/10 122/426 14/41

T5 11/21 9/18 9/17 12/19 8/14 6/11

T5a 16/31 10/16 11/24 10/23 14/27 9/14

Table 5.2: Results for special test problems by DiagHess, BFGSimp, DFPimp,
SR1Imp and ApproxHess

5.7 Numerical results using the CUTEr test prob-

lems

In this section, we describe the results obtained on the CUTEr test problems. All

problems are solved to an accuracy of ‖g‖2 < 10−6. Appendix B gives the full

results.

We use Dolan-Moré performance profiles [30] to compare the methods on the

CUTEr test set. Figures 5.4 and 5.5 relate to iterations as the performance

metric while Figures 5.6 and 5.7 are based on numbers of function evaluations.
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Figure 5.4: Approx Hessian: Comparison of the methods based on iterations for
1 ≤ τ ≤ 10.
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Figure 5.5: Approx Hessian: Comparison of the methods based on iterations for
1 ≤ τ ≤ 100.
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Figure 5.6: Approx Hessian: Comparison of the methods based on function calls
for 1 ≤ τ ≤ 10.
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Figure 5.7: Approx Hessian: Comparison of the methods based on function calls
for 1 ≤ τ ≤ 100.
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These figures show that DFPimp, DiagHess and ApproxHess are always inferior

to BFGSimp, SR1imp and QN. This is consistent with what we have already

said about properties of the DFP update. (We shall leave our comments on the

Diagonal approximations until a little later in this section.)

It is interesting to note that, for small and moderate values of τ , SR1imp can

outperform both BFGSimp and QN, when iteration count is the measure of per-

formance. For τ > 40, however, this advantage is lost and all three methods

behave in a very similar way.

When the methods are compared in terms of function calls QN is consistently the

best, which suggests that the conventional line search is more economical than

the curvilinear search used in CSDP methods.

It is worth noting that DiagHess did really well on a number of problems -

especially those with a sparse Hessian such as DIXMAAN*. We also observe

that ApproxHess does quite well on the same problems when compared with QN.

However, it also has a large number of failures. This may be due to the steps

becoming very small near the minimum. To some extent this is to be expected

since Bk is obtained (5.10) which may become close to a “ 0/0” calculation.

It must of course be accepted that while DiagHess and ApproxHess may give use-

ful Hessian approximations when the search is far from a solution they cannot in

general be expected to do well as the BFGS update in the convex neighbourhood

of a minimum.

5.8 Conclusion

We have carried out an experimental investigation of the benefits of following a

CSDP via the implicit Euler method based on an approximation to the Hessian

matrix. This means the correction steps are based on solving

(µI + B)p = −g
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for a range of values for µ where B is a (not necessary positive definite) approx-

imation to the true Hessian matrix. This is done in the same way as in Nimp1,

i.e. by getting the eigenvalues of B by an RDRT decomposition. The aim, as

before, is to make good and efficient progress along the curved path p(µ).

We have shown that calculating the matrix B by the popular BFGS and SR1

quasi-Newton updates can sometimes be quite successful. However competitive-

ness in terms of function calls still seems to depend strongly on the choice of

parameters in the curvilinear search. It is worth noting however that, although

our methods are rather inconsistent, there are cases where they really do well

when QN struggles to get the minimum.

Our main conclusion based on closer observation of the results is that BFGSimp

and SR1imp can do quite well far from the solution but are not particularly

efficient in the convex neighbourhood around the solution. But this is the region

where a standard quasi-Newton method can be expected to do well; and hence

it could be worth exploring a two-part strategy which uses a CSDP approach

based on (5.9) when far from a solution but reverts to a more conventional search

direction/line search method when close to the solution. This idea will be explored

in the next chapter, where it will be implemented in such a way that we do not

rely on any assumption that an updated Hessian approximation will automatically

regain positive definiteness in the convex neighbourhood of a minimum. (In other

words we shall not need to seek an answer to the interesting question (b) from

section 5.3.)
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Chapter 6

Hybrid Methods

6.1 Introduction

Hybrid methods seek to combine the best features of two distinct approaches in

order to solve certain problems more quickly. They are well known in optimization

and many authors use them. For example, Powell [56] used a hybrid method for

nonlinear equations, Hald and Madsen [39] combined LP and quasiNewton meth-

ods for minmax optimization, Al-Baali and Fletcher [2] used a hybrid method

in variational methods for nonlinear least squares, Morales and Nocedal [49] de-

veloped hybrid methods for large-scale unconstrained optimization that combine

iterations of the limited-memory BFGS method (L-BFGS) and the Hessian free

Newton method and more recently Mohr [47] developed a hybrid Runge-Kutta

and quasi-Newton Method for unconstrained nonlinear optimisations.

The goal in this Chapter is to show that different approaches within one algorithm

can be better suited for problems that have mixed convex and non-convex region,

and that hybrid techniques which include mechanisms from different algorithms

can benefit from their advantages. Ideally one of our methods is to be used in the

non-convex region while an other in the convex region, where there are many well

known techniques. We want the information gathered by one method to help the

performance of the other without increasing the computational cost.
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6.2 Hybrid method using the exact Hessian

We have seen in our initial experiments of Chapters 3 - 4, that there is an economi-

cal and logical way to minimise non-convex functions by approximately following

the CSDP through the non-convex-regions. Up till now we have continued to

use the same iterative scheme in convex regions as well as non-convex. But the

idea was suggested in Chapter 5 that it might be more effective to use more

conventional iterative schemes in a convex neighbourhood of the minimum. We,

therefore, propose a new hybrid algorithm and we have chosen to use Nimp1 as

the basis for our investigation, combining it with another method that also uses

the full Hessian namely the Newton method. The latter is chosen as it well-

studied, and is well-known for its good performance when the starting point is

chosen appropriately. We call the hybrid algorithm by HNNimp1. This hybrid

method could be applicable to minimise any function regardless of whether it is

convex or not and would guarantee to find a point which is a minimal of such

function. Numerical results show that this method is effective in practice.

The particular interest given to the Newton method in the convex region is due

to the fact it is computationally efficient. The method itself uses successive

quadratic approximations to the objective function f(x) based on the Taylor

series expansion about xk,

f(xk + p) ≈ f(xk) + gTk p+
1

2
pTGkp (6.1)

where gk = ∇f(xk) and Gk = ∇2f(xk). When the gradient of this quadratic ap-

proximation of f(x) is zero, we can form a sequence of iterations xk+1 = xk + pk,

based on finding pk to satisfy

gk +Gkpk = 0 (6.2)

or

pk = −G−1
k gk (6.3)
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Thus the following iterative scheme defines produce the Newton method

xk+1 = xk −G−1
k gk.

Note in this case the direction (6.3) is a descent direction as we are dealing with

functions in the convex region and so the Hessian is always positive definite i.e.

the descent direction condition

pTk gk < 0, (6.4)

is always satisfied.

If the Hessian matrix Gk is positive definite, Newton’s method will minimize a

quadratic function, from any starting point, in exactly one step. Therefore, we

expect good convergence from the method when the quadratic model (6.1) is

accurate. Fletcher [33] has shown, under mild regularity conditions on f(x), that

Newton’s method exhibits a quadratic rate of convergence.

6.3 Hybrid algorithm using the exact Hessian

An iteration of a hybrid algorithm HNNimp1 is as follows. The overall algorithm

and some details of the iteration are not given since they are the same as the

algorithm Nimp1 described previously.

Algorithm 6.3.1 (Algorithm with exact Hessian)

Given the parameters are: α > 1, β < 1, γ < 1, Dmin
1 , Dmax

1 , Dmax
2 and Dmax

3 .

If the Hessian Gk is positive definite then

– Compute the search direction pk = −G−1
k gk

– Determine step size hk to ensure f(xk+hkpk) < f(xk) by means of brack-

eting say.

– Set xk+1 = xk + hkpk

else

– Set µ = maximum
(

αµmin,
‖gk‖2
δk
− λmin

)

– Compute pk from (3.5) and hence get xk + pk, fk+1, gk+1, D1, D2, D3,

using defintions (3.9) - (3.11).
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– If D1 < Dmin
1 set µ = µ+ γ(µ− µmin) (to interpolate)

– If D1 > Dmax
1 and D2 < Dmax

2 and |1−D3| < Dmax
3

set µ = µ− β(µ− µmin) (to extrapolate)

– Otherwise xk + pk is acceptable and the iteration is compete.

end

This algorithm performs a curvilinear search along an approximate CSDP when-

ever the standard Newton iteration cannot be used because of negative curvature

of the objective function.

6.4 Approximating the Hessian in the non-convex

region

In the previous section we based our calculations on using the exact Hessian. We

could of course also propose a hybrid approach based on on the use of the Hessian

approximations as in Chapter 5. In particular, we can use the BFGS update in

the convex region and a diagonal approximation to the Hessian matrix G(xk) in

the non-convex region as in Chapter 5. We suppose that from the point xk we

take the step to xk+1 given by (3.1). We then evaluate g(xk+1) and set

Dii =
1

xk+1,i − xk,i

[

∂f(xk+1)

∂xi

− ∂f(xk)

∂xi

]

where D is treated as a diagonal estimate of G(xk).

When xk is in the non-convex region, the calculation of xk+1 from (3.3) then

becomes

xk+1,i = xk,i − h
∂f(xk)

∂xi

[

1

1 + hDii

]

By increasing h from zero we can trace out an approximation to the CSDP which

begins at xk. This rather simple Hessian approximation may be of use in non-

convex regions where a more conventional low-rank update would not normally

be appropriate.

81



6.5 Outline of a composite algorithm with diag-

onal Hessian

We can now describe a minimisation algorithm HDBFGS based on the idea

sketched above.

Algorithm 6.5.1 (Algorithm with diagonal Hessian)

Step 1 Given x0 and a positive definite matrix H0, calculate p0 = −H0g0

Step 2 Find h so that x1 = x0 + hp0 and f(x1) < f(x0).

Step 3 Set δ = x1 − x0, γ = g1 − g0

Step 4 For k = 1, 2, ...

If δTγ > 0 then

– Use a BFGS update to obtain Hk from Hk−1 and set pk = −Hkgk

– Find h so that xk+1 = xk + pk(h) and f(xk+1) < f(xk)

– Set δ = xk+1 − xk ,γ = gk+1 − gk

else

– Hk = Hk−1 and Dii = diag
(

γi
δi

)

– Perform a curvilinear search in terms of h so that f(xk+pk) < f(xk),

where

pk,i = −hgk,i
[

1

1 + hDii

]

, i = 1, ..., n (6.5)

– Then set xk+1 = xk + pk, δ = xk+1 − xk, γ = gk+1 − gk

end if

Step 5 until ‖gk+1‖ is sufficiently small.

This algorithm performs a curvilinear search along an approximate CSDP when-

ever a standard quasi-Newton iteration cannot be used because of negative cur-

vature of the objective function. Ways of adjusting the value of h in (6.5) will be

discussed later.

An important feature of HDBFGS is that, in contrast to BFGSimp, it does not

need to do any eigenvalue analysis. In the non-convex region it uses a diagonal

matrix whose eigensystem is obtained trivially for use in (6.5). Non-convexity of

the objective function is deduced without any reference to the indefiniteness of
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an approximate Hessian. Whenever an iteration has given δTk γk < 0, the next

iteration is a Nimp-like one using a locally constructed diagonal Hessian estimate;

and, on the other hand, when δTk γk > 0 the current positive definite Hessian ap-

proximation is updated and a standard quasi-Newton step is taken.

The ultimate convergence of the algorithm will conform to established theory

regarding quasi-Newton methods, since the condition δTγ > 0 will hold for all k

sufficiently large -i.e. once the search has reached the convex region surrounding

a local minimum. It is worth mentioning here that it can be beneficial to redefine

Hk−1 if the k-th iteration is one on which δTγ returns to being positive after

several steps with negative curvature. Specifically, if γiδi > 0 for i = 1, ..., n we

can set

Hk−1 = diag

(

δi
γi

)

. (6.6)

However the condition δTγ > 0 does not ensure that the individual product δiγi

are all positive and so we cannot always use (6.6) to create a positive-definite

Hk−1 based on up-to-date information.

6.6 Step length control

Our aim is to determine h in (6.5) to ensure that pk is a descent step which

produces an acceptable reduction in the objective function. We can imitate the

Wolfe condition [4] for a conventional line search -i.e., we want h to imply that

f(xk+pk)−f(xk) is negative and also that both |f(xk+pk)−f(xk)| and ‖pk‖ are
bounded away from zero by a multiple of ‖gk‖. This might be done by comparing

the actual change in f with a first or second order predicted change.

Let us define

∆a = f(xk + pk)− f(xk), ∆p1 = pTk gk, ∆p2 = pTk gk +
1

2
pTkDpk

ρ1 =
∆a

∆p1

, ρ2 =
∆a

∆p2

83



When ρ1 < 0 we can conclude that h is too big. This mean that either the step

along the continuous gradient is sufficiently large that it has left the non-convex

region and crossed a valley or that the direction pk is uphill. A value of ρ1 ≈ 1

suggests that the step pk is too small and that a larger value of h would produce

a step giving a bigger reduction in f .

If ρ2 ≈ 1 the actual behaviour of f is in good agreement with the approxi-

mating quadratic model. This indicates that our approximation to a point on

the steepest descent trajectory is a good one which also indicates that we have

an acceptable reduction in f .

6.7 Choosing the step h so (6.5) gives a descent

direction

Let us assume that the diagonal elements of D, the diagonal approximation to

G(xk), are rewritten as λ1, ..., λn where

λ1 ≥ λ2 ≥ ... ≥ λn.

In the outline algorithm from the previous section, we will only use (6.5) if there

is at least one negative element Dii. Hence we can assume that λn < 0. From

(6.5), each element pk,i is of the form −µk,igk,i where

µk,i = h

[

1

1 + hDii

]

and µk,i is positive so long as

0 < h < hmax = − 1

λn

.

Thus, if h < hmax then

pTk gk = −
n

∑

i=1

µk,ig
2
k,i < 0

and so pk is a descent direction.
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6.8 An initial trial value for the step h

In order to perform a search along the CSDP it will be helpful to have a good

initial choice for h. One way of doing this is to estimate a value for h which will

give a step pk which is comparable in size to the last successful step δ. When

0 < h < hmax,

|pk,i| ≤ h

∣

∣

∣

∣

1

1 + λnh

∣

∣

∣

∣

|gk,i|.

Hence
‖pk‖2
‖δ‖2

≤ h

[

1

1 + λnh

] ‖gk‖2
‖δ‖2

.

We can choose h so that the right hand side of this inequality is equal to q - i.e.

so that the next trial step cannot be more than q times the size of the previous

one.

We require

h

[

1

1 + λnh

]

= q
‖δ‖2
‖gk‖2

= Q (say).

Then

h = Q(1 + λnh)

h(1− λnQ) = Q

so that

h =
Q

1− λnQ
(6.7)

6.9 A curvilinear search algorithm

Once we have an initial choice for h a search algorithm can be proposed as follows.

Algorithm 6.9.1 (Approximate CSDP algorithm)

Step 1 Set hmin = 0

Repeat

Step 2 Evaluate pk from (6.5) for the current h.

Step 3 Hence compute f(xk + pk) and ρ1, ρ2.

Step 4 If |1− ρ1| < η1 then hmin = h; h = h+ β(hmax − h) and go to step 2

else if ρ1 < η2 then hmax = h; h = h− β(h− hmin) and go to step 2
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else if ρ1 > 1 + η1 and |1− ρ2| < η3 then hmin = h; h = h+ β(hmax− h)

and go to step 2

else h is acceptable because ρ1 > 1 + η1 or 1− η1 > ρ1 > η2.

6.10 Numerical results on test problem T1

In this section we report some results obtained with the algorithms outlined in

sections 6.3 and 6.5 using the function T1 given by

f(x1, x2) = x1x2 + (x2
1 + 2x2

2 − 10)2/100,

with the initial condition x0 = (2.05, 1.6)T and the algorithm parameters α = 2,

β = 0.75, γ = 0.5, Dmin
1 = 0.1, Dmax

1 = 0.6, Dmax
2 = 0.1 and Dmax

3 = 0.75 as well

as with initial Hessian H0 = I and initial step equal to 1.

Method No of Its No of fcn calls
HNNimp1 6 10
HDBFGS 10 15

TR 8 9
QN 12 19

Table 6.1: Results from HNNimp1, HDBFGS

86



 Iterations of HybridNew

−4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 6.1: Solution path for T1 by HNNimp1 from x0 = (2.05, 1.6)T
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Figure 6.2: Solution path for T1 by HDBFGS from x0 = (2.05, 1.6)T
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We can clearly see from the figures that the solution is achieved by both meth-

ods. On comparing HNNimp1 and HDBFGS with routines TR and QN from the

optimisation toolbox of MATLAB, we see that they do quite well on the number

of iterations but there is a difficulty with the search calculation in HDBFGS.

6.11 Numerical results on specially constructed

test problems

Fctns HNNimp1 HDBFGS Nimp1 BFGSimp
Its/fcs Its/fcs Its/fcs Its/fcs

T1 6/10 10/15 6/10 11/22
T1r 7/14 18/27 7/14 21/71
T1r2 8/14 18/35 8/14 26/98
T1a 5/10 10/16 5/10 10/21
T1b 7/11 9/15 7/11 14/35
T1ar 8/14 13/22 8/14 19/82
T2 7/11 9/17 8/13 13/26
T2r 6/13 15/26 7/15 13/42
T3 9/17 17/32 9/17 15/25
T4 2 7/8 12/19 7/10 12/29
T4 3 9/10 17/24 8/10 18/50
T4 4 11/13 21/26 12/16 26/101
T4 10 18/21 28/37 15/19 39/125
T4 20 7/10 24/31 9/15 55/184
T4 50 10/12 29/53 10/13 67/244
T4 100 14/16 1/4* 14/17 87/340
T4r 20 7/10 36/52 9/15 84/375
T5 7/12 8/18 7/11 9/18
T5a 9/15 12/25 10/20 10/16

Table 6.2: Results from HNNimp1 and HDBFGS for specially designed test prob-
lems

We have tested both hybrid methods HNNimp1 and HDBFGS on test problems

described in Appendix D. The results obtained for these problems are given in

Table 6.2. We see that there is some improvement of the results when we use
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these hybrid techniques. In particular, HNNimp1 generally does slightly better

than the original Nimp1.

The method HDBFGS also did well on the number of iterations compared with

the techniques discussed in Chapter 5. It was however, slightly less efficient

than other algorithms in terms of the number of iteration when compared with

the quasi-Newton method QN. It also failed on 4 test problems to locate the

minimum. The high number of function evaluations in this method may be due

to the fact that we are using backtracking technique in the weak line search

associated with the BFGS methods and may be other line search techniques are

more suited.

6.12 Numerical results using the CUTEr test

problems

In this section, we test the two hybrid methods for on a total of nearly 139 CUTEr

test problems that include convex and non-convex problems. The numerical re-

sults obtained are given in Appendix C.

For most of the test problems we show that both hybrid methods are efficient

and robust in solving these unconstrained optimization problems. The results

reported in Appendix C show that in many cases HNNimp1 gives a significant

improvement on both Nimp1 and TR algorithms, since these are the two tech-

niques that did really well in the first instance when the full Hessian was used.

For instance, it can match or improve the number of iteration needed by Nimp1

in 75% of cases. It beats the trust region method TR in 65% of cases. There have

also been cases however, where it did not do as well compared to both this tech-

niques such as on test problems HIELOW and VAREIGVL. HNNimp1 matches

or improves on the performance of the all the other methods used in over 45% of

cases and with no failure.

Because of the considerable improvement of of the methods achieved by HNNimp1
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in this thesis, it is felt that it is worthwhile comparing the performance of

HDBFGS to that of a quasi-Newton method on the same test problems from

CUTEr, see Appendix C.

We use Dolan-Moré performance profiles [30] to compare the hybrid methods on

the CUTEr test set. Figures 6.3 and 6.4 relate to iterations as the performance

metric while Figures 6.5 and 6.6 are based on numbers of function evaluations.
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Figure 6.3: Hybrid methods: Comparison of the methods based on iterations for
1 ≤ τ ≤ 10.
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Figure 6.4: Hybrid methods: Comparison of the methods based on iterations for
1 ≤ τ ≤ 100.
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Figure 6.5: Hybrid methods: Comparison of the methods based on function calls
for 1 ≤ τ ≤ 10.
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Figure 6.6: Hybrid methods: Comparison of the methods based on function calls
for 1 ≤ τ ≤ 100.

Figure 6.3 shows very clearly -as we would expect- that the methods using the ex-

act Hessian do better in terms of iteration count than methods involving Hessian

approximations. This is also the case when performance is measured by function

calls. The hybrid version HNNimp1 always does better than Nimp1; but it is

outperformed by TR in the range (1 < τ < 2) when function calls are the basis

for comparison. In terms of function calls TR also does better than Nimp1 until

τ ≈ 20; but it is relatively less successful in terms of iteration count.

It is rather disappointing to note that the hybrid form HDBFGS often shows little

or no advantage over its counterpart BFGSimp. Even when it does do better

(say in the function call comparison with τ < 5) it is inferior to the standard QN

algorithm. Hence there is still room for improvement in the non-second derivative

methods; and in the next chapter we consider a different approach.
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Chapter 7

Methods Using Runge-Kutta

Solvers

7.1 Introduction

So far we have based our approximate solutions of the continuous steepest de-

scent equation on the implicit Euler approach. This requires us to calculate (or

estimate) the Hessian matrix and then compute its eigensystem. In Chapter 5

we considered the possibility of reducing these expensive overhead calculations

by making use of a diagonal form of Hessian approximation. In this Chapter

we investigate a much more substantial reduction in overheads resulting from a

matrix-free approach which is based on solving the steepest descent equation by

an explicit second order Runge Kutta (RK) approach.

In the context of CSDP methods, we observe that we can use the explicit RK

scheme to find a step p without using the matrix G. We use two evaluations of

the gradient, namely

g0 = g(x) and g1 = g(x− h̄g)

where h̄ is a fixed reference step length. We can calculate a second order accurate
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search direction p corresponding to any chosen step length h by setting

p = −α1hg0 − α2hg1

where

α2 =
θ

2
and α1 = 1− θ

2
where θ =

h

h̄
.

Substituting for α1 and α2 we get

p = −
(

h− h2

2h̄

)

g0 −
h2

2h̄
g1. (7.1)

Hence the sensitivity of p to h is given by

p′ = −
(

1− h

h̄

)

g0 −
h

h̄
g1 = −(1− θ)g0 − θg1. (7.2)

From this idea we can develop an algorithm which would quite cheaply trace out

an approximate CSDP.

7.2 Curvilinear search

Suppose we have taken a step from xk to xk+1 = xk + p where p is obtained by

(7.1). A decision on whether xk+1 is acceptable and/or how to improve it may in-

volve the values of fk+1 = f(xk+1) and gk+1 = g(xk+1). We may also be interested

in how fk+1 varies with h, the step size in the Runge-Kutta calculation. We let f ′
k

and f ′
k+1 denote df/dh at the start and the end of the step. The value of f ′

k+1 is

not necessarily the same as the directional derivative pT gk+1 since the path traced

out by this method will usually not be precisely along the direction p = xk+1−xk.

To estimate f ′
k+1 we can argue as follows. An average slope over the step is

f̄ ′ =
fk+1 − fk

h
≈ 1

2
[f ′

k+1 + f ′
k]

and we know that

f ′
k = −gTk gk
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because the initial motion away from xk is along the steepest descent. Therefore

f ′
k+1 ≈ 2f̄ ′

k − gTk gk.

More accurately however,

f ′
k+1 = p′Tk gk+1,

which can computed if we have evaluated p′ by say (7.2). We may argue that

we can extrapolate along the CSDP by increasing h in (7.1) if f ′
k+1 is sufficiently

large and negative. Conversely we should interpolate (by reducing h in (7.1)) if

f ′
k+1 is sufficiently large and positive or if fk+1 ≥ fk.

7.3 Outline algorithm

So an outline of one step of a curvilinear search CSDP method based on a Runge-

Kutta method is as follows.

Algorithm 7.3.1 (rk2)

Step 0 Given h̄, xk, fk = f(xk), gk = g(xk), hmin, hmax

Step 1 calculate x1 = xk − h̄gk, f1 = f(x1), g1 = g(x1)

Step 2 find h, calculate θ = h/h̄; α2 = θ/2; α1 = 1− θ/2;

p = −α1hg0 − α2hg1; xk+1 = xk + p;

p′ = −(1− θ)g0 − θg1; f
′
k+1 = p′T gk+1;

Step 3 If fk+1 ≥ fk or f ′
k+1 > some positive tolerance then

reduce h and recalculate p and xk+1 via step 2

Step 4 if f ′
k+1 < some negative tolerance

increase h and recalculate p and xk+1 via step 2

Step 5 else if f ′
k+1 sufficiently close to zero

accept xk+1 as the end of the current step

Instead of using f ′
k+1 we could base our algorithm on the angle Θ between p′ and

the local negative gradient, as a measure of when to stop exploring the curvilinear

path. let

C = cos(Θ) =
p′T gk+1

‖p′‖‖gk+1‖
(7.3)
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then we can outline a single step of a CSDP search as

Algorithm 7.3.2 (rk2a)

Steps 0, 1, 2 are as in the previous algorithm 7.3.1 with the extra calculation

of C from (7.3)

Step 3 If fk+1 ≥ f or C > some specified tolerance then

reduce h and recalculate p and xk+1 via step 2

Step 4 if C < some specified tolerance then

increase h and recalculate p and xk+1 via step 2

Step 5 else if C lies between specified upper and lower tolerances

then accept xk+1 as the end of the current step.

7.4 Choosing and adjusting the step h̄ and h

The effectiveness of a search along p given by (7.1) will clearly depend on both

h and h̄. In particular the initial choices of h and h̄ will determine whether p is

even a descent direction. Using (7.1) we have

pTg0 = −h
(

1− θ

2

)

gT0 g0 − h
θ

2
gT0 g1

Hence p is a descent direction if

(

θ

2

)

(

gT0 g0 − gT0 g1
)

− gT0 g0 < 0

If gT0 g0− gT0 g1 < 0 then the descent condition is satisfied for all positive θ i.e. for

all positive values of h. If however gT0 g0 − gT0 g1 > 0 then descent depends on the

restriction

θ <
2gT0 g0

gT0 g0 − gT0 g1
.
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Or, if we write β =
gT0 g1
gT0 g0

the descent condition is equivalent to

h <
2h̄

1− β
if β < 1

and

h > 0 if β ≥ 1

To get some insight into these conditions we suppose that h̄ is very small so that

g0 and g1 are roughly parallel. If we are in a region of negative curvature then

we expect ‖g1‖ > ‖g0‖ and so β will typically be greater than 1 and the choice

of h is unrestricted. If however we are in a region of positive curvature then β

will typically be less than 1 and there is an upper bound on the choice of h. In

particular, if we are in a region with a steep-sided narrow valley then even a small

step h̄ may cause both gT1 g0 and β to be negative. This potentially puts quite

a strong restriction on h, since if we imagine h̄ corresponding to a step across a

valley such that gT0 g1 ≈ −gT0 g0 then we have the limit h < h̄.

These considerations need to be borne in mind both when choosing h̄ and h at the

beginning of an iteration and also when controlling extrapolation steps which in-

volve increasing the current value of h. One important point that this discussion

has revealed is that an approach based on the rk2 search direction may do well

in a non-convex region but is likely to need more safeguards (and may perhaps

be less efficient) in a convex region especially close to a minimum.

During the curvilinear search we need to beware of unhelpful interactions between

increases and decreases of step size. When a step reduction occurs after we have

made one or more acceptable steps we want to make sure we do not go back to

a smaller value of h than one which has already been successful. Similarly if we

allow an extrapolation after we have previously made a step reduction then we

want to make sure that an increased value of h does not take us into a part of

the curvilinear path that we have already rejected. We therefore suppose that

we hold running values of hmax and hmin where hmin is the largest step so far
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that has produced an acceptable point and hmax is the smallest step so far that

has failed to give a function decrease. At the start of every search hmin = 0 and

hmax =∞.

A simple way of reducing h would involve two steps such as

hmax = h; h =
1

2
(hmax + hmin)

Rather more flexibly, if we have recorded a slope value f ′
min corresponding to the

step using hmin we could use

hmax = h; f ′
max = f ′

k+1; h = hmin + (hmax − hmin)
f ′
min

f ′
min − f ′

max

.

This use of linear interpolation assumes (which will often be the case) that

f ′
min < 0 and f ′

max > 0. On non-convex functions this assumption cannot be

guaranteed however. A robust step reduction strategy will probably combine

both formulae to put a lower bound on the next trial to ensure it is not too close

to hmin.

If we want to increase h then we may use a robust approach which does not take

account of f ′
k, namely

hmin = h; h = min

(

2hmin,
1

2
(hmax + hmin)

)

.

A linear extrapolation approach

h = hmin + (h− hmin)
f ′
min

f ′
min − f ′

k+1

; hmin = h; f ′
min = f ′

k+1;

could also be used provided f ′
min < f ′

k+1 < 0, which may not hold on nonconvex

function.

It may be better not to do too extensive a search, alternating extrapolation and

interpolation. Thus, if hmin > 0 and if the current h is unacceptable and requires
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reduction we could simply terminate the search at the point already reached with

the step hmin. Similarly, if hmax <∞ has already been set then we may elect not

to do any extrapolation beyond the first h which is obtained.

7.5 Test results on problem T1

As an example, we consider the minimisation of the test problem T1 discussed

earlier using using prototype Matlab implementations of both algorithms, rk2

and rk2a where the latter uses the angle Θ between the p′ and the local negative

gradient (7.3), as a measure of when to stop exploring the curvilinear path. The

curvilinear searches of CSDP are shown in Figures 7.1 - 7.2. The circled points

mark the starts and ends of iterations and the dots indicate trial points obtained

with different values of the step h.

It is clear from the figures that both methods lead to the required minimum of the

function. However, in both cases they seem to struggle in the convex region as

they tend to take more iteration by taking smaller and smaller steps. This must be

due to the interaction between h̄ and h discussed in Section 7.4 and this suggests

that more care must be taken about the choice of h̄ and that it is inadequate

merely to take h̄ as a constant fraction of the step size used on the previous

iteration (which is the strategy employed in pour prototype implementation).
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Figure 7.1: The solution path for T1 by rk2.
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Figure 7.2: The solution path for T1 by rk2a.
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7.6 Numerical results on specially constructed

test problems

We now consider the performance of the both version of the algorithm of the

implicit Runge-Kutta on a wider range of test problems in appendix D.

Functions/Methods rk2 rk2a

Its/Fcs Its/Fcs

T1 24/51 23/50
T1r 23/56 23/53
T1r2 25/61 4/11*
T1a 24/49 24/49
T1b 25/57 24/54
T1ar 23/55 21/50
T2 59/126 59/126
T2r 60/130 63/133
T3 28/63 31/67
T4 2 108/230 108/230
T4 4 518/1054 518/1054
T4 10 653/1334 653/1334
T4 20 747/1528 749/1523
T4 50 842/1724 844/1719
T4 100 2/23 2/23
T4r 20 2/25 2/25
T5 31/79 33/75
T5a 24/63 21/54

Table 7.1: Results from rk2, rk2a

It can be seen from Table 7.1 that while rk2 and rka do solve the problems they are

not competitive with other methods discussed previously. This is not completely

surprising however, when we remember that they do not use any second deriva-

tive information. But in looking at the table we must also remember that the

overhead costs per iteration are much smaller less than for the methods reported

in previous Chapters. Thus it remains possible that these matrix-free methods

may have potential advantages for dealing with non-convexities in optimization

problems. To the best of our knowledge, the ideas behind rk2 and rk2a have not

been previously tried; and it is to be hoped that some further refinement of this
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approach will improve the results.

In view of the restrictions on h in a convex region that were identified in Section

7.4, one obvious refinement would be to consider using a hybrid approach as in

the previous Chapter, reserving the CSDP strategy for those iterations which are

negotiating a non-convex region.

To the best of our knowledge this is the first time that this technique is used for

optimization problem and with some further refinement of this techniques will

surely improve the results.

7.7 Hybrid method using the rk2

From our experiments in Section 7.6 it can be seen that rk2 might have more

potential in non-convex regions than in convex ones. Hence we could consider

using a hybrid approach as in the previous Chapter, reverting to a quasi-Newton

technique in the convex region. We therefore propose a new hybrid algorithm

where we use rk2 (or rk2a) combined with the BFGS method.

The algorithm which is outlined below attempts a quasi-Newton step on every

iteration; but if it turns out that the Hessian estimate cannot be updated because

negative curvature is encountered. This of course indicates that the search is in

a non-convex region and so the quasi-Newton step is extended by a curvilinear

search using rk2 (or rk2a). We call the hybrid algorithm by Hrk2 and we now

give an outline of a single step.

Algorithm 7.7.1 (Hybrid algorithm Hrk2)

Step 1 Given h̄, xk, fk = f(xk), gk = g(xk), hmin, hmax

and a positive definite matrix Hk, calculate pk = −Hkgk

Step 2 Use a standard line search to find s so that

x1 = xk + spk and f(x1) < f(xk).

Step 3 Set δ = x1 − xk, γ = g1 − gk, gk = g1; fk = f1; xk = x1;
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Step 4 If δTγ > 0 then use a BFGS update to obtain a new Hk+1

Set xk+1 = xk, fk+1 = fk and gk+1 = gk and the iteration is complete

Step 5 if δTγ ≤ 0 then perform an rk2 step

(as in algorithm 7.3.1 to obtain a new point xk+1

A related algorithm Hrk2a is obtained by using Algorithm 7.3.2 in Step 5.

An algorithm of this type should make good progress through non-convex regions

which are, presumably, far from the optimum; and its ultimate convergence will

rest on the good known properties of the BFGS method.

This algorithm performs an rk2 curvilinear search along an approximate CSDP

whenever the standard quasi-Newton iteration cannot be used because of negative

curvature of the objective function.

7.8 Numerical results on specially constructed

test problems

We have tested MATLAB implementations of the hybrid methods Hrk2 and

Hrk2a on the test problems described in Appendix D and compared their perfor-

mance with that of the standard BFGS method QN from the Matlab Optimization

toolbox. The results obtained for these problems are given in Table 7.2.

We can see that the hybrid methods Hrk2 and Hrk2a managed to solve all prob-

lems to the required accuracy much more efficiently than did the original algo-

rithms rk2 and rk2a. It is even more pleasing to note that in just under half the

problems one or other of the hybrid methods does better than QN in terms of

iterations or function calls.
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Fctns Hrk2 Hrk2a QN
Its/fcs Its/fcs Its/fcs

T1 10/14 10/14 12/19
T1r 18/27 18/27 11/28
T1r2 21/35 16/30 11/32
T1a 8/15 8/15 10/13
T1b 8/15 8/15 10/22
T1ar 13/26 13/26 11/31
T2 12/19 12/19 14/27
T2r 14/33 13/27 12/23
T3 16/32 16/32 14/15
T4 2 9/26 9/26 7/18
T4 4 19/42 19/42 17/30
T4 10 28/62 28/62 16/31
T4 20 32/75 32/75 17/44
T4 50 36/81 36/82 23/61
T4 100 4/40 39/94 26/74
T4r 20 3/37 32/75 14/41
T5 8/18 8/18 6/11
T5a 12/25 12/25 9/14

Table 7.2: Results from Hrk2, Hrk2a and QN for specially designed test problems

As preliminary results these are quite encouraging. They suggest there is scope

for further development and there are several obvious areas where this might be

done. We have already mentioned the need for careful choice of search param-

eters h̄ and h which will influence performance in non-convex regions. We also

note that in Hrk2 the CSDP search begins after a quasi-Newton step (possibly

involving a line search) has already been taken. It would however also be possible

(and might be an advantage) to begin the curvilinear search from the old point

xk whenever an exploratory quasi-Newton step reveals negative curvature.

Closer examination of the results in Table 7.2 shows that rk2 is used on only quite

a small number of iterations. In other words the test on δTγ at Step 4 of Hrk2

does not detect non-convexity as reliably as would be the case if exact second

derivatives were available. It might therefore be worth looking for other ways of

switching between the two strategies in this hybrid approach.
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Chapter 8

Conclusion

8.1 Summary of the research

In this thesis, we have investigated methods of finding unconstrained local minima

of non-convex functions, by following the solution curve of a system of ordinary

differential equations. These ODE-based optimization algorithms can generate

curvilinear paths which replace or augment the steps taken by line search and

trust region methods. The motivation for this was the fact that existing methods

(mainly based on Newton methods with line search) can sometimes be inefficient

or even terminate at a non-stationary point when applied to problems that do not

a have positive-definite Hessian. Even when they do terminate at a stationary

point it could be a saddle or maximum rather than a minimum. We have shown

that an efficient and logical way to traverse a non-convex region is to approxi-

mately follow the Continuous Steepest Decent Path (CSDP).

Most of algorithms we have derived are gradient based methods which require

the solution of systems of equations at each step but do not use a line search in

the usual sense. Progress along the CSDP is governed both by the decrease in

the function value and measures of accuracy of a local quadratic model. These

techniques do not require the Hessian matrix G(x) to be positive definite and can

minimise a general function rapidly and furthermore they are capable of quadratic

convergence if they revert to the Newton method near the solution.
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The basic iteration of most of our proposed techniques is based on using the

implicit Euler method to solve the steepest descent equation

dx

dt
= −g(x) (8.1)

where g(x) is the gradient of the objective function. This gives a correction step

away from the solution estimate xk by solving

(µI +Gk)pk = −gk (8.2)

(where Gk is the local Hessian and gk = g(xk) the local gradient) for different

value of µ chosen in a range 0 < µmin < µ <∞, where µmin is the absolute value

of the most negative eigenvalue of Gk.

Our use of (8.2) means that we must find the eigensystem of Gk but this enables

us to perform a curvilinear search quite efficiently during each iteration.

8.2 Research and development of CSDP

Following on from a review of ways of dealing with difficulties caused by non-

convex regions in minimisation problems, Chapters 1 and 2, introduce the idea

of following an approximation to the steepest descent continuous path. This idea

has been explored by many authors, but the algorithms we have chosen to imple-

ment and test are particular versions of the solution to an initial value problem

which is described in Chapter 3. On each iteration, these algorithms generate a

search curve which is initially tangent to the negative gradient and, regardless of

whether the Hessian at the initial point is positive definite or not, will give us

a step pk such that f(xk + pk) < f(xk) as long as µ is sufficiently large. One

important point to make here is that when Gk is positive definite, we can use

µ = 0 and pk is then the classical Newton step. This gives quadratic convergence

near the minimum. However, it has also been shown in [5] that we can sometimes

use negative values of µ to extrapolate beyond a Newton step when xk is not

sufficiently near a minimum for quadratic convergence to occur.
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In Chapters 3 and 4 we develop two algorithms called Nimp1 and Nimp2 which

do a curvilinear search on each iteration by solving (8.2) for various values of

µ. We have also proposed UNMIN which is a version of Behrman’s gradient

flow algorithm [7] which uses a similar curvilinear search in place of Behrman’s

own step size procedure. These three algorithms all rely on knowledge of the

full eigensystem of the true Hessian Gk, which is calculated via the orthogonal

factorisation Gk = RDRT . For a single solution of (8.2), the eigenvalue calcu-

lation is more expensive than a Cholesky factorisation. But if several values of

µ are tried then subsequent solutions of (8.2) are cheaper than re-factorisation.

Hence, we propose search algorithms that make several steps along p(µ) so long

as we can keep sufficient closeness to CSDP combined with sufficient decrease in

the objective function. The practical merit of using the CSDP method depends

on how far and how accurately we want to pursue a curved path solution of the

initial value problem.

In the case when the Hessian Gk is positive definite a hybrid technique could be

used which could revert to the standard well known line search version of the

Newton method. However, it is also possible to use a curvilinear search by ex-

trapolating µ below zero. We believe our work differs from previous proposals in

the way we use µ as a curvilinear search parameter and also in the use of a 2nd

order estimate of the CSDP step in Nimp2.

Chapter 4 studies the sensitivity of our methods to certain curvilinear search pa-

rameter values. We consider the initial value and the subsequent adjustment of

µ on each iteration. As in trust region methods, we can relate the initial µ to an

estimate of the size of the step pk to give a safeguarded formula to be used in sub-

sequent iterations. This was found to have an appreciable effect on the number of

function evaluations and to a lesser extent the number of iterations. Thresholds

on the accuracy parameters which control how far the search is pursued along

the approximate CSDP were also studied . It was also shown, even when starting

very close to a saddle point, Nimp1 and Nimp2 can find the minimum of the

function and avoid the saddle point, but at a cost of more function evaluations

the nearer we start to the saddle.
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The performance of CSDP methods was tested on some specially chosen prob-

lems, with large non-convex regions - and sometimes saddle points - which are

close to local minima. They have turned out to be quite competitive with a trust

region routine (TR) and a quasi-Newton routine (QN) from the MATLAB op-

timisation tool box. Nimp1 quite often outperforms most of the other routines

although its behaviour is not as consistent as might be hoped.

We have also tried Nimp1, Nimp2 and UNMIN on about 139 unconstrained prob-

lems taken from the Constrained and Unconstrained Test Environment revisited

version (CUTEr). The CSDP methods Nimp1 and Nimp2, with their curvilinear

search, typically solve most problems in fewer iterations than QN or TR without

failing or reaching the maximum number of iterations. Competitiveness however

in terms of function calls still depends on the parameters in the curvilinear search

which remains an area for ongoing research.

In Chapter 5 we described variants of Nimp1 where the exact Hessian is replaced

by a cheaper quasi-Newton approximation that is not forced to be positive defi-

nite. This requires the evaluation of the function and its gradient only at each

iteration. In particular, we propose diagonal approximations to the Hessian ma-

trix so as to make the calculation of xk+1 less expensive, by using either diagonal

terms of the true Hessian or a diagonal form of quasi-Newton update. We also

considered using a quasi-Newton updated estimate of the full Hessian based on

standard updates such as BFGS, DFP or SR1 formulae.

We compared results from these quasi-Newton CSDP algorithms with those from

standard quasi-Newton and trust-region methods. On some of the test examples

the performance of SR1imp and BFGSimp was comparable with the standard

quasi-Newton approach in QN. However the behaviour of DFPimp and diago-

nalised Hessian approximations was markedly inferior when applied to the spe-

cial test problems. On the CUTEr test problems, we sometimes observed rapid

convergence in the case of SR1imp and to some extent with BFGSimp. Less

satisfactory was the performance of DFPimp however. Diagonal approximations
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did well on a few problems having sparse Hessian such as DIXMAAN*. However,

these methods also experience the most failures.

In Chapter 6, hybrid approaches were introduced in which CSDP methods were

used only in non-convex regions with standard line search methods being em-

ployed in convex regions. We, proposed a hybrid algorithm in our investigations

with Nimp1 being used in the non-convex regions while elsewhere we use the New-

ton method. We called the hybrid algorithm by HNNimp1. Numerical results

show that this method is effective in practice. We also proposed another hybrid

approach based on the use of the Hessian approximations as in Chapter 5, where

we used the BFGS update in the convex region and a diagonal approximation to

the Hessian matrix G(xk) in the non-convex region. We called this hybrid method

by HDBFGS. In both cases these algorithms perform a curvilinear search along

an approximate CSDP whenever standard methods cannot be used because of

negative curvature of the objective function.

Results obtained for the specially constructed problems using these techniques

show some improvement compared with those obtained in previous Chapters.

In particular, HNNimp1 generally does slightly better than the original Nimp1.

HDBFGS did well on the number of iterations compared with the techniques

discussed in Chapter 5. However it was not so competitive in terms of number

of iterations when compared with the quasi-Newton method QN. This is may be

due to backtracking technique in the weak line search we used with the BFGS

methods and other line search techniques may be better suited.

When used with CUTEr test problems, both hybrid methods have shown im-

provement in terms of numbers of iteration. In particular HNNimp1 gave a con-

siderable improvement on both Nimp1 and TR algorithms. Some improvement

was seen when using HDBFGS when compared with QN.

In Chapter 7, we developed a matrix free approach based on solving the steepest

descent equation by an explicit second order Runge Kutta method. This offers

a substantial reduction in the overhead calculations on each iteration because it
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does not use the Hessian at all. Of course the correction steps may be less effective

because of the lack of second order information. Prototype algorithms prove

capable of solving specially constructed test problems but they take rather small

steps in convex regions. This suggests strongly that the approach should be used

in hybrid setting like that proposed in Chapter 6. We have obtained promising

results in initial tests with hybrid codes which combine an rk2 curvilinear step

with a standard BFGS method.

8.3 Reflections on the Project

The CSDP path based on second derivatives seems to work well in non-convex

regions but in convex regions around a solution it can be less efficient than we

had hoped and was often inferior to standard line-search methods. Results with

approximate Hessian information were also promising but frustratingly inconsis-

tent. The hybrid techniques in Chapter 6 seem to be the way forward and we still

hope for more success from the hybrid approach which uses a diagonal Hessian

estimate in non-convex regions and a standard BFGS approach when the function

appears to be convex. This combination of tactics has the potential significantly

to reduce the overhead costs of the eigenvalue calculations which are a feature

of Nimp1. The most innovative proposal in the thesis emerged rather late in the

project and is the low-cost RK2 approximation to CSDP described in Chapter

7. This - probably in a hybrid context - does seem to deserve more study in a

follow-up research project. In particular the investigation of the RK2 approach

shed more light on reasons why a CSDP path may be restricted to small step

sizes in the vicinity of a minimum.

Our approach throughout this thesis has been a rather practical one. We have

mentioned convergence issues from time to time, especially when we are speaking

of hybrid approaches where behaviour near the solution is that of conventional

Newton or quasi-Newton methods whose termination properties are well-known.

But we have not proved any significant properties about the guaranteed progress

of the Nimp1 curvilinear search or about its complexity properties of the kind

discussed in [25].
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In order to remedy this lack of convergence theory it may be possible to use ideas

similar to those of Higham [41] in relation to his trust-region algorithm given in

section 3.3.1. This algorithm has some similarities with Nimp1 (but also some

important differences). Higham’s convergence results are as follows

Theorem 8.3.1 Suppose that Algorithm 3.3.2 produces an infinite sequence such

that xk ∈ B ⊂ R
n and gk 6= 0 for all k, where B is bounded and f ∈ C2 on B.

Then there is an accumulation point x∗ that satisfies the necessary conditions for

a local minimiser.

Theorem 8.3.2 If the accumulation point x∗ of Theorem 8.3.1 also satisfies the

sufficient conditions for a local minimiser, then for the main sequence pk → 0,

µ→ 0 and rk → 1. Further, the displacement error ek = ‖xk − x∗‖ satisfies

ek ≤
C

2k2/3
(8.3)

for some constant C, and if ek > 0 for all k,

C̃

2k2/2
≤ ek ≤

C

2k2/3
(8.4)

C̄

2k
≤ ek+1

ek
≤ Ĉ

2k
, (8.5)

for constants C̃ , C̄ > 0 and Ĉ, but the ratio ek+l/e
2
k is unbounded.

Theorem 8.3.1 establishes that Higham’s method is capable of convergence to a

local minimum while Theorem 8.3.2 is concerned with its ultimate rate of conver-

gence. Higham’s rate of convergence result is not very relevant to Nimp1 since

this algorithm, unlike Higham’s method, is able to choose µ = 0 near the mini-

mum when the Hessian matrix is positive definite and hence can have the same

quadratic convergence rate as the Newton method. But we would like to be able

to prove a result similar to theorem 8.3.1 which states that any termination point

of Nimp1 will be a local minimum.
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The method used by Higham to prove theorem 8.3.1 rests on the fact that each

iteration of his algorithm uses a value of µ which is simply related to the value

from the previous iteration. He is then able to distinguish two cases, namely

that µ tends to infinity as the iterations proceed or else µ remains bounded. In

each case he can show that assuming the theorem is false leads to a contradiction.

Unfortunately, this line of argument may not be applicable to Nimp1 since the

value of µ used to determine a correction step on iteration k is independent of

that used on iteration k− 1. We observed in Chapter 3 that this could be viewed

as an extra degree of flexibility; but it turns out to be a possible theoretical weak-

ness that needs further consideration. This is not to say that a convergence result

for Nimp1 does not exist; but it suggests that some tightening of the algorithm

may be required which would put some bounds on the ratio between the µ-values

used on successive iterations.

We do not, in fact, need a result as strong as theorem 8.3.1 for Nimp1 - partic-

ularly in its hybrid form - because it is expected to revert to Newton’s method

once the convex neighbourhood of a local minimum is reached. What we do need

is a proof that the iterations performed when Gk is indefinite will guarantee that

the search does indeed escape from the non-convex region. This remains a topic

for further consideration.

In [25], Curtis, Robinson and Samadi propose a trust region algorithm for solving

non-convex smooth optimization problems that, in the worst case, is able satisfy

the stationarity condition ‖g(xk)‖ ≤ ǫ in at most O(ǫ−3/2) iterations. This al-

gorithm follows the traditional trust region framework but uses a modified step

acceptance criteria with different trust region update strategies that allow the

algorithm to achieve this bound on iteration numbers. Curtis et al [25] have also

proved global and fast convergence of their method under similar assumptions to

other trust regions methods. This is an improvement on the O(ǫ−2) bound known

to hold for some other trust region algorithms and matches that of another re-

cently proposed ARC algorithm by Cartis, Gould and Toint [20], [21]. We are not

yet in a position to make any such claims or comments about our own proposed
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methods.

8.4 Possible Further Work

Some areas of ongoing research have been mentioned in the previous section.

Other issues where improvement can be looked for concern the cost of solving the

basic CSDP equation (8.1). One possible approach involves writing (8.1) as

(I + hG)p = −hg (8.6)

where g and G are evaluated at the point xk and h is the step size. Equation

(8.6) can be solved by a direct method (possibly Cholesky if h is small enough

to prevent the coefficient matrix having any negative eigenvalues even when G is

not positive definite).

We could use an approximate solution to (8.6) for small h without any matrix

factorizations or eigenvalue calculations. To do this we could use the first few

terms of

(I + hGk)
−1 = I − hGk + h2G2

k − h3G3
k + · · ·

to generate

pk ≈ −hgk −
J
∑

j=1

hj+1γj, where γj = (−1)jGj
kgk.

In this case we can estimate the solution of (8.6) when µ >> ||gk|| by using

pk ≈ −
1

µ

[

gk +
J
∑

j=1

(
1

µ
)jγj

]

. (8.7)

Repeated use of this expression might allow us to approximate quite cheaply the

initial part of integral curve.

There is still work to be done in refining the curvilinear search. Throughout

this thesis we have used a rather simple rule for stretching or shrinking the step
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size by a constant factor. The results in Curtis, Robinson and Samadi [25] are

based on a more complicated search using quadratic interpolation and a more

sophisticated way of choosing an initial step for each iteration. The results in

Bartholomew-Biggs, Beddiaf and Kane [5] also show that such refinements can

produce successful results and the version of Nimp1 which is tested in [5] (on a

more limited set of examples than in this thesis) compares favourably not only

with the Matlab routine TR but also with the trust region method NMTR due

to More and Sorenson [50].

This paper [5] incidentally provides some justification of the remark we have

made several times that the Nimp1 search direction can usefully be computed

with negative values of µ in (8.2) when the search is in a convex region. The

coefficient matrix in (8.2) will be positive definite if µ > µmin = λmin where λmin

(> 0) is the smallest eigenvalue of Gk. More work could be done on considering if

and when it is worth extrapolating beyond a trial point xk = xk + pk by reducing

µ below zero. Such decisions can be made on the basis of the ratios D1 and D2

as defined in Section 3.2 and on quadratic interpolations through the three most

recent trial points.

Another interesting issue is the consideration of alternative ways of solving the

trust region problem which defines steps along the curvilinear path. We have

already made some comments on this but we can also include the iterative ap-

proach outlined by Curtis, Robinson and Samadi [25].

Yet another possibility for defining steps along the curvilinear path is to consider

the constrained quadratic minimization problem which underlies it. Hamaker [40]

has proposed an iterative approach to problems of this type which appears to be

very efficient, under certain conditions. This approach could be applied to our

algorithms for choosing the direction pk.

In relation to the rk2 and Hrk2 methods in Chapter 7, we note that explicit

Runge-Kutta methods are considered unsuitable for the solution of stiff equa-

tions because their region of absolute stability is small. It is this instability of ex-
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plicit Runge-Kutta methods that motivates the development of implicit methods.

Hence we might also consider the use of Implicit Runge-Kutta (IRK) methods

[16] for solving
dx

dt
= F (x) = −g(x).

Mohr [47] and Bartholomew-Biggs & Brown [16] give more details of this.

The problem with the IRK methods when solving differential equations is that

they require the solution to possibly a system of non-linear equations at each

iteration. Solving this can be very expensive and also requires the evaluation

of the second derivatives. Quasi-Newton methods could be used to estimate the

exact Hessian, since they have lower cost per iteration. Zghier [63] suggests a

search direction calculation based on the application of a generalised Trapezoidal

rule namely

(I + θhG)p = −hg. (8.8)

where θ is a parameter. It can easily be seen that when θ = 0 this reduces to the

steepest descent (or forward Euler) method while θ = 1 yields the implicit Euler

method. The choice θ = 1/2 gives the Trapezoidal rule for integration and this

might be an easy-to-apply and useful variation on Nimp1.

The list of partly-open questions in this final section may help to explain why

ODE-based methods of optimization have long been and still continue to be a

fruitful research topic.
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Appendix A

CUTEr Test Results for Nimp1,

Nimp2, UMINH, UMINH, TR

and QN

The following table presents the numerical results obtained for the different algo-

rithms. The stopping criterion used are given by the inequality ‖g(xk)‖2 < 10−6

or ‖xk+1‖ < 10−6(1+ ‖xk‖). All computations were performed on Intel 2.60 GHz

processors running Linux and Matlab R2010a. The test problems range from 2

to 1000 variables. The following notation were used:

• n : The number of variables in the problem .

• Its/Fcs: The number of iterations / function calls.

• ”*”: Signify a possible minimum has been reached but cannot be certain

because the first order optimality condition measure is not fully satisfied.

• ”**”: Means that the maximum number of iterations has been reached.

• ”F” :The routine has failed to solve the problem.

• We highlight in bold the best performance measured in terms of the numbers

of iterations. The best performance in terms of function evaluations by

italics and we underline the entry which gives the smallest sum of iterations

and function calls.
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

1 AKIVA 2 9/22 7/10 15/16 6/7 6/7 19/23*
2 ALLINITU 4 7/14 11/20 15/21 7/8 10/11 11/13
3 ARGLINA 200 2/7 5/14 15/16 1/2 2/3 2/3
4 ARWHEAD 100 6/16 6/15 13/14 6/7 6/7 6/8
5 BARD 3 12/31 12/20 15/16 7/8 192/193* 20/22
6 BDQRTIC 100 12/31 10/26 19/20 F 9/10* 129/131*
7 BEALE 2 6/9 8/11 17/19 8/51 9/10 15/16
8 BIGGS6 6 53/180 6247/82092 92/189 F 41/42 46/48
9 BOX 10 3/4 3/4 13/14 3/4 3/4 5/8
10 BOX3 3 11/34 7/10 12/14 8/9 13/14 24/25
11 BRKMCC 2 5/8 3/5 13/14 3/4 3/4 5/8
12 BROWNAL 200 7/11 7/12 2/7 15/16 7/8 2/4
13 BROWNBS 2 8/36 F 16/18* 7/53* 7075/7076 14/25
14 BROWNDEN 4 8/20 9/33 15/16 8/9 11/12* 32/33*
15 BROYDN7D 10 14/31 14/36 20/28 F 17/18* 23/27
16 BRYBND 10 11/24 11/25 20/24 10/40 16/17* 27/30*
17 CHAINWOO 4 56/144 2406/431457 51/89 F 208/209* 35/43*
18 CHNROSNB 50 48/170 572/4784 45/83 F 64/65* 240/248*
19 CLIFF 2 28/266 29/419 27/28 27/28 26/27* F
20 COSINE 10 11/20 12/23 7/13 8/27 9/10* 12/17
21 CRAGGLVY 4 17/69 18/46 F F 14/15 54/62
22 CUBE 2 31/93 27/47 36/58 F 31/32 34/40
23 CURLY10 100 12/29 98/650 24/41 F 17/18* 920/931
24 CURLY20 100 14/32 322/3055 26/43 19/55 17/18* 863/874
25 CURLY30 100 15/34 651/7409 26/43 F 17/18* 744/753
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

26 DECONVU 61 21/43 ** F F 21/22 80/81
27 DENSCHNA 2 6/9 6/9 15/16 6/7 5/6 10/11
28 DENSCHNB 2 7/12 7/11 F F 6/7 7/8
29 DENSCHNC 2 9/22 13/46 18/19 11/32 10/11 21/24
30 DENSCHND 3 30/78 30/132 43/59 29/31 257/258 23/28*
31 DENSCHNE 3 20/39 925/12013 27/39 11/38 10/11 37/58
32 DENSCHNF 2 6/9 7/10 15/16 6/7 6/7 10/11
33 DIXMAANA 15 7/15 5/10 18/21 5/10 8/9 15/16
34 DIXMAANB 15 7/16 7/13 19/23 7/8 7/8 22/23
35 DIXMAANC 15 9/19 8/22 19/23 7/8 8/9 26/27
36 DIXMAAND 15 10/21 6/11 19/24 8/9 9/10 30/31
37 DIXMAANE 15 8/17 7/16 16/20 7/9 6/7 71/72
38 DIXMAANF 15 9/20 7/14 18/24 8/9 9/10 74/75
39 DIXMAANG 15 11/22 9/18 19/25 F 10/11 81/82
40 DIXMAANH 15 11/25 8/15 18/25 10/11 10/11 84/85
41 DIXMAANI 5 10/23 6/14 16/22 8/12 6/7 97/98
42 DIXMAANJ 5 13/35 9/18 15/23 9/10 12/13 105/106
43 DIXMAANK 15 13/32 11/22 17/25 F 13/14 118/119
44 DIXMAANL 15 12/33 13/20 17/25 F 13/14 131/132
45 DIXON3DQ 10 3/7 3/8 13/14 1/2 20/21 20/21
46 DJTL 2 5558/54577 127/260 135/12051 F 103/104 2189/5715
47 DQDRTIC 10 4/10 4/12 16/17 1/2 1/2 14/16
48 DQRTIC 10 23/48 10/35 F F 15/16 39/40*
49 EDENSCH 36 11/27 13/41 18/19 10/33 12/13* 69/71*
50 EG2 1000 5/7 4/6 3/4 3/32 3/4 4/5
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

51 ENGVAL1 2 6/9 6/9 17/18 7/8 7/8 11/12
52 ENGVAL2 3 18/40 15/29 26/33 18/48 108/109* 29/34
53 ERRINROS 50 134/372 257/2679 106/187 F 56/57* 329/352*
54 EXPFIT 2 8/18 9/16 15/22 F 11/12 12/16
55 EXTROSNB 10 469/1895 393/1295 452/768 F 330/331* 325/403
56 FLETCBV2 10 2/3 2/3 11/12 2/3 3/4* 15/18
57 FLETCBV3 10 855/1530 788/2350 1137/3651 1263/1266 298/299 35/78
58 FLETCHBV 10 1374/2594 1598/4377 2072/6053 F 334/335* 96/150*
59 FLETCHCR 10 25/71 22/57 35/57 F 131/132* 51/70
60 FMINSRF2 16 13/25 17/77 15/30 F 10/11 27/42
61 FMINSURF 16 13/22 17/92 12/24 F 11/12 27/47
62 GENROSE 500 299/889 ** ** ** 614/615 876/1431
63 GROWTHLS 3 799/1703 1350/22456 368/538 F ** 12/13*
64 GULF 3 42/126 ** 63/104 F 301/302 50/58
65 HAIRY 2 76/144 64/107 84/137 F 91/92 20/42
66 HATFLDD 3 22/66 19/35 19/21 18/42 114/115* 19/27
67 HATFLDE 3 21/49 18/27 21/24 18/25 15/16* 9/12
68 HEART8LS 8 88/185 ** 86/160 F 131/132 2921/3815
69 HELIX 3 12/22 10/23 21/25 11/37 748/749* 29/31
70 HIELOW 3 7/17 211/3074 15/17 F 10/11* 28/31*
71 HILBERTA 2 4/8 4/10 12/13 1/2 1/2 5/7
72 HILBERTB 10 2/5 3/7 16/17 1/2 4/5 6/7
73 HIMMELBB 2 21/49 7/18 17/18 11/13 13/14* 3/8*
74 HIMMELBF 4 1943/2934 212/2074* 912/938 F 201/202* 48/50*
75 HIMMELBG 2 4/5 6/7 15/16 5/40 7/8 8/10
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

76 HIMMELBH 2 4/5 4/8 F F 7/8 7/8
77 HUMPS 2 871/1445 607/5780 560/790 F 5459/5460 104/320
78 JENSMP 2 12/34 10/16 16/17 F 9/10 16/41*
79 KOWOSB 4 10/23 822/15632 9/10 F 21/22 33/37
80 LIARWHD 36 10/20 7/14 23/24 10/11 10/11 18/19
81 LOGHAIRY 2 782/1506 676/1176 4019/6201 F 514/515* 41/168
82 MANCINO 100 10/28 11/47 17/38* 11/12 15/16* 6/9*
83 MARATOSB 2 7/8* 4/42* 748/2212* F 779/780* 5/7*
84 MEXHAT 2 12/44* 38/94 25/32 F 29/30* 11/16*
85 MODBEALE 10 10/21 26/123 19/24 7/8 43/44 60/63
86 MOREBV 10 3/5 3/5 10/11 2/3 41/42 32/34
87 NONCVXU2 10 15/32 14/71 9/19 8/32 17/18 35/38
88 NONCVXUN 10 15/26 27/142 11/26 15/110 18/19 31/34
89 NONDIA 10 24/48 7950/269739 F F 14/15 14/24*
90 NONDQUAR 100 17/133 17/146 17/18 17/18 26/27 375/380
91 NONMSQRT 9 61/295 72/215 235/456 F 88/89* F
92 OSBORNEA 5 35/157 41/200 38/60 F 56/57* 37/46
93 OSBORNEB 11 21/53 2936/43098 24/29 F 30/31 67/78
94 OSCIGRAD 10 12/26* 15/68 ** 9/33 17/18* 43/44*
95 OSCIPATH 10 5/15 2/46 ** F 2/3* **
96 PALMER1C 8 11/32 13/53 11/12 F ** 36/44*
97 PALMER1D 7 9/27 11/48 13/14 1/2 ** 62/66
98 PALMER2C 8 11/32 12/43 8/9 1/2 ** 60/64
99 PALMER3C 8 10/30 15/52 8/9 1/2 ** 56/60
100 PALMER4C 8 9/29 14/51 9/10 1/2 ** 56/60
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

101 PALMER5C 6 2/7 3/10 14/15 1/2 8/9 14/16
102 PALMER6C 8 8/30 12/50 7/8 3/4 ** 43/51
103 PALMER7C 8 7/28 13/56 9/10 2/3 ** 28/35
104 PALMER8C 8 9/29 12/50 8/9 2/3 ** 49/54
105 PENALTY1 10 41/120 29/73 37/56 F 15/16 16/17*
106 PENALTY2 200 11/42 12/1788 14/127 F F 290/292*
107 PENALTY3 50 15/37 29/71 17/41 F 18/19 40/65*
108 PFIT1LS 3 321/1350 321/1212 311/453 F ** 33/43
109 PFIT2LS 3 121/462 140/504 127/201 F 35/36 476/644
110 PFIT3LS 3 107/437 122/424 134/207 F 33/34* 648/904
111 PFIT4LS 3 229/951 252/974 262/411 F 43/44* 969/1296
112 POWELLSG 4 17/66 16/37 24/25 17/18 23/24 33/34
113 POWER 10 18/60 18/43 20/21 19/20 15/16 77/78*
114 QUARTC 25 27/58 14/60 F F 19/20 56/ 57
115 ROSENBR 2 25/66 20/34 30/44 F 27/28 36/46
116 S308 2 8/15 8/14 18/21 F 10/11 16/17
117 SBRYBND 10 41/145 F 25/51 F 215/216 267/299
118 SCHMVETT 10 4/6 4/6 13/14 4/25 4/5 14/21
119 SENSORS 100 21/42 22/47 26/51 25/76 16/17 26/34
120 SINEVAL 2 59/184 46/115 59/122 F 55/56 63/86
121 SINQUAD 5 7/13 8/15 16/20 F 11/12 11/17
122 SISSER 2 13/39 13/27 14/15 14/15 11/12 9/11
123 SNAIL 2 65/178 64/182 157/301 F 104/105 94/127
124 SPARSINE 10 10/15 276/6297 5/8 5/9 7/8 36/37
125 SPARSQUR 10 15/46 14/31 16/17 15/16 12/13 36/37
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Methods Nimp1 Nimp2 UNMIN UMINH TR QN
Problem n Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

126 SROSENBR 10 10/22 7/9 16/17 F 8/9 16/18
127 TESTQUAD 1000 7/20 8/25 15/16 1/2 2/3 259/260
128 TOINTGOR 50 6/13 6/18 12/13 6/26 28/29 137/138
129 TOINTGSS 10 10/18 19/147 32/54 1/2 14/15 25/39
130 TOINTPSP 50 14/46 19/49 23/123 F 28/29 40/62
131 TOINTQOR 50 3/7 3/9 14/15 1/2 10/11 40/41
132 TQUARTIC 10 10/18 20/878 16/21 1/2 1/2 12/18
133 TRIDIA 10 3/6 3/7 14/15 1/2 5/6 21/22
134 VARDIM 200 28/292 29/437 28/31 28/29 29/30 1/2
135 VAREIGVL 50 39/43 13/15 13/14 F 15/16 20/21
136 WATSON 12 17/43 ** 12/15 13/20 13/14 73/77
137 WOODS 100 53/150 9411/166331 62/105 F 58/59 35/43*
138 YFITU 3 44/200 41/115 180/332 F 3119/3120 72/98
139 ZANGWIL2 2 2/6 2/7 13/14 1/2 1/2 1/2
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Appendix B

CUTEr Test Results for

BFGSimp, DFPimp, SR1imp,

DiagHess, ApproxHess and QN

The following table presents the numerical results obtained for the different algo-

rithms. The stopping criterion used are given by the inequality ‖g(xk)‖2 < 10−6

or ‖xk+1‖ < 10−6(1+ ‖xk‖). All computations were performed on Intel 2.60 GHz

processors running Linux and Matlab R2010a. The test problems range from 2

to 1000 variables. The following notation were used:

• n : The number of variables in the problem .

• Its/Fcs: The number of iterations / function calls.

• ”*”: Signify a possible minimum has been reached but cannot be certain

because the first order optimality condition measure is not fully satisfied.

• ”**”: Means that the maximum number of iterations has been reached.

• ”F” :The routine has failed to solve the problem.

• We highlight in bold the best performance measured in terms of the numbers

of iterations. The best performance in terms of function evaluations by

italics and we underline the entry which gives the smallest sum of iterations

and function calls.
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

1 AKIVA 2 12/41 14/53 13/38 19/55 21/79 19/23
2 ALLINITU 4 11/20 10/15 F F F 11/13
3 ARGLINA 200 2/7 2/7 2/7 2/7 2/7 2/3
4 ARWHEAD 100 9/24 10/40 7/16 5/12 5/9 6/8
5 BARD 3 21/80 265/1917 14/33 3799/5486 30/71 20/22
6 BDQRTIC 100 81/150 83/298 28/167 16/24 33/112 129/131
7 BEALE 2 13/22 183/1164 18/45 149/319 F 15/16
8 BIGGS6 6 44/202 ** 50/175 1689/4168 88/255 46/48
9 BOX 10 7/16 6/14 5/13 22/31 30/80 5/8
10 BOX3 3 23/80 1739/13518 13/31 265/927 56/93 24/25
11 BRKMCC 2 7/13 6/12 6/9 72/132 95/225 5/8
12 BROWNAL 200 10/23 10/23 10/21 22/60 4/10 2/4
13 BROWNBS 2 3/43* 3/16* 3/16* 15/60* 4/40* 14/25*
14 BROWNDEN 4 21/48 43/148 19/47 117/324 64/152 32/33
15 BROYDN7D 10 36/67 121/543 39/104 133/233 308/958 23/27
16 BRYBND 10 44/89 118/619 25/58 2635/7899 19/49 27/30
17 CHAINWOO 4 58/209 ** 70/238 5374/10164 95/155 35/43
18 CHNROSNB 50 211/216 ** 33/190* 2140/5614 93/309* 240/248
19 CLIFF 2 62/641 4506/63213 4/48* ** 22/51 1/2
20 COSINE 10 17/39 15/35 13/35 12/25 9/23 12/17
21 CRAGGLVY 4 73/287 1605/10378 40/121 51/181 F 54/62
22 CUBE 2 39/133 ** 43/130 5494/9424 345/757 34/40
23 CURLY10 100 228/479 125/205 76/204 ** 131/507 920/931
24 CURLY20 100 177/392 103/172 94/278 ** 168/645 863/874
25 CURLY30 100 149/338 93/164 63/408 ** 59/224 744/753
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

26 DECONVU 61 127/386 ** 75/217 6056/7570 F 80/81
27 DENSCHNA 2 10/17 10/20 9/16 40/43 46/121 10/11
28 DENSCHNB 2 8/13 9/14 8/14 3/6 7/12 7/8
29 DENSCHNC 2 17/46 23/72 18/41 16/30 26/66 21/24
30 DENSCHND 3 89/403 ** 70/254 1800/5730 254/528 23/28
31 DENSCHNE 3 18/53 45/181 22/40 20/39 F 37/58
32 DENSCHNF 2 9/13 11/19 9/13 11/16 17/35 10/11
33 DIXMAANA 15 15/51 22/88 9/16 8/11 10/15 15/16
34 DIXMAANB 15 16/24 29/74 18/36 7/10 12/24 22/23
35 DIXMAANC 15 23/35 56/179 29/70 8/11 12/25 26/27
36 DIXMAAND 15 27/51 93/314 35/90 10/13 F 30/31
37 DIXMAANE 15 26/57 59/209 28/54 8/13 F 71/72
38 DIXMAANF 15 35/85 132/574 24/54 7/11 9/15 74/75
39 DIXMAANG 15 38/102 183/817 29/62 8/12 12/21 81/82
40 DIXMAANH 15 41/117 1025/5810 42/119 9/13 F 84/85
41 DIXMAANI 5 62/212 515/3058 26/51 8/15 F 97/98
42 DIXMAANJ 5 62/214 1819/11455 51/137 8/14 13/30 105/106
43 DIXMAANK 15 70/280 4057/26228 53/164 9/14 17/47 118/119
44 DIXMAANL 15 75/296 ** 62/212 9/15 18/48 131/132
45 DIXON3DQ 10 23/39 39/155 12/25 554/832 F 20/21
46 DJTL 2 20/142* 7/15* 29/144* 3299/12032* 54/127* 2189/5715*
47 DQDRTIC 10 26/67 16/39 8/16 4/10 5/12 14/16
48 DQRTIC 10 207/971 ** 76/269 23/48 F 39/40
49 EDENSCH 36 39/53 129/521 28/78 20/42 40/125 69/71
50 EG2 1000 7/9 7/9 7/9 5/7 F 4/5
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

51 ENGVAL1 2 11/21 12/24 12/26 7/10 8/12 11/12
52 ENGVAL2 3 32/98 42/182 33/98 681/2875 41/104 29/34
53 ERRINROS 50 189/449 ** 218/716 6605/19080 77/298 329/352
54 EXPFIT 2 12/29 14/33 16/37 222/228 F 12/16
55 EXTROSNB 10 320/1271 ** 53/177 ** 87/262 325/405
56 FLETCBV2 10 15/25 21/61 13/32 182/188 133/188 15/18
57 FLETCBV3 10 244/1189 ** 8/35 840/1522 1138/1888 35/78
58 FLETCHBV 10 37/60 ** 150/363 1483/2849 1133/2090 96/150
59 FLETCHCR 10 72/178 978/6410 73/259 3771/7380 F 51/70
60 FMINSRF2 16 39/100 183/918 35/90 516/1181 275/747 27/42
61 FMINSURF 16 31/76 70/284 33/78 88/163 180/600 27/47
62 GENROSE 500 ** ** 20/43 7361/17879 97/373 875/1431
63 GROWTHLS 3 20/96 ** 27/113* ** 12/54 12/32
64 GULF 3 37/198 ** 33/113 1616/4087 66/180 50/58
65 HAIRY 2 20/43 ** 21/50 55/103 58/155 20/42
66 HATFLDD 3 32/110 2030/16863 18/48 ** 70/182 19/27
67 HATFLDE 3 29/117 3764/29812 35/111 7878/16328 101/187 9/12
68 HEART8LS 8 186/826 ** 131/457 ** F 2921/3815
69 HELIX 3 24/62 64/305 32/75 1461/2545 F 29/31
70 HIELOW 3 15/49 16/53 12/39 22/59 24/91 28/31
71 HILBERTA 2 10/22 25/101 4/10 54/85 111/306 5/7
72 HILBERTB 10 15/26 13/23 5/10 10/13 10/17 6/7
73 HIMMELBB 2 8/18 8/18 8/18 11/14 6/21 3/8
74 HIMMELBF 4 36/203 ** 29/129* 1859/6079* 14/31 48/50
75 HIMMELBG 2 8/14 8/13 9/15 6/8 6/11 8/10
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

76 HIMMELBH 2 8/14 7/13 8/14 4/5 F 7/8
77 HUMPS 2 162/721 22/71 156/563 26/75 30/110 104/320
78 JENSMP 2 17/45 ** 20/45 132/154 26/70 16/41
79 KOWOSB 4 35/134 ** 27/78 1759/3569 12/36 33/37
80 LIARWHD 36 30/78 87/453 33/223 156/292 63/1174 18/19
81 LOGHAIRY 2 19/77 6/11 7/19 7288/14431 19/52 41/168
82 MANCINO 100 23/38 16/39 15/39 12/27 19/65 6/9
83 MARATOSB 2 7/14 7/14 7/14 5/6 5/11 5/7
84 MEXHAT 2 47/262 195/1740 19/88 1448/2997 11/37 11/16
85 MODBEALE 10 34/97 32/107 30/95 2260/7548 F 60/63
86 MOREBV 10 26/65 64/272 16/34 2372/5544 48/175 32/34
87 NONCVXU2 10 23/38 21/44 25/63 243/264 37/92 35/38
88 NONCVXUN 10 23/39 19/31 20/45 84/106 87/208 31/34
89 NONDIA 10 18/49 F F 889/1298* 2/5* 14/24

90 NONDQUAR 100 2004/12555 ** 40/122 2760/17671 F 375/380
91 NONMSQRT 9 61/213 ** 88/384 ** 29/83 F
92 OSBORNEA 5 39/211 ** 38/178 145/459 25/81 37/46
93 OSBORNEB 11 65/240 625/4287 63/212 728/1792 24/48 67/78
94 OSCIGRAD 10 33/56 49/268 20/60 95/221 F 43/44
95 OSCIPATH 10 8/33 5/31 6/35 F F **
96 PALMER1C 8 43/192 5228/42136 15/43 1363/3174 29/84 36/44
97 PALMER1D 7 33/151 758/6305 11/35 2409/5616 114/242 62/66
98 PALMER2C 8 55/244 ** 14/39 1401/3678 10/34* 60/64*
99 PALMER3C 8 53/213 ** 14/35 8779/23111 58/157 56/60
100 PALMER4C 8 56/227 ** 13/35 ** 24/88 56/60
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

101 PALMER5C 6 16/24 13/19 8/14 38/52 36/95 14/16
102 PALMER6C 8 65/294 ** 15/39 ** 10/34* 43/51*
103 PALMER7C 8 62/252 ** 15/41 ** 5/11* 28/35*
104 PALMER8C 8 61/255 ** 15/40 ** 5/12* 49/54*
105 PENALTY1 10 204/1064 ** 143/709* ** 10/21 16/17
106 PENALTY2 200 115/1929* 159/2022* 55/295* 25/1778* 43/157* 290/292*
107 PENALTY3 50 47/100 104/432 20/105* 138/209 36/117* 40/65
108 PFIT1LS 3 F ** 93/284 5472/12233 ** 33/43
109 PFIT2LS 3 53/300 ** 36/126* 6902/12929* F 476/644
110 PFIT3LS 3 68/413* ** 107/446* 8266/15900* F 649/904
111 PFIT4LS 3 75/484* ** 27/111* 9849/18130 F 969/1296
112 POWELLSG 4 54/197 232/1239 34/96 3028/10294 215/486 33/34
113 POWER 10 160/755 ** 68/272 12/16 21/52 77/78
114 QUARTC 25 489/2337 ** 73/230 27/58 F 56/57
115 ROSENBR 2 31/100 377/2322 44/148 3336/7002* 836/1702 36/46
116 S308 2 14/26 22/47 14/28 19/27 17/36 16/17
117 SBRYBND 10 1/35* 1/35* 1/35* 3/4* 1/35* 267/299*
118 SCHMVETT 10 24/36 17/30 17/27 86/181 F 14/21
119 SENSORS 100 22/31 22/32 27/118* 46/58 40/142 26/34
120 SINEVAL 2 73/279 ** 115/458 ** 2/7* 63/86
121 SINQUAD 5 13/26 10/19 11/24 62/161 42/107 11/17
122 SISSER 2 4/10 4/10 4/10 13/34 3/11 9/11
123 SNAIL 2 99/317 ** 137/485 653/1185 79/231 94/127
124 SPARSINE 10 24/40 17/26 13/19 128/188 100/297 36/37
125 SPARSQUR 10 88/367 7223/52362 56/169 14/54 18/49 36/37
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Methods BFGSimp DFPimp SR1imp DiagHess ApproxHess QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

126 SROSENBR 10 25/71 72/393 23/75 2869/6182 28/86 16/18
127 TESTQUAD 1000 ** ** ** 7/20 7/20 259/260
128 TOINTGOR 50 70/121 47/75 42/86 653/924 F 137/138
129 TOINTGSS 10 29/47 20/36 22/61 622/782 F 25/39
130 TOINTPSP 50 38/78 102/424 35/101 253/449 42/147 40/62
131 TOINTQOR 50 36/46 28/36 27/37 86/104* F 40/41
132 TQUARTIC 10 14/50 50/241 16/37 427/703 F 12/18
133 TRIDIA 10 31/48 19/26 11/16 97/211 70/183 21/22
134 VARDIM 200 55/568* 99/1110* 8/98* 20/52* 11/30 1/2
135 VAREIGVL 50 33/39 32/38 84/97* 48/89 7317/7319 20/21
136 WATSON 12 68/350 ** 39/142 ** F 73/77
137 WOODS 100 505/1260 ** 453/1325 5627/10667 132/299 35/43
138 YFITU 3 33/107 274/2718 29/147 957/4364 62/178 72/93
139 ZANGWIL2 2 2/6 2/6 2/6 12/49 2/6 1/2
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Appendix C

CUTEr Test Results for Hybrid

Methods

The following table presents the numerical results obtained for the different algo-

rithms. The stopping criterion used are given by the inequality ‖g(xk)‖2 < 10−6

or ‖xk+1‖ < 10−6(1+ ‖xk‖). All computations were performed on Intel 2.60 GHz

processors running Linux and Matlab R2010a. The test problems range from 2

to 1000 variables. The following notation were used:

• n : The number of variables in the problem .

• Its/Fcs: The number of iterations / function calls.

• ”*”: Signify a possible minimum has been reached but cannot be certain

because the first order optimality condition measure is not fully satisfied.

• ”**”: Means that the maximum number of iterations has been reached.

• ”F” :The routine has failed to solve the problem.

• We highlight in bold the best performance measured in terms of the numbers

of iterations. The best performance in terms of function evaluations by

italics and we underline the entry which gives the smallest sum of iterations

and function calls.
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Methods HNNimp1 HDBFGS BFGSimp Nimp1 TR QN
Functions Var Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs Its/Fcs

1 AKIVA 2 6/7 F 12/41 9/22 6/7 19/23
2 ALLINITU 4 7/14 10/18 11/20 7/14 10/11 11/13
3 ARGLINA 200 1/2 1/3 2/7 2/7 2/3 2/3
4 ARWHEAD 100 6/19 9/22 9/24 6/16 6/7 6/8
5 BARD 3 11/15 25/36 21/80 12/31 192/193 20/22
6 BDQRTIC 100 10/23 102/538 81/150 12/31 9/10 129/131
7 BEALE 2 7/9 15/24 13/22 6/9 9/10 15/16
8 BIGGS6 6 44/108 41/60 44/202 53/180 41/42 46/48
9 BOX 10 3/4 6/13 7/16 3/4 3/4 5/8
10 BOX3 3 8/10 20/24 23/80 11/34 13/14 24/25
11 BRKMCC 2 3/4 3/13 7/13 5/8 3/4 5/8
12 BROWNAL 200 9/14 33/61 10/23 7/11 7/8 2/4
13 BROWNBS 2 4/38* 131/571* 3/43* 8/36 7075/7076 14/25
14 BROWNDEN 4 8/9 19/76 21/48 8/20 11/12 32/33
15 BROYDN7D 10 11/15 41/96 36/67 14/31 17/18 23/27
16 BRYBND 10 12/15 116/190 44/89 11/24 16/17 27/30
17 CHAINWOO 4 41/77 27/63 58/209 56/144 208/209 35/43
18 CHNROSNB 50 40/81 160/515 211/416 48/170 64/65 240/248
19 CLIFF 2 27/28 4/31* 62/641 28/266 26/27 1/2
20 COSINE 10 11/20 18/52 17/39 11/20 9/10 12/17
21 CRAGGLVY 4 17/34 52/61 73/287 17/67 14/15 54/62
22 CUBE 2 20/40 31/51 39/133 31/93 31/32 34/40
23 CURLY10 100 13/24 110/678 228/479 12/29 17/18 920/931
24 CURLY20 100 14/28 112/681 177/392 14/32 17/18 863/874
25 CURLY30 100 26/57 119/701 149/338 15/34 17/18 744/753
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26 DECONVU 61 21/43 134/263 127/338 21/43 21/22 80/81
27 DENSCHNA 2 6/7 8/12 10/17 6/9 5/6 10/11
28 DENSCHNB 2 5/7 7/11 8/13 7/12 6/7 7/8
29 DENSCHNC 2 10/11 16/30 17/46 9/22 10/11 21/24
30 DENSCHND 3 33/52 101/161 89/403 30/78 257/258 23/28
31 DENSCHNE 3 20/39 27/53 18/53 20/39 10/11 37/58
32 DENSCHNF 2 6/7 12/27 9/13 6/9 6/7 10/11
33 DIXMAANA 15 7/23 10/15 15/51 7/15 8/9 15/16
34 DIXMAANB 15 7/12 14/19 16/24 7/16 7/8 22/23
35 DIXMAANC 15 8/14 45/78 23/35 9/19 8/9 26/27
36 DIXMAAND 15 9/17 17/26 27/51 10/21 9/10 30/31
37 DIXMAANE 15 7/13 21/25 26/57 8/17 6/7 71/72
38 DIXMAANF 15 10/19 22/27 35/85 9/20 9/10 74/75
39 DIXMAANG 15 11/20 65/101 38/102 11/22 10/11 81/82
40 DIXMAANH 15 12/24 106/175 41/117 11/25 10/11 84/85
41 DIXMAANI 5 9/19 36/40 62/212 10/23 6/7 97/98
42 DIXMAANJ 5 14/29 58/76 62/212 13/35 12/13 105/106
43 DIXMAANK 15 13/28 84/120 70/280 13/32 13/14 118/119
44 DIXMAANL 15 11/23 128/200 75/296 12/33 13/14 131/132
45 DIXON3DQ 10 1/2 18/27 23/39 3/7 20/21 20/21
46 DJTL 2 17/40* 135/293* 20/142* 5558/54577 103/104 2189/5715
47 DQDRTIC 10 1/2 12/51 26/67 4/10 1/2 14/16
48 DQRTIC 10 23/48 134/186 207/971 23/48 15/16 39/40
49 EDENSCH 36 12/13 73/217 39/53 11/27 12/13 69/71
50 EG2 1000 6/7 4/14 7/9 5/7 3/4 4/5
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51 ENGVAL1 2 7/8 13/21 11/21 6/9 7/8 11/12
52 ENGVAL2 3 15/18 30/56 32/98 18/40 108/109 29/34
53 ERRINROS 50 26/51 228/699 189/449 134/372 56/57 329/352
54 EXPFIT 2 6/10 13/24 12/29 8/18 11/12 12/16
55 EXTROSNB 10 23/41 23/119 320/1271 469/1895 330/331 325/403
56 FLETCBV2 10 2/3 15/18 15/25 2/3 3/4 15/18
57 FLETCBV3 10 868/1553 130/230 244/1189 855/1530 298/299 35/78
58 FLETCHBV 10 1322/2398 52/120 37/60 1374/2594 334/335 96/150
59 FLETCHCR 10 19/39 62/136 72/178 25/71 131/132 51/70
60 FMINSRF2 16 12/24 33/36 39/100 13/25 10/11 27/42
61 FMINSURF 16 10/18 28/30 31/76 13/22 11/12 27/47
62 GENROSE 500 33/68 1290/5479 ** 299/889 614/615 876/1431
63 GROWTHLS 3 762/1529 1/14 20/96 799/1703 ** 12/13*
64 GULF 3 36/74 10/19 37/198 42/126 301/302 50/58
65 HAIRY 2 23/43 17/41 20/43 76/144 91/92 20/42
66 HATFLDD 3 19/24 24/31 32/110 22/66 114/115 19/27
67 HATFLDE 3 19/38 32/45 29/117 21/49 15/16 9/12
68 HEART8LS 8 89/179 1487/1988 186/826 88/185 131/132* 2921/3815
69 HELIX 3 20/39 31/51 24/62 12/22 748/749 29/31
70 HIELOW 3 18/38* F 15/49 7/17 10/11 28/31
71 HILBERTA 2 1/2 6/7 10/22 4/8 1/2 5/7
72 HILBERTB 10 1/2 13/27 15/26 2/5 4/5 6/7
73 HIMMELBB 2 21/49 7/31 8/18 21/49 13/14 3/8*
74 HIMMELBF 4 1944/2926 29/54 36/203 1943/2934 201/202 48/50
75 HIMMELBG 2 4/5 8/12 8/14 4/5 7/8 8/10
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76 HIMMELBH 2 4/5 7/10 8/14 4/5 7/8 7/8
77 HUMPS 2 611/972 154/334 162/721 871/1445 5459/5460 104/320
78 JENSMP 2 10/23 1/11 17/45 12/34 9/10 16/41
79 KOWOSB 4 21/44 29/32 35/134 10/23 21/22 33/37
80 LIARWHD 36 10/11 20/65 30/78 10/20 10/11 18/19
81 LOGHAIRY 2 606/938 7/13 19/77 782/1506 514/515* 41/168
82 MANCINO 100 9/26 101/1895 23/38 10/28 15/16 6/9*
83 MARATOSB 2 422/843 8/46 7/14 7/8* 779/780 5/7*
84 MEXHAT 2 19/28 13/71 47/262 12/44* 29/30 11/16*
85 MODBEALE 10 10/16 F 34/97 10/21 43/44 60/63
86 MOREBV 10 2/3 18/38 26/65 3/5 41/42 32/34
87 NONCVXU2 10 11/24 24/43 23/38 15/32 17/18 35/38
88 NONCVXUN 10 14/24 23/46 23/39 15/26 18/19 31/34
89 NONDIA 10 24/48 29/62 18/49 24/48 14/15 14/24
90 NONDQUAR 100 17/18 1255/1278 2004/12555 17/133 26/27 375/380
91 NONMSQRT 9 28/49 305/424 61/213 61/295 88/89 F
92 OSBORNEA 5 14/28 49/87 39/211 35/157 56/57 37/46
93 OSBORNEB 11 26/55 54/86 65/240 21/53 30/31 67/78
94 OSCIGRAD 10 13/21 1626/2603* 33/56* 12/26* 17/18* 43/44*
95 OSCIPATH 10 12/30 4/57 8/33 5/15 2/3 **
96 PALMER1C 8 1/2 32/93 43/192 11/32 ** 36/44*
97 PALMER1D 7 1/2 24/76 33/151 9/27 ** 62/66*
98 PALMER2C 8 1/2 41/90 55/244 11/32 ** 60/64*
99 PALMER3C 8 1/2 40/82 53/213 10/30 ** 56/60*
100 PALMER4C 8 1/2 39/84 56/227 9/29 ** 56/60*
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101 PALMER5C 6 1/2 13/31 16/24 2/7 8/9 14/16
102 PALMER6C 8 1/2 48/82 65/294 8/30 ** 43/51*
103 PALMER7C 8 1/2 44/83 62/252 7/28 ** 28/35*
104 PALMER8C 8 1/2 43/78 61/255 9/29 ** 49/54*
105 PENALTY1 10 24/37 137/209 204/1064 41/120 15/16 16/17
106 PENALTY2 200 10/11 251/5873* 115/1929* 11/42 1/2* 290/292*
107 PENALTY3 50 22/46* 75/615 47/100 15/37 18/19 40/65
108 PFIT1LS 3 23/45* F F 321/1350 ** 33/43
109 PFIT2LS 3 20/42* F 53/300 121/462 35/36 476/644
110 PFIT3LS 3 20/41* F 68/413* 107/437 33/34* 648/904
111 PFIT4LS 3 20/41* F 75/484* 229/951 43/44* 969/1296
112 POWELLSG 4 17/18 29/52 54/197 17/66 23/24 33/34
113 POWER 10 19/20 85/167 160/755 18/60 15/16 77/78*
114 QUARTC 25 27/58 236/452 489/2337 27/58 19/20 56/ 57*
115 ROSENBR 2 19/38* 34/54 31/100 25/66 27/28 36/46
116 S308 2 9/11 14/23/46 14/26 8/15 10/11 16/17
117 SBRYBND 10 10/38* 1/45* 1/35* 41/145* 215/216* 267/299*
118 SCHMVETT 10 3/4 16/45 24/36 4/6 4/5 14/21
119 SENSORS 100 21/42 71/431 22/31 21/42 16/17 26/34
120 SINEVAL 2 20/39* 76/117 73/279 59/184 55/56 63/86
121 SINQUAD 5 8/11 11/24 13/26 7/13 11/12 11/17
122 SISSER 2 14/15 18/22 4/10 13/39 11/12 9/11
123 SNAIL 2 23/43 12/15 99/317 65/178 104/105 94/127
124 SPARSINE 10 10/15 22/66 24/40 10/15 7/8 36/37
125 SPARSQUR 10 15/16 93/107 88/367 15/46 12/13 36/37
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126 SROSENBR 10 8/9 21/70 25/71 10/22 8/9 16/18
127 TESTQUAD 1000 1/2 357/6152 ** 7/20 2/3 259/260*
128 TOINTGOR 50 7/8 47/151 70/121 6/13 28/29 137/138
129 TOINTGSS 10 1/2 1/3 29/47 10/18 14/15 25/39
130 TOINTPSP 50 19/39* 65/146 38/78 14/46 28/29 40/62
131 TOINTQOR 50 1/2 50/129 36/46 3/7 10/11 40/41
132 TQUARTIC 10 1/2 11/23 14/50 10/18 1/2 12/18
133 TRIDIA 10 1/2 16/62 31/48 3/6 5/6 21/22
134 VARDIM 200 28/31 37/88 55/568* 28/292* 29/30 1/2
135 VAREIGVL 50 56/72 50/144 33/39 39/43 15/16 20/21
136 WATSON 12 17/43 51/350 68/350 17/43 13/14 73/77
137 WOODS 100 42/79* 278/1022 505/1260 53/150 58/59 35/43
138 YFITU 3 21/38* 68/110 33/107 44/200 3119/3120 72/98
139 ZANGWIL2 2 1/2 2/3 2/6 2/6 1/2 1/2

137



Appendix D

Specially Selected Test Problems

The following test problems are used

T1: F = x1x2 + (x2
1 + 2x2

2 − 10)2/100. Starting point x0 = (2.05, 1.6)T

T1r: φ = x1x2 +(x2
1 +2x2

2− 10)2/100. F = −(10+φ(x1, x2))
−1. Starting point

x0 = (2.05, 1.6)T

T1r2: φ = x1x2 + (x2
1 + 2x2

2 − 10)2/100. F = −(10 + φ(x1, x2))
−2. Starting

point x0 = (2.05, 1.6)T

T1a: F (x1, x2) = x1x2 + 0.01 max {0, (x2
1 + 2x2

2 − 10)}2. Starting point x0 =
(2.05, 1.6)T

T1b: F (x1, x2) = x1x2 + 0.01 max {0, (x2
1 + 2x2

2 − 10)}2. Starting point x0 =
(0.26, 0.16)T

T1ar: φ(x1, x2) = x1x2 + 0.01 max {0, (x2
1 + 2x2

2 − 10)}2. F (x1, x2) = −(10 +
φ(x1, x2))

−1. Starting point x0 = (0.26, 0.16)T

T2: F (x1, x2) = x1x2 + 0.001(x2
1 + 2x2

2 − 10)4. Starting point x0 = (2.5, 1.6)T

T2r: φ(x1, x2) = x1x2+0.001(x2
1+2x2

2− 10)4. F (x1, x2) = −(10+φ(x1, x2))
−1.

Starting point x0 = (2.5, 1.6)T

T3: F (x1, x2, x3) = x1x2x3 + 0.01(x2
1 + 2x2

2 + 3x2
3 − 10)2. Starting point x0 =

(0.4, 0.3, 0.2)T

T4(n): F = (1+xTQx)−1 where Q = H+0.01I where H is the (n×n) Hilbert
matrix. Using the initial condition x0 = (3, 3, ..., 3)T
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T4r(n): φ(x) = (10 + xTQx)−1 where Q = H + 0.01I where H is the (n ×
n) Hilbert matrix. F = −(1 + φ(x))−1 Using the initial condition x0 =
(3, 3, ..., 3)T

T5: F (x1, x2) = x3
1 + (x2

1 + 2x2
2 − 10)2. Starting point x0 = (−1, 0.1)T

T5a: F (x1, x2) = x3
1 + (x2

1 + 5x2
2 − 10)2. Starting point x0 = (−1, 0.1)T
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