University of Hertfordshire

Citation for the published version:

El-Kateb, S., Sridharan, S., Farrington, K., Fan, S., & Davenport, A. (2016). A single weekly Kt/Vurea target for peritoneal dialysis patients does not provide an equal dialysis dose for all. Kidney international, 90(6), 1342-1347. https://doi.org/10.1016/j.kint.2016.07.027

Document Version: Accepted Version

This manuscript is made available under the CC-BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0/

Link to the final published version available at the publisher:

https://doi.org/10.1016/j.kint.2016.07.027

General rights

Copyright© and Moral Rights for the publications made accessible on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Take down policy

If you believe that this document breaches copyright please contact us providing details, any such items will be temporarily removed from the repository pending investigation.

Enquiries

Please contact University of Hertfordshire Research & Scholarly Communications for any enquiries at rsc@herts.ac.uk

1 2 2	A single weekly Kt/Vurea target for peritoneal dialysis patients does not provide an equal dialysis dose for all							
3 4	Sally El-Kateh MD ¹ Siyakumar Sridharan PhD ² Ken Farrington EDCP ^{2,3} Stanl							
5	Fan ⁴ , Andrew Davenport FRCP ¹							
6 7	¹ UCL Contro for Nonhrology Doval Free Hagnital University College Londer							
8	Medical Sch	ool Rowland H	ill Stre	et London NW3 "QG UK				
9	² Renal Unit	Lister Hospita	l Corev	vs Mill Lane Stevenage SG1 4AB UK				
10	³ University	of Hertfordsk	nire. Co	llege Lane Hatfield AL10 9AB. UK				
11	⁴ Barts Heal ⁻	th NHS Trust	, White	chapel Rd, London E1 1BB, UK				
12								
13	Sally El-Kate	eb	sallye	lkateb@yahoo.com				
14	Sivakumar S	ridharan	sivakı	umar.sridharan@nhs.net				
15	Ken Farringt	on	ken.fo	arrington@nhs.net				
16	Stanley Fan		fan.st	anley@nhs.net				
17	Andrew Dave	enport	andre	wdavenport@nhs.uk				
18								
19								
20	Address for	corresponden	ce					
21	Andrew Dave	enport		andrewdavenport@nhs.net				
22			_					
23	contact	andrewdaver	iport@i	nhs.net				
24	UCL Centre	for Nephrolog	y, Roya	Free Hospital, University College London				
25	Medical Scho	ool, Rowland H	ill Stre	et, London NW3 2PF				
26	tel 44-20)/4/2645/	tax	44-20/31/8591				
21								
20	chant title	nacting and t	total an	anov expenditure in peritoneal dialycic patients				
29 30	Short Title	resting and	ioiui en	ergy expenditure in peritoneal alarysis patients				
31	key words	neritoneal di	alvsis	resting energy expenditure				
32	total	energy expend	liture	total body water body surface				
33	area Kt/V	urea						
34								
35	word count	abstract	250					
36		body	2178					
37		, figures	3					
38		tables	3					
39		references	31					
40								
41	Funding	grant -Britis	h Rena	Society, Dr El-Kateb was awarded an				

International Society for Nephrology fellowship No author has any conflict of interest

44 <u>Abstract</u>

45	Dialysis adequacy is traditionally based on urea clearance, adjusted for
46	total body volume (Kt/Vurea), and clinical guidelines recommend a Kt/Vurea
47	target for peritoneal dialysis (PD). We wished to determine whether adjusting
48	dialysis dose by resting (REE) and total energy expenditure (TEE), would alter
49	the delivered dialysis dose.
50	We determined REE and TEE by equations based on doubly labelled
51	isotopic water studies, and adjusted Kturea for REE and TEE.
52	We studied 148 PD patients, 97 male (65.5%), 54 diabetic (36.5%), mean
53	age 60.6±17.6 years. The mean REE was 1534±241 kcal/day and TEE 1974±414
54	kcal/day. Adjusting Kt for REE showed a reduced delivered dialysis dose (ml
55	/kcal/day) for women vs men (5.5±0.4 vs 6.2±0.6), age < 65 vs > 65 years
56	(5.6±0.56 vs 6.4±0.5), weight < 65 kg vs >80 kg (5.8±0.6 vs 6.1±0.5), low co-
57	morbidity vs high co-morbidity (6.2 \pm 0.6 vs 5.9 \pm 0.6), all p<0.01. Adjusting for TEE
58	showed reduced dosing for those employed vs no employment (4.3 \pm 0.7 vs
59	4.8±0.8), low frailty vs high frailty score (4.5±08 vs 5.0±0.7), both p<0.01.
60	Adjusting the dialysis target dose for REE shows that for the same Kt
61	urea, women, younger, smaller and less co-morbid patients would all receive less
62	dialysis, and adjusting for TEE additionally shows that those employed and
63	physically fitter would receive less dialysis. The current paradigm for a single
64	target Kt/Vurea for all PD patients does not take into account energy
65	expenditure and metabolic rate, and may lead to lowered dialysis delivery for
66	the younger more active female patient.

68 Introduction

69	More than 2 million patients with end stage kidney disease are currently
70	treated by dialysis worldwide, with around 300,000 treated by peritoneal
71	dialysis. As with for haemodialysis, there are clinical guidelines recommending
72	that patients receive a minimal amount of dialysis based on urea clearance [1].
73	These urea based clearance targets are derived from observational studies [2].
74	However prospective studies comparing different peritoneal dialysis regimes
75	designed to achieve different urea clearance targets consistently failed to
76	demonstrate any advantage for greater urea clearance, in terms of patient
77	morbidity or mortality [3-5]. Indeed peritoneal dialysis technique and patient
78	survival have been linked to preservation of residual renal function [6], rather
79	than peritoneal dialysis urea clearance [7].
80	The amount of urea clearance, Kt/Vurea, for dialysis patients are
81	currently based on volume of distribution of urea, total body water (TBW)
82	derived from anthropomorphic measurements [8]. However total body water
83	varies with body composition, as some tissues, such as muscle contain more
84	water than fat [9], and also varies between racial groups [10], and patients with
85	diabetes and other co-morbidities [11]. As such for the same Kt/Vurea, the
86	delivered urea clearance has been suggested to differ between patients [12].
87	Rather than dosing the amount of dialysis required on urea clearance
88	based on volume of distribution, an alternative approach based upon metabolic
89	activity has been proposed [13]. Urea is generated as a by-product of

90 intracellular nitrogen metabolism. Total body metabolic activity is a composite of 91 resting metabolic rate and that due to physical activity. Previous studies in 92 peritoneal dialysis patients have concentrated on measuring resting energy 93 expenditure (REE) [14,15], but this under estimates total energy expenditure 94 (TEE), by excluding that due to activity energy expenditure (AEE), 95 We recently validated an assessment of TEE, and REE in dialysis patients 96 using a patient self-reported questionnaire and double isotopic labelled water 97 [16]. To establish whether there is a difference in the amount of dialysis 98 delivered for a fixed Kt/Vurea target, we calculated urea clearance adjusted 99 for energy expenditure, to determine whether some groups of patients would be 100 disadvantaged under current clinical guideline recommendations.

101

102 <u>Patients and methods</u>

103 Adult patients with end stage kidney disease established on peritoneal dialysis were recruited from University College London partner 104 105 hospitals when attending for outpatient assessments of peritoneal dialysis 106 adequacy. Corresponding spent dialysate effluent, 24 hour urine collections and 107 serum samples were analysed by standard methods, and weekly dialysis dose 108 calculated as Kt/Vurea. Protein Nitrogen Appearance rate was estimated using 109 the Bergström equation, and normalised for body weight (nPNA) g/kg/day [17]. 110 Patient demographics were obtained from computerised hospital records and 111 comorbidity determined using a self-administered co-morbidity grading [18], and 112 a recognised frailty score [19].

113	Total body water was calculated using the Watson equation [20]. In
114	addition we measured total body water by bioimpedance (InBody 720, InBody,
115	Seoul, South Korea; Body Composition Monitor (BCM), Fresenius, Bad Homberg,
116	Germany) which was performed in a standardised manner in 118 patients [21,22].
117	Bioimpedance measurements made by the BCM and InBody were standardised
118	using previously derived equations [23].Body surface area was calculated using
119	the Gehan and George equation as recommended by the European Best Clinical
120	Practice guidelines [24]
121	Physical activity data was obtained using the Recent Physical Activity
122	Questionnaire (RPAQ) [16], which collects information about both activity and
123	the time spent performing activities over the preceding four weeks;
124	encompassing activities performed at home, work and during leisure time. The
125	RPAQ has been validated against doubly labelled water technique in general
126	population [16], and has been shown to be a reliable tool for estimation of energy
127	expenditure in patients with chronic kidney disease [25]. Physical activity data
128	was determined by each reported activity being assigned a Metabolic Equivalent
129	of Task (MET) value according to the Compendium of Physical Activities [26].
130	The equations for calculating REE and TTE are detailed in the Appendix.
131	UK clinical guidelines recommend a minimum weekly Kt/V of 1.7 [1]. Hence,
132	in order to compare minimum dialysis targets using alternative scaling
133	parameters, weekly Kt was calculated as Kt = 1.7 \star V. Corresponding target
134	values of Kt/BSA, Kt/REE and Kt/TEE were calculated by dividing daily Kt by
135	the respective parameters.

Ethical approval was granted by the UK National Research Ethics
Committee - Essex and the study was registered in UK Clinical Research
Network (CRN) Portfolio number 14018. All patients provided written informed
consent in keeping with the declaration of Helsinki.

140

141 <u>Statistical analysis</u>

142 Statistical analysis was by students' t test, or Mann Whitney U test, 143 ANOVA and Kruskal Wallis , with appropriate post hoc correction, Pearson or Spearman's test for univariate correlation (GraphPad Prism version 6.0, San 144 145 Diego, USA) and step backward linear regression, of variables on univariate 146 analysis of p<0.1, with log transformation of variables which were not normally distributed, and removal of variables which were not statistically significant 147 148 unless they improved model fit, and models were checked for collinearity (SPSS version 22, University of Chicago, Illinois, USA), and Bland Altman comparison 149 150 (Analyse-It version 3.0, Leeds, UK). Data are presented as mean ± standard 151 deviation, median (inter quartile range), or mean and 95% confidence limits (CL), 152 or as a percentage.

153

154 <u>Results</u>

We studied 148 patients, 97 male (65.5%), 54 diabetic (36.5%), mean age
60.6±17.6 years, with a median duration of peritoneal dialysis 9.1 (3.5-25.2)
months. The median co-morbidity score was 2 (0-3.8), and frailty score 4 (2-5).
43.2% of patients were Caucasian, 27.1% African-Afro-Caribbean, 24.3% South

Asian, and 5.4% Far Asian. A minority, 20.3% of patients had some form of
employment.

161	Mean haemoglobin was 109.9±14.8 g/l, with a serum albumin 36.5±5.5 g/l
162	and serum C reactive protein (CRP) 6 (2-16) mg/l. Mean weight of the cohort was
163	73.6±16.7 kg, BMI 26.0±4.9 kg/m2, and BSA 1.86±0.24 m ² . The majority of
164	patients were treated by automated peritoneal dialysis cyclers (APD) 85.8% vs
165	14.2% by continuous ambulatory peritoneal dialysis (CAPD). The median total
166	weekly Kt/Vurea was 2.15 (1.8-2.71), with a median 24 hour urine volume of 946
167	(450-1249) ml/day. The mean REE was 1534 \pm 241 kcal/day and TEE 1974 \pm 414
168	kcal/day. Mean PNA was 64.5 ± 19.7 g/day and nPNA 0.89 ± 0.26 g/kg/day.
169	Male patients were heavier than female (77.0 \pm 15.6 vs 72.6 \pm 16.6 kg), and
170	had greater REE and TEE (table 1). Patients who were employed, those with
171	greater weight, and greater PNA had higher TEE (Table1), whereas those with
172	greater frailty and co-morbidity, and those who were diabetic and Asian
173	patients tended to have lower TEE.
174	We then adjusted a weekly Kturea of 1.7 for all patients for both BSA
175	and TBW. Bland Altman analysis showed that for both men and women the
176	adjusted Kturea was greater for smaller patients with a relatively greater BSA
177	to TBW, and lower for larger patients with a relatively lower BSA compared to
178	TBW (Figure 1).
179	In a subset of 118 (79.7%) of the study group; 75 male (63.6%), 33
180	diabetic (28.5%), mean age 59.3±18.2 years, with a median duration of peritoneal

181 dialysis 9.4 (3.8-25.5) months, we also measured TBW by bioimpedance. The

182	mean weight of this cohort was 73.1 ± 16.6 kg with a body mass index of 26.0 ± 4.9
183	kg/m ² , with a median co-morbidity grade of 2 (0-4) and frailty score of 4 (2-5),
184	and did not differ from the main study group. There was no significant
185	difference in TBW: Watson equation 40.3 \pm 6.1 vs bioimpedance 40.6 \pm 3.4 L, mean
186	difference on Bland Altman analysis 0.72 L (Figure 2). There were positive
187	correlations between BSA and both REE and TEE (r=0.92, p<0.001 and r =0.59,
188	p<0.001) and also between TBW and both REE and TEE (r=0.85, p<0.001 and
189	r=0.62, p<0.001) respectively.
190	We then calculated Kt values for a prescribed Kt/V of 1.7 using for
191	both Watson and bioimpedance estimates of TBW These values were then
192	patients from adjusted by BSA, REE and TEE. The results are shown in Table 2
193	and Figure 3 for different patient groups For the same prescribed dialysis dose,
194	women, younger patients, those employed and those weighing less (Figure 3)
195	received less dialysis than men, older patients, those not employed and heavier
196	patients (table 2). In addition generally patients with less co-morbidity and
197	frailty and non-Asian races also tended to receive less dialysis than those who
198	were more co-morbid, frail and of Asian ethnicity.
199	We used a step backward approach to develop multivariable models of
200	adjusted Kt, including all variables with p<0.1 on univariate analysis, and then

eliminating variables which were not significant or did not improve model fit to

predictor of Kt/BSA. Sex and age were significant predictors of Kt/REE. the

predominant variables (table 3). For Kt/TEE, sex, age and employment were

determine associations with adjusted dialysis dose. Sex was a significant

201

202

203

204

205 common predictive factors whether Kt was derived using TBW derived by
206 Watson and bioimpedance methods. Both high co-morbidity, and diabetes were
207 additional predictive factors for TEE adjusted using the Watson formula for
208 TBW (table 3).

209

210

211 Discussion

212 Traditionally the target dialysis for patients with end stage kidney 213 failure has been based on urea clearance adjusted for total body water volume. 214 However multiple prospective trials have failed to show an association between 215 areater peritoneal dialysis urea clearance and survival [3,4,7]. Cellular 216 metabolism, in particular protein turnover generates waste products which 217 accumulate in patients with end stage kidney failure. As these azotaemic toxins 218 are generated by cellular metabolism, it has been suggested that the amount of 219 dialysis required for patients should be based on metabolic rate, rather than 220 urea clearance [2]. Studies to-date have concentrated on measuring resting 221 metabolic rate [3], but this ignores physical activity, and as such potentially 222 under estimates energy expenditure. We used equations based on patient self-223 reported physical activity questionnaires, which have been validated using doubly 224 labelled isotopic water [4], to estimate REE and TEE. As expected energy 225 expenditure was associated with body weight, male sex and younger age group 226 [27]. Patients with higher REE and TEE had greater PNA rate due to increased 227 urinary and peritoneal urea losses However we also noted that although REE was

228 similar, TEE was lower with increasing frailty and co-morbidity, in particular 229 diabetes, and those without employment compared to those patients with lower 230 frailty and co-morbidity scores, who were not diabetic or those with 231 employment. We also found that patients from an Asian background had lower 232 TEE compared to Caucasoids and African-Afro-Caribbean patients. This is in keeping with previous observations of lower energy expenditure, particularly 233 234 with South Asians, and this has been suggested to be due to differences in 235 terms of body composition, related to brown fat tissue stores [28]. 236 We then compared the delivered dialysis dose for the minimum weekly 237 KtVurea target as recommended by clinical practice guidelines [1], using Kt 238 calculated by both the Watson formula [20], and also total body water measured by bioimpedance [29]. We found no significant difference between total body 239 240 water by either method, although previous reports from haemodialysis patients 241 have reported differences [9]. However the major differences between total 242 body water derived by the Watson formula and bioimpedance were with obese 243 patients with a body mass index of > 35, and in our study group < 2% had a body 244 mass index of this level. We adjusted the delivered dialysis dose by both BSA, 245 which is relatively greater for patients with lower total body water, and relatively lower for those with greater total body water and also for both REE 246 and TEE. Adjusting Kt for BSA, which has been advocated for haemodialysis 247 248 patients, we found that this resulted in a lower dose being delivered to women 249 and those with a high protein nitrogen appearance rate and lower body weight. 250 Whereas adjusting for REE, then female patients, and those who were younger,

251 weighed less, and who had lower protein nitrogen appearance along with those with frailty and co-morbidity scores, and other ethnicities than Asian all 252 253 received relatively less delivered dialysis. When Kt was adjusted for TEE, then 254 women, younger patients and those weighing less, who were employed, and those 255 with less frailty, in particular those with diabetes, all would receive less delivered dialysis dosing compared to men, heavier patients, those without 256 257 employment and the more frail, co-morbid patient and those with diabetes. 258 Previous studies targeting a dialysis dose defined by a weekly KtVurea 259 for peritoneal dialysis patients have not shown an advantage for one target 260 compared to another [3,4]. Our study shows that achieving the same urea 261 clearance does not equate to the same delivered dose of dialysis, and as such 262 potentially adds explanation as to why prospective studies have failed to show a 263 significant benefit for one KtVurea target for all patients. Although we 264 accepted that using Kt/Vurea for dialysis dosing has some limitations [31], more 265 recent observational studies have suggested an advantage for adjusting Kt for 266 BSA [30]. However we found that although adjusting for BSA detected a 267 difference between sexes and body weight, those who had higher nitrogen 268 appearance rates. Whereas in particular adjusting for TEE showed that in 269 addition, younger fitter patients received relatively less dialysis dose delivered 270 compared to older, more frail, co-morbid and diabetic patients. As such we 271 suggest that a single Kt/Vurea target dose us not applicable to all patients, and 272 the dose of dialysis should be increased for those who are more physically 273 active with greater TEE.

2	7	4
L	/	4

- 275 The authors have no conflict of interest
- None of the data contained in this report has been previously published in whole or part form
- 278
- 279 Funding grant British Renal Society
- 280 Dr El-Kateb was awarded a scholarship by the International Society of
- 281 Nephrology
- 282
- 283

284 <u>References</u>

- Woodrow G, Davies SJ. Peritoneal Dialysis (PD) (Guidelines PD 3.1 3.3).http://www.renal.org/guidelines/modules/peritoneal-dialysis-in ckd#sthash.Br67xjah.dpuf
- 288
 28. Jansen MA, Termorshuizen F, Korevaar JC, Dekker FW, Boeschoten E,
 289
 289 Krediet RT. Predictors of survival in anuric peritoneal dialysis patients.
 290 Kidney Int. 2005;68(3):1199-205
- 291
 3. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J,
 292 Mujais S; Mexican Nephrology Collaborative Study Group. Effects of
 293 Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis:
 294 ADEMEX, a Prospective, Randomized, Controlled Trial. J Am Soc Nephrol
 295 2002;13(5):1307-20
- 4. Lo WK, Ho YW, Li CS, Wong KS, Chan TM, Yu AW, Ng FS, Cheng IK.
 Effect of Kt/V on survival and clinical outcome in CAPD patients in a
 randomized prospective study. Kidney Int 2003;64(2):649-56
- 299
 300
 300
 301
 302
 5. Paniagua R, Amato D, Vonesh E, Guo A, Mujais S; Mexican Nephrology
 303
 Collaborative Study Group. Health-related quality of life predicts
 304
 305
 305
 305
 306
 307
 307
 308
 308
 309
 309
 309
 309
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 301
 302
 301
 302
 302
 302
 303
 303
 304
- 303
 6. Churchill DN, Taylor DW, Keshaviah PR. Adequacy of dialysis and nutrition
 304 in continuous peritoneal dialysis: association with clinical outcome. J Am
 305 Soc Nephrol 1996;7:198-207
- 306 7. Bargman JM, Thorpe KE, Churchill DN; CANUSA Peritoneal Dialysis Study
 307 Group. Relative contribution of residual renal function and peritoneal
 308 clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J
 309 Am Soc Nephrol. 2001;12(10):2158-62
- 310
 310
 311
 312
 313
 314
 315
 315
 316
 317
 317
 318
 318
 319
 319
 310
 311
 312
 312
 312
 313
 314
 315
 315
 316
 317
 318
 318
 319
 319
 310
 311
 312
 312
 312
 313
 314
 315
 315
 316
 317
 318
 318
 319
 319
 310
 311
 312
 312
 312
 312
 312
 312
 312
 314
 315
 315
 316
 317
 318
 318
 319
 310
 311
 312
 312
 312
 312
 312
 312
 314
 315
 315
 315
 316
 317
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
- 313
 313
 314
 314
 315
 315
 315
 316
 316
 317
 318
 319
 319
 310
 310
 310
 311
 312
 312
 313
 314
 315
 315
 315
 316
 316
 316
 317
 318
 318
 319
 319
 319
 310
 310
 310
 311
 312
 312
 312
 313
 314
 315
 315
 315
 316
 316
 316
 317
 318
 318
 318
 319
 319
 310
 310
 310
 311
 311
 312
 312
 312
 313
 314
 315
 315
 315
 316
 316
 316
 316
 316
 316
 317
 318
 318
 318
 318
 318
 318
 318
 319
 319
 310
 310
 310
 311
 312
 312
 312
 312
 312
 312
 312
 312
 312
 314
 315
 315
 315
 316
 316
 316
 316
 316
 316
 316
 317
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
 318
- 316 Transplant. 2013;28 Suppl 4:iv219-23

317	<i>10.</i> Davenport A, Hussain Sayed R, Fan S. The effect of racial origin on total
318	body water volume in peritoneal dialysis patients. Clin J Am Soc Nephrol.
319	2011 ;6(10):2492-8
320	11. Davenport A, Willicombe MK. Does diabetes mellitus predispose to
321	increased fluid overload in peritoneal dialysis patients? Nephron Clin Pract.
322	2010;114(1):c60-66
323	12. Spalding EM, Chandna SM, Davenport A, Farrington K: Kt/V
324	underestimates the haemodialysis dose in women and small men. Kidney
325	Int, 2008;74: 348-355
326	13. Daugirdas JT, Levin NW, Kotanko P, Depner TA, Kuhlmann MK, Chertow
327	GM, Rocco MV: Comparison of proposed alternative methods for rescaling
328	dialysis dose: resting energy expenditure, high metabolic rate organ mass,
329	liver size, and body surface area. Semin Dial, 2008;21: 377-384
330	14. Bazanelli AP, Kamimura MA, da Silva CB, Avesani CM, Lopes MG, Manfredi
331	SR, Draibe SA, Cuppari L. Resting energy expenditure in peritoneal
332	dialysis patients. Perit Dial Int. 2006;26(6):697-704
333	15. Wang AY, Sea MM, Tang N, Sanderson JE, Lui SF, Li PK, Woo J. Resting
334	energy expenditure and subsequent mortality risk in peritoneal dialysis
335	patients. J Am Soc Nephrol. 2004;15(12):3134-43
336	16. Sridharan S, Wong J, Vilar E, Farrington K. Comparison of energy
337	estimates in chronic kidney disease using doubly-labelled water. J Hum
338	Nutr Diet. 2015 Jul 15 PMID: 26173618
339	 Bergström J, Heimbürger O, Lindholm B. Calculation of the protein
340	equivalent of total nitrogen appearance from urea appearance. Which
341	formulas should be used? Perit Dial Int. 1998;18(5):467-73
342	18. Sridharan S, Berdeprado J, Vilar E, Roberts J, Farrington K: A self-
343	report comorbidity questionnaire for haemodialysis patients. BMC
344	Nephrol, 2014;15: 134
345	19. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I,
346	Mitnitski A. A global clinical measure of fitness and frailty in elderly
347	people. CMAJ. 2005;173(5):489-95
348	20. Watson PE, Watson ID, Batt RD. Total body water volume for adult males
349	and females estimated from simple anthropometric measurements. Am J
350	Clin Nutr 1980;33:27-39
351	21. Davenport A. Effect of intra-abdominal dialysate on bioimpedance-
352	derived fluid volume status and body composition measurements in
353	peritoneal dialysis patients. Perit Dial Int. 2013;33(5):5/8-9
354	22. Furstenberg A, Davenport A. Assessment of body composition in
355	peritoneal dialysis patients using bioelectrical impedance and dual-energy
356	x-ray absorptiometry. Am J Nephrol. 2011;33(2):150-6
357	23. McCatterty K, Fan S, Davenport A. Extracellular volume expansion,
358	measured by multi-trequency bioimpedance, does not help preserve
359	residual renal function in peritoneal dialysis patients. Kidney Int. 2013
360	24. Dombros N, Dratwa M, Feriani M, Gokal R, Heimbürger O, Krediet R, Plum
361	J , Rodrigues A, Selgas R, Struijk D, Verger C; EBPG Expert Group on

362	Peritoneal Dialysis. European best practice guidelines for peritoneal
363	dialysis. 7 Adequacy of peritoneal dialysis. Nephrol Dial Transplant.
364	2005;20 Suppl 9:ix21-ix23
365	<i>25.</i> Vilar E, Machado A, Garrett A, Kozarski R, Wellsted D, Farrington K:
366	Disease-Specific Predictive Formulas for Energy Expenditure in the
367	Dialysis Population. J Ren Nutr. 2014; 24: 243-251
368	<i>26.</i> Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr.,
369	Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS: 2011
370	Compendium of Physical Activities: A Second Update of Codes and MET
371	Values. Med Sci Sports Exerc.2011; 43: 1575-1581
372	<i>27.</i> Finkel T. The metabolic regulation of aging. Nat Med. 2015;21(12):1416-
373	23
374	28 . Boon MR, Bakker LE, van der Linden RA, van Ouwerkerk AF, de Goeje PL,
375	Counotte J, Jazet IM, Rensen PC. High prevalence of cardiovascular
376	disease in South Asians: Central role for brown adipose tissue? Crit Rev
377	Clin Lab Sci. 2015;52(3):150-7
378	29. Davies SJ, Davenport A. The role of bioimpedance and biomarkers in
379	helping to aid clinical decision-making of volume assessments in dialysis
380	patients. Kidney Int. 2014;86(3):489-96
381	30. Ramirez SP, Kapke A, Port FK, Wolfe RA, Saran R, Pearson J, Hirth RA,
382	Messana JM, Daugirdas JT. Dialysis dose scaled to body surface area and
383	size-adjusted, sex-specific patient mortality. Clin J Am Soc Nephrol.
384	2012;/(12):19//-8/.
385	31. Daugirdas J I. Kt/V (and especially its modifications) remains a useful
386	measure of haemodialysis dose. Kidney Int. 2015;88(3):466-73
387	
388	
389	
390 201	
202	
392 202	Figure 1. Deletionship between body surface area (DCA) and Watson total body
201	Figure 1: Relationship between body surface area (BSA) and watson total body
205	water for man and women.
206	Figure 2: Pland Altman analysis of total body water (TPM/) maggured by
390	high big medance on calculated by Watcon equation Mean difference 0.721 (95%)
308	bioinfpedance of calculated by warson equation. Mean all terence $0.72 L (95\%)$
300	mmis of ugreement -9.2 to +10.7 L).
400	Figure 3: Adjusted daily urea clearance according to body weight Fixed weekly
401	Kt of 1 Turea adjusted for body surface area (RSA) and resting energy (DFF)
402	and total energy (TFF) expenditure using Watson total body water (W) or
403	bioimpedance measured total body water (RTA) * n <0.05 and **n<0.01 vs weight
404	< 64 ka after Bonferroni correction
405	
406	

- 407 Table 1. Estimates of daily resting energy expenditure (REE) and total energy
- 408 expenditure (TEE) in patients according to age, co-morbidity, frailty and
- 409 ethnicity groupings. Daily protein nitrogen appearance (PNA) g/day. Results
- 410 expressed as mean ±standard deviation, or median (interquartile range). *p<0.05,
- 411 ** p<0.01 comparing groups, adjusted for multiple comparisons (Bonferroni
- 412 method).

variable	REE kcal/day	TEE kcal/day
male	1597 <u>+</u> 217	2029 <u>+</u> 423
female	1412 <u>+</u> 240**	1868±377*
Age < 65 years	1646±209	2173 <u>+</u> 392
Age > 65 years	1408±211**	1750±314**
Non-diabetic	1522 <u>+</u> 233	2021 <u>+</u> 435
diabetic	1556±254	1893±366*
employed	1577 <u>+</u> 237	2305±511
not employed	1523 <u>+</u> 242	1890±340**
Low comorbidity	1532±245	2012 <u>+</u> 441
High comorbidity	1539±231	1862 <u>+</u> 300
Low frailty score	1533±227	2049±453
High frailty score	1535±256	1894±353*
Weight < 64 kg	1305±151	1706±306
Weight 64-80 kg	1514±142**	1973 <u>+</u> 414**
Weight > 80 kg	1775±159**	2233±339**
PNA < 60 g/day	1450±214	1826±317
PNA > 60 g/day	1622 <u>+</u> 229**	2133±438**
Non Asian	1561 <u>+</u> 225	2060 <u>+</u> 462
Asian	1522±243	1866±359*

- 431 Table 2. Comparison for a fixed total weekly Kt/V of 1.7 (urea clearance
- 432 L/m²/day, or ml urea clearance/kcal/day) adjusted for body surface area (BSA),
- 433 resting energy expenditure (REE), total energy expenditure (TEE) for peritoneal
- 434 dialysis patients comparing sexes, age (years), diabetic, employment status, and
- 435 co-morbidity, weight and ethnicity. Diabetic (DM), High (H) and Low (L) frailty,
- 436 co-morbidity (Comorb), protein nitrogen appearance (PNA) employed (employ +),
- 437 not employed (employ -), ethnicity (Asian vs other races). *p<0.05 **p<0.01 after
- 438 Bonferroni post hoc correction for multiple testing.

variable	Kt/BSA	Kt/REE _w	Kt/TEEw	Kt/REE _{BIA}	Kt/TEEBIA
Male	5.13±.0.36	6.15±9.61	4.96±0.71	6.23 <u>+</u> 0.62	4.93±0.70
Female	4.42±0.40**	5.50±0.41**	4.23±0.65**	5.64±0.64**	4.27±0.71**
Age < 65	4.83±0.46	5.58±0.55	4.29±0.53	5.93±0.73	4.52±0.81
Age > 65	4.95±0.42	6.38±0.49**	5.18±0.61**	6.12 <u>+</u> 0.62	4.93±0.65**
DM yes	4.96±0.45	6.03±0.58	5.00±0.69**	5.92±0.65	4.93±0.69*
DM no	4.84±0.46	5.90±0.66	4.53±0.82	6.06±0.71	4.57±0.78
H frailty	4.91 <u>+</u> 0.47	6.06 <u>±</u> 0.66	4.96±0.75	6.01 <u>+</u> 0.61	4.90±0.71
L frailty	4.86±0.43	5.85±0.60*	4.46±0.78**	6.01 <u>+</u> 0.75	4.54±0.78**
HComorb	4.99±0.43	6.19 <u>+</u> 0.63	5.14±0.66	5.91±0.63	4.90±0.63
LComorb	4.85±0.45	5.87 <u>+</u> 0.62**	4.55±0.80**	6.05±0.71	4.62±0.81
Employ -	4.89±0.43	5.99 <u>±</u> 0.61	4.87 <u>+</u> 0.72	5.96±0.73	4.81±0.75
Employ +	4.89±0.54	5.82±0.71	4.07±0.82**	6.19±0.51	4.31±0.72**
H PNA	4.79±0.40	5.91 <u>+</u> 0.62	4.75±0.78	5.77±0.70	4.56±0.70
L PNA	4.95±0.48*	5.98±0.68	4.62 <u>+</u> 0.87	6.23 <u>+</u> 0.59*	4.81±0.81
Asian	4.87±0.46	5.97±0.65	4.67±0.85	6.10±0.65	4.71±0.76
Other	4.87 <u>+</u> 0.42	5.90±0.60	4.79 <u>+</u> 0.69	5.79±0.76*	4.64 <u>+</u> 0.80

- -50

458 Table 3. Multivariable step backward models for weekly Kt adjusted for Body

- 459 surface area (BSA), resting energy expenditure (REE), and total energy
- 460 expenditure (TEE), using both total body water calculated by Watson equation
- 461 (W) and measured by bioimpedance (BIA). Unstandardised β (β), standard error
- 462 (StE), standardised β (Standard β), 95% Confidence limits (95% CL). Protein
- 463 nitrogen accumulation rate (PNA).
- 464 Adjusted for BSA model r^2 0.60, adjusted 0.59, model adjusted for REE_w r^2 0.60,
- 465 adjusted 0.59, model adjusted for REE_{BIA} r²0.42, adjusted 0.37, model adjusted
- 466 for TEE_w r^2 0.42, adjusted 0.3, and adjusted for TEE_{BIA} r^2 0.35, adjusted 0.33.
- 467 Sex (female vs male), age years, high co-morbidity (H).
- 468 469

	β	StE β	Standard B	†	95% CL	р
Kt _{urea} /BSA						
sex (M)	0.70	0.05	0.77	13.5	0.6-0.87	<0.001
Kt _{urea} /REE _W						
sex (M)	0.58	0.08	0.44	7.5	0.43-0.74	<0.001
age	0.02	0.01	0.54	9.3	0.2-0.25	<0.001
Kturea/REEBIA						
PNA	0.01	0.01	0.37	4.4	0.01-0.02	<0.001
sex (M)	0.39	0.12	0.28	3.2	0.15-0.63	0.002
age	0.01	0.01	0.19	2.3	0.01-0.01	0.025
Kturea/TEEw						
sex (M)	0.59	0.10	0.35	6.1	0.40-0.79	<0.001
age	0.02	0.01	0.44	7.5	0.02-0.013	<0.001
no employment	0.52	0.11	0.26	4.5	0.29-0.74	<0.001
comorbidity H	0.30	0.11	0.16	2.7	0.01-0.52	0.009
diabetic	0.21	0.10	0.12	2.0	0.01-0.41	0.045
Kturea/TEEBIA						
sex (M)	0.51	0.13	0.33	3.8	0.25-0.77	<0.001
age	0.01	0.01	0.32	7.5	0.01-0.02	<0.001
no employment	0.44	0.15	0.24	3.0	0.15-0.74	0.004

- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481

482	Appendix
483	
484	Resting Energy Expenditure (REE) was estimated from a newer novel predictive
485	equation which was derived and validated in a cohort of HD patients [18].
486	
487	REE = -2.497 * Age(years) * Factor _{age} + 0.011 * Height ^{2.023} (cm) + 83.573 *
488	Weight ^{0.6291} (kg) + 68.171 * Factor _{sex}
489	
490	where Factor age is 0 if age <65 and 1 if \ge 65 and Factor sex is 0 if female and 1
491	if male
492	
493	Physical activity data - Each reported activity was assigned a Metabolic
494	Equivalent of Task (MET) value as per the Compendium of Physical Activities
495	[19]. Sleep time per day was assumed to be 8 hours and any unreported time
496	during the day was assumed as the time performing light activities at home. A
497	Mean daily MET value was calculated.
498	
499	Total Energy Expenditure (TEE) was estimated from the following equation.
500	TEE = REE * Mean Daily MET
501	
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	
513	