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Sum-Rate and Power Scaling of Massive MIMO
Systems with Channel Aging

Chuili Kong, Student Member, IEEE, Caijun Zhong, Senior Member, IEEE, Anastasios K.
Papazafeiropoulos, Member, IEEE, Michail Matthaiou,Senior Member, IEEE, and Zhaoyang

Zhang, Member, IEEE

Abstract— This paper investigates the achievable sum-rate of
massive multiple-input multiple-output (MIMO) systems in the
presence of channel aging. For the uplink, by assuming that the
base station (BS) deploys maximum ratio combining (MRC) or
zero-forcing (ZF) receivers, we present tight closed-form lower
bounds on the achievable sum-rate for both receivers with aged
channel state information (CSI). In addition, the benefit of
implementing channel prediction methods on the sum-rate is
examined, and closed-form sum rate lower bounds are derived.
Moreover, the impact of channel aging and channel prediction
on the power scaling law is characterized. Extension to the
downlink scenario and multi-cell scenario are also considered.
It is found that, for a system with/without channel prediction,
the transmit power of each user can be scaled down at most
by 1/

√
M (where M is the number of BS antennas), which

indicates that aged CSI does not degrade the power scaling
law, and channel prediction does not enhance the power scaling
law; instead, these phenomena affect the achievable sum-rate by
degrading or enhancing the effective signal to interference and
noise ratio, respectively.

Index Terms— Channel aging, channel prediction, massive
MIMO, power scaling law, sum-rate.

I. INTRODUCTION

In order to meet the exponential growth of mobile and
wireless data traffic, the fifth generation wireless systems
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are expected to deliver a thousand-fold higher capacity [1].
Among various potential enabling technologies to tackle such
challenges, massive MIMO [2], where the BS deploys an
unprecedented number of antennas to simultaneously serve
a much smaller number of users, stands out as a promising
candidate because of its remarkable capability of substantially
improving both the spectral and energy efficiency [3], [4].
As such, massive MIMO technology has attracted enormous
research attention from both academia and industry.

The gains of massive MIMO systems were initially demon-
strated by assuming an ideal propagation environment. As
such, understanding the performance limits of massive MIMO
systems in realistic propagation environments is of paramount
importance. Thus far, the impact of various practical channel
imperfections on the performance of massive MIMO systems
has been studied in literature by including line-of-sight effect
[5], [6], spatial correlation [7]–[10], pilot contamination [11],
[12], pilot design for channel estimation [13], [14], channel
estimation error [15], [16], channel quantization [17]–[20],
transceiver hardware impairments [21], [22], and phase noise
drift [23].

In addition to the above mentioned channel/system im-
perfections, there is another important aspect of practical
channel impairments known as channel aging; this refers
to the phenomenon that channel varies between when it is
learned via estimation and when it is used for precoding or
detection because of the random fluctuation of the propagation
channel due to the relative movement between the users and
the BS, as well as, the processing delay at the BS. Despite
its significance, very few works have investigated its impact
on the performance of massive MIMO systems. Capitalizing
on the deterministic equivalent analysis framework [7], the
effect of inaccurate CSI due to channel aging was first studied
in [24] by assuming matched filter at the BS. Later on, the
analysis was extended to the scenario with more sophisticated
receivers, such as regularized ZF precoders (downlink) [25]
and minimum-mean-square-error (MMSE) receivers (uplink)
[26].

The analytical expressions developed in [24]–[26] are de-
rived by employing the deterministic equivalent approach
which relies on the key assumption of large system regime,
i.e., M → ∞ and K → ∞, where M is the number
of BS antennas and K is the number of users, and they
only serve as accurate approximations. Hence, it is also of
great interest to find tight sum rate bounds valid for arbitrary
finite M and K, which provide an alternative perspective of
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quantifying the sum rate. In this regard, we propose tractable
and tight lower bounds on the achievable sum rate of the
system. Another major limitation of the expressions in [24]–
[26] is that they are in general too complicated to yield
any useful insights into the impact of channel aging on the
system performance. Motivated by this, we derive simple and
informative power scaling laws which shed light into how
the channel aging affects the achievable rate. In addition to
the multi-cell scenario considered in [24]–[26], the single
cell scenario is also studied in detail in the current paper,
mainly motivated by the following reasons: 1) Compared to
the multi-cell scenario, the single-cell scenario provides more
engineering insights as reported in many prior works [27]–
[30]; 2) The analytical approach developed for the asymptotic
analysis of the single-cell scenario could also be applied for the
multi-cell scenario; 3) With a relatively large frequency reuse
factor, the single cell performance can be actually attained
[15]; 4) In practice, single cell massive MIMO deployment
has also been considered for indoor scenarios, see for instance
[31].

Specifically, the main contributions of the paper are outlined
as follows:

• We obtain tight lower bounds on the achievable sum-rate
of single-cell uplink massive MIMO systems employing
MRC or ZF receivers with channel aging, which are
valid for arbitrary number of BS antennas M and number
of users K, thereby enabling efficient evaluation of the
achievable sum-rate in the presence of aged CSI.

• Taking into consideration channel prediction, we derive
tight lower bounds on the sum-rate of single-cell up-
link massive MIMO systems employing MRC and ZF
receivers.

• For both scenarios with/without channel prediction, we
characterize the power scaling law of the system. It is
shown that channel aging does not reduce the power
scaling law, and using channel prediction method does
not improve the power scaling law.

• Finally, we extend the power scaling law analysis to
the single-cell downlink and multi-cell uplink scenarios.
It turns out that the single-cell downlink case achieves
the same power scaling law, while the multi-cell uplink
scenario exhibits a different power scaling law due to the
pilot contamination effect.

The remainder of this paper is organized as follows: In
Section II, we describe the system model incorporating the
combined effects of channel estimation error and channel
aging. Section III presents the achievable uplink rate with
aged CSI for MRC and ZF receivers in the single-cell up-
link scenario. In Section IV, the achievable uplink rate with
predicted CSI is studied. Then, Section V extends the analysis
to the single-cell downlink scenario. The multi-cell scenario
is considered in Section VI. Numerical results are provided in
Section VII. Finally, Section VIII gives a brief summary.

Notation: We use bold upper case letters to denote matrices,
bold lower case letters to denote vectors and lower case letters
to denote scalars. Moreover, (·)†, (·)∗, (·)T , and (·)−1 repre-
sent the conjugate transpose operator, the conjugate operator,

the transpose operator, and the matrix inverse, respectively.
Also, || · || is the Euclidian 2-norm, | · | is the absolute
value, and [A]mn gives the (m,n)-th entry of A. In addition,
CN (0, 1) denotes a scalar complex circular Gaussian random
variable with zero mean and unit variance, while Ik is the
identity matrix of size k. Finally, the statistical expectation
operator is represented by E{·}, while the trace operator and
the Kronecker product are denoted by tr(·) and ⊗, respectively.

II. SINGLE-CELL UPLINK MODEL

We start with the uplink of a single-cell MIMO system,
which is composed of a central BS with M antennas and K
(K ≤ M) noncooperative users with single antenna each. It is
assumed that the propagation channel exhibits flat fading, and
the channel coefficients do not change within one symbol, but
vary slowly from symbol to symbol as in [24]. Therefore, for
the n-th symbol, the M × 1 received signal at the BS is given
by

y[n] =
√
puG[n]x[n] + z[n], (1)

where G[n] represents the M × K channel matrix between
the BS and the K users, i.e., gmk[n] = [G[n]]mk denotes the
channel coefficient of the communication link between the m-
th antenna of the BS and the k-th user; pu is the average
transmit power of each individual user; x[n] is a K×1 vector
consisting of the transmit symbols of K users with unit power;
and z[n] is the zero-mean additive white Gaussian noise with
unit variance.

The channel coefficient gmk[n] can be written as

gmk[n] = hmk[n]
√

βk, (2)

where hmk[n] is the small-scale fading coefficient for the link
from the k-th user to the m-th antenna of the BS, which is
assumed to be independent and identically distributed (i.i.d.)
CN (0, 1), and βk models the large-scale effect including
shadowing and pathloss, which is assumed to remain constant
for all n. Hence, G[n] can be expressed in a matrix form as

G[n] = H[n]D
1
2 , (3)

where H[n] is an M × K matrix with [H[n]]mk = hmk[n],
and D is a K ×K diagonal matrix with [D]kk = βk.

A. Channel Estimation

The BS estimates the channels using uplink pilots. Let τ
be the length of the training period, then, the pilot sequences
used by the K users can be represented by a K × τ matrix√
ppΦ (τ ≥ K) satisfying ΦΦ† = IK , where pp , τpu.

Therefore, the M × τ received pilot matrix at the BS is given
by [24]–[26],

J[n] =
√
ppG[n]Φ+ Z̃[n], (4)

where N[n] is an M × τ noise matrix whose elements are
i.i.d. CN (0, 1). To estimate G[n], the BS first correlates J[n]
with Φ† to obtain

Ỹ[n] =
1

√
pp

J[n]Φ†, (5)
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which gives the following observation of the channel vector
from user k to the BS

ỹk[n] = gk[n] +
1

√
pp

bk[n], (6)

where gk[n] and bk[n] are the k-th columns of the matrices
G[n] and B[n] , Z̃[n]Φ†, respectively. Since ΦΦ† = IK ,
B[n] has i.i.d CN (0, 1) elements.

As in [15], the MMSE estimate of G[n], given Ỹ[n], is

Ĝ[n] = Ỹp[n]D̃ =

(
G[n] +

1
√
pp

W[n]

)
D̃, (7)

where D̃ , ( 1
pp
D−1 + IK)−1. As such, gk[n] can be

decomposed into

gk[n] = ĝk[n] + g̃k[n], (8)

where ĝk[n] is the k-th column of Ĝ[n], and g̃k[n] is the
estimation error vector for the k-th user. After some simple
algebraic manipulations based on (7), it can be shown that
each element of ĝk[n] is a Gaussian random variable with zero
mean and variance ppβ

2
k

1+ppβk
. Furthermore, ĝk[n] and g̃k[n] are

independent due to the orthogonality property of linear MMSE
estimators. At this point, it is worth mentioning that there
are different types of channel error models, i.e., unbounded
error (usually modeled as Gaussian distributed, such as the one
considered here) and bounded error (such as ball or ellipsoid
error, see references [32]–[34]); Also, the ellipsoid error model
considered in [32]–[34] can mathematically correspond to the
Gaussion error vector given by the second term in (8).

B. Channel Aging

In practice, due to the random fluctuations of the propa-
gation caused by the movement of users and the processing
delays at the BS, the channel varies between when it is
learned via estimation and when it is applied for precoding or
detection. Such phenomenon is referred to as channel aging in
the literature. To investigate the impact of channel aging, we
adopt the model proposed in [24]. As such, the M×1 channel
vector for the k-th user at time n+1 can be expressed through
an autoregressive model of order 1 as

gk[n+ 1] = αgk[n] + ek[n+ 1], (9)

where ek[n + 1] is a temporally uncorrelated complex white
Gaussian noise process with its elements having variance of(
1− α2

)
βk, and α is a temporal correlation parameter. Con-

sidering the Jakes fading model, we have α = J0(2πfDTs),
where J0(·) is the zero-order first kind Bessel function, Ts is
the channel sampling duration, fD is the maximum Doppler
frequency shift determined by the users’ velocity v and carrier
frequency fc, as fD = vfc

c (c denotes the speed of light).
From the properties of the Bessel function, we can easily get
0 ≤ |α| ≤ 1. Especially, the smaller |α|, the more serious the
channel aging effect becomes.

To this end, a model accounting for the combined effects
of the channel estimation errors and channel aging effect can

be expressed as [24]

gk[n+ 1] = αĝk[n] + αg̃k[n] + ek[n+ 1]︸ ︷︷ ︸
ẽk[n+1]

, (10)

where ẽk[n+ 1] is independent with ĝk[n] due to the indepen-
dence between g̃k[n], ek[n+ 1], and ĝk[n]. As a result, each
element of ẽk[n+ 1] is a complex Gaussian random variable
with zero mean and variance βk − α2 ppβ

2
k

1+ppβk
.

III. ACHIEVABLE UPLINK SUM-RATE WITH CHANNEL
AGING

In this section, we present a detailed analysis of the impact
of channel aging on the achievable sum-rate of the system with
linear receivers. In particular, two popular linear receivers,
namely, MRC and ZF receivers are considered. For both re-
ceivers, we derive closed-form lower bounds of the achievable
sum-rate with aged CSI. Moreover, the impact of aged CSI on
the asymptotic power scaling law is characterized.

As in [24], we assume that the large-scale effect D and
the temporal correlation parameter α are known at the BS.1

Hence, the BS has the following CSI

ḡk[n+ 1] = αĝk[n]. (11)

Let Â[n + 1] be an M × K linear detector matrix which
depends on the channel Ḡ[n+1], where Ḡ[n+1] , [ḡ1[n+
1], ḡ2[n+1], · · · , ḡK [n+1]]. By considering linear receivers,
the received signal is separated into streams by multiplying
Â†[n+ 1] with y[n+ 1] from (1) as follows

r[n+ 1] = Â†[n+ 1]y[n+ 1]

=
√
puÂ

†[n+ 1]G[n+ 1]x[n+ 1] + Â†[n+ 1]z[n+ 1].
(12)

We consider two conventional linear receivers, i.e., MRC
and ZF, which are expressed as

Â[n+ 1] =

{
Ḡ[n+ 1], for MRC,
Ḡ[n+ 1]

(
Ḡ†[n+ 1]Ḡ[n+ 1]

)−1
, for ZF.

(13)

Moreover, let rk[n+ 1] and xk[n+ 1] be the k-th elements
of the K×1 vectors r[n+1] and x[n+1], respectively. Then,
from (12), the k-th element of r[n+ 1] is given by

rk[n+ 1] =
√
puâ

†
k[n+ 1]ḡk[n+ 1]xk[n+ 1] (14)

+
√
pu

K∑
i=1,i̸=k

â†k[n+ 1]ḡi[n+ 1]xi[n+ 1]

+
√
pu

K∑
i=1

â†k[n+ 1](gi[n+ 1]− ḡi[n+ 1])xi[n+ 1]

+ â†k[n+ 1]z[n+ 1],

where âk[n + 1] is the k-th column of Â[n + 1]. The BS
treats ḡk[n + 1] as the true channel for the k-th user, and

1In practice, the large-scale effect varies much slower. Hence, it can be
easily estimated by the BS. In addition, given that the velocity of the users
can be obtained by the BS, the temporal correlation parameter α can be
accurately estimated by the BS.
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Rk = E

log2

1 +
pu|â†k[n+ 1]ḡk[n+ 1]|2

pu
K∑

i=1,i ̸=k

|â†k[n+ 1]ḡi[n+ 1]|2 + ||âk[n+ 1]||2
(
pu

K∑
i=1

(
βi − α2 ppβ2

i

1+ppβi

)
+ 1

)

 , (15)

the part including the last three terms of (14) is considered
as interference plus noise. As in [5], [7], [15], the combined
error gi[n+1]− ḡi[n+1] is treated as uncorrelated Gaussian
noise, which is a worst-case scenario, therefore leading to the
following simple lower bound for the achievable rate of the
k-th user (15), shown on the top of the next page, where
the expectation is taken over small-scale fading. Note that the
advantage of the expression in (15) is that it is amenable to
algebraic manipulations.

In the sequel, Rk is referred to as the achievable rate of
the k-th user. Then, the achievable sum-rate of the massive
MIMO system is given by

R =
T − τ

T

K∑
k=1

Rk. (16)

A. MRC Receivers

By starting with the MRC receivers, we obtain the following
key result:

Theorem 1: For MRC receivers, with aged CSI, if each user
scales down its transmit power proportionally to 1/Mγ , i.e.,
pu = Eu/M

γ , for fixed Eu and γ > 0, we have

Ra,mrc
k − log2

(
1 +

α2τE2
uβ

2
k

M2γ−1

)
M→∞−→ 0, (17)

where the superscript a is used to denote aged CSI.
Proof: Substituting âk[n + 1] = ḡk[n + 1] = αĝk[n]

and pu = Eu/M
γ into (15), and after some simple algebraic

manipulations, we obtain (18), shown on the top of the next
page.

To this end, looking into the asymptotic large antenna
regime, i.e., M → ∞, and invoking the law of large numbers,
we get

1

M
|ĝ†

k[n]ĝi[n]|2 −


τ Eu

Mγ β2
k

1+τ Eu
Mγ βk

, i = k

0, i ̸= k

M→∞−→ 0. (19)

Please note, in the above derivation, we have used the fact
that ĝk[n] and ĝi[n] (i ̸= k) are independent, which can be
easily proven according to (7). We also have

Eu

Mγ

K∑
i=1

(
βi − α2 τ Eu

Mγ β
2
i

1 + τ Eu

Mγ βi

)
+ 1 → 1. (20)

Then, (18) simplifies to

Ra,mrc
k − log2

(
1 +

α2τE2
uβ

2
k

M2γ−1

)
M→∞−→ 0, (21)

which completes the proof. �
Theorem 1 suggests that the asymptotic achievable rate

Ra,mrc
k depends on the choice of γ. When γ > 1

2 , Ra,mrc
k

converges to zero, which indicates that the transmit power
of each user has been reduced too much. On the other hand,
when γ < 1

2 , Ra,mrc
k grows without bound, which indicates

that the transmit power of each user can be scaled down
further to maintain the same performance. When γ = 1

2 , Ra,mrc
k

converges to a non-zero limit. As such, by setting γ = 1
2 , we

have the following corollary.
Corollary 1: For MRC receivers, with aged CSI, each user

can scale down its transmit power at most by pu = Eu/
√
M

for a fixed Eu, and the achievable uplink rate of the k-th user
becomes

Ra,mrc
k → log2

(
1 + α2τE2

uβ
2
k

)
,M → ∞. (22)

Corollary 1 suggests a very encouraging result, that taking
into account the channel aging effect, the same power scaling
law can be achieved as in those scenarios where only channel
estimation error is considered [5], [15]. In other words, channel
aging does not affect the power scaling law, it only leads to a
reduction of the effective SINR. For the special case α = 1,
i.e., no channel aging effect, the achievable rate for the k-th
user becomes log2

(
1 + τE2

uβ
2
k

)
, which agrees with the result

presented in [15, Proposition 5].
We now turn our attention to the finite M regime, and

present the following tight lower bound on the achievable rate
of the k-th user.

Theorem 2: For MRC receivers, with aged CSI, the achiev-
able uplink rate of the k-th user is lower bounded by Ra,mrc

k ≥
R̃a,mrc

k with

R̃a,mrc
k , log2 (1 + SINRa,mrc

k ) , (23)

where

SINRa,mrc
k , α2τp2u(M − 1)β2

k

pu(1 + τpuβk)
K∑

i=1,i ̸=k

βi + (τ + 1)puβk + 1 + bmrc

with

bmrc , (1− α2)τp2uβ
2
k. (24)

Proof: See Appendix I.
It is not difficult to show that R̃a,mrc

k is an increasing function
with respect to α. Now, since α is related to the severity level
of the channel aging effect, Theorem 2 actually demonstrates
the intuitive result that the more severe channel aging becomes,
the lower the achievable rate. If we substitute pu = Eu/M

γ

into (23) as M → ∞, and after some simple mathematical
manipulations, we get

R̃a,mrc
k − log2

(
1 +

α2τE2
uβ

2
k

M2γ−1

)
M→∞−→ 0, (25)

which exactly coincides with the limit obtained from Theorem
1, suggesting the asymptotic tightness of the proposed lower
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Ra,mrc
k = E

log2

1 +
Eu

Mγ
1

M2α
2||ĝk[n]||4

Eu

Mγ
1

M2α2
K∑

i=1,i̸=k

|ĝ†
k[n]ĝi[n]|2 +

(
Eu

Mγ

K∑
i=1

(
βi − α2 τ Eu

Mγ β2
i

1+τ Eu
Mγ βi

)
+ 1

)
1

M2 ||ĝk[n]||2


 . (18)

bound.

B. ZF Receivers

We now turn out attention to the ZF receivers for which
M ≥ K, and obtain the following key result:

Theorem 3: For ZF receivers, with aged CSI, if each user
scales down its transmit power proportionally to 1/Mγ , i.e.,
pu = Eu/M

γ , where γ > 0 and Eu is fixed, we have

Ra,zf
k − log2

(
1 +

α2τE2
uβ

2
k

M2γ−1

)
M→∞−→ 0. (26)

Proof: With ZF receivers, Â†[n + 1]Ḡ[n + 1] = IK ,
namely, â†k[n+ 1]ḡi[n+ 1] = δki where δki = 1 when k = i
and 0 otherwise. Based on this, substituting pu = Eu/M

γ into
(15), we get (27), shown on the top of the next page.

To this end, use of the law of large numbers yields[(
Ḡ†[n+ 1]Ḡ[n+ 1]

M

)−1
]
k,k

− 1

α2

1 + τ Eu

Mγ βk

τ Eu

Mγ β2
k

M→∞−→ 0.

(28)

Now, by plugging (28) into (27), the desired result can be
obtained after some simple algebraic manipulations. �

Theorem 3 indicates that ZF receivers attain the same power
scaling law as MRC receivers, i.e., 1/

√
M , and achieve the

same non-zero limit, which is consistent with prior results
reported in [5], [15]. Hence, it can be concluded that, for
ZF receivers with aged CSI, the transmit power of each user
can be cut down at most by 1/

√
M with no rate degradation,

and the achievable uplink rate is the same as that for MRC
receivers.

In the finite M regime, we obtain the following lower bound
on the achievable rate.

Theorem 4: For ZF receivers, with aged CSI, the achievable
uplink rate of the k-th user is lower bounded by Ra,zf

k ≥ R̃a,zf
k

with

R̃a,zf
k , log2

(
1 + SINRa,zf

k

)
, (29)

where

SINRa,zf
k , α2τp2u(M −K)β2

k

(1 + τpuβk)
K∑
i=1

puβi

τpuβi+1 + τpuβk + 1 + bzf

with

bzf , (1− α2)(1 + τpuβk)
K∑
i=1

τp2uβ
2
i

1 + τpuβi
. (30)

Proof: See Appendix II.

By substituting pu = Eu/M
γ into (29) as M → ∞, and

after some simple algebraic manipulations, we have

R̃zf
k − log2

(
1 +

α2τE2
uβ

2
k

M2γ−1

)
M→∞−→ 0, (31)

which indicates the asymptotic tightness of the lower bound
(29).

IV. ACHIEVABLE UPLINK RATE WITH CHANNEL
PREDICTION

As shown in the previous section, the channel aging ef-
fect results in a loss at the achievable rate. To alleviate
this undesired implication, channel prediction methods were
proposed in [24]–[26]. In this section, we investigate the
impact of channel prediction on the system performance. More
specifically, closed-form lower bounds on the achievable rate
are derived for both MRC and ZF receivers. In addition, the
power scaling law is also characterized, based on which, the
impact of the predictor order on the scaling law is evaluated.

We adopt a very popular linear predictor, i.e., the Wiener
predictor proposed in [24]. Therefore, for the k-th user, the
channel gk[n + 1] is predicted according to ȳk[n], where
ȳk[n] =

[
ỹT
k [n], ỹ

T
k [n− 1], . . . , ỹT

k [n− p]
]T with p being the

predictor order. To this end, we need to obtain the optimal p-th
order linear Wiener predictor, which is given in the following
lemma:

Lemma 1: The optimal p-th linear Wiener predictor is given
by

qk = αβk [δ (p, α)⊗ IM ]T−1
k (p, α), (32)

where δ(p, α) = [1 α · · · αp], and

Tk(p, α) = βk [∆ (p, α)⊗ IM ] +
1

pp
IM(p+1) (33)

with

∆(p, α) ,


1 α · · · αp

α 1 · · · αp−1

...
...

. . .
...

αp αp−1 · · · 1

 . (34)

Proof: Following similar steps as in the proof of Theorem
1 in [24], we can obtain the desired result. �

Having characterized the optimal predictor, the predicted
channel can then be obtained as

ḡk[n+ 1] = ğk[n+ 1] = qkȳp,k[n]. (35)

Furthermore, the resulting mean square error between the
predicted channel ğk[n + 1] and the true channel gk[n + 1]
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Rzf
k = E

log2

1 +
M Eu

Mγ(
Eu

Mγ

K∑
i=1

(
βi − α2 τ Eu

Mγ β2
i

1+τ Eu
Mγ βi

)
+ 1

)[(
Ḡ†[n+1]Ḡ[n+1]

M

)−1
]
k,k


 . (27)

can be calculated as

ϵp = E{||gk[n+ 1]− ğk[n+ 1]||2} (36)
(a)
= tr(E{(gk[n+ 1]− qkȳp,k[n])g

†
k[n+ 1]}) (37)

= tr(βkIM − α2Θk(p, α)), (38)

where in (a) we applied the orthogonality of gk[n+1]−ğk[n+
1] and ğk[n+ 1], and

Θk(p, α) , β2
k [δ (p, α)⊗ IM ]T−1

k (p, α) [δ (p, α)⊗ IM ] .
(39)

Hence, the covariance matrix of ğk[n + 1] is given by
α2Θk(p, α). Finally, the true channel can be decomposed as

gk[n+ 1] = ğk[n+ 1] + ěk[n+ 1], (40)

where ěk[n + 1] is the channel prediction error vector with
covariance matrix βkIM −α2Θk(p, α), which is independent
of ğk[n+ 1].

Before proceeding, we find it crucial to first characterize the
structure of the matrix Θk(p, α) by the following important
observation:

Lemma 2: Θk(p, α) is a scaled identity matrix of size M×
M .

Proof: Notice that Tk(p, α) has the following structure

Tk(p, α) = A⊗ IM , (41)

where A is an invertible matrix, whose entries are denoted by
aij with 1 ≤ i, j ≤ n.

Using the matrix inversion property of Kronecker product
[36, Eq. (1.10.8)], we get

(A⊗ IM )−1 = A−1 ⊗ IM . (42)

Now, let us define B = A−1, where the i, jth element of
B is expressed as bij with 1 ≤ i, j ≤ n. Hence, by combining
(42) and (39), we obtain

Θk(p, α) = β2
k

p+1∑
i=1

p+1∑
j=1

α2(i−1)bijIM , (43)

which concludes the proof. �
Equipped with Lemma 2, it can be straightforwardly shown

that the variances of the elements of ğk[n+ 1] and ěk[n+ 1]
are 1

M tr
(
α2Θk(p, α)

)
and 1

M tr
(
βkIM − α2Θk(p, α)

)
, re-

spectively.
With predicted CSI, if we substitute ḡk[n+ 1] = ğk[n+1]

into (14), we can obtain the following achievable uplink rate
of the k-th user

Rp
k = E

{
log2

(
1 + SINRp

k

)}
, (44)

where the superscript p is used to denote the predicted CSI,

and SINRp
k is the signal-to-interference-noise (SINR), which

is given by (45) (at the top of the next page), where the
expectation in (44) is taken over small-scale fading.

A. MRC Receivers

Theorem 5: For MRC receivers, with predicted CSI, if each
user scales down its transmit power proportionally to 1/Mγ ,
i.e., pu = Eu/M

γ , where γ > 0 and Eu is fixed, we have

Rp,mrc
k − log2

1 +

α2
p∑

j=0

α2jτE2
uβ

2
k

M2γ−1

 M→∞−→ 0. (46)

Proof: By substituting âk[n + 1] = ğk[n + 1] and pu =
Eu/M

γ into (45), and after some simple manipulations, the
SINR SINRp

k can be expressed as (47), shown on the top of
the next page. Since ğ†

k[n + 1] and ği[n + 1] (i ̸= k) are
independent from (35), we invoke the law of large numbers,
when M → ∞, and clearly obtain

1

M
ğ†
k[n+ 1]ği[n+ 1]−

{
1
M tr

(
α2Θk(p, α)

)
, i = k

0, i ̸= k

M→∞−→ 0.

(48)

Hence, the remaining task is to compute tr
(
α2Θk(p, α)

)
.

To do this, we recall that Tk(p, α) in (33) can be expressed as
(49), shown on the top of the next page. A close observation
shows that, when M → ∞, the off-diagonal elements of
Tk(p, α) become negligible due to the fact that Mγ

τEu
≫ αiβk

(i = 1, 2, . . . , p). As such, the inverse of Tk(p, α) can be
accurately approximated by

T−1
k (p, α)−

(
Mγ

τEu

)−1

IM(p+1)
M→∞−→ 0. (50)

Hence, we have

Θk(p, α)− β2
k

τEu

Mγ

p∑
j=0

α2jIM
M→∞−→ 0. (51)

As a result, (48) can be further simplified to

1

M
ğ†
k[n+ 1]ği[n+ 1]−

α2β2
k
τEu

Mγ

p∑
j=0

α2j , i = k

0, i ̸= k

M→∞−→ 0.

(52)
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SINRp
k =

pu|â†k[n+ 1]ğk[n+ 1]|2

pu
K∑

i=1,i̸=k

|â†k[n+ 1]ği[n+ 1]|2 + ||âk[n+ 1]||2
(
pu

K∑
i=1

1
M tr (βiIM − α2Θi(p, α)) + 1

) , (45)

SINRp
k =

Eu

Mγ
1

M2 ||ğk[n+ 1]||4

Eu

Mγ

K∑
i=1,i ̸=k

1
M2 |ğ†

k[n+ 1]ği[n+ 1]|2 + 1
M2 ||ğk[n+ 1]||2

(
Eu

Mγ

K∑
i=1

1
M tr (βiIM − α2Θi(p, α)) + 1

) . (47)

Tk(p, α) =



(
βk + Mγ

τEu

)
IM αβkIM · · · αpβkIM

αβkIM

(
βk + Mγ

τEu

)
IM · · · αp−1βkIM

...
...

. . .
...

αpβkIM αp−1βkIM · · ·
(
βk + Mγ

τEu

)
IM

 . (49)

and

Eu

Mγ

K∑
i=1

1

M
tr
(
βiIM − α2Θi(p, α)

)
+ 1 (53)

=
Eu

Mγ

K∑
i=1

βi − α2β2
i

τEu

Mγ

p∑
j=0

α2j

+ 1 → 1. (54)

To this end, substitution of (52) and (53) into (47), and then
combination with (44) concludes the proof. �

Compared to Theorem 1, Theorem 5 indicates that the
channel prediction does not alter the power scaling law. Hence,
without degradation of the achievable rate, the transmit power
of each user can be cut down at most by 1/

√
M . As such,

setting γ = 1
2 , we have the following result.

Corollary 2: For MRC receivers, with predicted CSI, each
user can scale down its transmit power at most by pu =
Eu/

√
M for a fixed Eu, and the achievable uplink rate of

the k-th user becomes

Rp,mrc
k → log2

1 + α2

p∑
j=0

α2jτE2
uβ

2
k

 ,M → ∞. (55)

Corollary 2 indicates that, although channel prediction does
not affect the power scaling law, it does increase the achievable
rate by contributing to the enhancement of the effective SINR
due to the more accurate CSI being obtained compared to
the system without channel prediction. Moreover, the higher
the prediction order p, the larger the achievable rate gain.
However, it is also worth pointing out that the processing
complexity increases substantially when the prediction order
p becomes large. As such, one should carefully balance
this during the system design. For sufficiently large p, the
achievable rate Rp,mrc

k converges to log2

(
1 + α2

1−α2 τE
2
uβ

2
k

)
,

which indicates that the rate gain due to channel prediction is
most pronounced for large α and becomes negligible for small
α. This is rather intuitive, since large α implies relatively slow
change of the channel, as such, the channel prediction becomes

more accurate.
We now concentrate on the finite M regime, and present

the following tight lower bound on the achievable rate of the
k-th user.

Theorem 6: For MRC receivers, with predicted CSI, the
achievable uplink rate of the k-th user is lower bounded by
Rp,mrc

k ≥ R̃p,mrc
k with (56), shown on the top of the next page.

Proof: The proof follows similar lines as the proof of
Theorem 2. Hence, it is omitted. �

B. ZF Receivers
Theorem 7: For ZF receivers, with predicted CSI, if each

user scales down its transmit power proportionally to 1/Mγ ,
i.e., pu = Eu/M

γ , where γ > 0 and Eu is fixed, we have

Rp,zf
k − log2

1 +

α2
p∑

j=0

α2jτE2
uβ

2
k

M2γ−1

 M→∞−→ 0. (57)

Proof: With ZF receivers, Â†[n+1] = (Ğ†[n+1]Ğ[n+
1])−1Ğ†[n+1], or Â†[n+1]Ğ[n+1] = IK , where Ğ[n+1] =
[ğ1[n+1], ğ2[n+1], · · · , ğK [n+1]]. Based on this, substituting
pu = Eu/M

γ into (44), and after some simple manipulations,
we get (58), shown on the top of the next page. Then, we have(Ğ†[n+ 1]Ğ[n+ 1]

M

)−1

k,k

− 1

α2β2
k
τEu

Mγ

p∑
j=0

α2j

M→∞−→ 0,

(59)

where the above result is obtained by first following from the
law of large numbers and then being based on (51). Plugging
(59) and (53) into (58), and after some simple algebraic
manipulations, we obtain the desired result. �

As expected, Theorem 7 indicates that with predicted CSI,
ZF receivers achieve the same asymptotic power scaling law
as the MRC receivers. Similarly, by setting γ = 1

2 , we have
the following corollary.
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R̃p,mrc
k , log2

1 +
pu(M − 1) 1

M tr(α2Θk(p, α))

pu
K∑

i=1,i ̸=k

1
M tr (α2Θi(p, α)) + pu

K∑
i=1

1
M tr (βiIM − α2Θi(p, α)) + 1

 . (56)

Rp,zf
k = E

log2

1 +
M Eu

Mγ(
Eu

Mγ

K∑
i=1

1
M tr (βiIM − α2Θi(p, α)) + 1

)[(
Ğ†[n+1]Ğ[n+1]

M

)−1
]
k,k


 . (58)

Corollary 3: For ZF receivers, with predicted CSI, each
user can scale down its transmit power at most by pu =
Eu/

√
M for a fixed Eu, and the achievable uplink rate of

the k-th user becomes

Rp,zf
k → log2

1 + α2

p∑
j=0

α2jτE2
uβ

2
k

 ,M → ∞. (60)

In the finite M regime, we obtain the following lower bound
on the achievable rate.

Theorem 8: For ZF receivers, with predicted CSI, the
achievable uplink rate of the k-th user is lower bounded by
Rp,zf

k ≥ R̃p,zf
k with

R̃p,zf
k , log2

1 +
pu(M −K) 1

M tr(α2Θk(p, α))

pu
K∑
i=1

1
M tr (βiIM − α2Θi(p, α)) + 1

 .

(61)
Proof: Since the proof follows similar lines as the proof

of Theorem 4, it is omitted. �

V. EXTENSION TO SINGLE-CELL DOWNLINK

We now extend the analysis to the single-cell downlink
scenario. For exposition purpose, only the MRT precoding
scheme is considered here. For the single-cell downlink com-
munication, the BS broadcasts data to the K users. Hence,
the received signal at user k for the (n+1)-th symbol can be
expressed as

ydl
k [n+ 1]

=
√
pbg

T
k [n+ 1]W[n+ 1]xdl[n+ 1] + zdl

k [n+ 1] (62)

=
√
pbg

T
k [n+ 1]wk[n+ 1]xdl

k [n+ 1]

+
√
pb
∑
i ̸=k

gT
k [n+ 1]wi[n+ 1]xdl

i [n+ 1]

+ zdl
k [n+ 1],

where xdl[n+ 1] is a K × 1 vector consisting of the transmit
symbols to K users with unit power with xdl

k [n + 1] being
the k-th element of xdl[n+ 1]; zdl

k [n+ 1] represents the zero-
mean additive white Gaussian noise with unit variance; pb is
the transmit power of the BS; W[n + 1] ∈ CM×K denotes
the precoding matrix, and wk[n+1] is the k-the vector of the
matrix W[n+ 1].

For the MRT precoding scheme, the beamforming matrix
W[n+ 1] is given by

W[n+ 1] = λḠ∗[n+ 1], (63)

where the normalization constant λ is chosen to satisfy a
long-term total transmit power constraint at the BS, i.e.,
E
{
||W[n+ 1]xdl[n+ 1]||2

}
= 1, and we have

λ =

√
1

Mα2
∑K

k=1 σ
2
k

, (64)

where we set σ2
k =

ppβ
2
k

1+ppβk
for notational simplicity.

Based on the above analysis, we can rewrite (62) as

ydl
k [n+ 1] =

√
pbλg

T
k [n+ 1]ḡ∗

k[n+ 1]xdl
k [n+ 1] (65)

+
√
pbλ

K∑
i=1,i̸=k

gT
k [n+ 1]ḡ∗

i [n+ 1]xdl
i [n+ 1] + zdl

k [n+ 1].

To obtain the downlink achievable rate, we utilize the
technique developed in [24], which is widely used in the
analysis of massive MIMO systems. With this technique, the
received signal is rewritten as a known mean gain times the
desired symbol, plus an uncorrelated effective noise. Thus (65)
can be re-expressed as

ydl
k [n+ 1] =

√
pbλE

{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}
xdl
k [n+ 1] (66)

+ nk[n+ 1],

where nk[n+1] is considered as the effective noise, given by

nk[n+ 1] (67)

=
√
pbλ

(
gT
k [n+ 1]ḡ∗

k[n+ 1]− E
{
gT
k [n+ 1]ḡ∗

k[n+ 1]
})

xdl
k [n+ 1]

+
√
pbλ

K∑
i=1,i ̸=k

gT
k [n+ 1]ḡ∗

i [n+ 1]xdl
i [n+ 1] + zdl

k [n+ 1].

Therefore, we can obtain an achievable (sub-optimal) rate
as in (68), which is shown on the top of the next page.

Theorem 9: For MRC receivers, with aged CSI, the achiev-
able downlink rate of the k-th user is given by

Rdl
k = log2

1 +
α2Mσ4

k(
βk + 1

pb

)∑K
i=1 σ

2
i

 . (69)

Proof: The main task is to evaluate each term in (68),
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Rdl
k = log2

(
1 +

|E
{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}
|2

Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)
+
∑K

i=1,i̸=k E
{
|gT

k [n+ 1]ḡ∗
i [n+ 1]|2

}
+ 1

pbλ2

)
. (68)

which we do in the following:
1) Computation of E

{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}

We have

gT
k [n+ 1]ḡ∗

k[n+ 1] (70)

= ḡT
k [n+ 1]ḡ∗

k[n+ 1] + ẽTk [n+ 1]ḡ∗
k[n+ 1] (71)

= α2||ĝT
k [n]||2 + ẽTk [n+ 1]ḡ∗

k[n+ 1]. (72)

Therefore,

E
{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}
= α2E

{
||ĝk[n]||2

}
= α2Mσ2

k.
(73)

2) Computation of Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)

From (70) and (73), the variance of gT
k [n+ 1]ḡ∗

k[n+ 1] is
given by

Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)

(74)

= E
{
|gT

k [n+ 1]ḡ∗
k[n+ 1]|2

}
−
(
α2Mσ2

k

)2
= E

{
|α2||ĝT

k [n]||2 + ẽTk [n+ 1]ḡ∗
k[n+ 1]|2

}
−
(
α2Mσ2

k

)2
= α4E

{
||ĝT

k [n]||4
}
+ E

{
|ẽTk [n+ 1]ḡ∗

k[n+ 1]|2
}

−
(
α2Mσ2

k

)2
.

By using [35, Lemma 2.9], we obtain

Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)

(75)

= α4σ4
kM(M + 1) + α2σ2

k(βk − α2σ2
k)M −

(
α2Mσ2

k

)2
(76)

= α2σ2
kβkM. (77)

3) Computation of
∑K

i=1,i ̸=k E
{
|gT

k [n+ 1]ḡ∗
i [n+ 1]|2

}
For i ̸= k, we have

E
{
|gT

k [n+ 1]ḡ∗
i [n+ 1]|2

}
= α2βkσ

2
iM. (78)

Therefore,
K∑

i=1,i ̸=k

E
{
|gT

k [n+ 1]ḡ∗
i [n+ 1]|2

}
= α2βkM

K∑
i=1,i̸=k

σ2
i .

(79)

Substituting (64), (73), (75), and (79) into (68), we arrive
at the desired result. �

Theorem 10: For MRC receivers, with aged CSI, if the BS
scales down its transmit power proportionally to 1/Mβ , i.e.,
pb = Eb/M

β , where β > 0 and Eb is fixed, we have

Rdl
k − log2

(
1 +

α2τEuEbβ
4
k

Mβ− 1
2

∑K
i=1 β

2
i

)
M→∞−→ 0. (80)

Proof: As in the uplink scenario, substituting pp =
τpu = τ Eu√

M
into (69), and after some simple algebraic

manipulations, we obtain the desired result. �
When β = 1

2 , Rdl
k converges to a non-zero limit, indicating

that we can at most scale down the transmit power of the BS

proportionally to 1/
√
M in the downlink scenario, which is

the same as in the uplink scenario.

VI. EXTENSION TO MULTI-CELL SYSTEMS

In this section, we study the more general multi-cell scenari-
o. In particular, we focus on the characterization of the power
scaling law of the system with/without channel prediction.
Since MRC and ZF receivers attain the same asymptotic
performance, without loss of generality, we only consider the
MRC receiver in the subsequent analysis.

We adopt the multi-cell model as in [24], with a cellular
network of C cells sharing the same frequency band. Each
cell includes a central BS with M antennas and K (K ≤ M)
single antenna noncooperative users. Therefore, the M × 1
received vector at time n for the b-th BS is given by

yb[n] =
√
pu

C∑
c=1

Gbc[n]xc[n] + zb[n], (81)

where Gbc[n] represents the M ×K matrix between the b-th
BS and the K users in the c-th cell, whose k-th column vector
is denoted by gbck[n], pu is the transmit power of the user, xc

denotes the K × 1 vector transmitted by the K users in the
c-th cell, and zb is zero-mean additive white Gaussian noise
with unit power at BS b.

Similar to the single-cell scenario, the channel vector from
user k in cell c to BS b at time n is modeled as

gbck[n] = hbck[n]
√
βbck, (82)

where hbck[n] is the small-scale fading coefficient from the
k-th user in cell c to the b-th BS, which is i.i.d. CN (0, 1), and
βbck models the large-scale fading effect.

Capitalizing on the asymptotic expressions (53) and (75)
presented in [24], we obtain the following results on the power
scaling law for MRC receivers.

Proposition 1: For the multi-cell scenario, with aged CSI,
if each user scales down its transmit power proportionally to
1/Mγ , i.e., pu = Eu/M

γ , where γ > 0 and Eu is fixed, the
achievable rate of user k in cell b is given by (83) (at the top
of the next page), where the third term in the denominator is
due to both the intra and the inter-cell interference, while the
fourth term comes from the inter-cell interference caused by
pilot contamination.

Proof: Substituting pu = Eu/M
γ into Theorem 2 of [24],

the desired result can be obtained after some lengthy algebraic
manipulations. �

As expected, Proposition 1 suggests that the asymptotic
achievable rate Rbk depends on the choice of γ. It is easy
to show that for γ > 1/2, the achievable rate Rbk converges
to zero. Similarly, for γ = 1/2, Rbk converges to a non-zero
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Ra
bk − log2

1 +
α2τE2

uβ
2
bbk

M2γ−1

βbbkEu

Mγ + 1 +
∑

(c,i)̸=(b,k)

βbciEu

Mγ + α2
∑
c̸=b

τE2
uβ

2
bck

M2γ−1

 M→∞−→ 0, (83)

limit given by

Ra
bk → log2

1 +
α2τE2

uβ
2
bbk

1 + α2
∑
c̸=b

τE2
uβ

2
bck

 ,M → ∞. (84)

Once again, we see that the 1/
√
M power scaling law still

holds under the multi-cell scenario. In addition, it is observed
that the non-zero limit is affected not only by the channel
aging effect, but also by the inter-cell interference due to the
pilot contamination caused by pilot reuse.

We now look at the case 0 < γ < 1/2. Interestingly, it is
found that, unlike the single-cell scenario where the achievable
rate grows unbounded, Rbk also converges to a non-zero limit
given by

Ra
bk → log2

1 +
β2
bbk∑

c̸=b

β2
bck

 ,M → ∞. (85)

Surprisingly, we see that the effect of channel aging vanishes
and Rbk is independent of the transmit power which coincides
with the results presented in [2]. The possible reason is that,
when 0 < γ < 1/2, the system operates in an interference-
limited regime; as such, if each terminal scales its average
received power by the same factor, then the resultant signal-
to-interference ratio (SIR) remains unchanged.

We now consider the case with channel prediction, and
present the following key result:

Proposition 2: For the multi-cell scenario, with predicted
CSI, if each user scales down its transmit power proportionally
to 1/Mγ , i.e., pu = Eu/M

γ , where γ > 0 and Eu is fixed,
the achievable rate of user k in cell b is given by (86), shown
on the top of the next page.

Proof: Substituting pu = Eu/M
γ into the Theorem 3 of

[24], and after some tedious algebraic manipulations, we get
the desired result. �

We now discuss the impact of γ on the asymptotic achiev-
able rate based on Proposition 2. It can be easily shown that,
for γ > 1/2, Rbk → 0, and for γ = 1/2,

Rp
bk → log2

1 +

α2
p∑

j=0

α2jτE2
uβ

2
bbk

1 + α2
p∑

j=0

α2j
∑
c̸=b

α2pτE2
uβ

2
bck

 ,M → ∞.

(87)

As expected, the asymptotic achievable rate is determined
by both the channel aging effect and the inter-cell interference.

Similarly, for γ < 1/2, we have

Rp
bk → log2

1 +
β2
bbk

α2p
∑
c̸=b

β2
bck

 ,M → ∞. (88)

Now, compared to the achievable rate of systems with aged
CSI presented in (85), we observe that the achievable rate
with channel prediction is strictly higher, due to the fact that
α2p < 1.

VII. NUMERICAL RESULTS

In this section, we provide numerical results to validate
the analytical expressions derived in the previous sections.
Hereafter, we assume that τ = K.

A. Single-cell uplink scenario

We consider a single-cell with a radius of R = 1000 meters
and assume a guard range of r0 = 100 meters, which specifies
the distance between the nearest user and the BS. All the
users are uniformly distributed within the cell. The large scale
fading is modeled as βk = zk/(rk/r0)

υ, where zk is a log-
normal random variable with standard deviation σ (σ = 8 dB)
denoting the shadow fading effect, rk represents the distance
between the k-th user and the BS, and υ (υ = 3.8) is the path
loss exponent.

Fig. 1 examines the tightness of the proposed analytical
lower bounds given in (23) and (29) with aged CSI, as
well as in (56) and (61) with predicted CSI for different
α and p. As can be readily observed, the proposed lower
bounds almost overlap with the exact simulations curves,
demonstrating their tightness. In addition, we see the intuitive
result that channel aging degrades the achievable sum-rate,
while channel prediction helps to recover part of the sum-rate
loss due to channel aging. Moreover, it is observed that the
ZF receivers attain a higher sum-rate than the MRC receivers.
Finally, we observe that channel aging causes a substantial
reduction in the sum rate of ZF receivers and a relatively
small decrease in the sum rate of MRC receivers at the high
SNR regime, indicating that the channel aging effect has a
much greater impact on ZF receivers. This can be attributed to
the poor interference cancellation capabilities of ZF receivers
when channel aging is present, while MRC tries to maximize
the effective SINR of each target user.

Fig. 2 investigates the impact of channel prediction on
the achievable sum-rate lower bound. Note that the curves
associated with perfect CSI are obtained from [15, (17) and
(21)], while the curves associated with current CSI are based
on (23) and (29) by setting α = 1. Intuitively, as the nor-
malized Doppler shift fDTs becomes large, i.e., for stronger
channel aging effect, the sum-rate loss becomes increasingly
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Rp
bk − log2

1 +

α2
p∑

j=0

α2jτE2
uβ

2
bbk

M2γ−1

βbbkEu

Mγ + 1 +
∑

(c,i)̸=(b,k)

βbciEu

Mγ + α2
p∑

j=0

α2j
∑
c̸=b

α2pτE2
uβ

2
bck

M2γ−1

 M→∞−→ 0. (86)
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Fig. 1: Uplink sum-rate versus the transmit power pu for
K = 10, M = 128, and fDTs = 0.1.

substantial. Also, the higher the prediction order, the larger the
sum-rate gain. In addition, the benefit of channel prediction
tends to be more significant when the channel aging effect is
less severe, i.e., fDTs is small. This is rather expected, since
the predicted CSI becomes more accurate in such scenarios.
Finally, it is observed that the predicted CSI case achieves a
higher rate than the current CSI case when fDTs is small,
while its performance degrades substantially when fDTs is
large, and becomes worse than that with current CSI case. This
can be explained as follows: When the channel varies slowly,
channel prediction which uses multiple channel observations
can provide more accurate CSI than channel estimation which
only uses one channel observation. On the other hand, when
the channel varies fast, channel prediction becomes inaccurate,
and is less reliable than the current CSI. However, it is
also worth pointing out that the achievable rate with channel
prediction can not exceed the rate achieved with perfect CSI.

Fig. 3 shows the lower bound on the achievable sum-rate
versus the number of BS antennas when the transmit power
of each user is scaled down by 1/

√
M . As predicted by

Corollary 1 and 2, the achievable sum-rate converges to a
non-zero limit when the number of antennas M becomes
large. As the prediction order increases, the sum-rate improves.
Nevertheless, we also observe that, the sum-rate gain due to
increasing the prediction order from p = 1 to p = 2 is
significantly smaller than the sum-rate gain from increasing
p = 0 to p = 1. Recall from Corollary 2, that the gain
due to channel prediction is manifested through the SNR

enhancement factor
p∑

j=1

α2j . When α is relatively small, the

contribution of a higher p diminishes quickly, which explains
the above behavior.
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B. Single-cell downlink scenario

Fig. 4 verifies the correctness of the analytical expression
given in (69). As we can readily observe, the analytical results
are in perfect agreement with the simulation curves.

Fig. 5 illustrates the power scaling law. When M grows
large, the analytical results converge to the asymptote. Also,
the speed of convergence depends on the transmit power, the
smaller the transmit power, the faster the convergence speed.
In addition, as can be seen, in the downlink scenario, the power
scaling law is also 1/

√
M , and identical to the uplink scenario.
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C. Multi-cell scenario

In this section, we examine the impact of channel aging
and channel prediction on the achievable sum-rate of cellular
massive MIMO systems. As in [15], we assume βbbk = 1, and
βbck = 0.32 (c ̸= b) for all k (1 ≤ k ≤ K), and consider a
setting with C = 7 cells.

Fig. 6 illustrates the power scaling law of multi-cell massive
MIMO systems with aged CSI. As expected, we see that when
γ > 1/2, the achievable sum-rate gradually decreases, and
eventually reduces to zero as M approaches infinity. While for
γ ≤ 1/2, the achievable sum-rate converges to a deterministic
non-zero value. In addition, when γ = 1/2, we see that,
regardless of the antenna number M , there exists a constant
gap between the two curves associated to scenarios with aged
CSI and current CSI, respectively, elucidating the detrimental
effect of channel aging. On the other hand, when γ < 1/2,
the two curves overlap for sufficiently large M , indicating the
vanishing effect of channel aging, as indicated by (85).

Fig. 7 depicts the power scaling law of multi-cell massive
MIMO systems with channel prediction, given by (86). As
expected, the achievable sum-rate converges to a non-zero
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limit when γ ≤ 1/2, and reduces to zero when γ > 1/2 as the
number of antennas M increases. Moreover, as the predictor
order p increases, the non-zero limit becomes larger.

VIII. CONCLUSION

This paper studied the achievable sum-rate of uplink mas-
sive MIMO systems taking into account the channel aging
effect. Specifically, we derived tractable lower bounds of the
sum-rate for both MRC and ZF receivers with/without channel
prediction, which are valid for arbitrary number of antennas
and users. In addition, we characterized the impact of channel
aging effect and channel prediction on the power scaling law.
The findings of the paper suggest that aged CSI degrades the
corresponding achievable sum-rate, and the more severe the
channel aging effect, the more significant reduction of the
sum-rate. Moreover, channel prediction enhances the sum-rate,
and the higher the predictor order, the better the sum-rate
performance. In addition, it is shown that the benefits due
to channel prediction are more pronounced in the scenario,
where the channel aging effect is not severe. Finally, it was
found that both in the single-cell and the multi-cell scenario,
the transmit power of each user can be scaled down at most by
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1/
√
M in the presence of channel aging, which indicates that

aged CSI does not degrade the power scaling law, and channel
prediction does not improve the power scaling law. Similar-
ly, the single-cell downlink scenario analysis was presented,
which concludes that in the single-cell downlink scenario, the
same power scaling law 1/

√
M is achieved as in the single-

cell uplink scenario. However, unlike the single-cell scenario,
the achievable rate in the multi-cell scenario converges to a
non-zero limit when each user does not cut down the transmit
power by the maximum limit, i.e., 1/Mγ with 0 < γ < 1/2,
due to the effect of pilot contamination.

APPENDIX I
PROOF OF THEOREM 2

By substituting âk[n+ 1] = ḡk[n+ 1] = αĝk[n] into (15),
we obtain

Rmrc
k = E {log2 (1 + SINRa,mrc

k )} , (89)

where

SINRa,mrc
k , (90)

puα
2||ĝk[n]||2

puα2
K∑

i=1,i ̸=k

|g̃i[n]|2 + pu
K∑
i=1

(
βi − α2 ppβ2

i

1+ppβi

)
+ 1

with g̃i[n] , ĝ†
k[n]ĝi[n]

||ĝk[n]|| . To this end, noticing that log2
(
1 + 1

x

)
is a convex function with respect to x, the following tight lower
bound can be obtained by applying Jensen’s inequality [15]

R̃mrc
k = log2

(
1 + (E {(SINRa,mrc

k )})−1
)
. (91)

By noticing that conditioned on ĝk[n], g̃i[n] is a Gaussian
random variable with zero mean and variance ppβ

2
i

1+ppβi
, which

does not depend on ĝk[n], it is concluded that g̃i[n] is
Gaussian distributed and independent of ĝk[n], i.e., g̃i[n] ∼
CN

(
0,

ppβ
2
i

1+ppβi

)
. As a result, we obtain

E


puα

2
K∑

i=1,i̸=k

|g̃i[n]|2 + pu
K∑
i=1

(
βi − α2 ppβ

2
i

1+ppβi

)
+ 1

puα2||ĝk[n]||2


=

puα
2

K∑
i=1,i̸=k

E
{
|g̃i[n]|2

}
+ pu

K∑
i=1

(
βi − α2 ppβ

2
i

1 + ppβi

)
+ 1


(92)

E

{
1

puα2||ĝk[n]||2

}
. (93)

Given that

E
{
|g̃i[n]|2

}
=

ppβ
2
i

1 + ppβi
, (94)

the remaining task is to evaluate E
{

1
||ĝk[n]||2

}
, which, accord-

ing to [35, Lemma 2.10], can be computed as

E

{
1

||ĝk[n]||2

}
=

1

M − 1

1 + ppβk

ppβ2
k

. (95)

To this end, after plugging (94) and (95) into (92), we arrive
at the desired result.

APPENDIX II
PROOF OF THEOREM 4

With ZF detector, Â†[n + 1] = (Ḡ†[n + 1]Ḡ[n +
1])−1Ḡ†[n + 1], or Â†[n + 1]Ḡ[n + 1] = IK . Thus, (15)
becomes

Rzf
k = E

{
log2

(
1 + SINRa,zf

k

)}
, (96)

where

SINRa,zf
k , (97)

pu(
pu

K∑
i=1

(
βi − α2 τpuβ2

i

1+τpuβi

)
+ 1

)[(
Ḡ†[n+ 1]Ḡ[n+ 1]

)−1
]
k,k

.

From (11), we have

E

{[(
Ḡ†[n+ 1]Ḡ[n+ 1]

)−1
]
k,k

}
(98)

=
1

α2
E

{[(
Ĝ†[n]Ĝ[n]

)−1
]
k,k

}
(99)

=
1

α2(M −K)

1 + ppβk

ppβ2
k

, (100)

which completes the proof.
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