
Improved Multimedia Server I/O Subsystems

Michael Weeks, Hadj Batatia, Reza Sotudeh
Computer Architecture Research Unit

University of Teesside
Middlesbrough
England, UK.

{michael.weeks, h.batatia, r.sotudeh} @tees.ac.uk
Telephone: 44+ (1 642) 342494

Fax: 44+ (1 642) 34240 1

Abstract
The main function of a continuous media server is to

concurrently stream data from storage to multiple clients
over a network. The resulting streams will congest the
host CPU bus, reducing access to the system S main
memory, which degrades CPUperformance. The purpose
of this paper is to investigate ways of improving I/O
subsystems of continuous media sewers. Several
improved I/O subsystem architectures are presented and
their performances evaluated. The proposed architectures
use an existing device, namely the Intel i960RPCC
processor: The objective of using an I/O processor is to
move the stream and its control from the host processor
and the main memory. The ultimate aim is to identijj the
requirements for an integrated I/O subsystem for a high
performance scalable media-on-demand server

1. Introduction

Continuous media, such as audio and video, have
different characteristics compared to conventional data.
They are typically data intensive, even when compressed,
and time dependent. These characteristics place a number
of requirements on the servers’ [l & 21, the
communication, and even on the end-system
configuration. At the server level, these isochronous
media impose many constraints mainly on the
architecture, the storage [3], and the operating system.
They require real-time handling especially at the I/O
subsystem.

The design of a media-on-demand (audio or video on
demand) server must take into account a number of
issues. The following sections describe some of the
design factors.

a) Server access style
Two access technologies influence multimedia

server design, client ’pull’ and server ’push’ [4]. Client
pull technology is similar to that used for file servers
for handling text and other aperiodic data types,
whereby the client explicitly requests data from the

server. In this case, the design of the client application
requires greater complexity than the design of the
server. Server push is the traditional choice for
continuous media server designs as it is more suited to
the provision of, and interaction with, concurrent
streams. To initiate a media stream the client transmits
a request to the server, whereupon the server delivers,
and manages, the selected data stream to the client.
These types of server require a more complex design,
as it must store the state of each media stream.

b) Transfer rate
The transfer rate should be sufficiently high to

support multiple simultaneous clients. The transfer
rate is dependent not just upon hardware, but also
upon the operating system and the application
software.

c) QoS
The server should provide streams to the client

with a guaranteed Quality of Service (QoS), by
implementing disk scheduling, and admission control
algorithms. Real-time disk scheduling routines ensure
continuity of the media stream by determining the
most efficient method for retrieving rounds of data
from the hard disk. This is more easily implemented
with ‘Constant Bit Rate’ (CBR) coded streams rather
than with ‘Variable Bit Rate’ (VBR) coded streams.
Similarly, read only files enhance disk-scheduling
performance due to contiguous data placement on
disk.

Admission control algorithms guarantee end-to-
end performance by preventing stream overload.
Admission control does not only guarantee QoS, but
other features may also be necessary. For example, the
media contents of a video-on-demand server are a
marketable commodity, therefore security measures
will be necessary to validate the user before access
permission is granted, and accounting services will be
required to charge the users.

d) Scalability
A scalable architecture allows an increase in the

1089-6503/98 $10.00 0 1998 IEEE
5 14

mailto:tees.ac.uk

number of client streams for a proportional increase
in the cost.

e) Interactivity
With multiple media files on a server, the user must

be able to browse or search the server content, before
making a selwtion. In addition to file management,
the server should store metadata that characterises
each file’s content.
To provide tnie ‘media-on-demand’ features, the user
must be able: to interact with the data stream to
perform features such as PLAY, STOP, FAST
FORWARD, IIEW, PAUSE, etc.

The purpose of this paper is to investigate the I/O
subsystems of continuous media servers. Improved I/O
subsystem architectures based on current technologies are
suggested. The ultimate aim is to identify the
requirements for ;in integrated I/O subsystem for a high
performance scalable media-on-demand server.

2. Investigation

The server design under initial investigation is the
traditional single CPU system that utilises ‘push’
technology (Figure I) . To simplify matters, we consider
only non-editable CBR coded media streams. The system
described utilises a single PCI bus for its I/O devices,
which for this case study are SCSI for storage, and ATM
for the network interface. The software drivers for the I/O
devices utilise a double buffering scheme in the system’s
main memory, which enable the smooth transfer of media
data from the SCSI adaptor to the network interface card.

I I
Memory

PCI
Bridge v

Figure 1 : Architecture target for improvement

Although client stream interaction will occur, it will be
random and infrequent, and can therefore be considered
negligible from the viewpoint of I/O subsystem design.
The most frequent state for a stream will be in playback
mode, whereby multimedia data is streamed to the client
without any user interaction. During playback, the
majority of the CPU’s local bus traffic will be due to
media data streaming from the storage device, via the dual

buffering scheme in primary memory, to the network
device. This duplication of traffic on the CPU local bus is
greater than twice the actual data being transferred. This
creates a bottleneck when accessing primary memory,
which degrades CPU performance. Consequently, this
bottleneck makes the scalability of the single CPU design
very poor.

Using semi-autonomous 110 devices, CPU stream
control can be reduced substantially. Instead of the CPU
supervising the transfer of every item of data, it simply
initiates the I/O device to transfer a block of data. On
completion, the I/O device informs the CPU by the use of
interrupts. For one stream these interrupts can amount to
hundreds per second, each requiring a CPU response that
switches context, and executes an interrupt routine. With
lo2 to lo3 media streams, this can amount to a sizeable
proportion of the CPU’s processing time.

3. I/O subsystem improvement

To maximise CPU utilisation, the stream and its
control must be migrated from the processor. To achieve
this, we looked at utilising current technology, in
particular, Intel’s i960RPB intelligent I/O processor,
modelled in several variations. The next section contains
an overview of the i960RP8 device.

3.1 i960RP8

The i960RP8 is a high performance embedded
processor that has been designed for use as an intelligent
I/O processor [5] . The device’s main features are (Figure
2):

1 i960JFa core processor;
1 PCI to PCI Bridge unit;
1 Primary and secondary PCI Address Translation

Units (ATU);
1 Messaging Unit (MU);
1 Primary and secondary PCI DMA units;
1 Memory Controller;
1 Bus arbitration units.

Secondary PCI

Figure 2: Simplified block diagram of the i960RP@

The core processor is a 32-bit superscalar RISC design

515

that operates at 33Mhz, and utilises interleaved 32-bit
memory via the 80960 local bus. This bus is a 32-bit wide
local bus with multiplexed address and data lines. The
i960RP@ connects to a host processor via its primary PCI
bus and appears as a multi-function PCI device.

The ATU's are the interfaces between the PCI buses
and the 80960 local bus. The i960RPQ contains two
ATU's, one for the primary and the other for the
secondary PCI buses. The ATU's can burst transfer up to
2kB, and allow inbound and outbound address
translations. They can handle multiple inbound
transactions by simultaneously processing PCI read and
write transactions. Address translation is achieved using
an address windowing scheme that determines which
addresses to claim and translate.

The PCI-to-PCI bridge operates as an address filter
between the two PCI buses, in addition to extending the
number of loads that a PCI bus may have. The bridge is
programmed with a range of addresses that determine the
secondary address space. All PCI read transactions
traversing a PCI-to-PCI bridge are processed as delayed
transactions.

3.2 Single U 0 processor

Removing the bottleneck caused by media streaming to
main memory would enhance the performance of the
system under investigation. A first step in the design
improvement consists of migrating the dual buffering
scheme from the main memory to the i960RP8 local
memory, thereby increasing the host CPU's processing
efficiency. In such a case, the i9600 core processor is
idling.

However, host CPU efficiency can be further improved
by migrating stream control, and in particular, 110 device
interrupt processing to the i960RP8. To investigate this
further, the PCI bus and i960RP8 PCI-to-PCI bridge
handling of interrupts are first presented.

The vehicles for interrupt passing between the system
devices are the PCI buses INTx# lines. With the i960RP8
connected to the primary PCI bus, the PCI bus interrupt
lines are as shown in Figure 3.

Host-PCI I '
Figure 3: PCI interrupt lines

The PCI-to-PCI bridge may individually route the
secondary PCI bus interrupt lines onto the primary bus
interrupt lines, or to the i960RPQ core processor

depending upon the contents of the associated memory
mapped register. The interrupt lines always travel
upstream. The ATM and SCSI devices use the interrupt
lines to signal to their drivers that they have finished their
current task. Therefore a software driver must be
executing on a processor upstream of the corresponding
I/O device, in order to avoid complicated and time-
consuming interrupt routing schemes. Providing
maximum system performance requires rapid interrupt
processing, which restricts possible designs to the
following.

a) The ATM and SCSI devices are on the secondary PCI
bus. The device drivers for both PCI devices reside
on the i960RP8;
The ATM device is installed on the primary PCI bus,
with its driver on the host processor. The SCSI
adaptor is installed on the secondary PCI bus with its
driver on the i960RP8;
The SCSI device is installed on the primary PCI bus,
with its driver on the host processor. The ATM
adaptor is installed on the secondary PCI bus with its
driver on the i960RPB:

d) Any of the above device interconnections, but with
the device drivers staying on the host processor, and
the i960RP8 acting as a PCI Memory controller1PCl-
PCI bridge.

b)

c)

The first connection scheme can be ignored as we wish
to balance the sub-streams between the two PCI buses.
Similarly, the objective is to remove the I / 0 drivers from
the host processor, so the fourth scheme is not relevant.
The second and third designs are compromises, therefore,
the second design has been evaluated (Figure 4).

PCI Bus

- - - - - - - I R'DG FGLf 4.. , .
SCSI sub-strea4 I pcI Bus

Figure 4: Proposed I 1 0 subsystem using a

single i960RP8

Performance figures were calculated based on data
streaming over the system buses. These figures
incorporate the effects of interrupt latencies but do not
include the effects of the operating system on

5 16

performance. We have assumed that all PCI transfers will
not be broken in1 o multiple transactions. This assumption
will not hold for high streaming scenarios, as the ATU
queues are of insufficient size for media transfer,
especially the SCSI traffic.

Table 1 shows these performance figures. It illustrates
the scale of traffic over the system buses and their
percentage utilisation.

Table 1 : Bus Utilisation

Streams Bus('
0.05

50 2.3
60 2.8
15 3.5
90 4.1

The chart in Figure 5 shows the comparative
performances of the system using a single I/O processor
with the original target architecture, based on worst-case
bus traffic. From this comparison it must be noted that the
streaming affects the software running on the original
target architecture, whereas the streaming on the
i960RP8 only aflects the SCSI software drivers.

E-D~~I Processor +Single Processor 1
120 1~

100

80

60

' 40

20

n

, _ o

. -

No of
0 20 40 60 80

Figure 5 : Performances with a single I/O processor

With the proposed design (using a single I/O
processor), the host CPU has recovered its access to main
memory, previously lost to the stream, enabling it to
manage more strcams. However, each stream on the PCI
bus has become less efficient, due to the i960RP8 ATU
delayed PCI transactions.

A new bottlen'xk has appeared on the i960WC3 local
bus. For ninety streams, the 80960 local bus would be
over-loaded when streaming data to and from i96ORPB

memory, whereas the PCI buses are under-utilised. This is
due to the two 32-bit, 33MHz PCI buses trying to access a
single 32-bit, 33MHz local bus.

This clearly shows that the proposed architecture
would not be a large improvement over the target system.
This analysis does not contain any inter-processor
communication, which would be necessary for
communication between the operating system and the
SCSI driver. This additional overhead would further
reduce the performance of the proposed architecture.

The scalability of this architecture can be achieved by
introducing a PCI-to-PCI bridge to isolate the I/O
subsystem. This obviously incurs an added cost, but
allows multiple i960RP8 devices to be attached to the
system for added stream capability.

3.3 Dual I/O processor

The single i960RP8 device used in the previous
design, removed the stream from the main memory, but
created another bottleneck at its own memory. The
i960RP8 could not run both I/O software drivers due to
the interrupt problem stated earlier, therefore the ATM
driver was operated from the host. One solution to this
1/0 driver problem could be to utilise two I/O processors,
one for each of the I/O devices. The drivers could reside
in their respective i96ORP@'s, whilst the memory space
of one I/O processor could contain the dual buffering
scheme. Whilst this would remove the drivers and their
interrupts from the host CPU, their would still be the
i960RP8 memory bottleneck.

An improvement to this design would be an alternating
dual buffering scheme, whereby the buffers would be
equally split between the memory spaces of the two I/O
processors. Operation for a single stream would be as
shown in figure 6 and Figure 7.

mas
.... ,..._.__........... 1,

figure 6: Proposed I/O subsystem with two i960RP8

517

Figure 7; Altemate substreams

altemate

streaming
Mean

Table 1 shows the bus utilisation in cycles per second
per stream, for all of the components in the dual i960RP8
I/O sub-system.

232699 203954 186535 187350 153498

Table 2: Bus utilisation for a single stream
(cyclesiseclstream)

to local

I I I I I I I

With multiple concurrent streams, the mean value will
be the important figure, and as can be seen from Table 2
the sub-streams have been more closely balanced around
the system buses. The alternating buffer scheme has
removed the I/O processor memory bottleneck, with the
most activity being on the secondary PCI bus to which the
SCSI adaptor is attached. Plotting this data onto a graph
(Figure 8) illustrates the comparative performance
between the dual i960RP8 design and the initial target
architecture.

+Dual i960RP +Single Procewr

100

80

LI1 .I 60 s5
* = J 40

20

0 No of
0 20 40 60 80

Figure 8: Comparative performances

It can be clearly seen that this design has reduced
maximum bus utilisation by 33%, but at the expense of
increased complexity, and cost. Again scalability will
only be achieved at the cost of an additional PCI-to-PCI
bridge.

4. Conclusion

This paper has focused on the design of an I/O
subsystem for a continuous media server. Several
improved architectures have been proposed and their
performances evaluated. All the proposed architectures
were designed using an existing device, namely the Intel
i960RP8 processor.

The utilisation of the single i960RP8 I/O processor
solved the main memory bottleneck problem, but created
a new bottleneck in i960RP8 memory. This has
highlighted the requirement for a streaming memory
bandwidth twice that of the PCI bus.

The twin i960RP8 proposed U0 subsystem utilising
an alternating dual buffer arrangement, removed this
bottleneck but at the expense of scalability, complexity,
and cost.

This investigation clearly shows the need for an
integrated U0 processor, optimised for continuous media.
Such a processor would incorporate the following
characteristics.

a) Two separate subordinate PCI buses for the 110
devices to isolate the sub-streams;

b) Memory bandwidth twice that of a single PCI bus;
c) Larger PCI-memory buffer queues, optimised for the

transmission of media data;
d) Low interrupt latency to reduce the time taken to

process streams;
e) High scalability so that multiple devices can be

attached to the primary PCI bus to increase the
number of streams.

Figure 9 shows the system's architecture using such a
hypothetical I/O processor. On-going research are
investigating the feasibility and characteristics of this
architecture.

5 18

Media 110
Processor

ATM

Network

Media 110 1
Processor 1 Processor

Figure 9 - Scalatde Server Architecture utilising Media
I/O processors

5. References

[I] Gemmell, D. J . , Vin, H. M., Kandlur, D. D., Venkat
Rangan, P., arid Rowe, L. (1995). Multimedia Storage
Servers: A Tutorial and Survey. IEEE Computer, 28 (5),
pp. 40-49.

[2] Shenoy, P., Gcyal, P., and Vin, H. M. (1995). Issues in
Multimedia Server Design. ACM Computing Surveys, 27
(4), pp. 636-63').

[3] Lougher, P., & Shepherd, D.(1993). The design of a Storage
Server for Con inuous Media. The Computer Journal, 36
(I) , pp. 32-42.

[4] Rao, S., Vin, H . M., and Tarafdar, A. (1996). Comparative
Evaluation of Server-push and Client-pull Architectures for
Multimedia Sei,vers. In Proceedings of 6th Networks and
Operating Systems Support for Digital Video and
Audio, April 1096.

[5] Gillespie, B. (1996). PCI Intelligent IiO Design for High
Performance Scrvers. Intel@ white paper.

519

