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Abstract 

Spinal muscular atrophy (SMA) is a motor neuron disease and the primary genetic cause of infant 

death. This disease is caused by the atrophy of motor neurons in the spinal cord resulting in muscle 

weakness, gradual paralysis and eventual respiratory defects leading to asphyxiation. SMA is 

characterised by the depletion of the survival motor neuron (SMN) protein – a ubiquitously 

expressed protein responsible for the regulation of pre-mRNA splicing. The expression of this protein 

is vital for the development and survival of all tissues, yet, the question still remains as to why SMN 

depletion affects predominantly motor neurons. Recent developments in SMA research have 

introduced a multi-organ SMA phenotype, where other tissues affected share a high energy demand. 

Furthermore, mitochondrial and glucose metabolism defects have been identified in SMA suggesting 

an energy deficit, which is particularly detrimental to energy-demanding tissues such as motor 

neurons. In consideration of this, we established a hypothesis stating that all tissues equally suffer 

an energy deficit as a result of SMN depletion; however the most energy-demanding tissues are 

affected to the greatest degree. To address this hypothesis, we employed fibroblasts derived from 

an SMA type I patient and the carrier parents of this individual to identify metabolic alterations 

putatively generating an energy deficit. The current study proposes a glycolytic and mitochondrial 

defect in SMA type I patient fibroblasts that is not present in SMA carrier fibroblasts. Furthermore, 

we identified elevated levels of the metabolite myoinositol, likely stemming from raised inositol 

monophosphatase (IMPA1) and inositol-3-phosphate synthase (ISYNA1) - a feature shared in SMN 

knockdown experiments. Considering the relationship between de novo myoinositol synthesis and 

glucose metabolism, we propose that SMN depletion promotes myoinositol synthesis at the cost of 

energy production from glycolysis. Elevated myoinositol has also been identified in a myriad of other 

neurodegenerative diseases. Therefore, we propose that myoinositol synthesis may hold potential 

as a therapeutic target for SMA and other related conditions. 
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1. Introduction 

1.1 An Overview of Motor Neuron Diseases (MNDs) 

Motor neuron diseases (MNDs) encompass a wide range of clinical features involving the gradual 

loss of motor function due to the death of motor neurons controlling muscles. Diseases within this 

group include amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS) and spinal muscular 

atrophy (SMA) (Mitchell & Borasio, 2007; Tiryaki & Horak, 2014). Although MNDs share many 

symptomatic manifestations, a common mechanistic cause across these diseases has yet to be 

identified. ALS is the most common MND, however due to the sporadic onset of the large proportion 

of ALS cases (90%) (Kabashi, et al., 2011), discovering the causative mechanism of this disease and 

tracking its pathological progression has proven challenging. The remaining 10% of ALS cases are 

known to be hereditary, yet the wide range of putative genes responsible, such as superoxide 

dismutase (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein (TARDBP), and the different 

molecular pathways they are involved in, act as further confounding factors for the identification of 

the mechanism/s underlying human disease (Taylor, Brown, & Cleveland, 2017). SMA, however, is 

caused by a well-defined genetic alteration causing near identical symptoms to ALS. This suggests 

that identification of a causative mechanism of SMA may likely shed light into identifying the 

mechanistic basis of other MNDs such as ALS.  

SMA is the most common genetic cause of death in children with disease incidence of 1 in 6,000-

10,000 (Alías, et al., 2009). Carrier incidences can range between 1 in 35-60, where Caucasian 

populations hold the highest occurrence (Sugarman, et al., 2012). SMA is of particular interest due to 

its wide range of severities, the most acute occurring at a very early age. SMA is categorised into 

four different types according to age of onset and disease severity (Table 1). 

Table 1: SMA presents with a range of severities that are characterised clinically by the age of 
onset and the intensity of symptoms (Wokke, Van Doorn, Hoogendijk, & De Visser, 2013). 

SMA Type Clinical Synonym Age of 
Onset 

Life 
Expectancy 

Clinical Milestones Reached  

I Werdnig-Hoffman 
(Acute) 

6 Months 2 Years Unable to sit upright 
independently, no head control, 
no ambulation 

II Werdnig-Hoffman 
(Chronic/Intermediate) 

2 Years 10-40 Years Able to sit upright 
independently and control head 
movement, no independent 
ambulation 

III Kugelberg-Welander 
(Chronic) 

18 Years Adult Ambulates independently, likely 
to require wheelchair 
assistance by late childhood 

IV Adult-onset Childhood Adult Normal ambulation and 
movement, mild symptoms 
aggravate during adulthood 

 

Clinically, SMA is identified by the classic features found in other MNDs such as progressive muscle 

weakness, gradual paralysis and respiratory defects while mental faculties are left unimpaired (David 

Arnold, Kassar, & Kissel, 2015). This muscle wastage is due to the early destruction of the alpha 
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motor neurons found in the anterior horn of the spinal cord (D'Amico, Mercuri, Tiziano, & Bertini, 

2011). The resultant loss of innervation of muscle affects motor function, where muscles start to 

degrade due to decreased workload. Of particular importance is the weakening of masticatory and 

gastrointestinal muscles important for maintaining nutrition (Messina, et al., 2008), as well as 

intercostal muscles resulting in respiratory defects as the primary cause of death for severe SMA 

patients (Chatwin, Bush, & Simonds, 2011). What typically distinguishes SMA from other MNDs like 

ALS is the early age of onset, range of severities, and most importantly a solitary known genetic 

cause of disease. 

 

1.2 Spinal Muscular Atrophy: A Single Gene Disorder 

Lefebvre et al (1995) identified a common deletion or interruption of an inverted duplication region 

on chromosome 5q13 in SMA patients and carriers, leading to the discovery of the SMN locus, which 

encompasses the SMN1 and SMN2 genes. It was subsequently discovered that (a) patients held 

homozygous mutations in the telomeric SMN1, but not in the centromeric SMN2 and that (b) both 

genes produce the ubiquitously expressed SMN protein; however only disruptions in SMN1 and not 

SMN2 cause SMA (Coovert, et al., 1997). Monani et al (1999) progressed this work by identifying the 

difference between SMN1 and SMN2 being a single nucleotide polymorphism (SNP; C→T) in exon 7 

that controls inclusion of exon 7 into the transcript and final protein product. The cytosine at this 

position in SMN1 acts as part of an exon splice enhancer that promotes exon 7 inclusion, while the 

thymine at the same position in SMN2 interferes with exon 7 inclusion, resulting in 90% of protein 

expressed from SMN2 lacking exon 7 (Figure 1) (Monani, Coovert, & Burghes, 2000; Lorson, Hahnen, 

Androphy, & Wirth, 1999). The latter is an incomplete and unstable isoform termed SMNΔ7, that 

gets rapidly degraded; however SMN2 can still produce full-length SMN protein but in much smaller 

amounts (10%) compared to SMN1 (Lunn & Wang, 2008).  

Interestingly, it is the SMN2 copy number that is able to modulate residual SMN levels in order to 

produce the wide range of SMA severities seen in the clinic (Wirth, et al., 2006), where SMA type I 

typically presents with 1-2 SMN2 copies, type II with 2-3 SMN2 copies, type III with 3-4 SMN2 copies, 

and type IV with more than 4 copies of SMN2 (Butchbach, 2016). Since the full length SMN protein 

expressed from SMN2 is identical to the SMN protein expressed from SMN1, some effort has been 

employed for the discovery of drugs that can improve exon 7 inclusion into SMN2 transcripts under 

SMN1 mutation as a therapy for SMA (Mattis, et al., 2006). The antisense oligonucleotide Spinraza 

(Biogen) is a direct product of this effort displaying very promising efficacy in patients (Scoto, Finkel, 

Mercuri, & Muntoni, 2017).  
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Figure 1: The locus of SMN1 and SMN2 on chromosome 5q13. The C→T SNP between SMN1 and 
SMN2, respectively, interferes with exon 7 inclusion into the mRNA transcript for SMN2 by 
converting an exon splice enhancer (ESE) into an exon splice silencer (ESS), thereby dramatically 
reducing full-length protein production. The antisense oligonucleotide Spinraza binds the intronic 
sequence ISS-N1 between exon 7 and 8 of SMN2 to disrupt the binding of negative regulators of 
exon 7 inclusion, such as hnRNP1 (Dominguez, Cunningham, & Chandler, 2017; Singh, Howell, 
Androphy, & Singh, 2017). 

 

1.3 The SMN Protein 

The SMN protein is ubiquitously expressed across all tissues, raising the important question of why 

motor neurons are specifically targeted by this deficiency (Monani, 2005). It is thought that although 

the function of SMN may be vital for all tissues, most can survive with lower levels of expression 

while motor neurons are particularly susceptible to drops in expression. This hypothesis relies on a 

protein function of SMN that motor neurons depend on heavily (Burghes & Beattie, 2009), notably 

its role in the generation of the pre-mRNA splicing machinery. 

Structurally, the 294 amino acid long SMN protein is composed of an N-terminal lysine-rich domain, 

followed by a Tudor domain, a proline-rich domain, and finally a tyrosine-glycine box (YG-box) 

domain at the C-terminus (Figure 2) (Renviosé, et al., 2006). Glycine zipper conformations are known 

to be created through oligomerisation between SMN proteins via the C-terminal YG-box, while the 

Tudor domain is able to recognise methylated arginine residues, typically found in proteins involved 

in RNA metabolism such as Sm proteins (Martin, Gupta, Ninan, Perry, & Van Duyne, 2012). The 

ability of SMN to bind RNA metabolism proteins is essential for its principal function in pre-mRNA 

splicing machinery (Matera & Wang, 2014). 
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SMN oligomerisation and recruitment of Gemin 2 begins the formation of the SMN complex, a vital 

machine for small nuclear ribonucleoprotein (snRNP) biogenesis. Recruitment of Gemin 3-8 and 

Unrip proteins complete the SMN complex, which is now able to facilitate the interactions between 

Sm proteins and small nuclear ribonucleic acids (snRNAs) to create snRNPs (Rossoll & Bassell, 2009).  

 

Figure 2: A schematic of the full length SMN coding exons and protein domains. SMNΔ7 is thought 
to impact SMN oligomerisation by impacting the YG-box, an important primary step for the creation 
of the SMN complex. Exon 8 is untranslated (Renviosé, et al., 2006; Rossoll & Bassell, 2009). 

The snRNPs are responsible for the removal of introns in pre-mRNA in order to control the 

alternative splicing and maturation of mRNA transcripts (Singh & Cooper, 2012). This subsequent 

regulation of splicing is thought to be the primary, canonical function of SMN. Therefore SMN 

deficiency is thought to induce errors in splicing due to faulty snRNP biogenesis, where a correlation 

between SMN-dependant snRNP assembly and SMA severity has been drawn (Burghes & Beattie, 

2009). However, why depletion of a ubiquitously expressed protein resulting in damage to a 

ubiquitous cellular process is detrimental to specifically and solely motor neurons is unknown.  

One solution to this conundrum lies in the preference of SMN depletion to impair production of 

snRNP species that compose the minor spliceosome, as evident in mouse models of SMA (Gabanella, 

et al., 2007). The minor spliceosome is responsible for regulating the splicing of transcripts 

containing U12 introns, which account for less than 0.5% of all introns in the genome (Turunen, 

Niemelä, Verma, & Frilander, 2013). This implies that faulty splicing of U12 introns may play a large 

part in SMA pathogenesis, where genes that motor neurons rely on may possess a higher occurrence 

of containing U12 introns. The gene Stasimon, for example, has been identified in Drosophila and 

zebrafish models as a gene containing a U12 intron, which under SMN depletion is aberrantly spliced 

ultimately resulting in a reduction of Stasimon protein expression (Lotti, et al., 2012). Stasimon is a 

transmembrane protein vital for motor neuronal synaptic homeostasis, and depletion of this protein 

alone displays a phenotype similar to SMA in Drosophila models (Boulisfane, et al., 2010). 

Interestingly, expression and splicing of the murine homolog of Stasimon – Tmem41b – was found to 

be unaltered in an SMA mouse model (Zhang, et al., 2013), suggesting that mis-splicing of Stasimon 

may not translate in SMA patients. Nevertheless, Stasimon is an example of a gene containing a U12 

intron, and therefore promise still lies in examining other genes with U12 introns for altered 

expression under SMN depletion that may be responsible for selective motor neuron vulnerability in 

SMA. However, many groups have turned to identifying non-canonical functions of SMN that may 

lead to motor neuron vulnerabilities while sparing other tissues (Zhang, et al., 2006; Fallini, Bassell, 

& Rossoll, 2012; Garcera, Bahi, Peiyakaruppiah, Arumugam, & Soler, 2013; Gabanella, et al., 2016; 

Singh, Howell, Ottesen, & Singh, 2017).  
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1.4 Other Functions of SMN 

The SMN protein localises to the nuclear gems in order to perform its canonical function of snRNP 

biogenesis (Clelland, Kinnear, Oram, Burza, & Sleeman, 2009), however the SMN protein has also 

been reported in the cytoplasm (MacKenzie & Gendron, 2001). This cytoplasmic localisation is in part 

due to the recruitment of Gemins to form the SMN complex in order to begin snRNP biogenesis 

(Beattie & Kolb, 2018). The ability of SMN to shuttle between the nucleus and the cytoplasm has also 

been shown to be important for the transport of mRNAs across the cell, of particular importance for 

long cells such as neurons (Fallini, Bassell, & Rossoll, 2012). For example, SMN has been shown to 

interact with β-actin mRNA to aid its expression across neurons (Zhang, et al., 2003), which is 

thought to promote the maturation of neuronal axons (Rossoll, et al., 2003). This transport of mRNA 

likely impacts the formation of stress granules – cellular reservoirs of proteins and mRNAs to be 

released under stress conditions (Potter & Parker, 2016); where depletion of SMN has also been 

shown to impair the ability of stress granules formation (Zou, et al., 2011). SMN has also been 

implicated to further regulate gene expression through interactions with transcriptional proteins 

such as RNA polymerase II (Pellizzoni, Charroux, Rappsilber, Mann, & Dreyfuss, 2001), p53 (Young, et 

al., 2002) and Sin3A (Zou, et al., 2004). 

Additionally, SMN deficiency gives rise to defects in endocytosis (Dimitriadi, et al., 2016; Reissland, 

et al., 2017), introducing a neuronal-specific function of SMN through synaptic vesicle control. While 

mis-splicing of endocytic genes may be responsible for this defect, a possible interaction between 

SMN and the cytoskeleton presents an alternative explanation (Nash, et al., 2017). For example, 

SMN has been shown to control actin polymerisation and to interact with cytoskeletal proteins 

Profilin I/II (Bowerman, Shafey, & Kothary, 2007), therefore reinforcing the possibility that endocytic 

defects may arise through altered cytoskeletal integrity in SMA (Bowerman, et al., 2009). 

Furthermore, autophagic markers have been shown to be elevated in murine SMA motor neurons 

(Garcera, Bahi, Peiyakaruppiah, Arumugam, & Soler, 2013), implying that SMN may regulate 

autophagy. This feature has been explored further, where autophagy inhibitors have displayed 

efficacy in improving SMA symptoms in mouse models (Piras, et al., 2017). This myriad of secondary 

functions of SMN emphasises the range of potential therapeutic targets for SMA.  

 

1.5 Genetic Modifiers of SMA 

Considering the multitude of secondary functions of SMN, it stands to reason that a variety of 

pathways can be altered to improve SMA symptoms. This gives rise to a wide range of genetic 

components that can putatively alter the SMA phenotype. As previously discussed, a powerful 

genetic modifier of SMA severity is SMN2, where a positive correlation exists between SMN2 copy 

number and SMA severity (Prior, et al., 2009). To this end, eight copies of SMN2 have been reported 

to fully rescue the SMA phenotype in mice (Monani, et al., 2000). A number of other SMA genetic 

modifiers have been reported in experimental models; however two genetic modifiers have been 

identified in individuals expressing low SMN protein while remaining asymptomatic (Table 2): PLS3 

and NCALD.  

PLS3 encodes the protein Plastin 3, a SMN-associated actin bundling protein that was found to be 

overexpressed in eight asymptomatic females with the same SMN1 and SMN2 genotypes as their 

SMA affected siblings (Oprea, et al., 2008). Interestingly, Plastin 3 is a gender specific genetic 
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modifier of SMA severity since the locus of PLS3 is on chromosome X (Stratigopoulos, et al., 2010). 

Further assessment of PLS3 as a genetic modifier of SMA severity has revealed that overexpression 

of PLS3 in a mouse model of intermediate SMA can improve symptoms and survival by increasing F-

actin levels necessary for axonogenesis (Oprea, et al., 2008). Furthermore, PLS3 overexpression 

enhances the efficacy of a splice switching antisense oligonucleotide therapy (ASO) that increases 

SMN protein production from SMN2 (Kaifer, et al., 2017). Considering that Plastin 3, Profilin and β-

actin have been implicated in SMA pathogenesis (Bowerman, et al., 2009), and that endocytic vesicle 

trafficking is also defective in SMA (Dimitriadi, et al., 2016), cytoskeleton dynamics hold potential as 

an effective therapeutic target for the treatment of SMA. Employing this rationale, application of an 

inhibitor of the RhoA/Rho kinase (ROCK) pathway, a major regulator of the cytoskeleton (Amano, 

Nakayama, & Kaibuchi, 2010), has shown promising improvement to the SMA phenotype in mice 

(Bowerman, Murray, Boyer, Anderson, & Kothary, 2012).  

NCALD encodes the protein Neurocalcin Delta, a neuronal calcium sensor protein, which was found 

to be under-expressed in five asymptomatic individuals carrying homozygous SMN1 mutations and 

four SMN2 copies (Reissland, et al., 2017). Neurocalcin Delta is able to interact with the cytoskeletal 

proteins tubulin and actin, as well as clathrin, which is vital for endocytosis (Kaksonen & Roux, 2018; 

Ivings, Pennington, Jenkins, Weiss, & Buroyne, 2002). Combined with Plastin 3, this emphasises a 

cytoskeletal and endosomal trafficking role in SMA pathogenesis. Interestingly, another 

commonality between Plastin 3 and Neurocalcin Delta is their role in calcium signalling. Both of 

these proteins possess calcium binding EF hand domains, and therefore calcium is vital for these 

proteins to regulate their functions (Lyon, et al., 2014; Ivings, Pennington, Jenkins, Weiss, & Buroyne, 

2002). Considering that abnormal calcium signalling has been reported as a feature of SMA 

(Jablonka, Beck, Lechner, Mayer, & Sendtner, 2007; McGivern, et al., 2013), and that healthy calcium 

signalling is important for both neuronal cytoskeletal homeostasis (Heimfarth, et al., 2016) and 

clathrin-mediated endocytosis (Santos, et al., 2017), it seems likely that PLS3 and NCALD act as 

genetic modifiers of SMA through calcium homeostasis and subsequent regulation of endocytosis 

and the cytoskeleton.  

Besides PLS3 and NCALD, various other genes have been reported to modify disease severity under 

altered expression in experimental models (Table 2). Interestingly, these genetic modifiers are 

implicated in a wide variety of molecular functions, emphasising the multitude of possible pathways 

influenced by SMN. While this makes the identification of a definitive pathogenic function of SMN in 

SMA difficult, it could open many novel opportunities for therapy. 
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Table 2: A variety of genes have been reported to modify SMA severity (Hosseinibarkooie, 
Schneider, & Wirth, 2017). SMN2, PLS3 and NCALD have been identified as genetic modifiers of SMA 
in patients, while PTEN, ZPR1, AGRN and PGK1 were identified as potential modifiers of SMA 
through experimental evidence in model organisms. 

Gene Name Protein Name Function Condition to 
Improve SMA 

Reference 

SMN2 Survival Motor 
Neuron 

RNA processing, 
assembly of splicing 
machinery 

Over 
expression 

Gavrilov, et al., 
1998 

PLS3 Plastin 3 Actin bundling protein Over 
expression 

Oprea, et al., 2008 

NCALD Neurocalcin Delta Neuronal calcium sensor 
regulating endocytosis 

Under 
expression 

Riessland, et al., 
2017 

PTEN Phosphatase and 
Tensin Homology 

Negative regulator of 
PI3K-AKT signalling 

Under 
expression 

Little, et al., 2015 

ZPR1 Zinc Finger Protein 1 Interacts with SMN to 
facilitate interactions 
with mRNA 

Over 
expression 

Ahmad, et al., 
2012 

AGRN Agrin Proteoglycan responsible 
for NMJ development 

Over 
expression 

Boido, et al., 2018 

PGK1 Phosphoglycerate 
Kinase 1 

Glycolytic enzyme Over 
expression 

Boyd, et al., 2017 

 

1.6 Therapeutic Strategies for SMA 

The majority of SMA therapeutic efforts are aiming at improving endogenous SMN protein 

expression since SMA is characterised by the depletion of a single protein. As reviewed by 

d’Ydewalle and Sumner (2015), these current pipeline therapies can be broken into four main 

groups: (a) SMN2 promoter activation (RG3039), (b) SMN2 splicing modulation (Spinraza), (c) SMN1 

replacement therapy (AVXS-101) and (d) neuroprotective therapy (Olesoxime). SMN2 gene 

expression modulators such as the compound RG3039 rely on enhancing SMN2 expression through 

promoter interactions, therefore increasing the amount of full length SMN protein being expressed. 

Unfortunately, promising progress on this compound has been halted after the collaborative effort 

between Repligen and Pfizer ended (Kaczmarek, Schneider, Wirth, & Riessland, 2015). Besides the 

success of Spinraza so far, the AveXis SMN1 gene replacement therapy AVXS-101 has shown promise 

in a recent clinical trial where all SMA type I patients receiving a dose of adeno-associated virus 

carrying SMN cDNA were alive and event free by 20 months of age (Mendell, et al., 2017). In 

addition, Olesoxime is a neuroprotective agent shown to improve symptoms of a range of 

neurodegenerative conditions. This compound achieves its mechanism of action through 

mitochondrial interactions to improve energy production and reduce the release of mitochondrial 

pro-apoptotic factors (Bertini, et al., 2017). Olesoxime is an example of a small group of drugs that 

aim to improve patient outcome without targeting SMN levels. The rationale for the emergence of 

this class of therapy is due to the hypothesis that SMN is important for motor neuron development 

during the embryonic and post-natal stages, rather than the post-mitotic maintenance stage 

(Gabanella, Sarissimi, Usiello, & Pellizzoni, 2005). This suggests that some patients may not benefit 
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from augmenting SMN levels and would better tolerate a therapy targeting the maintenance of 

healthy motor circuits. While Olesoxime has shown patient improvement in milder type II and III 

SMA, it has been concluded that perhaps this neuroprotective agent may prove most beneficial to 

patients in combination with other similar therapies (Bertini, et al., 2017). 

The development of Spinraza has introduced the field of ASO therapies, which presents 

advantageous opportunities for various other diseases. However, without the development of 

competing SMA therapies, treatments may remain inaccessible to the vast majority of families 

affected. Furthermore, the identification of compounds that may benefit other diseases similar to 

SMA can introduce novel therapeutic routes as well as the possibility of combination therapy for 

improved efficacy. Examples of this include the suggested value of the ALS therapy riluzole in SMA 

(Orrell, 2010; Dimitriadi, Kye, Kalloo, Yersak, & Hart, 2013). Pharmaceutical novelty, however, 

requires the identification of innovative differences between healthy and disease state that turns 

out to be advantageous for symptomatic improvement.  

 

1.7 Advent of –omics Techniques to Guide Innovation in SMA Treatment 

The growing popularity in –omics techniques has introduced high-throughput methods of identifying 

alterations between samples. This has unveiled many putative targets for therapy in a number of 

different diseases, with MNDs being no exception. 

Of particular interest in SMA, considering the implied dysfunction of splicing machinery, is the 

utilisation of transcriptomic techniques to identify alternative splicing events in the disease state to 

unveil proteomic targets. This route has proven successful in identifying upregulation of TNFα and 

IL6, among others (in a mouse model of severe SMA), both known to control neural and cardiac 

development (Yang, et al., 2016). Transcriptomic analysis of SMN knockdown in the motor neuron-

like NSC-34 cell line displayed a variety of splicing defects, namely intron retention in transcripts 

from RIT1 – which when over expressed in this model was able to restore neurite defects (Custer, et 

al., 2016). RNA sequencing of multiple tissues from a mouse model of SMA type III has identified U12 

intron retention across all tissues, resulting in mis-splicing of multiple calcium homeostasis genes as 

well as CDK5: a kinase known to be important for neural development that is known to be 

deregulated in multiple other neurodegenerative diseases (Doktor, et al., 2017).  

Epigenetic modulation has been proposed as an effective therapeutic route for SMA, where 

modifying the epigenome is thought to improve the expression of SMN2, subsequently improving 

the levels of SMN protein. The main target for this epigenomic therapeutic approach was through 

interactions with histone deacetylases (HDAC), where HDAC inhibitors such as sodium butyrate and 

valproic acid were shown to improve SMN2 transcription in cell culture and mouse models, albeit 

with limited clinical efficacy in patients (Chang, et al., 2001; Brichta, et al., 2003; Sumner, et al., 

2003; Chuang, Y., Marinova, Kim, & Chiu, 2009; Tisdale & Pellizzoni, 2015).  

Interestingly, little has been achieved with identifying metabolomic targets in SMA (Farrar, et al., 

2017). This approach is of particular importance as forming a fingerprint that separates SMA from 

healthy states can reveal pathways that may otherwise have little genomic, transcriptomic or 

proteomic differences.  
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Glucose metabolism alterations have been identified in SMA patients and mouse models as a result 

of cellular remodelling of the pancreatic islets, where glucagon-producing α cells increase at the cost 

of insulin-producing β cells (Bowerman, et al., 2012; Bowerman, et al., 2014). The resulting lack of 

insulin is the likely cause of the impaired glucose tolerance observed in patients (Davis, Miller, 

Zhang, & Swoboda, 2015). Metabolic disorders are a common consideration for SMA patients due to 

lack of exercise, however it has been acknowledged that glucose metabolism defects may be 

intrinsic to the disease resulting in the recommendation to monitor glucose levels in SMA patients 

(Mercuri, et al., 2018). The downstream implications for altered glucose metabolism in SMA, 

however, have yet to be explored.  

Mitochondrial abnormalities have also been well described in SMA, implying that an energy deficit 

may be, at least in part, responsible for SMA disease progression (Ascadi G. , et al., 2009; Miller, Shi, 

Zelikovich, & Ma, 2016; Xu, Denton, Wang, Zhang, & Li, 2016). These defects, summarised in Table 3, 

ultimately illustrate deficient ATP synthesis from mitochondria that can contribute to a damaged 

energetic state in SMA. This concept supports the SMA phenotype of selective motor neuron 

degeneration, where motor neurons have been described to have a high energy demand, and 

therefore damaged ATP synthesis will preferentially affect motor neurons over other tissues (Le 

Masson, Przedborski, & Abbott, 2014; Malkki, 2016; Perera & Turner, 2016). Additionally, glucose 

metabolism defects could further lower ATP production from glycolysis emphasising the potential 

energy deficit in SMA motor neurons. 

Further evidence of metabolic alterations in SMA stems from examining effects of SMN depletion on 

other tissues besides those of the nervous system. Cardiac defects have been noted in both severe 

SMA patients (Rudnik-Schöneborn, et al., 2008) and mouse models (Bevan, et al., 2010) ranging from 

structural to rhythmic abnormalities. Liver defects have also been reported, where depletion of SMN 

in the liver was shown to induce errors in iron homeostasis and embryonic hepatic development 

(Vitte, et al., 2004). Combined with known pancreatic defects in SMA, these data introduce a multi-

organ phenotype in SMA with a metabolic phenotype theme, where the organs affected in the 

disease either have a high metabolic demand, or a high metabolic contribution (Himilton & 

Gillingwater, 2013). 
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Table 3: Studies reporting metabolic defects in SMA. The studies range from clinical findings to 
experimental discoveries in mouse, zebrafish and 2D cell culture models. Of these findings, glucose 
metabolism abnormalities and mitochondrial dysfunction are common between models of SMA. 

Authors SMA Model Main Findings 

Crawford, et 
al., 1999 

Patients with severe infantile 
SMA 

Altered fatty acid profile in patients compared to 
other denervating disorders; disease severity 
correlated with incidence of diacarboxylic aciduria 

Berger, et al., 
2003 

Muscle biopsies from 
patients with SMA type I-III 

Decrease in mitochondrial DNA relative to nuclear 
DNA; reduction in electron transport chain complex 
II activity and cytochrome c oxidase 

Ascadi, et al., 
2009 

SMN knockdown in NSC-34 
motor neuron-like cells 

Reduced ATP levels, increased mitochondrial 
membrane potential, increased ROS levels, altered 
activity of oxidative phosphorylation enzyme 
Cytochrome c Oxidase 

Butchbach, et 
al., 2010 

SMNΔ7 SMA mice fed with 
two different diets differing 
in fat content 

SMA mice fed a higher fat diet was found to survive 
longer than mice fed the lower fat diet 

Bowerman, et 
al., 2012 

Intermediate SMA mouse 
model, type I SMA patients 

Pancreatic cellular remodelling (increase α cells and 
decrease β cells), hyperglycaemia, 
hyperglucagonemia, glucose resistance 

Bowerman, et 
al., 2014 

Heterozygous SMN depletion 
mouse model, seemingly 
healthy at 1 month 

Introduction to high fat diet induces pancreatic cell 
remodelling, increased hepatic insulin, elevated 
glucagon sensitivity; suggests SMA carriers at risk of 
metabolic disorders 

Davis, et al., 
2015 

Patients with SMA type II Impaired glucose tolerance, hyperinsulinemia, 
insulin resistance, elevated free fatty acid levels and 
reduced plasma amino acids are common features 
between many participants 

Ripolone, et 
al., 2015 

Quadricep muscle biopsies 
from patients with SMA type 
I-III 

Cytochrome c Oxidase deficiency and reduced 
activity of electron transport chain complexes I, II 
and IV were more evident in severe SMA 
phenotypes 

Miller, et al., 
2016 

Motor neurons sourced from 
an SMA mouse model 

Altered expression of mitochondrial bioenergetics 
genes, reduced basal and maximal mitochondrial 
respiration, increases oxidative stress, damaged 
mitochondrial membrane potential, impaired 
mitochondrial transport, increased mitochondrial 
fragmentation during presymptomatic stage of SMA 

Xu, et al., 
2016 

Motor neurons derived from 
SMA type I iPSCs, SMN 
knockdown in motor 
neurons derived from hESCs 

Reduction in mitochondrial number, area and 
transport in axons of both models; application of N-
acetylcysteine (antioxidant) ameliorates 
mitochondrial defects 

Boyd, et al., 
2017 

Severe SMA mouse model, 
morpholino knockdown of 
SMN in zebrafish 

Bioenergetic gene expression in motor neuron 
populations dictates vulnerability to SMA 
progression; enhancing mitochondrial biogenesis 
and over expressing phosphoglycerate kinase 
improves motor axon defects in SMA zebrafish 

Kölbel, et al., 
2017 

Patients with SMA type I-III Hyperleptinemia significantly associated with SMA 
severity and motor function; elevated leptin levels 
prevalent in underweight children with SMA 
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1.8 Project Aims 

Considering the abnormal mitochondria and mounting evidence of glucose metabolism defects in 

SMA (Table 3), we hypothesise that metabolic alterations in patients may be a result of SMN 

depletion that preferentially affects highly energetic tissues such as motor neurons and muscle. The 

work in this thesis focuses on delineating the metabolic defects in SMA, with the ultimate goal to 

identify novel metabolic alterations in SMA that may be exploitable for novel therapeutic 

interventions. To address this, we utilised fibroblasts derived from an SMA type I patient, and 

fibroblasts derived from the two SMA carrier parents of this individual. 

In this study, we aimed to build on current data of an aberrant metabolic environment in SMA by 

identifying alterations in energetic profiles using Agilent Biosciences Seahorse Extracellular Flux 

technologies to measure glycolytic and mitochondrial function. We also utilised fluorometric 

techniques to further describe mitochondrial defects present in these SMA fibroblasts. Finally, 

metabolomic analysis using liquid chromatography-mass spectrometry (LC-MS/MS) was employed to 

identify variances in metabolite profiles between SMA affected and carrier fibroblasts (Figure 3). This 

work is intended to contribute to the growing evidence of metabolic dysfunction in SMA and other 

MNDs and introduce metabolism as a novel potential target for the treatment of this devastating 

disease. 
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Figure 3: The biological questions asked in the current proposal and the experimental procedures 
used to address them. In this thesis, we aimed to address whether SMA fibroblasts demonstrate 
glycolytic, mitochondrial and/or oxidative stress defects, and to identify putative metabolites 
associated with SMN depletion. 
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2. Methods 

2.1 Cell Culture 

Fibroblasts were sourced from Coriell Cell Repository (Camden, NJ, USA) (Table 4). Since different 

tissues vary in their metabolic profile (Shlomi, Cabili, Herrgård, Palsson, & Ruppin, 2008), GM03813, 

GM03814 and GM03815 were chosen for the experiments described here due to their consistent 

tissue type and biopsy source. Furthermore, these fibroblasts are sourced from individuals within a 

family; therefore some degree of genetic control can be maintained within these three cell lines.   

Table 4: Fibroblasts obtained from the Coriell Cell Repository that were used in this study. General 
information and characteristics of the fibroblast cell lines based on the Coriell Cell Repository 
webpages. SMN2 copy number information obtained from Stabley et al, 2017. 

Cell Line 

Number 

Coriell Description Affected Gender Age Biopsy 

Source 

Cell type Tissue 

Type 

SMN2 Copy 

Number 

GM03813 SPINAL MUSCULAR 

ATROPHY I; SMA1 

YES MALE 3 

Years 

Arm Fibroblast Skin 3 

GM03814 SPINAL MUSCULAR 

ATROPHY I; SMA1 

NO FEMALE N/A Arm Fibroblast Skin 5 

GM03815 SPINAL MUSCULAR 

ATROPHY I; SMA1 

NO MALE N/A Arm Fibroblast Skin 1 

 

Fibroblasts were cultured in Dulbecco’s Minimum Essential Medium (DMEM) supplemented with 

15% fetal bovine serum (FBS) (Gibco Lot no. 20470), 100U/mL penicillin and 100ug/mL streptomycin. 

Cells were grown at 37°C in a humidified incubator with 5% (vol/vol) CO2. Fibroblasts transfected 

with SMN shRNAs were cultured in DMEM supplemented with 15% FBS, the aforementioned 

antibiotics and 2 µg/mL puromycin (Invivogen). Sub-culturing required brief washing of attached 

cells with phosphate buffered saline (PBS) followed by incubation with 0.05% trypsin in 0.02% 

Versene for 5-15 minutes to detach cells. Following detachment, cells were collected and 

centrifuged at 180 x g to remove trypsin, and reseeded as necessary. 

Fibroblasts were cryopreserved by re-suspending cell pellets in FBS supplemented with 10% 

dimethyl sulphoxide (DMSO) and aliquoting into 1.5 mL cryotubes. Tubes were incubated in a Mr. 

Frosty Freezing Container (Nalgene) at -80°C for 24-72 hours before transfer into liquid nitrogen for 

long term storage. Cells were thawed by briefly incubating cryotubes in a water bath at 37°C before 

mixing cells with fresh medium. This mixture was centrifuged in order to aspirate DMSO, followed by 

re-suspending the resulting cell pellet in fresh medium and seeding on a 10 cm2 plate. Medium was 

changed the morning after thawing cells to ensure any residual DMSO was removed.  

 

2.2 SMN Knockdown shRNA Preparation 

Lentiviral short hairpin RNAs (shRNAs) targeting SMN transcripts were sourced from the Dharmacon 

RNAi Consortium. Five shRNAs targeting SMN were available from this collection, designated clone 

IDs TRCN0000118702-TRCN0000118706. For the experiments proposed herein, these hairpins were 

renamed shSMNa-shSMNe, respectively. The shRNA constructs are conjugated into the pLKO.1 

vector, therefore a pLKO.1 shGFP construct was used as a negative control for SMN knockdown. 
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Each construct was transformed into MAX Efficiency DH5α Competent cells (Thermo) by the heat 

shock method. 200 ng of each construct was added to aliquots of DH5α cells followed by flicking 

gently and incubation on ice for 30 minutes. Cells were then subjected to heat shock in a 42°C water 

bath for 45 seconds, followed by incubation on ice for 2 minutes. 250 µL of super optimal broth with 

catabolite repression (S.O.C medium – 2% tryptone, 0.5% yeast extract, 20 mM glucose, 10 mM 

sodium chloride, 2.5 mM potassium chloride, 10 mM magnesium chloride, 10 mM magnesium 

sulphate – Thermo) was added to each tube to aid recovery after heat shock. Cells were incubated 

for 60 minutes at 37°C and pipetted onto agar plates containing ampicillin before getting spread 

across the plates evenly. Plates were incubated at 37°C overnight. A colony from each plate was 

picked and dropped into a 2 L Erlenmeyer flask with 250 mL LB broth supplemented with ampicillin. 

Flasks were placed in a shaking incubator overnight at 37°C.  

Bacterial suspension cultures were poured into centrifuge bottles and pelleted at 2,160 x g at 4°C for 

10 minutes. Pellets were re-suspended in 5mL of cold alkaline lysis solution I (50 mM glucose, 25 

mM Tris pH 8, 10 mM EDTA pH 8 in filtered water) and transferred to a 50 mL tube, followed by 

addition of 25 mg lysozyme and incubation at room temperature for 8 minutes. 10 mL of freshly 

made solution II (200 mM sodium hydroxide and 4% SDS in filtered water) was added and incubated 

on ice for 10 minutes with regular agitation. 7.5 mL of solution III (3 M potassium acetate and 115 

mM glacial acetic acid in filtered water) was then added and incubated on ice for a further 10 

minutes. Tubes were then centrifuged at 13,500 x g at 4°C for 20 minutes. The supernatant was then 

discarded and the pellets were air dried for 10 minutes. Once dry, pellets were re-suspended in 4 mL 

TE pH 8 buffer (10 mM Tris pH 8 and 1 mM EDTA pH 8 in filtered water), followed by 2 mL of 7.5 M 

cold ammonium acetate and incubation on ice for 30 minutes. Tubes were then centrifuged for a 

further 10 minutes at 4°C at 9,400 x g. The supernatant was then transferred to a fresh tube, and 12 

mL of cold ethanol was added and incubated overnight at -20°C.  

Tubes were centrifuged at 9,400 x g for 10 minutes at 4°C, the resulting supernatant was discarded, 

and the pellet was left to air dry for 10 minutes. 500 µL of TE pH 8 buffer was used to re-suspend the 

pellets, which was then transferred to a fresh microtube. 1 µL of 10 mg/mL RNase was added to 

each tube and incubated at 37°C for 30 minutes, followed by phenol-chloroform extractions. 250 µL 

cold phenol and 250 µL chloroform was added to each tube and vortexed, followed by centrifuging 

at max speed at room temperature for 5 minutes. The aqueous phase from this tube was transferred 

to a fresh, microtube followed by two further additions of chloroform extractions, pooling each 

aqueous phase into the same tube, followed by addition of 50 µL 3 M sodium acetate. 1 mL of cold 

ethanol was added to each tube followed by spooling the resulting DNA, which was transferred to a 

fresh microtube containing 70% ethanol. Tubes were centrifuged at max speed at 4°C for 5 minutes, 

followed by removal of the supernatant and air drying. Dried DNA pellet were re-suspended with 50 

µL of TE and quantified using a ND-1000 Spectrophotometer (Nanodrop). 

 

2.3 Transfection and Transduction of SMN shRNAs 

Transfection of shRNA constructs required composing a mixture of the shRNA and lentiviral 

packaging vectors. Quantities of each component used are as follows: 0.4ug SVG, 3.7ug GAG, 3.7ug 

REV, 4.2ug shRNA construct. Each mixture was made up to 20uL with PCR grade water. Once these 

DNA mixtures were composed for each shRNA construct, mixtures of 556 µL of room temperature 

serum-free DMEM and 24 µL FuGENE HD Transfection Reagent (Promega) were prepared for each 

DNA mixture. To this, the 20 µL DNA mixture was added for a total transfection mixture of 600uL. 

These transfection mixtures were left to stand at room temperature for 30 minutes. During this 
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time, the medium of 50% confluent HEK293T seeded in 10cm2 plates that were plated the previous 

day was aspirated and replaced with 6mL of fresh DMEM supplemented with 10% FBS. After the 30 

minute incubation, the 600 µL transfection mixtures were added to HEK293T cells dropwise and 

incubated in a humidified 37°C incubator with 5% (vol/vol) CO2 for 6 hours. The medium was then 

removed and replaced with 10 mL fresh DMEM supplemented with 10% FBS and left to propagate 

lentiviral particles for 48 hours. The viral medium was then harvested using a syringe with a 19½ 

gauge needle, and filtered into 1 mL microtube aliquots. These tubes were stored at -80°C for future 

use. 

In preparation for the infection of GM03814 cells, 200,000 cells were seeded per well for each 

shRNA in a 6 well plate. The day after seeding fibroblasts were cultured in 2ml lentiviral-containing 

medium with 4 µg/mL polybrene, and incubated for 24 hours at 37°C. Medium was then replaced 

with fresh DMEM supplemented with 15% FBS for 24 hours to allow the cells to recover from 

infection. Finally, selection began using DMEM supplemented with 15% FBS and 2 µg/mL puromycin 

which was changed every 2-3 days. Knockdown cells were maintained in puromycin medium for the 

experiments described herein.  

 

2.4 Western Blotting 

Plates of 70-80% confluent cells were washed with cold PBS and snap frozen in liquid nitrogen. Lysis 

buffer composed of RIPA Lysis and Extraction Buffer (Thermo) supplemented with 1 µg/mL pepstatin 

A (Sigma), 1 µg/mL leupeptin (Sigma), 250 µM β-glycerophosphate (Sigma), 2 mM sodium 

orthovanoate (Sigma), 1 mM dithiothreitol (Sigma), 10 mM calyculin A (Sigma), and 400 nM 

phenylmethylsulphonyl fluoride (PMSF) (Sigma) was added to cells once thawed on ice. Plates were 

subsequently scraped to collect lysates, followed by centrifugation at 4°C to separate cell debris. 

Resulting supernatants were collected, and protein was quantified by the Bradford method using 

Bio-Rad Protein Assay Dye Reagent. 20 µg of protein from lysates was boiled at 95°C for 15 minutes 

with 4x Laemmli buffer (Bio-Rad) supplemented with 10% β-mercaptoethanol (Sigma), and loaded 

into 4-15% TGX Precast gels (Bio-Rad). Gel electrophoresis was conducted using Bio-Rad Vertical 

Electrophoresis Cell systems at 180V filled with TGS running buffer until gels were suitably resolved. 

Bio-Rad Precision Plus Protein Dual Colour Standards protein ladder was added as a reference 

sample in each gel to calculate protein weight during western blotting. 

After gel electrophoresis, western blot transfer was conducted using Bio-Rad Transblot Turbo 

Transfer Systems and Transfer Packs as per the manufacturer’s instructions. Resulting nitrocellulose 

membranes were stained with Ponceau S stain to compare loading consistency between wells, 

followed by blocking with 5% non-fat milk in Tris-buffered saline with 0.1% Tween-20 (TBS/T) for 1 

hour. Primary antibodies were then added to membranes and incubated overnight on a horizontal 

shaker at 4°C. All primary antibody dilutions used here were composed in a solution of TBS/T with 

5% BSA (Table 5). 
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Table 5: List of the antibodies used in this study for western blot analysis. 

Immunogen Organism 

Source 

Antibody 

Concentration Applied 

Predicted 

Molecular Weight 

(kDa) 

Manufacturer 

SMN Mouse 1:5000 40 BD (#610647) 

Β-actin Rabbit 1:3000 45 Cell Signalling 

Technologies (13E5) 

IMPA1 Rabbit 1:5000 30 Abcam (#ab184165) 

ISYNA1 Rabbit 1:1000 61 Abcam (#ab118241) 

 

1:5000 dilutions of species-specific secondary antibodies conjugated to horseradish peroxidase 

(HRP) in a 5% non-fat milk TBS/T solution were added to membranes for 1 hour. Clarity Western 

Enhanced Chemiluminescence (ECL) Substrate (Bio-Rad) was used to develop antibody bands on 

western blots, which was added to the membrane and incubated for 2 minutes. ECL was then 

removed, and the membrane was imaged using Bio-Rad Chemidoc systems. Images were imported 

into Bio-Rad ImageLab for analysis. 

 

2.5 Seahorse 

Seahorse Biosciences XFe96 Cell Culture Microplate were seeded with 20,000 cells per well in 

quadruplicate and incubated overnight in a humidified 37°C incubator with 5% (vol/vol) CO2 

overnight. A Seahorse XFe96 Sensor Cartridge was also hydrated by adding 200 µL of Seahorse XF 

Calibrant Solution to each well of the utility plate before lowering the cartridge into the wells. The 

cartridge-utility plate combination was then wrapped in cling film to reduce evaporation and left in a 

37°C non-CO2 incubator overnight. 

DMEM without sodium bicarbonate (Sigma) was made freshly based on the specifications required 

by the assay, and buffered to pH 7.4 +/- 0.1. For the Glycolytic Stress Test, medium was 

supplemented with 1 mM sodium pyruvate and 2 mM L-glutamine, while the medium for the 

Mitochondrial Stress Test was supplemented similarly to the Glycolytic Stress Test with the addition 

of 10 mM glucose. Cell culture medium in Seahorse Microplates was removed and washed with 

Seahorse assay medium twice before adding assay media for a final volume of 175 µL in all wells. 

The microplates were then left to calibrate to assay conditions in a 37°C non-CO2 incubator for an 

hour to remove any CO2 that may interfere with ECAR measurements.  

During microplate incubation in the non-CO2 incubator, the Sensor Cartridge was removed from the 

non-CO2 incubator and prepared with the compounds for injection. Each port was filled with 25uL of 

respective compound using an automated multichannel pipette. For the Glycolysis Stress Test, Port A 

was filled with 80 mM glucose for a final concentration after injection of 10 mM, Port B was filled 

with 18 µM oligomycin for a final concentration of 2 µM, and Port C was filled with 1 M 2-deoxy-D-

glucose (2-DG) for a final concentration of 100 mM. For the Mitochondrial Stress Test, Port A was 

filled with 16 µM oligomycin for a final concentration of 2 µM, Port B was filled with 18 µM carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) for a final concentration of 2 µM, and Port C 

was filled with 5 µM of rotenone/antimycin A mixture for a final concentration of 0.5 µM. All drugs 
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were made up in medium respective to the Seahorse assay carried out. Once all ports were filled 

with their respective compounds, the loaded cartridge was inserted into the Seahorse XFe96 

Bioanalyzer to calibrate. Following calibration, the cell microplate was ready to replace the calibrant 

utility plate in the Bioanalyzer after the hour incubation in the non-CO2 incubator. Bioanalyzer 

protocol on Agilent WAVE software was as follows: 3 minute measure, 0 minute wait and 3 minute 

mix, where 5 measurements were taken before injection and 3 measurements were taken after each 

injection.  

After completion of the assay, cell number was measured for normalisation using the CyQUANT 

Direct Cell Proliferation Assay (Thermo). Immediately after removal of the cell microplate, 150 µL of 

medium was removed from each well followed by addition of 100 µL of a 2x mixture of CyQUANT in 

PBS. The microplate was wrapped in aluminium foil and incubated at 37°C for 1 hour. After 

incubation, CyQUANT fluorescence was measured using a microplate reader set to measure 

excitation of 497nm and emission of 520nm.  

 

2.6 ROS and Mitochondrial Membrane Potential Fluorescence 

The fluorescent probes 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester 

(CM-H2DCFDA) (Invitrogen) and MitoSOX (Invitrogen), and the fluorescent dye 

tetramethylrhodamine ethyl ester (TMRE) (Invitrogen) were used to measure general ROS, 

mitochondrial superoxide and mitochondrial membrane potential respectively. For all experiments, 

300,000 cells were seeded per well in a 6 well plate for each cell line in triplicate 48 hours before the 

experiment. Of these triplicate wells, one was to be unstained for background correction, another 

was stained with the probe/dye for basal measurements, and the last was stained with the 

probe/dye with the addition of treatment with a positive control agent. 

For the DCFDA probe, the positive control well was washed with PBS and the medium was replaced 

with DMEM supplemented with 15% FBS and 5 mM tert-butyl hydroperoxide (TBHP) (Sigma), and 

incubated at 37°C for 2 hour. During this incubation, a vial of DCFDA probe was left to acclimatise to 

room temperature in dark conditions, followed by preparation of a 5 mM stock as per the 

manufacturer’s instruction. A 5 µM working stock of DCFDA was then made in phenol red free and 

FBS free DMEM, with which 500 µL was used to replace the existing medium in the basal 

measurement wells and positive control, and incubated at 37°C for 30 minutes. After incubation 

with the DCFDA probe, the cells were washed with Hank’s balanced salts solution (HBSS) and the 

cells from each well were trypsinised using phenol red free trypsin. Once detached, the cells were 

centrifuged, the trypsin aspirated, and the cell pellets re-suspended in 1 mL HBSS and transferred to 

flow cytometry tubes. Tubes were kept on ice until ready for flow cytometry using a BD LSR II Flow 

Cytometer using filter settings for detecting fluorescein (FITC) fluorescence.  

For the MitoSOX probe, the positive control wells were treated with 5 µM rotenone for 15 minutes, 

followed by incubation with 5 µM MitoSOX probe. The cells were trypsinised and collected as per 

the procedure used for the DCFDA probe. Filter settings for detecting phycoerythrin (PE) 

fluorescence were used for flow cytometry. 

For the TMRE dye, the positive control wells were treated with 100 µM FCCP for 15 minutes, 

followed by incubation with 100 nM TMRE for 20 minutes. The cells were trypsinised as per the 

previous procedures for flow cytometry and were re-suspended and collected with a PBS solution of 

0.2% bovine serum albumin. Similarly, filter settings for detecting PE fluorescence were used for 

flow cytometry. 
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2.7 Metabolite Extractions for Liquid Chromatography/Mass Spectrometry 

Extractions were performed on 70-80% confluent attached cells in 6 well plates in triplicate. A day 

prior to the extraction, an extraction solution was prepared comprised of 80% HPLC grade methanol 

and 20% HPLC grade water, which was left to cool at -80°C at least overnight. An hour before the 

extraction, medium was replaced with fresh medium and allowed to incubate at 37°C with 5% CO2.  

Metabolite extractions comprised of adding 1 mL cold 80% HPLC grade methanol prepared earlier to 

each well of attached cells after washing with cold PBS, and incubating for 15 minutes at -80°C. After 

incubation, each well was scraped, and the resulting homogenised cells were pipetted into tubes. 

Tubes were centrifuged at full speed for 15 minutes at 4°C. 700 µL of the supernatant was then 

pipetted into a separate labelled tube and set aside. A further 1 mL of cold 80% methanol was used 

to re-suspend the pellet from the first centrifugation, and centrifuged again for a further 15 minutes 

under the same conditions. 500 µL of the supernatant from this tube was removed and pooled with 

the previous 700 µL. This same process was repeated once more for a total of three pooled 

extractions per sample. All steps were performed on dry ice. The final tube containing the pooled 

supernatants of three metabolite extractions was then vacuum concentrated using a Savant 

SpeedVac Concentrator (Thermo) at room temperature until metabolite pellets are dried. Final 

pellets were stored at -80°C until samples were ready for sample submission for LC/MS. Dried 

metabolite pellets were re-suspended in 25 µL HPLC grade water for LC/MS. 1 µL of this metabolite 

suspension was analysed using Nexera X2 liquid chromatography system (Shimadzu) coupled to a 

QTRAP 6500 mass spectrometer (SCIEX) (Knott, et al., 2018). 

 

2.8 Data Analysis 

Seahorse data was preliminarily analysed using Agilent WAVE software, with further data analysis 

using Microsoft Excel and GraphPad Prism 7.  Glycolysis stress test and mitochondrial stress test 

results were calculated as follows:  

 Glycolysis = Max ECAR after glucose injection – Last ECAR before glucose injection 

 Glycolytic Capacity = Max ECAR after oligomycin injection – Last ECAR before glucose 

injection 

 Non-mitochondrial Respiration = Min OCR after R/A injection 

 Basal Respiration = Last OCR before oligomycin injecton – Non-mitochondrial respiration 

 Maximal Respiration = Max OCR after FCCP injection – Non-mitochondrial respiration 

 ATP Production = Last OCR before oligomycin injection - Min OCR between oligomycin and 

FCCP injection 

 Proton Leak = Min OCR between oligomycin and FCCP injection – Non-mitochondrial 

respiration 

LC/MS peak intensities and chromatograms were analysed using SCIEX MultiQuant 1.1 software, 

which was exported to Microsoft Excel, GraphPad Prism 7 and R Studio for further analysis. Western 

blot data and densitometry was analysed using Microsoft Excel and Bio-Rad Image Lab. Flow 

cytometry data was analysed using Microsoft Excel, BD Biosciences FACSDiva, and Flowing Software. 

Statistical differences between groups were determined using an unpaired Student t test. 
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3. Results 

3.1 SMA Fibroblast Model 

3.1.1 Glycolytic Defects Are Evident In SMA Fibroblasts 

Impaired glucose tolerance has been displayed as a feature in SMA patients and mice (Bowerman, et 

al., 2012), suggesting that glycolysis may be defective as a result of disturbances in glucose uptake 

from the blood. Furthermore, enrichment of the glycolytic enzyme PGK1 has been demonstrated in 

SMA resistant motor neuron populations in SMA zebrafish models; and overexpression of the 

aforementioned protein significantly rescues the defective motor neuron axonal phenotype 

observed in the same zebrafish model (Boyd, et al., 2017). Collectively, these findings suggest a role 

of glycolysis in SMA which we aimed to clarify. 

To better understand a glycolytic alteration in SMA, we measured the extracellular acidification rates 

(ECAR) of fibroblasts derived from a family affected by SMA. Within this family, GM03813 fibroblasts 

derived from an SMA type I affected son, and GM03814 and GM03815 fibroblasts from disease-free 

carrier mother and father, respectively. ECAR, as measured using the Glycolytic Stress Test with the 

Agilent Seahorse XFe96 Bioanalyzer, represents the acidification of the medium from cells, which 

occurs primarily through the extrusion of lactate as a product of glycolysis. 
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Figure 4: Fibroblasts derived from an SMA type I patient display defective glycolysis and glycolytic 
capacity. Agilent Biosciences Glycolysis Stress Test using Seahorse XFe96 Bioanalyzer measures 
extracellular acidification rate (ECAR) of cells under varying glycolytic stress conditions. (A) Line 
graph readout shows ECAR measurements of each population of cells taken every 6 minutes. The 
first 5 measurements are taken in the absence of glucose, followed by 3 measurements after an 
injection of glucose to stimulate glycolysis and subsequently increase ECAR, then 3 measurements 
after an injection of oligomycin to inhibit ATP synthesis thereby increasing the need for glycolysis to 
compensate for the lack of ATP, followed by a final 3 measurements after an injection of 2-deoxy-D-
glucose (2-DG) which acts as a competitive inhibitor of hexokinase that inhibits glycolysis. (B) 
Glycolysis is represented by the difference between the max ECAR measurement after glucose 
injection and the last ECAR measurement before glucose injection, and (C) glycolytic capacity is 
represented by the difference between the max ECAR measurement after oligomycin injection and 
the last ECAR measurement before glucose injection. Asterisks above bars represent significant 
differences compared to GM03813 using unpaired two-tailed student t-test, where p > 0.05 = ns, p < 
0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****. 

The SMA type I fibroblasts GM03813 display lower ECAR levels before glucose administration, and 

even after injection of glucose, ECAR rises much less in this cell line compared to the SMA carrier 

fibroblasts GM03814 and GM03815 (Figure 4A). This difference in ECAR before and after the 

addition of glucose represents basal rates of glycolysis, where GM03813 utilises glucose much less 

than the two carrier fibroblasts (Figure 4B). Furthermore, inhibiting ATP synthase with oligomycin 

results in a smaller rise in ECAR from GM03813 than from GM03814 or GM03815 (Figure 4C). This 

indicates that under reduced mitochondrial ATP production, the fibroblasts sourced from an SMA 

type I patient are less able to use glycolysis to compensate for an energy deficit than the two SMA 
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carrier fibroblasts. Considering that mitochondrial ATP synthesis has been noted to be disrupted in 

SMA (Miller, Shi, Zelikovich, & Ma, 2016), it is interesting that glycolysis was less able to compensate 

for any mitochondrial shortcomings in ATP synthesis. 

 

3.1.2 Mitochondrial Respiration Defects Are Evident In SMA Fibroblasts 

Mitochondrial defects are an established feature of SMA, which have been reported in SMA patient 

muscle biopsies, SMA murine motor neurons and in vitro neuronal models  (Berger, et al., 2003; 

Ascadi, et al., 2009; Ripolone, et al., 2015; Xu, Denton, Wang, Zhang, & Li, 2016; Miller, Shi, 

Zelikovich, & Ma, 2016). This raises an important question of whether ubiquitous SMN depletion 

results in mitochondrial dysfunction specifically in motor neurons and muscles through a tissue-

specific interaction; or whether all tissues are all affected to a similar extent but the high energetic 

requirements of the affected tissues induces the specific vulnerability of motor neurons in SMA. To 

address this, we utilised the Mitochondrial Stress Test with the Seahorse Bioanalyzer to measure 

alterations in oxygen consumption rates (OCR) of the SMA type I fibroblasts GM03813, and the 

disease-free SMA carrier fibroblasts GM03814 and GM03815.  
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Figure 5: SMA type I patient fibroblasts GM03813 display defective basal and maximal respiration 
and reduced ATP production. Agilent Biosciences Mitochondrial Stress Test using Seahorse XFe96 
Bioanalyzer is able to measure changes in oxygen consumption from cells in real-time – the primary 
site of oxygen consumption in the cell being the mitochondria. (A) Line graph readout showing the 
oxygen consumption of a population of fibroblasts under different mitochondrial stressors. Oxygen 
consumption rate (OCR) measurements are taken every 6 minutes, the first 5 of which are under 
basal conditions followed by 3 measurements after an injection of oligomycin to inhibit ATP 
synthase, then 3 measurements after an injection of FCCP to uncouple the electron transport chain 
thereby allowing all protons in the mitochondrial intermembrane space to be oxidised, followed by a 
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final 3 measurements after an injection of rotenone and antimycin A (R/A) to inhibit ETC complex I 
and III - respectively (B) Basal respiration is summarised by the last OCR measurement before 
oligomycin injection, (C) maximal respiration is summarized by the max OCR measurement after 
FCCP, (D) ATP production is summarised by the difference between the lowest OCR measurement 
after oligomycin and last OCR measurement before oligomycin injection, and (E) proton leak is 
summarized by the residual OCR after oligomycin injection. Accurate measurement of basal 
respiration, maximal respiration and proton leakage require subtraction of non-mitochondrial OCR, 
which is the lowest OCR measurement after R/A injection. Asterisks above bars represent significant 
differences compared to GM03813 using unpaired two-tailed student t-test, where p > 0.05 = ns, p < 
0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****. 

Under basal conditions, the SMA type I affected fibroblasts GM03813 display lower OCR compared 

to the two carrier fibroblasts (Figure 5A), indicating that without mitochondrial stressors, basal 

mitochondrial respiration was naturally lower in the SMA affected son compared to both control 

carrier parents (Figure 5B). Furthermore, introducing the mitochondrial uncoupling agent FCCP 

induced a much smaller increase in OCR in GM03813 compared to carrier controls GM03814 and 

GM03815, representing an impaired maximal respiration in GM03813 (Figure 5C). Oligomycin 

inhibits ATP synthase, halting proton flow into the mitochondrial matrix, and therefore a reduction 

in OCR is expected due to the activity of the aforementioned enzyme. Introducing oligomycin 

reduced basal respiration in GM03813 to a lesser extend than in the two carrier fibroblasts, 

suggesting that the SMA type I fibroblasts have a smaller ATP production ability through ATP 

synthase (Figure 5D).  

Determining these parameters requires taking into account any sources of non-mitochondrial 

oxygen consumption. Inhibiting electron transport chain (ETC) complex I and III with rotenone and 

antimycin A, respectively, halts the flow of electrons to complex IV where oxygen is ultimately 

consumed to produce water (Li, Park, Deng, & Bai, 2006). In combination, these compounds 

eliminate mitochondrial oxygen consumption, therefore any OCR readings taken after injection of 

these drugs reflects non-mitochondrial OCR. This is important for determining proton leakage from 

mitochondria, where residual OCR after inhibiting complex I, III and ATP synthase represents the 

oxidation of protons leaking through the inner membrane into the matrix. Interestingly, while 

respiration and ATP synthesis was shown to be significantly diminished in the SMA type I fibroblasts, 

proton leakage was unaltered compared to the disease-free SMA carrier fibroblasts (Figure 5E). 

Proton leakage generally indicates inefficient mitochondrial coupling, resulting in reduced ATP 

production (Smith, Hartley, Cocheme, & Murphy, 2012). Defective mitochondrial bioenergetics 

without proton leakage, however, suggests that these respiration defects may not concern the 

maintenance of a proton gradient across the mitochondrial membrane. Considering that complex IV 

(Cytochrome c Oxidase) of the ETC has been reported to be deficient in SMA (Berger, et al., 2003), 

and that complex IV deficiency can induce a phenotype similar to SMA (Rubio-Gozalbo, et al., 1999; 

Salviati, et al., 2002), it is possible that defective ETC in SMA may be responsible for the 

mitochondrial dysfunction reported herein. 

 

3.1.3 SMA Fibroblasts Display Reduced Reactive Oxygen Species and Impaired 

Mitochondrial Membrane Potential 

The data presented here suggests that mitochondrial respiration defects are a feature of SMA in 

tissues other than motor neurons. A possible explanation for this mitochondrial dysfunction may be 

due to defective ETC, which is known to correlate with an increase in the production of destructive 

reactive oxygen species (ROS) (Murphy, 2009). Increased ROS has been reported by multiple sources 
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as a feature of mitochondrial dysfunction in murine and neuronal in vitro SMA models (Ascadi, et al., 

2009; Miller, Shi, Zelikovich, & Ma, 2016; Xu, Denton, Wang, Zhang, & Li, 2016). However, there has 

been little consideration to whether elevated ROS is evident in other tissues due to ubiquitous SMN 

depletion.  

 

Figure 6: SMA type I patient fibroblasts GM03813 have reduced levels of ROS, mitochondrial 
superoxide, and mitochondrial membrane potential. (A) DCFDA fluorescence intensity values 
normalised to GM03813 fibroblasts. TBHP was used as a positive control to induce DCFDA 
fluorescence. (B) MitoSOX fluorescence intensity values normalised to GM03813 fibroblasts. 
Rotenone was used as a positive control to induce MitoSOX fluorescence. (C) TMRE fluorescence 
intensity values were normalised to GM03813 fibroblasts. FCCP was used as a positive control to 
reduce TMRE fluorescence. Percentage values above checked bars indicate the percent increase or 
decrease fluorescence when introduced to the positive control agent. Asterisks above bars represent 
significant differences compared to GM03813 using unpaired two-tailed student t-test, where p > 
0.05 = ns, p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****. 
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Using the General Oxidative Stress Indicator CM-H2DCFDA, we are able to measure intracellular 

levels of ROS fluorometrically. This probe is able to diffuse into cells where intracellular esterases 

cleave the acetate groups, and CM-H2DCFDA is now able to react with thiol containing compounds, 

that get subsequently oxidised (Eruslanov & Kusmartsev, 2010). The probe fluoresces after this 

oxidation, resulting in a probe that cannot exit the cell. Pre-treatment of cells with the cell 

permeable tert-butyl hydrogen peroxide (TBHP) elevates DCFDA fluorescence by increasing 

intracellular levels of hydrogen peroxide (H2O2), thereby acting as a positive control for high ROS 

(Roy & Sil, 2009). Interestingly, the SMA type I fibroblasts GM03813 exhibited a much lower 

fluorescence using this probe compared to the SMA carrier fibroblasts (Figure 6A) indicating that 

reduced ROS may be a feature of SMA type I fibroblasts. 

The fluorescent mitochondrial superoxide indicator MitoSOX measures specifically superoxide (O2
•-) 

radicals. This subset of ROS is an important measurement of mitochondrial function because it is the 

product of oxygen reduction by electrons leaking from the ETC (Turrens, 2003). The positive charge 

of MitoSOX directs the molecule to the mitochondrial membrane where it fluoresces upon local 

oxidation by superoxide (Mukhopadhyay, et al., 2007). Pre-treating cells with the complex I inhibitor 

rotenone forces electrons out of the ETC and increases the production of superoxide (Li, Jen, Yu, & 

Hsiai, 2011), thus elevating MitoSOX fluorescence. Reflecting the reduced DCFDA fluorescence in 

Figure 6A, GM03813 also displays lower MitoSOX fluorescence compared to GM03814 and 

GM03815 control carriers (Figure 6B). 

Finally, we used the fluorescent dye TMRE to measure mitochondrial membrane potential in the 

fibroblasts of the same SMA family. The positive charge of TMRE allows it to readily bind the 

mitochondrial membrane; however, the binding of the dye to the mitochondrial membranes relies 

on the membrane retaining its own negative charge. Weakening of the mitochondrial membrane 

proton gradient results in depolarisation of the mitochondrial membrane, which reduces the binding 

of TMRE to the membrane (Christensen, Jansen, Sanchez, & Waterhouse, 2013). Addition of the 

uncoupling agent FCCP allows protons to leak from the intermembrane space, therefore depolarising 

the outer membrane and acting as a positive control for TMRE (Joshi & Bakowska, 2011). 

Depolarised mitochondrial membrane is a pathological feature described in SMA motor neurons 

(Miller, Shi, Zelikovich, & Ma, 2016), however we aimed to expand on these findings to assess 

mitochondrial function in SMA fibroblasts. Indeed, TMRE fluorescence was reduced in the SMA type 

I fibroblasts compared to the two carrier controls, indicating that mitochondria in GM03813 have a 

lower membrane potential compared to GM03814 and GM03815 (Figure 6C).  

 

3.2 SMN Knockdown Model 

3.2.1 SMN Knockdown Causes a Glycolytic Defect in SMA Carrier Fibroblasts 

Previously, we identified a glycolytic defect in SMA type I fibroblasts compared to fibroblasts derived 

from two disease-free SMA carriers. However, since the fibroblasts derived from the SMA family are 

sourced from three separate individuals, the differences described herein among GM03813, 

GM03814 and GM03815 may be caused by another genetic variability. In order to confirm that SMN 

depletion induces a glycolytic defect, we employed the Glycolytic Stress Test with stable lentiviral 

SMN knockdown in GM03814 carrier fibroblasts.  
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Figure 7: SMN knockdown in GM03814 SMA carrier fibroblasts induced similar glycolytic defects to 
those observed in SMA type I patient fibroblasts. ECAR levels were measured in GM03814 carrier 
fibroblasts treated with a stable lentiviral knockdown of SMN (shSMNa and shSMNe), or an shGFP 
control. (A) Line graph readout displays ECAR measurements taken every 6 minutes with compound 
injections as noted in Figure 4. (B) Glycolysis is represented by the difference between the max ECAR 
measurement after glucose injection and the last ECAR measurement before glucose injection, and 
(C) glycolytic capacity is represented by the difference between the max ECAR measurement after 
oligomycin injection and the last ECAR measurement before glucose injection. Efficiency of SMN 
knockdown can be observed in Figure 11B. Asterisks above bars represent significant differences 
compared to GM03814 shGFP using unpaired two-tailed student t-test, where p > 0.05 = ns, p < 0.05 
= *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****. 

Knockdown of SMN led to a noticeable increase in ECAR before the addition of glucose, while 

glucose addition led to an increase in ECAR but to a similar level as shGFP (Figure 7A). Ultimately, 

this equates to a reduction in basal glycolysis, because ECAR was increased to a lesser extent in both 

knockdowns of SMN in response to glucose injection compared to the shGFP control (Figure 7B). 

Furthermore, ECAR increase was lower in both SMN knockdown fibroblasts in response to 

oligomycin compared to the shGFP control (Figure 7C), implying that SMN knockdown induces 

defects in both basal glycolysis and glycolytic capacity when mitochondrial ATP synthesis was 

inhibited. These results suggest that a glycolytic defect in SMA may be a direct response to SMN 

depletion.  
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3.2.2 SMN Knockdown Does Not Induce a Mitochondrial Defect in SMA Carrier Fibroblasts 

Previously, we have identified mitochondrial defects in SMA fibroblasts (Figure 5). In order to clarify 

whether this feature was directly associated with SMN depletion, we employed the Mitochondrial 

Stress Test with stable lentiviral SMN knockdown in GM03814 carrier fibroblasts. 

A 
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Figure 8: SMN knockdown in SMA GM03814 carrier fibroblasts does not induce a mitochondrial 
defect. OCR levels were measured in GM03814 fibroblasts treated with a stable lentiviral 
knockdown of SMN (shSMNa and shSMNe), or a shGFP control. (A) Line graph readout display OCR 
measurements taken every 6 minutes with compound injections as noted in Figure 5. (B) Basal 
respiration is summarised by the last OCR measurement before oligomycin injection, (C) maximal 
respiration is summarised by the max OCR measurement after FCCP, (D) ATP production is 
summarised by the difference between the lowest OCR measurement before oligomycin injection 
and the last OCR measurement before oligomycin injection, and (E) proton leak is summarised by 
the residual OCR after oligomycin injection. Basal respiration, maximal respiration and proton 
leakage take into account non-mitochondrial OCR. Efficiency of SMN knockdown can be observed in 
Figure 11B. Asterisks above bars represent significant differences compared to GM03814 shGFP 
using unpaired two-tailed student t-test, where p > 0.05 = ns, p < 0.05 = *, p < 0.01 = **, p < 0.001 = 
***, p < 0.0001 = ****. 

Interestingly, little difference in OCR was observed after SMN knockdown suggesting that SMN 

depletion may not directly induce mitochondrial dysfunction leading to an energy deficit (Figure 8A). 

SMN knockdown marginally elevated OCR, however OCR was not altered to the same degree as in 

GM03813 compared to GM03814 mother or GM03815 father (Figure 5). While the OCR difference 

between the fibroblasts in Figure 5 may be due to genetic variability between these family members, 

this is less likely among GM03813 and GM03814 due to the maternal mitochondrial relationship 

between these two individuals. Therefore, any mitochondrial differences between these two 

fibroblasts are more likely to be caused by SMA rather than a genetic variability.  

 

3.2.3 SMN Knockdown Does Not Affect ROS to the Same Degree as in SMA Patients 

Since SMN knockdown did not induce the same mitochondrial OCR defects observed in GM03813 

fibroblasts, we aimed to elaborate on this by assessing whether ROS was altered under SMN 

knockdown in GM03814 fibroblasts. The fluorescent probes DCFDA, MitoSOX and the fluorescent 

dye TMRE were utilised as described in Figure 6, where general ROS, mitochondrial superoxide and 

mitochondrial membrane potential were measured in SMN knockdown GM03814 fibroblasts.  
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Figure 9: SMN knockdown in SMA carrier fibroblasts GM03814 does not alter ROS, mitochondrial 
superoxide or mitochondrial membrane potential as in SMA patient fibroblasts. (A) DCFDA 
fluorescence intensity values normalised to GM03814 shGFP fibroblasts. TBHP was used as a positive 
control to induce DCFDA fluorescence. (B) MitoSOX fluorescence intensity values normalised to 
GM03814 shGFP fibroblasts. Rotenone was used as a positive control to induce MitoSOX 
fluorescence. (C) TMRE fluorescence intensity values normalised to GM03814 shGFP fibroblasts. 
FCCP was used as a positive control to reduce TMRE fluorescence. Percentage values above checked 
bars indicate the percent increase or decrease fluorescence when introduced to the positive control 
agent. Efficiency of SMN knockdown can be observed in Figure 11B. Asterisks above bars represent 
significant differences compared to GM03813 using unpaired two-tailed student t-test, where p > 
0.05 = ns, p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****. 
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SMN knockdown in GM03814 using hairpin shSMNa induced a small decrease in ROS (Figure 9A) and 

mitochondrial membrane potential (Figure 9C), but did not alter mitochondrial superoxide (Figure 

9B). However, the degree with which these parameters were reduced was negligible when 

compared to the reduction of ROS levels and mitochondrial membrane potential observed in 

GM03813 compared to the SMA carrier fibroblasts (Figure 6). Similarly, SMN knockdown induced 

marginal variation to mitochondrial OCR using the Mitochondrial Stress Test (Figure 8). SMN 

knockdown with shSMNe, however, induced a massive elevation in both DCFDA and MitoSOX 

fluorescence (Figure 9A and 9B), contrary to SMN knockdown with shSMNa. Considering that SMA 

fibroblasts display reduced ROS (Figure 6), the elevated ROS observed from shSMNe was likely to be 

a result of an off-target effect from this hairpin. Further examination into whether elevated ROS is a 

result of SMN depletion in fibroblasts is required to confirm if the phenotype seen from shSMNe 

herein was reliable. 

 

3.3 LCMS Metabolomics 

3.3.1 LCMS Analysis Reveals Common Metabolite Signatures among Type I SMA Patient 

and SMN Knockdown 

Alterations in metabolic pathways can lead to disease states through imbalances in energetic 

systems, or through accumulation/deprivation of metabolites that would otherwise be strictly 

controlled in a healthy system (Xiao, Zhou, & Ressom, 2012). To assess the importance of the latter 

of these points, we utilised liquid chromatography/mass spectrometry (LCMS) to identify 

significantly upregulated or downregulated metabolites resulting from SMN depletion.  
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Figure 10: Metabolites are significantly altered after SMN knockdown in GM03814 fibroblasts. 
Volcano plots displaying metabolites with significantly altered metabolite peak intensity between (A) 
GM03814 shGFP and GM03814 shSMNa and (B) GM03814 shGFP and GM03814 shSMNe. Each point 
represents one metabolite measured, and coloured points indicate metabolites with a significant 
difference between shGFP and SMN knockdown (-Log10 p value > 1.3 = p value < 0.05) that also 
satisfied a cut-off point above 1 Log2 fold change or below -1 Log2 fold change . Red points depict 
metabolites that had lower peak intensity after SMN knockdown, and green points depict 
metabolites that had higher peak intensity in after SMN knockdown. Significant differences in 
metabolite peak intensity were determined using unpaired two-tailed student t-test. 

 

A 
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A 
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In order to elucidate metabolite signatures in SMA, metabolites that were significantly altered 

between SMN knockdowns and shGFP control that also fulfilled the Log2 fold change cut-off point 

were first identified (Figure 10). After correcting for metabolites with weak chromatogram peaks 

compared to the LCMS reference samples, the remaining metabolites were then cross-referenced 

against metabolites altered between the SMA type I fibroblasts GM03813, and the SMA carrier 

fibroblasts GM03814 and GM03815. This stringent screening process ensures that metabolites that 

do not follow the same pattern within the family and knockdown fibroblasts are not erroneously 

followed up on. Sarcosine, for example, was significantly reduced in both SMN knockdown 

fibroblasts compared to shGFP and satisfied the cut-off point, yet was not significantly altered 

between GM03813 and either GM03814 or GM03815. 

Of the metabolites analysed here, myoinositol (mI) was significantly upregulated in both SMN 

knockdowns compared to the shGFP control, as well as in GM03813 compared to both GM03814 

and GM03815 SMA carriers (Figure 11A). Of particular note, while SMA carrier fibroblasts GM03815 

present with low SMN protein levels (Figure 11B), mI levels in these fibroblasts are significantly 

lower than in the SMA type I fibroblasts GM03813, suggesting that elevated levels of mI are a 

feature of SMA. Furthermore, considering the relationship between mI and glucose metabolism 

(Dinicola, et al., 2017), we speculate that the accumulation of mI in SMA warrants further 

investigation. 

 

3.3.2 De Novo Myoinositol Synthesis is Altered in SMA Fibroblasts 

In order to assess the effect of mI upregulation in the SMA fibroblasts, we investigated alterations in 

relevant-associated ml pathways. mI is known to build up through two main pathways: influx 

through the mI-sodium co-transporter SLC5A3, or de novo biosynthesis from a glucose precursor (Di 

Daniel, Kew, & Maycox, 2009). Since we have described a glycolytic defect in both SMA patient 

fibroblasts and SMN knockdown in SMA carrier fibroblasts, we believed that the latter of these two 

pathways was most plausibly altered.   
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Figure 11: Myoinositol (mI) levels are elevated in both SMA type I patient fibroblasts GM03813 
and SMN knockdown in GM03814 carrier fibroblasts due to elevated levels of de novo myoinositol 
synthesis pathway enzymes. (A) mI levels are significantly elevated in GM03813 fibroblasts 
compared to both SMA carrier fibroblasts, as well as both SMN knockdowns in GM03814 compared 
to the shGFP control. Asterisks above bars represent significant differences using unpaired two-
tailed student t-test, where p > 0.05 = ns, p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = 
****. (B) De novo mI synthesis enzymes inositol-3-phosphate synthase (ISYNA1) and inositol 
monophosphatase (IMPA1) are both elevated upon SMN depletion in GM03813, GM03815 and a 
panel of SMN knockdowns in GM03814, as determined by western blot. (C) mI synthesis acts as an 
offshoot pathway of glycolysis, where once glucose has been phosphorylated by hexokinase (HK) 
into glucose-6-phosphate (G-6-P), the initial stage of inositol synthesis can begin. Inositol phosphate 
synthase (ISYNA1) creates the initial mI ring from G-6-P, which can then be dephosphorylated by 
inositol monophosphatase (IMPA1) to create mI. mI can also be exchanged with the extracellular 
matrix through the sodium cotransporter SLC5A3. Addition of glyceride groups to intracellular mI 
through CDP-diacylglycerol inositol phosphatidyltransferase (CDIPT) creates phosphatidylinositol 
(PI), which can be phosphorylated at any site free on the inositol ring. The best characterised use for 

B C 

A 



41 | P a g e  
 

PI is through PI3K signalling, where phosphorylation of PI through PI4K and PI5K to create PIP2 occurs 
at the intracellular side of the membrane. PIP2 can be phosphorylated further by PI3K to create PIP3, 
a metabolite important for growth and survival signalling through AKT. PTEN can reverse the action 
of PI3K however, to replenish PIP2 , which can be recycled into the mI pool by cleavage of the 
glyceride groups through phospholipase C (PLC) to create inositol triphosphate (IP3), followed by 
serial dephosphorylations through inositol polyphosphatases (INPP5 and INPP3). IP3 is also an 
important intracellular signalling molecule, which is able to stimulate calcium release from the 
endoplasmic reticulum through activation of the inositol triphosphate receptor (IP3R) (Harwood, 
2011). 

mI is an alternative product from the glycolysis intermediate glucose-6-phosphate (G-6-P) (Bizzarri, 

Fuso, Dinicola, Cicina, & Bevilacqua, 2016). Two key enzymes are required for the synthesis of mI 

from G-6-P. First, inositol-3-phosphate synthase (ISYNA1) catalyses the cyclisation of G-6-P into mI-

phosphate (mI-P), which is then dephosphorylated by inositol monophosphatase (IMPA1) to create 

mI (Rapaport, Primiani, Chen, Ahn, & Ryan, 2015). By western blot, levels of both ISYNA1 and IMPA1 

were strikingly increased in both the SMA affected GM03813, and a range of SMN knockdowns 

(Figure 11B). Interestingly, levels of both of these enzymes were also elevated in GM03815, implying 

that the upregulation of de novo mI synthesis enzymes is dependent on SMN depletion, and that the 

subsequent regulation of this elevated mI synthesis may be responsible for sparing this individual 

from SMA. Considering the variety of function that mI can fulfil as a signalling molecule (Figure 11C), 

investigating the consequences of altered de novo mI synthesis in SMA might introduce a novel 

therapeutic opportunity.   
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4. Discussion 

4.1 Main Findings 

It has been well documented that depletion of the SMN protein causes SMA; however why loss of 

this ubiquitously expressed protein results in specifically motor neuron vulnerability remains a 

heavily debated issue (Monani, 2005). Given that SMN depletion has been shown to affect other 

tissues besides motor neurons (Malkki, 2016), investigating the metabolic features of other cell 

types from SMA patients could help with understanding the causative mechanisms of some of the 

clinical manifestations. In this study, we identify both a glycolytic and mitochondrial defect in an 

SMA type I patient, and that SMN knockdown in fibroblasts derived from a healthy SMA carrier is 

sufficient to induce a glycolytic defect. Furthermore, metabolomic profiling using LC/MS identified 

elevated mI as a feature in SMA type I fibroblasts and SMN knockdown carrier fibroblasts. This 

elevation in mI appears to be driven, at least in part, by increased levels of the de novo mI synthesis 

enzymes IMPA1 and ISYNA1, supporting a model whereby SMN depletion causes glucose to be 

redirected away from energy production from glycolysis towards mI synthesis. Collectively, these 

findings support the premise that metabolic processes responsible for energy production are 

commonly defective across affected and unaffected tissues from SMA patients opening new roads to 

novel therapeutic opportunities.  

 

4.2 The Role of Glycolysis in SMA 

While mitochondrial homeostasis has drawn the majority of the attention concerning metabolic 

defects in neurodegeneration, it is widely accepted that glucose acts as the primary fuel for the 

central nervous system (CNS) (Mergenthaler, Linauer, Dienel, & Meisel, 2013). Fatty acids as a 

metabolic fuel require extensive oxygen utilisation through β-oxidation potentially leading to 

hypoxia, and a larger yield of superoxide, which neurons are particularly susceptible to (Schönfeld & 

Reiser, 2013; Speijer, Manjeri, & Szklarczyk, 2014; Wang & Michaelis, 2010). Furthermore, amino 

acid metabolism in a neuronal setting generally increases toxic ammonia production and 

subsequently damages neurons (Honegger, et al., 2002). For these reasons, glucose remains the 

main energy substrate in the CNS (Camandola & Mattson, 2017). Since neurons have higher glucose 

dependencies than other cells, it stands to reason that glycolytic errors can be detrimental in a 

neuronal setting in vivo. Furthermore, since glycolysis provides an essential source of the Krebs cycle 

and the electron transport chain (ETC) intermediates for mitochondrial ATP production in neurons, 

glycolytic defects could impose detrimental effects on the cell’s energy state both directly and 

indirectly through poorly supplied mitochondria. This fits with our hypothesis of an inefficient ETC 

that may not necessarily be damaged. 

Here, we show that SMA affected fibroblasts are not only characterised by a glycolytic defect 

compared to carriers, but SMN knockdown alone is sufficient to induce this change. While drawing 

causation between SMN depletion and defective glucose utilisation in SMA would be premature, it is 

worth noting that a glycolytic defect was not identified in GM03815 (Figure 4) despite low SMN 

levels. Together with the hypothetical ability of GM03815 to prevent mI accumulation under SMN 

depletion (Figure 11A), it is plausible that the individual whom GM03815 fibroblasts were sampled 

from may remain asymptomatic by correcting the preference for mI synthesis over glycolysis 
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induced by SMN depletion – which was also apparent in the knockdown model (Figure 7). To further 

confirm this, assessing the activity of glycolytic enzymes in SMA affected fibroblasts would build 

credibility to the notion that glucose utilisation is different under SMN depletion. 

Further evidence of the importance of glycolysis has been presented in a zebrafish model of SMA. 

Elevated expression of phosphoglycerate kinase 1 (PGK1) has been identified in motor neuron 

populations that were resistant to SMA progression, and PGK1 knockdown has been shown to 

phenocopy SMA (Boyd, et al., 2017). This fits with the current understanding of neuronal energetic 

demands, where neuronal synapses have highly dynamic energetic requirements during action 

potentials, and the instant bursts of ATP supplied by glycolysis are likely vital for signal transduction 

and subsequent neuronal homeostasis. To account for this high energy demand, glycolytic enzymes 

have been shown to localise across synapses in C. elegans, and loss of glucose uptake proteins such 

as GLUT4 can arrest synaptic vesicle uptake in a similar fashion to glucose withdrawal (Jang, et al., 

2016; Ashrafi, Wu, Farrell, & Ryan, 2017). Collectively, these findings present an image of neurons 

fulfilling a large portion of energy requirements through glycolysis, and that impairment of this 

pathway neutralises their ability to achieve successful action potentials. 

While a glycolytic defect may induce energetic deficiencies that impair neuronal function, it remains 

to be seen whether defects in glycolysis can be solely responsible for selective motor neuron 

vulnerability in SMA. Other sources that have also identified a glycolytic or oxidative 

phosphorylation defect in MNDs generally conclude that these impairments may result in a 

diminished energetic state, yet fail to explain why specifically motor neurons remain the primary 

neuronal tissue affected (Ascadi, et al., 2009). While it is possible that motor neurons have a much 

higher energy demand than any other neuronal cell types, this is yet to be shown. If this is the case, 

the wide range of SMA severities should present with degeneration of other tissue types due to 

varying grades of energetic impairments. While many highly energetic tissues have indeed been 

reported to be affected in SMA, other neuronal tissues in the CNS with high energy demands are 

spared. Therefore, additional consequences of SMN depletion may harmonise with energy 

deficiency to induce selective motor neuron degeneration observed in SMA. 

 

4.2 The Role of Mitochondria in SMA 

Mitochondrial dynamics are known to be altered in SMA, however the role of mitochondrial 

dysfunction in SMA pathophysiology is still unclear - whether it is defective bioenergetics, altered 

oxidative stress, faulty control and release of pro-apoptotic factors, or a combination of many 

mitochondrial functions (Ascadi, et al., 2009; Miller, Shi, Zelikovich, & Ma, 2016; Xu, Denton, Wang, 

Zhang, & Li, 2016).  

Here we describe mitochondrial dysfunction in SMA fibroblasts presenting with reduced OCR, which 

is a strong indication for impaired respiration and concomitant decrease in energy production 

(Figure 5). Furthermore, these SMA fibroblasts have reduced general ROS, mitochondrial superoxide 

levels, and mitochondrial membrane potential (Figure 6). These findings suggest that mitochondria 

in these SMA type I fibroblasts are less efficient in energy production as a result of an impaired 

ability to maintain a healthy proton gradient. A likely explanation for this feature is that SMA causes 

alterations in ETC enzymes implying an increasing paucity of mitochondria. Interestingly, such 
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alterations in complex II and Cytochrome c have been reported in SMA affected cells, yet their 

mitochondrial number remains the same (Berger, et al., 2003). Furthermore, various reports of 

Cytochrome c Oxidase deficiency in infants resulting in a phenocopy of SMA reinforces a link 

between ETC alterations and SMA pathogenesis (Rubio-Gozalbo, et al., 1999; Salviati, et al., 2002). 

Other groups have also noted mitochondrial dysfunction as a feature of SMA mouse model motor 

neurons, which was not recapitulated in midbrain neurons from the same animal (Miller, Shi, 

Zelikovich, & Ma, 2016). Collectively these data and our findings suggest that mitochondrial 

dysfunction is a feature of motor neurons and fibroblasts, but not other tissues such as midbrain 

neurons. It would therefore be prudent to investigate whether mitochondrial dynamics are altered 

in other tissues besides dermal fibroblasts. Considering the role of SMN in splicing machinery, it is 

possible that tissue-specific variants of mitochondrial proteins may be altered more severely in 

motor neurons and fibroblasts than in midbrain neurons giving rise to this variance. This has indeed 

been shown to be a feature in SMA mouse models, where changes in snRNAs varied between 

tissues, suggesting that splicing defects in SMA may also vary between tissues (Zhang, et al., 2008). 

Therefore, while mitochondrial proteins may be altered in spinal cord tissues, other tissues may be 

less affected. Identifying alternatively spliced mitochondrial proteins between SMA tissues is vital for 

assessing whether neuronal-specific mitochondrial dysfunction is an important pathogenic process 

in SMA. 

Many reports of mitochondrial dysfunction in SMA assess the role of oxidative stress in pathogenesis 

(Berger, et al., 2003; Ascadi, et al., 2009; Miller, Shi, Zelikovich, & Ma, 2016; Patitucci & Ebert, 2016). 

Generation of ROS as a result of mitochondrial dysfunction can further exacerbate cell damage 

(Zorov, Juhaszova, & Sollott, 2014), and therefore may also be a driving factor for motor neuron 

degeneration. Increased free radical production has been described as a feature of mitochondrial 

dysfunction in SMN knockdown in murine motor neuron-like NSC-34 cells, and in SMA mouse motor 

neurons (Ascadi G. , et al., 2009; Miller, Shi, Zelikovich, & Ma, 2016). However, human iPSC-derived 

SMA astrocytes and motor neurons displayed no significant difference in mitochondrial respiration, 

and reduced ROS compared to a healthy control (Patitucci & Ebert, 2016). Furthermore, catalase 

expression in these astrocytes was found to be significantly elevated, suggesting an improved ability 

to metabolise ROS. Together with our findings, this suggests that elevated oxidative stress may only 

be a feature of SMA in murine models, whereas patient derived in vitro models of SMA presents 

with reduced oxidative stress. It would also be imperative to determine whether the reduced ROS 

observed in the SMA patient fibroblasts described herein is also due to enhanced expression of 

catalase.  

 

4.3 Fibroblasts as a Model for SMA 

Typically when modelling a disease, utilising the affected tissue in vitro will portray the pathological 

features. However, SMA presents a unique opportunity where aside the motor neurons which are 

primarily affected, patient-derived fibroblasts are commonly utilised to identify molecular 

mechanisms that may be altered under the disease state (Fuller, et al., 2016). The family fibroblast 

model described herein has been used by many other groups, and presents many vital controllable 

aspects for metabolic phenotyping. For example, the fibroblasts GM03813, GM03814 and GM03815 

were all sampled from the same biopsy site (Table 4), which is ideal for characterising their 
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metabolism since different tissues vary in their bioenergetic requirements and metabolic profiles 

(Deidda, Piras, Bassareo, Seddalvi, & Mercuro, 2015). While this model can be advantageous for 

these experiments, obvious drawbacks must be accounted for, namely the genetic variability 

between the three individuals of the family model that may interfere with the results. For this 

reason, we introduced SMN knockdown experiments in GM03814 – the carrier mother – that had 

the highest endogenous SMN levels (Figure 11B). 

The fibroblasts derived from the carrier father (GM03815) has been a riddle to many authors in the 

past, due to this cell line expressing very low levels of SMN, even lower than the SMA type I affected 

son, GM03813 (Figure 11B). It is known that the SMA affected son had a brother that also suffered 

from SMA, leading to some groups claiming that GM03815 was the brother rather than the father of 

GM03813 (Wan, et al., 2005). Through our own STR profiling (Supplementary Table 1), and digital 

PCR evidence from another group (Stabley, et al., 2017), we are confident that GM03815 is indeed 

the father of GM03813. This leaves some confusion as to why the father has lower levels of SMN 

than in the SMA type I son, yet according to Coriell Cell Repository, GM03815 was sourced from a 

clinically unaffected carrier. Various SMA genetic modifiers have been noted that may account for 

the asymptomatic state of this individual without modifying the endogenous SMN levels (Table 2) 

(Oprea, et al., 2008; Reissland, et al., 2017). However, identifying this modifier was beyond the scope 

of this study. It is, however, interesting to speculate why the carrier father was asymptomatic based 

on the metabolic features described in this study. For example, since mI was elevated only in the son 

and the SMN knockdowns (Figure 11A), perhaps the father is spared the disease by regulating mI 

biosynthesis despite SMN depletion. This raises an exciting hypothesis that elevated mI may provide 

a novel molecular link between SMN depletion and SMA that might be therapeutically amenable. 

While SMA fibroblast models may provide an accessible model for SMA, eventual transfer into a 

neuronal model is inevitable for enhanced clinical accuracy. Therefore, while the findings described 

in this study may be features of SMA or SMN depletion in fibroblasts, they must be recapitulated in a 

neuronal setting before assessing whether there is potential for ameliorating any aspects of SMA in 

vivo through targeting mitochondria, glycolysis and/or mI biosynthesis. 

 

4.4 Discrepancies between SMN Knockdowns 

As mentioned previously, while the stable SMN knockdowns displayed consistent SMN depletion in 

GM03814 cells (Figure 11B); vast differences between the two knockdowns were observed in DCFDA 

and MitoSOX fluorescence. While SMN depletion in GM03814 shSMNa displayed a small drop in 

DCFDA and MitoSOX fluorescence, a rather large increase in the fluorescence of these two probes 

was observed in GM03814 shSMNe compared to the shGFP control (Figure 9A and 9B). Since 

marginal changes in mitochondrial function were observed in this model (Figure 8), it is suggested 

that these ROS alterations may be stemming from sources beside dysfunctional mitochondrial 

energetics. 

While an off-target effect of these shRNAs must be considered, some insight into this inconsistency 

between the two shRNAs may lie within other data described herein. Using the metabolomics data 

acquired from LC/MS, we aimed to identify metabolites that may be causing elevated ROS in 

GM03814 shSMNe but not in GM03814 shSMNa. Orotic acid was one particular candidate, which 
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was found to be massively elevated in GM03814 shSMNe compared to both GM03814 shSMNa and 

the shGFP control (Supplementary Figure 1). Additionally, there was also no difference in orotic acid 

accumulation between the fibroblasts from the disease-affected family members. Dihydroorotate 

dehydrogenase (DHODH) is responsible for the synthesis of orotic acid from dihydroorotate, creating 

hydrogen peroxide as a by-product (Murphy, How mitochondria produce reactive oxygen species., 

2009). It is possible that either this enzyme is overactive or the dihydroorotate precursor 

accumulates in GM03814 shSMNe creating this ROS discrepancy and elevated orotic acid. DHODH 

acts primarily within pyrimidine synthesis, and the only interaction between DHODH and 

mitochondrial function is its incorporation in the inner mitochondrial membrane and utilisation of 

complex III to metabolise the hydrogen peroxide created by orotic acid synthesis (Munier-Lehmann, 

Vidalain, Tangy, & Janin, 2013). While this process may explain the difference in ROS levels between 

the cell lines transfected with the two different shRNAs, further confirmation is necessary to confirm 

their specificity and/or that any changes are not due to any off target effects. 

 

4.5 Myoinositol in Neurodegeneration 

Here, we provide evidence that energy production from glycolysis may be impaired in SMA, 

therefore contributing to energetic deficiency. Glucose metabolism defects have been suggested in 

SMA as a result of impaired glucose intolerance in SMA patients, and a role of the glycolytic enzyme 

PGK1 has been described in populations of zebrafish motor neurons resisting degeneration 

(Bowerman, et al., 2012; Boyd, et al., 2017). However, there has been little consideration towards 

glycolysis as a producer of energy with regards to SMA. While redirecting glucose away from energy 

production may be an important part of SMA pathogenesis, the alternative production of mI from 

glucose may provide further insight to the molecular mechanisms underlying the disease. Here we 

also identify elevated de novo mI synthesis enzymes resulting at increased levels of mI in both SMA 

type I fibroblasts compared to carrier fibroblasts, and SMN knockdown fibroblasts compared to 

control.  

Elevated mI has been identified in a plethora of neurodegenerative diseases including ALS (Filippa & 

Agosta, 2016), Alzheimer’s disease (Voevodskaya, et al., 2016), Tay Sachs disease (Jamrozik, Królicki, 

Maczewska, & Kuźma-Kozakiewicz, 2013) and Huntington’s disease (Sturrock, et al., 2015). Adding 

SMA to this list of neurodegenerative diseases with motor function involvement reinforces the 

rationale for assessing the importance of mI in MND pathogenesis.  

The elevated levels of mI in neurodegenerative disorders were identified clinically using magnetic 

resonance spectroscopy (MRS) – a diagnostic tool that performs on a principle similar to magnetic 

resonance imaging (MRI). However, rather than measuring the abundance of water in the body, 

certain metabolite abundances can be measured non-invasively in a patient (Soares & Law, 2009). 

This technique is of particular importance in CNS conditions where biopsies impose a much larger 

risk than in other parts of the body. In the context of the CNS, mI is particularly concentrated in 

astrocytes, and therefore is commonly used as a marker for astrocytes and other glia using MRS 

(Merugumala, et al., 2014). Because of the propensity of astrocytes to accumulate mI, it is 

commonly used as a marker of astrogliosis in MRS – a feature commonly found late in the 

pathogenesis of SMA (Harris, Choi, & Brooks, 2015). mI is thought to primarily function as an 

osmolyte in the CNS by controlling sodium levels through the sodium/myoinositol cotransporter 
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SLC5A3 and, therefore, the osmotic stress imposed by sodium influx to regulate mI levels may 

contribute to SMA pathogenesis. Interestingly, a C. elegans ALS model has displayed hypersensitivity 

to osmotic stress, likely aggravating motor neuron degeneration, however the implications of 

osmotic stress in a motor neuron degenerative context has invited little consideration (Therrien, 

Rouleau, Dion, & Parker, 2013). While the role of mI as an osmolyte may have some implications 

towards motor neuron homeostasis, the role of inositol as a signalling molecule introduces many 

other functions.  

Once introduced into the inositol cycle (Figure 11C), mI can be fed into PI3K signalling. Interestingly, 

PI3K involvement in SMA has been identified, where PTEN depletion has been shown to improve 

axon outgrowth, growth cone size and cell survival in SMN deficient murine motor neurons (Little, et 

al., 2015). Incorporating this evidence into the mI accumulation described herein implies that 

catalysing the conversion of PIP3 to build up PIP2 through PTEN may be detrimental to motor neuron 

health in SMA. It is thought that PTEN loss in this context is able to partially rescue these SMA motor 

neurons through activation of the pro-survival PI3K/AKT pathway. Furthermore, the U12 database 

(U12DB) shows that PTEN contains a U12 intron, which are thought to be preferentially mis-spliced 

under SMN depletion – drawing PTEN further into SMA pathogenesis. Therefore, it would be 

interesting to assess if the U12 intron retention events in SMA stabilise PTEN in order to over-

perform its function, resulting in suppression of PI3K/AKT signalling that can be rescued following 

PTEN depletion in vitro. Additional investigation into the connection between PTEN, mI 

accumulation, and SMN depletion may be necessary to clarify whether targeting PTEN would be 

valuable for SMA therapeutics. 

 

4.6 Elevated Myoinositol Has Implications for Calcium Regulation and Excitotoxicity 

Calcium signalling has been shown to be overactive in SMA, where elevated intracellular calcium 

levels have been described in SMA affected murine muscle samples, and iPSC-derived astrocytes 

reprogrammed from GM03813 and GM03814 fibroblasts (Ruiz, Casañas, Torres-Benito, Cano, & 

Tabares, 2010; McGivern, et al., 2013). It was suggested that the most likely source of this calcium 

was aberrant calcium release from intracellular organelles rather than from extracellular sources, 

since mis-splicing and irregular clustering of calcium channel proteins has been described as a result 

of SMN depletion (Jablonka, Beck, Lechner, Mayer, & Sendtner, 2007; Sapaly, et al., 2018). Of these 

organelles, mitochondria can contribute to intracellular calcium release; hence the mitochondrial 

damage reported in SMA may lead to elevated calcium release. Notably, another source of 

intracellular calcium release is through the IP3 receptor located on the endoplasmic reticulum. This 

mechanism would be worth exploring further considering IP3 may be elevated when de novo mI 

synthesis is overactive. This concept is further reinforced since PTEN depletion is able to improve 

SMA symptoms (Little, et al., 2015), possibly by reducing the amount of IP3 available to activate 

calcium release from the endoplasmic reticulum through the IP3 receptor (Figure 11C). Since 

intracellular calcium levels have been shown to be elevated in SMA, and two possible methods of 

calcium release have been discussed herein, further investigation into the effects of calcium release 

in SMA may be necessary.  

Elevated calcium levels have also been described in a range of neurodegenerative diseases with high 

levels of mI, further reinforcing a link between elevated mI and calcium homeostasis. For example, 
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ALS, Huntington’s disease, Alzheimer’s disease and Parkinson’s disease have all been reported to 

present with elevated intracellular calcium levels, suggested to be stemming from irregular uptake 

or release of calcium from the mitochondria and/or endoplasmic reticulum (Patai, Nógrádi, 

Engelhardt, & Siklós, 2017). Calcium levels are normally strictly controlled at low intracellular 

concentrations, and are responsible for regulating a multitude of transcriptional, translational and 

metabolic processes (Brini, Calì, Ottolini, & Carafoli, 2014). However, aberrantly high concentrations 

of mI may push calcium levels above the homeostatic basal level (Berridge, 2015). This is of 

particular importance in motor neurons, which are distinctly vulnerable to calcium overload. Motor 

neurons have high expression of calcium-permeable AMPA receptors, and low expression of calcium 

buffering proteins responsible for controlling intracellular calcium levels, collectively increasing the 

risk of excitotoxicity (Vieira, et al., 2010; Leal & Gomes, 2015). Therefore, high levels of mI may give 

rise to specific motor neuron vulnerability by elevating calcium release through IP3 receptors, which 

motor neurons are poorly equipped to handle. 

Abnormal calcium regulation can also have implication for neuronal microenvironment cells 

surrounding motor neurons. Microglia, the local immune cells of the CNS, exhibit intense reactivity 

with calcium as a marker of tissue damage resulting in an inflammatory response (Brawek & 

Garaschuk, 2013; Deguise & Kothary, 2017). Elevated proinflammatory cytokines have also been 

shown to be a feature in SMA mouse models stemming from the microenvironment, namely 

astrocytes. In fact, restoration of SMN in the astrocytes of this SMA mouse model modestly 

improved survival (Rindt, et al., 2015). It is possible that the restoration of SMN allows these 

astrocytes to regulate mI levels, thereby reducing calcium release and subsequent microglia-

mediated inflammatory reactions with neighbouring motor neurons.  

Astrocytes accumulate near the end-stage of SMA in a state called astrogliosis, likely contributing to 

pathogenic processes including metabolic failure and inflammation (Sofroniew, 2009). These glia 

also exhibit a strong relationship with calcium, where astrocytes release gliotransmitters such as 

glutamate under rising intracellular calcium levels which can induce excitotoxicity in neighbouring 

motor neurons (Bazargani & Attwell, 2016). The main cause of this excitotoxicity is thought to be 

through activation of calcium channels, which are abundant on motor neurons, in order to induce 

calcium influx (Van Den Bosch, Van Damme, Bogaert, & Robberecht, 2006). However, increased 

calcium release from the endoplasmic reticulum due to pathogenically high levels of mI may 

hypothetically induce similar excitotoxicity – a feature which to our knowledge has yet to be 

explored in SMA.  

These motor neuron-glia interactions have been explored in co-culture models where ALS-modelled 

astrocytes impose toxicity in healthy motor neurons both when cultured together, and through 

conditioned media (Lee, et al., 2016). A similar feature has been discussed using ALS-modelled 

oligodendrocytes, which were able to induce wild-type motor neuron death through 

hyperexcitability (Ferraiuolo, et al., 2016). This work stemmed from preliminary evidence showing 

that CSF sourced from ALS patients could induce a massive rise in intracellular calcium levels in 

cultured rat spinal neurons, specifically affecting motor neurons from these populations the most 

(Sen, Nalini, Joshi, & Joshi, 2005). While this evidence of possible calcium-induced glial reactivity in 

ALS offers insight into possible mechanisms leading to selective motor neuron degeneration in SMA, 

the relationship between motor neurons and the microenvironment requires further investigation.  
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One similar study of interest displayed reduced synapse number in wild-type motor neurons co-

cultured with SMA astrocytes (Zhou, Feng, & Ko, 2016). However, it was deemed unlikely that this 

feature was due to calcium-dependant soluble factors such as gliotransmitters, since these synaptic 

defects were not seen in non-contact co-cultures between SMA astrocytes and wild-type motor 

neurons. Of note, contact signalling between astrocytes and motor neurons may be responsible and 

is facilitated through gap junctions which regulate the trafficking of signalling molecules such as IP3 

directly between cells (Belousov, Fontes, Freitas-Andrade, & Naus, 2017). Considering the 

predisposition of astrocytes to accumulate mI naturally, it is possible that SMN depletion further 

elevates mI, and subsequently IP3 and calcium, imposing toxicity in neighbouring motor neurons 

through contact signalling (Decrock, et al., 2012; Merugumala, et al., 2014). 

In order to assess the importance of mI accumulation in SMA pathology, it is imperative to clarify 

whether these calcium elevations in the disease state of SMA and ALS are dependent on mI. If this is 

the case, a possible therapeutic intervention may be useful by targeting the mI cycle and de novo mI 

synthesis to alleviate calcium accumulation, therefore preventing astrocyte-dependant excitotoxicity 

and microglial neuroinflammation.  

 

4.7 Lithium and Valproic Acid as Regulators of Myoinositol Synthesis 

While a handful of compounds targeting inositol synthesis have been developed, the application of 

these therapies is limited. The most well described use of this drug class is in the treatment of 

epilepsy and bipolar disorders (Grunze, 2010). Both lithium salts and valproic acid (VPA) have been 

shown to deplete intracellular mI levels, and MRS findings imply that elevated mI may be also a 

feature of bipolar disorder (Silverstone, McGrath, & Kim, 2005). However, whether elevated mI is a 

cause or a symptom of this disease is debated, as is the true target of these drugs.  

Lithium is thought to have many mechanistic targets since the lithium ion is able to competitively 

inhibit enzymes that require magnesium cofactors (Ryves & Harwood, 2001). One target of particular 

interest, however, is the ability to inhibit IMPA1, likely resulting in mI depletion. This is the most 

widely accepted primary function of lithium in bipolar disorder, and the downstream reduction in IP3 

and subsequent decrease in intracellular calcium release is thought to account for lithium’s 

neuroprotective effects (Alda, 2015). 

The inositol depletion hypothesis fits the mechanism of action of VPA in bipolar disease as well; 

nevertheless this compound interacts with other enzymes that may induce the desired therapeutic 

effect through a separate mechanism. Concerning mI synthesis, VPA is thought to indirectly inhibit 

myoinositol phosphate synthase (MIPS) in yeast cells, which performs the same rate limiting step of 

converting glucose-6-phosphate (G-6-P) into myoinositol phosphate via ISYNA1 in humans (Yu & 

Greenberg, 2016). This is a likely explanation as to why inositol depletion is a feature of VPA 

treatment, however little work exploring how VPA interacts with ISYNA1 has been performed. It has 

been suggested that VPA inhibits ISYNA1 through glycogen synthase kinase 3 (GSK3), which is also 

thought to be another target of lithium (Yu, Daniel, Mehta, Maddipati, & Greenberg, 2017). While 

inositol depletion and GSK3 inhibition were originally thought to be contentious, they are actually 

complementary. ISYNA1 may have a GSK3 phosphorylation site, meaning that inhibition of GSK3 

with VPA may reduce ISYNA1 activation, therefore reducing mI synthesis (Yu & Greenberg, 2016). 
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Furthermore, the canonical function of GSK3 is the control of the conversion of glycogen to glucose, 

and inhibiting GSK3 will reduce available G-6-P for mI synthesis. Another commonly accepted 

function of VPA is through the inhibition of histone deacetylaces (HDACs), where other HDAC 

inhibitors such as sodium butyrate have displayed similar promising effects in bipolar disease 

(Chuang, Leng, Marinova, Kim, & Chiu, 2009), further obscuring the therapeutic mechanisms of 

action of these drugs.  

Interestingly, both lithium and VPA have been assessed for their therapeutic value in a number of 

neurodegenerative diseases since they seem to display neuroprotective effects (Leng, et al., 2008). 

Lithium has been suggested to reduce the risk of developing Alzheimer’s disease (Nunes, Forlenza, & 

Gattaz, 2007), however whether this is due to alleviating mI accumulation has yet to be explored. 

The suggested neuroprotective effects of lithium has led to its application in ALS, where impressive 

positive results have been displayed at improving survival both in mouse models and human 

patients (Fornai, et al., 2008). Unfortunately, these results have yet to be reproduced, as despite 

being well tolerated, lithium has not significantly increased survival of ALS patients in more recent 

studies (Chiò & Mora, 2013; Petrov, Mansfield, Moussy, & Hermine, 2017). Again, while lithium has 

displayed varying value as a putative therapy for ALS, it has not been considered whether this 

therapeutic mechanism of action is through the depletion of mI. 

The efficacy of VPA has been previously assessed in SMA. However, the ability of VPA to deplete mI 

has not been considered to be responsible for the therapeutic mechanism behind VPA (Yu & 

Greenberg, 2016). The HDAC inhibitor properties of VPA are thought to increase SMN protein 

expression by increasing the expression of the splicing factors responsible for SMN2 transcription 

(Harahap, et al., 2012). While this has shown promise in vitro, VPA has proved ineffective at 

improving survival in clinical trials (Brichta, et al., 2003; Sumner, et al., 2003; Krosschell, et al., 2018). 

Interestingly, combination treatment of lithium and VPA displayed improved survival in an ALS 

clinical trial, further reinforcing the need to explore the mechanism behind the putative therapeutic 

benefits of these drugs in neurodegenerative diseases (Boll, et al., 2014).  

Here we describe elevated mI as a feature of SMA, which may induce selective motor neuron 

vulnerability both through diverting glucose away from energy production, and by elevating 

intracellular calcium release through IP3. It is therefore unusual that lithium and VPA have displayed 

limited success in ameliorating symptom in SMA and other similar diseases. If mI synthesis is to be 

the primary target of these drugs, dosage and delivery may need to be re-evaluated. Penetrance to 

motor neurons and astrocytes must also be considered, where perhaps intrathecal application may 

improve efficacy over the traditional formats used in bipolar disease and in past clinical trials. Since 

lithium and VPA have been suggested to reduce the activity of calcium signalling by reducing mI and 

IP3 accumulation (Berridge, 2015), it seems prudent to reassess the utilisation of these drugs in 

neurodegenerative diseases, especially SMA.  

 

4.8 Conclusions  

Since mitochondrial dysfunction, elevated calcium and elevated mI have been described in SMA, it is 

tempting to speculate that redirecting glucose to create mI is detrimental to motor neurons on two 

fronts. Firstly, depleting ETC intermediates by reducing glycolytic function, thereby weakening ATP 
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production from both glycolysis and mitochondria; and secondly, elevating intracellular calcium 

levels through mitochondrial dysfunction and the IP3 receptor on the endoplasmic reticulum leading 

to calcium overload. While motor neurons may be energetically demanding, this is unlikely to be the 

sole factor responsible for selective motor neuron vulnerability in SMA since other neuronal 

subtypes are spared. However, since motor neurons are particularly susceptible to calcium overload 

(Jaiswal, 2014), targeting calcium release from mitochondria and the endoplasmic reticulum as a 

result of mI accumulation may be effective. This feature combined with an energetic defect may 

produce the environment responsible for selective motor neuron degeneration. Therefore, 

reassessing the viability of mI depletive drugs in combination with mitochondrial protective 

therapies, such as Olesoxime (Bertini, et al., 2017), may introduce an effective and novel avenue of 

therapy for SMA. 
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6. Supplementary Figures 
Supplementary Table 12: GM03814 and GM03815 are respectively maternally and paternally 
related to GM03813. STR profiling results courtesy of Eurofins Forensics Services. It was concluded 
that the probability that the donor of the cell line GM03815 is the biological father of the donor of 
the cell line GM03813 is > 99.9999 %, and that the probability that the donor of the cell line 
GM03814 is the biological mother of the donor of the cell line GM03813 is 99.9998 %. 

 

  



68 | P a g e  
 

 

Supplementary Figure 1: Orotic acid is elevated in only GM03814 shSMNe. The accumulation of 
orotic acid in GM03814 shSMNe may explain why ROS is elevated in this SMN knockdown sample, 
yet not in GM03814 shSMNa.  

 


