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A B S T R A C T

Estimating spatially resolved grassland productivity is essential for benchmarking the total UK productive
potential to assess food, feed and fuel trade-offs in the context of whole systems analyses. Our objectives were to
adapt and evaluate a well-known process-based model (PBM) and estimate productivity of improved
(permanent, temporary) and semi-natural grassland systems using meta-models (MM) trained by extensive
PBM scenario simulations. Observed dry matter (DM) yields in multi-site nitrogen (N) response (0, 150 and
300 kg N ha−1) experiments were well emulated describing the average productivity of rough grazing,
permanent and temporary grassland (3.1, 7.4 and 9.8 t DM ha−1, respectively). Cross-validated with indepen-
dent and long-term data (Park Grass Experiment), the PBM explained more variation when considering all
systems combined (81%) than across all improved grasslands (61%) but little for rough grazing (26%). The PBM-
trained MMs explained 48, 72 and 70% of the simulated yield variation in the grasslands of increasing
management intensity, and 43 and 75% of observed variation in the combined improved and all three grassland
systems, respectively. Considering the assessment of ecosystem services, like drainage and water productivity,
PBM scenario simulations are essential. Compared to improved grassland rough grazing will result in 40% more
groundwater recharge due to its lower simulated water use and water productivity (12 versus 25 and
43 kg ha−1 mm−1 for permanent and temporary grassland, respectively).

1. Introduction

Grasslands constitute a major part of the global ecosystem and
contribute significantly to food security (Hopkins and Wilkins, 2006;
O’Mara, 2012). In temperate areas of north-western Europe, grasslands
can occupy more than 50 percent of the agricultural area (Chang et al.,
2015; Peeters, 2004). In the UK, grasslands occupy about two thirds of
the agricultural land area (Defra, 2016) and, therefore, are essential for
farming systems. Currently, out of 12.4 million hectares (M ha) about
10% were “temporary” grassland (< 5 years old) and of the permanent
grassland (> 5 years old) 6.1 M ha are classified as “permanent”
pasture and 5.1 M ha as “rough grazing” (Defra, 2016). Especially the
latter are very diverse (Allen et al., 2011; Morton et al., 2011), and
productivity estimates must be based on management intensity
(Hopkins, 2008). In the UK, temporary grassland is highly productive,
fertilised and frequently re-sown in rotation with arable crops, perma-
nent grassland is moderately productive and rarely re-sown whilst
rough grazing is extensively grazed, low in productivity and never re-
sown.

Spatially explicit grassland productivity data are needed to bench-
mark the UK productive potential and to assess trade-offs between
different ecosystem services within a whole systems analysis of
bioenergy value chains (Guo et al., 2016; Turley et al., 2010). Grassland
productivity is affected by pedo-climatic variables such as soil available
water capacity (SAWC), temperature and precipitation (Brereton et al.,
1996) and depends on the level of management inputs (Chang et al.,
2015). Empirical statistical (and static) weather-yield models have been
used to estimate dry matter (DM) yields for arable crops (Chmielewski
and Potts, 1995; Lobell et al., 2011) and grassland (Hurtado-Uria et al.,
2014; Jenkinson et al., 1994; Trnka et al., 2006). Process-based models
(PBMs) simulate dynamics of grass growth and DM yield for different
species (Hoglind et al., 2001; Schapendonk et al., 1998) and nitrogen
(N) availability (Barrett et al., 2005; Jego et al., 2013). These PBMs
were designed for high frequency cutting systems, e.g. silage (Topp and
Doyle, 2004) and modified to accommodate low frequency cutting
(hay) and grazing systems (Barrett et al., 2005). The adequacy of these
PBMs to estimate yield variations across different environments and
management systems (e.g. Hurtado-Uria et al., 2013; Persson et al.,
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2014) encourages scenario simulations over a wide range of pedo-
climatic inputs (Smit et al., 2008). Their power lies in the integration of
long-term observations at a single site (Jenkinson et al., 1994) and
short-term experiments over a wide range of sites (Hoglind et al.,
2001).

Both, PBMs and statistical models were used to analyse the effect of
past weather on observed and attainable yields (Jaggard et al., 2007;
Lobell et al., 2011), and the impact of climate change (Lobell and
Burke, 2010; Soltani et al., 2016; Wilcox and Makowski, 2014). Trained
statistical models (“meta-models”) using simulated yields conserve the
principal biophysical interactions, capture the difference between
systems and avoid the PBMs’ requirements for daily weather data
(Van Ittersum et al., 2003). Although meta-models (MMs) were not
tested against observations of spatially explicit crop productivity at the
national or regional scale, they should be reliable proxies for PBMs to
estimate spatially explicit crop productivity over large areas (Soltani

et al., 2016).
Our objectives are to (1) calibrate and evaluate a PBM for the above

mentioned grassland systems in the UK using DM yields measured in
experiments performed in the 1970s and 1980s; (2) generate a panel of
simulated baseline DM yields for a wide range of soil types in
combination with long-term historic weather data across the country;
(3) derive MMs for each grassland type incorporating aggregated
bioclimatic variables and SAWC; and (4) assess the validity of the
MMs in relation to measured DM yields. From the PBM outputs
indicators of the water balance and productivity (WP) are derived for
each grassland system to discuss opportunities and limitations of the
MM approach in terms of the overall objective to assess different
ecosystem services (e.g. yield and water use).

2. Materials and methods

2.1. Experimental systems and data for calibrating and validating the PBM

We considered three systems: temporary grassland, permanent
grassland and rough grazing to estimate productivity. Temporary
grasslands are the most productive, often consisting of frequently re-
sown perennial ryegrasses (Lolium perenne) and receive a recommended
annual N application rate of ca. 300 kg N ha−1 (Defra, 2010). Perma-
nent grasslands consist of a mixture of sown and indigenous grasses and
legumes; they are of intermediate productivity and receive moderate
inputs (annual N applications of ca. 150 kg N ha−1). However, these
recommended N application rates may not be followed on all temporary
and permanent grasslands. The extensively used rough grazing are
diverse semi-natural grasslands containing various herbaceous species,
receive no synthetic N and are areas of low productivity. In the
following these systems are termed temporary (300N), permanent
(150N) and rough-grazing (0N).

2.1.1. Dry matter yield data
Annual DM yields for calibration and validation were mainly

compiled from two N response experiments at multiple sites in
England and Wales (Fig. 1; Table S1). Data came from re-sown
temporary grassland after barley on 21 sites between 1970 and 1973
(Morrison et al., 1980) and from permanent and re-sown grassland on
four sites between 1983 and 1986 (Murray, 1988). From both sources
DM yield data were selected on 300N, 150N and 0N plots as proxies for
temporary, permanent and rough-grazing grassland, respectively. The
respective average DM yields were 9.8, 7.4 and 3.1 t ha−1 (Table 1), the
distribution of the measured DM yields on the 0N plots was slightly
skewed due to some exceptionally high yields caused by residual N
from the previous arable crop (Fig. S1). For further validation, long-
term DM yields were taken from the ongoing Park Grass Experiment
(PGE) at Rothamsted Research, using plots with a 0N and 144N
treatment from 1960 onward (Fig. S2, plot 3a and 11/1a; pH of 7).
These represent respective long-term equilibria for semi-natural and
permanent grassland with mixed species and late cutting dates in a
wide range of fertiliser and liming treatments (Silvertown et al., 2006).
DM yields for further model validation were available for temporary

Fig. 1. Distribution of sites where multi-year N response experiments were conducted
(see Tables S1 and S2). 21 sites by Morrison et al. (1980) plus four sites by Murray
(1988), plus PGE (Rothamsted Research, 2006); (●) Set 1: 10 sites to calibrate the
process-based model (PBM), Set 2 with 16 sites (■) were used to validate the PBM. Total
of 15 sites (▲) were used to validate MMs against independent experimental data
(Hopkins et al., 1990; McEwen et al., 1989; and Jones et al., 2006).

Table 1
Calculated descriptive yield (t ha−1) statistics for no fertiliser input (0 kg N ha−1, rough-
grazing), moderate fertiliser input (150 kg N ha−1 or 144 kg N ha−1 in case of PGE data,
permanent grassland) and high fertiliser input (300 kg N ha−1, temporary grassland)
pasture grass experiments used for calibrating and validating the process-based model.

Grassland type Average Median 25th 75th SD Skewness

Rough-grazing 3.09 3.04 2.02 4.11 1.56 0.51
Permanent grassland 7.41 7.32 5.79 9.01 2.02 0.04
Temporary grassland 9.76 9.61 8.34 11.14 2.03 0.01
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grassland for England (Hopkins et al., 1990; McEwan et al., 1989) and
Scotland (Jones et al., 2006). For details see Table S2 and Fig. 1.

2.1.2. Weather data and soil parameters
Locations of UK Met Office weather stations with historic time series

of daily records of maximum and minimum temperatures, precipitation,
global radiation, relative humidity and wind speed were overlaid with
the locations of the experimental sites in ArcGIS (http://www.esri.com/
software/arcgis). The closest meteorological station to each experi-
mental site was chosen to represent the respective weather conditions
(Table S1). The average distance between the experimental sites and
corresponding weather stations was 10.2 km (0.2–29.6 km).

Soil series and SAWC were reported for all sites used by Morrison
et al. (1980), whilst soil data for sites used by Murray (1988) and the
PGE were taken from the soil map of England and Wales (Table S1).
Soil hydraulic parameters needed for the simulation were derived using
a pedotransfer function (Woesten et al., 1999).

2.1.3. Management data and assumptions
The experimental treatments of 300N and 150/144N approximate

the N requirements of temporary and permanent grassland, respectively
(Defra, 2010), and relate to the livestock system and stocking rate as
well as usage (cut for hay/silage or grazing intensity; AHDB, 2013).
Based on experimental evidence (Hopkins et al., 1990) and the best
practice guide (AHDB, 2014), the cutting frequencies were set to twice
per year on rough-grazing and permanent grasslands, and to three times
per year on temporary grasslands to simulate annual productivities. For
calibrating the PBM, the cutting dates were fixed for each grassland
type (Table 2). Due to the fact that in practice rough-grazing is only
grazed and permanent grassland cuts can be followed by grazing, the
sensitivity of DM production with regard to cutting frequencies was
analysed to validate the mimicking of grazing. The sensitivity of DM
yield to cutting frequency was assessed.

2.2. Grass growth model

The sink-source interaction model developed for the growth of small
forage grasses (Schapendonk et al., 1998; Hoglind et al., 2001) was
implemented into a generic software environment that simulates the
water and energy balance (Richter et al., 2006). Originally designed to
simulate vegetative growth (Rodriguez et al., 1999) the model was
modified by generalising the phenology and carbon allocation modules

to account for the effects of senescence in extensive and semi-natural
grasslands. These modifications affect pheno-morphological develop-
ment (sink formation) and light interception, photosynthesis and
carbohydrate allocation (source formation). Determined by a sink-
source balance, the daily growth rate and carbon allocation are limited
to the minimum of the sink and source potentials.

2.2.1. Pheno-morphological development – sink formation
In brief, the model describes leaf emergence, the dynamics of

vegetative and generative tillers, and senescence with the translocation
of water-soluble carbo-hydrates (reserves) for regrowth. Grass devel-
opment is determined by the daily accumulation of growing degree
days (GDD), starting from 1 January each year. Phenological stages
originally defined vegetative growth and tillering using a phyllochron
of ca. 100 GDD, and generative tillers being initiated when daily
average T exceeded 12 °C (Schapendonk et al., 1998). Stem elongation
starts at approximately 900 GDD, the beginning of mid-season peak
growth, which culminates in heading at approximately 1600 GDD
(Hazard et al., 2006). Cutting sets the phenology back to vegetative
growth. Daily GDD is calculated as a function of air temperature against
the lower and the upper temperature thresholds (Tb and Tcutoff; °C) for
growth. Key growth indices are tiller emergence (GDDTE), inflorescence
(GDDIF) and maturity (GDDMAT), which affect translocation of reserves
from leaves and stems to seeds and root.

The sink is defined by the potential growth rates of the component
plant organs (leaf, stem, and root), which determine the respective
allocation demands. The aboveground sink strength is the sum of the
potential growth of leaves and stems, which are a function of tiller
density, elongation rates and respective morphological parameters,
setting the respective carbohydrate allocation rates. Elongation rates
are described by a linear function of average daily temperature (Hazard
et al., 2006; Hoglind et al., 2001) and affected by water stress described
by a logistic function (Sinclair, 1986; Richter et al., 2006). LAI increase
is a function of number of simultaneously elongating leaves (ca. three),
leaf elongation rate, leaf width, and a leaf shape factor.

Leaf potential growth is calculated based on the LAI increase
potential and the specific leaf area (SLA), which is a dynamic variable
that ranges between a minimum and maximum to buffer leaf reserves.
Stem potential growth is calculated as a function of the stem elongation
rate and specific stem weight. The total biomass sink is determined by
the dynamics of tiller formation, which is assumed to be a function of
leaf emergence rate, the proportion of buds producing new tillers, and
the conversion of vegetative to generative tillers.

2.2.2. Light interception and photosynthesis – source formation
The source term consists of water-soluble carbohydrates generated

through photosynthetic assimilation of intercepted light and reserve
mobilization. Light interception is described as a function of LAI and
light extinction, applying Bear’s law (I = I0* e(−k*LAI) where I is the
canopy-intercepted radiation, I0 the global radiation above the canopy,
k the extinction coefficient). The light extinction coefficient, k, is
considered a constant, which can range between 0.48 and 0.63
(Hoglind et al., 2005; Schapendonk et al., 1998). In contrast to the

Table 2
Cutting frequency and dates used to simulate time-series of annual herbage yields by the
process-based model for temporary, permanent and rough-grazing grassland, respec-
tively.

Grassland First cut Second cut Third cut

Temporary 30 May 20 July 30 Sept
Permanent 21 June 30 Oct –
Rough-grazing 21 June 30 Oct –

Table 3
Parameters being optimised and used for the systems of temporary (TG), permanent (PG)and rough-grazing (RG) grassland in the process-based model.

Parameter Grassland System Definition Source

RG PG TG

NtillVeg (tillers ha−1) 1000 7000 7000 Initial vegetative tillers Schapendonk et al. (1998)
ф (μg CO2 m−2 s−1) 0.00068 0.00135 0.00176 Efficiency of photosynthesis Johnson et al. (1983)
α (μg CO2 J−1) 17 21 25.5 Initial slope of the photosynthesis curve Johnson et al. (1983)
EA (g g−1) 0.65 0.65 0.74 Efficiency of assimilate conversion to biomass Van Heenmst (1988)
kext 0.3 0.6 0.6 Light extinction coefficient Johnson et al. (1983)
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original model (Hoglind et al., 2001; Schapendonk et al., 1998),
photosynthesis and respiration are explicitly simulated (Van Laar
et al., 1992). Key photosynthetic parameters are the initial quantum
efficiency (φ) and maximum light conversion rate (Asat). Parameter
values found in the literature were used to initialize the calibration
process (Table 3).

The total source of available carbohydrates to satisfy sink demands
is calculated as the net daily integral of the difference between daily
leaf photosynthesis and maintenance respiration of the respective
organs, plus the mobilisable reserves from leaf, stem, and root biomass.
If new assimilates exceed sink demands (Schapendonk et al., 1998), the
surplus cascades into reserves and roots. The level of sources (reserves)
in the stem and root crown affect tiller formation.

2.2.3. Water productivity
The annual and inter-seasonal dynamics of actual evapotranspira-

tion (ET), drainage and water productivity (WP) were investigated for
the different grassland systems. Long-term weather records at Lyneham
from 1958 to 2014 were used to run the PBM on six different soil series
of contrasting SAWC (Table S3). Annual ET and drainage were
accumulated using simulated daily outputs within each hydrological
year (1 October to 30 September). The WP was calculated by fitting a
simple linear relationship between the respective simulated annual DM
yields (kg) and ET (mm).

2.3. Calibrating and up-scaling the PBM

The development of predictive models that can be used at the
national scale was made in three steps, as shown in the flowchart
(Fig. 2): (A) calibration and validation of the PBM used two subsets of
N-dose experiments (Morrison et al., 1980; Murray, 1988) plus long-
term datasets from two treatments of the PGE at Rothamsted; (B)
building MMs from PBM scenario simulation outputs, Y(PBM), based on
multi-site historic weather and soils inputs, using a stepwise forward
selection of aggregated pedo-climatic input variables, and finally (C),
validation of the MM outputs, Yn(MM), using two cases of independent
observations for pedo-climatic variables and DM yields, Y(O).

2.3.1. Calibrating and validating PBM
Step A: Among the sites of the N-dose experiments, the first subset of

10 sites was selected (Table S1; “.cal”) to calibrate the most important
parameters of the PBM influencing grass growth (Table S4). The initial
values of these were set to default photosynthetic and morphological
parameters taken from the literature (Table 3) and calibrated to reflect
the relative productivity in response to N supply. Parameters were
calibrated for the respective grassland types by iteration minimising the
RMSE and bias of simulated versus observed DM yields. The remaining
15 sites of the N-dose experiments (Table S1) were used to validate the
calibrated PBM. In addition, the 0N and 144N treatments of the PGE
were used to validate the long-term yields of rough grazing and

Fig. 2. Flowchart of MM development: (A) calibration and validation of process-based model (PBM) using subsets of Morrison et al. (1980) N-dose experiment as well as two long-term
sets of the PGE, B(1) scenario simulation of yield data, Y(PBM), which serve as dependent variables and B(2) aggregation of independent pedo-climatic variables (▼) for B(3) derivation
of statistical MMs, and (C) MM validation comparing two sets of observed yields (Y(O) in Case A and B) against MM yield estimates, Y(MM), based on respective aggregated pedo-climatic
inputs.
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permanent grassland, respectively.

2.3.2. Up-scaling the PBM
2.3.2.1. Simulation scenarios to generate multi-site DM yields. Step B1:
The PBM was up-scaled using long time series of weather records from
six representative weather stations across England and Wales to vary
annual grassland yields across a wide range (Hurtado-Uria et al., 2014;
Jenkinson et al., 1994). The scenarios were simulated using a generic
set of soils across a wide range of SAWC (50–196 mm) and also soils
reported in the original datasets (Table S3). The soil parameters for the
PBM were derived by applying the procedure described by Lovett et al.
(2009), based on primary soil physical properties (texture, bulk density
and soil organic matter content) to calculate soil water retention and
SAWC of each layer within the rooting depth.

The distribution of the aggregated soil hydrological and climatic
variables derived from the historic weather records varied considerably
within and between sites (Table S5). SAWC varied by a factor of two to
five. The variability of precipitation increased during the summer,
June/July and August/September ranging between ca. 20 mm to more
than 200 − 300 mm. Such span in precipitation was matched by
average monthly summer temperatures varying between 13 and 19 °C.
Monthly irradiation varied more during spring (665–1395 MJ) than

summer (538–914 MJ).

2.3.2.2. Aggregating input variables. Step B2: As temporary grasslands
had three cuts, bioclimatic variables were aggregated across three
growth phases: cumulative precipitation (PMAM) and global radiation
(RMAM), and mean air temperature (TMAM) for March to May;
cumulative precipitation (PJJ) and global radiation (RJJ), and mean
air temperature (TJJ) in June and July; and finally cumulative
precipitation (PAS) and global radiation (RAS), and mean air
temperature (TAS) in August and September. As permanent and
rough-grazing grasslands had two cuts, bioclimatic variables were
aggregated over two growing periods, April to June and July to
September: input variables consisted of cumulative precipitation
(PAMJ, PJAS), cumulative global radiation (RAMJ, RJAS), but mean air
temperature in March to May (TMAM), and July to September (TJAS).

2.3.2.3. MM derivation. Step B3: Coefficients of the MMs were derived
by fitting regressions using stepwise variable selection of the
aggregated biophysical variables in Genstat (Payne et al., 2011)
against the dependent variable DM yield, generated in the scenario
simulations, Y(PBM). The selection of the MMs’ candidate variables was
optimised to explain the maximum variation of scenario yields.
Variables included site-specific SAWC and aggregated bioclimatic
variables, monthly mean temperature (ØTi,t), monthly totals of
precipitation (∑Pi,t) and global radiation (∑Ri,t) during the respective
phases of the growing season. These phases for aggregating bioclimatic
variables depended on the sward management (time and frequency of
cutting, Table 2). The fitted multiple regression model consisted of a
linear combination of grass growth-determining biophysical variables
as follows:

∑Y a b V ε= + +M
n

i i1 (1)

in which YM is the MM fitted/estimated DM yield, Vi represents the
number of predetermined soil physical and aggregated bioclimatic
variables from 1 to n, ε is the error term, and a and bi are regression
coefficients to be estimated. Quadratic terms of SAWC and aggregated
precipitation were included after determining the most appropriate
linear combination of necessary soil and aggregated bioclimatic vari-
ables using a t-test for the coefficient estimate and an F-test for the
reduction in residual mean squares during a forward stepwise regres-
sion.

2.3.3. MM evaluation
Step C: MM outputs were evaluated against PBM scenario outputs

and against their subsets of PBM simulated yields at the experimental
sites. The main MM evaluation, however, compared MM estimates
against observed DM yields for two cases (A and B in Fig. 3):

• Case A: MM-estimated DM yields evaluated against observed DM
yields at the 25 experimental sites of multi-year experiments
(Morrison et al., 1980; Murray, 1988) and the observations in the
PGE (Ex01-25; Ex26; Table S1; n = 446)

• Case B: MM-estimated DM yields evaluated against observed DM
yields in multi-year experiments on temporary grassland at 15
independent sites (Table S2; n = 178). Among these sites, 14 sites
provided annual DM yields from 4-week cutting intervals (Hopkins
et al., 1990; McEwen et al., 1989) while the remaining site provided
annual DM yields from three cuts per year which corresponds to 8-
week cutting intervals.

2.4. Model performance indicators

Of the indicators proposed for model evaluation (Smith et al., 1997)
the following statistical indicators were calculated to assess the good-
ness-of-fit between modelled and observed DM yields:

Fig. 3. PBM simulated dry matter yields (DMY) in relation to observed DMY in a subset of
10 sites of multi-year experiments for calibration (a), and in a subset of 16 sites for
validation (b) for temporary (○), permanent (□) and rough-grazing (Δ) grassland,
respectively; filled symbols (■, ▲) describe permanent (144N) and rough-grazing (0N)
grassland in the PGE at Rothamsted, respectively; lines define x = y.
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Mean bias error (Eq. (2)), relative mean absolute bias error (%, Eq.
(3)), root mean square error (Eq. (4)), relative root mean square error
(%, Eq. (5)) and the adjusted R2 statistic (Eq. (6); percentage variance
accounted for). In the following, Yobs and Yest were the observed and
fitted/estimated DM yields, respectively; n is the number of paired
values.

∑MBE
n

Y Y= 1 −
i

n
obs est=1 (2)

∑MBE
n

Y Y
Y

% = 1 ( − )
*100

i

n obs est

obs
=1 (3)

∑RMSE
n

Y Y= 1 [ − ]
i

n
obs est=1

2

(4)

RRMSE RMSE
O

X% = 100
(5)

RRMSE% was used as a criterion for crop growth model perfor-
mance (Jamieson et al., 1991) establishing thresholds for model
performance to be “excellent”, “good”, “fair” and “poor” with RRMSE
% ≤10%, 10% < RRMSE% ≤20%, 20% < RRMSE% ≤30%, and
RRMSE%>30%, respectively.

The percentage variance accounted for (i.e. adjusted R2; Eq. (6)) uses
the residual mean square (MS) and total mean square (Total MS) when
observed DM yields (dependent variable) were linearly related to
estimated DM yields (independent variable):

⎛
⎝⎜

⎞
⎠⎟adjusted R Residual MS

Total MS
= 100* 1 −2

(6)

3. Results

3.1. Parameterizing the PBM for different grassland types

3.1.1. Calibration
Fig. 3a shows the relationship between the measured and simulated

DM yields for the proxy of temporary, permanent and rough grazing
grasslands in the calibration (Set 1, 10 sites) of N-dose experiments
(Table S1). The variance accounted for was 63.9, 50.1 and 28.9%,
respectively (Table 4). While the bias was small (MBE of
0.3–0.5 t ha−1), and the error acceptable (RMSE around 1.5 and

1.7 t ha−1), for all grassland types, the mean relative bias was high
(73.3%) for rough grazing compared to temporary and permanent
grassland (13.6 and 23.2%, respectively). When yields were combined
for both temporary and permanent or all three grassland types, the
variance accounted for increased to 70.1 and 80.1%, respectively
(Table 4), due to the productivity difference. Excluding rough-grazing,
the RRMSE% of 16.76% for temporary and 25.93% for permanent
grassland were within the acceptance criteria of good and fair model
performance, respectively.

3.1.2. Validating the parameterised PBM
For the validation subset (15 of 25 of N-dose experiment sites plus PGE)

the simulations with the calibrated PBM compared well overall to the
observed DM yields across all three types of grassland (Fig. 3b). The PBM
explained 28.4, 39.3 and 21.6% of the variance in temporary, permanent
and rough grazing grasslands, respectively (Table 4). The MBE was<0.5
t ha−1 and the RMSE was about 1.5 t ha−1 for all grass types. The MBE%

Table 4
Performance indicators of model goodness of fit in calibrating and validating the PBM for temporary (TG), permanent (PG) and rough-grazing (RG) grasslands in multi-site experiments:
residual mean square error (RMSE), relative root mean square error (RRMSE%), mean bias error (MBE), mean relative bias (MBE%) and variance accounted (%, adjusted R2). The
indicators of model goodness of fit were calculated for separate and combined simulated DM yields compared to observed DM yields, Y(O).Y is the mean annual DM yield calculated from
observations at the selected sites of multi-year experiments; n = number of observations.

Data case Grassland Y
(t ha−1)

RMSE
(t ha−1)

MBE
(t ha−1)

RRMSE%
(%)

MBE%
(%)

Adjusted R2

(%)
n

Calibration 10 sites TG 9.1 1.53 −0.54 16.76 13.58 63.9 43
PG 6.2 1.62 −0.33 25.93 23.15 50.1 43
RG 2.7 1.68 0.48 62.62 73.01 28.9 43
TG + PG 7.7 1.57 −0.44 20.49 18.37 70.1 86
TG+PG+RG 6.0 1.61 −0.13 26.79 36.58 80.1 129

Validation 15 sites + PGE TG 10.1 1.66 −0.44 16.34 13.42 28.4 69
PG 7.8 1.55 0.05 19.77 16.77 39.3 124
RG 3.2 1.31 0.47 40.50 41.74 21.6 124
TG+ PG 8.6 1.59 −0.12 18.36 15.57 52.8 193
TG+PG+RG 6.5 1.49 0.11 22.74 25.81 81.5 317

Calibration + Validation TG 9.8 1.57 −0.45 16.10 13.15 49.9 112
PG 7.4 1.56 −0.04 21.05 18.34 47.4 167
RG 3.1 1.42 0.47 45.87 49.79 25.9 167
TG+PG 8.4 1.56 −0.21 18.71 16.25 60.9 279
TG+PG+RG 6.4 1.51 0.05 23.68 28.81 81.3 446

Fig. 4. Frequency distribution of simulated scenario dry matter yields for rough-grazing
(…….), permanent (────) and temporary (− − − −) grassland; each scenario was
based on six different weather stations combined with a total of 33 different soil types
(see Table S3).
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was 13.4, 16.8 and 41.7% for temporary, permanent and rough-grazing
grassland, respectively. When DM yields were combined for temporary and
permanent or all three grassland types, the variance accounted for increased
to 52.8 and 81.5%, respectively (Table 4).

With the exception of rough-grazing (0N) grassland, the respective
RRMSE% of about 16 and 20% for temporary and permanent grassland was
within the acceptance criteria for goodmodel performance. When simulated
yields were evaluated against the observed yields in the PGE, the MBE%
was 23.2 and 15.2 for 144N and 0N plots (permanent grassland, rough
grazing), respectively. Similarly, the RRMSE% was also lower (26.7 and
18.6%, respectively), showing a fair and good model performance (Fig. 3b).
When pooling all calibration and validation data sets, the simulation of
temporary and permanent grassland proved to be in good agreement with
all observations (Table 4; n = 279).

3.2. Scenario DM yields for different grassland systems

Based on the chosen cutting frequencies and dates (Table 2) and the
calibrated parameters for the different grassland systems (Table 3),
panels of long-term time-series of DM yields were generated using the
PBM. These simulated DM yields for the different grassland systems
were distributed over a large overlapping range, especially for the
productive (temporary and permanent) grasslands, but each system has
a distinctly different peak probability (Fig. 4).

3.2.1. Regulating water use and groundwater recharge
In these scenario simulations, the annual simulated actual ET

depends on SAWC and grassland type (Fig. 5a). It was similar in
temporary and permanent grassland but lower under rough grazing (see
also Table S6). It is likely that in reality an even greater difference
between the grassland systems can be expected as temporary grassland
is located on soils with high SAWC, whilst rough grazing is found on
shallow soils with low SAWC. Like annual ET, annual drainage was
grassland type specific and strongly dependent on the SAWC (Fig. 5b).
The annual drainage was similar in temporary and permanent grass-
land, and smaller than under rough grazing (Table S6), which is an
important result to discuss in terms of groundwater recharge.

3.2.2. Resource use efficiency – water productivity (WP)
WP was calculated by fitting a simple linear relation between the

annual DM yield and the respective annual ET. The results (Table 5 and
Fig. 6) show clearly, that WP was almost four times higher in the highly
productive grasslands than in rough-grazing. On average, WP was
estimated to be 42.6, 25.0 and 11.8 kg ha−1 mm−1 for temporary and
permanent grasslands and rough-grazing, respectively.

3.3. Deriving MMs for different grassland systems

3.3.1. Variable selection
Exploring pedo-climatic variables during the active growing season,

SAWC within rooting depth was found to be a significant input variable
for all grassland management types. The forward stepwise variable
selection in the regression procedure identified SAWC and the following
aggregated bioclimatic variables (see Eqs. (7)–(9)) necessary to be
included. The estimated regression coefficients are given in the
equations below and the respective statistics are shown in the supple-
mental information (Table S7). The derived MMs for annual DM yields
were the following:

Temporary grassland, YM(TG):

YM(TG) = −2.18 + 0.1267*SAWC − 0 00315*SAWC2

+ 0.04013*PMAM − 0.0000949*PMAM
2 + 0.05079*PJJ

− 0.0001204*PJJ2 + 0.02704*PAS − 0.0000717*PAS2

− 0.002806*RMAM − 0.005512*RAS + 0.7105*TMAM

− 0.2445*TJJ − 0.1945*TAS (7)

Permanent grassland, YM(PG):

YM(PG) = −2.915 + 0.09141*SAWC − 0.0002261*SAWC2

+ 0.04381*PAMJ − 0.00009415*PAMJ
2 + 0.03457*PAS

− 0.00004871*PAS2 − 0.002489*RAMJ − 0.002826*RJAS

+ 0.1877*TMAM − 0.0808*TJAS (8)

Rough-grazing grassland, YM(RG):

YM(RG) = −0.862 + 0.03865*SAWC − 0.0001028*SAWC2

+ 0.0146*PAMJ − 0.00003894*PAMJ
2 + 0.01294*PAS

− 0.00002482*PAS2 − 0.000935*RJAS

+ 0.035*TMAM − 0.1046*TJAS (9)

The variance accounted for was 69.6, 72.2 and 47.6% for tempor-

Fig. 5. Boxplots showing estimated annual evapotranspiration (a) and drainage (b)
within the hydrological year (1 October–30 September) using the PBM calibrated for
temporary, permanent and rough-grazing grassland using historic weather records
(1958–2014) at Lyneham using six soil types (Table S3) of different SAWC (mm).

Table 5
Estimated parameters (± Standard Error) for water productivity, WP (kg ha−1 mm−1),
using a simple linear regression between simulated annual DM yield (DMY, kg ha−1) and
cumulative evapotranspiration (ET, mm) within the growing season. Example for time-
series 1958–2014 at Lyneham; n = 336. DMY = a + b*ET; b is WP.

Grassland a (kg ha−1 mm−1) b (kg ha−1 mm−1) Adjusted R2 (%)

Temporary −2124.1 (391.0) 42.6 (1.33) 75.3
Permanent −198.1 (298.0) 25.0 (0.96) 66.6
Rough grazing −48.3 (98.3) 11.8 (0.44) 67.9
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ary, permanent and rough grazing grassland, respectively.

3.3.2. Validating meta-models
Under Case A, the MM-predicted DM yields were validated against

DM yields measured in all 25 sites of N-dose experiments and data from
the PGE (Fig. 7a; Case A in Table 6). Except for rough-grazing, the
RRMSE% identified a “fair” model performance for temporary (21.1%)
and permanent (24.0%) grassland. However, the MM predictions for
rough grazing fitted observed DM yields in the PGE alone better than
when pooled with the 25 sites of the N-dose experiment: the RRMSE%
improved from 24.0 to 20.5%.

When the MM was validated against observed DM yields in
temporary grassland only (receiving 300 kg N ha−1) at 15 independent
sites (Fig. 7b) the goodness of fit showed an increased error (RMSE>
2 tha−1) but negligible bias (Table 6, Case B). Overall, the model
performance was fair (RRMSE% = 23.8%). Some of the error could be

clearly attributed to high DM yields in the first harvest year after re-
seeding (filled symbols).

4. Discussion

4.1. Predictive power of the PBM

To the best of our knowledge, this is the first time that a PBM has
been evaluated for such a comprehensive data set that covered all
relevant grassland systems. Their productivities are well described by a
widely used sink-source interaction model adapted here to respond to
environmental factors (Hurtado-Uria et al., 2014) and level of N
fertilisation (Hopkins et al., 1990; Hopkins et al., 1995; McEwen
et al., 1989). The different input/output regimes of the selected
grassland types were modelled calibrating parameters dependent on

Fig. 6. The relationship between simulated annual DM yield and evapotranspiration
within the growing season using the calibrated PBM on temporary (a), permanent (b), and
rough-grazing grassland (c) simulated using historic weather records (1958–2014) at
Lyneham on six soil types of different SAWC (mm).

Fig. 7. Evaluation of DM yields estimated by meta-model, Y(MM), against observed DM
yields, Y(O), Table 6; (a) Case A: observed for all grassland types at 25 sites of the multi-
year experiments (open symbols) and for rough-grazing (▲) and permanent grassland
(■) observed on the PGE; (b) Case B: observed at 15 sites of multi-year experiments for
temporary grassland (◊, McEwen et al., 1989), (▽, Jones et al., 2006) and (○, Hopkins
et al., 1990) – solid circles (●) represent first yields after re-seeding.
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N input, e.g. tiller numbers and photosynthesis (Table 3; Johnson et al.,
1983) and N offtake (Morrison et al., 1980). The choice of experimental
sites represented grasslands of all climate regions in Great Britain
(Fig. 1) and soils of diverse fertilities as indicated by the wide range of
respective DM yields on the 0N plots at different sites (Morrison et al.,
1980). Using long-term weather data for the scenario simulations its
validity and derived MM expanded well into Scotland (Jones et al.,
2006).

Other key management variables distinguishing grassland systems
were cutting regime (Herrmann et al., 2005), as temporary grassland is
likely to be harvested twice early for silage, whilst permanent grass-
lands may have one later silage or hay cut, both followed by grazing
(Table 2). Grazing only can be mimicked by frequent cutting (Barrett
et al., 2005) although growth pattern is different (Hurtado-Uria et al.,
2014; Orr et al., 2001). This paper doesn’t aim to quantify the effects of
grazing but to distinguish grassland types according to management
intensity. The model was, therefore, better at estimating productivities
for improved (temporary and permanent) than semi-natural grassland,
whilst fitting their mean productivities well (Fig. 3; Table 4). Poorer
model performance for rough-grazing was partly attributed to high
yields (> 6 t ha−1) in the first harvest year due to N carried over from
previous barley crops and partly to many low yields (< 2 t ha−1) in
soils of poor fertility (Fig. 3, Fig. S1). Strictly speaking, this is a
“temporary grassland” artefact, also observed in re-sown grassland
(Hopkins et al., 1990; Fig. 7b). When excluded from evaluations, the
“rough grazing” analogue (Section 3.1.2) compared much better,
especially to observed yields in the PGE (MBE% and RRMSE% were
reduced from 41.7 to 23.2% and 40.5 to 26.7%, respectively). Overall,
however, the used PBM greatly simplified the diversity encountered in
mixed grassland (Jouven et al., 2006; Topp and Doyle, 2004).

4.2. Meta-models versus process-based model

Whilst PBMs describe the interactions of physiological and morpho-
logical mechanisms controlled by environmental and management
variables, MM linearize these mechanisms and ignore interactions.
MM estimates accounted for less variation of observed DM yields than
the PBM (Tables 4 and 6). Overall, the MM validations were slightly
noisier and an overall decrease in certainty of< 10% was observed.
This can be partly attributed to the conversion of daily weather into
aggregated bi- or tri-monthly input variables during critical growth
phases. Nevertheless, the coefficients estimated for the MM variables
were meaningful (Table S7) and produced predictions in good agree-
ment with observed yields (Table 6, Fig. 7). Once PBMs are validated
for a large range of pedo-climatic (weather x soil) and eco-physiological
conditions, the MMs derived from these PBM scenario outputs can
reliably approximate productivities. They are biophysically meaningful
when SAWC in the root zone and bioclimatic variables are combined
(Lobell and Burke, 2010; Phelan et al., 2016).

Due to the uncertainty of spatially resolved inputs over large
regions, MMs are considered sufficiently precise and increase the

simplicity of GIS-based computations. Such spatially resolved produc-
tivity data approximate the reality and can be used for exploratory
mapping (Chang et al., 2015; Liu et al., 2011; Lovett et al., 2014).
Caution must be exercised for the likely use of MMs outside the range of
biophysical variables, which was compensated for by using a wide
range of scenario inputs (Step B1, Fig. 2), to ensure the validity for
climate change scenarios.

Nevertheless, MMs have two limitations: first, they cannot be
transferred to different management systems, and second, they are
limited to a single output and give no information on other ecosystem
services (e.g. water balance). They are static and for limited range of
time and place, “there and then”, because their estimated coefficients
are empirical. Contrary to this, PBMs are dynamic and estimates can be
both “there and then” and “here and now” (real time) because
parameters are based on eco-physiological understanding.
Nevertheless, it is concluded that both, the PBM and MM reflect
productivity of grasslands with variable management (Figs. 3 and 7).

4.3. Up-scaling opportunities and limitations

PBMs usually need high quality inputs (especially weather), which
rarely exist for large regions (Van Bussel et al., 2011). The question
arises whether the use of a complex dynamic model is justified over the
fast MM derived from PBM simulations or “simulated observations”
(Lobell and Burke, 2010). Validation against real observations (Figs. 7)
improves the confidence in our MM approach, which can be considered
to be a robust yield estimate at large scale (Soltani et al., 2016), similar
to statistical weather-yield models established from observations only
(Richter et al., 2008). Our MMs for baseline grassland productivity were
derived from multi-site panel simulations (Lobell and Burke, 2010)
without the need of de-trending. For future productivities all other yield
effects, e.g. technology advance and climate change can be applied
externally. Although PBMs come with less uncertainty, its gain over
yield estimates from MMs was not significant (p > 0.05 when paired-t
test was conducted).

However, PBMs incorporate more functionalities such as flow of
water and nutrients in the soil-plant-atmosphere continuum. PBMs
provide dynamic understanding of productivity gains and environmen-
tal trade-offs whereas MMs estimate production only. The usage of
PBMs is justified for multi-purpose outputs, as exemplified for WP (see
3.2.2). For other outputs one needed to revisit PBMs, as shown for
hydrological ecosystem services here.

4.4. Regulating water regime

Drainage, ET and WP are service indicators of regulating water
regimes in agroecosystems (Maxwell and Condon, 2016; Moot et al.,
2008; Nielsen et al., 2006). Annual ET was smaller for rough-grazing
compared with temporary and permanent grasslands, due to a smaller
LAI and a slower build-up of the canopy. Under rough-grazing, the plant
community will differ from temporary and permanent grassland.

Table 6
The performance indicators of model goodness of fit for MM-fitted DM yields, Y(MM), for compared to observed DM yields (Case A) for temporary (TG), permanent (PG) and rough-
grazing (RG) at the 25 sites of the multi-year experiments plus PGE used for calibration and validation of the PBM (Table S1; Fig. 7a), and (Case B) Temporary Grassland at 15
independent experiments (Table S2, Fig. 7b). Y is the mean annual DM yield calculated from observations at the selected sites of multi-year experiments.

Case Grassland Y
(t ha−1)

RMSE
(t ha−1)

MBE
(t ha−1)

RRMSE%
(%)

MBE%
(%)

Adjusted R2

(%)
n

A (25 sites +PGE) TG 9.76 2.06 −0.359 21.15 18.57 25.7 112
PG 7.41 1.78 −0.056 24.03 20.63 29.6 167
RG 3.09 1.50 0.593 48.57 53.42 22.0 167
TG + PG 8.36 1.90 −0.178 22.72 19.80 43.3 279
TG + PG + RG 6.38 1.76 0.111 27.60 32.39 74.7 446

B (15 sites) TG 10.24 2.44 −0.01 23.84 19.08 13.28 178
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Rough-grazing land is usually poor in nutrients, which results in limited
tillering and leaf extension (Clark et al., 2014; Martinefsky et al., 2010)
which is reflected in its PBM parameters (Table 3). Here, a double effect
becomes apparent as actual ET is increasing up to an SAWC of 110 mm,
where it is levelling off (Fig. 5a) separating marginal from fertile soils;
conversely, annual drainage decreased up to an SAWC of about 110 mm
(Fig. 5b). The level of ET is lower under rough grazing than improved
grasslands, creating on average more groundwater recharge, which is
an important ecosystem service to be considered in the context of
choosing perennial vegetation (Hamilton et al., 2015).

Biomass-based WP reflects the management conditions (Steduto
et al., 2007). WP of temporary grassland calculated here is slightly
higher than that for forage from Triticale (32.2 kg ha−1 mm−1; Nielsen
et al., 2006) or cocksfoot (Dactylis glomerata) with 38 and
17 kg ha−1 mm−1 for the 300N and 0N treatments, respectively
(Moot et al., 2008), which were in close agreement with estimates for
similar treatments here (Fig. 6; Table 5).

4.5. Relevance

For optimising land use it is important to spatially differentiate
productivity for different grassland systems, both locally and nationally
(Chang et al., 2015; Guo et al., 2016; Turley et al., 2010). Production
potentials need to be benchmarked for whole system trade-offs using
land for conservation and other ecosystem services (Hopkins and Holz,
2006; Leimer et al., 2015; McEwen et al., 1989; Smit et al., 2008). Here,
we referred to modelled grassland productivity as annual potential DM
yield for feed, biogas feedstock or for extensive grazing. Productivity is
strongly dependent on SAWC and weather, and both modelling
approaches conserve these relationships for different grassland systems.
High forage productivity requires adequate N, and the 300N treatment
used here for temporary grassland was within the economic optimum of
N across the UK (Morrison et al., 1980). Higher productivity is possible
with new grass species and higher input but often uneconomical
(Hopkins et al., 1990) and environmentally detrimental (del Prado
et al., 2006). Other factors than N supply (other nutrients, irrigation,
diseases, pests, weeds and cutting/grazing frequency (Hopkins et al.,
1995; McEwen et al., 1989) have been ignored here. However, the
effect of phosphorus availability is accounted for in tiller densities
across different systems (Table 3).

Overall, our results closely reflect the reality of grassland produc-
tivity of rough-grazing (2–3 t ha−1; Hopkins, 2008), permanent grass-
land with moderate N inputs from fertiliser or legumes (7–9 t ha−1) and
temporary grassland (10–12 t ha−1; AHDB, 2013). Average yield
measured in the PGE were similar with 3.2 (± 1.1) and 8.5 (± 1.7) t
ha−1 for rough (0N) and improved (144N) permanent grassland and
stable over 55 years (Fig. S2). Respective productivities of permanent
and rough grazing grasslands usually reach 80 and 10% of temporary
grassland (Chang et al., 2015). In the UK, however, the productivity of
rough-grazing grasslands reaches about 20%, as the average biomass
yields of the scenario simulations show for the three systems (10.50
(± 2.84), 7.29 (± 2.25) and 2.25 (± 0.70) tha−1). The MMs are being
up-scaled to estimate national feedstock based on spatially differen-
tiated inputs for soil, land cover (Morton et al., 2011) and land use
constraints (Lovett et al., 2014). Future predictions will account for
climate change projections (UKCP09) and technological progress
including advances in breeding and crop management (Smit et al.,
2008; Chang et al., 2015).

5. Conclusions

For grassland, the largest land use system in the UK, a PBM was
parameterised and evaluated using a large set of N-dose experiments at
multiple sites to estimate productivities of all grassland systems. Up-
scaled to statistical MMs derived from PBM scenario of multi-site panel
simulations (soil types x long-term weather) the predictive ability of

these MMs for temporary and permanent grassland systems was similar
to the PBM. The MMs are therefore an effective tool to scale up the PBM
to provide spatially explicit productivity over large regions for the
baseline and future scenarios. Taking into account the respective areas
of each grassland type, the total annual biomass of UK grassland could
be about 70 million tonnes of DM with a considerable option for biogas
production. Outputs regarding multiple ecosystem services, PBMs seem
indispensable to assess resource use efficiency and ground water
recharge (drainage), and possibly impacts of increased N fertiliser
inputs.
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