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ABSTRACT

Biomass from agricultural land is a key component of any sustainable bioenergy strategy, and ond gen-

eration, ligno-cellulosic feedstocks are part of the UK government policy to meet the target of reduced
CO; emission. Pre-harvest estimates of the biomass supply potential are usually based on experimental
evidence and little is known about the yield gap between biologically obtainable and actual achievable
on-farm biomass yields. We propose a systematic integration of mapped information fit for estimating
obtainable yields using an empirical model, observed on-farm yields and remote sensing. Thereby, one
can identify the sources of yield variation and supply uncertainty. Spatially explicit Miscanthus potential
yields are compared with delivered on-farm yields from established crops >5 years after planting,
surveyed among participants in the Energy Crop Scheme. Actual on-farm yield averaged at 8.94 Mg ha~!
and it varied greatly (coefficient of variation 34%), largely irrespective of soil type. The average yield gap
on clay soils was much larger than that on sandy or loamy soils (37% vs 10%). Miscanthus is noticeably
slower to establish on clay soils as shown by fitting a logistic Gompertz equation to yield time series.
However, gaps in crop cover as identified by density counts, visual inspection (Google Earth) and remote
sensing (Landsat-5) correlated with observed on-farm yields suggesting patchiness as causal for reduced
yields. The analysis shows ways to improve the agronomy for these new crops to increase economic
returns within the supply chain and the environmental benefits (reduced GHG emission, greater carbon
sequestration) and reduce the land demand of bio-energy production.

Crown Copyright © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bioenergy from agricultural crops has come under severe criti-
cism when sourced from 1% generation, starch/sugar providing
feedstocks due to environmental concerns [1] and impacts on food
security [2]. In contrast, 2" generation, ligno-cellulosic feedstocks
are more acceptable due to their superior greenhouse gas (GHG)
benefit due to low fertiliser and management inputs [3]. For large
parts of the United Kingdom, a previous comparative study on GHG
emissions [4] was based on feedstock estimated and up-scaled with
empirical yield models for two major agricultural biomass crops:
Miscanthus and short-rotation coppice [5,6]. These feedstocks were
rated according to their potential regional performances [7] based
on experimental observations, but there was no information with
regard to the actual on-farm performance or yield gap.

* Corresponding author.
E-mail address: goetz.richter@rothamsted.ac.uk (G.M. Richter).

http://dx.doi.org/10.1016/j.biombioe.2015.12.024

On-farm yield prediction is vital for the successful imple-
mentation of a sustainable energy supply chain based on biomass
crops. Bottom-up verification of model-based supply estimates is
essential to assess the wider impact on food and energy security,
land use change, and GHG emission. In England, farmers have been
encouraged to grow short rotation coppice and Miscanthus as
biomass within the Energy Crops Scheme (ECS). Planting of Mis-
canthus has increased between 2006 and 2011 from 6 to 8 thou-
sand ha' [8]. According to expert knowledge one could produce an
estimated total of 80—120 thousand tonnes of oven dry matter
(odmt which corresponds to “Mg”) per annum. Potential yield maps
[9] 2 were based on long-term temperature and radiation only and

1 https://www.gov.uk/government/uploads/system/uploads/attachment_data/
file/141626/defra-stats-foodfarm-landuselivestock-nonfoodcrops-latestrelease-
130125.pdf.

2 http://webarchive.nationalarchives.gov.uk/20140605090108/http:/www.
naturalengland.org.uk/ourwork/farming/funding/ecs/sitings/default.aspx.
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categorised land into three different yield classes (low/medium/
high), suggesting an economic threshold of 12 Mg ha~! in a well-
established crop. In fact, the average Miscanthus yield was
12.8 Mg ha~! in experimental observations [6] and the simulated,
obtainable average yield was 12.5 Mg ha~! if grown on agricultural
land in England [10]. However, the national average of delivered
on-farm oven dry matter biomass yield is about 9 Mg ha~. This
would correspond to a yield gap of close to 30%. Questions arise
about the reasons for this gap, whether soils differ in terms of yield
realisation and variation, and whether a diagnostic tool can be
developed to overcome the sub-optimal performance of these new
crops. Considering the economic threshold of between 12.5 [9,11]
and 9 Mg ha! for Miscanthus [10] many farmers would be well
below the break-even point and, therefore, it is crucial to identify
avenues to improve productivity.

No studies have been conducted to assess the extent to which
farmers successfully grow these new crops, although this has been
identified as a future research need in particular in relation to mar-
ginal lands [12]. It is not clear, whether there is a yield difference due
to the effect of soil type in terms of water availability or texture class,
and how achievable on-farm yields compare with model-based es-
timates of biologically obtainable production (i.e. accounting for bio-
physical constraints). It would be valuable to examine whether
available remote sensing (RS) data enable us to quantify patchiness
which has been shown to impact on yield and economic feasibility
[13], and trade-offs between two major ecosystem services, yield
related soil carbon sequestration [13] and biodiversity [14].

The aim of this study was to compare model-derived produc-
tivity potentials, based on soil water availability and long-term
climate data, with sustainable (i.e. achievable and consistently
delivered) on-farm Miscanthus yields. The latter are defined as the
reported average annual field or on-farm yields of well-established
crops, i.e. >5 years after planting. In a second step we investigated
how observed yields related to the variability of the crops by using
geo-referenced optical satellite data to derive the Normalized Dif-
ference Vegetation Index (NDVI) per field from Miscanthus growing
farms. Finally, this led us to discuss the potential of developing a
decision support tool for farmers to improve crop cultivation (e.g.
decide on gap remediation or total replanting), and for policy
makers to monitor and improve the effectiveness of support
mechanisms.

2. Materials and methods

This study takes a bottom-up approach and uses on-farm
yield surveys at the field and farm scale to verify the outputs
(yield maps) of productivity models established on the basis of
experimental, plot-scale observations (Fig. 1). Google Earth was
used in photo-interpretation for quality control and to verify the
field locations given in the ECS database. Geolocation of fields
was essential to create field- and crop-specific masks to overlay
information layers, in particular the spatially explicit potential
yield map and the satellite image-derived NDVI (see also Fig. 6).
For a subset of fields, ground observations on crop density, height
and leaf area (morphometric data) were also taken.

2.1. On-farm survey

With the support of Natural England (NE) we conducted an
anonymized field survey among farmers within the ECS. Three
consecutive questionnaires were sent out in 2009, 2011 and 2013 to
(1) establish a database of corresponding field locations with UK
grid geographic references (Ordnance Survey map), soil type and
hydrology, and soil texture class; (2) record data on land use history
and management (Miscanthus planting date, fertiliser use, harvest
dates); and (3) collate time series of biomass yield to estimate
actual deliverable on-farm yield potentials.

From the coordinates (UK Ordnance Grid) or the postcode pro-
vided by some farmers, fields or farm sites were located using UK
Streetmap software. Screenshots of the field sites using Google
Earth time line and Ordnance survey maps (1:25,000) were
instrumental to verify field locations initially starting from the
coordinates recorded by NE in the ECS database.

The questionnaires were circulated to farmers to identify indi-
vidual field or farm characteristics. Questionnaire 1 was centrally
distributed by NE and designed to record site details in terms of soil
water availability and fertility to understand site selection criteria
and local yield formation. As feedback from farmers on questions
regarding soil, climate and site hydrology was rare the simplified
Questionnaire 2 was distributed by NE as well as being sent directly
to farmers who had provided their addresses. Questionnaire 3 was
further complemented with feedback reports to communicate re-
sults and prepare for personal interviews with background
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Fig. 1. Data integration for on-farm yield evaluation, estimation and improvement.
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information. Its main purpose was to develop and verify a
comprehensive yield database. Some farmers conveniently recor-
ded yields as number of total bales per year across the whole farm,
but some also distinguished field-specific yields. Conversion of bale
number to weight was based on the assumption that each bale (size
0.9 x 1.2 x 2 m) consisted of 600 kg at 25% moisture content (i.e. an
equivalence of 450 kg oven dry matter per bale).

2.2. Model-estimated obtainable yields

Crop productivity depends strongly on variety, agronomy and
environment but for commercial farms a single Miscanthus geno-
type is grown. The best yield achievable using current variety and
recommended agronomic practices under any physical and biotic
conditions is defined as obtainable yield. Obtainable Miscanthus
yields were estimated using an empirical model (Ygy) based on soil
available water capacity (SAWC) and long-term monthly climate
data (precipitation, temperature, radiation) for each field [6,10].

This empirical yield model is based on a multiple regression of
experimental yields from 14 experiments across 10 different sites in
the UK, with SAWC ranging from <100 mm—>300 mm within the
rooting depth and observed local weather records [6]. A yield map
had been generated using long-term weather data (1950—2000)
[15] at a 1 km by 1 km grid scale across the UK and SAWC was
estimated using the method described earlier [10]. In short, soil
hydrological site properties combined water retention properties
(derived from soil physical properties) [16] with depth to ground-
water and water from underlying porous rock (i.e. hydrology of soil
type (HoST) classes [17]). For the on-farm yield evaluation all
relevant soil data were downscaled from NATMAP1000 to a
100 x 100 m? grid by combining the soil survey data and NATMAP
vector maps [18] and selecting the respective soil properties and
yield potential of the dominant soil series and association.

2.3. Calculating the empirical on-farm yield plateau

An empirical on-farm yield plateau (i.e. the likely peak or
achievable yield of a given plantation), Yog, was estimated using the
time series of site-specific commercially harvested oven dry matter
yield reported in the survey. Unlike arable or fodder crops, maximum
and peak productivity of a Miscanthus crop can take three to five
years after planting [19,20]. In the case of long and complete time
series (10—15 years) such as the plot size experiments at Rothamsted
Research, a double exponential model [21] was found most appro-
priate to describe the first phase rise and the final phase decline of
obtainable biomass yields (Y) over years after planting (X) as
observed in many other experimental data [22]:

Y = Yo exp (jmin (¥ — 1)+ F0=FmR (1 —exp(—r-(x —1))) (1)

where Yy is the potential biomass yield at the end of first estab-
lishing year, X the number of years after planting, yp and pmi, are
the initial and final annual net relative increase rate of biomass
yield, respectively, and v is the parameter determining the rate of
change from pg to pimin.

In the survey database, most farmers had annual biomass yields
for fewer than seven years after planting. For practical and eco-
nomic reasons only a small number of fields were harvested after
the first year (ca. 9% of the recorded fields), this increased during
the second and third year of growth to 50 and 90% of the recorded
fields, respectively. A total of 79 fields represented about 1000 ha
with annual yields for four or more years after planting, and only
half of these extended beyond six years after planting. Therefore,
Equation (1) was simplified to the Gompertz equation (Equation
(2)) in order to estimate the maximum potential biomass yield at a

pre-determined harvesting year (X = 5) beyond which biomass
yield increased very little to reach an asymptote (i.e. the on-farm
yield peak or plateau, Yo):

Y = Yo exp(u(1 — exp( — v- (X — 1)) 2)

Equation (2) has only three parameters; as in Equation (1), Yp is the
potential biomass yield at the end of first year, p equals pp/v since
no decline of biomass yield was assumed (i.e. pmin Was at zero in
Equation (1)) and v is rate of change relative increase of biomass
yield.

Preliminary analyses showed that biomass yield reached more
than 97% of the on-farm plateau yield on the 5th year after planting
in all soil texture classes. Therefore, the 5th year after planting was
used to estimate on-farm plateau biomass yield, Yor. This same pre-
defined year was also used to calculate the average actual observed
on-farm plateau of biomass yield using available yields from fields
harvested on the 5th year after planting. This average on-farm
biomass yield plateau was later used to calculate yield gaps.
Curve-based yield plateaus and biomass yield by the end of the first
year (Yp) were estimated for each soil texture category (heavy,
middle and light; H/M/L) using the Gompertz model (Equation (2)).

2.4. Normalised difference vegetation index (NDVI)

Normalised Difference Vegetation Index (NDVI) was derived
from Landsat-5 TM scenes (183 x 172.8 km) provided by the Eu-
ropean Space Agency (ESA) [23] in the Universal Transverse Mer-
cator (UTM) coordinate system with a 30 m pixel spacing. Scenes
were selected for dates during the late growing season (September
2011) for comparison to the harvest data. Landsat-5 TM Level 1
System Corrected data had undergone pre-flight and in-flight
radiometric calibration [24] and was geometrically accurate
within 1 sigma [23,25]. The nearest neighbour (NN) resampling
algorithm preserves the maximum original radiance values, and
makes it free from distortions from the sensor, satellite or Earth
[26,27]. The satellite imagery was pre-processed in ERDAS Imagine
10 to remove undesirable image characteristics, correct for geo-
metric distortions and calculate NDVIL.

2.4.1. Atmospheric and topographic correction

Dark Object Subtraction (DOS) is a radiative transfer approach
applied to remove atmospheric distortions (within ERDAS Imagine
software). This method corrects for the effect of atmospheric
scattering (the dominant atmospheric affect for Landsat TM data)
based on the darkest pixel in the image to produce apparent surface
reflectance [28]. This was accomplished in four steps by: (1)
selecting a clear water body as a dark object with low digital
number (DN) values as previously suggested by Gordon [29]; (2)
selecting a representative pixel from each reflective band from its
DN frequency histogram where there was a sudden increase in the
number of pixels; (3) implementing the conditional statement to
subtract the per-band haze DN value from the respective spectral
band of the whole scene; and (4) preventing the value of zero [30].

A 10 m spatial resolution Land Form Profile Digital Terrain
Model (DTM) acquired from the Ordnance Survey [31] showed that
terrain slopes varied from 2 to 15%. However, with the exception of
a few fields in the 2011 crop survey, none of the fields in 2009 and
2013 crop survey exceeded the critical threshold of 7% slope. Only
slopes of 7% or higher would be significant enough to impact on the
crops' spectral signatures [32].

2.4.2. Calculating radiance and reflectance
Spectral radiance values (L;) at the sensor's aperture were
calculated using Equation (3) from the total potential energy
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reaching the sensor (Qq) normalised for solar irradiance using ratio
of spectral radiance scaling factors LMAX; and LMIN, (range 0—1;
NASA, 2011) over the maximum and minimum energy (Qcal max/Qcal
min) Measured in each band pixel (values of DN range from 1 to 255
for 8 unsigned Level-1 Product Generation System products).

L; = (LMAX; — LMIN;) / (Qcal max — Qcat min) % (Qcal — Qcal min)
+ LMIN; 3)

Respective solar spectral irradiances ESUN; 1533 and 1039 W/
(m? x pm) for spectral band 3 (red) and 4 (near-infrared, NIR),
respectively, were obtained from NASA (2011) to calculate the
spectral reflectances, p; using Equation (4).

)= (Tr x L; x dz)/(ESUNA x cosfs) (4)

where 7T is a mathematical constant (3.14159), L, is the solar
spectral radiances for band 3 or 4, respectively, d° the distance on
the Julian day, ESUN; is 1533 (for Landsat-5 TM band 3) or 1039 (for
Landsat-5 TM band 4) and cos6; is the solar zenith.

2.4.3. Calculating the NDVI

The NDVI depends on the orientation of the surface with respect
to the observer. As all selected sites were below 7% the NDVI was
simply calculated using Equation (5) within ERDAS Imagine from
spectral reflectance for band 3 and 4; ratios of red and NIR spectral
bands determine the presence of vegetation [33]. Output numbers
must be in float single data type.

NDVI = (pnir — prep)/ (PNIR + PRED) (5)

where prgp and pyjr are reflectance in band 3 and band 4,
respectively

2.5. Building a GIS data base for field sites

A GIS database was created in ArcGIS (version 10) to overlay
soil and obtainable yield data (both at a 100 m x 100 m grid
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resolution), derived from the empirical Miscanthus model which
uses soil and long-term climatic inputs, and the NDVI for verified
field locations. The analysis of variance was done with Genstat
[34] for samples grouped according to soil texture group, which
covered clayey (heavy-H), loamy (medium-M) and sandy (light-
L) soil textures.

Box and whisker plots, using the Tukey method [35], were used to
display the quartiles and outliers of NDVI from combined fields and
within individual fields on various farms (SigmaPlot 13.0 software).
When frequency histograms for NDVI and ground-based data devi-
ated from the normal distribution non-parametric correlation
(Spearman's ranking) was used, which was more appropriate to
handle data with outliers. Landsat image-derived NDVI were
extracted from subplots to relate pixel properties to ground-based
estimates, e.g. LA, plant density, using a linear regression model [36].

3. Results
3.1. Survey results — structure of the sample

In 2009, farmers growing a collective 573 ha of Miscanthus
responded to the first survey sent out by NE; in 2011, the response
to direct contacts was >90% which in conjunction with additional
contact through NE resulted in retrieval of information for a further
669 ha. Knowledge Transfer activities and farm visits within the
NERC-funded Microclimates project increased the area with back-
ground information to >2100 ha. Of the approximate 2100 ha,
940 ha provided biomass yield data from crops planted >4 years
ago, which could be analysed to estimate a yield plateau by fitting
Equation (2) (see 3.2). The data set covered a similar number of sites
with yield data in 2011, which could be examined in relation to the
NDVI. Over all of the area, the average field size was about 6.7 ha.

The questionnaire characterised the topographic, pedological,
management, land use history and other site properties (Fig. 2). In
the 2011 crop survey samples, almost 70% of area was flat to slightly
sloped (<5%) but 10% was above the suggested slope threshold of
15%, considered unsuitable for crop cultivation [10]. About half of
the crop was grown on medium textured soils (Table 1), which

21%
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W Heavy
@Medium
Olight
mPeat
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Fig. 2. Qualitative information provided in questionnaires for 77 Miscanthus fields, field characterisation according to slope (a), soil texture (b), profile depth (c), grade according to

Agricultural Land Classification (d), fertilizer/slurry application (e), and prior land use (f).
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usually have deep profiles and plenty of plant available water. With
few exceptions, the farmers' classification of soil textures (H/M/L)
agreed with the information on the soil map. In contrast to earlier
scenarios [10] ~30% of the area was classified as good agricultural
land (Grade 2) and no Grade 4 land was used. Less than 10% of the
area surveyed in 2011 had grassland as the previous land use, and
very few farmers (<10%) applied any nitrogen (N) or organic fer-
tilizer to their Miscanthus crops.

3.2. Actual on-farm yield (Yor) plateaus

A total of 66 observations were available for estimating achiev-
able on-farm plateau yields (Yor) harvested five years after planting.
On average, Yor was 8.94 Mg ha~! over all soils and varied between
7.85 and 9.51 Mg ha~! depending on the soil texture group (Table 1).
There was considerable variation within each soil texture group and
the calculated coefficient of variation (CV) ranged from 23% to over
41% in medium and light/heavy textured soils, respectively.

The achievable on-farm yield plateau (Yor) was also estimated
by fitting the three parameter Gompertz equation (Equation (2)). It
was first fitted to all combined data points among all soil texture
classes (Fig. 3a) and then separately to three subsets pooled ac-
cording to distinctive soil texture groups (Fig. 3b). The estimated
parameters are given in Table 2. The estimated biomass yield har-
vested in the first year was 2.36 Mg ha~! over all soils but it varied
appreciably from one soil texture group to another. There were few
fields with 1st year harvests, which caused great uncertainty in
these estimates, particularly in the loamy textured (M) soil group.
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Fig. 3. Fitted curves for progression in annual biomass yield of UK Miscanthus crops
after planting, based on fields from all soils (a) and on fields grouped according to light,
medium and heavy soil texture (b).

The Gompertz equation-based estimate of achievable on-farm
biomass yield plateau (i.e. in the 5th year harvest) was
8.90 Mg ha! over all soils while it varied between 8.13, 9.46 and
8.62 Mg ha~! on H/M/L soils, respectively (Table 2). These estimates
compared well with the corresponding achievable on-farm
biomass potential yields calculated using observed yields on the
5th year after planting (see Table 1). The added benefit of this
analysis was that it clearly showed that a longer timespan was
required to reach the yield plateau in heavy clay soils (Fig. 3B).

3.3. Predictability of on-farm Miscanthus productivity — yield gap

The yield map was generated using the empirical relationship
between peak yields of established crops (i.e. >5 years after
planting) from experimental sites and biophysical control variables
(precipitation, temperature and soil available water capacity) [6,10].
This yield represents the bio-physically obtainable biomass yield of
the genotypes grown at the time. The downscaled vector map
allowed readings at the hectare resolution, and a total of 100 map
entries could be compared to 66 surveyed on-farm yield records
(see Table 1). Site-specific biological yield potentials estimated
using the empirical model (Ygy) ranged from <5 to >15 Mg ha™!
with an average of 11 Mg ha~'. The area-weighted observed
average yield (8.94 Mg ha~!) remains 18.7% below the site-specific
average Ygm (see Table 1) and 28.5% below the predicted national
average (12.5 Mg ha~1) [10].

The biggest yield gap, exceeding 35%, between the actual
achievable on-farm yield (Yor) and the biologically obtainable yield
estimated using the empirical model (Ygy), was found for heavy
clay soils. On-farm delivered yields on medium and light textured
soils came closer to their biologically obtainable yields, with the
yield gaps averaging about 10% (Table 1). The achievable on-farm
plateau yields (Yor) estimated for >5 year old plantings using
Equation (2) were very similar to those actual reported on-farm
yields calculated using survey yields harvested from mature crops
(i.e. on the 5th year after planting; see Tables 1 and 2). Therefore,
the yield gaps between the Ygy and on-farm plateau yields esti-
mated using the Gompertz equation were also similar to those
between the Ygy and the actual on-farm yields.

3.4. NDVI — a measure for patchiness of Miscanthus fields?

A total of about 100 fields that covered ca. 700 ha were subjected
to spatial analysis using the Landsat image-derived NDVI, which

1200 | - 100
mmm Frequency 3
1000 { | —— Cumulative frequency e
I 80 =
[
c
= 800 o
o =]
g 60 g
S 600 =
o 9
2 40 S
L. 400 =
E
200 - 20 E
(&)
0 -

D W O W WM~ WD D WD W DN B

CEocdeEeNEEod2 5o o

v © o o o o o o o ?\!

NDVI

Fig. 4. Frequency distribution of the normalised difference vegetation index (NDVI)
across 98 Miscanthus fields sampled and covered by the Landsat-5 TM images for 2011
cropping season (50 separate field or farm observations).
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was related to field-specific yield measurements. A total of 23 farms
were included in the analysis. For 36 individual fields (about
300 ha) on 11 of the 23 farms, field-specific yields could be
compared to the corresponding field specific NDVI while for the
other 12 farms, field-specific NDVI were aggregated to a farm
average to be compared with yields reported at the farm scale. The
NDVI ranged from 0.227 to 0.939 and its right skewed distribution
(Fig. 4)indicates that the median was higher than the mean (0.836
vs. 0.805). About 200 values were smaller than 0.6, which corre-
sponds to less than 5% of the total readings and of which 66
readings were associated with a recently established field (aver-
aged at 0.553; see Fig. 6). Some of the low readings could be
associated with shaded borders or other non-radiative bodies on

257

the border, but could also be due to poor establishment in some of
the fields, which was visible even on Google Earth images.
Considering this value of 0.553 as a reference threshold, the box
and whisker plot (Fig. 5) reveals more NDVI outliers below this
value where only farm-level aggregated (Fig. 5a) rather than field-
specific yields were recorded (Fig. 5b). These pixels could represent
areas with low stand density, where NDVI differed from the overall
mean of field or farm beyond the inner and outer fences of their
interquartile range. There were five samples in the farm-specific set
(Fig. 5a) that show many outliers (Farm Nos. 4, 5, 7, 9 and 13), in
particular the multiple field set of Farm No. 13. The suspected
patchiness could be verified in all cases using Google Earth images.
This box and whisker plot also identifies entire farms or fields
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Fig. 5. Box and whisker plots showing distribution of normalised difference vegetation index (NDVI) derived from images by Landsat-5 TM in September 2011 within farm-grouped
fields on 23 different farms (a) and within 35 single fields on 11 different farms (b). Letters and numbers denote farmers and fields. For example, F3-1 means field 1 on farm 3. The
lower boundary of the box indicates the 25th percentile while the upper boundary of the box indicates the 75th percentile. The lower and upper whiskers indicate the 5th and the
95th percentile while the black and red horizontal lines within the box indicate the median and the mean NDVI, respectively. The open circles both below and above the whiskers

are outliers.
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which underperformed in terms of the mean (for example Farm No.
15) and revealed that patchiness further reduced the farm-specific
NDVI (see Farm Nos. 7, 9 and 11). In the case of field-specific yield
monitoring there were fewer outliers in total and hardly any below
the NDVI threshold (Fig. 5b). Most of the outliers in these samples
were observed in between the inner and outer interquartile range
and above the threshold.

3.5. Relationship between NDVI and biomass yield

NDVI derived from reflectance in the NIR and red spectrum has
been used as a proxy for canopy leaf area index (LAI) and fraction of
absorbed photosynthetically active radiation (fAPAR) and, conse-
quently, can be an indirect measure of biomass productivity. As
expected, the NDVI was a good overall indicator of increasing
Miscanthus yield in mature stands, both at the farm level (Fig. 6)
and in between different data sets across different farms, regions
and soil properties (Fig. 7). At the farm scale, 4th year yield was
about 25% below 5th year yields (Fig. 6) which was much more than
the difference in NDVI (ca. —4%) derived for this set of fields. The
newly planted crop on the same farm, for which a yield of about
2.4 Mg ha~! could be expected, had already a substantial NDVI,
which, however, was lower than other poorly performing Mis-
canthus crops (e.g. farms No 4 and 15). There are two implications
from this example: (a) the difference in yield (biomass density)
exceeds greatly that in NDVI (canopy density), and (b) there is a
background reflectance which should be attributed to the under-
growth in spite of initial spray of herbicides.

There was one field from which the harvested yield was from
the first year crop and therefore was not compatible with crops of
more than four years after planting in other fields. Therefore, first, it
was excluded in the simple linear regression analysis between
biomass yield and NDVI. When a simple linear relation was fitted to
data points among all soil texture groups, NDVI accounted for 32.4%
(n = 42) of variation in the observed on-farm yield (see Table 3).
When the simple linear relation was fitted to data points of

B ndvi_nyorks011.img
Value
High : 0999948

Low : -0.999892

Table 1

Summary survey data with mean actual on-farm plateau Miscanthus yields (YoF) in
5th year after planting (YaP) with standard error (SE) and coefficient of variation
(CV) grouped according to soil texture group — light (L), medium (M) an heavy (H) in
comparison to the long-term biologically obtainable potential yield map using an
empirical model (Ygy) and the calculated yield gap (YGap). n is the respective
number of sampled fields.

Soil group Area n Yor (SE) CV  Yem n YGap
[ha] [5thYaP] [Mgha '] [%] [Mgha '] [Yem]| [%]
L 242 15 9.51(1.02) 414 104 25 8.6
M 471 29 9.48(041) 233 10.7 48 115
H 227 22 7.85(0.70) 419 124 27 36.7
All 940 66 8.94(0.38) 34.1 11.0 100 18.7
Table 2

Parameter values and standard errors of the Gompertz model (Equation (2)) to es-
timate achievable on-farm plateau yields (Yog) for crops in the 5th year after
planting on light(L), medium(M) and heavy(H) soil. Yy is the estimated yield har-
vested by the end of the first year, n is the number of data points.

Soil Yo n v p-value Yof n
Group Mgha! Mg ha~!

L 3.86(1.93) 0962 (038) 0453 (049) <001 862 71
M 103(0.89) 2245(0.84) 1.115(032) <001 946 147
H 2.71(0.80) 1400(024) 0383(0.14) <001  8.13 108
ALL 2.36(0.68) 1.421(0.26) 0.679(0.16) <0.01 8.90 327

separate soil texture classes, the respective best line is shown in
Fig. 7a and the parameter estimates are shown in Table 3. Due to the
narrow range in image-derived NDVI values, little variation in the
biomass yield (~10%) can be explained by the NDVI in the heavy soil
texture group (Table 3). However, the NDVI reflects more than 50%
of the yield variation for both light and medium soils (Fig. 7 and
Table 3). When the biomass yield from the first year crop was
included, an exponential relation was better fitted to the data under
all soils than the simple linear relation (Fig. 7b). With the fitted
exponential curve, NDVI explained 54.2% of the yield variation.

Fig. 6. Field map of Google Earth identified Miscanthus fields (a) and NDVI derived from Landsat-5 TM in 2011 (b), management effects (year of planting: brown — 2006; orange —

2007; yellow - newly planted) on average field yield (c), and yield map (d).
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4. Discussion

This work set out to obtain a comprehensive view of the actual
on-farm productivity of Miscanthus as a novel crop in the UK to see
how it compares to the model-derived biologically obtainable
biomass yield (i.e. yield gap analysis), and to find out whether there
are diagnostic tools and ways to identify measures to close the yield
gap.

4.1. How representative is our survey?

Surveyed on-farm Miscanthus yields reported here are not
comprehensive but are still highly representative, being based on
about 1000 ha of mature crops and representing about 20% of the
whole Miscanthus crop area registered under the ECS until 2007 at
the time. The present database is therefore an important resource
to study biomass yield of Miscanthus in the UK and relevant to
other regions where it is or will be grown for bioenergy. It can easily
be expanded if the public funding were linked to clear reporting
obligations at the source or user end. All data were provided on a
voluntary basis and might bear some uncertainty due to reporting
and conversion methods. For example, a biomass yield of 8 Mg ha™!
reported on a light soil for the first year after planting seems rather
unrealistic. The harvested and delivered yields were extremely
variable (2.4—20 Mg ha~!). Although the overall average of about
9 Mg ha~! stayed well below the predicted biophysically obtainable
yield, as reported in the national yield map (see Table 1), it matches
well the National Statistics. Compared to the biomass provided to
the energy companies [8,9] the average on-farm peak yield plateau
(Table 1) estimated from our database seems fairly representative.
According to the latest statistics, biomass from Miscanthus used in
power stations in the UK increased from 40 to 47 thousand tonnes
[37] between 2010 and 2012, and was produced from a varying area
of variable age crops. Assuming a fuel usage of about two thirds of
the total production, and considering only mature stands, average
Miscanthus yields from an increasing area (6400—7500 ha) would
be ca. 9.5 Mg ha~', which is very close to the average reported here.

Although full establishments of Miscanthus crops can take as
long as 7 years [22]| depending on planting quality and density, the
achievable on-farm biomass yield plateau (Yor) estimated using the
Gompertz equation (Equation (2); X = 5 years) was in good
agreement with the observed achievable on-farm biomass yield in
the survey (see Tables 1 and 2). Miscanthus yields can be limited by
a host of biotic and abiotic factors including agronomic practices.
Firstly, poor and/or delayed establishment led to a variable shoot
density; e.g. on fields of Farm No 11, shoot density ranged from 14 to
60 m~2 (Barker, unpublished results). The lower end of the range is
well below the critical value of 39 m~2 above which peak yield is
independent of shoot density [38]. Secondly, farmers had applied
either limited or no N fertilizer (Fig. 2), which could explain
declining yields over time, even on experimental plots [22,39]. It
was further likely that both limited agronomic research and
growing experience with this new crop and the low cost and
minimum risk strategy of its introduction through the ECS led to
this variable and low yield reality. The in-depth analysis and clas-
sification of yields showed that crops can fail or flourish on any soil
texture class but failure is more likely on heavy soils (Fig. 7).

4.2. Yield maps and yield gaps

The yield maps generated by Lovett et al. [10] provided a long-
term snapshot of biologically obtainable yield potential, derived
from experimentally determined yields at the plot scale and their
pedo-climatic inputs, largely explained by soil water availability [6].
Down-scaled to field-specific and farm-specific yields, it was

assumed that the soil map of England and Wales of 1970s is still
valid and precise both at the 1 km x 1 km grid (NATMAP1000) and
its down-scaling using the vector-based field map (i.e. at hectare
scale). The texture-based grouping of soils into light, medium and
heavy soil categories by the farmers was correct for an overall 55%
when compared to the NATMAP database, and more than 75%
correctly classified for the heavy soil. The qualitative classification
into light and medium textured soils was often interchangeably
used by some farmers. We therefore, think that these pedo-climatic
yield maps based on detailed soil information and soil hydrology
[10] provided a good estimate of biological potential productivity of
commercial Miscanthus. However, the probabilistic nature of the
soil map (distribution of series within associations) introduces
some uncertainty.

The individual farm- and field-specific yield plateaus varied
greatly in comparison to the predicted yields (—71%—+262%),
which indicates some limitation of the soil maps. Overall, the yield
gap of quasi mature Miscanthus crops (i.e. 5 years after planting)
averaged at 18.7% when compared to the mapped obtainable yields,
whilst it was larger for heavy soils (>35%). The reasons for lower on-
farm yields are many and well researched for arable crops [40,41]
and well recognised in new biomass crops [12]. Our data howev-
er, are the first to compare actual, achievable yields to biologically
obtainable potential yields. The reasons for the yield gap can be a
lack of nutrients [39,42] and also crop establishment [13]. Mis-
canthus stands can have a large number of gaps, which may be
beneficial for biodiversity [14] but severely reduce the actual
achievable yields and consequently carbon sequestration in the soil
[13]. Lesur-Dumoulin [38] found that yields on young commercial
Miscanthus fields were about 20% lower than plot yields. Their
analysis showed that shoot density <39 m~2 was the most limiting
factor for yield formation, strongly related to weed cover occupying
the gaps as a complementary indicator. There was no information
on yield losses of Miscanthus crops while they were machine-
harvested in the field. The uncertainty about such losses is large
even under experimental conditions [43—45] and this may be an
important factor for assessing yield gaps. Harvest losses in the
supply chain for combustion are assumed to be 30% of the standing
biomass at the field scale [46], however, no on-farm data exist.

4.3. What is the potential benefit of remote sensing?

It is clear from this analysis that on-farm productivity for mature
stands (>5 years after planting) can be assessed from NDVI; how-
ever, its precision for biomass estimation could be improved by
linking information from images to an underlying understanding of
growth dynamics. The analysis of two subsamples of Miscanthus
fields created by different operators showed a similar range of NDVI
(sample 1, 0.227 to 0.913; sample 2, 0.240 to 0.939) over a similar
range of yields. Landsat-5 TM data for the 2011 cropping season of
interest were scarce, and availability and image quality with <10%
cloud cover over the whole scene is a well-recognised limitation [47].

Although RS images from unmanned aerial vehicle (UAV) can be
better suited in providing supplementary data for assessment of
crop canopy health and development, satellite-derived data from
new Earth Observation data could improve productivity and man-
agement of the crop, and increase the efficiency of the supply chain.
New satellites provide high spatial, temporal, spectral and radio-
metric resolutions, e.g. Sentinel-1 and -2, SPOT5, QuickBird GeoEye,
WorldView-1 and World-View-2. This would help to overcome the
problems of frequent cloud cover in the higher latitudes, under the
maritime climatic conditions in the UK. Landsat-5 scenes from
which to derive in-season growth estimates were scarce. Images
taken earlier in the season would allow groundcover to be added
into process-based model analysis. Patchiness, shoot density and
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Fig. 7. Field-specific Miscanthus biomass yield in simple linear relation to field-specific NDVI grouped according to soil texture group without the yield from the first year
establishing crop (a), but in an exponential relation to field-specific NDVI with the yield from the first crop (open square) (b) in which Yield = 0.1687exp*8712"NPVl R2 — 0,542,

n =43.

Table 3

Relationship between mean NDVI and mean observed Miscanthus yield at single
field scale under light (L), medium (M), heavy (H) and all combined soil groups (ALL).
Yield = a *NDVI — b, p-value is the significant probability level, R? is proportion of
variance in yield accounted for by NDVI, n is the total number of data pairs.

Soil  Slope (a) Intercept (b)  R? p-value n Mean yield
[Mgha']

L 33.03(10.43) 16.75(8.34) 0.556  <0.02 10 9.56

M? 53.53(10.95) 34.64(8.78) 0584 <0.01 19 919

H 41.54 (35.48) 24.63(29.40) 0.111 >0.25 13 976

ALL  36.64 (8.37) 20.45(6.85) 0324 <0.01 42 946

2 One data point was omitted because the yield was from the first year estab-
lishing crop (see Fig. 7).

canopy height could be important adjustment factors for field scale
predictions. More work is needed with improved products to define
field-specific benchmark crop cover measured by NDVI as its vari-
ation can help growers to gauge how well the Miscanthus crops are
being performing during the establishment phase. A well-
established crop is the key to reach the peak yield early and to
maintain both high and stable yield during the whole plantation
lifetime. It is clear from the evidence on a specific farm (Fig. 6) that
growth dynamics affected 4th year yields, most probably via lower
crop height. New RS data from systems, such as synthetic-aperture
radar (SAR) from Sentinel-1, need to be tested to see if they can
provide information on canopy height to supplement optical data.
Light detection and ranging (LiDAR) imagery data can be an
important source in assessing variations in canopy height most
relevant for biomass estimates in forestry [48,49] but also for
managing agricultural crops [50]. As they are now being made
freely available for England and Wales (UK Environment Agency>),
LiDAR data could be used to improve management of novel crops
like Miscanthus.

4.4. Strategic planting of perennial crops

Our analysis showed that heavy soils can be potentially the most
productive (with yields of >16 Mg ha~!) but also the most variable
in terms of stand density, most likely related to the soil being either
too wet or too dry for planting. Limited contact in a dry, cloddy
seedbed would expose the rhizomes to hazardous establishment
conditions. However, too wet soils due to waterlogging can also
cause large bare patches. The question is how to use the field-

3 http://www.geostore.com/environment-agency/.

specific information on soil cover and its related patchiness to aid
the decision-makers on termination or amelioration measures. Clay
soils, that are difficult to work on an annual basis, should be the
most likely to be selected for perennials. Annual sowing and har-
vest are likely to hit similar problems as the spring planted Mis-
canthus, which could be estimated using long-term weather
scenarios. A lack of timeliness in planting but also harvesting due to
limited machinery was a serious problem for the establishment
phase of this crop and in need of serious investment.

5. Conclusion

On-farm yields of quasi mature Miscanthus stands (~5 years old)
varied between 2.4 and 20 Mg ha~! and currently average at a
long-term equilibrium yield of around 10 Mg ha~".

Yields on medium and light textured soils are more predictable
than on heavy, clay-textured soils, which have the highest yield
potential but also the highest yield uncertainty.

Satellite imagery of plant cover was well correlated to yield, but,
canopy cover (shoot density) should be augmented with infor-
mation on canopy height which also determines total biomass.
Improved spatial and temporal resolution of new satellite data
that combines estimates of crop cover and height would facili-
tate better early productivity forecasts.

¢ To obtain continued improvement in crop productivity and ef-
ficiency of the biomass supply chain, it is crucial to develop
diagnostic and predictive tools based on field-specific soil and
satellite-derived information to support the reporting, and na-
tional statistics, of biomass yields.
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