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Abstract

Despite the recent success of convolutional neural networks for computer vi-

sion applications, unconstrained face recognition remains a challenge. In this

work, we make two contributions to the field. Firstly, we consider the problem

of face recognition with partial occlusions and show how current approaches

might suffer significant performance degradation when dealing with this kind

of face images. We propose a simple method to find out which parts of the

human face are more important to achieve a high recognition rate, and use that

information during training to force a convolutional neural network to learn

discriminative features from all the face regions more equally, including those

that typical approaches tend to pay less attention to. We test the accuracy of

the proposed method when dealing with real-life occlusions using the AR face

database. Secondly, we propose a novel loss function called batch triplet loss

that improves the performance of the triplet loss by adding an extra term to

the loss function to cause minimisation of the standard deviation of both posi-

tive and negative scores. We show consistent improvement in the Labeled Faces

in the Wild (LFW) benchmark by applying both proposed adjustments to the

convolutional neural network training.
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1. Introduction

Deep learning models, in particular convolutional neural networks (CNNs),

have revolutionised many computer vision applications, including face recog-

nition. As recent benchmarks [1, 2, 3] show, most of the top performing face

recognition algorithms are based on CNNs. Even though these models need to5

be trained with hundreds of thousands of faces to achieve state-of-the-art accu-

racy, several large-scale face datasets [4, 5, 3] have recently been made publicly

available to facilitate this.

Most of the recent research in the field has focused on unconstrained face

recognition. CNN models have shown excellent performance on this task, as they10

are able to extract features that are robust to variations present in the training

data (if enough samples containing these variations are provided). Nonetheless,

in this work, we show how partial facial occlusions remain a problem for un-

constrained face recognition. This is because most databases used for training

do not present enough occluded faces for a CNN to learn how to deal with15

them. Common sources of occlusion include sunglasses, hats, scarves, hair, or

any object between the face and the camera. This is of particular relevance

to applications where the subjects are not expected to be co-operative (e.g. in

security applications). One way of overcoming this problem is to train CNN

models with datasets that contain more occluded faces. However, this task can20

be challenging because the main source of face images is usually the web, where

labelled faces with occlusions are less abundant.

Bearing this in mind, we propose a novel data augmentation approach for

generating occluded face images in a strategic manner. We use a technique

similar to the occlusion sensitivity experiment proposed in [6] to identify the25

face regions where a CNN extracts the most discriminative features from. In our

proposed method, the identified face regions are covered during training to force
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a CNN to extract discriminative features from the non-occluded face regions

with the goal of reducing the model’s reliance on the identified face regions.

Our CNN models trained using this approach have demonstrated noticeable30

performance improvement on face images presenting real-life facial occlusions

in the AR face database [7].

CNN models for face recognition can be trained using different approaches.

One of them consists of treating the problem as a classification one, wherein each

identity in the training set corresponds to a class. After training, the model can35

be used to recognise faces that are not present in the training set by discarding

the classification layer and using the features of the previous layer as the face

representation. In the realm of deep learning, these features are commonly

referred to as bottleneck features. Following this first training stage, the model

can be further trained using other techniques to optimise the bottleneck features40

for the target application [4, 8]. Another common approach to learning face

representation is to directly learn bottleneck features by optimising a distance

metric between pairs of faces [9, 10] or triplets of faces [11].

Positive results have been demonstrated when combining these two tech-

niques, either by (i) jointly training with a classification loss and a distance45

metric loss [12]; or (ii) by first training with a classification loss and then fine-

tuning the CNN model with a distance metric loss [5, 13, 14]. In this work, we

adopt the latter approach and use the triplet loss to optimise bottleneck fea-

tures. The goal of the triplet loss is to separate positive scores (obtained when

comparing pairs of faces belonging to the same subject) from negative scores50

(obtained when comparing pairs of faces belonging to different subjects) by a

minimum margin. We argue that training with this loss function can lead to

undesired results. Thus, we propose a new loss function to alleviate this issue

by also minimising the standard deviation of both positive and negative scores.

Using the Labeled Faces in the Wild (LFW) benchmark, we show that the CNN55

models trained with our proposed loss function consistently outperform those

trained with the triplet loss function.

The remainder of this paper is organised as follows. Section 2 provides a
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review of the related work, with a focus on deep learning approaches and face

recognition with occlusion. Section 3 details our CNN architecture, training60

procedure and (i) our method of improving recognition of partially occluded

faces; and (ii) our novel loss function. Section 4 describes our experimental

results, and our conclusions are presented in Section 5.

2. Related Work

One of the first successful applications of convolutional neural networks was65

handwritten character recognition [15]. Soon after, the first face recognition

algorithm that included a CNN was proposed in [16]. However, unlike [15],

their algorithm [16] was not entirely based on neural networks. Years later,

[9] proposed an end-to-end Siamese architecture trained with a contrastive loss

function to directly minimise the distance between pairs of faces from the same70

subject while increasing the distance between pairs of faces from different sub-

jects. These CNN-based face recognition models did not achieve groundbreaking

results, mainly due to the low capacity of the networks used and the relatively

small datasets available for training at the time. It was not until these models

were scaled up and trained with large amount of data [17] that CNNs became75

the state-of-the-art approach for face recognition.

In particular, Facebook’s DeepFace [18], one of the first CNN-based ap-

proaches for face recognition that used a high capacity model, achieved an ac-

curacy of 97.35% on the LFW benchmark, reducing the error of the previous

state-of-the-art by 27%. DeepFace used an effective 3D alignment algorithm80

to frontalise faces before feeding them to a CNN with several convolutional,

max-pooling and locally connected layers. The CNN was trained with a dataset

containing 4.4 million faces from 4,030 subjects. Concurrently, the DeepID sys-

tem [8] achieved similar results by concatenating the bottleneck features of 60

CNNs trained on different face crops and optimising the concatenated feature85

vector using the Joint Bayesian method proposed in [19]. More work by the

same authors [12] achieved further performance improvements by simultane-
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ously training with a contrastive loss (similar to the one used in [9]) and a

classification loss. The authors claimed that the contrastive loss reduced intra-

personal variations and the classification loss increased inter-personal variations.90

The described system achieved an accuracy of 99.15% on the LFW benchmark

using a relatively small training set containing 202,599 face images of 10,177

identities.

As shown in [20], training data is one of the most important factors for in-

creasing the accuracy of CNN-based approaches. In particular, it was shown95

that a CNN model becomes more accurate as the number of different identi-

ties in the training set increases, provided that several samples per identity are

available. A good example is Google’s FaceNet [11], which used between 100

million and 200 million face images of about 8 million different people for train-

ing. A triplet loss function with a novel online triplet sampling strategy was100

used for training FaceNet, which achieved an accuracy of 99.63% on the LFW

benchmark. The triplet loss has been subsequently used to fine-tune CNNs pre-

trained with a classification loss with good results [5, 21]. Indeed, the triplet

loss has become one of the most popular training objectives for face verification

[11, 5, 21, 13, 14], and has been used in other image similarity tasks such as105

ranking images [22, 23, 24] and learning local image descriptors [25, 26]. Other

popular tricks to improve the performance of CNN-based face recognition in-

clude Joint Bayesian [4, 9, 19, 27] and building ensemble models trained on

different face crops [9, 19, 21, 27].

Recognition of faces with occlusions has been typically handled using two110

different types of methods, namely, (i) methods that extract local features from

the non-occluded regions or (ii) methods that attempt to reconstruct occluded

regions.

In the first type of methods, occluded regions are detected first and discarded

from the set of local regions used to represent a face. For example, Gabor wavelet115

features, PCA and SVM were used in [28] to detect the occluded regions and

LBP descriptors were used to match the non-occluded regions. In [29], eigen

decomposition was used to generate a reformed image which was subtracted
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from the original occluded image to locate the occluded regions. Gabor wavelet

features and PCA were used to extract features from the non-occluded regions.120

The method in [30] proposed to extract histograms of Gabor-LBP features on

the entire image and then use SIFT keypoint matching to select which subregions

should be taken into consideration.

Among the methods that attempt to reconstruct occluded regions, the sparse

representation-based classification (SRC) proposed in [31] has received a lot of125

attention. This method attempts to represent an occluded test image by a lin-

ear combination of training images of the same class and an error term that

accounts for the occluded region. The class that gives the closest reconstruction

of the original image is considered the correct one. Several improvements to this

method have been proposed. For example, [32] extended SRC by using a Markov130

random field to model the prior assumption about the spatial continuity of the

occluded regions. In [33] it was proposed to weight each pixel in the image in-

dependently to achieve better reconstructed images. Another improvement [34]

proposed to use linear combinations of Gabor wavelet features instead of pixel

intensities, which increased the discrimination power of the face representation135

and reduced computational costs. The drawback of these methods is that the

reconstruction can only be achieved for images of the same class as the training

images.

Another method that has gained popularity in image reconstruction tasks

such as image denoising and image inpainting is the denoising autoencoder140

[35, 36]. The idea is to train a model to learn a mapping between corrupted and

clean images. Several approaches have used this idea to reconstruct occluded

face images. For example, a stacked sparse denoising autoencoder [36] with two

channels was proposed in [37] to discard noise activations in the encoder network

and achieve better image reconstructions. Another related method was proposed145

in [38]. They used a novel mapping-autoencoder for occlusion detection and an

iterative stacked denoising autoencoder for image reconstruction. More recently,

[39] proposed to use LSTM autoencoders with two channels to reconstruct faces

in the wild. In this method, one autoencoder channel reconstructs the image
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and the other detects an occlusion mask that is used to replace the occluded150

region in the original image with the reconstructed pixels. The quality of the

final output was further enhanced by introducing an adversarial discriminator.

3. Proposed Methods

We use the CNN architecture proposed in [4], which has demonstrated the

ability to achieve high accuracy on the LFW benchmark while maintaining low155

computational complexity. This CNN architecture is similar to that used in [40]

but comprises only ten convolutional layers and one fully-connected layer. The

input to this CNN is a greyscale image of size 100× 100 pixels aligned using a

simple 2D affine transformation. More details about this CNN architecture can

be found in [4].160

As a first training stage, our method adopts the approach of training a

classifier wherein the CNN produces a vector of scores s for each class j, which

is passed to a softmax function to calculate the probability p of the correct class

y:

p =
esy∑
j e

sj
(1)

The total loss of the CNN is defined as the average cross-entropy loss for each165

training sample i:

L = −
N∑
i

log pi (2)

where N is the number of samples in a batch of training samples.

In order to use the trained CNN classification model to compare face images

that are not present in the training set, the classification layer (i.e. the layer

producing the scores s) is discarded and the features from the previous layer are170

used as bottleneck features. These bottleneck features can directly be used as

the feature vector representing a face or can be further optimised as described

in Section 3.2. We have adopted cosine similarity to compare pairs of feature

vectors to get a similarity score that indicates the likelihood of two face images

belonging to the same identity.175
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We trained such a CNN classification model using the CASIA-WebFace

database [4]. This database contains 494,414 face images of 10,575 different

celebrities gathered from the Internet. We randomly selected 10% of the images

as validation images and used the rest as training images. We consider this

CNN model as the baseline for performance comparison in our work and refer180

to it henceforth as model A.

3.1. Occlusion Maps

As shown in [6], it is possible to use visualisation techniques to gain insight

into the behaviour of CNN models after they have been trained. To solve the

facial occlusion challenge, we are interested in identifying which face regions185

a CNN model relies on the most, as we want to avoid this reliance. Using a

classification model, one way of visualising these regions is by observing how a

correct class score fluctuates when different face regions are occluded. A similar

type of occlusion sensitivity experiment has been conducted in [6] in the context

of object recognition. In our case, by occluding a face image for which a CNN190

model predicts the correct class, we can generate a binary occlusion map OI

to indicate whether placing an occluder at a particular spatial location in the

image I would cause the model to predict an incorrect class. More formally, a

binary occlusion map OI is defined as follows:

OI
i,j =

0, if ŷi,j = y

1, otherwise

(3)

where ŷi,j is the predicted class when the centre of an occluder is placed at the195

location (i, j) of the image I and y is the correct class for the image I.

Since we are using face images that are aligned, we can construct a generic

occlusion map O by simply averaging the binary occlusion maps of a set of face

images. Each value of an occlusion map Oi,j corresponds to the classification

error incurred by a model when an occluder is placed at the location (i, j) in all200

the images used to generate O. For convenience, we refer to face regions that

present high classification error as high effect regions (as these are the regions in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: (a), (d), (g) Mean image occluded at a random location with an occluder of 20×20,

20 × 40, and 40 × 40 respectively. (b), (e), (h) Occlusion maps O20×20, O20×40, and O40×40

generated using model A and the corresponding occluders. The pixel intensity of the occlusion

maps represents the classification error rate when placing the occluder at each location. (c), (f),

(i) Masked mean image using the occlusion maps O20×20, O20×40, and O40×40 respectively.

which the model relies on the most). By contrast, we refer to face regions that

present low classification error as low effect regions. These high and low effect

regions correspond to the bright and dark areas in the occlusion maps shown in205

Figure 1 respectively.

Considering the 100×100 face images used as input to our model, we exper-

iment with occluders of three different sizes. In particular, we use (i) a square

occluder of 20 × 20 pixels that can cover small regions such as one eye, the

nose or the mouth as shown in Figure 1a; (ii) a rectangular occluder of 20× 40210

pixels that can cover wider regions such as both eyes simultaneously as shown
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in Figure 1d; and (iii) a larger square occluder of 40× 40 pixels that can cover

several face regions simultaneously as shown in Figure 1g. We denote the occlu-

sion maps generated with the 20× 20, 20× 40 and 40× 40 occluders by O20×20,

O20×40 and O40×40 respectively. Figures 1b, 1e and 1h show an example of these215

occlusion maps generated with model A using 1,000 images from our validation

set.

According to Figures 1c, 1f and 1i, the central part of the face is one of

the highest effect regions. This might be due to the presence of non-frontal face

images in the training set. Since the central part of the face is typically visible in220

both frontal and non-frontal face images, the model learns more discriminative

features from this area compared to the outer parts of the face, which might

not be visible in non-frontal face images. Simply put, the model is trained with

fewer face images in which the outer parts of the face are visible, therefore, it

relies more heavily on the central part of the face. We can reverse this behaviour225

by training with more face images that present occlusions located in high effect

regions (central part of the face), as this will force the model to learn more

discriminative features from low effect regions (outer parts of the face).

One way of achieving this is by augmenting the training set with face images

that present occlusions located at random locations. To do this, during training230

we can generate occluded training images by overlaying the original training

images with a randomly located occluder. However, since we want to favour

occlusions in high effect regions, we propose to augment the training set with

face images that present occlusions located in high effect regions more frequently

than in low effect regions. For this reason, the location of the occluder is sampled235

from a probability distribution P generated by applying the softmax function

with the temperature parameter T to an occlusion map O:

Pi,j =
e

Oi,j
T∑

n,m e
On,m

T

(4)

With high temperatures, all locations have the same probability. With low

temperatures, locations in high effect regions are assigned a higher probability.
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(a) (b) (c)

Figure 2: Example occluders used during training with different intensities, noise types and

noise levels. (a) Salt-and-pepper noise. (b) Speckle noise. (c) Gaussian noise.

As shown in Figure 2, we use occluders of random intensities (or random240

colours if we were dealing with colour images) that present different types of

random noise (salt-and-pepper, speckle and Gaussian noise). This is important

because if the face is always covered by the same type of occluder, the CNN

would only learn features that are robust against that particular type of oc-

clusion. For example, if a black patch is always used to occlude faces during245

training, the CNN model would perform well when the face is occluded by a

black patch, but not when it is occluded by a patch of a different intensity.

This training procedure produces two desired outcomes, namely, (i) the

training set is augmented with variations not present in the original data, and

(ii) the occluder has a regulariser effect, helping the CNN to learn features from250

all face regions equally. Both of these increase the generalisation capability of

the model and prevent overfitting. In Section 4 we provide experimental results,

with both occluded and non-occluded face images, to validate these claims.

3.2. Batch Triplet Loss

In order to make the bottleneck features generalise better to classes not255

present in the training set, we fine-tune model A using a triplet loss function.

This training objective is also used in other similar works [5, 21, 13, 14]. How-

ever, in this work, we fine-tune the bottleneck features directly instead of learn-

ing a linear projection from them. It could be argued that the CNN model could

be trained from scratch using a triplet loss function, as proposed in [11]. But,260
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(a) (b)

Figure 3: Example triplet from the CASIA-WebFace dataset. (a) Before triplet training. (b)

After triplet training.

according to our experiments, training with softmax cross-entropy loss offers

faster convergence than training with a triplet loss when a reasonable number

of samples per class are available and the number of classes is not very large.

To form a triplet we need an anchor image, a positive image and a negative

image. The anchor and the positive images belong to the same class and the265

negative image belongs to a different class. Denoting the output vector of the

CNN model as z (in our setting this would be the bottleneck features), we can

represent the output features for a particular triplet i as (za
i , z

p
i , z

n
i ), denoting

the output features for the anchor, positive and negative images respectively.

The goal of a triplet loss function is to make the distance between za
i and zn

i270

(i.e. images from different classes) larger than the distance between za
i and zp

i

(i.e. images from the same class) by at least a minimum margin α. Figure 3

shows a visual representation of a triplet before and after training. In this work,

we consider the following as the standard triplet loss function:

L =
N∑
i

max
(
0, ‖za

i − zp
i ‖22 − ‖za

i − zn
i ‖22 + α

)
(5)

275 Alternative versions of the standard triplet loss function can be defined with

distance metrics other than the squared Euclidean distance. For example, the dot 

product is used as the similarity measure in [13]. More generally, we can
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0.00 0.43 0.64 1.00

(a)

0.00 0.38 0.68 1.00

(b)

Figure 4: (a) Distribution of positive and negative scores after training a CNN classification

model. (b) Distribution of positive and negative scores after fine-tuning the same CNN model

with the standard triplet loss. Observe how even though the triplet training has been able to

further separate the mean values of the two distributions, there is more overlapping between

them, causing more false positives and/or false negatives

write

L =
N∑
i

max (0, d(za
i , z

p
i )− d(za

i , z
n
i ) + α) (6)

where d(x, y) is any function that gives a score indicating distance between two

280 feature vectors. As seen in Equation 6, only triplets that violate the margin

condition d(za
i , z

p
i ) + α > d(za

i , z
n
i ) produce a loss greater than zero and there-

fore contribute to the model’s convergence. To increase the training efficiency,

we adopt the online triplet sampling strategy proposed in [11] to select such

triplets and only use them during training. Taking this into consideration, we

285 can rewrite Equation 6 as

L = µap − µan + α (7)

where µap and µan are the mean values of the distribution of positive and

negative scores respectively.

From Equation 7 we can see that the loss becomes zero whenever µan is

equal to µap plus the margin α. In other words, the triplet loss function tries

to separate the mean values of the distribution of positive scores µap from the290

mean value of the distribution of negative scores µan by a minimum margin α.
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A problem with the standard triplet loss function is that, in general, sepa-

rating the mean values of the two score distributions does not ensure that the

model performs well in a verification task. In Figure 4 we show how a CNN

model that has been fine-tuned with the standard triplet loss function is able295

to further separate the mean values of the two score distributions but does not

produce a better accuracy. This is because there might be more overlapping be-

tween the two distributions, causing more false positives and/or false negatives.

A solution to this problem is to also minimise the standard deviation of each

score distribution. Our loss function is inspired by the concept of decidability,300

proposed in [41] as a way of measuring the achievable accuracy of a verifica-

tion system regardless of the selected threshold or operating point. A possible

measure of decidability is defined as follows [41]:

d =
|µap − µan|√
1
2

(
σ2
ap + σ2

an

) (8)

where σ2
ap and σ2

an are the variances of the distributions of positive and negative

scores respectively.305

Equation 8 implies that a higher decidability d is achieved by increasing the

difference between the mean values of the two score distributions while decreas-

ing both of their variances. Although it would be possible to use the inverse of

Equation 8 as our training objective, in practice, using the margin parameter α

leads to a better separation between the two score score distributions. For this310

reason, we construct our loss function by adding a new term to Equation 7 that

accounts for the variance in the two score distributions:

L = (1− β) (µap − µan + α) + β
(
σ2
ap + σ2

an

)
(9)

where β is a parameter that balances the contribution of the two terms. In

particular, at β = 1, the term that accounts for the difference between the

mean values of each score distribution vanishes and only the term that accounts315

for the variances of the score distributions has an effect. The opposite happens

when β = 0.
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An advantage of adding this new term to the triplet loss function is that even if

a triplet does not violate the margin condition, the loss will usually be greater

320 than zero since the term that accounts for the variances of the score distributions

is non-zero. Even though this means that adopting an online triplet sampling

strategy is not strictly needed, in our experiments we noticed faster convergence

when using it. Concurrent to our work, a similar loss function has been proposed

in [26] to learn local image descriptors. However, [26] does not make use of online

triplet sampling.325

Note that the loss function in Equation 9 cannot be expressed as the average

loss for each training image since the variances need to be computed with more

than one sample. Ideally, we need to train using large enough batches of images

so that the variance estimation is more accurate. For this reason, we refer to this

form of triplet loss as batch triplet loss. In Section 4.2, we show the improved330

accuracy when using our loss function compared to the standard triplet loss

function.

4. Experiments

In this section, we provide experimental results for our two contributions.

In Section 4.1 we test different CNN models trained with occluded training335

images as described in Section 3.1. We use the CASIA-WebFace database [4] to

evaluate the performance on faces that present artificial occlusions and the AR

face database [7] to evaluate the performance on face images that present real-

life occlusions. In Section 4.2 we show our experimental results on the LFW [1]

benchmark using the CNN models evaluated in Section 4.1 and their fine-tuned340

versions using the standard triplet loss function and the proposed batch triplet

loss function.

4.1. Performance on Occluded Faces

In Section 3.1 we described a training procedure for increasing the CNN

model classification accuracy on occluded faces by using a probability distri-345

bution P to augment the training set with occluded training images. In this
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section we will start by comparing the performance of two different training

schemes. The first training scheme comprises fine-tuning our baseline model A,

described in Section 3, with occluded training images generated by sampling the

occluder locations from a probability distribution P . The probability distribu-350

tion P is obtained by applying Equation 4 to an occlusion map O of a particular 

size. Each occlusion map O was generated with model A using a subset of 1,000 

images from the CASIA-WebFace validation set, as described in Section 3.1. 

By contrast, the second training scheme comprises fine-tuning model A with

occluded training images generated by sampling the occluder locations from355

a standard normal distribution. The goal of training with these two training 

schemes is to assess the benefits of training CNN models with images overlaid by 

strategically located occluders as opposed to randomly located occluders.

        We train several CNN models in this manner, one for each of the occluder

360 sizes shown in Figure 1. The temperature value T in Equation 4 was empirically

        set to 0.25, 0.4 and 0.6 with O20×20, O20×40 and O40×40 respectively. We add

        the size of the occluder used to generate the occluded training images to the

       name of each fine-tuned model. Additionally, if the model was trained following

      the second training scheme, an R is added to the model name. For example,

365      model A  fine-tuned  with  occluded  training  images  overlaid  by  an  occluder

of 20 × 20 pixels becomes A20×20 if the locations of the occluder are sampled

from P (first training scheme) and A20×20R if the locations of the occluder are

sampled from a standard normal distribution (second training scheme).

To compare the accuracy of these fine-tuned CNN models we generate occlu-

sion maps O with them (one for each of the occluder sizes). Since an occlusion370

map indicates the classification error incurred by a model at each spatial loca-

tion, we can easily calculate the mean classification accuracy as 1−∑i,j Oi, j.

Table 1 shows the mean classification accuracy and standard deviation for each

occlusion map generated with each fine-tuned model. For each model in Table 1,

we generated the three occlusion maps O20×20, O20×40 and O40×40 using a sub-375

set of 1,000 images from the CASIA-WebFace validation set in such a way that

all the selected images can be correctly classified by the model if no occluder is
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Model O20×20 O20×40 O40×40

A 92.9%± 10.99 86.18%± 18.51 76.19%± 27.89

A20×20 97.69% ± 2.62 95.1% ± 5.64 88.9% ± 14.13

A20×20R 97.12%± 3.55 93.98%± 7.39 86.93%± 16.98

A20×40 97.75% ± 2.42 95.85% ± 4.03 90.64% ± 10.88

A20×40R 97.62%± 2.9 95.45%± 5.12 89.54%± 13.29

A40×40 98.37% ± 1.7 96.8% ± 3.16 93.47% ± 6.94

A40×40R 98.31%± 2.29 96.52%± 4.14 92.61%± 9.13

Table 1: Mean classification accuracy and standard deviation of each occlusion map O gen-

erated by different CNN models.

used. For example, to generate O20×20, O20×40 and O40×40 with model A20×20, 

we used a subset of 1,000 images that were classified correctly by model A20×20.

380 To avoid any bias in the results, we selected a different subset of 1,000 images 

to generate the occlusion maps used to compute the results shown in Table 1 

and to generate the probability distribution P used when training each model.

In other words, we avoided testing our models using the same images that were 

(indirectly) incorporated in the training stage by the use of P . Observe that not

385 only all the models fine-tuned with occluded training images achieve a higher

classification accuracy than model A but their standard deviations are consid-

erably smaller. This indicates that the performance of the fine-tuned models is

much less affected by the location of the occluder, i.e. the models are able to

extract discriminant features from all the face regions more equally, regardless

of the location of occluder. Moreover, the results in Table 1 show the better390

performance of the models trained with occluded training images overlaid by 

strategically located occluders compared to those trained with occluded training 

images overlaid by randomly located occluders.

Since the goal is to improve the accuracy when dealing with real-life occlu-

sions, we have further evaluated the performance of our CNN models on the395
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(a) (b) (c)

Figure 5: Example images from the AR database. In each subfigure, the highlighted image

on the top left is the reference image (target image) used to compare against the other three

images (query images). (a) Non-occluded. (b) Wearing sunglasses. (c) Wearing scarf.

AR face database [7]. The AR face database contains 4,000 face images of 126

different subjects with different facial expressions, illumination conditions and

occlusions. Out of these, we only use faces with different illumination conditions

and occlusions. The different illumination conditions correspond to face images

with a light on the left side, right side or both. The occluded face images consist400

of people wearing either sunglasses or a scarf. We carry out three different eval-

uations. In each evaluation, we compare non-occluded faces against (i) other

non-occluded faces, (ii) faces occluded by a pair of sunglasses, and (iii) faces

occluded by a scarf. Figure 5 shows examples of each type of image used in the

three evaluations.405

As shown by the resulting ROC curves in Figures 6a to 6c, the performance

of the models trained with occluded training images consistently outperform

the baseline model A, particularly at low False Acceptance Rates. Note that

the performance does not seem to be greatly affected by the occluder size. The

ROC curve for the evaluation of non-occluded faces (Figure 6a) shows that410

model A40×40 performs slightly worse than models A20×20 and A20×40, perhaps

because the large occluder used during training makes the model rely on fewer

features. As a consequence, the model performs worse when presented with

non-occluded faces in which all the face regions are visible and contain useful
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features. In contrast, model A20×20 performs worse than the other two when415

presented with faces occluded by a pair of sunglasses (Figure 6b) or a scarf

(Figure 6c). This might be because the occluder used during training is too

small to simulate these types of occlusions.

Observe that, even though model A40×40 achieved the best classification ac-

curacy when evaluated on face images that present artificial occlusions (Table 1),420

the results on the AR face database differ because the evaluation involves com-

paring pairs of occluded and non-occluded face images instead of only classifying

occluded face images. For this reason, the models need to perform well not only

when presented with occluded face images but also with non-occluded face im-

ages. It seems that using a medium-sized occluder like the one used to train425

model A20×40 offers the best performance when taking into account the three

different evaluations, as it avoids the problems encountered with small occlud-

ers (not being able to simulate large occlusions like sunglasses and scarves) and

large occluders (worse performance when presented with non-occluded faces).

Note that we did not repeat these experiments with the models trained using430

the second training scheme described earlier, as their performance was already

shown to be inferior.

4.2. Performance on the LFW benchmark

We now adopt another approach to training by fine-tuning model A using

the standard triplet loss and the batch triplet loss described in Section 3.2. We435

do this by discarding the classification layer, normalising the features of the

previous layer (bottleneck features) using the L2-norm and fine-tuning all the

CNN layers with one of the two loss functions. We refer to the CNN model fine-

tuned with the standard triplet loss function as model B, and the CNN model

fine-tuned with the batch triplet loss function as model C. The parameter α is440

set to 0.5 when using any of these training objectives and the parameter β is set

to 0.7 when training with the batch triplet loss function. The values for both α

and β were obtained empirically.

Additionally, we also trained these CNN models with occluded training im-
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ages. Similarly to the notation followed in Section 4.1, we append the size of the445

occluder used during training to the model name. In this case, we trained these

models by fine-tuning a model that has already been trained with occluded

training images instead of fine-tuning model A. The locations of the occlud-

ers were sampled from the same probability distributions P that were used in

Section 4.1. For example, to train model B20×40 we fine-tuned model A20×40450

(and not model A) with occluded training images overlayed by an occluder of

20 × 40 placed at locations sampled from the same probability distribution P

that was used to train A20×40.

Our models are evaluated on the LFW dataset following the unrestricted,

455      labelled outside data protocol [42] (i.e. the protocol that allows training with

data that is not part of the LFW dataset). The LFW protocol divides the test

set in ten splits. The classification accuracy on each test split is calculated

by counting the amount of matching and mismatching pairs given a certain

threshold (in our case, pairs that give a similarity score above the threshold

are counted as matching pairs and pairs that give a similarity score below the460

threshold are counted as mismatching pairs). For each test split, we selected the

threshold that gives the highest amount of correct classifications in the other

nine splits. The final reported value is the mean classification accuracy and the

standard deviation calculated from the ten test splits. Note that most of the

face images in the LFW dataset are not occluded, therefore, we do not expect465

to see a performance improvement as large as that seen in our experiments

with occluded faces in Section 4.1. Figure 7 shows examples of matching and

mismatching pairs of face images from the LFW benchmark.

As shown in Table 2, all the CNN models fine-tuned with the batch triplet

loss outperform the CNN models trained with the standard triplet loss, validat-470

ing the usefulness of our approach. Moreover, consistent with the results shown

in Figure 6, the CNN models trained with the 20 × 40 occluder are the best

performers.
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Model Accuracy

A 97.33% ± 0.71

B 97.73% ± 0.76

C 98.12% ± 0.65

A20×20 97.4% ± 0.71

B20×20 97.85% ± 0.69

C20×20 98.35% ± 0.73

A20×40 97.68% ± 0.83

B20×40 97.79% ± 0.82

C20×40 98.42% ± 0.68

A40×40 97.18% ± 0.63

B40×40 97.5% ± 0.57

C40×40 98.16% ± 0.64

Table 2: Mean classification accuracy and standard deviation of different CNN models evalu-

ated following the LFW unrestricted, labelled outside data protocol.
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Figure 6: AR database ROC curves (a) Non-occluded. (b) Wearing sunglasses. (c) Wearing

scarf.
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(a) (b)

Figure 7: Example pairs from the LFW benchmark. (a) Matching pairs. (b) Mismatching

pairs.
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5. Conclusions

We have investigated which parts of the human face have the highest impact475

on face recognition accuracy. The proposed occlusion maps are a good way of

visualising these regions and, at the same time, provide useful information about

a classification model’s performance on faces that present artificial occlusions.

According to our experimental results, even a state-of-the-art CNN-based face

recognition model fails to maintain its high performance when these face regions480

are occluded (e.g. by a pair of sunglasses or a scarf). We have demonstrated how

these occlusion maps can be used during the training procedure to augment the

training set with face images that present artificial occlusions. These artificial

occlusions are strategically positioned in locations where the performance of

a CNN model trained in a conventional way is most sensitive. Training with485

these augmented training sets, we produce CNN models that are more robust to

face occlusions. As shown in our experimental results, our proposed method has

shown consistent performance improvement on face images that present artificial

or real-life occlusions and on face images that do not present any occlusions.

Additionally, we have revisited the problem of learning features for a ver-490

ification task using distance metric objectives. We have extended the widely

used triplet loss function by adding a new term that minimises the standard

deviation of the distributions of positive and negative scores. In our experi-

ments on the LFW benchmark, the proposed batch triplet loss has consistently

achieved better results than the standard triplet loss. Finally, experimental re-495

500

sults have confirmed that the best CNN models result from a combination of our 

two proposed approaches, regardless of whether the face images are occluded or 

not.
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