A SIMPLE YET ACCURATE NEURAL BRANCH PREDICTOR

S.P.Hunt, C.Egan, A.Shafarenko
Department of Computer Science, University of Hertfordshire
College Lane, Hatfield, Herts. AL10 9AB
United Kingdom
Email: {S.P.Hunt, C.Egan, A.Shafarenko}@herts.ac.uk

Abstract

In this paper, we examine the application of simple neural
processing elements to the problem of dynamic branch
prediction in high-performance processors. A single
neural network model is considered: the Perceptron. We
demonstrate that a predictor based on the Perceptron can
achieve a prediction accuracy in excess of that given by
conventional Two-level Adaptive Predictors and suggest
that neural predictors merit further investigation.

Key Words

Neural Networks, Computing, Engineering, Optimization
1 Introduction

Modern computer architectures employ techniques
such as pipelining and multiple instruction issue to boost
throughput. In principle, significant performance gains
can be achieved by increasing pipeline depth and the
number of instructions issued per clock cycle; however, in
practice there are penalties for adopting such strategies.
These penalties arise because real-world programs contain
sequences of instructions that may give rise to structural
hazards, control hazards or data hazards [1]; if these
hazards are not taken into account in the design of a
processor (and compilers that produce programs to run on
it), many performance gains may be negated.

1.1 The Branch Prediction Problem

Where a program contains a conditional branch
instruction, it is necessary to know whether or not the
condition is satisfied in order to determine which
instruction should be fetched next; similarly, where a
program contains a return statement or an indirect branch,
it is necessary to determine the target address so that the
next instruction can be fetched from the correct place.
Both of these are examples of control hazards. The
problem here is that the necessary information is not
available early enough in the fetch-execute cycle to

ensure that the next instruction can be fetched in time to
fill the next empty slot in the pipeline [1].

There are many approaches to this problem, the
simplest of which is to wait until the information is
available; however, this can drastically reduce throughput,
especially in a processor that employs multiple instruction
issue and deep pipelines. One of the most common
alternatives to the wait-and-see approach is to attempt to
predict whether or not a branch will be taken, and to
predict the target address in the event that it is [1, 2].

One significant drawback of branch prediction is that
an incorrect prediction will typically cause a longer delay
than would have occurred had the processor simply
waited for the condition to be evaluated. Thus, the level
of accuracy achieved is very important [2].

1.2 Branch Predictors

There are two broad classes of branch predictors:
static branch predictors (in which the information used to
make predictions does not change at run time) and
dynamic branch predictors (in which the information is
changed to reflect the fact that a program’s activity
changes over time). Unsurprisingly, dynamic branch
predictors give predictions that are more accurate than
those provided by static branch predictors [3, 4]; however,
they require more processing resources.

Static branch predictors may make use of profile
information, information from compile-time analysis, or
information about branch direction or opcode [3]. A
simple dynamic branch predictor would employ a two-bit
saturating counter that is updated each time a conditional
branch instruction is encountered: the most significant bit
of the counter is used to furnish the prediction [2, 5].
However, more sophisticated branch predictors employ a
two-level adaptive scheme: the first level comprises one
or more history registers which store the outcome of &
previous branches; the second level is a table of saturating
counters which is indexed by a combination of the branch
address and the contents of the history register [2, 5]. A
branch predictor of this type /earns to divide branch

instructions into two classes: “take” and “do not take”:
this functionality is similar to that of a simple Perceptron
or ADALINE [6].

1.3 Neural Branch Predictors

Branch prediction is a pattern classification problem,
whether the prediction is based upon static or dynamic
data. Dynamic branch prediction is also an example of a
time series prediction problem. Artificial neural networks
are well known to be suited to solving problems in both
such application areas [6, 7]; indeed, artificial neural
networks have already been applied to the static branch
prediction problem with some success [8, 9], and initial
work on applying neural network techniques to dynamic
branch prediction has shown some promising results [4,
10, 11].

If neural predictors are to be of practical use there are
three questions that must be answered in the affirmative:

* Can a neural network based branch predictor be
constructed that is accurate enough to compete
with a conventional branch predictor?

* Can a hardware-based neural predictor be made to
operate quickly enough for its predictions to be
useful in a real CPU?

* Can the hardware cost of a neural branch predictor
be kept low enough for it to be a viable alternative
to a conventional branch predictor?

Whilst we are mindful of all of these questions, in
this paper we seek to address only the first of them.

2 Experimental Models

We have chosen to investigate the branch prediction
potential of one of the simplest of all neural network
models: the Perceptron [6, 12]. We concentrate on this
model precisely because it is so simple - in terms of both
the operation of individual processing elements, and the
application of the training algorithm that it employs.
Generally, simplicity is a virtue where processor design is
concerned: the more complex a functional unit is, the
more difficult and costly it is likely be to realize it in
hardware. Thus it makes sense to use the simplest type of
neural network that we can.

2.1 Perceptron-Based Predictors
2.1.1 How Predictions are Performed

One of the problems that is faced by the designer of a
branch predictor is that the prediction should ideally be
performed during the Instruction Fetch (IF) stage of the
fetch-execute cycle. Unfortunately, at this point the only
information we have about the instruction is its address,
so we don’t even know whether or not a prediction should
be performed. To circumvent this problem we employ a
branch target cache, which is used to store information
about previously-encountered branch instructions. The
advantage of this is that the predictor should only be
called upon when there is a conditional branch to resolve,
and so its branch prediction performance will not be
affected by attempts to learn how to predict the outcome
of any other kind of instruction. The disadvantage is that
it will not be able to make a prediction on the first
occasion that a branch instruction is encountered.

At the heart of each predictor is a processing element (PE)
with n numerical inputs (x; .. x,), each of which has an
associated weighting factor (w; .. w,). The activation, a,
of'a PE is computed by summing its weighted inputs:

where wy is an additional weight known as the bias, and
Xo is fixed at 1. The result is passed through a threshold
function to calculate the output, y, of the PE:

_ | high, ifa =0
low, ifa <0

where high is 1 and low is either O (for a binary PE) or -1
(for a bipolar PE). The resulting PE may be used as a
classifier, with each input vector assigned to one of two
classes, according to the output of the PE (high or low).
In our branch predictor the two classes are interpreted as
predict taken and predict not taken.

Each of the input vectors that is passed to a predictor is an
n-bit branch history, in which the values of the n bits
represent whether the last n branches were taken or not
taken. A branch history vector may be global (in which
case it contains aggregate data about the last # branches),
or it may be Jocal (in which case it contains data about the
last n occurrences of a single branch instruction), or it
may be combined (in which case a global history and a
local history are concatenated to create a single vector).
These branch history data may be encoded in either a
binary (0/1) or a bipolar (1) form.

2.1.2 How Predictions Are Learned

The classification of an input vector (and hence the
prediction) depends on the PE’s weight vector, which is
determined by training. Our predictors are trained by a
technique known as the Perceptron Convergence
Procedure (PCP), in which connection weights are
initialized to 0, then input patterns are presented to the PE
one at a time, and weight changes are made according to
the following prescription:

Aw; =0, ifyis corrector x; =0

Awj;

+a, if x,-x(t-y)>0

Aw; = -a, if x; x(t-y)< 0
Here ¢ is the target output (in this case either taken or not
taken), and o is the learning rate associated with the PE.
Thus, the weights on the connections into a predictor (its
weight vector) will be changed every time it is found to
have made a mis-prediction.

Fortunately, the PCP is not particularly sensitive to
leaning rate [6], so we are at liberty to choose a value for
o on the basis that it is convenient from an
implementation point of view. Given that our ultimate
goal is to implement the neural predictor in hardware, the
obvious choice for the learning rate is 1: by making this
choice we guarantee that weight updates will be easy to
perform in hardware, and we ensure that the weights will
only take on integer values, so we can employ integer
arithmetic throughout our predictor.

It is worth noting two key features of the PCP at this
point: the first is that a predictor’s weight vector will be
changed if and only if it makes an incorrect prediction,
and the second is that the size of a weight change does not
depend on how much the system is in error. As a
consequence of these features, PE’s trained via the PCP
are quick to learn classification tasks and can be re-
trained almost as quickly. It is for this reason that the
PCP (which was designed for off-line training with a
static data set) is an appropriate learning algorithm for a
dynamic problem such as branch prediction.

2.2 The Data

The input to the simulator is a text file containing a
program execution trace from which all of the non-branch
instructions have been removed. Each line of the trace
file contains three pieces of data: the value of the program
counter, whether the branch was taken or not, and the
target address for the branch, had it been taken. As this is
a dynamic prediction task, the data from the trace file may

(and, indeed, should) be used both to train and to test the
branch predictor.

In order to test our predictors we extracted the
conditional branches from a set of instruction traces for
the Stanford integer benchmark suite. This is a collection
of eight C programs designed to be representative of non-
numeric code. The benchmarks have an average dynamic
instruction count of 273,000, about 18% of which are
branches - of which around 76% are taken. Some of the
branches in these benchmarks are known to be
particularly difficult to predict; for example those in
quicksort. [13]

The benchmarks were compiled using a C compiler
developed at the University of Hertfordshire for the HSA
(Hatfield Superscalar Architecture) [14]. Instruction
traces were generated using the HSA instruction-level
simulator, and these were then modified for use with the
neural predictor simulation software.

2.3 The Simulator

We have constructed a simulator, using the Delphi 6
Integrated Development Environment. This simulator
allows us to test the performance of predictors that
employ global, local and combined branch histories of
varying lengths.

The simulator implements a single global predictor, a
set of local predictors, or a set of combined (global +
local) predictors. The global branch history length may
be varied between 2 bits and 128 bits (in 2-bit
increments), as may the branch history lengths for the set
of local predictor. Combined predictors may be
constructed with any combination of global and local
history lengths. The simulator permits us to represent
branch histories either in binary or in bipolar form.

In each of the experiments reported here, we used a
table of 1024 local predictors and a table of 1024
combined predictors. These tables are indexed by the
program counter, so that each local or combined predictor
is associated with a different set of branch instructions.

3 Results

The results of our experiments are summarized in
figures 1 to 4. The graphs show the mean prediction
accuracy for the predictors concerned when trained and
tested on the full set of 8 programs from the Stanford
integer benchmark suite. In each case this figure is an
average of the prediction accuracy figures for the 8
benchmarks, weighted so as to take account of the
different number of branches in each of the instruction
traces.

3.1 Global Predictors

87%
? Proportion Global Predictor Performance
Correct

86% -

——Bipolar Data

85% —o— Binary Data
b

Branch History Length
84% T T T T T T T T T T T T 1

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Figure 1: Effect of branch history length on the prediction
accuracy of perceptron-based predictors trained on global data.
(Single predictor, aggregate branch history data)

The best performance here is achieved by global
predictors employing a 128-bit history; furthermore, there
is almost no difference between the performance of the
predictors trained on binary and bipolar data, at 86.61%
and 86.64% correct predictions respectively.

3.2 Local Predictors

95% +
) Proportion Local Predictor Performance
Correct

94%

—+Bipolar Data
—o Binary Data

93%

92% Branch History Length
o T T T T T T
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Figure 2: Effect of branch history length on the prediction
accuracy of perceptron-based predictors trained on local data.
(1024 local predictors, each trained with branch history data for
a single branch instruction)

Again, the best performance is achieved by predictors
employing a 128 bit history, but this time there is a
sufficient difference between the performance of binary
and bipolar predictors (at 93.82% and 94.10%
respectively) to be noticeable in practice.

3.3 Combined Predictors

97%

Proportion
Correct .

96% -

95%

Global | =8
History — 16
— Length 24
—-32
93% - ——64
—-96
Local History Length —~128
92% T T T T T T T T T T T T T T 1
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

94% -

Figure 3: Effect of branch history length on the prediction
accuracy of bipolar perceptron-based predictors trained on
combined global+local data. (1024 combined predictors, each
trained with a combination of branch history data for a single
branch and global history data)

In this instance the best performance (96.41% correct)
was achieved with a set of predictors, each of which
combines 128 bits of global history with 108 bits of local
history.

97%

Proportion
Correct

96% -

95% +

Global | 8
History| -+ 16
Length| .24
—-32
—~-64

—~—96
92% oty tengh -

8 16 24 32 40 48 56 64 72 80 83 96 104 112 120 128

94% 1

93% 4

Figure 4: Effect of branch history length on the prediction
accuracy of binary perceptron-based predictors trained on
combined global+local data. (1024 combined predictors, each
trained with a combination of branch history data for a single
branch and global history data)

Here the best performance (95.72% correct) was achieved
with a set of predictors, each of which combines 128 bits
of global history with 78 bits of local history.

3.4 Results for Individual Benchmarks

In almost all cases we find that the bipolar predictors
perform better than binary predictors employing the same
he prediction accuracy
achieved for the different benchmarks varies quite widely

history lengths.

For example,

(see Tables 1 and 2 below)

Benchmark Best Configuration
accuracy Global Local
History | History

Bubble 87.34% 122 124
Matrix 99.80% 10 30
Perm 99.59% 68 100
Puzzle 97.66% 128 76
Queens 86.33% 128 128
Sort 74.41% 22 2

Tower 99.42% 80 112
Tree 89.56% 42 34
Overall 96.41% 128 108

Table 1: Highest prediction accuracy figures obtained for the 8
different benchmarks (combined predictors trained with bipolar

data)
Benchmark Best Configuration
accuracy Global Local
History | History
Bubble 86.24% 116 122
Matrix 99.57% 12 56
Perm 99.42% 44 104
Puzzle 96.93% 128 72
Queens 84.97% 128 128
Sort 74.61% 58 72
Tower 99.27% 88 94
Tree 89.39% 50 28
Overall 95.72% 128 78

Table 2: Highest prediction accuracy figures obtained for the 8
different benchmarks (combined predictors trained with binary

data)

As pointed out in Section 2.3, the outcomes of some
branches are inherently more difficult to predict than
others. For example, it is no surprise that we get what
appears to be a very poor performance for Sort (an
implementation of quicksort), since we know it to be
amongst those algorithms that contains many difficult-to-
predict branches. [13]

4 Discussion

A number of points arise from this work. First, it is
clearly possible to construct highly accurate neural branch

predictors using simple Perceptrons trained by the PCP.
In previous work conducted in our Department [10],
several different local and global two-level adaptive
predictors were tested on the data set that has been used
here. The most accurate global predictor was right
approximately 90.5% of the time, whilst the best that
could be managed by a local predictor was about 92.5%.

On the face of it, the performance levels achieved by
our Perceptron-based predictors are much higher than
those available from more conventional predictors;
however, it is worth sounding a note of caution. Whilst
the prediction accuracy is very high for the larger
Perceptron-based systems, we have yet to determine
whether or not the benefit gained is sufficient to outweigh
the cost of implementing them in hardware.

It is also interesting to note that predictors trained on
bipolar data outperform equivalent systems trained on
binary data in almost every case. This is not surprising,
as the PCP algorithm generates zero weight updates for
connections from ‘inactive’ inputs. Thus, whilst all
weights will be changed for a bipolar predictor that mis-
predicts a branch outcome, only those weights
corresponding to ‘active’ (i.e. +1) inputs will be changed
for a binary predictor. Learning (and ‘un-learning’) will
therefore be faster. Whilst this is not of any interest to the
neural network community (who have been aware of this
behaviour for many years [6]), it is of real importance to
those who might have to implement a neural branch
predictor in hardware, since by changing from a binary to
a bipolar representation one may achieve a significant
improvement in performance at no cost.

One further point that is worthy of note is that there
are a number of obvious nonlinearities in the performance
graphs. Obviously one would not expect a simple linear
relationship between history length and prediction
accuracy, since there is a maximum accuracy that can be
achieved. However, it is clear that, for this set of
benchmarks at least, there are occasions when a relatively
modest increase in the branch history length will give rise
to a relatively significant improvement in performance.
(Surprising as it may seem, an improvement in prediction
accuracy from 95% to 95.5% can result in quite a
significant improvement in processor throughput.)

In this paper we have shown that simple Perceptron-
based branch predictors show great promise in terms of
the accuracy that they afford; however, a great deal of
work still remains to be done. High on our list of
priorities is the construction of a model to demonstrate
that a Perceptron-based local (or combined) predictor can
complete a prediction in a single clock cycle; we are also
working on the problem of determining the optimum
trade-off between performance and implementation cost
for predictors of this type.

5

10.

11.

12.

13.

14.

References

Hennessy, J.L. and D.A. Patterson, Computer
Architecture: A Quantitative Approach 2nd ed. (San
Francisco: Morgan Kaufmann, 1996).

Evers, M. and T.Y. Yeh, Understanding Branches
and Designing Branch Predictors for High
Performance Microprocessors. Proceedings of the
IEEE, 89(11), 2001, 1613-1620.

Calder, B., Hardware and software mechanisms for
instruction fetch prediction, PhD Thesis, Department
of Computer Science, University of Colorado at
Boulder, 1995.

Jiménez, D.A. and C. Lin, Neural Methods for
Dynamic Branch Prediction. ACM Transactions on
Computer Systems, 20(4), 2002, 369-397.

Egan, C., Dynamic Branch Prediction in High
Performance Superscalar Processors, PhD Thesis,
Department of Computer Science, University of
Hertfordshire, 2000.

Haykin, S., Neural Networks: A Comprehensive
Foundation. (New York, NY: Macmillan, 1994).
Frank, R.J., N. Davey, and S.P. Hunt, Time Series
Prediction and Neural Networks. Journal of
Intelligent and Robotic Systems, 312000, 91-103.
Calder, B., et al., Corpus-based Static Branch
Prediction, ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI 95), La Jolla, CA, 1995, 79-92.

Calder, B., et al., Evidence-based Static Branch
Prediction using Machine Learning. 4 C M
Transactions on Programming Languages and
Systems, 19(1), 1997.

Steven, G.B., et al., Dynamic branch prediction using
neural networks, International Euromicro
Conference DSD 2001, Warsaw, Poland, 2001.
Dazsi, B.A. and R. Enbody, Artificial neural
networks for branch prediction, MSc Thesis,
Electrical and Computer Engineering / Computer
Science and Engineering, Michigan State University,
2001.

Rosenblatt, F., Principles of Neurodynamics. (New
York: Spartan, 1962).

Mudge, T.N., I. Chen, and J. Coffey, Limits of
Branch Prediction, Technical Report, Electrical
Engineering and Computer Science Department, The
University of Michigan, 1996

Steven, G.B., et al., A Superscalar Architecture to
Exploit Instruction Level Parallelism.
Microprocessors and Microsystems, 20(7), 1997,
391-400.

