From Giants to Dwarfs: Probing the Edges of Galaxies
In this thesis we address fundamental questions about what constitutes and limits an HI disc, probing the distribution of neutral gas in the outer parts of galaxies. We use a subsample of galaxies observed as part of the THINGS survey to investigate the HI extent of spiral galaxy discs. We revisit previous work on the extent of HI discs, showing the limitations set by insufficient linear resolution. We then exploit the high spatial and velocity resolution combined with good sensitivity of THINGS to investigate where the atomic gas discs end and what might shape their edges. We find that the atomic gas surface density across most of the disc is constant at 5 – 10 x 10^20 atoms/cm^2 and drops sharply at large radius. The general shape of the HI distribution is well described by a Sérsic-type function with a slope index, n = 0.14 - 0.22 and characteristic radius ri. We propose a new column density threshold of 5 x 10^19 atoms/cm^2 to define the extent of the gas disc. This limit is well within reach of modern instruments and is at the level where disc gas becomes susceptible to ionisation by an extragalactic radiation field. We argue that at this level the HI column density has decreased to one tenth of that across the inner disc and that by going to yet lower column density the disc is unlikely to grow by more than 10% in radius. The HI column density at which the radial profiles turn over is too high for it to be caused by ionisation by an extragalactic UV field and we postulate that the HI extent is set by how galaxy discs form. Ionisation by extragalactic radiation will only play a rôle at column densities below 5 x 10^19 atoms/cm^2, if any. To study the crucial relation between observed edges and how closely these reproduce the intrinsic distribution of gas through our interferometric measurements, we created an ensemble of models based on four radial density distributions. We conclude that the observed edges in spiral galaxies faithfully reflect their intrinsic shape. Only in very specific cases of highly inclined (>75º) and/or large vertical scaleheight discs do we see strong deviations from the intrinsic surface density of the observed shape of the edges in spiral galaxies. In the case of NGC 3198 we concluded that there is no significant difference in the radial profiles obtained with either constant or exponentially increasing vertical gas distributions, when scaleheights are not higher than 1 kpc at the outskirts of the disc. We infer an upper limit to the scaleheight of NGC 3198 of 2 kpc. To address the distribution of neutral gas at larger scales, we study an HI rich, giant LSB galaxy, NGC 765. We present HI spectral line and radio-continuum VLA data, complemented by optical and Chandra X-ray maps. NGC 765 has the largest HI-to-optical ratio known to date of any spiral galaxy and one of the largest known HI discs in absolute size with a diameter of ~ 240 kpc measured at a surface density of 2 x 10^19 atoms/cm^2. We derive a total HI mass of M_HI = 4.7 x 10^10 M_sun, a dynamical mass of M_dyn = 5.1 x 10^11 M_sun and an HI mass to luminosity ratio of M_HI/L_B = 1.6, making it the nearest and largest “crouching giant”. Optical images reveal evidence of a central bar with tightly wound low-surface brightness spiral arms extending from it. Radio-continuum (L_1.4 GHz = 1.3 x 10^21 W/Hz) and X-ray (L_x ~ 1.7 x 10^40 erg/s) emission is found to coincide with the optical core of the galaxy, compatible with nuclear activity powered by a low-luminosity AGN. We may be dealing with a galaxy that has retained in its current morphology traces of its formation history. In fact, it may still be undergoing some accretion, as evidenced by the presence of HI clumps the size (< 10 kpc) and mass (10^8 -10^9 M_sun) of small (dIrr) galaxies in the outskirts of its HI disc and by the presence of two similarly sized companions. In an exploration of future work, we engaged in a study of the edges in the HI discs of dwarf irregular galaxies, their parameterisation and simulation. A collection of simulations were created based on the dwarf galaxy NGC 2366, similar to what was done for the larger spiral galaxies, showing that line-of-sight column densities are affected for discs with inclinations higher than 60º. Five out of eleven of the dwarfs from THINGS which are less inclined than 60º were analysed and parameterised with our Sérsic-type function. Their discs have average central column densities spread evenly from log_10 NHI = 20.7 atoms/cm^2 to log_10 NHI =21.3 atoms/cm^2. Their radial decline is shallower (slope index peaks around n ~ 0.3) than for spirals. The up-coming Local Irregular That Trace Local Extremes (LITTLE) THINGS project, will likely enlarge the number of local dwarf irregular (dIm) galaxies to which this type of analysis can be applied and for which these preliminary results verified.
Item Type | Thesis (UNSPECIFIED) |
---|---|
Uncontrolled Keywords | astrophysics; extragalactic astronomy; galaxies: spirals; galaxies: LSB; neutral hydrogen; ionisation; galaxies: dwarfs; radio-interferometry |
Date Deposited | 14 Nov 2024 10:14 |
Last Modified | 14 Nov 2024 10:14 |
-
picture_as_pdf - Antonio Portas - final PhD submission.pdf