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Surface Morphology Evolution Mechanisms
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Yongzhen Yang1,2*, Yongkang Chen1 and Bingshe Xu1,2

Abstract

Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth
with different hydrogen (H2) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation,
and H2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H2

increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to
obtaining a smooth surface with low pits density. As the H2 proportion further increases, stress relaxation and H2 over-
etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface
evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The
comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for
the fabrication of high-quality InGaN/GaN heterostructures.
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Background
InGaN/GaN-based high-brightness light-emitting diodes
(LEDs) and laser diodes, as the representative devices of
III-nitrides, have attracted much attention owing to their
important role in digital signage, high-density optical stor-
age, and general illumination [1–10]. Generally speaking,
fabrication of blue or green LEDs requires relatively high
indium composition of InGaN layer [11, 12]. Although
the reduction of growth temperature and the increase
of growth rate of the quantum well (QW) can allevi-
ate indium atom desorption to obtain high indium
content, these methods also deteriorate the optical
performance of InGaN/GaN multiple quantum wells
(MQWs) by worsening interface abruptness and intro-
ducing more defects [13, 14]. Moreover, these defects
usually act as nonradiative recombination centers,
thus weakening the internal quantum efficiency of the
device [15–19]. Therefore, achieving required indium

content while maintaining high material quality is still
a big challenge.
In order to settle the problems mentioned above, vari-

ous growth techniques have been employed in striving
for smooth morphology and sharp interfaces within the
InGaN/GaN stack. Quantum barriers (QBs) grown at el-
evated temperature [20, 21] and growth interruption
after QWs [12, 22] are widely used to improve the
morphology of InGaN/GaN heterostructures. However,
they all have their own limitations. For instance, barriers
grown at high temperature may lead to severe In loss
[14, 23]. Although growth interruption can improve
morphology as well as reduce inclusions, it is at the ex-
pense of the optical quality of the QWs [21]. Recently, it
is reported that introducing a small amount of hydrogen
during the growth of GaN barriers can improve both op-
tical and interface properties [24–28]. However, the ef-
fect mechanism of H2 on surface evolution of InGaN/
GaN MQWs has not been fully understood yet.
In this paper, the effects of H2 proportion, defined as

H2 flow divided by total carrier gas flow, during GaN
barrier deposition, on surface morphology evolution are
systematically investigated. Ga surface-diffusion rate,
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stress relaxation, and H2 etching effect are suggested to
be the three main factors, affecting surface evolution.
The dominant factors and their influences on the surface
evolution are comprehensively discussed, which provides
a technical guideline to obtain high-quality InGaN/GaN
heterostructures.

Methods
The InGaN/GaN MQW structures were grown on c-
plane sapphire substrate by Aixtron TS300 metal organic
chemical vapor deposition system. Trimethylgallium
(TMG), triethylgallium (TEG), trimethylindium (TMI),
and ammonia (NH3) were used as precursors. Silane
(SiH4) was used as the n-type dopant source. The struc-
ture was composed of 3.2-μm-thick undoped GaN layer
and nominally six-period 2.4-nm-thick InGaN QWs sep-
arated by 11-nm-thick lightly Si-doped (n-doping =
3×1017cm−3) GaN barriers. A 1.0-nm-thick low
temperature GaN cap layer (LT-GaN) was deposited im-
mediately after the growth of QW layer. InGaN wells
and GaN barriers were grown at 730 and 850 °C, re-
spectively. A conventional InGaN/GaN MQWs sample,
labeled as S1, was grown in nitrogen atmosphere. Four
other samples, denoted as S2, S3, S4, and S5, were grown
with different proportion of H2 flow to total carrier gas
(N2 + H2) during barriers deposition, with the other
growth parameters the same with S1. The percentage of
H2 was 2.5% (S2), 6.25% (S3), 10% (S4), and 50% (S5),
respectively.
The structures of InGaN/GaN MQWs were character-

ized by PANalytical Empyrean high resolution x-ray dif-
fraction (HRXRD) system. Surface morphology was
obtained by atomic force microscopy (AFM) (SPA-
300HV) using tapping model. Room temperature (RT)
photoluminescence (PL) properties of the samples were
studied by 226-nm Nd-YAG laser with an excitation
power density of 1.36 W/cm2.

Results and Discussion
The HRXRD ω-2θ scanning results of S1–S5 are illus-
trated in Fig. 1a. The strongest peak located at the cen-
ter belongs to the underlying GaN template, and the
satellite peaks correspond to the periodicity of the
MQWs. It is found that the full-width at half-maximum
(FWHM) of the strongest peaks in all samples is almost
the same, indicating the similar crystal quality of GaN
buffer layers for all samples. The presence of clearly dis-
tinguished “ + 4th” diffraction peak in samples S2–S4
manifest the improvement of crystal quality under low
H2 percentage. The appearance of the “ + 5th” diffraction
peak (represented by the rectangle in Fig. 1a) and the
minimum FWHM value of InGaN “−1st” diffraction
peak indicate the best interface quality in sample S3. The
structure parameters determined by fitting the measured
XRD curves are summarized in Table 1. The period
thicknesses of the five samples are almost the same, and
the values keep around 14.4 nm. The indium contents of
the InGaN wells for samples S1 to S4 keep around 11.8%,
while the value drops to 9.9% for S5. A large amount of
H2 may etch the GaN LT-cap layer and then react with
indium atoms in QWs, which result in the reduction of
average indium content [29]. The roughness of the inter-
face can be calculated by fitting FWHM of the XRD sat-
ellite peak by the following equation [26, 30]:

Δωn ¼ Δω0 þ ðln2Þ1=2⋅ ΔθM⋅ γD
h i

⋅n ð1Þ

where Δωn represents the FWHM of the n-th satellite
peak, Δω0 is the intrinsic width of satellite peaks, ΔθM is
the angle spacing between the adjacent satellite peaks, D
is the period thickness of the InGaN/GaN MQW and γ
is the interface roughness. Figure 1b shows the linear
relationship between FWHMs and satellite peak orders.
The slope of the fitting line is related to the QW/QB
interface roughness. The fitting results show that

Fig. 1 a The HRXRD ω-2θ scanning results of S1–S5. b The FWHM as a function of the satellite peak order and its linear fitting for the five samples
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interface roughness is gradually reduced as the H2 per-
centage increases, and the optimum value is achieved at
6.25% of H2 (S3), as shown in Table 1. With further rais-
ing in the percentage to 50% (S5), the interface rough-
ness is increased dramatically. Hence, the ratio of H2

during barrier growth has great impact on interface
quality. A small percentage (0–6.25%) of H2 is favorable
to obtaining sharp interface, while a large amount of H2

(50%) seriously roughens the interface.
The AFM images of sample S1–S5 are shown in

Fig. 2a–e. The dark points are mainly V-pits [14, 31],
which initiate at the threading dislocations (TDs) [21,

27]. The root mean square (RMS) surface roughness
under different H2 percentage is illustrated in Fig. 3. The
reference sample S1 grown with H2-free condition pos-
sesses the coarsest surface with an RMS roughness of
1.028 nm. The RMS value decreases with the increase of
H2 percentage, and achieves the minimum value
(0.705 nm) at 6.25% of H2, as shown in Fig. 3. As the H2

percentage raises to 10%, the surface gets slightly
rougher. With further increase in H2 percentage to 50%,
many large holes are formed, as pointed out by red ar-
rows in Fig. 2, and surface RMS roughness dramatically
increases to 0.924 nm.

Table 1 Structure parameters of InGaN/GaN MQWs determined by HRXRD fitting

Sample H2 percentage (%) In content (%) FWHM of InGaN “−1st”
diffraction peak (arcsec)

Slope of liner fitting

S1 0 11.84 169.66 −11.27

S2 2.50 12.04 165.43 −10.79

S3 6.25 11.67 163.77 −10.49

S4 10 11.60 167.19 −11.68

S5 50 9.90 170.13 −33.92

Fig. 2 The AFM images (10 × 10 μm) of five samples: a S1, b S2, c S3, d S4, and e S5

Zhou et al. Nanoscale Research Letters  (2017) 12:354 Page 3 of 8



Figure 4 shows the statistical calculated diagram of pits
size distributions for the five samples. It can be seen that
as 2.5% H2 is introduced, the smallest pits (<60 nm) start
to emerge, and the largest pits (>160 nm) disappear. As
H2 percentage increases to 6.25% (S3), the proportion of
pits at size 80–100 nm is significantly raised, and that of
large pits (>140 nm) is dramatically reduced to the mini-
mum value. With further increase in the H2 percentage to

10%, the largest pits begin to emerge again. When 50% H2

is introduced, the ratio of large pits is dramatically in-
creased. Hence, the pits size can be reduced by introdu-
cing a small amount of H2, and the optimum value is
acquired at 6.25% percentage. However, the pits size
shows an increase trend as H2 percentage further rises.
It is obvious that the evolution trend of RMS surface

roughness is highly consistent with that of pits size,
which may relate to the growth mode affected by the
formed pits. Once the pits are formed, indium atoms
will first nucleate at the point where the TDs intersect
the InGaN/GaN interface [32–35], then island growth
starts and finally island growth mode transfers to 2-
Dimensional growth. In other words, the presence of V-
pits will delay the 2-dimensional growth, then roughen
the surface. The larger the size is, the more obvious the
delay can be.
In order to elucidate the surface evolution mechanism

under different H2 percentages, the variation trend of V-
pits size is discussed in detail. As H2 percentage increases
from 0 to 6.25%, the decrease in V-pits size possibly
comes from the following two parts. First, the formed Ga-
H complex may enhance the incorporation efficiency of
Ga atoms on 1011

� �
plane [35]. It is reported that the ad-

sorption energy of the Ga-H complex is about 1.2 eV
smaller than that of single Ga adatoms [28]. Hence, the at-
tachment of hydrogen to Ga adatom could significantly

Fig. 3 The variation trend of pits density and RMS surface
roughness under different H2 percentage in carrier gas during the
growth of barriers

Fig. 4 The distribution of pit size for the five samples: a S1, b S2, c S3, d S4, and e S5
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weaken the bond to the surface, which benefits the surface
diffusion of Ga atoms [28, 36]. Another important reason
is the gradually enhanced etching effect with the increase
of H2 percentage. Shiojiri et al. reported that indium
atoms can be easily trapped and segregated around the
core of TDs, which plays a role of a small mask that hin-
ders Ga atoms migration [37]. Hence, introducing H2 dur-
ing the growth can effectively eliminate indium-rich
clusters at InGaN/GaN interface, and contribute to sur-
face migration of Ga atoms [37–39]. In addition, hydrogen
can etch some unstable areas, such as dislocation sites and
V-pits [40–43]. It is reported that dislocation sites are un-
stable due to the high strain energy and weak binding en-
ergy, and these sites can be easily dissociated during the
etching process [41–43]. Moreover, the V-pit commonly
consists of six symmetric N-terminated 1011

� �
facets

[44, 45], which is much weaker during the etching process
as compared with Ga-terminated facets [42, 43]. There-
fore, when H2 arrives at the surface, it is difficult to etch
most of the GaN on the surface due to the high stability of
Ga-face. Thus, H2 etching occurs mainly at dislocation
sites and V-pits [42, 43], causing the decomposition of
GaN. Due to the low growth temperature of GaN barrier,
the decomposition effect of GaN is weak when hydrogen
percentage is low [26]. Hence, the enhanced Ga atoms in-
corporation plays a dominate role in surface evolution,
which is beneficial in reducing the size and density of pits
and in turn enhances the 2-Dimensional growth and sup-
presses the formation of new pits, and finally conductive
to smooth surface. The correlation between pits density
and H2 percentage is presented in Fig. 3. It is shown that
the highest pit density (1.69 × 108 cm−2) exists in the H2-
free sample. While a small amount of H2 is added in the
carrier gas, pits density is gradually reduced and reaches
the lowest value (0.92 × 108 cm−2) in sample S3. With fur-
ther increase in H2 proportion to 50%, pits density is sig-
nificantly increased to 1.28 × 108 cm−2. These results
indicate that adding a little H2 in the growth of barrier
layer can suppress the formation of new pits. However,
the suppression of new pits formation could lead to strain
accumulation inside the layer, and the strain may relax via
formation of new dislocations and other defects such as

big pits in S4 and S5 [21], which will deteriorate the quality
of the surface, as well as the InGaN/GaN interface.
It is worth to mention that the large holes (>200 nm)

as marked with red arrows do not appear in samples S1
and S2, and they only start to appear as H2 percentage
becomes larger than 2.5%. The hole size in S5 is much
larger than that in samples S3 and S4, which may relate
to the following two possible mechanisms about hydro-
gen over-etching mechanisms. One is the hydrogen
over-etching on dislocation sites and V-pits. As afore-
mentioned, the enhanced diffusion of Ga atoms plays a
dominant role when hydrogen percentage is low. How-
ever, this leading role shifts to the enhanced GaN de-
composition around dislocation sites and V-pits when
large amounts of hydrogen are applied. The hydrogen
can diffuse along the dislocation line and then etch the
surrounded unstable sites both vertically and longitudin-
ally, which could decrease the average indium contents
in MQWs region, degrade well/barrier interface quality
and also form large holes on the surface. Another pos-
sible mechanism is about hydrogen over-etching on LT-
GaN cap layer. As H2 proportion lower than 2.5%, the
H2 etch effect on LT-GaN cap layer is negligible. As the
H2 percentage increases to 10%, the H2 etch effect on
LT-GaN cap is illustrated in Fig. 5a. H2 only etches a
part of the cap layer, which has little influence on the
QW layer, as evidenced by almost unchanged indium
contents, and positive influence on the surface morph-
ology, as confirmed by low pits density and small size of
the holes. However, under large H2 percentage, the LT-
GaN cap layer may be partly etched away and QW layer
be directly exposed to H2, as presented in Fig. 5b. Under
this case, H2 will react with indium atoms in QW layer,
leading to significant indium loss, large size, and high-
density holes, and consequently dramatically deteriorates
InGaN/GaN interface and surface qualities. Hence, sur-
face morphology evolution is an integrated effect of sur-
face diffusion rate, strain relaxation and H2 etch effect.
For sample S2 and S3 with H2 percentage lower than
6.25%, gradually enhanced surface diffusion rate and H2

etch effect play a dominant role, which contributes to
smoother surface and lower pits density. With further

Fig. 5 a The etch effect on LT-GaN cap layer with H2 percentage lower than 10%. b the H2 over etch effect on LT-GaN capping layer under large
H2 percentage
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increase in the percentage to 10% (S4), surface properties
become slightly worse as a result of stress relaxation.
The surface morphology of sample S5 grown in 50% H2

is mainly controlled by H2 over-etching effect and strain
relaxation in InGaN QWs, which leads to many large
holes and the worst surface.
Figure 6a shows the measured room temperature PL

spectra of the five samples. It can be seen that the PL in-
tensity shows an increase trend and peak energy exhibits
blue-shift as H2 percentage increases. Compared with
that of sample S1 without H2, the integrated PL intensity
of samples S2–S5 is increased by 7.0, 15.8, 19.3, and
31.6%, respectively. For samples S2–S4, slightly blue-
shifted peak energy and reduced FWHM are observed,
as shown in Fig. 6b. As aforementioned, the structure
parameters of sample S2–S4 are quite similar. Hence, the
slightly changed spectral characteristics along with en-
hanced PL intensity are mainly caused by the enhanced
surface and interface quality, and the partial relaxation
of stress in QWs alleviating quantum confined stark ef-
fect (QCSE) [21, 46]. In contrast, the significantly re-
duced FWHM, blue-shifted peak energy and enhanced
PL intensity of sample S5 may result from strain relax-
ation and the lowest indium content caused by H2 over-
etching effect, both of which can greatly alleviate QCSE
effect in MQWs [46–49]. In addition, H2 can eliminate
impurities such as carbon and oxygen in active region,
which would benefit the improvement of the PL inten-
sity [50, 51].

Conclusions
In summary, the effect of H2 percentage during the bar-
riers growth on InGaN/GaN MQWs properties has been
systematically studied. As a small percentage of H2

(≤6.25%) is introduced, the combined effect of enhanced
H2 etch effect and surface diffusion contribute to the im-
provement of surface, interface and optical properties. In

spite of the strongest PL intensity achieved by introdu-
cing large percentage H2 (50%), the integrated effect of
H2 over-etching and stress relaxation degrades surface
and interface quality of the InGaN/GaN MQWs. Hence,
the use of H2 with appropriate proportion during the
barriers growth can achieve smooth surface with low
pits density and enhanced optical performance. The pro-
found discussions of surface evolution mechanism here
clearly depict the physical pictures of surface evolution
process under different growth conditions, which is
helpful for the fabrication of high-quality GaN-based
devices.
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