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ABSTRACT
Children learn many skills under self-supervision
where exemplars of target responses are not available.
Connectionist models which rely on supervised
learning are therefore not appropriate for modelling all
forms of cognitive development.   A task in this class,
for which considerable data has been gathered in
relationship to Karmiloff-Smith’s Model of
Representational Redescription (RR) (Karmiloff-
Smith, 1973, 1992); is one in which children learn
through trial and error to balance objects. Data from
these studies have been used to derive a training set
and a new approach to modelling cognitive
development has been taken in which learning through
a dual backpropagation network (Munro, 1987) is
reward-driven. Results have shown that the model can
successfully learn and simulate aspects of children’s
behaviour without explicit training information being
defined. This approach however is incapable of
modelling all levels of the RR Model.
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INTRODUCTION
Children learn many skills without the environment
explicitly providing an example of the target response.
One class of such skills is those involving balance of
some kind (e.g. learning to walk, ride a bicycle, handle
and balance objects). These present a challenge for
connectionist modelling and it is one of these skills that
we address here.

The task: Behaviour
First investigated by Karmiloff-Smith and Inhelder
(Karmiloff-Smith 1973) and subsequently explored in
our laboratory and elsewhere, the task presents young
children with the challenge of balancing variously
weighted wooden beams across a fulcrum (Messer,
1993, 1996; Pine, 1995). For some beams

(symmetrical) geometric and gravitational centres
coincide; for others (asymmetrical) weight
configurations ensure that they do not coincide and that
gravitational centres differ within the set.

Observed patterns of behaviour over the age range
three to seven have been have been fitted, with
considerable success, to Karmiloff-Smith’s description
of skill acquisition as one of endogenously driven
redescription of representations from implicit and
encapsulated, to explicitly available, to other
operations but not conscious, to conscious, and then,
finally, verbalisable. It is the early phases with which
we are concerned in this study. Initially very young
children engage in unsystematic exploratory behaviour,
although when they appear to be trying to balance the
beams there is a tendancy to place them on the fulcrum
around their geometric centre. This largely
unsuccessful behaviour is followed by successful
balancing of both symmetrical and asymmetrical
beams by children moving each beam (with one or
both hands) across the fulcrum until it balances. The
inference is that children are responding to
proprioceptive feedback (i.e. from receptors in
muscles, tendons, joints etc). Asked why a beam
balances in that specific position, the chilren cannot
explain verbally, although they may sketchily gesture
their hand movements. Karmiloff-Smith interprets this
behaviour as building implicit, procedural (Implicit
Level) representations. It is this stage of chilren’s
developing skill we address here, although we relate
this to the later stages in the discussion.

The task: Modelling
Two aspects of the task present particular challenges to
the modeller.

Firstly the environment does not provide a correct
position until the child has succeeded in balancing the



beam, but it does provide (proprioceptively) graded
information of the ‘not near’, ‘nearer’, type.

Secondly the task has two components for the child to
learn: s/he has to identify the significance of the
proprioceptive feedback and then use that to guide
movements. To meet the first issue we decided to use a
learning procedure where output (beam placement)
would elicit a graded reward value. To meet the second
we decided to use a dual network where the reward
value associated with a placement would be learned
first and that would then be used to teach the desired
movement of a beam from an initial position.

THE MODEL
Inspiration for an appropriate learning procedure
approach was sought in the area of dynamic systems
control, where learning occurs under uncertainty,
noise, and without explicit instructional information.
The approach taken is based on Munro’s dual back-
propagation scheme (Munro, 1987) where a single
scalar, representing ‘goodness of fit’ is used as a
teaching signal.  Since the signal indicates the reward
received for a particular choice of action (this can be 0
or 1, or a range of values between) and not what the
correct action should have been, this form of teaching
is psychologically more plausible for modelling a

situation where a child is learning through trial and
error.

The model, Figure 1, consists of two networks, a
Teacher network and an Action network. Using the
generalised delta rule (Rumelhart, 1986), the Teacher
network is trained on a variety of beam configurations
and positions in relation to the fulcrum. (The
configurations were based on actual beams given to
children for balancing.) The positioning of each beam
across the fulcrum elicits a defined reward response
within the range of 0 - 1 so that the network is taught to
output high responses when gravitational centres are
encountered and, in a graded fashion, lower responses
as the gravitational centre is moved away from.

Thus the network is taught to sense proximity to
gravitational centres, and so model proprioceptive
input from the child’s internal environment.  The
model of proprioception then becomes the teacher for
the Action network.  The Action network is trained to
produce, for each beam presented, an action which
represents a fulcrum positioning that will produce the
highest level of activation (reward) in the Teacher
network’s output unit (i.e. a position that will cause the
beam to balance).

Reward Value

Beam

Beam

 Position

Hidden Units

Hidden Units

Teacher Module

Action   Module

Figure 1: Schematic diagram of the dual model of beam balancing
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Figure 2: The Teacher Network

Training
First the Teacher network is trained using 75 beams in
six or seven differing positions, with appropriate
reward values.  This gives a training set of 470 vectors.
After training (using backpropagation of errors) this
network successfully generalises over 25 unseen
beams, tested at the 49 possible fulcrum points (1225
vectors).

At this point the Action Network is trained by the
Teacher network.  The training set consisted of the 75
beams in the training set of the Teacher network.
Training proceeds as follows:

1. A beam is presented to the inputs of the Action
network, and activation is propagated forwards to the
outputs of this module, giving a prediction of the
beams balancing position.

2. The Teacher Network assesses the quality of the
proposed balance position by propagating the position
and beam through to the reward output.

3. Gradient ascent is applied to the reward, so that the
weights in the Action Network are updated to
maximise the reward.  The weights in the Teacher
Network are never changed in this phase.

4. 1 to 3 are repeated until the overall mean reward is
judged sufficient.

RESULTS
During training of the Teacher network, it was found
that an early generalisation was that the centre of the
beam was the area predicted to achieve highest reward.

This is consistent with young children’s behaviour
where initial beam placements were around the beam’s
centre (Karmiloff-Smith, 1973; Peters, 1999).  With
further experience the network developed good
generalisation of gravitational centres and this also
corresponded well with observed behaviour of some
children who developed good initial beam placement
without any conscious recognition of their ability
(Peters 1999a, 1999b).

The RMS error graph of a typical run is shown in
Figure 3.  As can be seen the performance over the test
set reaches a minimum at about 510 epochs, and this
was taken to be a fully trained teacher.

The Action network was subsequently trained from this
teacher.  The reward signal generated by the complete
dual network, during training is shown in Figure 4.

As can be seen learning was fairly rapid, and by epoch
100 average an average reward of 0.6 was being
produced.

The dual network was tested by presenting the Action
module with novel beam configurations and recording
both the action produced by the Action module and the
Reward produced in the Teacher module.  Testing was
repeated at Epoch 30, Epoch 50 and Epoch 100 of
Action module training to discover how learning had
progressed over the first 100 epochs. After epoch 30,
fulcrum positions which are close to the geometric
centres of the beams are being generated but some
movement towards the positions that the Teacher
module represents as gravitational centres, can be
observed.
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Figure 3: RMS errors for a typical run as the teacher module is trained.

Dual Network Training: Teacher Module Reward Values
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Figure 4: reward signal generated by the complete dual network, during training, using 75 

After epoch 50, the Action module outputs fulcrum
positions which are very close to or exactly at the
gravitational positions specified by the Teacher
module.

At epoch 100 there is little change in either accuracy of
the Action module or the level of reward generated in

the Teacher module.  Thus training appears to be fairly
complete by epoch 50.

DISCUSSION
The simulation presented here models aspects of the
children’s behaviour in the balance beam task: an early



bias in the Proprioception net mirrors children’s early
tendency to place beams near the geometric centre,
while the trained Proprioception net is effective in
guiding learning of the appropriate movement of a
beam towards its gravitational centre. We argue that
this model provides a plausible associationist account
of the early stage of development of balancing objects.
The success of this unique approach to cognitive
modelling is encouraging. Reward driven models could
be applicable to other areas of skill acquisition.

The model is limited, however.  A challenge which has
not yet been met lies in the development which takes
place beyond the Implicit Level.  The RR Model
briefly theorises about a mechanism which causes the
information contained in the Implicit Level
representations to be abstracted and new
representations to be formed (Explicit Level E1).
Behaviourally this level is demonstrated in the balance
beam task by children forming a ‘centre theory’ which
leads them to expect all beams to balance at the
geometric centre. Their failure with asymmetric beams
at this stage frustrate and puzzle them. A definition of
this mechanism is yet to be attempted but putting this
difficulty aside for the moment, it seems possible that a
model such as ours could provide input to an
‘abstracting’ net where data compression leads to a
generalisation about the most frequent single balancing
point (the geometric centre) before fine tuning leads to
retention of this for symmetric beams and a ‘torque’
generalisation for asymmetric beams. Further than this
however, and connectionism is set to fail.  Beyond the
first level of abstraction lies consciousness (Level
E2/3), an as yet insoluble problem for connectionist
modelling techniques.  This ultimately sets a limit on
the extent to which the RR Model can be researched
within a connectionist framework.

Moreover microanalysis of balance beam behaviour
(Peters, 1999a) shows individual developmental
trajectories which are difficult to reconcile with the
postulated RR Levels and more importantly, an
interaction between declarative knowledge provided by
structured tuition and the developmental progress of
children holding representations at all levels.
Modelling the development of trial and error learning
without explicit correct exemplars was challenging:

modelling interaction of trial and error learning
intertwined with verbal tuition and self explanation is a
real challenge for connectionism.
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