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Abstract: The technology of neural networks and expert systems are finding increasing 

applications in the field of machine tool diagnostics. In this paper, the advantages and 

disadvantages of these methods are analysed and compared. An intelligent integrated 

diagnosis system based on a combination of the two methods is presented. This scheme aims 

at exploiting the advantages and avoiding the disadvantages of neural networks and expert 

systems. The implementation of the intelligent integrated diagnosis system scheme is also 

presented. A diagnosis system based on the scheme is introduced, which was applied to the 

process diagnosis of an existing machining centre. The experimental results show that the 

integrated system scheme is feasible and effective for machine tool diagnosis tasks. 
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1. Introduction 

In recent years, the technology of machine tool diagnostics has made great strides forward. In 

particular, with the rapid development of artificial intelligence, many powerful intelligent 
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diagnostic techniques have been made available to meet the needs of diagnosing modern  

complex machine tools. Neural networks and expert systems are two popular methods and 

have been used independently in practice with varying degrees of success. 

However, neural networks and expert systems are two quite different approaches to 

diagnostics. They have different properties as well as advantages and disadvantages with 

regard to the diagnosis of faults [1]. Neural networks are based on numeric computations and 

algorithms, while expert systems are based on symbolic and heuristic reasoning. Neural 

networks have capabilities of association, memorisation, error-tolerance, self-adaptation and 

multiple complex pattern processing. On the other hand, they cannot explain their own 

reasoning behaviour and cannot diagnose new faults (those not already made available 

previously in training the networks). Expert systems have obvious knowledge representation 

forms that make knowledge easy to manage. Compared with neural networks, expert systems 

have the ability to explain their reasoning behaviour and can diagnose new faults using 

knowledge bases. However, self-learning is still a problem and computation time can be 

lengthy for difficult diagnostics tasks. It is therefore sensible to combine neural networks with 

expert systems for machine tool diagnostics as the advantages of one approach can outweigh 

the disadvantages of the other. This scheme can be effective in modern machine tool fault 

diagnosis. 

Similar ideas were reported about combining neural networks and expert systems in the 

application to areas such as computer security [2] and medical diagnosis [3]. In the majority of 

cases, neural networks and expert systems were developed separately with one way data 

passages from neural networks to expert systems, and with interaction between the user and 

the two models. Some of them permit both components to receive data concurrently. In this 

paper, a new scheme for integrating neural networks and expert systems is introduced for 

machine tool fault diagnosis. In this scheme the two models are completely integrated as a 
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single unit. The integrated system has been implemented and simulated on an existing 

machining centre. 

 

2. Machine Tool Diagnosis Based on Expert Systems 

Expert systems have been adopted extensively for machine tool diagnosis. They employ 

expert reasoning methods and computer models to solve problems, and draw similar 

conclusions to those derived by experts. Using expert systems, diagnostic goals can usually be 

achieved by specific knowledge representation forms and problem solving techniques, and 

machine fault sources can be deduced in conjunction with machine conditions. An expert 

system is composed of a database, a knowledge base and a reasoning engine. When 

diagnosing a machine tool fault, the reasoning engine carries out reasoning under the guidance 

of reasoning mechanisms, according to the fault data in the database, and diagnostic 

knowledge in the knowledge base. A typical machine tool diagnosis expert system is shown in 

Figure 1. 

Although expert systems have been applied to machine tool diagnosis with some success,  

problems have been experienced, predominantly due to the following limitations: 

 knowledge acquisition is difficult; this acquisition is one of the major bottlenecks in 

developing expert systems, and requires long periods of time and is costly [4]; 

 it is difficult to completely mimic the human thought process [5]; 

 the knowledge base is never complete; when a new fault is encountered, to which no 

formal knowledge is available, expert systems become ineffective [6]. 

One way of overcoming these limitations is to improve the system’s ability for automatic 

knowledge acquisition, self-learning, association and memorisation. This is where the 

strengths of neural networks can be incorporated. 
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3. Machine Tool Diagnosis Based on Neural Networks 

Traditional neural network techniques may be used to diagnose faults in relatively 

straightforward simple machines with single processes, single faults or gradually occurring 

faults. However, modern machine tools usually operate multiple processes, and manifest 

multiple faults, some of which can be catastrophic. Moreover, these machines are complex 

and highly automated.  

The multi-layer perceptron (MLP) neural network, trained with the back propagation 

(BP) algorithm, is the most commonly used for machine fault diagnosis [7]. MLP network 

based machine diagnosis is usually performed as follows. 

 A feature space (input space) X=[x1, x2, , xn]
T
 is constructed, where xi is the 

observed value of the i-th feature. These feature values are obtained through signal 

analysis and processing during the operation of the machine. The detailed procedure 

includes signal measurement, signal processing and feature extraction.  

 A class set C={c1, c2, , ck} is defined for each given set of machine conditions, and 

an output space Y=[y1, y2, , ym]
T
, where ci is the i-th class and yj is the j-th output 

respectively. A specific class is represented through the output space Y. 

 The neural network is constructed as indicated in Figure 2 according to the input and 

output spaces defined above, and the hidden layers and their neurons are selected. The 

number of input neurons is equivalent to the number of the features selected. The 

number of output neurons is equal to the dimension of the output space. 

 The parameters in the networks such as weight 0
11 are estimated by training, after a 

set of samples are obtained. In other words, if S={s1, s2, , sk} is a sample set of a 

specific class ci, the neural networks are trained through every pair of input-output (si, 
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ci), where i=1, 2, , m; 

 The decision constraint is established automatically after the training process has 

converged. The neural networks are then able to classify machine conditions for any 

input xnX. 

The selection of the activation function is also important. The most frequently used 

function is the sigmoid function, and is given by: 

f x
e

x( ) 



1

1
     (1) 

where x is the sum of inputs of a certain neuron and f(x) is the output of the neuron. 

To use neural networks to diagnose machine tool faults, there must be a corresponding 

output neuron for each fault class. Therefore, when a new fault not available previously during 

the training process is presented, the diagnosis system is incapable of diagnosing the fault. In 

addition, neural networks cannot explain their own reasoning behaviour, but this can be 

supplemented using expert system.  

 

4. The Integration of Neural Networks and Expert Systems 

In developing expert systems for machine fault diagnosis, the acquisition of diagnostic 

knowledge usually becomes a major bottleneck due to: 

 the indirect method of interviewing domain experts who would use “common sense” or 

anecdotal evidence; 

 insufficient training, making it difficult for engineers to interview domain experts 

efficiently and effectively, and for programmers to codify their knowledge; 

 little or no expert knowledge available in many scenarios. 

Many algorithms or models have been employed to automatically extract diagnostic 

knowledge from training samples. The automatic generation of knowledge bases saves time, 
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expense and human resources and can be applied to situations with only data but no human 

expert being available. To improve the accuracy of diagnosis, an approach has been created 

which automatically generates the knowledge base using neural networks, and integrates 

neural networks with expert systems [8]. The design of such an integrated system is presented 

in Figure 3. 

In Figure 3, the meta-system is designed to carry out overall control of the integrated 

system. It acts as a man-machine interface as well as a data collector. It can also call neural 

networks to make a diagnosis, and explain and evaluate the results of the diagnosis. When the 

neural networks are unable to make a diagnostic decision on a new fault because of a lack of 

data, the meta-system will activate the expert system to diagnose the fault by using deep 

knowledge. Deep knowledge is defined as knowledge about the machine structure, behaviour 

and function, the acquisition and representation of which will be introduced in section 5.3. In 

this case, the meta-system acts as a data classifier. At run time, it classifies incoming data or 

symptoms and sends the results to the neural networks or expert system for further diagnosis. 

The final diagnostic result is taken as a fault sample which is used to train the neural network. 

The learning mechanism is then initiated by the meta-system to extract new diagnostic 

knowledge from the training sample. 

Based upon the hierarchical composition of the machine, neural networks diagnose 

machine faults hierarchically to guarantee prompt diagnosis. The hierarchical structure of 

neural networks is arranged as shown in Figure 4. At run time, the fault locating network 

classifies incoming data or events, then sends the results to the networks in the second layer 

and calls corresponding sub-networks to perform further diagnosis. The networks in the 

second layer include all the sub-networks associated with the individual components of the 

machine. These sub-networks are responsible for fault diagnosis of the related component. 

They are all two-layer (input, hidden neurons and output neurons) MLP networks. 



 7 

The training of the neural networks can be carried out in two ways, namely: 

 Manual training for common faults - the training can be carried out by users through 

the man-machine interface.  

 Automatic training for new faults (those not included in previous training samples) - 

the training is conducted automatically by the system itself. 

In the latter case, the meta-system summons the expert system to initiate deep diagnosis 

and start the learning mechanism to train samples based on the diagnostic results. This process 

can enrich the diagnostic knowledge and enhance the diagnostic ability of the system. 

Such an integrated system exploits the advantages and avoids the disadvantages of neural 

networks and expert systems, whose mutually exclusive properties are summarised below: 

Neural networks: Expert systems: 

 Association 

 Memory 

 Error-tolerance 

 Self-learning 

 Self-adaptation 

 Processing multiple complex patterns 

 Able to explain reasoning behaviour 

 Diagnose new faults using diagnostic 

knowledge 

 

5. Implementation of the integrated system 

5.1 Fault data collection and training samples preparation 

To diagnose fault characteristics accurately in complex modern machines, multiple parameters 

or signals must be collected and analysed. Generally these parameters or signals can be 

classified into three categories: 

 machine and process status, which is collected by a multi-sensor and multi-parameter 

based condition monitoring system; 

 signals in machine controllers, which can be acquired through an I/O interface between 

machine controllers and the diagnosis system computer; 
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 symptoms observed by machine operators, which are entered to the diagnosis system 

database through the users’ interface. 

Training samples are obtained by representing experiential knowledge in a numerical 

format. The experiential knowledge is previously acquired from experiences, fault history and 

theoretical fault analysis provided by maintenance personnel for each machine. When 

preparing samples those typical fault cases and valid fault signs, which are critical to the 

success of the diagnostic networks, must be selected. 

 

5.2 Learning algorithm 

Error back propagation (BP) is the most widely used learning algorithm since it is relatively 

straightforward to implement and, most importantly, often outperforms other methods. The 

BP algorithm is routinely used to train a MLP network. Its learning procedure consists of both 

forward-propagation and back-propagation. During forward-propagation, all information is 

entered at the input layer and processed at the hidden layers, and finally transferred to the 

output layer. The status of neurons at each layer only affects the status of those at the next 

layer. If the expected output cannot be obtained at the output layer, it will conduct back-

propagation. During back-propagation, the error from the output layer is transmitted back, 

through the hidden layers, to the input layer. In this procedure, the weights at every layer are 

updated to minimise the error (a previously defined value) by adapting the weights in such a 

way that the energy function is minimised using gradient descent. 

Suppose there are N training samples, i.e. N input-output pairs (Xk, Yk), k=1, 2, , N, 

where Xk={xk1, xk2, , xkn} is the input vector of the k-th sample, and Yk={yk1, yk2, , ykm} is 

the output vector of the k-th sample. Here Yk={yk1, yk2, , ykm} is defined as the real output of 

the output layer. O
p

k={o
p

k1, o
p

k2, , o
p

kl} the output of p-th hidden layer, and ij the 
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connection weight from the i-th input to the j-th output. When training the network using the 

k-th sample, the error is defined as 

 E y yk ki ki
i

m

 



1

2
2

1

( )             (2) 

 and the total error E E k
k

N





1

. The weight  and threshold  (of each node) are updated 
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where kij and kj are the correction values of weight and threshold value respectively. 

They are expressed by 





k ij ij ki

k j kj

O 

 




      (4) 

where  (>0) is the learning velocity (i.e. the step length for gradient searching), and kj the 

training error of the k-th sample at the j-th layer.  

The detailed training steps are as follows. 

(1) Initialise ij and j, i.e. set the values of ij(0) and j(0). 

(2)  Provide training samples, i.e. input vector Xk (k=1, 2, , N), and objective output 

vector Yk (k=1, 2, , N ), and to carry out the following steps (3)~(5) for each 

sample. 

(3)  Calculate the real output and status of the hidden layers (forward-propagation). For 

the k-th sample, the output of the p-th layer of the network is 

O f net f Okj

p

kj ij

p

i

p

j

p

i

  ( ) ( )          (5) 

(4)  Calculate the training error. For the BP networks with a sigmoid activation function, 

the training error at the output layer is 
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and at the hidden layers, 

  kj kj kj kl lj
l

O O  ( )1               (7) 

(5) Update weight kj and threshold j by 

kjjj

kikjijij

kk

Okk









)()1(

)()1(
                (8) 

(6)  After training N times, check whether the error has satisfied the precision 

requirement, i.e., E< ( is a small positive number), and if yes, to stop training, or to 

return to step (3) till E<. 

 

5.3 Knowledge acquisition and diagnostic reasoning 

Both deep knowledge and shallow knowledge (experiential knowledge) are needed in the 

diagnosis of machinery faults. The former consists of knowledge about the machine structure, 

behaviour, function, fault tree analysis and parameter/state estimation. The latter is 

predominantly obtained from engineers’ and maintenance experts’ experience, fault statistics, 

process history or extracted from the fault samples by neural networks. Knowledge acquisition 

may be described as in Figure 5. This knowledge is coded and saved in a comprehensive 

knowledge base, which contains deep knowledge as well as shallow knowledge. Deep 

knowledge is represented as frames or rules, while shallow knowledge is represented as rules 

or independent facts. The modelling is further described in [9]. 

A high-quality diagnostic strategy must guarantee the efficiency of diagnosis, and in the 

meantime achieve good results. From this point of view, the integrated diagnostic scheme 

combines neural networks and expert systems into one unit, with the former guaranteeing 

diagnosis efficiency and the latter guaranteeing good diagnosis results. When there is a fault, 
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the integrated system first calls the appropriate neural network for diagnosis. If it produces no 

result because the fault is not yet trained into the network, the expert system will be activated 

to complete the diagnosis using the knowledge base. The neural networks and the expert 

system cooperate with each other in order to locate a fault. Once the neural networks are 

trained, the diagnosis using the integrated system can be performed in the procedures as 

shown in Figure 6.  

 

6. Case Study 

The integrated diagnosis scheme has been implemented in a fault diagnosis system for an 

existing PFZ1500 machining centre. The machining centre is part of a flexible manufacturing 

cell, which is used at the Zhengzhou Textile Machinery Plant in China, for making machine 

parts. In the diagnosis system, the machine condition is monitored through measuring multiple 

parameters such as vibration, temperature, power and pressure. The monitored components 

include spindle, spindle motor, tool/work-piece, X axis, Y axis, Z axis, the drive motors in the 

X, Y and Z axes, mains power, and pneumatic and hydraulic sources. According the 

monitoring results, faults can be located in these areas.  

For the PFZ1500 machining centre, 45 samples were collected in total. The samples and 

output modes for each monitoring component are listed in Table 1. 

The diagnosis program was developed using Visual C++. Various parameters about 

network structure, initial weights and training samples were set before training. The learning 

velocity of the networks was set at 0.8, i.e.,  = 0.8 (refer to Equations (4) and (8)). The 

criterion to end training was that the error between every real output and its ideal output did 

not exceed 0.02, i.e., E  0.02 (refer to Equation (2)). Comparing several learning results, the 

number of neurons in the hidden layer was set to 10. Meanwhile, the numbers of input and 
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output neurons were set to be 45 and 12 respectively according to the total number of fault 

samples and output modes shown in Table 1. In addition, the initial weights (ij(0)) could be 

produced randomly between 0.4 and +0.4. The test results have shown that the threshold  of 

an output can be set to 0.05. This means that when an output value Yk lies in the range of 

[0.05, 1], it indicates that a fault related to the output neuron has occurred. On the other hand, 

when an output value lies in the range of [0, 0.05], it indicates that there is no fault of this 

nature. 

The deep knowledge base contained the knowledge about the structure and behaviour of 

the machining centre, which was used to diagnose faults not previously available in the 

network training samples. The deep knowledge was represented in object-oriented classes. A 

total of 72 classes were used in the deep knowledge base. The meta-system contained 

knowledge about control and evaluation, which are represented as rules and facts. In total 48 

rules and 30 facts were used in the meta-system. 

The integrated diagnosis system was simulated separately for most kinds of faults in the 

12 possible fault areas. If we define P as the rate of correct diagnosis, N1 the number of 

correct diagnosis and N2 the number of false diagnosis, then we have 

P
N

N N




1

1 2

      (9) 

In our study, the results of experiments produced an average value for P of greater than 

91.5%. Further detail of the application can be found in [10]. 

 

7. Conclusion 

The integration of neural networks and expert systems into machine fault diagnosis takes full 

advantage of the low-level processing capability of neural networks and the high-level 

reasoning capability of expert systems. Because neural networks can ensure reliability and 
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expert systems are able to guarantee completeness, the integration of the two techniques 

guarantees highly reliable and complete diagnosis. The combined technique is particularly 

suitable for real-time machine fault diagnosis. A diagnosis system based on the technique 

have been developed, and the system has been on trial run since 1997 on a PFZ1500 

machining centre and good results have been achieved so far.  
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Table 1. Samples of process faults for the PFZ1500 machining centre 

Fault Sample Output Modes 

Areas Number y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 

spindle 6 1 0 0 0 0 0 0 0 0 0 0 0 

spindle motor 3 0 1 0 0 0 0 0 0 0 0 0 0 

tool/work-piece 7 0 0 1 0 0 0 0 0 0 0 0 0 

X axis 4 0 0 0 1 0 0 0 0 0 0 0 0 

Y axis 4 0 0 0 0 1 0 0 0 0 0 0 0 

Z axis 4 0 0 0 0 0 1 0 0 0 0 0 0 

X axis drive motor 3 0 0 0 0 0 0 1 0 0 0 0 0 

Y axis drive motor 3 0 0 0 0 0 0 0 1 0 0 0 0 

Z axis drive motor 3 0 0 0 0 0 0 0 0 1 0 0 0 

mains power 2 0 0 0 0 0 0 0 0 0 1 0 0 

pneumatic pressure 3 0 0 0 0 0 0 0 0 0 0 1 0 

hydraulic pressure  3 0 0 0 0 0 0 0 0 0 0 0 1 

 


